Theta EEG dynamics of the error-related negativity.
Trujillo, Logan T; Allen, John J B
2007-03-01
The error-related negativity (ERN) is a response-locked brain potential (ERP) occurring 80-100ms following response errors. This report contrasts three views of the genesis of the ERN, testing the classic view that time-locked phasic bursts give rise to the ERN against the view that the ERN arises from a pure phase-resetting of ongoing theta (4-7Hz) EEG activity and the view that the ERN is generated - at least in part - by a phase-resetting and amplitude enhancement of ongoing theta EEG activity. Time-domain ERP analyses were augmented with time-frequency investigations of phase-locked and non-phase-locked spectral power, and inter-trial phase coherence (ITPC) computed from individual EEG trials, examining time courses and scalp topographies. Simulations based on the assumptions of the classic, pure phase-resetting, and phase-resetting plus enhancement views, using parameters from each subject's empirical data, were used to contrast the time-frequency findings that could be expected if one or more of these hypotheses adequately modeled the data. Error responses produced larger amplitude activity than correct responses in time-domain ERPs immediately following responses, as expected. Time-frequency analyses revealed that significant error-related post-response increases in total spectral power (phase- and non-phase-locked), phase-locked power, and ITPC were primarily restricted to the theta range, with this effect located over midfrontocentral sites, with a temporal distribution from approximately 150-200ms prior to the button press and persisting up to 400ms post-button press. The increase in non-phase-locked power (total power minus phase-locked power) was larger than phase-locked power, indicating that the bulk of the theta event-related dynamics were not phase-locked to response. Results of the simulations revealed a good fit for data simulated according to the phase-locking with amplitude enhancement perspective, and a poor fit for data simulated according to the classic view and the pure phase-resetting view. Error responses produce not only phase-locked increases in theta EEG activity, but also increases in non-phase-locked theta, both of which share a similar topography. The findings are thus consistent with the notion advanced by Luu et al. [Luu P, Tucker DM, Makeig S. Frontal midline theta and the error-related negativity; neurophysiological mechanisms of action regulation. Clin Neurophysiol 2004;115:1821-35] that the ERN emerges, at least in part, from a phase-resetting and phase-locking of ongoing theta-band activity, in the context of a general increase in theta power following errors.
Sponberg, S; Daniel, T L
2012-10-07
Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-06-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-03-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
Atmospheric Propagation and Combining of High-Power Lasers
2015-09-08
Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when
Liu, Yushan; Ge, Baoming; Abu-Rub, Haitham; ...
2016-06-14
In this study, the active power filter (APF) that consists of a half-bridge leg and an ac capacitor is integrated in the single-phase quasi-Z-source inverter (qZSI) in this paper to avoid the second harmonic power flowing into the dc side. The capacitor of APF buffers the second harmonic power of the load, and the ac capacitor allows highly pulsating ac voltage, so that the capacitances of both dc and ac sides can be small. A model predictive direct power control (DPC) is further proposed to achieve the purpose of this newtopology through predicting the capacitor voltage of APF at eachmore » sampling period and ensuring the APF power to track the second harmonic power of single-phase qZSI. Simulation and experimental results verify the model predictive DPC for the APF-integrated single-phase qZSI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yushan; Ge, Baoming; Abu-Rub, Haitham
In this study, the active power filter (APF) that consists of a half-bridge leg and an ac capacitor is integrated in the single-phase quasi-Z-source inverter (qZSI) in this paper to avoid the second harmonic power flowing into the dc side. The capacitor of APF buffers the second harmonic power of the load, and the ac capacitor allows highly pulsating ac voltage, so that the capacitances of both dc and ac sides can be small. A model predictive direct power control (DPC) is further proposed to achieve the purpose of this newtopology through predicting the capacitor voltage of APF at eachmore » sampling period and ensuring the APF power to track the second harmonic power of single-phase qZSI. Simulation and experimental results verify the model predictive DPC for the APF-integrated single-phase qZSI.« less
Oscillatory Hierarchy Controlling Cortical Excitability and Stimulus Integration
NASA Technical Reports Server (NTRS)
Shah, A. S.; Lakatos, P.; McGinnis, T.; O'Connell, N.; Mills, A.; Knuth, K. H.; Chen, C.; Karmos, G.; Schroeder, C. E.
2004-01-01
Cortical gamma band oscillations have been recorded in sensory cortices of cats and monkeys, and are thought to aid in perceptual binding. Gamma activity has also been recorded in the rat hippocampus and entorhinal cortex, where it has been shown, that field gamma power is modulated at theta frequency. Since the power of gamma activity in the sensory cortices is not constant (gamma-bursts). we decided to examine the relationship between gamma power and the phase of low frequency oscillation in the auditory cortex of the awake macaque. Macaque monkeys were surgically prepared for chronic awake electrophysiological recording. During the time of the experiments. linear array multielectrodes were inserted in area AI to obtain laminar current source density (CSD) and multiunit activity profiles. Instantaneous theta and gamma power and phase was extracted by applying the Morlet wavelet transformation to the CSD. Gamma power was averaged for every 1 degree of low frequency oscillations to calculate power-phase relation. Both gamma and theta-delta power are largest in the supragranular layers. Power modulation of gamma activity is phase locked to spontaneous, as well as stimulus-related local theta and delta field oscillations. Our analysis also revealed that the power of theta oscillations is always largest at a certain phase of delta oscillation. Auditory stimuli produce evoked responses in the theta band (Le., there is pre- to post-stimulus addition of theta power), but there is also indication that stimuli may cause partial phase re-setting of spontaneous delta (and thus also theta and gamma) oscillations. We also show that spontaneous oscillations might play a role in the processing of incoming sensory signals by 'preparing' the cortex.
Sponberg, S.; Daniel, T. L.
2012-01-01
Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power–phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left–right pairs of flight muscles normally fire precisely, within 0.5–0.6 ms of each other; (ii) during a yawing optomotor response, left—right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left–right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left—right timing differences. Because many organisms also have muscles operating with high power–phase gains (Δpower/Δphase), this motor control strategy may be ubiquitous in locomotor systems. PMID:22833272
Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior.
Cohen, Michael X; Donner, Tobias H
2013-12-01
Action monitoring and conflict resolution require the rapid and flexible coordination of activity in multiple brain regions. Oscillatory neural population activity may be a key physiological mechanism underlying such rapid and flexible network coordination. EEG power modulations of theta-band (4-8 Hz) activity over the human midfrontal cortex during response conflict have been proposed to reflect neural oscillations that support conflict detection and resolution processes. However, it has remained unclear whether this frequency-band-specific activity reflects neural oscillations or nonoscillatory responses (i.e., event-related potentials). Here, we show that removing the phase-locked component of the EEG did not reduce the strength of the conflict-related modulation of the residual (i.e., non-phase-locked) theta power over midfrontal cortex. Furthermore, within-subject regression analyses revealed that the non-phase-locked theta power was a significantly better predictor of the conflict condition than was the time-domain phase-locked EEG component. Finally, non-phase-locked theta power showed robust and condition-specific (high- vs. low-conflict) cross-trial correlations with reaction time, whereas the phase-locked component did not. Taken together, our results indicate that most of the conflict-related and behaviorally relevant midfrontal EEG signal reflects a modulation of ongoing theta-band oscillations that occurs during the decision process but is not phase-locked to the stimulus or to the response.
Koenig, Judith B; Martin, Christina E W; Dobson, Howard; Mintchev, Martin P
2009-01-01
To evaluate whether changes in gastric myoelectrical activity in healthy, awake dogs can be detected via multichannel electrogastrography (EGG). 6 healthy hound-breed dogs. For each dog, 8-channel EGG was performed after food had been withheld for 12 hours and at 30 minutes after subsequent feeding; 60 minutes after feeding, atropine (0.04 mg/kg) was administered IM to induce ileus, and 30 minutes later, EGG was again performed. Mean cycles per minute (cpm) values of the dominant frequency (a measure of the rhythmicity of gastric electrical activity) and mean power ratios (ie, power measured after treatment divided by the power measured when food was withheld) were calculated. Motility of the gastric antrum was assessed via B-mode ultrasonography during the same phases; contractions determined ultrasonographically were correlated with EGG power for each channel in each phase. The criterion for stability (SD of the dominant frequency < 15% of the cpm value in at least 3 of the 8 EGG channels) was met in 4 of the 6 dogs (only in long-distance channels). The mean power ratios were significantly higher in the postprandial phase than in the ileus phase. Compared with the postprandial phase, significantly fewer contractions per minute were evident ultrasonographically in the ileus and food-withholding phases. There was a significant and good correlation between EGG power and ultrasonographic findings in all 8 channels. Electrogastrography may be useful in assessing gastric myoelectrical activities in awake dogs with naturally occurring gastrointestinal disease, including gastric dilatation-volvulus.
NASA Technical Reports Server (NTRS)
Cadogan, Dave; Lingo, Bob
1996-01-01
In July of 1996, ILC Dover was awarded Phase 1 of a contract for NASA to develop a prototype Power Assisted Space Suit glove to enhance the performance of astronauts during Extra-Vehicular Activity (EVA). This report summarizes the work performed to date on Phase 1, and details the work to be conducted on Phase 2 of the program. Phase 1 of the program consisted of research and review of related technical sources, concept brainstorming, baseline design development, modeling and analysis, component mock-up testing, and test data analysis. ILC worked in conjunction with the University of Maryland's Space Systems Laboratory (SSL) to develop the power assisted glove. Phase 2 activities will focus on the design maturation and the manufacture of a working prototype system. The prototype will be tested and evaluated in conjunction with existing space suit glove technology to determine the performance enhancement anticipated with the implementation of the power assisted joint technology in space suit gloves.
Space station WP-04 power system. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Hallinan, G. J.
1987-01-01
Major study activities and results of the phase B study contract for the preliminary design of the space station Electrical Power System (EPS) are summarized. The areas addressed include the general system design, man-tended option, automation and robotics, evolutionary growth, software development environment, advanced development, customer accommodations, operations planning, product assurance, and design and development phase planning. The EPS consists of a combination photovoltaic and solar dynamic power generation subsystem and a power management and distribution (PMAD) subsystem. System trade studies and costing activities are also summarized.
Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu
2013-04-01
Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural activities in the penumbra. Longitudinal EEG monitoring at different phases after a stroke can provide information on the neural activities, which are well correlated with the motor function recovery.
Study of the choice of the decoupling layout for the ITER ICRH system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vervier, M., E-mail: michel.vervier@rma.ac.be; Messiaen, A.; Ongena, J.
10 decouplers are used to neutralize the mutual coupling effects and to control the current amplitude of the 24 straps array of the ITER ICRH antenna in the case of current drive phasing. In the case of heating phasing only 4 decouplers are active and the array current control needs to act on the ratio between the power delivered by the 4 generators. This ratio is very sensitive to the precise adjustment of the antenna array phasing. The maximum total radiated power capability is then limited when the power of one generator reaches its maximum value. With the addition ofmore » four switches all 10 installed decouplers are made active and can act on all mutual coupling effects with equal source power from the 4 generators. With four more switches the current drive phasing could work with a reduced poloidal phasing resulting in a 35% increase of its coupling to the plasma.« less
An ac initiation system is described which uses three ac transmission signals interlocked for safety by frequency, phase, and power discrimination...The ac initiation system is pre-armed by the application of two ac signals have the proper phases, and activates a load when an ac power signal of the proper frequency and power level is applied. (Author)
OPERATIONAL CHARACTERISTICS OF THE ARMOUR FISSION GAS GAMMA FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrell, C.W.; McElroy, W.N.
1958-10-31
As the reactor power level is changed frequently, the radiation levels in the gamma facility fluctuate. Data are presented to show the power dependency of the gamma dose rate and the manner of growth and decay. Additional data show the dependercy of the equilibrium gamma activity on the foel temperature and total system pressure. The final phase of the work is directed toward determining an average gamma energy by attenuation measurements with various thicknesses of several materials. The neutrou flux associated with the gas phase activity is determined by foil measurement. From the measurements of dose rate and average gammamore » energy, calculations to determine the number of curies of gas phase decay gamma activity per watt of reactor power are presented. (auth)« less
NASA Astrophysics Data System (ADS)
Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin
2018-06-01
This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.
SPS phase control system performance via analytical simulation
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Kantak, A. V.; Chie, C. M.; Booth, R. W. D.
1979-01-01
A solar power satellite transmission system which incorporates automatic beam forming, steering, and phase control is discussed. The phase control concept centers around the notation of an active retrodirective phased array as a means of pointing the beam to the appropriate spot on Earth. The transmitting antenna (spacetenna) directs the high power beam so that it focuses on the ground-based receiving antenna (rectenna). A combination of analysis and computerized simulation was conducted to determine the far field performance of the reference distribution system, and the beam forming and microwave power generating systems.
Research on Robust Control Strategies for VSC-HVDC
NASA Astrophysics Data System (ADS)
Zhu, Kaicheng; Bao, Hai
2018-01-01
In the control system of VSC-HVDC, the phase locked loop provides phase signals to voltage vector control and trigger pulses to generate the required reference phase. The PLL is a typical second-order system. When the system is in unstable state, it will oscillate, make the trigger angle shift, produce harmonic, and make active power and reactive power coupled. Thus, considering the external disturbances introduced by the PLL in VSC-HVDC control system, the parameter perturbations of the controller and the model uncertainties, a H∞ robust controller of mixed sensitivity optimization problem is designed by using the Hinf function provided by the robust control toolbox. Then, compare it with the proportional integral controller through the MATLAB simulation experiment. By contrast, when the H∞ robust controller is added, active and reactive power of the converter station can track the change of reference values more accurately and quickly, and reduce overshoot. When the step change of active and reactive power occurs, mutual influence is reduced and better independent regulation is achieved.
Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light
NASA Astrophysics Data System (ADS)
Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad
2016-03-01
We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2<1.1). Consequently, a low power sample of each laser was utilized for active linear polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2<1.1). The intrinsic DOE splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.
46 CFR 58.25-25 - Indicating and alarm systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... must activate in the machinery space upon— (1) Failure of any phase of a three-phase power supply; (2... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-25 Indicating and alarm systems. (a) Indication of the... accordance with § 112.15-5(h) of this chapter, draw its power from the source of emergency power. (c) On each...
46 CFR 58.25-25 - Indicating and alarm systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... must activate in the machinery space upon— (1) Failure of any phase of a three-phase power supply; (2... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-25 Indicating and alarm systems. (a) Indication of the... accordance with § 112.15-5(h) of this chapter, draw its power from the source of emergency power. (c) On each...
46 CFR 58.25-25 - Indicating and alarm systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... must activate in the machinery space upon— (1) Failure of any phase of a three-phase power supply; (2... MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-25 Indicating and alarm systems. (a) Indication of the... accordance with § 112.15-5(h) of this chapter, draw its power from the source of emergency power. (c) On each...
Maintaining power: women's experiences from labour onset before admittance to maternity ward.
Carlsson, Ing-Marie; Ziegert, Kristina; Sahlberg-Blom, Eva; Nissen, Eva
2012-02-01
In Sweden pregnant women are encouraged to remain at home until the active phase of labour. Recommendation is based on evidence, that women who seek care and are admitted in the latent phase of labour are subjected to more obstetric interventions and suffer more complications than women who remain at home until the active phase of labour. The aim of this study was to obtain a deeper understanding of how women, who remain at home until the active phase of labour, experience the period from labour onset until admission to labour ward. Interviews were conducted with 19 women after they had given birth to their first child. A Constructivist Grounded theory method was used. 'Maintaining power' was identified as the core category, explaining the women's experience of having enough power, when the labour started. Four related categories: 'to share the experience with another', 'to listen to the rhythm of the body', 'to distract oneself' and 'to be encased in a glass vessel', explained how the women coped and thereby maintained power. The first time mothers in this study, who managed to stay at home during the latent phase of labour, had a sense of power that was expressed as a driving force towards the birth, a bodily and mental strength and the right to decide over their own bodies. This implies that women who maintain power have the ability to make choices during the birth process. The professionals need to be sensitive, supportive and respectful to women's own preferences in the health-care encounter, to promote the existing power throughout the birthing process. Copyright © 2010 Elsevier Ltd. All rights reserved.
Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo
2013-10-25
The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
Space shuttle guidance, navigation, and control design equations. Volume 3: Guidance
NASA Technical Reports Server (NTRS)
1973-01-01
Space shuttle guidance, navigation, and control design equations are presented. The space-shuttle mission includes three relatively distinct guidance phases which are discussed; atmospheric boost, which is characterized by an adaptive guidance law; extra-atmospheric activities; and re-entry activities, where aerodynamic surfaces are the principal effectors. Guidance tasks include pre-maneuver targeting and powered flight guidance, where powered flight is defined to include the application of aerodynamic forces as well as thruster forces. A flow chart which follows guidance activities throughout the mission from the pre-launch phase through touchdown is presented. The main guidance programs and subroutines used in each phase of a typical rendezvous mission are listed. Detailed software requirements are also presented.
ERIC Educational Resources Information Center
Pohl, Nicola; Schwarz, Kimberly
2008-01-01
We describe an experiment for the undergraduate organic laboratory curriculum in which 2-bromoacetophenone is converted to 2-fluoroacetophenone using a solid-phase nucleophilic fluorine source. The experiment introduces students to the utility of solid-phase reagents in organic synthesis, to NMR-active nuclei other than [to the first power]H…
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations.
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-16
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-01-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity. PMID:27306959
Formation of visual memories controlled by gamma power phase-locked to alpha oscillations
NASA Astrophysics Data System (ADS)
Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole
2016-06-01
Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Tang, Lixin; Chinthavali, Madhu Sudhan
2014-01-01
Wireless Power Transfer (WPT) technology is a novel research area in the charging technology that bridges the utility and the automotive industries. There are various solutions that are currently being evaluated by several research teams to find the most efficient way to manage the power flow from the grid to the vehicle energy storage system. There are different control parameters that can be utilized to compensate for the change in the impedance due to variable parameters such as battery state-of-charge, coupling factor, and coil misalignment. This paper presents the implementation of an active front-end rectifier on the grid side formore » power factor control and voltage boost capability for load power regulation. The proposed SiC MOSFET based single phase active front end rectifier with PFC resulted in >97% efficiency at 137mm air-gap and >95% efficiency at 160mm air-gap.« less
Solar Power Satellite Microwave Transmission and Reception
NASA Technical Reports Server (NTRS)
Dietz, R. H.
1980-01-01
Numerous analytical and experimental investigations related to SPS microwave power transmission and reception are reported. Aspects discussed include system performance, phase control, power amplifiers, radiating elements, rectenna, solid state configurations, and planned program activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark A. Johnson
2012-06-29
Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.
Arazpour, Mokhtar; Moradi, Alireza; Samadian, Mohammad; Bahramizadeh, Mahmood; Joghtaei, Mahmoud; Ahmadi Bani, Monireh; Hutchins, Stephen W; Mardani, Mohammad A
2016-06-01
Traditionally, the anatomical knee joint is locked in extension when walking with a conventional knee-ankle-foot orthosis. A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine differences of the powered knee-ankle-foot orthosis compared to a locked knee-ankle-foot orthosis in kinematic data and temporospatial parameters during ambulation. Quasi-experimental design. Subjects with poliomyelitis (n = 7) volunteered for this study and undertook gait analysis with both the powered and the conventional knee-ankle-foot orthoses. Three trials per orthosis were collected while each subject walked along a 6-m walkway using a calibrated six-camera three-dimensional video-based motion analysis system. Walking with the powered knee-ankle-foot orthosis resulted in a significant reduction in both walking speed and step length (both 18%), but a significant increase in stance phase percentage compared to walking with the conventional knee-ankle-foot orthosis. Cadence was not significantly different between the two test conditions (p = 0.751). There was significantly higher knee flexion during swing phase and increased hip hiking when using the powered orthosis. The new powered orthosis permitted improved knee joint kinematic for knee-ankle-foot orthosis users while providing knee support in stance and active knee motion in swing in the gait cycle. Therefore, the new powered orthosis provided more natural knee flexion during swing for orthosis users compared to the locked knee-ankle-foot orthosis. This orthosis has the potential to improve knee joint kinematics and gait pattern in poliomyelitis subjects during walking activities. © The International Society for Prosthetics and Orthotics 2015.
NASA Astrophysics Data System (ADS)
Trikshev, A. I.; Pyrkov, Yu. N.; Tsvetkov, V. B.
2017-12-01
We have demonstrated stable operation of a system for maintaining a constant phase difference between two laser channels with a total output power of 60 W. The system is based on a two-channel fibre amplifier with phase modulators based on piezoceramic spools. At a main piezo element modulation frequency of 11 kHz, the phasing time after thermal and mechanical influences on the active medium is 100 ms.
Effect of Different Phases of Menstrual Cycle on Heart Rate Variability (HRV).
Brar, Tejinder Kaur; Singh, K D; Kumar, Avnish
2015-10-01
Heart Rate Variability (HRV), which is a measure of the cardiac autonomic tone, displays physiological changes throughout the menstrual cycle. The functions of the ANS in various phases of the menstrual cycle were examined in some studies. The aim of our study was to observe the effect of menstrual cycle on cardiac autonomic function parameters in healthy females. A cross-sectional (observational) study was conducted on 50 healthy females, in the age group of 18-25 years. Heart Rate Variability (HRV) was recorded by Physio Pac (PC-2004). The data consisted of Time Domain Analysis and Frequency Domain Analysis in menstrual, proliferative and secretory phase of menstrual cycle. Data collected was analysed statistically using student's pair t-test. The difference in mean heart rate, LF power%, LFnu and HFnu in menstrual and proliferative phase was found to be statistically significant. The difference in mean RR, Mean HR, RMSSD (the square root of the mean of the squares of the successive differences between adjacent NNs.), NN50 (the number of pairs of successive NNs that differ by more than 50 ms), pNN50 (the proportion of NN50 divided by total number of NNs.), VLF (very low frequency) power, LF (low frequency) power, LF power%, HF power %, LF/HF ratio, LFnu and HFnu was found to be statistically significant in proliferative and secretory phase. The difference in Mean RR, Mean HR, LFnu and HFnu was found to be statistically significant in secretory and menstrual phases. From the study it can be concluded that sympathetic nervous activity in secretory phase is greater than in the proliferative phase, whereas parasympathetic nervous activity is predominant in proliferative phase.
Effect of Different Phases of Menstrual Cycle on Heart Rate Variability (HRV)
Singh, K. D.; Kumar, Avnish
2015-01-01
Background Heart Rate Variability (HRV), which is a measure of the cardiac autonomic tone, displays physiological changes throughout the menstrual cycle. The functions of the ANS in various phases of the menstrual cycle were examined in some studies. Aims and Objectives The aim of our study was to observe the effect of menstrual cycle on cardiac autonomic function parameters in healthy females. Materials and Methods A cross-sectional (observational) study was conducted on 50 healthy females, in the age group of 18-25 years. Heart Rate Variability (HRV) was recorded by Physio Pac (PC-2004). The data consisted of Time Domain Analysis and Frequency Domain Analysis in menstrual, proliferative and secretory phase of menstrual cycle. Data collected was analysed statistically using student’s pair t-test. Results The difference in mean heart rate, LF power%, LFnu and HFnu in menstrual and proliferative phase was found to be statistically significant. The difference in mean RR, Mean HR, RMSSD (the square root of the mean of the squares of the successive differences between adjacent NNs.), NN50 (the number of pairs of successive NNs that differ by more than 50 ms), pNN50 (the proportion of NN50 divided by total number of NNs.), VLF (very low frequency) power, LF (low frequency) power, LF power%, HF power %, LF/HF ratio, LFnu and HFnu was found to be statistically significant in proliferative and secretory phase. The difference in Mean RR, Mean HR, LFnu and HFnu was found to be statistically significant in secretory and menstrual phases. Conclusion From the study it can be concluded that sympathetic nervous activity in secretory phase is greater than in the proliferative phase, whereas parasympathetic nervous activity is predominant in proliferative phase. PMID:26557512
Three-Phase AC Optimal Power Flow Based Distribution Locational Marginal Price: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
2017-05-17
Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less
[EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone].
Bazanova, O M; Kondratenko, A V; Kuz'minova, O I; Muravleva, K B; Petrova, S E
2014-01-01
The effects of the neurohumoral status on the EEG alpha - activity indices were studied in a within-subject design with 78 women aged 18-27 years during 1-2 menstrual cycle. Psychometric and EEG indices of alpha waves basal body temperature, saliva progesterone and cortisol level were monitored every 2-3 days. Menstrual and follicular recording sessions occurred before the ovulatory temperature rise, luteal recording session--after increasing progesterone level more than 20% respect to previous day and premenstrual sessions after decreasing progesterone level more that 20% respect to previous day. The design consisted of rest and task periods EEG, EMG and ECG recordings. Half the subjects began during their menstrual phase and half began during their luteal phase. All 5 phases were compared for differences between psychometric features EEG alpha activity, EMG and ECG baseline resting levels, as well as for reactivity to cognitive task. The results showed menstrual phase differences in all psychometric and alpha EEG indices. The cognitive fluency, alpha peak frequency, alpha band width, power in alpha-2 frequency range are maximal at luteal, alpha visual activation and reactivity to cognitive task performance--at follicular phase. The hypothesis that the EEG alpha activity depends on the hormonal status supported by the positive association salivary progesterone level with the alpha peak frequency, power in the alpha-2 band and negative--with the power of the alpha-1 band. According these results, we conclude that psycho-physiological recording sessions with women might be provided with a glance to phase of menstrual cycle.
Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance
Veniero, Domenica
2017-01-01
Abstract Prestimulus oscillatory neural activity has been linked to perceptual outcomes during performance of psychophysical detection and discrimination tasks. Specifically, the power and phase of low frequency oscillations have been found to predict whether an upcoming weak visual target will be detected or not. However, the mechanisms by which baseline oscillatory activity influences perception remain unclear. Recent studies suggest that the frequently reported negative relationship between α power and stimulus detection may be explained by changes in detection criterion (i.e., increased target present responses regardless of whether the target was present/absent) driven by the state of neural excitability, rather than changes in visual sensitivity (i.e., more veridical percepts). Here, we recorded EEG while human participants performed a luminance discrimination task on perithreshold stimuli in combination with single-trial ratings of perceptual awareness. Our aim was to investigate whether the power and/or phase of prestimulus oscillatory activity predict discrimination accuracy and/or perceptual awareness on a trial-by-trial basis. Prestimulus power (3–28 Hz) was inversely related to perceptual awareness ratings (i.e., higher ratings in states of low prestimulus power/high excitability) but did not predict discrimination accuracy. In contrast, prestimulus oscillatory phase did not predict awareness ratings or accuracy in any frequency band. These results provide evidence that prestimulus α power influences the level of subjective awareness of threshold visual stimuli but does not influence visual sensitivity when a decision has to be made regarding stimulus features. Hence, we find a clear dissociation between the influence of ongoing neural activity on conscious awareness and objective performance. PMID:29255794
Kinetic and kinematic differences between squats performed with and without elastic bands.
Israetel, Michael A; McBride, Jeffrey M; Nuzzo, James L; Skinner, Jared W; Dayne, Andrea M
2010-01-01
The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p < or = 0.05). However, the Wht condition resulted in significantly higher forces during the last 5% of the eccentric phase and the first 5% of the concentric phase in comparison to the Band condition. The Band condition resulted in significantly higher power and velocity values during the first portion of the eccentric phase and the latter portion of the concentric phase. Vastus lateralis muscle activity during the Band condition was significantly greater during the first portion of the eccentric phase and latter portion of the concentric phase as well. This investigation indicates that squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.
Cost Optimal Design of a Power Inductor by Sequential Gradient Search
NASA Astrophysics Data System (ADS)
Basak, Raju; Das, Arabinda; Sanyal, Amarnath
2018-05-01
Power inductors are used for compensating VAR generated by long EHV transmission lines and in electronic circuits. For the EHV-lines, the rating of the inductor is decided upon by techno-economic considerations on the basis of the line-susceptance. It is a high voltage high current device, absorbing little active power and large reactive power. The cost is quite high- hence the design should be made cost-optimally. The 3-phase power inductor is similar in construction to a 3-phase core-type transformer with the exception that it has only one winding per phase and each limb is provided with an air-gap, the length of which is decided upon by the inductance required. In this paper, a design methodology based on sequential gradient search technique and the corresponding algorithm leading to cost-optimal design of a 3-phase EHV power inductor has been presented. The case-study has been made on a 220 kV long line of NHPC running from Chukha HPS to Birpara of Coochbihar.
Differences in the utilisation of active power in squat and countermovement jumps.
Ferraro, Damián; Fábrica, Gabriel
2017-07-01
The aim of this article was to understand how active power is used in squat and countermovement jumps. A simple empirical model comprising a mass, a spring, an active element and a damper, together with an optimisation principle, was used to identify the mechanical factors that maximise performance of jumps without countermovement (squat jumps, SJ) and with countermovement (CMJ). Twelve amateur volleyball players performed SJ from two initial positions and CMJ with two degrees of counterbalancing, while kinematic data were collected (jump height, push-off duration and position of the centre of mass). The model adjusted well to real data of SJ through all the impulse phase, and slightly less adequately at the end of this phase for CMJ. Nevertheless, it provides a satisfactory explanation for the generation and utilisation of active power for both type of jumps. On average, the estimated power of the active elements, the spring, and the damper were greater in the SJ. Based upon the result obtained with this model, we suggest that active power is best evaluated with SJ. The reason for this is that, during this kind of jump, the elements associated with the damper consume much of the energy produced by the active elements. The participation of the elements that consume the energy generated by the active elements is less in CMJ than in SJ, allowing for a better utilisation of this energy. In this way it is possible to achieve a better performance in CMJ with less active power.
Biomass power for rural development. Technical progress report, July 1--September 30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill power station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the third quarter of 1997, much of the Consortium`s effort has focused on outreach activities, continued feedstock development, fuel supply planning, and fuel contract development, and preparation for 1998 scale-up activities. The Consortium also submitted a Phase-1 extension proposal during this period. A few of the more important milestones are outlined below. The fourth quarter of 1997 is expected to be dominated by Phase-II proposal efforts and planning for 1998 activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Rui; Zhang, Yingchen
Designing market mechanisms for electricity distribution systems has been a hot topic due to the increased presence of smart loads and distributed energy resources (DERs) in distribution systems. The distribution locational marginal pricing (DLMP) methodology is one of the real-time pricing methods to enable such market mechanisms and provide economic incentives to active market participants. Determining the DLMP is challenging due to high power losses, the voltage volatility, and the phase imbalance in distribution systems. Existing DC Optimal Power Flow (OPF) approaches are unable to model power losses and the reactive power, while single-phase AC OPF methods cannot capture themore » phase imbalance. To address these challenges, in this paper, a three-phase AC OPF based approach is developed to define and calculate DLMP accurately. The DLMP is modeled as the marginal cost to serve an incremental unit of demand at a specific phase at a certain bus, and is calculated using the Lagrange multipliers in the three-phase AC OPF formulation. Extensive case studies have been conducted to understand the impact of system losses and the phase imbalance on DLMPs as well as the potential benefits of flexible resources.« less
High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders
NASA Astrophysics Data System (ADS)
Tantawi, Sami G.; Tamura, Fumihiko
2000-04-01
We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.
Decoding visual object categories from temporal correlations of ECoG signals.
Majima, Kei; Matsuo, Takeshi; Kawasaki, Keisuke; Kawai, Kensuke; Saito, Nobuhito; Hasegawa, Isao; Kamitani, Yukiyasu
2014-04-15
How visual object categories are represented in the brain is one of the key questions in neuroscience. Studies on low-level visual features have shown that relative timings or phases of neural activity between multiple brain locations encode information. However, whether such temporal patterns of neural activity are used in the representation of visual objects is unknown. Here, we examined whether and how visual object categories could be predicted (or decoded) from temporal patterns of electrocorticographic (ECoG) signals from the temporal cortex in five patients with epilepsy. We used temporal correlations between electrodes as input features, and compared the decoding performance with features defined by spectral power and phase from individual electrodes. While using power or phase alone, the decoding accuracy was significantly better than chance, correlations alone or those combined with power outperformed other features. Decoding performance with correlations was degraded by shuffling the order of trials of the same category in each electrode, indicating that the relative time series between electrodes in each trial is critical. Analysis using a sliding time window revealed that decoding performance with correlations began to rise earlier than that with power. This earlier increase in performance was replicated by a model using phase differences to encode categories. These results suggest that activity patterns arising from interactions between multiple neuronal units carry additional information on visual object categories. Copyright © 2013 Elsevier Inc. All rights reserved.
A Linear Model of Phase-Dependent Power Correlations in Neuronal Oscillations
Eriksson, David; Vicente, Raul; Schmidt, Kerstin
2011-01-01
Recently, it has been suggested that effective interactions between two neuronal populations are supported by the phase difference between the oscillations in these two populations, a hypothesis referred to as “communication through coherence” (CTC). Experimental work quantified effective interactions by means of the power correlations between the two populations, where power was calculated on the local field potential and/or multi-unit activity. Here, we present a linear model of interacting oscillators that accounts for the phase dependency of the power correlation between the two populations and that can be used as a reference for detecting non-linearities such as gain control. In the experimental analysis, trials were sorted according to the coupled phase difference of the oscillators while the putative interaction between oscillations was taking place. Taking advantage of the modeling, we further studied the dependency of the power correlation on the uncoupled phase difference, connection strength, and topology. Since the uncoupled phase difference, i.e., the phase relation before the effective interaction, is the causal variable in the CTC hypothesis we also describe how power correlations depend on that variable. For uni-directional connectivity we observe that the width of the uncoupled phase dependency is broader than for the coupled phase. Furthermore, the analytical results show that the characteristics of the phase dependency change when a bidirectional connection is assumed. The width of the phase dependency indicates which oscillation frequencies are optimal for a given connection delay distribution. We propose that a certain width enables a stimulus-contrast dependent extent of effective long-range lateral connections. PMID:21808618
Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.
Martin, Kevan A C; Schröder, Sylvia
2016-02-24
The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.
A High Power Density Single-Phase PWM Rectifier with Active Ripple Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Ruxi; Wang, Fei
It is well known that there exist second-order harmonic current and corresponding ripple voltage on dc bus for single phase PWM rectifiers. The low frequency harmonic current is normally filtered using a bulk capacitor in the bus which results in low power density. This paper proposed an active ripple energy storage method that can effectively reduce the energy storage capacitance. The feed-forward control method and design considerations are provided. Simulation and 15 kW experimental results are provided for verification purposes.
A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruxi; Wang, Fei; Boroyevich, Dushan
It is well known that single-phase pulse width modulation rectifiers have second-order harmonic currents and corresponding ripple voltages on the dc bus. The low-frequency harmonic current is normally filtered using a bulk capacitor in the bus, which results in low power density. However, pursuing high power density in converter design is a very important goal in the aerospace applications. This paper studies methods for reducing the energy storage capacitor for single-phase rectifiers. The minimum ripple energy storage requirement is derived independently of a specific topology. Based on theminimum ripple energy requirement, the feasibility of the active capacitor s reduction schemesmore » is verified. Then, we propose a bidirectional buck boost converter as the ripple energy storage circuit, which can effectively reduce the energy storage capacitance. The analysis and design are validated by simulation and experimental results.« less
NASA Technical Reports Server (NTRS)
Falconer, David; Moore, Ron
2011-01-01
For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.
NASA Technical Reports Server (NTRS)
Santiago, Walter; Birchenough, Arthur G.
2006-01-01
Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.
Power System Observation by using Synchronized Phasor Measurements as a Smart Device
NASA Astrophysics Data System (ADS)
Mitani, Yasunori
Phasor Measurement Unit (PMU) is an apparatus which detects the absolute value of phase angle in sinusoidal signal. When more than two units are located distantly apart from each other, and they are synchronized with GPS signal which tells us the information on exact time, it becomes ready to get phase differences between two distant places. Thus, PMU with GPS receiver is applied to the monitoring of AC power system dynamics and usually installed at substations of transmission lines. The states of power network are uniquely determined by the active and reactive power and the magnitude and phase angle of voltage in each node. Among these values the phase angle had not been easily obtained until the scheme of time synchronism with GPS appeared. In this report, the history of GPS and PMU, and the current status of the applications in power systems in the world are presented. In Japan we are developing a power system monitoring system with PMUs installed at University's campuses with 100V outlets, which is called Campus WAMS. This report also introduces some results from the Campus WAMS briefly.
High power density dc-to-dc converters for aerospace applications
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.
1990-01-01
Three dc-to-dc converter topologies aimed at high-power high-frequency applications are introduced. Major system parasitics, namely, the leakage inductance of the transformer and the device output capacitance are efficiently utilized. Of the three circuits, the single-phase and three-phase versions of the dual active bridge topology demonstrate minimal stresses, better utilization of the transformer, bidirectional, and buck-boost modes of operation. All circuits operate at a constant switching frequency, thus simplifying design of the reactive elements. The power transfer characteristics and soft-switching regions on the Vout-Iout plane are identified. Two coaxial transformers with different cross-sections were built for a rating of 50 kVA. Based on the single-phase dual active bridge topology, a 50 kW, 50 kHz converter operating at an input voltage of 200 Vdc and an output voltage of 1600 Vdc was fabricated. Characteristics of current-fed output make the dual active bridge topologies amenable to paralleling and hence extension to megawatt power levels. Projections to a 1 MW system operating from a 500 Vdc input, at an output voltage of 10 kVdc and a switching frequency of 50 kHz, using MOS-controlled thyristors, coaxially wound transformers operating at three times the present current density with cooling, and multilayer ceramic capacitors, suggests an overall power density of 0.075 to 0.08 kg/kW and an overall efficiency of 96 percent.
CURRENT CONCEPTS OF PLYOMETRIC EXERCISE.
Davies, George; Riemann, Bryan L; Manske, Robert
2015-11-01
As knowledge regarding rehabilitation science continues to increase, exercise programs following musculoskeletal athletic injury continue to evolve. Rehabilitation programs have drastically changed, especially in the terminal phases of rehabilitation, which include performance enhancement, development of power, and a safe return to activity. Plyometric exercise has become an integral component of late phase rehabilitation as the patient nears return to activity. Among the numerous types of available exercises, plyometrics assist in the development of power, a foundation from which the athlete can refine the skills of their sport. Therefore, the purpose of this clinical commentary is to provide an overview of plyometrics including: definition, phases, the physiological, mechanical and neurophysiological basis of plyometrics, and to describe clinical guidelines and contraindications for implementing plyometric programs.
NASA Astrophysics Data System (ADS)
Bazarov, A. E.; Goldobin, I. S.; Eliseev, P. G.; Kobilzhanov, O. A.; Pak, G. T.; Petrakova, T. V.; Pushkina, T. N.; Semenov, A. T.
1987-04-01
An experimental study was made of the characteristics of radiation emitted by arrays of stripe injection lasers in the form of coupled symmetric active Y couplers. An output power of 300 mW in one direction was achieved under cw emission conditions. The periodicity of lobes in the angular distribution corresponded to diffraction of radiation from phase-locked sources and the presence of a peak in the direction of the normal to the emitting surface indicated that the radiation from the individual sources was in phase. An output power of 72.5 mW was obtained in the case of single-frequency cw emission (in an external dispersive resonator).
Cortical theta wanes for language.
Hermes, Dora; Miller, Kai J; Vansteensel, Mariska J; Edwards, Erik; Ferrier, Cyrille H; Bleichner, Martin G; van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F
2014-01-15
The role of low frequency oscillations in language areas is not yet understood. Using ECoG in six human subjects, we studied whether different language regions show prominent power changes in a specific rhythm, in similar manner as the alpha rhythm shows the most prominent power changes in visual areas. Broca's area and temporal language areas were localized in individual subjects using fMRI. In these areas, the theta rhythm showed the most pronounced power changes and theta power decreased significantly during verb generation. To better understand the role of this language-related theta decrease, we then studied the interaction between low frequencies and local neuronal activity reflected in high frequencies. Amplitude-amplitude correlations showed that theta power correlated negatively with high frequency activity, specifically across verb generation trials. Phase-amplitude coupling showed that during control trials, high frequency power was coupled to theta phase, but this coupling decreased significantly during verb generation trials. These results suggest a dynamic interaction between the neuronal mechanisms underlying the theta rhythm and local neuronal activity in language areas. As visual areas show a pronounced alpha rhythm that may reflect pulsed inhibition, language regions show a pronounced theta rhythm with highly similar features. © 2013.
Cascaded Quadruple Active Bridge Structures for Multilevel DC to Three-Phase AC Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Brian B; Achanta, Prasanta K; Maksimovic, Dragan
This paper introduces a multilevel architecture comprised of interconnected dc to three-phase ac converter units. To enable series connected operation, each converter unit contains a quadruple active bridge (QAB) converter that provides isolation between the dc side and each of the three ac sides. Since each converter unit transfers dc-side power as constant balanced three-phase power on the ac side, this implies instantaneous input-output power balance and allows elimination of bulk capacitive energy storage. In addition to minimizing required capacitance, the proposed approach simultaneously enables simplified dc-link controllers amenable to decentralized implementation, supports bidirectional power transfer, and exhibits a modularmore » structure to enhance scalability. Isolation provided by the QAB allows a wide range of electrical configurations among multiple units in various dc-ac, ac-dc or ac-ac applications. In this paper, the focus is on series connections on the ac side to emphasize multilevel operation, and the approach is experimentally validated in a dc-ac system containing two cascaded converter units.« less
Power management and distribution system for a More-Electric Aircraft (MADMEL) -- Program status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maldonado, M.A.; Shah, N.M.; Cleek, K.J.
1995-12-31
A number of technology breakthroughs in recent years have rekindled the concept of a more-electric aircraft. High-power solid-state switching devices, electrohydrostatic actuators (EHAs), electromechanical actuators (EMAs), and high-power generators are just a few examples of component developments that have made dramatic improvements in properties such as weight, size, power, and cost. However, these components cannot be applied piecemeal. A complete, and somewhat revolutionary, system design approach is needed to exploit the benefits that a more-electric aircraft can provide. A five-phase Power Management and Distribution System for a More-Electric Aircraft (MADMEL) program was awarded by the Air Force to the Northrop/Grumman,more » Military Aircraft Division team in September 1991. The objective of the program is to design, develop, and demonstrate an advanced electrical power generation and distribution system for a more-electric aircraft (MEA). The MEA emphasizes the use of electrical power in place of hydraulics, pneumatic, and mechanical power to optimize the performance and life cycle cost of the aircraft. This paper presents an overview of the MADMEL program and a top-level summary of the program results, development and testing of major components to date. In Phase 1 and Phase 2 studies, the electrical load requirements were established and the electrical power system architecture was defined for both near-term (NT-year 1996) and far-term (FT-year 2003) MEA application. The detailed design and specification for the electrical power system (EPS), its interface with the Vehicle Management System, and the test set-up were developed under the recently completed Phase 3. The subsystem level hardware fabrication and testing will be performed under the on-going Phase 4 activities. The overall system level integration and testing will be performed in Phase 5.« less
Kenyon, Lisa K; Farris, John P; Aldrich, Naomi J; Rhodes, Samhita
2017-08-30
The purposes of this exploratory project were: (1) to evaluate the impact of power mobility training with a child who has multiple, severe impairments and (2) to determine if the child's spectrum of electroencephalography (EEG) activity changed during power mobility training. A single-subject A-B-A-B research design was conducted with a four-week duration for each phase. Two target behaviours were explored: (1) mastery motivation assessed via the dimensions of mastery questionnaire (DMQ) and (2) EEG data collected under various conditions. Power mobility skills were also assessed. The participant was a three-year, two-month-old girl with spastic quadriplegic cerebral palsy, gross motor function classification system level V. Each target behaviour was measured weekly. During intervention phases, power mobility training was provided. Improvements were noted in subscale scores of the DMQ. Short-term and long-term EEG changes were also noted. Improvements were noted in power mobility skills. The participant in this exploratory project demonstrated improvements in power mobility skill and function. EEG data collection procedures and variability in an individual's EEG activity make it difficult to determine if the participant's spectrum of EEG activity actually changed in response to power mobility training. Additional studies are needed to investigate the impact of power mobility training on the spectrum of EEG activity in children who have multiple, severe impairments. Implications for Rehabilitation Power mobility training appeared to be beneficial for a child with multiple, severe impairments though the child may never become an independent, community-based power wheelchair user. Electroencephalography may be a valuable addition to the study of power mobility use in children with multiple, severe impairments. Power mobility training appeared to impact mastery motivation (the internal drive to solve complex problems and master new skills) in a child who has multiple, severe impairments.
Advanced Controller Developed for the Free-Piston Stirling Convertor
NASA Technical Reports Server (NTRS)
Gerber, Scott S.
2005-01-01
A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.
NASA Astrophysics Data System (ADS)
Puhan, Pratap Sekhar; Ray, Pravat Kumar; Panda, Gayadhar
2016-12-01
This paper presents the effectiveness of 5/5 Fuzzy rule implementation in Fuzzy Logic Controller conjunction with indirect control technique to enhance the power quality in single phase system, An indirect current controller in conjunction with Fuzzy Logic Controller is applied to the proposed shunt active power filter to estimate the peak reference current and capacitor voltage. Current Controller based pulse width modulation (CCPWM) is used to generate the switching signals of voltage source inverter. Various simulation results are presented to verify the good behaviour of the Shunt active Power Filter (SAPF) with proposed two levels Hysteresis Current Controller (HCC). For verification of Shunt Active Power Filter in real time, the proposed control algorithm has been implemented in laboratory developed setup in dSPACE platform.
NASA Astrophysics Data System (ADS)
Lam, Hing-Lan
2017-01-01
A statistical study of relativistic electron (>2 MeV) fluence derived from geosynchronous satellites and Pc5 ultralow frequency (ULF) wave power computed from a ground magnetic observatory data located in Canada's auroral zone has been carried out. The ground observations were made near the foot points of field lines passing through the GOESs from 1987 to 2009 (cycles 22 and 23). We determine statistical relationships between the two quantities for different phases of a solar cycle and validate these relationships in two different cycles. There is a positive linear relationship between log fluence and log Pc5 power for all solar phases; however, the power law indices vary for different phases of the cycle. High index values existed during the descending phase. The Pearson's cross correlation between electron fluence and Pc5 power indicates fluence enhancement 2-3 days after strong Pc5 wave activity for all solar phases. The lag between the two quantities is shorter for extremely high fluence (due to high Pc5 power), which tends to occur during the declining phases of both cycles. Most occurrences of extremely low fluence were observed during the extended solar minimum of cycle 23. The precursory attribute of Pc5 power with respect to fluence and the enhancement of fluence due to rising Pc5 power both support the notion of an electron acceleration mechanism by Pc5 ULF waves. This precursor behavior establishes the potential of using Pc5 power to predict relativistic electron fluence.
E-beam high voltage switching power supply
Shimer, Daniel W.; Lange, Arnold C.
1997-01-01
A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360.degree./n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load.
E-beam high voltage switching power supply
Shimer, D.W.; Lange, A.C.
1997-03-11
A high power, solid state power supply is described for producing a controllable, constant high voltage output under varying and arcing loads suitable for powering an electron beam gun or other ion source. The present power supply is most useful for outputs in a range of about 100-400 kW or more. The power supply is comprised of a plurality of discrete switching type dc-dc converter modules, each comprising a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, and an output rectifier for producing a dc voltage at the output of each module. The inputs to the converter modules are fed from a common dc rectifier/filter and are linked together in parallel through decoupling networks to suppress high frequency input interactions. The outputs of the converter modules are linked together in series and connected to the input of the transmission line to the load through a decoupling and line matching network. The dc-dc converter modules are phase activated such that for n modules, each module is activated equally 360{degree}/n out of phase with respect to a successive module. The phased activation of the converter modules, combined with the square current waveforms out of the step up transformers, allows the power supply to operate with greatly reduced output capacitance values which minimizes the stored energy available for discharge into an electron beam gun or the like during arcing. The present power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle using simulated voltage feedback signals and voltage feedback loops. Circuitry is also provided for sensing incipient arc currents reflected at the output of the power supply and for simultaneously decoupling the power supply circuitry from the arcing load. 7 figs.
NASA Technical Reports Server (NTRS)
Dijk, D. J.
1999-01-01
In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.
Griffiths phase and long-range correlations in a biologically motivated visual cortex model
NASA Astrophysics Data System (ADS)
Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.
2016-07-01
Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.
The effect of active recovery on power performance during the bench press exercise.
Lopes, Felipe A S; Panissa, Valéria L G; Julio, Ursula F; Menegon, Elton M; Franchini, Emerson
2014-03-27
The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise.
The Effect of Active Recovery on Power Performance During the Bench Press Exercise
Lopes, Felipe A. S.; Panissa, Valéria L. G.; Julio, Ursula F.; Menegon, Elton M.; Franchini, Emerson
2014-01-01
The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise. PMID:25031684
NASA Astrophysics Data System (ADS)
Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.
2017-11-01
A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.
Phase-locking of bursting neuronal firing to dominant LFP frequency components.
Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A
2015-10-01
Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Input-current shaped ac to dc converters
NASA Technical Reports Server (NTRS)
1986-01-01
The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.
A Novel Phase-Shift Control of Semibridgeless Active Rectifier for Wireless Power Transfer
Colak, Kerim; Asa, Erdem; Bojarski, Mariusz; ...
2015-05-12
We investigated a novel phase-shift control of a semibridgeless active rectifier (S-BAR) in order to utilize the S-BAR in wireless energy transfer applications. The standard receiver-side rectifier topology is developed by replacing rectifier lower diodes with synchronous switches controlled by a phase-shifted PWM signal. Moreover, theoretical and simulation results showthat with the proposed control technique, the output quantities can be regulated without communication between the receiver and transmitter. In order to confirm the performance of the proposed converter and control, experimental results are provided using 8-, 15-, and 23-cm air gap coreless transformer which has dimension of 76 cm xmore » 76 cm, with 120-V input and the output power range of 0 to 1kW with a maximum efficiency of 94.4%.« less
Phased-array radar for airborne systems
NASA Astrophysics Data System (ADS)
Tahim, Raghbir S.; Foshee, James J.; Chang, Kai
2003-09-01
Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.
Elevated-Confined Phase-Change Random Access Memory Cells
NASA Astrophysics Data System (ADS)
Lee; Koon, Hock; Shi; Luping; Zhao; Rong; Yang; Hongxin; Lim; Guan, Kian; Li; Jianming; Chong; Chong, Tow
2010-04-01
A new elevated-confined phase-change random access memory (PCRAM) cell structure to reduce power consumption was proposed. In this proposed structure, the confined phase-change region is sitting on top of a small metal column enclosed by a dielectric at the sides. Hence, more heat can be effectively sustained underneath the phase-change region. As for the conventional structure, the confined phase-change region is sitting directly above a large planar bottom metal electrode, which can easily conduct most of the induced heat away. From simulations, a more uniform temperature profile around the active region and a higher peak temperature at the phase-change layer (PCL) in an elevated-confined structure were observed. Experimental results showed that the elevated-confined PCRAM cell requires a lower programming power and has a better scalability than a conventional confined PCRAM cell.
Howard, Mary F; Poeppel, David
2010-11-01
Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3-7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response.
Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement
NASA Astrophysics Data System (ADS)
Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.
2017-10-01
A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.
Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R
2012-06-06
Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.
Dynamic power flow controllers
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
Ingram, W Scott; Robertson, Daniel; Beddar, Sam
2015-03-11
Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator's stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent.
Ingram, W. Scott; Robertson, Daniel; Beddar, Sam
2015-01-01
Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent. PMID:25705066
Development status of the small community solar power system
NASA Technical Reports Server (NTRS)
Pons, R. L.
1982-01-01
The development status and test results for the Small Community Solar Thermal Power Experiment are presented. Activities on the phase 2 power module development effort are presented with emphasis on the receiver, the plant control subsystem, and the energy transport subsystem. The components include a single prototype power module consisting of a parabolic dish concentrator, a power conversion assembly (PCA), and a multiple-module plant control subsystem. The PCA consists of a cavity receiver coupled to an organic Rankine cycle engine-alternator unit defined as the power conversion subsystem; the PCA is mounted at the focus of a parabolic dish concentrator. At a solar insolation of 100 W/sq m and ambient temperature of 28 C (82 F), the power module produces approximately 20 kW of 3-phase, 3 kHz ac power, depending on the concentrator employed. A ground-mounted rectifier to the central collection site where it is supplied directly to the common dc bus which collects the power from all modules in the plant.
GaAs MMIC elements in phased-array antennas
NASA Technical Reports Server (NTRS)
Leonard, Regis F.
1988-01-01
Over the last six years NASA Lewis Research Center has carried out a program aimed at the development of advanced monolithic microwave integrated circuit technology, principally for use in phased-array antenna applications. Arising out of the Advanced Communications Technology Satellite (ACTS) program, the initial targets of the program were chips which operated at 30 and 20 GHz. Included in this group of activities were monolithic power modules with an output of 2 watts at GHz, variable phase shifters at both 20 and 30 GHz, low noise technology at 30 GHz, and a fully integrated (phase shifter, variable gain amplifier, power amplifier) transmit module at 20 GHz. Subsequent developments are centered on NASA mission requirements, particularly Space Station communications systems and deep space data communications.
Lifespan Differences in Cortical Dynamics of Auditory Perception
ERIC Educational Resources Information Center
Muller, Viktor; Gruber, Walter; Klimesch, Wolfgang; Lindenberger, Ulman
2009-01-01
Using electroencephalographic recordings (EEG), we assessed differences in oscillatory cortical activity during auditory-oddball performance between children aged 9-13 years, younger adults, and older adults. From childhood to old age, phase synchronization increased within and between electrodes, whereas whole power and evoked power decreased. We…
Overview of the present progress and activities on the CFETR
NASA Astrophysics Data System (ADS)
Wan, Yuanxi; Li, Jiangang; Liu, Yong; Wang, Xiaolin; Chan, Vincent; Chen, Changan; Duan, Xuru; Fu, Peng; Gao, Xiang; Feng, Kaiming; Liu, Songlin; Song, Yuntao; Weng, Peide; Wan, Baonian; Wan, Farong; Wang, Heyi; Wu, Songtao; Ye, Minyou; Yang, Qingwei; Zheng, Guoyao; Zhuang, Ge; Li, Qiang; CFETR Team
2017-10-01
The China Fusion Engineering Test Reactor (CFETR) is the next device in the roadmap for the realization of fusion energy in China, which aims to bridge the gaps between the fusion experimental reactor ITER and the demonstration reactor (DEMO). CFETR will be operated in two phases. Steady-state operation and self-sufficiency will be the two key issues for Phase I with a modest fusion power of up to 200 MW. Phase II aims for DEMO validation with a fusion power over 1 GW. Advanced H-mode physics, high magnetic fields up to 7 T, high frequency electron cyclotron resonance heating and lower hybrid current drive together with off-axis negative-ion neutral beam injection will be developed for achieving steady-state advanced operation. The recent detailed design, research and development (R&D) activities including integrated modeling of operation scenarios, high field magnet, material, tritium plant, remote handling and future plans are introduced in this paper.
Proceedings of the 1989 Antenna Applications Symposium. Volume 2
1990-03-01
together with the power and phase of the four active sources. This information was determined and subsequently compared with recorded ERP. As component...temperature profile T2. Applying the negated RA values as phase shifter commands generates constant phase across the aperture at temperature T1 in...over the band for both cases. The phase prediction was compared to a Touchstone circuit model and the error with respect to this model is plotted in
Three phase AC motor controller
Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.
1984-03-20
A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.
Phased Development of Accident Tolerant Fue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon M.; Carmack, W. Jon
2016-09-01
The United States Department of Energy (U.S. DOE) Advanced Fuels Campaign (AFC) has adopted a three-phase approach for the development and eventual commercialization of enhanced, accident tolerant fuel (ATF) for light water reactors (LWRs). Extending from 2012 to 2016, AFC is currently coming to the end of Phase 1 research that has entailed Feasibility Assessment and Prioritization for a large number of proposed fuel systems (fuel and cladding) that could provide improved performance under accident conditions. Phase 1 activities will culminate with a prioritization of concepts for both near-term and long-term development based on the available experimental data and modelingmore » predictions. This process will provide guidance to DOE on what concepts should be prioritized for investment in Phase 2 Development/Qualification activities based on technical performance improvements and probability of meeting the aggressive schedule to insert a lead fuel rod (LFR) in a commercial power reactor by 2022. While Phase 1 activities include small-scale fabrication work, materials characterization, and limited irradiation of samples, Phase 2 will require development teams to expand to industrial fabrication methods, conduct irradiation tests under more prototypic reactor conditions (i.e. in contact with reactor primary coolant at LWR conditions and in-pile transient testing), conduct additional characterization and post-irradiation examination, and develop a fuel performance code for the candidate ATF. Phase 2 will culminate in the insertion of an LFR (or lead fuel assembly) in a commercial power reactor. The Phase 3 Commercialization work will extend past 2022. Following post-irradiation examination of LFRs, partial-core reloads will be demonstrated. The commercialization phase will further entail the establishment of commercial fabrication capabilities and the transition of LWR cores to the new fuel. The three development phases described roughly correspond to the technology readiness levels (TRL) defined for nuclear fuel development. TRL 1–3 corresponds to the “proof-of-concept” stage (Phase 1), TRL 4–6 to “proof-of-principle” (Phase 2), and TRL 7–9 to “proof-of-performance” (Phase 3). This paper will provide an overview of the anticipated activities within each phase of development and will provide an update on the current ATF development status.« less
NASA Astrophysics Data System (ADS)
Bush, Craig R.
This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.
Low-noise phase of a two-dimensional active nematic system
NASA Astrophysics Data System (ADS)
Shankar, Suraj; Ramaswamy, Sriram; Marchetti, M. Cristina
2018-01-01
We consider a collection of self-driven apolar particles on a substrate that organize into an active nematic phase at sufficiently high density or low noise. Using the dynamical renormalization group, we systematically study the two-dimensional fluctuating ordered phase in a coarse-grained hydrodynamic description involving both the nematic director and the conserved density field. In the presence of noise, we show that the system always displays only quasi-long-ranged orientational order beyond a crossover scale. A careful analysis of the nonlinearities permitted by symmetry reveals that activity is dangerously irrelevant over the linearized description, allowing giant number fluctuations to persist although now with strong finite-size effects and a nonuniversal scaling exponent. Nonlinear effects from the active currents lead to power-law correlations in the density field, thereby preventing macroscopic phase separation in the thermodynamic limit.
A grid-connected single-phase photovoltaic micro inverter
NASA Astrophysics Data System (ADS)
Wen, X. Y.; Lin, P. J.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.
2017-11-01
In this paper, the topology of a single-phase grid-connected photovoltaic (PV) micro-inverter is proposed. The PV micro-inverter consists of DC-DC stage with high voltage gain boost and DC-AC conversion stage. In the first stage, we apply the active clamp circuit and two voltage multipliers to achieve soft switching technology and high voltage gain. In addition, the flower pollination algorithm (FPA) is employed for the maximum power point tracking (MPPT) in the PV module in this stage. The second stage cascades a H-bridge inverter and LCL filter. To feed high quality sinusoidal power into the grid, the software phase lock, outer voltage loop and inner current loop control method are adopted as the control strategy. The performance of the proposed topology is tested by Matlab/Simulink. A PV module with maximum power 300W and maximum power point voltage 40V is applied as the input source. The simulation results indicate that the proposed topology and the control strategy are feasible.
Investigation of phase synchronization of interictal EEG in right temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Yu, Haitao; Cai, Lihui; Wu, Xinyu; Song, Zhenxi; Wang, Jiang; Xia, Zijie; Liu, Jing; Cao, Yibin
2018-02-01
Epilepsy is commonly associated with abnormally synchronous activity of neurons located in epileptogenic zones. In this study, we investigated the synchronization characteristic of right temporal lobe epilepsy (RTLE). Multichannel electroencephalography (EEG) data were recorded from the RTLE patients during interictal period and normal controls. Power spectral density was first used to analyze the EEG power for two groups of subjects. It was found that the power of epileptics is increased in the whole brain compared with that of the control. We calculated phase lag index (PLI) to measure the phase synchronization between each pair of EEG signals. A higher degree of synchronization was observed in the epileptics especially between distant channels. In particular, the regional synchronization degree was negatively correlated with power spectral density and the correlation was weaker for epileptics. Moreover, the synchronization degree decayed with the increase of relative distance of channels for both the epilepsy and control, but the dependence was weakened in the former. The obtained results may provide new insights into the generation mechanism of epilepsy.
Brazhnik, Elena; Cruz, Ana V.; Avila, Irene; Wahba, Marian I.; Novikov, Nikolay; Ilieva, Neda M.; McCoy, Alex J.; Gerber, Colin; Walters, Judith. R.
2012-01-01
Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of Parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, seven days after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8–25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25–40 Hz band with a peak frequency at 30–35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25–40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity. PMID:22674263
Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model
Nakao, Kazuhito; Nakazawa, Kazu
2014-01-01
In schizophrenia, evoked 40-Hz auditory steady-state responses (ASSRs) are impaired, which reflects the sensory deficits in this disorder, and baseline spontaneous oscillatory activity also appears to be abnormal. It has been debated whether the evoked ASSR impairments are due to the possible increase in baseline power. GABAergic interneuron-specific NMDA receptor (NMDAR) hypofunction mutant mice mimic some behavioral and pathophysiological aspects of schizophrenia. To determine the presence and extent of sensory deficits in these mutant mice, we recorded spontaneous local field potential (LFP) activity and its click-train evoked ASSRs from primary auditory cortex of awake, head-restrained mice. Baseline spontaneous LFP power in the pre-stimulus period before application of the first click trains was augmented at a wide range of frequencies. However, when repetitive ASSR stimuli were presented every 20 s, averaged spontaneous LFP power amplitudes during the inter-ASSR stimulus intervals in the mutant mice became indistinguishable from the levels of control mice. Nonetheless, the evoked 40-Hz ASSR power and their phase locking to click trains were robustly impaired in the mutants, although the evoked 20-Hz ASSRs were also somewhat diminished. These results suggested that NMDAR hypofunction in cortical GABAergic neurons confers two brain state-dependent LFP abnormalities in the auditory cortex; (1) a broadband increase in spontaneous LFP power in the absence of external inputs, and (2) a robust deficit in the evoked ASSR power and its phase-locking despite of normal baseline LFP power magnitude during the repetitive auditory stimuli. The “paradoxically” high spontaneous LFP activity of the primary auditory cortex in the absence of external stimuli may possibly contribute to the emergence of schizophrenia-related aberrant auditory perception. PMID:25018691
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Representation of cognitive reappraisal goals in frontal gamma oscillations.
Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil
2014-01-01
Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion.
Puszta, András; Katona, Xénia; Bodosi, Balázs; Pertich, Ákos; Nyujtó, Diána; Braunitzer, Gábor; Nagy, Attila
2018-01-01
The computer-based Rutgers Acquired Equivalence test (RAET) is a widely used paradigm to test the function of subcortical structures in visual associative learning. The test consists of an acquisition (pair learning) and a test (rule transfer) phase, associated with the function of the basal ganglia and the hippocampi, respectively. Obviously, such a complex task also requires cortical involvement. To investigate the activity of different cortical areas during this test, 64-channel EEG recordings were recorded in 24 healthy volunteers. Fast-Fourier and Morlet wavelet convolution analyses were performed on the recordings. The most robust power changes were observed in the theta (4–7 Hz) and gamma (>30 Hz) frequency bands, in which significant power elevation was observed in the vast majority of the subjects, over the parieto-occipital and temporo-parietal areas during the acquisition phase. The involvement of the frontal areas in the acquisition phase was remarkably weaker. No remarkable cortical power elevations were found in the test phase. In fact, the power of the alpha and beta bands was significantly decreased over the parietooccipital areas. We conclude that the initial acquisition of the image pairs requires strong cortical involvement, but once the pairs have been learned, neither retrieval nor generalization requires strong cortical contribution. PMID:29867412
Puszta, András; Katona, Xénia; Bodosi, Balázs; Pertich, Ákos; Nyujtó, Diána; Braunitzer, Gábor; Nagy, Attila
2018-01-01
The computer-based Rutgers Acquired Equivalence test (RAET) is a widely used paradigm to test the function of subcortical structures in visual associative learning. The test consists of an acquisition (pair learning) and a test (rule transfer) phase, associated with the function of the basal ganglia and the hippocampi, respectively. Obviously, such a complex task also requires cortical involvement. To investigate the activity of different cortical areas during this test, 64-channel EEG recordings were recorded in 24 healthy volunteers. Fast-Fourier and Morlet wavelet convolution analyses were performed on the recordings. The most robust power changes were observed in the theta (4-7 Hz) and gamma (>30 Hz) frequency bands, in which significant power elevation was observed in the vast majority of the subjects, over the parieto-occipital and temporo-parietal areas during the acquisition phase. The involvement of the frontal areas in the acquisition phase was remarkably weaker. No remarkable cortical power elevations were found in the test phase. In fact, the power of the alpha and beta bands was significantly decreased over the parietooccipital areas. We conclude that the initial acquisition of the image pairs requires strong cortical involvement, but once the pairs have been learned, neither retrieval nor generalization requires strong cortical contribution.
Phosphoric and electric utility fuel cell technology development
NASA Astrophysics Data System (ADS)
Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Demarche, T. E.; Gelting, R. L.; Goller, G. J.; Luoma, W. I.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.
1984-01-01
The advancement of electric utility cell stack technology and reduction of cell stack cost was initiated. The cell stack has a nominal 10 ft (2) active area and operates at 120 psia/405(0)F. The program comprises six parallel phases, which culminate in a full height, 10-ft(2) stack verification test: (1) provides the information and services needed to manage the effort, including definition of the prototype commercial power plant; (2) develops the technical base for long term improvements to the cell stack; (3) develops materials and processing techniques for cell stack components incorporating the best available technology; (4) provides the design of hardware and conceptual processing layouts, and updates the power plant definition of Phase 1 to reflect the results of Phases 2 and 3; Phase 5 manufactures the hardware to verify the achievements of Phases 2 and 3, and analyzes the cost of this hardware; and Phase 6 tests the cell stacks assembled from the hardware of Phase 5 to assess the state of development.
A latchable thermally activated phase change actuator for microfluidic systems
NASA Astrophysics Data System (ADS)
Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.
2016-03-01
Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.
NASA Astrophysics Data System (ADS)
Yang, Zhenhua; Li, Hongfei; Nam, Chang-Yong; Kisslinger, Kim; Satija, Sushil; Rafailovich, Miriam
Bulk heterojunction (BHJ) polymer solar cells are an area of intense interest due to their advantages such as mechanical flexibility. The active layer is typically spin coated from the solution of polythiophene derivatives (donor) and fullerenes (acceptor) and interconnected domains are formed because of phase separation. However, the power conversion efficiency (PCE) of BHJ solar cell is restricted by the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes. Here we report a self-assembled columnar structure formed by phase separation between (PCDTBT) and polystyrene (PS) for the active layer morphology optimization. The BHJ solar cell device based on this structure is promising for exhibiting higher performance due to the shorter carrier transportation pathway and larger interfacial area between donor and acceptor. The surface morphology is investigated with atomic force microscopy (AFM) and the columnar structure is studied by investigation of cross-section of the blend thin film of PCDTBT and PS under the transmission electron microscopy (TEM). The different morphological structures formed via phase segregation are correlated with the performance of the BHJ solar cells.
NASA Astrophysics Data System (ADS)
Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.
The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.
An RF energy harvesting power management circuit for appropriate duty-cycled operation
NASA Astrophysics Data System (ADS)
Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya
2015-04-01
In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.
Squatting Exercises in Older Adults: Kinematic and Kinetic Comparisons
FLANAGAN, SEAN; SALEM, GEORGE J.; WANG, MAN-YING; SANKER, SERENA E.; GREENDALE, GAIL A.
2012-01-01
Purpose Squatting activities may be used, within exercise programs, to preserve physical function in older adults. This study characterized the lower-extremity peak joint angles, peak moments, powers, work, impulse, and muscle recruitment patterns (electromyographic; EMG) associated with two types of squatting activities in elders. Methods Twenty-two healthy, older adults (ages 70–85) performed three trials each of: 1) a squat to a self-selected depth (normal squat; SQ) and 2) a squat onto a chair with a standardized height of 43.8 cm (chair squat; CSQ). Descending and ascending phase joint kinematics and kinetics were obtained using a motion analysis system and inverse dynamics techniques. Results were averaged across the three trials. A 2 × 2 (activity × phase) ANOVA with repeated measures was used to examine the biomechanical differences among the two activities and phases. EMG temporal characteristics were qualitatively examined. Results CSQ generated greater hip flexion angles, peak moments, power, and work, whereas SQ generated greater knee and ankle flexion angles, peak moments, power, and work. SQ generated a greater knee extensor impulse, a greater plantar flexor impulse and a greater total support impulse. The EMG temporal patterns were consistent with the kinetic data. Conclusions The results suggest that, with older adults, CSQ places greater demand on the hip extensors, whereas SQ places greater demand on the knee extensors and ankle plantar flexors. Clinicians may use these discriminate findings to more effectively target specific lower-extremity muscle groups when prescribing exercise for older adults. PMID:12673148
Bootstrap percolation on spatial networks
NASA Astrophysics Data System (ADS)
Gao, Jian; Zhou, Tao; Hu, Yanqing
2015-10-01
Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.
The MacArthur Foundation in Nigeria: Report on Activities
ERIC Educational Resources Information Center
John D. and Catherine T. MacArthur Foundation, 2009
2009-01-01
In 2007, Nigeria passed an important milestone: one elected government passed power to another for the first time in the nation's history. Though imperfect, the poll demonstrated powerfully that Nigeria's representative democracy was not a transient phase between periods of military repression but a growing reality. For 20 years, the MacArthur…
The phase of prestimulus alpha oscillations affects tactile perception.
Ai, Lei; Ro, Tony
2014-03-01
Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
Simon, Ann M.; Hargrove, Levi J.
2016-01-01
Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed. PMID:26807889
Armbruster, Diana; Grage, Tobias; Kirschbaum, Clemens; Strobel, Alexander
2018-10-01
Emotional reactivity varies across the menstrual cycle although physiological findings are not entirely consistent. We assessed facial EMG and heart rate (HR) changes in healthy free cycling women (N = 45) with an emotional startle paradigm both during the early follicular and the late luteal phase, verified by repeated salivary 17β-estradiol, progesterone and testosterone assessments. Cycle phase impacted startle responses with larger magnitudes during the luteal phase. Notably, this effect was only present when premenstrual symptoms and sequence of lab sessions were included as co-variates. At rest, participants showed a tendency towards higher HR and reduced high frequency (HF) power during the luteal phase indicating reduced parasympathetic tone. HF power was also negatively associated with startle magnitudes. HR changes in response to emotional images differed between the two cycle phases. Initial HR deceleration was more marked during the follicular phase particularly when viewing negative pictures. However, cycle phase did not significantly impact corrugator and zygomaticus activity in response to emotional pictures. Among the three gonadal steroids, correlation patterns were most consistent for testosterone. During the follicular phase, testosterone was associated with zygomaticus activity while viewing neutral or positive pictures and with less pronounced HR deceleration in response to negative images. During the luteal phase, testosterone was negatively associated with fear potentiated startle. The findings underscore the importance of considering menstrual cycle phase when investigating physiological indicators of emotion. However, the modulating effect of premenstrual symptoms also emphasizes potential inter-individual differences. Copyright © 2018 Elsevier B.V. All rights reserved.
Active phase locking of thirty fiber channels using multilevel phase dithering method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhimeng; Luo, Yongquan, E-mail: yongquan-l@sina.com; Liu, Cangli
2016-03-15
An active phase locking of a large-scale fiber array with thirty channels has been demonstrated experimentally. In the experiment, the first group of thirty phase controllers is used to compensate the phase noises between the elements and the second group of thirty phase modulators is used to impose additional phase disturbances to mimic the phase noises in the high power fiber amplifiers. A multi-level phase dithering algorithm using dual-level rectangular-wave phase modulation and time division multiplexing can achieve the same phase control as single/multi-frequency dithering technique, but without coherent demodulation circuit. The phase locking efficiency of 30 fiber channels ismore » achieved about 98.68%, 97.82%, and 96.50% with no additional phase distortion, modulated phase distortion I (±1 rad), and phase distortion II (±2 rad), corresponding to the phase error of λ/54, λ/43, and λ/34 rms. The contrast of the coherent combined beam profile is about 89%. Experimental results reveal that the multi-level phase dithering technique has great potential in scaling to a large number of laser beams.« less
NASA Astrophysics Data System (ADS)
Capri, Miriam; Mesirca, Pietro; Remondini, Daniel; Carosella, Simona; Pasi, Sara; Castellani, Gastone; Franceschi, Claudio; Bersani, Ferdinando
2004-12-01
In the last 30 years, an increasing public concern about the possible harmful effects of electromagnetic fields generated by power lines and domestic appliances has pushed the scientific community to search for a correct and comprehensive answer to this problem. In this work the effects of exposure to 50 Hz sinusoidal magnetic fields, with a magnetic flux density of 0.05 mT and 2.5 mT (peak values), were studied on human peripheral blood mononuclear cells (PBMCs) collected from healthy young and elderly donors. Cell activation and proliferation were investigated by using flow cytometry techniques and 3H-TdR incorporation assays, respectively. The results obtained indicated that exposure to the fields altered neither DNA synthesis nor the capacity of lymphocytes to enter the activation phase and progress into the cell cycle. Thus, the conclusions are that two important functional phases of human lymphocytes, such as activation and proliferation, are not affected by exposures to 50 Hz magnetic fields similar to those found under power lines.
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goertz, C. K.; Harrold, B. G.; Goldstein, M. L.; Lepping, R. P.; Fitch, C. A.; Sands, M. R.
1990-01-01
Time-series observations of the magnetotail-lobe magnetic field have been Fourier analyzed to compute the frequency-weighted energy density Pfz in the range 1-30 mHz. Pfz is generally observed in the range 0.0001-0.01 gamma-squared Hz with a mean value of 0.0012 during substorm growth phases and 0.001 in the comparison intervals. No strong correlation of Pfz is found with the auroral electrojet index in either set of intervals, but during substorm growth phases Pfz may vary by an order of magnitude over time scales of 30 min, with a tendency for higher power levels to occur later in the growth phase. Increases in Pfz precede by about 10 min localized expansive phase activity observed in individual magnetograms.
Enhancing the Efficiency of Bulk Heterojunction Solar Cells via Templated Self Assembly
NASA Astrophysics Data System (ADS)
Pan, Cheng; Li, Hongfei; Akgun, Bulent; Satijia, Sushil; Gersappe, Dilip; Zhu, Yimei; Rafailovich, Miriam
2013-03-01
Bulk Heterojunction (BHJ) polymer solar cells are an area of intense interest due to their flexibility and relatively low cost. The mixture of polythiophene derivatives (donor) and fullerenes (acceptor) is spin coated on substrate as the active layer, and are phase-separated into interconnected domains. However, due to the disordered inner structures in the active layer, donor or acceptor domains isolated from electrodes and long path conduction, the power conversion efficiency (PCE) of BHJ solar cell is low. Therefore, morphology control in bulk heterojunction (BHJ) solar cell is considered to be critical for the power conversion efficiency (PCE). Here, we present a novel approach that introduces non-photoactive polymer that organizes the poly(3-hexylthiophene) (P3HT) into columnar phases decorated by [6,6]-phenyl C61-butyric acid methyl ester (PCBM) at the interface. This structure represents a realization of an idealized morphology of an organic solar cell, in which, both exiciton dissociation and the carrier transport are optimized leading to increased power conversion efficiency.
Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi
2016-06-01
This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG-EMG transfer function and EMG-EMG coherence function analyses may also be useful to diagnose the pathologically in-coordinated features in jaw and neck muscle activities in temporomandibular disorders and whiplash-associated disorders during critical chewing performance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Impaired Midline Theta Power and Connectivity During Proactive Cognitive Control in Schizophrenia.
Ryman, Sephira G; Cavanagh, James F; Wertz, Christopher J; Shaff, Nicholas A; Dodd, Andrew B; Stevens, Brigitte; Ling, Josef; Yeo, Ronald A; Hanlon, Faith M; Bustillo, Juan; Stromberg, Shannon F; Lin, Denise S; Abrams, Swala; Mayer, Andrew R
2018-05-25
Disrupted proactive cognitive control, a form of early selection and active goal maintenance, is hypothesized to underlie the broad cognitive deficits observed in patients with schizophrenia (SPs). Current research suggests that the disrupted activation within and connectivity between regions of the cognitive control network contribute to disrupted proactive cognitive control; however, no study has examined these mechanisms using an AX Continuous Performance Test task in schizophrenia. Twenty-six SPs (17 male subjects; mean age 34.46 ± 8.77 years) and 28 healthy control participants (HCs; 16 male subjects; mean age 31.43 ± 7.23 years) underwent an electroencephalogram while performing the AX Continuous Performance Test. To examine the extent of activation and level of connectivity within the cognitive control network, power, intertrial phase clustering, and intersite phase clustering metrics were calculated and analyzed. SPs exhibited expected general decrements in behavioral performance relative to HCs and a more selective deficit in conditions requiring proactive cognitive control. Additionally, SPs exhibited deficits in midline theta power and connectivity during proactive cognitive control trials. Specifically, HCs exhibited significantly greater theta power for B cues relative to A cues, whereas SPs exhibited no significant differences between A- and B-cue theta power. Additionally, differential theta connectivity patterns were observed in SPs and HCs. Behavioral measures of proactive cognitive control predicted functional outcomes in SPs. This study suggests that low-frequency midline theta activity is selectively disrupted during proactive cognitive control in SPs. The disrupted midline theta activity may reflect a failure of SPs to proactively recruit cognitive control processes. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Li, J-Y; Kuo, T B J; Hsieh, I-T; Yang, C C H
2012-06-28
Hippocampal theta rhythm (4-12 Hz) can be observed during locomotor behavior, but findings on the relationship between locomotion speed and theta frequency are inconsistent if not contradictory. The inconsistency may be because of the difficulties that previous analyses and protocols have had excluding the effects of behavior training. We recorded the first or second voluntary wheel running each day, and assumed that theta frequency and activity are correlated with speed in different running phases. By simultaneously recording electroencephalography, physical activity, and wheel running speed, this experiment explored the theta oscillations during spontaneous running of the 12-h dark period. The recording was completely wireless and allowed the animal to run freely while being recorded in the wheel. Theta frequency and theta power of middle frequency were elevated before running and theta frequency, theta power of middle frequency, physical activity, and running speed maintained persistently high levels during running. The slopes of the theta frequency and theta activity (4-9.5 Hz) during the initial running were different compared to the same values during subsequent running. During the initial running, the running speed was positively correlated with theta frequency and with theta power of middle frequency. Over the 12-h dark period, the running speed did not positively correlate with theta frequency but was significantly correlated with theta power of middle frequency. Thus, theta frequency was associated with running speed only at the initiation of running. Furthermore, theta power of middle frequency was associated with speed and with physical activity during running when chronological order was not taken into consideration. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Theoretical analysis of phase locking in an array of globally coupled lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vysotskii, D V; Elkin, N N; Napartovich, A P
2013-09-30
A model of an array of globally coupled fibre lasers, with the same fraction of the total output beam power injected into each laser, is considered. Phase self-locking of the laser array makes it possible to increase the brightness of the total output beam without any devices for controlling the phases of output beams, which significantly complicate the laser system. The spread of the laser optical lengths is several hundreds of wavelengths (or even more); within the theory of hollow cavities, this spread should lead to a fast decrease in the total power with an increase in the number ofmore » lasers. The presence of the active medium may reduce this drop to a great extent due to the self-tuning of the laser array radiation wavelength to a value providing a maximum gain for the array lasing mode. The optical length of each element is assumed to be random. The increase in the phase-locking efficiency due to the gain saturation is explained based on the probabilistic approach. An iterative procedure is developed to find the array output power in the presence of steady-state phase locking. Calculations for different values of small-signal gain and the output-power fraction spent on global coupling are performed. It is shown that, when this fraction amounts to ∼20 % – 30 %, phase locking of up to 20 fibre lasers can be implemented with an efficiency as high as 70 %. (control of laser radiation parameters)« less
Biomass power for rural development. Technical progress report, October 1--December 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
The focus of the DOE/USDA sponsored biomass power for rural development project is to develop commercial energy crops for power generation by the year 2000. The New York based Salix Consortium project is a multi-partner endeavor, implemented in three stages. Phase-1, Final Design and Project Development, will conclude with the preparation of construction and/or operating permits, feedstock production plans, and contracts ready for signature. Field trials of willow (Salix) have been initiated at several locations in New York (Tully, Lockport, King Ferry, La Fayette, Massena, and Himrod) and co-firing tests are underway at Greenidge Station (NYSEG) and Dunkirk Station (NMPC).more » Phase-2 of the project will focus on scale-up of willow crop acreage, construction of co-firing facilities at Dunkirk Station (NMPC), and final modifications for Greenidge Station. Cofiring willow is also under consideration for GPU`s Seward Station where testing is underway. There will be an evaluation of the energy crop as part of the gasification trials occurring at BED`s McNeill Power Station. Phase-3 will represent fullscale commercialization of the energy crop and power generation on a sustainable basis. During the fourth quarter of 1997 the Consortium submitted a Phase-2 proposal. A few of the other more important milestones are outlined below. The first quarter of 1998 will be dominated by pre-planting activity in the spring.« less
Designing a Ring-VCO for RFID Transponders in 0.18 μm CMOS Process
Jalil, Jubayer; Reaz, Mamun Bin Ibne; Bhuiyan, Mohammad Arif Sobhan; Rahman, Labonnah Farzana; Chang, Tae Gyu
2014-01-01
In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5–2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of −126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency. PMID:24587731
Zavala, Baltazar; Brittain, John-Stuart; Jenkinson, Ned; Ashkan, Keyoumars; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L; Aziz, Tipu; Zaghloul, Kareem; Brown, Peter
2013-09-11
The subthalamic nucleus (STN) is thought to play a central role in modulating responses during conflict. Computational models have suggested that the location of the STN in the basal ganglia, as well as its numerous connections to conflict-related cortical structures, allows it to be ideally situated to act as a global inhibitor during conflict. Additionally, recent behavioral experiments have shown that deep brain stimulation to the STN results in impulsivity during high-conflict situations. However, the precise mechanisms that mediate the "hold-your-horses" function of the STN remain unclear. We recorded from deep brain stimulation electrodes implanted bilaterally in the STN of 13 human subjects with Parkinson's disease while they performed a flanker task. The incongruent trials with the shortest reaction times showed no behavioral or electrophysiological differences from congruent trials, suggesting that the distracter stimuli were successfully ignored. In these trials, cue-locked STN theta band activity demonstrated phase alignment across trials and was followed by a periresponse increase in theta power. In contrast, incongruent trials with longer reaction times demonstrated a relative reduction in theta phase alignment followed by higher theta power. Theta phase alignment negatively correlated with subject reaction time, and theta power positively correlated with trial reaction time. Thus, when conflicting stimuli are not properly ignored, disruption of STN theta phase alignment may help operationalize the hold-your-horses role of the nucleus, whereas later increases in the amplitude of theta oscillations may help overcome this function.
Prendergast, Brian J.; Cable, Erin J.; Stevenson, Tyler J.; Onishi, Kenneth G.; Zucker, Irving; Kay, Leslie M.
2016-01-01
The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation. PMID:26566981
Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser.
Quinlan, Franklyn; Gee, Sangyoun; Ozharar, Sarper; Delfyett, Peter J
2006-10-01
We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.
Matsumoto, Tamaki; Ushiroyama, Takahisa; Kimura, Tetsuya; Hayashi, Tatsuya; Moritani, Toshio
2007-12-20
Premenstrual syndrome (PMS) encompasses a wide variety of cyclic and recurrent physical, emotional, and behavioral symptoms occurring during the late luteal phase of the menstrual cycle and abating shortly following the beginning of menses. Although PMS is widely recognized, its etiopathogenesis is not yet understood. The present study investigates whether the activity of the autonomic nervous system, which plays a vital role in orchestrating physiological homeostasis within the human body, is altered during the menstrual cycle of women with different degrees of premenstrual symptomatology. Sixty-two women in their 20s to 40s with regular menstrual cycles participated in this study. All subjects were examined during the follicular and late luteal phases. Cycle phase was determined by the onset of menstruation and oral temperature and was verified by concentrations of ovarian hormones, estrone, and pregnanediol in a urine sample taken early in the morning. Autonomic nervous system activity was assessed by means of heart-rate variability (HRV) power spectral analysis during supine rest. The Menstrual Distress Questionnaire was used to evaluate physical, emotional, and behavioral symptoms accompanying the menstrual cycle of the subjects. The subjects were categorized in three groups, Control, PMS, and premenstrual dysphoric disorder (PMDD) groups, depending on the severity of premenstrual symptomatology. No intramenstrual cycle difference in any of the parameters of HRV was found in the Control group, which had no or a small increase in premenstrual symptoms. In contrast, Total power and high frequency power, which reflect overall autonomic and parasympathetic nerve activity, respectively, significantly decreased in the late luteal phase from the follicular phase in the PMS group. As for the PMDD group, which had more severe symptoms premenstrually, heart-rate fluctuation as well as all components of the power spectrum of HRV were markedly decreased regardless of the menstrual cycle compared to those of the other two groups. Several theories have been proposed to explain the underlying mechanisms of PMS with its complex web of bio-psycho-social factors. Although causes and consequences continue to elude, the present study provides intriguing and novel findings that the altered functioning of the autonomic nervous system in the late luteal phase could be associated with diverse psychosomatic and behavioral symptoms appearing premenstrually. In addition, when symptoms become more severe (as seen in women with PMDD), the sympathovagal function might be more depressed regardless of the menstrual cycle.
Why don't you like me? Midfrontal theta power in response to unexpected peer rejection feedback.
van der Molen, M J W; Dekkers, L M S; Westenberg, P M; van der Veen, F M; van der Molen, M W
2017-02-01
Social connectedness theory posits that the brain processes social rejection as a threat to survival. Recent electrophysiological evidence suggests that midfrontal theta (4-8Hz) oscillations in the EEG provide a window on the processing of social rejection. Here we examined midfrontal theta dynamics (power and inter-trial phase synchrony) during the processing of social evaluative feedback. We employed the Social Judgment paradigm in which 56 undergraduate women (mean age=19.67 years) were asked to communicate their expectancies about being liked vs. disliked by unknown peers. Expectancies were followed by feedback indicating social acceptance vs. rejection. Results revealed a significant increase in EEG theta power to unexpected social rejection feedback. This EEG theta response could be source-localized to brain regions typically reported during activation of the saliency network (i.e., dorsal anterior cingulate cortex, insula, inferior frontal gyrus, frontal pole, and the supplementary motor area). Theta phase dynamics mimicked the behavior of the time-domain averaged feedback-related negativity (FRN) by showing stronger phase synchrony for feedback that was unexpected vs. expected. Theta phase, however, differed from the FRN by also displaying stronger phase synchrony in response to rejection vs. acceptance feedback. Together, this study highlights distinct roles for midfrontal theta power and phase synchrony in response to social evaluative feedback. Our findings contribute to the literature by showing that midfrontal theta oscillatory power is sensitive to social rejection but only when peer rejection is unexpected, and this theta response is governed by a widely distributed neural network implicated in saliency detection and conflict monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.
Prestimulus influences on auditory perception from sensory representations and decision processes.
Kayser, Stephanie J; McNair, Steven W; Kayser, Christoph
2016-04-26
The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task.
Prestimulus influences on auditory perception from sensory representations and decision processes
McNair, Steven W.
2016-01-01
The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task. PMID:27071110
ERIC Educational Resources Information Center
Jones, Helen J.
1984-01-01
Suggests a simple technique for collecting and observing human hair roots to compare structure, function, and variation. Students extract their own hair samples and view them using a 40-power microscope objective. Differences between active/inactive phases of hair growth are readily observed. (The activity can be adapted for younger students.) (DH)
Analysis and comparison of different phase shifters for Stirling pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Lei, Tian; Pfotenhauer, John M.; Zhou, Wenjie
2016-12-01
Investigations of phase shifters and power recovery mechanisms are of sustainable interest for developing Stirling pulse tube cryocoolers (SPTC) with higher power density, more compact design and higher efficiency. This paper investigates the phase shifting capacity and the applications of four different phase shifters, including conventional inertance tube, gas-liquid and spring-oscillator phase shifters, as well as a power recovery displacer. Distributed models based on the electro-acoustic analogy are developed to estimate the phase shifting capacity and the acoustic power dissipation of the three phase shifters without power recovery. The results show that both gas-liquid and spring-oscillator phase shifters have the distinctive capacity of phase shifting with a significant reduction in the inertial component length. Furthermore, full distributed models of SPTCs connected with different phase shifters are developed. The cooling performance of SPTCs using all four phase shifters are presented and typical phase relations are analyzed. The comparison reveals that the power recovery displacer with a more complicated configuration provides the highest efficiency. The gas-liquid and spring-oscillator phase shifters show equivalent efficiency compared with the inertance tube phase shifter. Approximately 10-20% of the acoustic power is dissipated by the phase shifters without power recovery, while 15-20% of the acoustic power can be recovered by the power recovery displacer, leading to a maximum coefficient of performance (COP) above 0.14 at 80 K. A merit analysis is also done by presenting the pros and cons of different phase shifters.
Gas mixing enhanced by power modulations in atmospheric pressure microwave plasma jet
NASA Astrophysics Data System (ADS)
Voráč, J.; Potočňáková, L.; Synek, P.; Hnilica, J.; Kudrle, V.
2016-04-01
Microwave plasma jet operating in atmospheric pressure argon was power modulated by audio frequency sine envelope in the 102 W power range. Its effluent was imaged using interference filters and ICCD camera for several different phases of the modulating signal. The combination of this fast imaging with spatially resolved optical emission spectroscopy provides useful insights into the plasmachemical processes involved. Phase-resolved schlieren photography was performed to visualize the gas dynamics. The results show that for higher modulation frequencies the plasma chemistry is strongly influenced by formation of transient flow perturbation resembling a vortex during each period. The perturbation formation and speed are strongly influenced by the frequency and power variations while they depend only weakly on the working gas flow rate. From application point of view, the perturbation presence significantly broadened lateral distribution of active species, effectively increasing cross-sectional area suitable for applications.
Wideband energy harvesting for piezoelectric devices with linear resonant behavior.
Luo, Cheng; Hofmann, Heath F
2011-07-01
In this paper, an active energy harvesting technique for a spring-mass-damper mechanical resonator with piezoelectric electromechanical coupling is investigated. This technique applies a square-wave voltage to the terminals of the device at the same frequency as the mechanical excitation. By controlling the magnitude and phase angle of this voltage, an effective impedance matching can be achieved which maximizes the amount of power extracted from the device. Theoretically, the harvested power can be the maximum possible value, even at off-resonance frequencies. However, in actual implementation, the efficiency of the power electronic circuit limits the amount of power harvested. A power electronic full-bridge converter is built to implement the technique. Experimental results show that the active technique can increase the effective bandwidth by a factor of more than 2, and harvests significantly higher power than rectifier-based circuits at off-resonance frequencies.
NASA Astrophysics Data System (ADS)
Akrap, Ana; Barišić, Neven; Gaal, Richard; Forró, László
2007-12-01
We report the resistivity and thermoelectric power of β-SrxV6O15 , for various stoichiometries, 0.6⩽x⩽1 , and under pressures up to 1.7GPa . The pristine system (x=1) exhibits a semiconductor-insulator transition at 155K , which is evidenced in both resistivity and thermopower and is probably induced by charge ordering. We observe a pronounced change in the nature of the phase transition under pressure and we attribute it to the tuning of the nearest neighbor Coulomb interaction V . At ambient pressure, as the system moves away from stoichiometry to x<1 , disorder is introduced into the strontium sublattice and the phase transition is immediately suppressed. The temperature dependence of the thermoelectric power gradually weakens as the system moves away from x=1 , indicating the importance of disorder. While for x<1 compound thermoelectric power shows evidence of a localized contribution to the conduction, which may involve polaronic effects, the activation energies speak against small polarons in the pristine x=1 compound. We explain our results in a model of conduction through localized states in the off-stoichiometric systems and of thermally activated conduction in the pristine system.
Uterine electromyography during active phase compared with latent phase of labor at term.
Trojner Bregar, Andreja; Lucovnik, Miha; Verdenik, Ivan; Jager, Franc; Gersak, Ksenija; Garfield, Robert E
2016-02-01
In a prospective study in a tertiary university hospital we wanted to determine whether uterine electromyography (EMG) can differentiate between the active and latent phase of labor. Thirty women presenting at ≥37(0/7) weeks of gestation with regular uterine contractions, intact membranes, and a Bishop score <6. EMG was recorded from the abdominal surface for 30 min. Latent phase was defined as no cervical change within at least 4 h. Student's t-test was used for statistical analysis (p ≤ 0.05 significant). Diagnostic accuracy of EMG was determined by receiver operator characteristics (ROC) analysis. The integral of the amplitudes of the power density spectrum (PDS) corresponding to the PDS energy within the "bursts" of uterine EMG activity was compared between the active and latent labor groups. Seventeen (57%) women were found to be in the active phase of labor and 13 (43%) were in the latent phase. The EMG PDS integral was significantly higher (p = 0.02) in the active (mean 3.40 ± 0.82 μV) compared with the latent (mean 1.17 ± 0.33 μV) phase of labor. The PDS integral had an area under the ROC curve (AUC) of 0.80 to distinguish between active and latent phases of labor, compared with number of contractions on tocodynamometry (AUC = 0.79), and Bishop score (AUC = 0.78). The combination (sum) of PDS integral, tocodynamometry, and Bishop score predicted active phase of labor with an AUC of 0.90. Adding uterine EMG measurements to the methods currently used in the clinics could improve the accuracy of diagnosing active labor. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1976-11-01
The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hotmore » brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.« less
Phase matters: A role for the subthalamic network during gait.
Arnulfo, Gabriele; Pozzi, Nicolò Gabriele; Palmisano, Chiara; Leporini, Alice; Canessa, Andrea; Brumberg, Joachim; Pezzoli, Gianni; Matthies, Cordula; Volkmann, Jens; Isaias, Ioannis Ugo
2018-01-01
The role of the subthalamic nucleus in human locomotion is unclear although relevant, given the troublesome management of gait disturbances with subthalamic deep brain stimulation in patients with Parkinson's disease. We investigated the subthalamic activity and inter-hemispheric connectivity during walking in eight freely-moving subjects with Parkinson's disease and bilateral deep brain stimulation. In particular, we compared the subthalamic power spectral densities and coherence, amplitude cross-correlation and phase locking value between resting state, upright standing, and steady forward walking. We observed a phase locking value drop in the β-frequency band (≈13-35Hz) during walking with respect to resting and standing. This modulation was not accompanied by specific changes in subthalamic power spectral densities, which was not related to gait phases or to striatal dopamine loss measured with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane and single-photon computed tomography. We speculate that the subthalamic inter-hemispheric desynchronization in the β-frequency band reflects the information processing of each body side separately, which may support linear walking. This study also suggests that in some cases (i.e. gait) the brain signal, which could allow feedback-controlled stimulation, might derive from network activity.
High power density dc/dc converter: Selection of converter topology
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.
1990-01-01
The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.
Song, Pan-Pan; Xiang, Jing; Jiang, Li; Chen, Heng-Sheng; Liu, Ben-Ke; Hu, Yue
2016-01-01
To analyze spectral and spatial signatures of high frequency oscillations (HFOs), which include ripples and fast ripples (FRs, >200 Hz) by quantitatively assessing average and peak spectral power in a rat model of different stages of epileptogenesis. The lithium-pilocarpine model of temporal lobe epilepsy was used. The acute phase of epilepsy was assessed by recording intracranial electroencephalography (EEG) activity for 1 day after status epilepticus (SE). The chronic phase of epilepsy, including spontaneous recurrent seizures (SRSs), was assessed by recording EEG activity for 28 days after SE. Average and peak spectral power of five frequency bands of EEG signals in CA1, CA3, and DG regions of the hippocampus were analyzed with wavelet and digital filter. FRs occurred in the hippocampus in the animal model. Significant dynamic changes in the spectral power of FRS were identified in CA1 and CA3. The average spectral power of ripples increased at 20 min before SE ( p < 0.05), peaked at 10 min before diazepam injection. It decreased at 10 min after diazepam ( p < 0.05) and returned to baseline after 1 h. The average spectral power of FRs increased at 30 min before SE ( p < 0.05) and peaked at 10 min before diazepam. It decreased at 10 min after diazepam ( p < 0.05) and returned to baseline at 2 h after injection. The dynamic changes were similar between average and peak spectral power of FRs. Average and peak spectral power of both ripples and FRs in the chronic phase showed a gradual downward trend compared with normal rats 14 days after SE. The spectral power of HFOs may be utilized to distinguish between normal and pathologic HFOs. Ictal average and peak spectral power of FRs were two parameters for predicting acute epileptic seizures, which could be used as a new quantitative biomarker and early warning marker of seizure. Changes in interictal HFOs power in the hippocampus at the chronic stage may be not related to seizure occurrence.
NASA Astrophysics Data System (ADS)
McQuiddy, David N., Jr.; Sokolov, Vladimir
1990-12-01
The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.
Samaha, Jason; Sprague, Thomas C; Postle, Bradley R
2016-08-01
Many aspects of perception and cognition are supported by activity in neural populations that are tuned to different stimulus features (e.g., orientation, spatial location, color). Goal-directed behavior, such as sustained attention, requires a mechanism for the selective prioritization of contextually appropriate representations. A candidate mechanism of sustained spatial attention is neural activity in the alpha band (8-13 Hz), whose power in the human EEG covaries with the focus of covert attention. Here, we applied an inverted encoding model to assess whether spatially selective neural responses could be recovered from the topography of alpha-band oscillations during spatial attention. Participants were cued to covertly attend to one of six spatial locations arranged concentrically around fixation while EEG was recorded. A linear classifier applied to EEG data during sustained attention demonstrated successful classification of the attended location from the topography of alpha power, although not from other frequency bands. We next sought to reconstruct the focus of spatial attention over time by applying inverted encoding models to the topography of alpha power and phase. Alpha power, but not phase, allowed for robust reconstructions of the specific attended location beginning around 450 msec postcue, an onset earlier than previous reports. These results demonstrate that posterior alpha-band oscillations can be used to track activity in feature-selective neural populations with high temporal precision during the deployment of covert spatial attention.
Neural network communication facilitates verbal working memory.
Kustermann, Thomas; Rockstroh, Brigitte; Miller, Gregory A; Popov, Tzvetan
2018-05-28
Oscillatory brain activity in the theta, alpha, and gamma frequency ranges has been associated with working memory (WM). In addition to alpha and theta activity associated with WM retention, and gamma band activity with item encoding, activity in the alpha band is related to the deployment of attention resources and information. The present study sought to specify distinct roles of neuromagnetic 4-7 Hz theta, 9-13 Hz alpha, and 50-70 Hz gamma power modulation and communication in fronto-parietal networks during cued, hemifield-specific item presentation in a modified Sternberg verbal WM task in 14 student volunteers. Lateralized posterior alpha and gamma power during encoding suggest a preparatory role of alpha oscillations. Bilateral alpha power increases during maintenance reflect information retention for the non-lateralized probe response. Lateralized alpha power increase during encoding was apparently driven by a monotonic increase in fronto-parietal 6 Hz phase, suggesting a mechanism facilitating WM encoding and successful performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Representation of Cognitive Reappraisal Goals in Frontal Gamma Oscillations
Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil
2014-01-01
Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35–55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals. Our study may provide the basis for an electroencephalogram-based neurofeedback system for the cognitive regulation of emotion. PMID:25401328
NASA Astrophysics Data System (ADS)
Yang, Ping; Yang, Ruo fu; Shen, Feng; Ao, Mingwu; Jiang, Wenhan
2009-05-01
Coherent combination is one of the most promising ways to realize high power laser output. A three- laser-beam coherent combination system based on adaptive optics (AO) technique has been set up in our laboratory. In this system, three 1064nm laser beams are placed side-by-side and compressed by two reflective mirrors. An active segmented deformable mirror (DM) is used to compensate the optical path difference (OPD) among three laser beams. The beams are overlapped onto a 2900Hz CCD camera to form an interference pattern while the peak intensity of the interference pattern is taken as the cost function to optimize by a stochastic parallel gradient descent (SPGD) algorithm. SPGD algorithm is realized on a RT-Linux dual-core industrial computer. A series of experiments have been accomplished and experimental results show that both static distorted aberrations in the beams and active distorted aberrations (which are brought in by a hot iron and the frequency is about 5Hz) can be compensated successfully when the gain coefficients and the perturbation amplitude of SPGD are chosed appropriately, thereby three beams can be well combined. For controlling the phase of fiber lasers, the phase characteristics of beams passing through Yb-doped dual-clad fiber amplifier are measured by means of investigating the interference pattern under different output power through experiments. The frequency of phase fluctuation is evaluated through analyzing the fluctuation of power within a 90um aperture of far-field focal spot. Experimental results show that the phase fluctuation frequencies of laser beam transmitted through fiber amplifier are mainly in the range of 100~1500Hz. As a result, to control the phase fluctuation of beams passing through fiber amplifier, the bandwidth of any potential phase control scheme must be greater than 1.5 kilohertz.
Rubio-Arias, Jacobo Ángel; Ramos-Campo, Domingo Jesús; Peña Amaro, José; Esteban, Paula; Mendizábal, Susana; Jiménez, José Fernando
2017-11-01
The purpose of this study was to analyse gender differences in neuromuscular behaviour of the gastrocnemius and vastus lateralis during the take-off phase of a countermovement jump (CMJ), using direct measures (ground reaction forces, muscle activity and dynamic ultrasound). Sixty-four young adults (aged 18-25 years) participated voluntarily in this study, 35 men and 29 women. The firing of the trigger allowed obtainment of data collection vertical ground reaction forces (GRF), surface electromyography activity (sEMG) and dynamic ultrasound gastrocnemius of both legs. Statistically significant gender differences were observed in the jump performance, which appear to be based on differences in muscle architecture and the electrical activation of the gastrocnemius muscles and vastus lateralis. So while men developed greater peak power, velocity take-offs and jump heights, jump kinetics compared to women, women also required a higher electrical activity to develop lower power values. Additionally, the men had higher values pennation angles and muscle thickness than women. Men show higher performance of the jump test than women, due to significant statistical differences in the values of muscle architecture (pennation angle and thickness muscle), lower Neural Efficiency Index and a higher amount of sEMG activity per second during the take-off phase of a CMJ. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Coherent beam combining architectures for high power tapered laser arrays
NASA Astrophysics Data System (ADS)
Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.
2017-02-01
Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.
Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen
2015-01-01
Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Power inverter implementing phase skipping control
Somani, Utsav; Amirahmadi, Ahmadreza; Jourdan, Charles; Batarseh, Issa
2016-10-18
A power inverter includes a DC/AC inverter having first, second and third phase circuitry coupled to receive power from a power source. A controller is coupled to a driver for each of the first, second and third phase circuitry (control input drivers). The controller includes an associated memory storing a phase skipping control algorithm, wherein the controller is coupled to receive updating information including a power level generated by the power source. The drivers are coupled to control inputs of the first, second and third phase circuitry, where the drivers are configured for receiving phase skipping control signals from the controller and outputting mode selection signals configured to dynamically select an operating mode for the DC/AC inverter from a Normal Control operation and a Phase Skipping Control operation which have different power injection patterns through the first, second and third phase circuitry depending upon the power level.
Optical Amplifier for Space Applications
NASA Technical Reports Server (NTRS)
Fork, Richard L.; Cole, Spencer T.; Gamble, Lisa J.; Diffey, William M.; Keys, Andrew S.
1999-01-01
We describe an optical amplifier designed to amplify a spatially sampled component of an optical wavefront to kilowatt average power. The goal is means for implementing a strategy of spatially segmenting a large aperture wavefront, amplifying the individual segments, maintaining the phase coherence of the segments by active means, and imaging the resultant amplified coherent field. Applications of interest are the transmission of space solar power over multi-megameter distances, as to distant spacecraft, or to remote sites with no preexisting power grid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudkevich, Aleksandr; Goldis, Evgeniy
This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnershipsmore » and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs. - Competitive pricing structure, which will make high-volume usage of simulation services affordable. - Availability and affordability of high quality power simulators, which presently only large corporate clients can afford, will level the playing field in developing regional energy policies, determining prudent cost recovery mechanisms and assuring just and reasonable rates to consumers. - Users that presently do not have the resources to internally maintain modeling capabilities will now be able to run simulations. This will invite more players into the industry, ultimately leading to more transparent and liquid power markets.« less
High-Power, High-Thrust Ion Thruster (HPHTion)
NASA Technical Reports Server (NTRS)
Peterson, Peter Y.
2015-01-01
Advances in high-power photovoltaic technology have enabled the possibility of reasonably sized, high-specific power solar arrays. At high specific powers, power levels ranging from 50 to several hundred kilowatts are feasible. Ion thrusters offer long life and overall high efficiency (typically greater than 70 percent efficiency). In Phase I, the team at ElectroDynamic Applications, Inc., built a 25-kW, 50-cm ion thruster discharge chamber and fabricated a laboratory model. This was in response to the need for a single, high-powered engine to fill the gulf between the 7-kW NASA's Evolutionary Xenon Thruster (NEXT) system and a notional 25-kW engine. The Phase II project matured the laboratory model into a protoengineering model ion thruster. This involved the evolution of the discharge chamber to a high-performance thruster by performance testing and characterization via simulated and full beam extraction testing. Through such testing, the team optimized the design and built a protoengineering model thruster. Coupled with gridded ion thruster technology, this technology can enable a wide range of missions, including ambitious near-Earth NASA missions, Department of Defense missions, and commercial satellite activities.
Technology verification phase. Dynamic isotope power system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less
Extreme challenges on cardiovascular control during gravity transitions
NASA Astrophysics Data System (ADS)
Verheyden, B.; Beckers, F.; Aubert, A. E.
Introduction. During parabolic flights transient periods of hypergravity and microgravity are created. These periods cause translocations of bodily fluids in the longitudinal axis of the body, leading to altered cardiac preload and afterload. These extreme orthostatic challenges provide a unique platform to study baroreflex-mediated responses of the cardiovascular autonomic control system. This might have important features for the development of a model of cardiovascular deconditioning that is observed in a variety of patient populations. Purpose. Until now, due to methodological restrictions, most studies have been concentrating on the analysis of cardiovascular variability in time domain. The purpose of this study is to evaluate heart rate variability (HRV) and blood pressure variability (BPV) simultaneously, using frequency domain analysis techniques (low frequency power (LF: 0.04-0.15 Hz); high frequency power (HF: 0.16-0.4 Hz)), providing additional information about cardiac and vasomotor sympathetic modulation during gravity transitions. Methods. 12 healthy non-medicated volunteers (age = 24 ± 2.5 yr) underwent continuous ECG and blood pressure (BP) recordings during the 32nd and 34th parabolic flight campaign organized by ESA. The subjects performed 15 parabolas in supine and 15 parabolas in standing position. 5 transient gravity phases were abstracted; phase 1 and 5: before and after the parabola (1G); phase 2 and 4: at the ascending and descending leg of the parabola (2G); phase 3: at the apex of the parabola (0g). Phase 2, 3 and 4 last 20 seconds. Results. No significant differences were found in HRV and BPV parameters in supine position between the different gravity phases. In standing position, mean RR- interval was higher during 0G (900 ± 103 ms) compared to 1G (700 ± 87 ms) and 2G (600 ± 94 ms). Mean arterial BP remained relatively constant during 0G but tended to decrease during 2G (102 ± 2 mmHg vs. 105 ± 3 mmHg). Positive correlations were found between the evolution of pulse pressure (PP) and HR during the parabolic trajectory (r = 0.7). LF power and HF power of HRV evaluated in the opposite direction, but to the same extent, as shown by an increase (decrease) in HF (LF) power during 0G by ± 18% and a decrease (increase) in HF (LF) power during 2G by ± 33%, compared to 1G. In spite of a decrease in mean diastolic blood pressure (DBP) of about 10%, LF power of BPV increased by approximately 45% during 0G. The LF/HF ratio of the HRV spectrum decreased during 0G (± 45%) and increased during 2G (± 15%). Conclusion: Cardiac vagal reflex activity at initial microgravity is characterized by an increase in vagal modulation and a decrease in sympathetic modulation and is suggested to depend in the first place on increased PP and thus SV through high-pressure (arterial) receptors. In hypergravity the reverse phenomena occurs (increased sympathetic and decreased vagal activity. Increased vasomotor sympathetic modulation at early microgravity is suggested to depend on decreased DBP through the activation of low-pressure (cardiopulmonary) receptors.
Electrical heating of soils using high efficiency electrode patterns and power phases
Buettner, Harley M.
1999-01-01
Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.
NASA Astrophysics Data System (ADS)
Skvortsov, M. I.; Wolf, A. A.; Dostovalov, A. V.; Vlasov, A. A.; Akulov, V. A.; Babin, S. A.
2018-03-01
A distributed feedback (DFB) fiber laser based on a 32-mm long pi-phase-shifted fiber Bragg grating inscribed using the femtosecond point-by-point technique in a single-mode erbium-doped optical fiber (CorActive EDF-L 1500) is demonstrated. The lasing power of the DFB laser reaches 0.7 mW at a wavelength of 1550 nm when pumped with a laser diode at a wavelength of 976 nm and power of 525 mW. The width of the lasing spectrum is 17 kHz. It is shown that the pi-phase-shifted fiber Bragg grating fs-inscribed in a non-PM fiber provides the selection of the single polarization mode of the DFB laser. DFB laser formation in a highly doped non-photosensitive optical fiber (CoreActive SCF-ER60-8/125-12) is also demonstrated.
Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters
NASA Technical Reports Server (NTRS)
1991-01-01
The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.
Space reactor power 1986 - A year of choices and transition
NASA Technical Reports Server (NTRS)
Wiley, R. L.; Verga, R. L.; Schnyer, A. D.; Sholtis, J. A., Jr.; Wahlquist, E. J.
1986-01-01
Both the SP-100 and Multimegawatt programs have made significant progress over the last year and that progress is the focus of this paper. In the SP-100 program the thermoelectric energy conversion concept powered by a compact, high-temperature, lithium-cooled, uranium-nitride-fueled fast spectrum reactor was selected for engineering development and ground demonstration testing at an electrical power level of 300 kilowatts. In the Multimegawatt program, activities moved from the planning phase into one of technology development and assessment with attendant preliminary definition and evaluation of power concepts against requirements of the Strategic Defense Initiative.
Koch, K L; Bingaman, S; Tan, L; Stern, R M
1998-02-01
Bulimia nervosa remains a common eating disorder in young women. Little is known about upper gastrointestinal symptoms or gastric motility in patients with bulimia nervosa. The aim of this study was to measure gastric myoelectrical activity and hunger/satiety and stomach emptiness/fullness before and after a non-nutrient water load and solid-phase gastric emptying in hospitalized patients with bulimia nervosa (n = 12) and in healthy women (n = 13). Gastric myoelectrical activity was measured by means of cutaneous electrodes; visual analogue scales were used to measure perceptions of hunger/satiety and stomach emptiness/fullness. Before and after a standard water load the bulimia patients reported significantly greater stomach fullness and satiety compared with control subjects (P < 0.01). The percentage of gastric myoelectrical power in the normal 3 cpm range was significantly less in bulimics compared with controls. Power in the 1-2 cpm bradygastria range was significantly greater in bulimia patients before and after the water load compared with the control subjects (P < 0.05). Solid-phase gastric emptying studies using radio-isotope-labelled scrambled eggs showed the lag phase was shortened in the bulimic patients (16 +/- 4 min vs 31 +/- 4 min in controls, P < 0.01), but the percentage of meal emptied at 2 h was similar to control values. bulimia patients had exaggerated perceptions of stomach fullness and satiety in response to water; and abnormal gastric myoelectrical activity and accelerated lag phase of gastric emptying were objective stomach abnormalities detected in hospitalized patients with bulimia nervosa.
High-temperature deformation processing of Ti-24Al-20Nb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagar, P.K.; Banerjee, D.; Muraleedharan, K.
1996-09-01
Power dissipation maps have been generated in the temperature range of 900 C to 1,150 C and strain rate range of 10{sup {minus}3} to 10 s{sup {minus}1} for a cast aluminide alloy Ti-24Al-20Nb using dynamic material model. The results define two distinct regimes of temperature and strain rate in which efficiency of power dissipation is maximum. The first region, centered around 975 C/0.1 s{sup {minus}1}, is shown to correspond to dynamic recrystallization of the {alpha}{sub 2} phase and the second, centered around 1,150 C/0.001 s{sup {minus}1}, corresponds to dynamic recovery and superplastic deformation of the {beta} phase. Thermal activation analysismore » using the power law creep equation yielded apparent activation energies of 854 and 627 kJ/mol for the first and second regimes, respectively. Reanalyzing the data by alternate methods yielded activation energies in the range of 170 to 220 kJ/mol and 220 to 270 kJ/mol for the first and second regimes, respectively. Cross slip was shown to constitute the activation barrier in both cases. Two distinct regimes of processing instability--one at high strain rates and the other at the low strain rates in the lower temperature regions--have been identified, within which shear bands are formed.« less
Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani
2014-01-01
This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems. PMID:25013854
Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani
2014-01-01
This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.
A Methodological Approach to Quantifying Plyometric Intensity.
Jarvis, Mark M; Graham-Smith, Phil; Comfort, Paul
2016-09-01
Jarvis, MM, Graham-Smith, P, and Comfort, P. A Methodological approach to quantifying plyometric intensity. J Strength Cond Res 30(9): 2522-2532, 2016-In contrast to other methods of training, the quantification of plyometric exercise intensity is poorly defined. The purpose of this study was to evaluate the suitability of a range of neuromuscular and mechanical variables to describe the intensity of plyometric exercises. Seven male recreationally active subjects performed a series of 7 plyometric exercises. Neuromuscular activity was measured using surface electromyography (SEMG) at vastus lateralis (VL) and biceps femoris (BF). Surface electromyography data were divided into concentric (CON) and eccentric (ECC) phases of movement. Mechanical output was measured by ground reaction forces and processed to provide peak impact ground reaction force (PF), peak eccentric power (PEP), and impulse (IMP). Statistical analysis was conducted to assess the reliability intraclass correlation coefficient and sensitivity smallest detectable difference of all variables. Mean values of SEMG demonstrate high reliability (r ≥ 0.82), excluding ECC VL during a 40-cm drop jump (r = 0.74). PF, PEP, and IMP demonstrated high reliability (r ≥ 0.85). Statistical power for force variables was excellent (power = 1.0), and good for SEMG (power ≥0.86) excluding CON BF (power = 0.57). There was no significant difference (p > 0.05) in CON SEMG between exercises. Eccentric phase SEMG only distinguished between exercises involving a landing and those that did not (percentage of maximal voluntary isometric contraction [%MVIC] = no landing -65 ± 5, landing -140 ± 8). Peak eccentric power, PF, and IMP all distinguished between exercises. In conclusion, CON neuromuscular activity does not appear to vary when intent is maximal, whereas ECC activity is dependent on the presence of a landing. Force characteristics provide a reliable and sensitive measure enabling precise description of intensity in plyometric exercises. The present findings provide coaches and scientists with an insightful and precise method of measuring intensity in plyometrics, which will allow for greater control of programming variables.
Space station experiment definition: Advanced power system test bed
NASA Technical Reports Server (NTRS)
Pollard, H. E.; Neff, R. E.
1986-01-01
A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.
Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken
2012-04-09
We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.
Three phase power factor controller
NASA Technical Reports Server (NTRS)
Nola, F. J. (Inventor)
1984-01-01
A power control circuit for a three phase induction motor is described. Power factors for the three phases are summed to provide a control signal, and this control signal is particularly filtered and then employed to control the duty cycle of each phase of input power to the motor.
NASA Astrophysics Data System (ADS)
Diniş, C. M.; Cunţan, C. D.; Rob, R. O. S.; Popa, G. N.
2018-01-01
The paper presents the analysis of a power factor with capacitors banks, without series coils, used for improving power factor for a three-phase and single-phase inductive loads. In the experimental measurements, to improve the power factor, the Roederstein ESTAmat RPR power factor controller can command up to twelve capacitors banks, while experimenting using only six capacitors banks. Six delta capacitors banks with approximately equal reactive powers were used for experimentation. The experimental measurements were carried out with a three-phase power quality analyser which worked in three cases: a case without a controller with all capacitors banks permanently parallel connected with network, and two other cases with power factor controller (one with setting power factor at 0.92 and the other one at 1). When performing experiments with the power factor controller, a current transformer was used to measure the current on one phase (at a more charged or less loaded phase).
Bondarenko, V A; Mitrikas, V G; Tsetlin , V V
1995-01-01
This paper is dedicated to the analysis of the radiation situation onboard Mir station over a period of 1986-1994, there examined the main cosmophysics parameters and indices of the solar activity as well as the variations of the parameters of the earth's magnetic field and their association with the changes in the power of absorbed dose onboard the station. There noted the high levels of radiation exposure to the cosmonauts under terrestrial conditions when carrying out the roentgeno-radiologic examinations and procedures comparable or exceeding the absorbed doses during the flights. For revealing the regular associations of the radiation situation onboard the station with the parameters of solar activity there has been analyzed the time changes of average monthly values of dose power since the beginning of station functioning in 1986 until returning the fifteenth expedition to Earth. From the analyses of the results it might be assumed that the best statistical associations of average monthly power of the absorbed dose are found with the streams of protons of GCR. Wolff numbers and background stream of the radio emission of the Sun which reflects the existence of the radiation situation upon the phase of solar activity cycle. From this paper it transpires that calculating the dose loads during the period of the extreme phases of solar activity, it is possible to make between them the interpolations of time dependence by analogy with the dynamics in time of the background streams of GCR or Wolff numbers.
Radiolytic Gas-Driven Cryovolcanism in the Outer Solar System
NASA Technical Reports Server (NTRS)
Cooper, John F.; Cooper, Paul D.; Sittler, Edward C.; Sturner, Steven J.; Rymer, Abigail M.; Hill, Matthew E.
2007-01-01
Water ices in surface crusts of Europa, Enceladus, Saturn's main rings, and Kuiper Belt Objects can become heavily oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. Oxidant accumulations and gas production are manifested in part through observed H2O2 on Europa. tentatively also on Enceladus, and found elsewhere in gaseous or condensed phases at moons and rings of Jupiter and Saturn. On subsequent chemical contact in sub-surface environments with significant concentrations of primordially abundant reductants such as NH3 and CH4, oxidants of radiolytic origin can react exothermically to power gas-driven cryovolcanism. The gas-piston effect enormously amplifies the mass flow output in the case of gas formation at basal thermal margins of incompressible fluid reservoirs. Surface irradiation, H2O2 production, NH3 oxidation, and resultant heat, gas, and gas-driven mass flow rates are computed in the fluid reservoir case for selected bodies. At Enceladus the oxidant power inputs are comparable to limits on nonthermal kinetic power for the south polar plumes. Total heat output and plume gas abundance may be accounted for at Enceladus if plume activity is cyclic in high and low "Old Faithful" phases, so that oxidants can accumulate during low activity phases. Interior upwelling of primordially abundant NH3 and CH4 hydrates is assumed to resupply the reductant fuels. Much lower irradiation fluxes on Kuiper Belt Objects require correspondingly larger times for accumulation of oxidants to produce comparable resurfacing, but brightness and surface composition of some objects suggest that such activity may be ongoing.
NASA Astrophysics Data System (ADS)
Liu, Xuezhang; Wen, Kui; Deng, Chunming; Yang, Kun; Deng, Changguang; Liu, Min; Zhou, Kesong
2018-02-01
High plasma power is beneficial for the deposition efficiency and adhesive strength of suspension-sprayed photocatalytic TiO2 coatings, but it confronts two challenges: one is the reduced activity due to the critical phase transformation of anatase into rutile, and the other is fragmented droplets which cannot be easily injected into the plasma core. Here, TiO2 coatings were deposited at high plasma power and the position of suspension injection was varied with the guidance of numerical simulation. The simulation was based on a realistic three-dimensional time-dependent numerical model that included the inside and outside of torch regions. Scanning electron microscopy was performed to study the microstructure of the TiO2 coatings, whereas x-ray diffraction was adopted to analyze phase composition. Meanwhile, photocatalytic activities of the manufactured TiO2 coatings were evaluated by the degradation of an aqueous solution of methylene blue dye. Fragmented droplets were uniformly injected into the plasma jet, and the solidification pathway of melting particles was modified by varying the position of suspension injection. A nanostructured TiO2 coating with 93.9% anatase content was obtained at high plasma power (48.1 kW), and the adhesive coating bonding to stainless steel exhibited the desired photocatalytic activity.
Control voltage and power fluctuations when connecting wind farms
NASA Astrophysics Data System (ADS)
Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana
2015-12-01
Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.
NASA Technical Reports Server (NTRS)
Kuehn, T. J.; Nawrocki, P. M.
1978-01-01
It is suggested that federal programs for hastening the adoption of alternative energy sources must operate within the free market structure. Five phases of the free market commercialization process are described. Federal role possibilities include information dissemination and funding to stimulate private sector activities within these five phases, and federally sponsored procedures for accelerating commercialization of solar thermal small power systems are considered.
Evaluation of Commercial Off-the-Shelf and Government Off-the-Shelf Microclimate Cooling Systems
2005-08-01
Appendix A - Request for Information (RFI) 23 Appendix B - Memorandum from Natick Soldier Center’s International Office 25 Appendix C - Cooling Power...Data Entry Forms 7 Figure 3. Evaporative Cooling Products 9 Figure 4. Passive Phase Change Product 10 Figure 5. Liquid Circulating...Microclimate Cooling System 13 Figure 6. Compressed Air Cooling Product 15 Figure 7. Vortex Tube 15 Figure 8. Active Phase
NASA Technical Reports Server (NTRS)
Feigenbaum, H.; Kaufman, A.; Wang, C. L.; Werth, J.; Whelan, J. A.
1983-01-01
Operating experience with a 5kW methanol-air integrated system is described. On-going test results for a 24-cell, two-sq ft (4kW) stack are reported. The main activity for this stack is currently the evaluation of developmental non-metalic cooling plates. Single-cell test results are presented for a promising developmental cathode catalyst.
Security and Stability Analysis of Wind Farms Integration into Distribution Network
NASA Astrophysics Data System (ADS)
Guan-yang, Li; Hongzhao, Wang; Guanglei, Li; Yamei, Cheng; Hong-zheng, Liu; Yi, Sun
2017-05-01
With the increasing share of the wind power in the power system, wind power fluctuations will cause obvious negative impacts on weak local grid. This paper firstly establish electromechanical transient simulation model for doubly fed induction wind turbine, then use Matlab/Simulink to achieve power flow calculation and transient simulation of power system including wind farms, the local synchronous generator, load, etc, finally analyze wind power on the impact of the local power grid under typical circumstances. The actual calculated results indicate that wind mutation causes little effect on the power grid, but when the three-phase short circuit fault happens, active power of wind power decreases sharply and the voltage of location of wind power into the grid also drop sharply, finally wind farm split from power system. This situation is not conducive to security and stability of the local power grid. It is necessary to develop security and stability measures in the future.
2010-01-01
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract. PMID:20420714
Wang, Xingyuan; Meng, Juan; Tan, Guilin; Zou, Lixian
2010-04-27
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.
Activity of a social dynamics model
NASA Astrophysics Data System (ADS)
Reia, Sandro M.; Neves, Ubiraci P. C.
2015-10-01
Axelrod's model was proposed to study interactions between agents and the formation of cultural domains. It presents a transition from a monocultural to a multicultural steady state which has been studied in the literature by evaluation of the relative size of the largest cluster. In this article, we propose new measurements based on the concept of activity per agent to study the Axelrod's model on the square lattice. We show that the variance of system activity can be used to indicate the critical points of the transition. Furthermore the frequency distribution of the system activity is able to show a coexistence of phases typical of a first order phase transition. Finally, we verify a power law dependence between cluster activity and cluster size for multicultural steady state configurations at the critical point.
Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis.
Dorel, Sylvain; Couturier, Antoine; Lacour, Jean-René; Vandewalle, Henry; Hautier, Christophe; Hug, François
2010-06-01
Maximal cycling exercise has been widely used to describe the power-velocity characteristics of lower-limb extensor muscles. This study investigated the contribution of each functional sector (i.e., extension, flexion, and transitions sectors) on the total force produced over a complete pedaling cycle. We also examined the ratio of effective force to the total pedal force, termed index of mechanical effectiveness (IE), in explaining differences in power between subjects. Two-dimensional pedal forces and crank angles were measured during a cycling force-velocity test performed by 14 active men. Mean values of forces, power output, and IE over four functional angular sectors were assessed: top = 330 degrees -30 degrees , downstroke = 30 degrees -150 degrees , bottom = 150 degrees -210 degrees , and upstroke = 210 degrees -330 degrees . Linear and quadratic force-velocity and power-velocity relationships were obtained for downstroke and upstroke. Maximal power output (Pmax) generated over these two sectors represented, respectively, 73.6% +/- 2.6% and 10.3% +/- 1.8% of Pmax assessed over the entire cycle. In the whole group, Pmax over the complete cycle was significantly related to Pmax during the downstroke and upstroke. IE significantly decreased with pedaling rate, especially in bottom and upstroke. There were significant relationships between power output and IE for top and upstroke when the pedaling rate was below or around the optimal value and in all the sectors at very high cadences. Although data from force-velocity test primarily characterize the muscular function involved in the downstroke phase, they also reflect the flexor muscles' ability to actively pull on the pedal during the upstroke. IE influences the power output in the upstroke phase and near the top dead center, and IE accounts for differences in power between subjects at high pedaling rates.
Circadian analysis of large human populations: inferences from the power grid.
Stowie, Adam C; Amicarelli, Mario J; Crosier, Caitlin J; Mymko, Ryan; Glass, J David
2015-03-01
Few, if any studies have focused on the daily rhythmic nature of modern industrialized populations. The present study utilized real-time load data from the U.S. Pacific Northwest electrical power grid as a reflection of human operative household activity. This approach involved actigraphic analyses of continuously streaming internet data (provided in 5 min bins) from a human subject pool of approximately 43 million primarily residential users. Rhythm analyses reveal striking seasonal and intra-week differences in human activity patterns, largely devoid of manufacturing and automated load interference. Length of the diurnal activity period (alpha) is longer during the spring than the summer (16.64 h versus 15.98 h, respectively; p < 0.01). As expected, significantly more activity occurs in the solar dark phase during the winter than during the summer (6.29 h versus 2.03 h, respectively; p < 0.01). Interestingly, throughout the year a "weekend effect" is evident, where morning activity onset occurs approximately 1 h later than during the work week (5:54 am versus 6:52 am, respectively; p < 0.01). This indicates a general phase-delaying response to the absence of job-related or other weekday morning arousal cues, substantiating a preference or need to sleep longer on weekends. Finally, a shift in onset time can be seen during the transition to Day Light Saving Time, but not the transition back to Standard Time. The use of grid power load as a means for human actimetry assessment thus offers new insights into the collective diurnal activity patterns of large human populations.
Single-stage three-phase boost power factor correction circuit for AC-DC converter
NASA Astrophysics Data System (ADS)
Azazi, Haitham Z.; Ahmed, Sayed M.; Lashine, Azza E.
2018-01-01
This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.
High-power piezo drive amplifier for large stack and PFC applications
NASA Astrophysics Data System (ADS)
Clingman, Dan J.; Gamble, Mike
2001-08-01
This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.
Using a micromachined magnetostatic relay in commutating a DC motor
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Wright, John A. (Inventor); Lilienthal, Gerald (Inventor)
2004-01-01
A DC motor is commutated by rotating a magnetic rotor to induce a magnetic field in at least one magnetostatic relay in the motor. Each relay is activated in response to the magnetic field to deliver power to at least one corresponding winding connected to the relay. In some cases, each relay delivers power first through a corresponding primary winding and then through a corresponding secondary winding to a common node. Specific examples include a four-pole, three-phase motor in which each relay is activated four times during one rotation of the magnetic rotor.
The Effects of Bicycle Frame Geometry on Muscle Activation and Power During a Wingate Anaerobic Test
Ricard, Mark D.; Hills-Meyer, Patrick; Miller, Michael G.; Michael, Timothy J.
2006-01-01
The purpose of this study was to compare the effects of bicycle seat tube angles (STA) of (72° and 82°) on power production and EMG of the vastus laeralis (VL), vastus medialis (VM), semimembranous (SM), biceps femoris (BF) during a Wingate test (WAT). Twelve experienced cyclists performed a WAT at each STA. Repeated measures ANOVA was used to identify differences in muscular activation by STA. EMG variables were normalized to isometric maximum voluntary contraction (MVC). Paired t-tests were used to test the effects of STA on: peak power, average power, minimum power and percent power drop. Results indicated BF activation was significantly lower at STA 82° (482.9 ± 166.6 %MVC·s) compared to STA 72° (712.6 ± 265.6 %MVC·s). There were no differences in the power variables between STAs. The primary finding was that increasing the STA from 72° to 82° enabled triathletes’ to maintain power production, while significantly reducing the muscular activation of the biceps femoris muscle. Key Points Road cyclists claim that bicycle seat tube angles between 72° and 76° are most effective for optimal performance in racing. Triathletes typically use seat tube angles greater than 76°. It is thought that a seat tube angle greater than 76° facilitates a smoother bike to run transition in the triathlon. Increasing the seat tube angle from 72 to 82 enabled triathletes’ to maintain power production, while significantly reducing the muscular activation of the biceps femoris muscle. Reduced hamstring muscular activation in the triathlon frame (82 seat tube angle) may serve to reduce hamstring tightness following the bike phase of the triathlon, allowing the runner to use a longer stride length. PMID:24198678
NASA Astrophysics Data System (ADS)
Fremouw, E. J.; Lansinger, J. M.
1981-02-01
A mathematical model has been developed for describing plasma-density irregularities responsible for radiowave scintillation produced in the auroral ionosphere, and the model has been committed to an applications-oriented computer code, WBMOD. The model characterizes the three-dimensional configuration, gradient sharpness, and height-integrated strength of irregularities represented by a power-law spatial spectrum as functions of geomagnetic latitude, time of day, sunspot number, and planetary geomagnetic activity index. Program WBMOD permits calculation of the power-law index and spectral strength (at a fluctuation frequency of 1 Hz) of phase scintillation, together with scintillation indices (variances) for phase and intensity, using a phase-screen scattering theory. The model has been calibrated and iteratively tested against phase-scintillation data from the DNA Wideband Satellite Experiment, collected at Poker Flat, Alaska. It does not account for seasonal variations in high-latitude scintillation observed in other longitude sectors. The program contains a model for middle-latitude and equatorial irregularities as well as for auroral latitudes, but only the latter has been tested extensively against high-quality scintillation data.
Crespo-García, Maité; Zeiller, Monika; Leupold, Claudia; Kreiselmeyer, Gernot; Rampp, Stefan; Hamer, Hajo M; Dalal, Sarang S
2016-11-15
Human hippocampal theta oscillations play a key role in accurate spatial coding. Associative encoding involves similar hippocampal networks but, paradoxically, is also characterized by theta power decreases. Here, we investigated how theta activity relates to associative encoding of place contexts resulting in accurate navigation. Using MEG, we found that slow-theta (2-5Hz) power negatively correlated with subsequent spatial accuracy for virtual contextual locations in posterior hippocampus and other cortical structures involved in spatial cognition. A rare opportunity to simultaneously record MEG and intracranial EEG in an epilepsy patient provided crucial insights: during power decreases, slow-theta in right anterior hippocampus and left inferior frontal gyrus phase-led the left temporal cortex and predicted spatial accuracy. Our findings indicate that decreased slow-theta activity reflects local and long-range neural mechanisms that encode accurate spatial contexts, and strengthens the view that local suppression of low-frequency activity is essential for more efficient processing of detailed information. Copyright © 2016 Elsevier Inc. All rights reserved.
1978-12-01
Audrain Stream : Unnamed Tributary of North Fork of Salt River Date of Inspection: September 29 and 30, 1978 Missouri Power and Light Dam No. Mo.10065...for a power plant, and the reser- voir is also used for recreation. The only operating facility at the darnsite is the pump station adjacent to the...identify due to heavy vegetation. 3. Generally unstable rock wall protecting the up- stream slope. 4. Extensive rodent activity throughout the embankment
NASA Astrophysics Data System (ADS)
Kim, Hong-Seok; Park, Il-Kyu
2018-06-01
In this study, Eu-doped polyvinylidene fluoride nanofibers (PVDF NFs) were fabricated by an electrospinning method and applied as an active layer in triboelectric nanogenerators (TENGs). Structural and optical investigations showed that Eu3+ was successfully doped in the PVDF NFs and it induced discrete emissions corresponding to the electronic transitions. As the Eu content increased, the phase transformation was enhanced from the α-phase to the β-phase in the PVDF NFs, and their diameter decreased. These changes enhanced the electrical output power of the TENGs. However, the further addition of Eu resulted in precipitation of the NO3--related complex on the surface of the PVDF NFs, which was detrimental to performance of the TENGs. Due to these conflicting effects, the output power increased from 13 to 26 μW/cm2 as the Eu contents increased from 0 to 2.7 wt%, whereas it decreased drastically to 4.9 μW/cm2 when the Eu content increased further to 5.3 wt%. Therefore, the optimum amount of Eu doping has advantageous effects.
NASA Technical Reports Server (NTRS)
Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.
1998-01-01
As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.
NASA Technical Reports Server (NTRS)
Maestrello, Lucio
2002-01-01
Acoustic and turbulent boundary layer flow loadings over a flexible structure are used to study the spatial-temporal dynamics of the response of the structure. The stability of the spatial synchronization and desynchronization by an active external force is investigated with an array of coupled transducers on the structure. In the synchronous state, the structural phase is locked, which leads to the formation of spatial patterns while the amplitude peaks exhibit chaotic behaviors. Large amplitude, spatially symmetric loading is superimposed on broadband, but in the desynchronized state, the spectrum broadens and the phase space is lost. The resulting pattern bears a striking resemblance to phase turbulence. The transition is achieved by using a low power external actuator to trigger broadband behaviors from the knowledge of the external acoustic load inducing synchronization. The changes are made favorably and efficiently to alter the frequency distribution of power, not the total power level. Before synchronization effects are seen, the panel response to the turbulent boundary layer loading is discontinuously spatio-temporally correlated. The stability develops from different competing wavelengths; the spatial scale is significantly shorter than when forced with the superimposed external sound. When the external sound level decreases and the synchronized phases are lost, changes in the character of the spectra can be linked to the occurrence of spatial phase transition. These changes can develop broadband response. Synchronized responses of fuselage structure panels have been observed in subsonic and supersonic aircraft; results from two flights tests are discussed.
Lerner, Zachary F; Damiano, Diane L; Bulea, Thomas C
2016-08-01
A robotic exoskeleton was designed for individuals with crouch gait caused by cerebral palsy with the intent to supplement existing muscle function during walking. The aim of this study was to evaluate how powered knee extension assistance provided during stance and swing phases of the gait cycle affect knee kinematics, and knee flexor and extensor muscle activity. Muscle activity and kinematic data were collected from four individuals with crouch gait from cerebral palsy during their normal walking condition and while walking with the exoskeleton under stance, swing, and stance & swing assistance. The exoskeleton was effective in reducing crouch by an average of 13.8° in three of the four participants when assistance was provided during the stance phase; assistance during the swing phase alone was ineffective. Peak knee extensor activity was maintained for all of the conditions during the stance and swing phases. Integrated (i.e. area under the curve) knee extensor activity decreased in two of the subjects indicating a more well-modulated activation pattern. Modest increases in peak and integrated antagonist knee flexor activity were exhibited in all participants; the subject without kinematic improvement had the greatest increase. While the exoskeleton was well tolerated, additional training with a focus on reducing knee flexor activity may lead to further improvements in crouch gait reduction.
Rocket experiment METS Microwave Energy Transmission in Space
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Akiba, R.
A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.
Rocket experiment METS - Microwave Energy Transmission in Space
NASA Astrophysics Data System (ADS)
Kaya, N.; Matsumoto, H.; Akiba, R.
A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.
Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory
NASA Astrophysics Data System (ADS)
Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi
2017-02-01
This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.
ELM suppression in helium plasmas with 3D magnetic fields
Evans, T. E.; Loarte, A.; Orlov, D. M.; ...
2017-06-21
Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L–H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER's non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction andmore » an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. Here, the change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.« less
ELM suppression in helium plasmas with 3D magnetic fields
NASA Astrophysics Data System (ADS)
Evans, T. E.; Loarte, A.; Orlov, D. M.; Grierson, B. A.; Knölker, M. M.; Lyons, B. C.; Cui, L.; Gohil, P.; Groebner, R. J.; Moyer, R. A.; Nazikian, R.; Osborne, T. H.; Unterberg, E. A.
2017-08-01
Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L-H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER’s non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction and an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. The change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.
Design and implementation of Remote Digital Energy Meter (RDEM) based on GSM technology
NASA Astrophysics Data System (ADS)
Khan, Muhammad Waseem; Wang, Jie; Irfan, Muhammad; Shiraz, M.; Khan, Ali Hassan
2017-11-01
Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.
Interactions between thalamic and cortical rhythms during semantic memory recall in human
NASA Astrophysics Data System (ADS)
Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.
2002-04-01
Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.
Resonant CARS Detection of OH Radicals.
1985-01-31
EXPERIMENTAL Several important factors were considered in the design of a resonant CARS experiment which must detect a molecular free radical in the gas phase...two input frequencie±s of CARS methods is that its application corresponds to a Raman-active molecular is generally limited to those species vibration...tuned device which maintains to detect a molecular free radical in the constant output power of the second har- gas phase. The problems are compounded
Different Muscle-Recruitment Strategies Among Elite Breaststrokers.
Guignard, Brice; Olstad, Bjørn H; Simbaña Escobar, David; Lauer, Jessy; Kjendlie, Per-Ludvik; Rouard, Annie H
2015-11-01
To investigate electromyographical (EMG) profiles characterizing the lower-limb flexion-extension in an aquatic environment in high-level breaststrokers. The 2-dimensional breaststroke kick of 1 international- and 2 national-level female swimmers was analyzed during 2 maximal 25-m swims. The activities of biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior were recorded. The breaststroke kick was divided in 3 phases, according to the movements performed in the sagittal plane: push phase (PP) covering 27% of the total kick duration, glide phase (GP) 41%, and recovery phase (RP) 32%. Intrasubject reproducibility of the EMG and kinematics was observed from 1 stroke cycle to another. In addition, important intersubject kinematic reproducibility was noted, whereas muscle activities discriminated the subjects: The explosive PP was characterized by important muscle-activation peaks. During the recovery, muscles were likewise solicited for swimmers 1 (S1) and 2 (S2), while the lowest activities were observed during GP for S2 and swimmer 3 (S3), but not for S1, who maintained major muscle solicitations. The main muscle activities were observed during PP to perform powerful lower-limb extension. The most-skilled swimmer (S1) was the only 1 to solicit her muscles during GP to actively reach better streamlining. Important activation peaks during RP correspond to the limbs acting against water drag. Such differences in EMG strategies among an elite group highlight the importance of considering the muscle parameters used to effectively control the intensity of activation among the phases for a more efficient breaststroke kick.
NASA Astrophysics Data System (ADS)
Abderrahim, Iheb
Wind power generation has grown strongly in the last decade. This results in the development of Wind Energy Conversion System WECS at the levels of modeling and electrical control. Modern WECS operate at varying wind speeds and are equipped with synchronous and asynchronous generators. Among these generators, the Doubly-Fed Induction Generator (DFIG) offers several advantages and capabilities of active and reactive power in four quadrants. WECS based DFIG also causes less conversion costs and minimum energy losses compared with a WECS based on a synchronous generator powered entirely by full scale of power converters. The connection of such a system to the electrical distribution network involves bidirectional operation of networks. This is clearly established in sub and super synchronous operating modes of DFIG. The grid provides the active power to the rotor of DFIG in sub synchronous operating mode and receives the active power of the rotor in super synchronous operating mode of DFIG. Energy quality is thus of major importance during the integration of wind power to the grid. Poor wave quality can affect network stability and could even cause major problems and consequences. This is even more critical where non-linear loads such as the switching power supplies and variable speed drives, are connected to the grid. The idea of this research work is how to mitigate the problems associated with the wave quality while ensuring better implementation of DFIG so that the whole of WECS remains insensitive to external disturbances and parametric variations. The Grid Side Converter (GSC) must be able to compensate harmonics, current unbalance and reactive power injected by a nonlinear three-phase unbalanced load connected to the grid. In addition to these innovative features to improve the conditions of operation of the grid, it provides also the power flow during different modes of operation of the DFIG. It is considered a simple, efficient and cost competitive solution by saving the use of other power equipment. At the same time, the energy efficiency of wind power conversion chain should be improved by extracting the MPPT. Searching allows us to select vector control and control in synchronous reference to achieve these objectives. WECS based DFIG is simulated in MATLAB SIMULINK in the presence of a non-linear balanced and unbalanced three-phase load.
Power law scaling in synchronization of brain signals depends on cognitive load.
Tinker, Jesse; Velazquez, Jose Luis Perez
2014-01-01
As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task). There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa), which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviors.
Active subspace uncertainty quantification for a polydomain ferroelectric phase-field model
NASA Astrophysics Data System (ADS)
Leon, Lider S.; Smith, Ralph C.; Miles, Paul; Oates, William S.
2018-03-01
Quantum-informed ferroelectric phase field models capable of predicting material behavior, are necessary for facilitating the development and production of many adaptive structures and intelligent systems. Uncertainty is present in these models, given the quantum scale at which calculations take place. A necessary analysis is to determine how the uncertainty in the response can be attributed to the uncertainty in the model inputs or parameters. A second analysis is to identify active subspaces within the original parameter space, which quantify directions in which the model response varies most dominantly, thus reducing sampling effort and computational cost. In this investigation, we identify an active subspace for a poly-domain ferroelectric phase-field model. Using the active variables as our independent variables, we then construct a surrogate model and perform Bayesian inference. Once we quantify the uncertainties in the active variables, we obtain uncertainties for the original parameters via an inverse mapping. The analysis provides insight into how active subspace methodologies can be used to reduce computational power needed to perform Bayesian inference on model parameters informed by experimental or simulated data.
Phase-Locked Responses to Speech in Human Auditory Cortex are Enhanced During Comprehension
Peelle, Jonathan E.; Gross, Joachim; Davis, Matthew H.
2013-01-01
A growing body of evidence shows that ongoing oscillations in auditory cortex modulate their phase to match the rhythm of temporally regular acoustic stimuli, increasing sensitivity to relevant environmental cues and improving detection accuracy. In the current study, we test the hypothesis that nonsensory information provided by linguistic content enhances phase-locked responses to intelligible speech in the human brain. Sixteen adults listened to meaningful sentences while we recorded neural activity using magnetoencephalography. Stimuli were processed using a noise-vocoding technique to vary intelligibility while keeping the temporal acoustic envelope consistent. We show that the acoustic envelopes of sentences contain most power between 4 and 7 Hz and that it is in this frequency band that phase locking between neural activity and envelopes is strongest. Bilateral oscillatory neural activity phase-locked to unintelligible speech, but this cerebro-acoustic phase locking was enhanced when speech was intelligible. This enhanced phase locking was left lateralized and localized to left temporal cortex. Together, our results demonstrate that entrainment to connected speech does not only depend on acoustic characteristics, but is also affected by listeners’ ability to extract linguistic information. This suggests a biological framework for speech comprehension in which acoustic and linguistic cues reciprocally aid in stimulus prediction. PMID:22610394
Phase-locked responses to speech in human auditory cortex are enhanced during comprehension.
Peelle, Jonathan E; Gross, Joachim; Davis, Matthew H
2013-06-01
A growing body of evidence shows that ongoing oscillations in auditory cortex modulate their phase to match the rhythm of temporally regular acoustic stimuli, increasing sensitivity to relevant environmental cues and improving detection accuracy. In the current study, we test the hypothesis that nonsensory information provided by linguistic content enhances phase-locked responses to intelligible speech in the human brain. Sixteen adults listened to meaningful sentences while we recorded neural activity using magnetoencephalography. Stimuli were processed using a noise-vocoding technique to vary intelligibility while keeping the temporal acoustic envelope consistent. We show that the acoustic envelopes of sentences contain most power between 4 and 7 Hz and that it is in this frequency band that phase locking between neural activity and envelopes is strongest. Bilateral oscillatory neural activity phase-locked to unintelligible speech, but this cerebro-acoustic phase locking was enhanced when speech was intelligible. This enhanced phase locking was left lateralized and localized to left temporal cortex. Together, our results demonstrate that entrainment to connected speech does not only depend on acoustic characteristics, but is also affected by listeners' ability to extract linguistic information. This suggests a biological framework for speech comprehension in which acoustic and linguistic cues reciprocally aid in stimulus prediction.
Development of a hardware-based AC microgrid for AC stability assessment
NASA Astrophysics Data System (ADS)
Swanson, Robert R.
As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.
SPS pilot signal design and power transponder analysis, volume 2, phase 3
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Scholtz, R. A.; Chie, C. M.
1980-01-01
The problem of pilot signal parameter optimization and the related problem of power transponder performance analysis for the Solar Power Satellite reference phase control system are addressed. Signal and interference models were established to enable specifications of the front end filters including both the notch filter and the antenna frequency response. A simulation program package was developed to be included in SOLARSIM to perform tradeoffs of system parameters based on minimizing the phase error for the pilot phase extraction. An analytical model that characterizes the overall power transponder operation was developed. From this model, the effects of different phase noise disturbance sources that contribute to phase variations at the output of the power transponders were studied and quantified. Results indicate that it is feasible to hold the antenna array phase error to less than one degree per power module for the type of disturbances modeled.
Kristiansen, M; Madeleine, P; Hansen, E A; Samani, A
2015-02-01
The purpose of the study was to elucidate the role of expertise on muscle synergies involved in bench press. Ten expert power lifters (EXP) and nine untrained participants (UNT) completed three sets of eight repetitions at 60% of three repetition maximum in bench press. Muscle synergies were extracted from surface electromyography data of 21 bench press cycles using non-negative matrix factorization algorithm. The synergy activation coefficient represents the relative contribution of the muscle synergy to the overall muscle activity pattern, while the muscle synergy vector represents the relative weighting of each muscle within each synergy. Describing more than 90% of the variability, two muscle synergies reflected the eccentric and concentric phase. The cross-correlations (ρ(max)) for synergy activation coefficient 2 (concentric phase) were 0.83 [0.71;0.88] and 0.59 [0.49;0.77] [Median ρ(max) (25th;75th percentile)] (P = 0.001) in UNT and EXP, respectively. Median correlation coefficient (ρ) for muscle synergy vector 2 was 0.15 [-0.08;0.46] and 0.48 [0.02;0.70] (P = 0.03) in UNT and EXP, respectively. Thus, EXP showed larger inter-subject variability than UNT in the synergy activation coefficient during the concentric phase, while the muscle synergy vectors were less variable in EXP. This points at the importance of a specialized neural strategy in elite bench press performance. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ethridge, Lauren E; White, Stormi P; Mosconi, Matthew W; Wang, Jun; Pedapati, Ernest V; Erickson, Craig A; Byerly, Matthew J; Sweeney, John A
2017-01-01
Studies in the fmr1 KO mouse demonstrate hyper-excitability and increased high-frequency neuronal activity in sensory cortex. These abnormalities may contribute to prominent and distressing sensory hypersensitivities in patients with fragile X syndrome (FXS). The current study investigated functional properties of auditory cortex using a sensory entrainment task in FXS. EEG recordings were obtained from 17 adolescents and adults with FXS and 17 age- and sex-matched healthy controls. Participants heard an auditory chirp stimulus generated using a 1000-Hz tone that was amplitude modulated by a sinusoid linearly increasing in frequency from 0-100 Hz over 2 s. Single trial time-frequency analyses revealed decreased gamma band phase-locking to the chirp stimulus in FXS, which was strongly coupled with broadband increases in gamma power. Abnormalities in gamma phase-locking and power were also associated with theta-gamma amplitude-amplitude coupling during the pre-stimulus period and with parent reports of heightened sensory sensitivities and social communication deficits. This represents the first demonstration of neural entrainment alterations in FXS patients and suggests that fast-spiking interneurons regulating synchronous high-frequency neural activity have reduced functionality. This reduced ability to synchronize high-frequency neural activity was related to the total power of background gamma band activity. These observations extend findings from fmr1 KO models of FXS, characterize a core pathophysiological aspect of FXS, and may provide a translational biomarker strategy for evaluating promising therapeutics.
Onsite 40-kilowatt fuel cell power plant manufacturing and field test program
NASA Technical Reports Server (NTRS)
1985-01-01
A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.
Kumar, A Kiran; Reddy, M Venkateswar; Chandrasekhar, K; Srikanth, S; Mohan, S Venkata
2012-01-01
Bioremediation of selected endocrine disrupting compounds (EDCs)/estrogens viz. estriol (E3) and ethynylestradiol (EE2) was evaluated in bio-electrochemical treatment (BET) system with simultaneous power generation. Estrogens supplementation along with wastewater documented enhanced electrogenic activity indicating their function in electron transfer between biocatalyst and anode as electron shuttler. EE2 addition showed more positive impact on the electrogenic activity compared to E3 supplementation. Higher estrogen concentration showed inhibitory effect on the BET performance. Poising potential during start up phase showed a marginal influence on the power output. The electrons generated during substrate degradation might have been utilized for the EDCs break down. Fuel cell behavior and anodic oxidation potential supported the observed electrogenic activity with the function of estrogens removal. Voltammetric profiles, dehydrogenase and phosphatase enzyme activities were also found to be in agreement with the power generation, electron discharge and estrogens removal. Copyright © 2011 Elsevier Ltd. All rights reserved.
Complex motion of a vehicle through a series of signals controlled by power-law phase
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-07-01
We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.
Determinants of exercise among children. II. A longitudinal analysis.
DiLorenzo, T M; Stucky-Ropp, R C; Vander Wal, J S; Gotham, H J
1998-01-01
Research has demonstrated that physical activity serves an important preventive function against the development of cardiovascular disease. The recognition that U.S. children are often sedentary, coupled with the observation that physical activity habits tend to persist into adulthood, has prompted the investigation of exercise determinants consistent with social learning theory. The purposes of the present study were to identify social learning variables relevant to children's exercise and to explore the longitudinal predictive value of the determinants. Data were collected from 111 families (N = 54 girls, N = 57 boys) who were interviewed in both Phase 1 (fifth and sixth grades) and Phase 2 (eight and ninth grades) of this study. Data from mothers (N = 111) were collected during both phases; data from 80 fathers were collected at Phase 2 only. The results of simultaneous stepwise regression analyses indicated that child's enjoyment of physical activity was the only consistent predictor of physical activity during Phase 1. At Phase 2, child's exercise knowledge, mother's physical activity, and child's and mother's friend modeling/support emerged as predictors for girls. For boys, child's self-efficacy for physical activity, exercise knowledge, parental modeling, and interest in sports media were important. Longitudinally, mother's self-efficacy, barriers to exercise, enjoyment of physical activity, and child's self-efficacy for physical activity were important for girls. Only child's exercise knowledge predicted boys' physical activity. The addition of information from fathers nearly doubled the explanatory power of the predictors for both genders. Socialization in the family unit exerts a tremendous influence on health-related behaviors such as exercise. The relative importance of determinants seems to differ for girls and boys and the pattern of these determinants appears to change over time.
Ferri, Raffaele; Bruni, Oliviero; Miano, Silvia; Plazzi, Giuseppe; Terzano, Mario G
2005-10-01
To analyze in detail the frequency content of the different EEG components of the Cyclic Alternating Pattern (CAP), taking into account the ongoing EEG background and the nonCAP (NCAP) periods in the whole night polysomnographic recordings of normal young adults. Sixteen normal healthy subjects were included in this study. Each subject underwent one polysomnographic night recording; sleep stages were scored following standard criteria. Subsequently, each CAP A phase was detected in all recordings, during NREM sleep, and classified into 3 subtypes (A1, A2, and A3). The same channel used for the detection of CAP A phases (C3/A2 or C4/A1) was subdivided into 2-s mini-epochs. For each mini-epoch, the corresponding CAP condition was determined and power spectra calculated in the frequency range 0.5-25 Hz. Average spectra were obtained for each CAP condition, separately in sleep stage 2 and SWS, for each subject. Finally, the first 6h of sleep were subdivided into 4 periods of 90 min each and the same spectral analysis was performed for each period. During sleep stage 2, CAP A subtypes differed from NCAP periods for all frequency bins between 0.5 and 25 Hz; this difference was most evident for the lowest frequencies. The B phase following A1 subtypes had a power spectrum significantly higher than that of NCAP, for frequencies between 1 and 11 Hz. The B phase after A2 only differed from NCAP for a small but significant reduction in the sigma band power; this was evident also after A3 subtypes. During SWS, we found similar results. The comparison between the different CAP subtypes also disclosed significant differences related to the stage in which they occurred. Finally, a significant effect of the different sleep periods was found on the different CAP subtypes during sleep stage 2 and on NCAP in both sleep stage 2 and SWS. CAP subtypes are characterized by clearly different spectra and also the same subtype shows a different power spectrum, during sleep stage 2 or SWS. This finding underlines a probable different functional meaning of the same CAP subtype during different sleep stages. We also found 3 clear peaks of difference between CAP subtypes and NCAP in the delta, alpha, and beta frequency ranges which might indicate the presence of 3 frequency components characterizing CAP subtypes, in different proportion in each of them. The B component of CAP differs from NCAP because of a decrease in power in the sigma frequency range. This study shows that A components of CAP might correspond to periods in which the very-slow delta activity of sleep groups a range of different EEG activities, including the sigma and beta bands, while the B phase of CAP might correspond to a period in which this activity is quiescent or inhibited.
Mendez-Villanueva, Alberto; Palazzi, Dino; Ahmaidi, Saïd
2016-01-01
Purpose The aims of this study were to 1) compare the metabolic power demand of straight-line and change of direction (COD) sprints including 45° or 90°-turns, and 2) examine the relation between estimated metabolic demands and muscular activity throughout the 3 phases of COD-sprints. Methods Twelve highly-trained soccer players performed one 25-m and three 20-m sprints, either in straight-line or with one 45°- or 90°-COD. Sprints were monitored with 2 synchronized 100-Hz laser guns to assess players’ velocities before, during and after the COD. Acceleration and deceleration were derived from changes in speed over time. Metabolic power was estimated based on di Prampero’s approach (2005). Electromyography amplitude (RMS) of 2 lower limb muscles was measured. The expected energy expenditure during time-adjusted straight-line sprints (matching COD sprints time) was also calculated. Results Locomotor-dependant metabolic demand was largely lower with COD (90°, 142.1±13.5 J.kg-1) compared with time-adjusted (effect size, ES = -3.0; 193.2±18.6 J.kg-1) and non-adjusted straight-line sprints (ES = -1.7; 168.4±15.3 J.kg-1). Metabolic power requirement was angle-dependent, moderately lower for 90°-COD vs. 45°-COD sprint (ES = -1.0; 149.5±10.4 J.kg-1). Conversely, the RMS was slightly- (45°, ES = +0.5; +2.1%, 90% confidence limits (±3.6) for vastus lateralis muscle (VL)) to-largely (90°, ES = +1.6; +6.1 (3.3%) for VL) greater for COD-sprints. Metabolic power/RMS ratio was 2 to 4 times lower during deceleration than acceleration phases. Conclusion Present results show that COD-sprints are largely less metabolically demanding than linear sprints. This may be related to the very low metabolic demand associated with the deceleration phase during COD-sprints that may not be compensated by the increased requirement of the reacceleration phase. These results also highlight the dissociation between metabolic and muscle activity demands during COD-sprints, which questions the use of metabolic power as a single measure of running load in soccer. PMID:26930649
Status of the Flooding Fragility Testing Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C. L.; Savage, B.; Bhandari, B.
2016-06-01
This report provides an update on research addressing nuclear power plant component reliability under flooding conditions. The research includes use of the Component Flooding Evaluation Laboratory (CFEL) where individual components and component subassemblies will be tested to failure under various flooding conditions. The resulting component reliability data can then be incorporated with risk simulation strategies to provide a more thorough representation of overall plant risk. The CFEL development strategy consists of four interleaved phases. Phase 1 addresses design and application of CFEL with water rise and water spray capabilities allowing testing of passive and active components including fully electrified components.more » Phase 2 addresses research into wave generation techniques followed by the design and addition of the wave generation capability to CFEL. Phase 3 addresses methodology development activities including small scale component testing, development of full scale component testing protocol, and simulation techniques including Smoothed Particle Hydrodynamic (SPH) based computer codes. Phase 4 involves full scale component testing including work on full scale component testing in a surrogate CFEL testing apparatus.« less
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.
A zero-voltage-switched three-phase interleaved buck converter
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Ching; Huang, Bing-Siang; Lin, Jing-Yuan; Pham, Phu Hieu; Chen, Po-Hao; Chiu, Huang-Jen
2018-04-01
This paper proposes a three-phase interleaved buck converter which is composed of three identical paralleled buck converters. The proposed solution has three shunt inductors connected between each other of three basic buck conversion units. With the help of the shunt inductors, the MOSFET parasitic capacitances will resonate to achieve zero-voltage-switching. Furthermore, the decreasing rate of the current through the free-wheeling diodes is limited, and therefore, their reverse-recovery losses can be minimised. The active power switches are controlled by interleaved pulse-width modulation signals to reduce the input and output current ripples. Therefore, the filtering capacitances on the input and output sides can be reduced. The power efficiency is measured to be as high as 98% in experiment with a prototype circuit.
Narrow linewidth power scaling and phase stabilization of 2-μm thulium fiber lasers
NASA Astrophysics Data System (ADS)
Goodno, Gregory D.; Book, Lewis D.; Rothenberg, Joshua E.; Weber, Mark E.; Benjamin Weiss, S.
2011-11-01
Thulium-doped fiber lasers (TFLs) emitting retina-safe 2-μm wavelengths offer substantial power-scaling advantages over ytterbium-doped fiber lasers for narrow linewidth, single-mode operation. This article reviews the design and performance of a pump-limited, 600 W, single-mode, single-frequency TFL amplifier chain that balances thermal limitations against those arising from stimulated Brillouin scattering (SBS). A simple analysis of thermal and SBS limits is anchored with measurements on kilowatt class Tm and Yb fiber lasers to highlight the scaling advantage of Tm for narrow linewidth operation. We also report recent results on active phase-locking of a TFL amplifier to an optical reference as a precursor to further parallel scaling via coherent beam combining.
GPS-Like Phasing Control of the Space Solar Power System Transmission Array
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
2003-01-01
The problem of phasing of the Space Solar Power System's transmission array has been addressed by developing a GPS-like radio navigation system. The goal of this system is to provide power transmission phasing control for each node of the array that causes the power signals to add constructively at the ground reception station. The phasing control system operates in a distributed manner, which makes it practical to implement. A leader node and two radio navigation beacons are used to control the power transmission phasing of multiple follower nodes. The necessary one-way communications to the follower nodes are implemented using the RF beacon signals. The phasing control system uses differential carrier phase relative navigation/timing techniques. A special feature of the system is an integer ambiguity resolution procedure that periodically resolves carrier phase cycle count ambiguities via encoding of pseudo-random number codes on the power transmission signals. The system is capable of achieving phasing accuracies on the order of 3 mm down to 0.4 mm depending on whether the radio navigation beacons operate in the L or C bands.
Li, Sinan; Lin, Shengtao; Cheng, Yi; Matsunaga, Terry O; Eckersley, Robert J; Tang, Meng-Xing
2015-05-01
Phase-change contrast agents in the form of nanoscale droplets can be activated into microbubbles by ultrasound, extending the contrast beyond the vasculature. This article describes simultaneous optical and acoustical measurements for quantifying the ultrasound activation of phase-change contrast agents over a range of concentrations. In experiments, decafluorobutane-based nanodroplets of different dilutions were sonicated with a high-pressure activation pulse and two low-pressure interrogation pulses immediately before and after the activation pulse. The differences between the pre- and post-interrogation signals were calculated to quantify the acoustic power scattered by the microbubbles activated over a range of droplet concentrations. Optical observation occurred simultaneously with the acoustic measurement, and the pre- and post-microscopy images were processed to generate an independent quantitative indicator of the activated microbubble concentration. Both optical and acoustic measurements revealed linear relationships to the droplet concentration at a low concentration range <10(8)/mL when measured at body temperature. Further increases in droplet concentration resulted in saturation of the acoustic interrogation signal. Compared with body temperature, room temperature was found to produce much fewer and larger bubbles after ultrasound droplet activation. Copyright © 2015. Published by Elsevier Inc.
Orientational order of motile defects in active nematics
DeCamp, Stephen J.; Redner, Gabriel S.; Baskaran, Aparna; ...
2015-08-17
The study of equilibrium liquid crystals has led to fundamental insights into the nature of ordered materials, as well as many practical applications such as display technologies. Active nematics are a fundamentally different class of liquid crystals, which are driven away from equilibrium by the autonomous motion of their constituent rodlike particles. This internally-generated activity powers the continuous creation and annihilation of topological defects, leading to complex streaming flows whose chaotic dynamics appear to destroy long-range order. Here, we study these dynamics in experimental and computational realizations of active nematics. By tracking thousands of defects over centimeter distances in microtubule-basedmore » active nematics, we identify a non-equilibrium phase characterized by system-spanning orientational order of defects. This emergent order persists over hours despite defect lifetimes of only seconds. Lastly, similar dynamical structures are observed in coarse-grained simulations, suggesting that defect-ordered phases are a generic feature of active nematics.« less
Spontaneous Gamma Activity in Schizophrenia.
Hirano, Yoji; Oribe, Naoya; Kanba, Shigenobu; Onitsuka, Toshiaki; Nestor, Paul G; Spencer, Kevin M
2015-08-01
A major goal of translational neuroscience is to identify neural circuit abnormalities in neuropsychiatric disorders that can be studied in animal models to facilitate the development of new treatments. Oscillations in the gamma band (30-100 Hz) of the electroencephalogram have received considerable interest as the basic mechanisms underlying these oscillations are understood, and gamma abnormalities have been found in schizophrenia (SZ). Animal models of SZ based on hypofunction of the N-methyl-d-aspartate receptor (NMDAR) demonstrate increased spontaneous broadband gamma power, but this phenomenon has not been identified clearly in patients with SZ. To examine spontaneous gamma power and its relationship to evoked gamma oscillations in the auditory cortex of patients with SZ. We performed a cross-sectional study including 24 patients with chronic SZ and 24 matched healthy control participants at the Veterans Affairs Boston Healthcare System from January 1, 2009, through December 31, 2012. Electroencephalograms were obtained during auditory steady-state stimulation at multiple frequencies (20, 30, and 40 Hz) and during a resting state in 18 participants in each group. Electroencephalographic activity in the auditory cortex was estimated using dipole source localization. Auditory steady-state response (ASSR) measures included the phase-locking factor and evoked power. Spontaneous gamma power was measured as induced (non-phase-locked) gamma power in the ASSR data and as total gamma power in the resting-state data. The ASSR phase-locking factor was reduced significantly in patients with SZ compared with controls for the 40-Hz stimulation (mean [SD], 0.075 [0.028] vs 0.113 [0.065]; F1,46 = 6.79 [P = .012]) but not the 20- or the 30-Hz stimulation (0.042 [0.038] vs 0.043 [0.034]; F1,46 = 0.006 [P = .938] and 0.084 [0.040] vs 0.098 [0.050]; F1,46 = 1.605 [P = .212], respectively), repeating previous findings. The mean [SD] broadband-induced (30-100 Hz) gamma power was increased in patients with SZ compared with controls during steady-state stimulation (6.579 [3.783] vs 3.984 [1.843]; F1,46 = 9.128 [P = .004]; d = 0.87) but not during rest (0.006 [0.003] vs 0.005 [0.002]; F1,34 = 1.067 [P = .309]; d = 0.35). Induced gamma power in the left hemisphere of the patients with SZ during the 40-Hz stimulation was positively correlated with auditory hallucination symptoms (tangential, ρ = 0.587 [P = .031]; radial, ρ = 0.593 [P = .024]) and negatively correlated with the ASSR phase-locking factor (baseline: ρ = -0.572 [P = .024]; ASSR: ρ = -0.568 [P = .032]). Spontaneous gamma activity is increased during auditory steady-state stimulation in SZ, reflecting a disruption in the normal balance of excitation and inhibition. This phenomenon interacts with evoked oscillations, possibly contributing to the gamma ASSR deficit found in SZ. The similarity of increased spontaneous gamma power in SZ to the findings of increased spontaneous gamma power in animal models of NMDAR hypofunction suggests that spontaneous gamma power could serve as a biomarker for the integrity of NMDARs on parvalbumin-expressing inhibitory interneurons in humans and in animal models of neuropsychiatric disorders.
Typical calculation and analysis of carbon emissions in thermal power plants
NASA Astrophysics Data System (ADS)
Gai, Zhi-jie; Zhao, Jian-gang; Zhang, Gang
2018-03-01
On December 19, 2017, the national development and reform commission issued the national carbon emissions trading market construction plan (power generation industry), which officially launched the construction process of the carbon emissions trading market. The plan promotes a phased advance in carbon market construction, taking the power industry with a large carbon footprint as a breakthrough, so it is extremely urgent for power generation plants to master their carbon emissions. Taking a coal power plant as an example, the paper introduces the calculation process of carbon emissions, and comes to the fuel activity level, fuel emissions factor and carbon emissions data of the power plant. Power plants can master their carbon emissions according to this paper, increase knowledge in the field of carbon reserves, and make the plant be familiar with calculation method based on the power industry carbon emissions data, which can help power plants positioning accurately in the upcoming carbon emissions trading market.
Control voltage and power fluctuations when connecting wind farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com
2015-12-23
Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid.more » FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.« less
Fellner, Marie-Christin; Bäuml, Karl-Heinz T; Hanslmayr, Simon
2013-10-01
Memory crucially depends on the way information is processed during encoding. Differences in processes during encoding not only lead to differences in memory performance but also rely on different brain networks. Although these assumptions are corroborated by several previous fMRI and ERP studies, little is known about how brain oscillations dissociate between different memory encoding tasks. The present study therefore compared encoding related brain oscillatory activity elicited by two very efficient encoding tasks: a typical deep semantic item feature judgment task and a more elaborative survival encoding task. Subjects were asked to judge words either for survival relevance or for animacy, as indicated by a cue presented prior to the item. This allowed dissociating pre-item activity from item-related activity for both tasks. Replicating prior studies, survival processing led to higher recognition performance than semantic processing. Successful encoding in the semantic condition was reflected by a strong decrease in alpha and beta power, whereas successful encoding in the survival condition was related to increased alpha and beta long-range phase synchrony. Moreover, a pre-item subsequent memory effect in theta power was found which did not vary with encoding condition. These results show that measures of local synchrony (power) and global long range-synchrony (phase synchronization) dissociate between memory encoding processes. Whereas semantic encoding was reflected in decreases in local synchrony, increases in global long range synchrony were related to elaborative survival encoding, presumably reflecting the involvement of a more widespread cortical network in this task. Copyright © 2013 Elsevier Inc. All rights reserved.
Microwave monolithic integrated circuit development for future spaceborne phased array antennas
NASA Astrophysics Data System (ADS)
Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.
1983-12-01
The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.
Microwave monolithic integrated circuit development for future spaceborne phased array antennas
NASA Technical Reports Server (NTRS)
Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.
1983-01-01
The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.
Zhang, Xiaomin; Liu, Li; Zhao, Zhe; Tu, Baofeng; Ou, Dingrong; Cui, Daan; Wei, Xuming; Chen, Xiaobo; Cheng, Mojie
2015-03-11
Reluctant oxygen-reduction-reaction (ORR) activity has been a long-standing challenge limiting cell performance for solid oxide fuel cells (SOFCs) in both centralized and distributed power applications. We report here that this challenge has been tackled with coloading of (La,Sr)MnO3 (LSM) and Y2O3 stabilized zirconia (YSZ) nanoparticles within a porous YSZ framework. This design dramatically improves ORR activity, enhances fuel cell output (200-300% power improvement), and enables superior stability (no observed degradation within 500 h of operation) from 600 to 800 °C. The improved performance is attributed to the intimate contacts between nanoparticulate YSZ and LSM particles in the three-phase boundaries in the cathode.
Investigation of Fiber Optics Based Phased Locked Diode Lasers
NASA Technical Reports Server (NTRS)
Burke, Paul D.; Gregory, Don A.
1997-01-01
Optical power beaming requires a high intensity source and a system to address beam phase and location. A synthetic aperture array of phased locked sources can provide the necessary power levels as well as a means to correct for phase errors. A fiber optic phase modulator with a master oscillator and power amplifier (MOPA) using an injection-locking semiconductor optical amplifier has proven to be effective in correcting phase errors as large as 4pi in an interferometer system. Phase corrections with the piezoelectric fiber stretcher were made from 0 - 10 kHz, with most application oriented corrections requiring only 1 kHz. The amplifier did not lose locked power output while the phase was changed, however its performance was below expectation. Results of this investigation indicate fiber stretchers and amplifiers can be incorporated into a MOPA system to achieve successful earth based power beaming.
Lih thermal energy storage device
Olszewski, Mitchell; Morris, David G.
1994-01-01
A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.
Mavanji, Vijayakumar; Teske, Jennifer A.; Billington, Charles J.; Kotz, Catherine M.
2012-01-01
Objective Sleep-restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful-methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight-gain. We hypothesized that sleep disruption by a less-stressful method would increase body weight, and examined effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats. Design and Methods OR and SD rats (n=12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light-phase for 9 d. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS) and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake and body weight were documented. Results Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery-sleep during active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls Conclusions PSD by less-stressful means increases body weight in rats. Also, PSD during rest phase increases active period sleep. PMID:23666828
Mavanji, Vijayakumar; Teske, Jennifer A; Billington, Charles J; Kotz, Catherine M
2013-07-01
Sleep restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight gain. It was hypothesized that sleep disruption by a less-stressful method would increase body weight, and the effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats was examined. OR and SD rats (n = 12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light phase for 9 days. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS), and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake, and body weight were documented. Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased the number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery sleep during the active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls PSD by less-stressful means increases body weight in rats. Also, PSD during the rest phase increases active period sleep. Copyright © 2012 The Obesity Society.
Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Suprotim; Raje, Sanyukta; Kumar, Satish
This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – Septembermore » 2015) and Phase 2 (October 2015 – September 2016).« less
Information Technology Division’s Technical Paper Abstracts
1994-07-05
antenna systems. 86 Title: An Electromagnetic Interference Study of Potential Transmitter Sites for the HF Active Auroral Research Program ( HAARP ...examined a number of potential sites for the location of the proposed High Frequency Active Auroral Research Program ( HAARP ) transmitter facility. The...proposed HAARP facility will consist of a large planar array of antennas excited by phased high power transmitters operating in the lower portion of the
Modeling a Transient Pressurization with Active Cooling Sizing Tool
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Plachta, David W.; Elchert, Justin P.
2011-01-01
As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank pressure recovery with ZBO of a liquid oxygen propellant tank.
NASA Astrophysics Data System (ADS)
Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad
2017-08-01
Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.
NASA Astrophysics Data System (ADS)
Xiao, Renzhen; Deng, Yuqun; Chen, Changhua; Shi, Yanchao; Sun, Jun
2018-03-01
We demonstrate both theoretically and experimentally the possibility of the generation of powerful microwave pulses by channel power summation of two X-band phase-locked relativistic backward wave oscillators (RBWOs). A modulated electron beam induced by an external signal can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the initial phase of the external signal. A high-current dual-beam accelerator was built to drive the two RBWOs. An external signal was divided into two channels with an adjusted relative phase and injected into the two RBWOs through two TE10-TEM mode converters. The generated microwaves were combined with a power combiner consisting of two TM01-TE11 serpentine mode converters with a common output. In the experiments, as the input power for each channel was 150 kW, the two RBWOs output 3.1 GW and 3.7 GW, respectively, the jitter of the relative phase of two output microwaves was about 20°, and the summation power from the power combiner is 6.2 GW, corresponding to a combination efficiency of 91%.
NASA Technical Reports Server (NTRS)
Chie, C. M.
1980-01-01
The Solar Power Satellite (SPS) concept and the reference phase control system investigated in earlier efforts are reviewed. A summary overview of the analysis and selection of the pilot signal and power transponder design is presented along with the SOLARSIM program development and the simulated SPS phase control performance. Evaluations of the ground based phase control system as an alternate phase control concept are summarized.
The impact of monsoon intraseasonal variability on renewable power generation in India
NASA Astrophysics Data System (ADS)
Dunning, C. M.; Turner, A. G.; Brayshaw, D. J.
2015-06-01
India is increasingly investing in renewable technology to meet rising energy demands, with hydropower and other renewables comprising one-third of current installed capacity. Installed wind-power is projected to increase 5-fold by 2035 (to nearly 100GW) under the International Energy Agency's New Policies scenario. However, renewable electricity generation is dependent upon the prevailing meteorology, which is strongly influenced by monsoon variability. Prosperity and widespread electrification are increasing the demand for air conditioning, especially during the warm summer. This study uses multi-decadal observations and meteorological reanalysis data to assess the impact of intraseasonal monsoon variability on the balance of electricity supply from wind-power and temperature-related demand in India. Active monsoon phases are characterized by vigorous convection and heavy rainfall over central India. This results in lower temperatures giving lower cooling energy demand, while strong westerly winds yield high wind-power output. In contrast, monsoon breaks are characterized by suppressed precipitation, with higher temperatures and hence greater demand for cooling, and lower wind-power output across much of India. The opposing relationship between wind-power supply and cooling demand during active phases (low demand, high supply) and breaks (high demand, low supply) suggests that monsoon variability will tend to exacerbate fluctuations in the so-called demand-net-wind (i.e., electrical demand that must be supplied from non-wind sources). This study may have important implications for the design of power systems and for investment decisions in conventional schedulable generation facilities (such as coal and gas) that are used to maintain the supply/demand balance. In particular, if it is assumed (as is common) that the generated wind-power operates as a price-taker (i.e., wind farm operators always wish to sell their power, irrespective of price) then investors in conventional facilities will face additional weather-volatility through the monsoonal impact on the length and frequency of production periods (i.e. their load-duration curves).
EEG Spectral Generators Involved in Motor Imagery: A swLORETA Study
Cebolla, Ana-Maria; Palmero-Soler, Ernesto; Leroy, Axelle; Cheron, Guy
2017-01-01
In order to characterize the neural generators of the brain oscillations related to motor imagery (MI), we investigated the cortical, subcortical, and cerebellar localizations of their respective electroencephalogram (EEG) spectral power and phase locking modulations. The MI task consisted in throwing a ball with the dominant upper limb while in a standing posture, within an ecological virtual reality (VR) environment (tennis court). The MI was triggered by the visual cues common to the control condition, during which the participant remained mentally passive. As previously developed, our paradigm considers the confounding problem that the reference condition allows two complementary analyses: one which uses the baseline before the occurrence of the visual cues in the MI and control resting conditions respectively; and the other which compares the analog periods between the MI and the control resting-state conditions. We demonstrate that MI activates specific, complex brain networks for the power and phase modulations of the EEG oscillations. An early (225 ms) delta phase-locking related to MI was generated in the thalamus and cerebellum and was followed (480 ms) by phase-locking in theta and alpha oscillations, generated in specific cortical areas and the cerebellum. Phase-locking preceded the power modulations (mainly alpha–beta ERD), whose cortical generators were situated in the frontal BA45, BA11, BA10, central BA6, lateral BA13, and posterior cortex BA2. Cerebellar-thalamic involvement through phase-locking is discussed as an underlying mechanism for recruiting at later stages the cortical areas involved in a cognitive role during MI. PMID:29312028
Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J.
2014-01-01
Abstract. Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed. PMID:26157976
Marquet, Pierre; Depeursinge, Christian; Magistretti, Pierre J
2014-10-01
Quantitative phase microscopy (QPM) has recently emerged as a new powerful quantitative imaging technique well suited to noninvasively explore a transparent specimen with a nanometric axial sensitivity. In this review, we expose the recent developments of quantitative phase-digital holographic microscopy (QP-DHM). Quantitative phase-digital holographic microscopy (QP-DHM) represents an important and efficient quantitative phase method to explore cell structure and dynamics. In a second part, the most relevant QPM applications in the field of cell biology are summarized. A particular emphasis is placed on the original biological information, which can be derived from the quantitative phase signal. In a third part, recent applications obtained, with QP-DHM in the field of cellular neuroscience, namely the possibility to optically resolve neuronal network activity and spine dynamics, are presented. Furthermore, potential applications of QPM related to psychiatry through the identification of new and original cell biomarkers that, when combined with a range of other biomarkers, could significantly contribute to the determination of high risk developmental trajectories for psychiatric disorders, are discussed.
Enhanced power quality based single phase photovoltaic distributed generation system
NASA Astrophysics Data System (ADS)
Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.
2016-08-01
This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.
Development of electrochemical super capacitors for EMA applications
NASA Technical Reports Server (NTRS)
Kosek, J. A.; Dunning, T.; Laconti, A. B.
1995-01-01
In a NASA SBIR Phase I program (Contract No. NAS8-40119), Giner, Inc. evaluated the feasibility of fabricating an all-solid-ionomer multicell electrochemical capacitor having a unit cell capacitance greater than 2 F/sq cm and a repeating element thickness of 6 mils. This capacitor can possibly be used by NASA as a high-rate energy source for electromechanical actuator (EMA) activation for advanced space missions. The high unit cell capacitance and low repeating element thickness will allow for the fabrication of a low-volume, low-weight device, favorable characteristics for space applications. These same characteristics also make the capacitor attractive for terrestrial applications, such as load-leveling batteries or fuel cells in electric vehicle applications. Although the projected energy densities for electrochemical capacitors are about two orders of magnitude lower than that of batteries, the high-power-density characteristics of these devices render them as potentially viable candidates for meeting pulse or peak electrical power requirements for some anticipated aerospace mission scenarios, especially those with discharge times on the millisecond to second time scale. On a volumetric or gravimetric basis, the advantages of utilizing electrochemical capacitors rather than batteries for meeting the peak power demands associated with a specific mission scenario will largely depend upon the total and pulse durations of the power peaks. The effect of preparation conditions on RuO(x), the active component in an all-solid-ionomer electrochemical capacitor, was evaluated during this program. Methods were identified to prepare RuO(x) having a surface areagreater than 180 sq m/g, and a capacitance of greater than 2 F/sq cm. Further efforts to reproducibly obtain these high-surface-area materials in scaled-up batches will be evaluated in Phase 2. During this Phase 1 program we identified a superior Nafion 105 membrane, having a film thickness of 5 mils, that showed excellent performance in our all-solid-ionomer capacitors and resulted in electrochemical capacitors with a repeating element thickness of 8 mils. We are currently working with membrane manufacturers to obtain a high performance membrane in less than 3 mil thickness to obtain a repeating element thickness of 6 mils or less. A 10-cell all-solid ionomer capacitor stack, with each cell having a 222 sq cm active area, was fabricated and evaluated as part of the Phase 1 program. Further Scale-up of a high-energy-density stack is plannedin Phase 2.
Ohara, Kumiko; Okita, Yoshimitsu; Kouda, Katsuyasu; Mase, Tomoki; Miyawaki, Chiemi; Nakamura, Harunobu
2015-08-28
Menstrual cycle-related symptoms are an important health issue for many women, and some may affect cardiac autonomic regulation. In the present study, we evaluated the cardiovascular and physiological stress response to 12-h short-term fasting in the menstrual phases of healthy young women. We performed a randomized crossover study. Subjects were seven female university students (age: 22.3 ± 1.0 years). The experiments comprised four sessions: meal intake in the follicular phase, meal intake in the luteal phase, fasting in the follicular phase, and fasting in the luteal phase. All subjects participated in a total of four experimental sessions during two successive phases (follicular and luteal phase in the same menstrual cycle, or luteal phase and follicular phase in the next menstrual cycle) according to a randomized crossover design. R-R intervals were continuously recorded before and after meals, and power spectral analysis of heart rate variability was performed. Other physiological data were obtained before and 20, 40, 60, and 80 min after meal intake or after the corresponding time point of meal intake (fasting in the follicular or luteal phase). Heart rate decreased during fasting in the follicular and luteal phases. High frequency power increased during fasting in the follicular and luteal phases. In addition, salivary cortisol concentrations decreased during fasting in the luteal phase. In the present study, short-term fasting resulted in higher parasympathetic activity and lower cortisol levels in the luteal phase in these young women. These results indicate a possibility to produce an anti-stress effect in the luteal phase, which may reduce menstrual symptoms.
Effectiveness of roundhouse kick in elite Taekwondo athletes.
Thibordee, Sutima; Prasartwuth, Orawan
2014-06-01
The roundhouse kick is a powerful attack in Taekwondo. Most athletes intently perform this kick for scoring in competition. Therefore, kinematic and kinetic analyzes of this kick were the topics of interest; however, they were separately investigated and rarely recorded for impact force. Our objectives were to investigate knee and ankle joint kinematics and electromyographic (EMG) activity of leg muscle and compare them between high-impact (HI) and low-impact (LO) kicks. Sixteen male black-belt Taekwondo athletes performed five roundhouse kicks at their maximal effort. Electrogoniometer sensors measured angular motions of ankle and knee joints. Surface EMG activities were recorded for tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris muscles. Based on maximal impact forces, the athletes were classified into HI and LO groups. All athletes in both groups showed greater activation of rectus femoris than other muscles. The HI group only showed significantly less plantarflexion angles than the LO group during preimpact and impact phases (P<0.05). During the impact phase, the HI group demonstrated significantly greater biceps femoris activation than the LO group (P<0.05). In conclusion, rectus femoris activation could predominantly contribute to the powerful roundhouse kicks. Moreover, high biceps femoris co-activation and optimal angle of ankle plantarflexion of about 35° could help achieve the high impact force. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Study of Phase-shift Super-Frequency Induction Heating Power Supply
NASA Astrophysics Data System (ADS)
Qi, Hairun; Peng, Yonglong; Li, Yabin
This paper combines pulse-width phase-shift power modulation with fixed-angle phase-locked-control to adjust the inverter's output power, this method not only meets the work conditions of voltage inverter, but also realizes the large-scale of power modulation, and the main circuit is simple, the switching devices realize soft switching. This paper analyzes the relationship between the output power and phase-shift angle, the control strategy is simulated by Matlab/Simulink, and the results show that the method is feasible and meets the theoretical analysis
Large Torque Variations in Two Soft Gamma Repeaters
NASA Technical Reports Server (NTRS)
Woods, Peter M.; Kouveliotou, Chryssa; Gogus, Ersin; Finger, Mark H.; Swank, Jean; Markwardt, Craig B.; Hurley, Kevin; vanderKlis, Michiel; Six, N. Frank (Technical Monitor)
2001-01-01
We have monitored the pulse frequencies of the two soft gamma repeaters SGR 1806-20 and SGR 1900+14 through the beginning of year 2001 using primarily Rossi X-ray Timing Explorer Proportional Counter Array observations. In both sources, we observe large changes in the spin-down torque up to a factor of approximately 4, which persist for several months. Using long baseline phase-connected timing solutions as well as the overall frequency histories, we construct torque noise power spectra for each SGR. The power spectrum of each source is very red (power-law slope approximately -3.5). These power spectra are consistent in normalization with some accreting systems, yet much steeper in slope than any known accreting source. To the best of our knowledge, torque noise power spectra with a comparably steep frequency dependence have only been seen in young, glitching radio pulsars (e.g. Vela). The observed changes in spin-down rate do not correlate with burst activity, therefore, the physical mechanisms behind each phenomenon are also likely unrelated. Within the context of the magnetar model, seismic activity cannot account for both the bursts and the long-term torque changes unless the seismically active regions are decoupled from one another.
Characteristics research on self-amplified distributed feedback fiber laser
NASA Astrophysics Data System (ADS)
Song, Zhiqiang; Qi, Haifeng; Guo, Jian; Wang, Chang; Peng, Gangding
2014-09-01
A distributed feedback (DFB) fiber laser with a ratio of the backward to forward output power of 1:100 was composed by a 45-mm-length asymmetrical phase-shifted fiber grating fabricated on the 50-mm erbium-doped photosensitive fiber. Forward output laser was amplified using a certain length of Nufern EDFL-980-Hp erbium-doped fiber to absorb the surplus pump power after the active phase-shifted fiber grating and get population inversion. By using OptiSystem software, the best fiber length of the EDFL to get the highest gain was simulated. In order to keep the amplified laser with the narrow line-width and low noise, a narrow-band light filter consisting of a fiber Bragg grating (FBG) with the same Bragg wavelength as the laser and an optical circulator was used to filter the amplified spontaneous emission (ASE) noise of the out-cavity erbium-doped fiber. The designed laser structure sufficiently utilized the pump power, and a DFB fiber laser with the 32.5-mW output power, 11.5-kHz line width, and -87-dB/Hz relative intensity noise (RIN) at 300 mW of 980 nm pump power was brought out.
NASA Astrophysics Data System (ADS)
Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.
2017-01-01
Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.
Multichannel Phase and Power Detector
NASA Technical Reports Server (NTRS)
Li, Samuel; Lux, James; McMaster, Robert; Boas, Amy
2006-01-01
An electronic signal-processing system determines the phases of input signals arriving in multiple channels, relative to the phase of a reference signal with which the input signals are known to be coherent in both phase and frequency. The system also gives an estimate of the power levels of the input signals. A prototype of the system has four input channels that handle signals at a frequency of 9.5 MHz, but the basic principles of design and operation are extensible to other signal frequencies and greater numbers of channels. The prototype system consists mostly of three parts: An analog-to-digital-converter (ADC) board, which coherently digitizes the input signals in synchronism with the reference signal and performs some simple processing; A digital signal processor (DSP) in the form of a field-programmable gate array (FPGA) board, which performs most of the phase- and power-measurement computations on the digital samples generated by the ADC board; and A carrier board, which allows a personal computer to retrieve the phase and power data. The DSP contains four independent phase-only tracking loops, each of which tracks the phase of one of the preprocessed input signals relative to that of the reference signal (see figure). The phase values computed by these loops are averaged over intervals, the length of which is chosen to obtain output from the DSP at a desired rate. In addition, a simple sum of squares is computed for each channel as an estimate of the power of the signal in that channel. The relative phases and the power level estimates computed by the DSP could be used for diverse purposes in different settings. For example, if the input signals come from different elements of a phased-array antenna, the phases could be used as indications of the direction of arrival of a received signal and/or as feedback for electronic or mechanical beam steering. The power levels could be used as feedback for automatic gain control in preprocessing of incoming signals. For another example, the system could be used to measure the phases and power levels of outputs of multiple power amplifiers to enable adjustment of the amplifiers for optimal power combining.
NASA Technical Reports Server (NTRS)
Kaufman, A.
1981-01-01
An integrated 5 kW power system based upon methanol fuel and a phosphoric acid fuel cell operating at about 473 K is described. Description includes test results of advanced fuel cell catalysts, a semiautomatic acid replenishment system and a completed 5 kW methanol/system reformer. The results of a preliminary system test on a reformer/stack/inverter combination are reported. An initial design for a 25 kW stack is presented. Experimental plans are outlined for data acquisition necessary for design of a 50 kW methanol/steam reformer. Activities related to complete mathematical modelling of the integrated power system, including wasteheat utilization, are described.
Interictal to Ictal Phase Transition in a Small-World Network
NASA Astrophysics Data System (ADS)
Nemzer, Louis; Cravens, Gary; Worth, Robert
Real-time detection and prediction of seizures in patients with epilepsy is essential for rapid intervention. Here, we perform a full Hodgkin-Huxley calculation using n 50 in silico neurons configured in a small-world network topology to generate simulated EEG signals. The connectivity matrix, constructed using a Watts-Strogatz algorithm, admits randomized or deterministic entries. We find that situations corresponding to interictal (non-seizure) and ictal (seizure) states are separated by a phase transition that can be influenced by congenital channelopathies, anticonvulsant drugs, and connectome plasticity. The interictal phase exhibits scale-free phenomena, as characterized by a power law form of the spectral power density, while the ictal state suffers from pathological synchronization. We compare the results with intracranial EEG data and show how these findings may be used to detect or even predict seizure onset. Along with the balance of excitatory and inhibitory factors, the network topology plays a large role in determining the overall characteristics of brain activity. We have developed a new platform for testing the conditions that contribute to the phase transition between non-seizure and seizure states.
Endogenous modulation of low frequency oscillations by temporal expectations
Cravo, Andre M.; Rohenkohl, Gustavo; Wyart, Valentin
2011-01-01
Recent studies have associated increasing temporal expectations with synchronization of higher frequency oscillations and suppression of lower frequencies. In this experiment, we explore a proposal that low-frequency oscillations provide a mechanism for regulating temporal expectations. We used a speeded Go/No-go task and manipulated temporal expectations by changing the probability of target presentation after certain intervals. Across two conditions, the temporal conditional probability of target events differed substantially at the first of three possible intervals. We found that reactions times differed significantly at this first interval across conditions, decreasing with higher temporal expectations. Interestingly, the power of theta activity (4–8 Hz), distributed over central midline sites, also differed significantly across conditions at this first interval. Furthermore, we found a transient coupling between theta phase and beta power after the first interval in the condition with high temporal expectation for targets at this time point. Our results suggest that the adjustments in theta power and the phase-power coupling between theta and beta contribute to a central mechanism for controlling neural excitability according to temporal expectations. PMID:21900508
Combrisson, Etienne; Perrone-Bertolotti, Marcela; Soto, Juan Lp; Alamian, Golnoush; Kahane, Philippe; Lachaux, Jean-Philippe; Guillot, Aymeric; Jerbi, Karim
2017-02-15
Goal-directed motor behavior is associated with changes in patterns of rhythmic neuronal activity across widely distributed brain areas. In particular, movement initiation and execution are mediated by patterns of synchronization and desynchronization that occur concurrently across distinct frequency bands and across multiple motor cortical areas. To date, motor-related local oscillatory modulations have been predominantly examined by quantifying increases or suppressions in spectral power. However, beyond signal power, spectral properties such as phase and phase-amplitude coupling (PAC) have also been shown to carry information with regards to the oscillatory dynamics underlying motor processes. Yet, the distinct functional roles of phase, amplitude and PAC across the planning and execution of goal-directed motor behavior remain largely elusive. Here, we address this question with unprecedented resolution thanks to multi-site intracerebral EEG recordings in human subjects while they performed a delayed motor task. To compare the roles of phase, amplitude and PAC, we monitored intracranial brain signals from 748 sites across six medically intractable epilepsy patients at movement execution, and during the delay period where motor intention is present but execution is withheld. In particular, we used a machine-learning framework to identify the key contributions of various neuronal responses. We found a high degree of overlap between brain network patterns observed during planning and those present during execution. Prominent amplitude increases in the delta (2-4Hz) and high gamma (60-200Hz) bands were observed during both planning and execution. In contrast, motor alpha (8-13Hz) and beta (13-30Hz) power were suppressed during execution, but enhanced during the delay period. Interestingly, single-trial classification revealed that low-frequency phase information, rather than spectral power change, was the most discriminant feature in dissociating action from intention. Additionally, despite providing weaker decoding, PAC features led to statistically significant classification of motor states, particularly in anterior cingulate cortex and premotor brain areas. These results advance our understanding of the distinct and partly overlapping involvement of phase, amplitude and the coupling between them, in the neuronal mechanisms underlying motor intentions and executions. Copyright © 2016 Elsevier Inc. All rights reserved.
Study of solar photospheric MHD oscillations: Observations with MDI, ASP and MWO
NASA Astrophysics Data System (ADS)
Norton, Aimee Ann
Magnetodydrodynamical waves are expected to be an important energy transport mechanism in the solar atmosphere. This thesis uses data from a spectro-polarimeter and longitudinal magnetographs to study characteristics of magneto-hydrodynamical oscillations at photospheric heights. Significant oscillatory magnetic power is observed with the Michelson Doppler Imager in three frequency regimes: 0.5--1.0, 3.0--3.5 and 5.5--6.0 mHz corresponding to timescales of magnetic evolution, p-modes and the three minute resonant sunspot oscillation. Spatial distribution of magnetogram oscillatory power exhibits the same general features in numerous datasets. Low frequency magnetogram power is found in rings with filamentary structure surrounding sunspots. Five minute power peaks in extended regions of plage. Three minute oscillations are observed in sunspot umbra. Phase angles between velocity and magnetic fluctuations are found to be approximately -90°, a signature of magnetoacoustic waves, in disk-center active region data. Phase dependence upon observation angle is established through sunspot values decreasing from -100° at disk-center towards -31° at the limb, confirming greater Alfen wave visibility at the limb. Consistent propagation direction or field-aligned velocities explain an unexpected phase jump from negative to positive values for divergent sunspot fields observed away from disk-center. Simultaneously obtained Stokes profiles and longitudinal magnetogram maps of a positive plage region provide time series which could be compared. The velocity signals are in excellent agreement. Magnetic flux correlates best with fluctuations in filling factor, not inclination angle or field strength, implying the responsible physical mechanism is internally unperturbed flux tubes being buffeted by external pressure fluctuations. Sampling signals from different heights of formation provides slight phase shifts and large propagation speeds for velocity, indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfven speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfven speed. Observed fluctuations, phase angles and phase lags are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.
Large Torque Variations in Two Soft Gamma Repeaters
NASA Technical Reports Server (NTRS)
Woods, Peter M.; Kouveliotou, Chryssa; Gogus, Ersin; Finger, Mark H.; Swank, Jean; Markwardt, Craig B.; Hurley, Kevin; vanderKlis, Michiel
2002-01-01
We have monitored the pulse frequencies of the two soft gamma repeaters SGR 1806-20 and SGR 1900+14 through the beginning of year 2001 using primarily Rossi X-Ray Timing Explorer Proportional Counter Array observations. In both sources, we observe large changes in the spin-down torque up to a factor of approximately 4, which persist for several months. Using long-baseline phase-connected timing solutions as well as the overall frequency histories, we construct torque noise power spectra for each SGR (Soft Gamma Repeater). The power spectrum of each source is very red (power-law slope is approximately -3.5). The torque noise power levels are consistent with some accreting systems on timescales of approximately 1 yr, yet the full power spectrum is much steeper in frequency than any known accreting source. To the best of our knowledge, torque noise power spectra with a comparably steep frequency dependence have been seen only in young, glitching radio pulsars (e.g., Vela). The observed changes in spin-down rate do not correlate with burst activity; therefore, the physical mechanisms behind each phenomenon are also likely unrelated. Within the context of the magnetar model, seismic activity can not account for both the bursts and the long-term torque changes unless the seismically active regions are decoupled from one another.
Detection of abnormal muscle activations during walking following spinal cord injury (SCI).
Wang, Ping; Low, K H; McGregor, Alison H; Tow, Adela
2013-04-01
In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI participants were given assistance from physiotherapists, if required, while they were walking. In agreement with other research, larger cadence and smaller step length and swing phase of SCI gait were observed as a result of muscle weakness and resultant gait instability. Muscle activation patterns of seven major leg muscles were collected. The EMG signal was processed by the RMS in frequency domain to represent the muscle activation power, and the distribution of muscle activation was compared between healthy and SCI participants. The alternations of muscle activation within the phases of the gait cycle are highlighted to facilitate our understanding of the underlying muscular activation following SCI. Key differences were observed (p-value=0.0006) in the reduced activation of tibialis anterior (TA) in single stance phase and rectus femoris (RF) in swing phase (p-value=0.0011). We can then conclude that the proposed assessment approach of gait provides valuable information that can be used to target and define therapeutic interventions and their evaluation; hence impacting the functional outcome of SCI individuals. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Forbes, Kevin F.; St. Cyr, O. C.
2017-10-01
This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.
NASA Astrophysics Data System (ADS)
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2007-11-01
A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.
Jaric, Slobodan; Garcia Ramos, Amador
2018-05-01
Loturco and co-workers (2017) recently published data in the Journal of Sports Sciences to present the optimum loading magnitudes regarding the maximization of the "mean propulsive power" of the leg and arm muscles. Among the most important findings were that (1) the recorded power in the squat and squat jump exercises was markedly low, (2) the optimum external load that maximized the power in the same exercises was close to 100% of body weight, while (3) the ballistic bench press throw revealed smaller power than the regular bench press typically performed with relatively low level of muscle activation towards the end of the propulsive lifting phase. The findings are either counter-intuitive, or contradict the literature findings, or both, and we believe that they originate from apparent methodological flaws. The first one is neglecting the force acting against the body segments moved together with the external load that is particularly high in squat exercises. The second one is an erroneous calculation of the propulsive phase that included a part of the bar's flight time. Both of these methodological flaws are frequent in the literature and could be associated with the improper use and calculation of variables when utilizing linear position transducers.
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
Toepfer, Christopher N; Sikkel, Markus B; Caorsi, Valentina; Vydyanath, Anupama; Torre, Iratxe; Copeland, O'Neal; Lyon, Alexander R; Marston, Steven B; Luther, Pradeep K; Macleod, Kenneth T; West, Timothy G; Ferenczi, Michael A
2016-08-01
Myocardial remodeling in response to chronic myocardial infarction (CMI) progresses through two phases, hypertrophic "compensation" and congestive "decompensation." Nothing is known about the ability of uninfarcted myocardium to produce force, velocity, and power during these clinical phases, even though adaptation in these regions likely drives progression of compensation. We hypothesized that enhanced cross-bridge-level contractility underlies mechanical compensation and is controlled in part by changes in the phosphorylation states of myosin regulatory proteins. We induced CMI in rats by left anterior descending coronary artery ligation. We then measured mechanical performance in permeabilized ventricular trabecula taken distant from the infarct zone and assayed myosin regulatory protein phosphorylation in each individual trabecula. During full activation, the compensated myocardium produced twice as much power and 31% greater isometric force compared with noninfarcted controls. Isometric force during submaximal activations was raised >2.4-fold, while power was 2-fold greater. Electron and confocal microscopy demonstrated that these mechanical changes were not a result of increased density of contractile protein and therefore not an effect of tissue hypertrophy. Hence, sarcomere-level contractile adaptations are key determinants of enhanced trabecular mechanics and of the overall cardiac compensatory response. Phosphorylation of myosin regulatory light chain (RLC) increased and remained elevated post-MI, while phosphorylation of myosin binding protein-C (MyBP-C) was initially depressed but then increased as the hearts became decompensated. These sensitivities to CMI are in accordance with phosphorylation-dependent regulatory roles for RLC and MyBP-C in crossbridge function and with compensatory adaptation in force and power that we observed in post-CMI trabeculae. Copyright © 2016 the American Physiological Society.
Optical components of adaptive systems for improving laser beam quality
NASA Astrophysics Data System (ADS)
Malakhov, Yuri I.; Atuchin, Victor V.; Kudryashov, Aleksis V.; Starikov, Fedor A.
2008-10-01
The short overview is given of optical equipment developed within the ISTC activity for adaptive systems of new generation allowing for correction of high-power laser beams carrying optical vortices onto the phase surface. They are the kinoform many-level optical elements of new generation, namely, special spiral phase plates and ordered rasters of microlenses, i.e. lenslet arrays, as well as the wide-aperture Hartmann-Shack sensors and bimorph deformable piezoceramics- based mirrors with various grids of control elements.
Microwave monolithic integrated circuit development for future spaceborne phased array antennas
NASA Astrophysics Data System (ADS)
Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.
The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399
Microwave monolithic integrated circuit development for future spaceborne phased array antennas
NASA Technical Reports Server (NTRS)
Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.
1984-01-01
The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399
LiH thermal energy storage device
Olszewski, M.; Morris, D.G.
1994-06-28
A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.
Digital communication constraints in prior space missions
NASA Technical Reports Server (NTRS)
Yassine, Nathan K.
2004-01-01
Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this activity is to assist in the set-up of phase noise instrumentation, assist in the process of automated wire bonding, assist in the design and optimization of tunable microwave components, especially phase shifters, based on thin ferroelectric films, and learn how to use commercial electromagnetic simulation software.
Single phase inverter for a three phase power generation and distribution system
NASA Technical Reports Server (NTRS)
Lindena, S. J.
1976-01-01
A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.
High-power beam steering using phase conjugation through Brillouin-induced four-wave mixing.
Jones, D C; Cook, G; Ridley, K D; Scott, A M
1991-10-15
We report an experimental demonstration of a beam-steering concept. A high-reflectivity phase-conjugate mirror is used to steer a high-power phase-conjugate beam using a low-power signal beam. The high reflectivity phase conjugation is achieved using Brillouin-induced four-wave mixing in a cell containing carbon disulfide.
Active illumination using a digital micromirror device for quantitative phase imaging.
Shin, Seungwoo; Kim, Kyoohyun; Yoon, Jonghee; Park, YongKeun
2015-11-15
We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase-imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution 2D synthetic aperture phase image and a 3D refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination-control capability of the proposed method by imaging colloidal spheres and biological cells. The capability of high-speed optical diffraction tomography is also demonstrated by measuring 3D Brownian motion of colloidal particles with the tomogram acquisition rate of 100 Hz.
Monitoring of the MU radar antenna pattern by Satellite Ohzora (EXOS-C)
NASA Technical Reports Server (NTRS)
Sato, T.; Inooka, Y.; Fukao, S.; Kato, S.
1986-01-01
As the first attempt among MST (mesosphere stratosphere troposphere) type radars, the MU (middle and upper atmosphere) radar features an active phased array system. Unlike the conventional large VHF radars, in which output power of a large vacuum tube is distributed to individual antenna elements, each of 475 solid state power amplifier feeds each antenna element. This system configuration enables very fast beam steering as well as various flexible operations by dividing the antenna into independent subarrays, because phase shift and signal division/combination are performed at a low signal level using electronic devices under control of a computer network. The antenna beam can be switched within 10 microsec to any direction within the zenith angle of 30 deg. Since a precise phase alignment of each element is crucial to realize the excellent performance of this system, careful calibration of the output phase of each power amplifier and antenna element was carried out. Among various aircraft which may be used for this purpose artificial satellites have an advantage of being able to make a long term monitoring with the same system. An antenna pattern monitoring system for the MU radar was developed using the scientific satellite OHZORA (EXOS-C). A receiver named MUM (MU radar antenna Monitor) on board the satellite measures a CW signal of 100 to 400 watts transmitted from the MU radar. The principle of the measurement and results are discussed.
Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.
2012-01-01
Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071
Alteration of swing leg work and power during human accelerated sprinting
Matsubayashi, Takeo; Matsuo, Akifumi; Zushi, Koji
2017-01-01
ABSTRACT This study investigated changes in lower-extremity joint work and power during the swing phase in a maximal accelerated sprinting. Twelve male sprinters performed 60 m maximal sprints while motion data was recorded. Lower-extremity joint work and power during the swing phase of each stride for both legs were calculated. Positive hip and negative knee work (≈4.3 and ≈−2.9 J kg−1) and mean power (≈13.4 and ≈−8.7 W kg−1) during the entire swing phase stabilized or decreased after the 26.2±1.1 (9.69±0.25 m s−1) or 34.3±1.5 m mark (9.97±0.26 m s−1) during the acceleration phase. In contrast, the hip negative work and mean power during the early swing phase (≈7-fold and ≈3.7-fold increase in total), as well as the knee negative work and power during the terminal swing phase (≈1.85-fold and ≈2-fold increase in total), increased until maximal speed. Moreover, only the magnitudes of increases in negative work and mean power at hip and knee joints during the swing phase were positively associated with the increment of running speed from the middle of acceleration phase. These findings indicate that the roles of energy generation and absorption at the hip and knee joints shift around the middle of the acceleration phase as energy generation and absorption at the hip during the late swing phase and at the knee during early swing phase are generally maintained or decreased, and negative work and power at hip during the early swing phase and at knee during the terminal swing phase may be responsible for increasing running speed when approaching maximal speed. PMID:28396485
Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy
NASA Astrophysics Data System (ADS)
Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning
2018-06-01
GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.
Pattern, growth, and aging in aggregation kinetics of a Vicsek-like active matter model
NASA Astrophysics Data System (ADS)
Das, Subir K.
2017-01-01
Via molecular dynamics simulations, we study kinetics in a Vicsek-like phase-separating active matter model. Quantitative results, for isotropic bicontinuous pattern, are presented on the structure, growth, and aging. These are obtained via the two-point equal-time density-density correlation function, the average domain length, and the two-time density autocorrelation function. Both the correlation functions exhibit basic scaling properties, implying self-similarity in the pattern dynamics, for which the average domain size exhibits a power-law growth in time. The equal-time correlation has a short distance behavior that provides reasonable agreement between the corresponding structure factor tail and the Porod law. The autocorrelation decay is a power-law in the average domain size. Apart from these basic similarities, the overall quantitative behavior of the above-mentioned observables is found to be vastly different from those of the corresponding passive limit of the model which also undergoes phase separation. The functional forms of these have been quantified. An exceptionally rapid growth in the active system occurs due to fast coherent motion of the particles, mean-squared-displacements of which exhibit multiple scaling regimes, including a long time ballistic one.
Arabatzi, Fotini; Kellis, Eleftherios; Saèz-Saez De Villarreal, Eduardo
2010-09-01
The purpose of this study was to compare the effects of an Olympic weight lifting (OL), a plyometric (PL), and combined weight lifting + plyometric (WP) training program on vertical jump (VJ) biomechanics. Thirty-six men were assigned randomly to 4 groups: PL group (n = 9), OL group (n = 9), WP group (), and control (C) group (n = 8). The experimental groups trained 3 d.wk, for 8 weeks. Sagital kinematics, VJ height, power, and electromyographic (EMG) activity from rectus femoris (RF) and medial gastrocnemius (GAS) were collected during squat jumping and countermovement jumping (CMJ) before and after training. The results showed that all experimental groups improved VJ height (p < 0.05). The OL training improved power and muscle activation during the concentric phase of the CMJ while the subjects used a technique with wider hip and knee angles after training (p < 0.05). The PL group subjects did not change their CMJ technique although there was an increase in RF activation and a decrease of GAS activity after training (p < 0.05). The WP group displayed a decline in maximal hip angle and a lower activation during the CMJ after training (p < 0.05). These results indicate that all training programs are adequate for improving VJ performance. However, the mechanisms for these improvements differ between the 3 training protocols. Olympic weight lifting training might be more appropriate to achieve changes in VJ performance and power in the precompetition period of the training season. Emphasis on the PL exercises should be given when the competition period approaches, whereas the combination of OL and PL exercises may be used in the transition phases from precompetition to the competition period.
Conformal phased surfaces for wireless powering of bioelectronic microdevices
Agrawal, Devansh R.; Tanabe, Yuji; Weng, Desen; Ma, Andrew; Hsu, Stephanie; Liao, Song-Yan; Zhen, Zhe; Zhu, Zi-Yi; Sun, Chuanbowen; Dong, Zhenya; Yang, Fengyuan; Tse, Hung Fat; Poon, Ada S. Y.; Ho, John S.
2017-01-01
Wireless powering could enable the long-term operation of advanced bioelectronic devices within the human body. Although both enhanced powering depth and device miniaturization can be achieved by shaping the field pattern within the body, existing electromagnetic structures do not provide the spatial phase control required to synthesize such patterns. Here, we describe the design and operation of conformal electromagnetic structures, termed phased surfaces, that interface with non-planar body surfaces and optimally modulate the phase response to enhance the performance of wireless powering. We demonstrate that the phased surfaces can wirelessly transfer energy across anatomically heterogeneous tissues in large animal models, powering miniaturized semiconductor devices (<12 mm3) deep within the body (>4 cm). As an illustration of in vivo operation, we wirelessly regulated cardiac rhythm by powering miniaturized stimulators at multiple endocardial sites in a porcine animal model. PMID:29226018
Pattern manipulation via on-chip phase modulation between orbital angular momentum beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Huanlu; School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LP; Strain, Michael J.
2015-08-03
An integrated approach to thermal modulation of relative phase between two optical vortices with opposite chirality has been demonstrated on a silicon-on-insulator substrate. The device consists of a silicon-integrated optical vortex emitter and a phase controlled 3 dB coupler. The relative phase between two optical vortices can be actively modulated on chip by applying a voltage on the integrated heater. The phase shift is shown to be linearly proportional to applied electrical power, and the rotation angle of the interference pattern is observed to be inversely proportional to topological charge. This scheme can be used in lab-on-chip, communications and sensing applications.more » It can be intentionally implemented with other modulation elements to achieve more complicated applications.« less
NASA Astrophysics Data System (ADS)
Park, Bumjin; Kim, Dongwook; Park, Jaehyoung; Kim, Kibeom; Koo, Jay; Park, HyunHo; Ahn, Seungyoung
2018-05-01
Recently, magnetic energy harvesting technologies have been studied actively for self-sustainable operation of applications around power line. However, magnetic energy harvesting around power lines has the problem of magnetic saturation, which can cause power performance degradation of the harvester. In this paper, optimal design of a toroidal core for magnetic energy harvesters has been proposed with consideration of magnetic saturation near power lines. Using Permeability-H curve and Ampere's circuital law, the optimum dimensional parameters needed to generate induced voltage were analyzed via calculation and simulation. To reflect a real environment, we consider the nonlinear characteristic of the magnetic core material and supply current through a 3-phase distribution panel used in the industry. The effectiveness of the proposed design methodology is verified by experiments in a power distribution panel and takes 60.9 V from power line current of 60 A at 60 Hz.
Effect of different methods of pulse width modulation on power losses in an induction motor
NASA Astrophysics Data System (ADS)
Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii
2017-10-01
We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.
NASA Astrophysics Data System (ADS)
Wang, Yaping; Lin, Shunjiang; Yang, Zhibin
2017-05-01
In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.
2014-06-25
Metasurfaces with Reconfigurable Reflection Phase for High-Power Microwave Applications Kenneth L. Morgan, Clinton P. Scarborough, Micah D...TITLE AND SUBTITLE Metasurface with Reconfigurable Reflection Phase for High- Power Microwave Applications 5a. CONTRACT NUMBER 5b...Examples that demonstrate theoretical methods for extending the operating power levels of metasurface reflectarrays have been given •The proposed
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred; ...
2017-01-19
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Experiences with tungsten coatings in high heat flux tests and under plasma load in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Herrmann, A.; Greuner, H.; Fuchs, J. C.; de Marné, P.; Neu, R.; ASDEX Upgrade Team
2009-12-01
ASDEX Upgrade was operated with about 6400 s plasma discharge during the scientific program in 2007/2008 exploring tungsten as a first wall material in tokamaks. In the first phase, the heating power was restricted to 10 MW. It was increased to 15 MW in the second phase. During this operational period, a delamination of the 200 μm W-VPS coating happened at 2 out of 128 tiles of the outer divertor and an unscheduled opening was required. In the third phase, ASDEX Upgrade was operated with partly predamaged tiles and up to 15 MW heating power. The target load was actively controlled by N2-seeding. This paper presents the screening test of target tiles in the high heat flux test facility GLADIS, experiences with operation and detected damages of the outer divertor as well as the heat load to the outer divertor and the reasons for the toroidal asymmetry of the divertor load.
Hsu, Chia-Fen; Sonuga-Barke, Edmund J S
2016-08-01
fMRI studies have implicated the medial prefrontal cortex and medial temporal lobe, components of the default mode network (DMN), in episodic prospection. This study compared quantitative EEG localized to these DMN regions during prospection and during resting and while waiting for rewards. EEG was recorded in twenty-two adults while they were asked to (i) envision future monetary episodes; (ii) wait for rewards and (iii) rest. Activation sources were localized to core DMN regions. EEG power and phase coherence were compared across conditions. Prospection, compared to resting and waiting, was associated with reduced power in the medial prefrontal gyrus and increased power in the bilateral medial temporal gyrus across frequency bands as well as greater phase synchrony between these regions in the delta band. The current quantitative EEG analysis confirms prior fMRI research suggesting that medial prefrontal and medial temporal gyrus interactions are central to the capacity for episodic prospection. Copyright © 2016 Elsevier B.V. All rights reserved.
Inter-subject phase synchronization for exploratory analysis of task-fMRI.
Bolt, Taylor; Nomi, Jason S; Vij, Shruti G; Chang, Catie; Uddin, Lucina Q
2018-08-01
Analysis of task-based fMRI data is conventionally carried out using a hypothesis-driven approach, where blood-oxygen-level dependent (BOLD) time courses are correlated with a hypothesized temporal structure. In some experimental designs, this temporal structure can be difficult to define. In other cases, experimenters may wish to take a more exploratory, data-driven approach to detecting task-driven BOLD activity. In this study, we demonstrate the efficiency and power of an inter-subject synchronization approach for exploratory analysis of task-based fMRI data. Combining the tools of instantaneous phase synchronization and independent component analysis, we characterize whole-brain task-driven responses in terms of group-wise similarity in temporal signal dynamics of brain networks. We applied this framework to fMRI data collected during performance of a simple motor task and a social cognitive task. Analyses using an inter-subject phase synchronization approach revealed a large number of brain networks that dynamically synchronized to various features of the task, often not predicted by the hypothesized temporal structure of the task. We suggest that this methodological framework, along with readily available tools in the fMRI community, provides a powerful exploratory, data-driven approach for analysis of task-driven BOLD activity. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Cunefare, K. A.; Koopmann, G. H.
1991-01-01
This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.
NASA Astrophysics Data System (ADS)
Novotný, J.; Procházková, O.; Šrobár, F.; Zelinka, J.
1988-11-01
A description is given of a two-phase liquid epitaxy method used to grow InGaAsP/InP heterostructures intended for injection lasers emitting in the 1.3-μm range. A study was made of heterostructures of three types: double, with an additional quaternary layer (λ approx 1.1 μm) adjoining the active layer; with two quaternary layers between the active layer and the InP confining layers. The configuration with two flanking quaternary layers was found to be the best from the point of view of the threshold current density, optical output power, and reproducibility.
Analysis and design of optically pumped far infrared oscillators and amplifiers
NASA Technical Reports Server (NTRS)
Galantowicz, T. A.
1978-01-01
A waveguide laser oscillator was designed and experimental measurements made of relationships among output power, pressure, pump power, pump frequency, cavity tuning, output beam pattern, and cavity mirror properties for various active gases. A waveguide regenerative amplifier was designed and gain measurements were made for various active gases. An external Fabry-Perot interferometer was fabricated and used for accurate wavelength determination and for measurements of the refractive indices of solids transparent in the far infrared. An electronic system was designed and constructed to provide an appropriate error signal for use in feedback control of pump frequency. Pump feedback from the FIR laser was decoupled using a vibrating mirror to phase modulate the pump signal.
NASA Astrophysics Data System (ADS)
Sotoodeh, Pedram
This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.
Joint Kinetics to Assess the Influence of the Racket on a Tennis Player’s Shoulder
Creveaux, Thomas; Dumas, Raphaël; Hautier, Christophe; Macé, Pierre; Chèze, Laurence; Rogowski, Isabelle
2013-01-01
This study aimed at investigating the influence of three rackets on shoulder net joint moments, power and muscle activity during the flat tennis serve under field- conditions. A 6-camera Eagle® motion analysis system, operating at 256 Hz, captured racket and dominant upper limb kinematics of the serve in five tennis players under three racket conditions (A: low mass, high balance and polar moment, B: low three moments of inertia, and C: high mass, swingweight and twistweight). The electromyographic activity of six trunk and arm muscles was simultaneously recorded. Shoulder net joint moments and power were computed by 3D inverse dynamics. The results showed that greater shoulder joint power and internal/external rotation peak moments were found to accelerate and decelerate racket A in comparison with the racket C. Moreover, serving with the racket A resulted in less activity in latissimus dorsi muscle during the acceleration phase, and biceps brachii muscle during the follow-through phase when compared with racket C. These initial findings encourage studying the biomechanical measurements to quantify the loads on the body during play in order to reduce them, and then prevent shoulder injuries. Racket specifications may be a critical point for coaches who train players suffering from shoulder pain and chronic upper limb injuries should be considered in relation to the racket specifications of the players. Key Points Light racket required more joint power than heavy one to achieve similar post impact ball velocity. Serving with a light racket resulted in higher shoulder internal and external rotation moments than using a heavy one for similar performance. Chronic shoulder pain should encourage coaches to check for potentially inappropriate racket specifications of their players. PMID:24149804
Modulation of α power and functional connectivity during facial affect recognition.
Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan
2013-04-03
Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.
Time dependent simulations that evolve consistently the magnetic equilibrium and plasma pressure profiles and the width and frequency rotation of magnetic islands under the effect of the Electron Cyclotron feedback system are used to assess whether the control of NTMs on ITER is compatible with other simulataneous functionalities of the EC system, like core heating and current profile tailoring, or sawtooth control. Furthermore, results indicate that the power needs for control can be reduced if the EC power is reserved and if pre-emptive control is used as opposed to an active search for an already developed island.
Poli, Francesca M.; Fredrickson, Eric; Henderson, Mark A.; ...
2017-10-23
Time dependent simulations that evolve consistently the magnetic equilibrium and plasma pressure profiles and the width and frequency rotation of magnetic islands under the effect of the Electron Cyclotron feedback system are used to assess whether the control of NTMs on ITER is compatible with other simulataneous functionalities of the EC system, like core heating and current profile tailoring, or sawtooth control. Furthermore, results indicate that the power needs for control can be reduced if the EC power is reserved and if pre-emptive control is used as opposed to an active search for an already developed island.
Input Power Characteristics of a Three-Phase Thyristor Converter
DOT National Transportation Integrated Search
1973-10-01
A phase delay rectifier operating into a passive resistive load was instrumented in the laboratory. Techniques for accurate measurement of power, displacement reactive power, harmonic components, and distortion reactive power are presented. The chara...
NASA Technical Reports Server (NTRS)
Cajochen, C.; Khalsa, S. B.; Wyatt, J. K.; Czeisler, C. A.; Dijk, D. J.
1999-01-01
The aim of this study was to quantify the associations between slow eye movements (SEMs), eye blink rate, waking electroencephalogram (EEG) power density, neurobehavioral performance, and the circadian rhythm of plasma melatonin in a cohort of 10 healthy men during up to 32 h of sustained wakefulness. The time course of neurobehavioral performance was characterized by fairly stable levels throughout the first 16 h of wakefulness followed by deterioration during the phase of melatonin secretion. This deterioration was closely associated with an increase in SEMs. Frontal low-frequency EEG activity (1-7 Hz) exhibited a prominent increase with time awake and little circadian modulation. EEG alpha activity exhibited circadian modulation. The dynamics of SEMs and EEG activity were phase locked to changes in neurobehavioral performance and lagged the plasma melatonin rhythm. The data indicate that frontal areas of the brain are more susceptible to sleep loss than occipital areas. Frontal EEG activity and ocular parameters may be used to monitor and predict changes in neurobehavioral performance associated with sleep loss and circadian misalignment.
NASA Astrophysics Data System (ADS)
Qu, Feng; Liu, Xiaoming; Zhao, Jianhui
2004-05-01
A power equalization using an asymmetric nonlinear amplifying Sagnac interferometer (NASI) for ASK modulation is studied numerically. A nonreciprocal phase bias was proposed to be introduced into the structure. The nonreciprocal phase bias reduces not only the demanding for amplifier power or fiber non-linearity, but also increase the dynamic input power range. The power equalization is demonstrated for RZ modulation by nonlinear phase analysis and eye diagram simulation.
Controlling total spot power from holographic laser by superimposing a binary phase grating.
Liu, Xiang; Zhang, Jian; Gan, Yu; Wu, Liying
2011-04-25
By superimposing a tunable binary phase grating with a conventional computer-generated hologram, the total power of multiple holographic 3D spots can be easily controlled by changing the phase depth of grating with high accuracy to a random power value for real-time optical manipulation without extra power loss. Simulation and experiment results indicate that a resolution of 0.002 can be achieved at a lower time cost for normalized total spot power.
Overview of design and analysis activities for the W7-X scraper element
Lumsdaine, A.; Bjorholm, T.; Harris, J.; ...
2016-08-18
The Wendelstein 7-X stellarator is in final stages of commissioning, and will begin operation in late 2015. In the first phase, the machine will operate with a limiter, and will be restricted to low power and short pulse. But in 2019, plans are for an actively cooled divertor to be installed, and the machine will operate in steady state at full power. Recently, plasma simulations have indicated that, in this final operational phase, a bootstrap current will evolve in certain scenarios. This will cause the sensitive ends of the divertor target to be overloaded beyond their qualified limit. A highmore » heat flux scraper element (HHF-SE) has been proposed in order to take up some of the convective flux and reduce the load on the divertor. In order to examine whether the HHF-SE will be able to effectively reduce the plasma flux in the divertor region of concern, and to determine how the pumping effectiveness will be affected by such a component, it is planned to include a test divertor unit scraper element (TDU-SE) in 2017 during an earlier operational phase. Several U.S. fusion energy science laboratories have been involved in the design, analysis (structural and thermal finite element, as well as computational fluid dynamics), plasma simulation, planning, prototyping, and diagnostic development around the scraper element program (both TDU-SE and HHF-SE). As a result, this paper presents an overview of all of these activities and their current status.« less
The cholinergic forebrain arousal system acts directly on the circadian pacemaker
Yamakawa, Glenn R.; Basu, Priyoneel; Cortese, Filomeno; MacDonnell, Johanna; Whalley, Danica; Smith, Victoria M.
2016-01-01
Sleep and wake states are regulated by a variety of mechanisms. One such important system is the circadian clock, which provides temporal structure to sleep and wake. Conversely, changes in behavioral state, such as sleep deprivation (SD) or arousal, can phase shift the circadian clock. Here we demonstrate that the level of wakefulness is critical for this arousal resetting of the circadian clock. Specifically, drowsy animals with significant power in the 7- to 9-Hz band of their EEGs do not exhibit phase shifts in response to a mild SD procedure. We then show that treatments that both produce arousal and reset the phase of circadian clock activate (i.e., induce Fos expression in) the basal forebrain. Many of the activated cells are cholinergic. Using retrograde tract tracing, we demonstrate that cholinergic cells activated by these arousal procedures project to the circadian clock in the suprachiasmatic nuclei (SCN). We then demonstrate that arousal-induced phase shifts are blocked when animals are pretreated with atropine injections to the SCN, demonstrating that cholinergic activity at the SCN is necessary for arousal-induced phase shifting. Finally, we demonstrate that electrical stimulation of the substantia innominata of the basal forebrain phase shifts the circadian clock in a manner similar to that of our arousal procedures and that these shifts are also blocked by infusions of atropine to the SCN. These results establish a functional link between the major forebrain arousal center and the circadian system. PMID:27821764
NASA Astrophysics Data System (ADS)
Pandi, P.; Gopinathan, C.
2018-04-01
Hydrothermal method was used to prepare TiO2 nanoparticles with annealing temperature at 500 °C-700 °C. The mixture of anatase-rutile phase was investigated by powerful tool of X-ray diffraction (XRD). The structural parameters of anatase and rutile mixture phaseTiO2 nanoparticles were calculated from the Rietveld refinement. The transformation rate of rutile was increased linearly with an annealing temperature of 500 °C-700 °C. The spherical morphology of the anatase and rutile mixed phase were obtained by scanning electron microscope and transmission electron microscope. The spherical particle of the anatase and rutile TiO2 shows with great aggregation with different size and within the range of few tens nm. The EDAX study revealed the presence of titanium and oxygen. The best photocatalytic activity was identified as the 87.04% of anatase and 12.96% of rutile mixer phase of TiO2. Various factors could be involved for a better photocatalytic activity.
The hindlimb in walking horses: 2. Net joint moments and joint powers.
Clayton, H M; Hodson, E; Lanovaz, J L; Colborne, G R
2001-01-01
The objective of the study was to describe net joint moments and joint powers in the equine hindlimb during walking. The subjects were 5 sound horses. Kinematic and force data were collected synchronously and combined with morphometric information to determine net joint moments at each hindlimb joint throughout stance and swing. The results showed that the net joint moment was on the caudal/plantar side of all hindlimb joints at the start of stance when the limb was being actively retracted. It moved to the cranial/dorsal side around 24% stride at the hip and stifle and in terminal stance at the more distal joints. It remained on the cranial/dorsal side of all joints during the first half of swing to provide active limb protraction, then moved to the caudal/plantar aspect to reverse the direction of limb motion prior to ground contact. The hip joint was the main source of energy generation throughout the stride. It was assisted by the tarsal joint in both stance and swing phases and by the fetlock joint during the stance phase. The coffin joint acted as an energy damper during stance, whereas the stifle joint absorbed almost equal amounts of energy in the stance and swing phases. The coffin and fetlock joints absorbed energy as the limb was protracted and retracted during the swing phase, suggesting that their movements were driven by inertial forces. Future studies will apply these findings to detect changes in the energy profiles due to specific soft tissue injuries.
Design of automatic rotor blades folding system using NiTi shape memory alloy actuator
NASA Astrophysics Data System (ADS)
Ali, M. I. F.; Abdullah, E. J.
2016-10-01
This present paper will study the requirements for development of a new Automatic Rotor Blades Folding (ARBF) system that could possibly solve the availability, compatibility and complexity issue of upgrading a manual to a fully automatic rotor blades folding system of a helicopter. As a subject matter, the Royal Malaysian Navy Super Lynx Mk 100 was chosen as the baseline model. The aim of the study was to propose a design of SMART ARBF's Shape Memory Alloy (SMA) actuator and proof of operating concept using a developed scale down prototype model. The performance target for the full folding sequence is less than ten minutes. Further analysis on design requirements was carried out, which consisted of three main phases. Phase 1 was studying the SMA behavior on the Nickel Titanium (NiTi) SMA wire and spring (extension type). Technical values like activation requirement, contraction length, and stroke- power and stroke-temperature relationship were gathered. Phase 2 was the development of the prototype where the proposed design of stepped-retractable SMA actuator was introduced. A complete model of the SMART ARBF system that consisted of a base, a main rotor hub, four main rotor blades, four SMA actuators and also electrical wiring connections was fabricated and assembled. Phase 3 was test and analysis whereby a PINENG-PN968s-10000mAh Power Bank's 5 volts, which was reduced to 2.5 volts using LM2596 Step-Down Converter, powered and activated the NiTi spring inside each actuator. The bias spring (compression type), which functions to protract and push the blades to spread position, will compress together with the retraction of actuators and pull the blades to the folding position. Once the power was removed and SMA spring deactivated, the bias spring stiffness will extend the SMA spring and casing and push the blades back to spread position. The timing for the whole revolution was recorded. Based on the experimental analysis, the recorded timing for folding sequence is 2.5 minutes in average and therefore met the required criteria.
Millimeter-wave pseudomorphic HEMT MMIC phased array components for space communications
NASA Technical Reports Server (NTRS)
Lan, G. L.; Pao, C. K.; Wu, C. S.; Mandolia, G.; Hu, M.; Yuan, S.; Leonard, Regis
1991-01-01
Recent advances in pseudomorphic HEMT MMIC (PMHEMT/MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. This paper describes the development of PMHEMT/MMIC components at Ka-band and V-band. Specifically, the following PMHEMT/MMIC components will be described: power amplifiers at Ka-band; power amplifiers at V-band; and four-bit phase shifters at V-band. For the Ka-band amplifier, 125 mW output power with 5.5 dB gain and 21 percent power added efficiency at 2 dB compression point has been achieved. For the V-band amplifier, 112 mW output power with 6 dB gain and 26 percent power added efficiency has been achieved. And, for the V-band phase shifter, four-bit (45 deg steps) phase shifters with less than 8 dB insertion loss from 61 GHz to 63 GHz will be described.
Sensitivity of a phase-sensitive optical time-domain reflectometer with a semiconductor laser source
NASA Astrophysics Data System (ADS)
Alekseev, A. E.; Tezadov, Ya A.; Potapov, V. T.
2018-06-01
In the present paper we perform, for the first time, an analysis of the average sensitivity of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source to external actions. The sensitivity of this OTDR can be defined in a conventional manner via average SNR at its output, which in turn is defined by the average useful signal power and the average intensity noise power in the OTDR spatial channels in the bandwidth defined by the OTDR sampling frequency. The average intensity noise power is considered in detail in a previous paper. In the current paper we examine the average useful signal power at the output of a phase-OTDR. The analysis of the average useful signal power of a phase-OTDR is based on the study of a fiber scattered-light interferometer (FSLI) which is treated as a constituent part of a phase- OTDR. In the analysis, one of the conventional phase-OTDR schemes with a rectangular dual-pulse probe signal is considered. The FSLI which corresponds to this OTDR scheme has two scattering fiber segments with additional time delay, introduced between backscattered fields. The average useful signal power and the resulting average SNR at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments, and by the additional time delay between the scattering fiber segments. The average useful signal power characteristic of the corresponding phase-OTDR is determined by analogous parameters: the source coherence, the time durations of the parts constituting the dual-pulse, and the time interval which separates these parts. In the paper an expression for the average useful signal power of a phase-OTDR is theoretically derived and experimentally verified. Based on the found average useful signal power of a phase-OTDR and the average intensity noise power, derived in the previous paper, the average SNR of a phase-OTDR is defined. Setting the average signal SNR to 1, at a defined spectral band the minimum detectable external action amplitude for our particular phase-OTDR setup is determined. We also derive a simple relation for the average useful signal power and the average SNR which results when making the assumption that the laser source coherence is high. The results of the paper can serve as the basis for further development of the concept of phase-OTDR sensitivity.
Ojha, Kumari Shikha; Kerry, Joseph P; Alvarez, Carlos; Walsh, Des; Tiwari, Brijesh K
2016-07-01
The objective of this study was to investigate the efficacy of high intensity ultrasound on the fermentation profile of Lactobacillus sakei in a meat model system. Ultrasound power level (0-68.5 W) and sonication time (0-9 min) at 20 °C were assessed against the growth of L. sakei using a Microplate reader over a period of 24h. The L. sakei growth data showed a good fit with the Gompertz model (R(2)>0.90; SE<0.042). Second order polynomial models demonstrated the effect of ultrasonic power and sonication time on the specific growth rate (SGR, μ, h(-1)) and lag phase (λ, h). A higher SGR and a shorter lag phase were observed at low power (2.99 W for 5 min) compared to control. Conversely, a decrease (p<0.05) in SGR with an increase in lag phase was observed with an increase in ultrasonic power level. Cell-free extracts obtained after 24h fermentation of ultrasound treated samples showed antimicrobial activity against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella typhimurium at lower concentrations compared to control. No significant difference (p<0.05) among treatments was observed for lactic acid content after a 24h fermentation period. This study showed that both stimulation and retardation of L. sakei is possible, depending on the ultrasonic power and sonication time employed. Hence, fermentation process involving probiotics to develop functional food products can be tailored by selection of ultrasound processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
Dynamics of corticospinal motor control during overground and treadmill walking in humans.
Roeder, Luisa; Boonstra, Tjeerd Willem; Smith, Simon S; Kerr, Graham K
2018-05-30
Increasing evidence suggests cortical involvement in the control of human gait. However, the nature of corticospinal interactions remains poorly understood. We performed time-frequency analysis of electrophysiological activity acquired during treadmill and overground walking in 22 healthy, young adults. Participants walked at their preferred speed (4.2, SD 0.4 km h -1 ), which was matched across both gait conditions. Event-related power, corticomuscular coherence (CMC) and inter-trial coherence (ITC) were assessed for EEG from bilateral sensorimotor cortices and EMG from the bilateral tibialis anterior (TA) muscles. Cortical power, CMC and ITC at theta, alpha, beta and gamma frequencies (4-45 Hz) increased during the double support phase of the gait cycle for both overground and treadmill walking. High beta (21-30 Hz) CMC and ITC of EMG was significantly increased during overground compared to treadmill walking, as well as EEG power in theta band (4-7 Hz). The phase spectra revealed positive time lags at alpha, beta and gamma frequencies, indicating that the EEG response preceded the EMG response. The parallel increases in power, CMC and ITC during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. The evoked responses are not consistent with the idea of synchronization of ongoing corticospinal oscillations, but instead suggest coordinated cortical and spinal inputs during the double support phase. Frequency-band dependent differences in power, CMC and ITC between overground and treadmill walking suggest differing neural control for the two gait modalities, emphasizing the task-dependent nature of neural processes during human walking.
High Power Squeeze Type Phase Shifter at W-Band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Marc E
2000-09-28
We describe the design, fabrication and bench-study of a mm-wave phase-shifter employed as a high power recirculator for a traveling wave resonator circuit. The OFE copper phase shifter was prepared by electro-discharge machining. Measured phase-shifter characteristics are presented and compared with theory. The phase-shifter was employed in a traveling wave circuit at 91.4 GHz with circulating power of 0.2 MW and subjected to fields greater than 10 MV/m without evidence of breakdown.
Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems
NASA Astrophysics Data System (ADS)
Weber, Luke G.
There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive power. The scope of this work is to • develop a mathematical model for a salient pole, 2 damper winding synchronous generator with d axis saturation suitable for transient analysis, • develop a mathematical model for a voltage regulator and excitation system using the IEEE AC8B voltage regulator and excitation system template, • develop mathematical models for an energy storage primary control system, LC filter and transformer suitable for transient analysis, • combine the generator and energy storage models in a micro-grid context, • develop mathematical models for electric system components in the stationary abc frame and rotating dq reference frame, • develop a secondary control network for dispatch of micro-grid assets, • establish micro-grid limits of stable operation for step changes in load and power commands based on simulations of model data assuming net load on the micro-grid, and • use generator and electric system models to assess the generator current magnitude during phase-to-ground faults.
NASA Technical Reports Server (NTRS)
Shannon, R. L.; Gillette, R. B.
1974-01-01
The technique which utilizes exposure to a plasma to remove contaminants from a surface was incorporated into a laboratory model which demonstrates active cleaning by both plasma cleaning and ion sputtering modes of operation. The development phase is reported and includes discussion of the plasma tube configuration, device design, and performance tests. A general description of the active cleaning device is provided which includes information on the main power/plasma discharge sensors, and the power, gas supply, and ion accelerator systems. Development of the active cleaning species at high vacuum conditions is described and results indicate that plasma cleaning occurs in the region of a visible plume which extends from the end of the plasma tube. Recommendations are made for research to determine the plasma cleaning mechanism and the plasma species responsible for the cleaning, as well limitations on the type of contaminants that can be removed.
Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Harada, N.
2005-01-01
A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, Eduard
1998-01-01
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable Speed Wind Turbine Generator with Zero-sequence Filter
Muljadi, Eduard
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, E.
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.
Boater Performance Course Curriculum Outline.
ERIC Educational Resources Information Center
Davis, Michael W.; Reichle, Marvin N.
One of three related documents on recreational boating, this curriculum outline presents units of study designed to provide the knowledge, attitudes, and skills essential for safe boating behavior in all recreational boating activities. Fourteen units of study cover all phases of boat operation and are geared to the 15- or 16-foot power boat--the…
Bid, Aveek; Raychaudhuri, A K
2016-11-11
We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ∼30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of [Formula: see text] behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy [Formula: see text] meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.
Transparent self-cleaning dust shield
Mazumder, Malay K.; Sims, Robert A.; Wilson, James D.
2005-06-28
A transparent electromagnetic shield to protect solar panels and the like from dust deposition. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The panel is coated with a semiconducting film. Desirably the electrodes are transparent. The electrodes are connected to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave. The electromagnetic field produced by the electrodes lifts dust particles away from the shield and repels charged particles. Deposited dust particles are removed when the electrodes are activated, regardless of the resistivity of the dust. Electrostatic charges on the panel are discharged by the semiconducting film. When used in conjunction with photovoltaic cells, the power for the device may be obtained from the cells themselves. For other surfaces, such as windshields, optical windows and the like, the power must be derived from an external source. One embodiment of the invention employs monitoring and detection devices to determine when the level of obscuration of the screen by dust has reached a threshold level requiring activation of the dust removal feature.
Performance analysis of electronic power transformer based on neuro-fuzzy controller.
Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa
2016-01-01
In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.
Three-Phase and Six-Phase AC at the Lab Bench
ERIC Educational Resources Information Center
Caplan, George M.
2009-01-01
Utility companies generate three-phase electric power, which consists of three sinusoidal voltages with phase angles of 0 degrees, 120 degrees, and 240 degrees. The ac generators described in most introductory textbooks are single-phase generators, so physics students are not likely to learn about three-phase power. I have developed a simple way…
Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu
2014-01-01
Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.
Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu
2014-01-01
Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215
Maximizing return on socioeconomic investment in phase II proof-of-concept trials.
Chen, Cong; Beckman, Robert A
2014-04-01
Phase II proof-of-concept (POC) trials play a key role in oncology drug development, determining which therapeutic hypotheses will undergo definitive phase III testing according to predefined Go-No Go (GNG) criteria. The number of possible POC hypotheses likely far exceeds available public or private resources. We propose a design strategy for maximizing return on socioeconomic investment in phase II trials that obtains the greatest knowledge with the minimum patient exposure. We compare efficiency using the benefit-cost ratio, defined to be the risk-adjusted number of truly active drugs correctly identified for phase III development divided by the risk-adjusted total sample size in phase II and III development, for different POC trial sizes, powering schemes, and associated GNG criteria. It is most cost-effective to conduct small POC trials and set the corresponding GNG bars high, so that more POC trials can be conducted under socioeconomic constraints. If δ is the minimum treatment effect size of clinical interest in phase II, the study design with the highest benefit-cost ratio has approximately 5% type I error rate and approximately 20% type II error rate (80% power) for detecting an effect size of approximately 1.5δ. A Go decision to phase III is made when the observed effect size is close to δ. With the phenomenal expansion of our knowledge in molecular biology leading to an unprecedented number of new oncology drug targets, conducting more small POC trials and setting high GNG bars maximize the return on socioeconomic investment in phase II POC trials. ©2014 AACR.
Computational Power of Symmetry-Protected Topological Phases.
Stephen, David T; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Raussendorf, Robert
2017-07-07
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases, the computational power of ground states is uniform throughout each phase. This computational power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of matter.
Computational Power of Symmetry-Protected Topological Phases
NASA Astrophysics Data System (ADS)
Stephen, David T.; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Raussendorf, Robert
2017-07-01
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based quantum computation (MBQC). We show that, for a wide range of SPT phases, the computational power of ground states is uniform throughout each phase. This computational power, defined as the Lie group of executable gates in MBQC, is determined by the same algebraic information that labels the SPT phase itself. We prove that these Lie groups always contain a full set of single-qubit gates, thereby affirming the long-standing conjecture that general SPT phases can serve as computationally useful phases of matter.
Biomass power for rural development: Phase 2. Technical progress report, April 1--June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuhauser, E.
1998-11-01
The project undertaken by the Salix Consortium is a multi-phased, multi-partner endeavor. Phase-1 focused on initial development and testing of the technology and agreements necessary to demonstrate commercial willow production in Phase-2. The Phase-1 objectives have been successfully completed: preparing final design plans for two utility pulverized coal boilers, developing fuel supply plans for the project, obtaining power production commitments from the power companies for Phase-2, obtaining construction and environmental permits, and developing an experimental strategy for crop production and power generation improvements needed to assure commercial success. The R and D effort also addresses environmental issues pertaining to introductionmore » of the willow energy system. Beyond those Phase-1 requirements the Consortium has already successfully demonstrated cofiring at Greenidge Station and developed the required nursery capacity for acreage scale-up. This past summer 105 acres were prepared in advance for the spring planting in 1998. Having completed the above tasks, the Consortium is well positioned to begin Phase-2. In phase-2 every aspect of willow production and power generation from willow will be demonstrated. The ultimate objective of Phase-2 is to transition the work performed under the Rural Energy for the Future project into a thriving, self-supported energy crop enterprise.« less
A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
Takahashi, Kota Z; Lewek, Michael D; Sawicki, Gregory S
2015-02-25
In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user's paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p < .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke.
An investigation of quasi-inertial attitude control for a solar power satellite
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Wang, S. J.
1982-01-01
An efficient means, a quasi-inertial attitude mode, is developed for maintaining the normal solar orientation of a space satellite for power collection in a synchronous orbit. Formulae are presented which establish the basic parametric properties for ideal quasi-inertial attitude and phasing. An active control system is necessary to compensate for the energy loss since energy dissipation in widely oscillating flexible bodies produces an instability of the quasi-inertial attitude in the sense that the spacecraft will tumble at the orbit rate. A fixed terminal time and state optimal control problem is formulated and an algorithm for determining the optimal control as a means for the periodical attitude and phase compensation is developed. The vehicle orientation affected by internal disturbance (structural flexibility) and external disturbances (e.g., drag forces) is maintained by a specialized controller design.
Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain
Lin, Fa-Hsuan; Witzel, Thomas; Hämäläinen, Matti S.; Dale, Anders M.; Belliveau, John W.; Stufflebeam, Steven M.
2010-01-01
This paper presents a computationally efficient source estimation algorithm that localizes cortical oscillations and their phase relationships. The proposed method employs wavelet-transformed magnetoencephalography (MEG) data and uses anatomical MRI to constrain the current locations to the cortical mantle. In addition, the locations of the sources can be further confined with the help of functional MRI (fMRI) data. As a result, we obtain spatiotemporal maps of spectral power and phase relationships. As an example, we show how the phase locking value (PLV), that is, the trial-by-trial phase relationship between the stimulus and response, can be imaged on the cortex. We apply the method to spontaneous, evoked, and driven cortical oscillations measured with MEG. We test the method of combining MEG, structural MRI, and fMRI using simulated cortical oscillations along Heschl’s gyrus (HG). We also analyze sustained auditory gamma-band neuromagnetic fields from MEG and fMRI measurements. Our results show that combining the MEG recording with fMRI improves source localization for the non-noise-normalized wavelet power. In contrast, noise-normalized spectral power or PLV localization may not benefit from the fMRI constraint. We show that if the thresholds are not properly chosen, noise-normalized spectral power or PLV estimates may contain false (phantom) sources, independent of the inclusion of the fMRI prior information. The proposed algorithm can be used for evoked MEG/EEG and block-designed or event-related fMRI paradigms, or for spontaneous MEG data sets. Spectral spatiotemporal imaging of cortical oscillations and interactions in the human brain can provide further understanding of large-scale neural activity and communication between different brain regions. PMID:15488408
Electrically powered hand tool
Myers, Kurt S.; Reed, Teddy R.
2007-01-16
An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.
18 CFR 2.18 - Phased electric rate increase filings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...
18 CFR 2.18 - Phased electric rate increase filings.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...
18 CFR 2.18 - Phased electric rate increase filings.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...
18 CFR 2.18 - Phased electric rate increase filings.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...
18 CFR 2.18 - Phased electric rate increase filings.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Phased electric rate increase filings. 2.18 Section 2.18 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.18 Phased electric rate increase filings. (a...
Frequency-Unspecific Effects of θ-tACS Related to a Visuospatial Working Memory Task
Kleinert, Maria-Lisa; Szymanski, Caroline; Müller, Viktor
2017-01-01
Working memory (WM) is crucial for intelligent cognitive functioning, and synchronization phenomena in the fronto-parietal network have been suggested as an underlying neural mechanism. In an attempt to provide causal evidence for this assumption, we applied transcranial alternating current stimulation (tACS) at theta frequency over fronto-parietal sites during a visuospatial match-to-sample (MtS) task. Depending on the stimulation protocol, i.e., in-phase, anti-phase or sham, we anticipated a differential impact of tACS on behavioral WM performance as well as on the EEG (electroencephalography) during resting state before and after stimulation. We hypothesized that in-phase tACS of the fronto-parietal theta network (stimulation frequency: 5 Hz; intensity: 1 mA peak-to-peak) would result in performance enhancement, whereas anti-phase tACS would cause performance impairment. Eighteen participants (nine female) received in-phase, anti-phase, and sham stimulation in balanced order. While being stimulated, subjects performed the MtS task, which varied in executive demand (two levels: low and high). EEG analysis of power peaks within the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequency bands was carried out. No significant differences were observed between in-phase and anti-phase stimulation regarding both behavioral and EEG measurements. Yet, with regard to the alpha frequency band, we observed a statistically significant drop of peak power from pre to post in the sham condition, whereas alpha power remained on a similar level in the actively stimulated conditions. Our results indicate a frequency-unspecific modulation of neuronal oscillations by tACS. However, the closer participants’ individual theta peak frequencies were to the stimulation frequency of 5 Hz after anti-phase tACS, the faster they responded in the MtS task. This effect did not reach statistical significance during in-phase tACS and was not present during sham. A lack of statistically significant behavioral results in the MtS task and frequency-unspecific effects on the electrophysiological level question the effectiveness of tACS in modulating cortical oscillations in a frequency-specific manner. PMID:28747881
Delorme, Arnaud; Polich, John
2013-01-01
Long-term Vipassana meditators sat in meditation vs. a control (instructed mind wandering) states for 25 min, electroencephalography (EEG) was recorded and condition order counterbalanced. For the last 4 min, a three-stimulus auditory oddball series was presented during both meditation and control periods through headphones and no task imposed. Time-frequency analysis demonstrated that meditation relative to the control condition evinced decreased evoked delta (2–4 Hz) power to distracter stimuli concomitantly with a greater event-related reduction of late (500–900 ms) alpha-1 (8–10 Hz) activity, which indexed altered dynamics of attentional engagement to distracters. Additionally, standard stimuli were associated with increased early event-related alpha phase synchrony (inter-trial coherence) and evoked theta (4–8 Hz) phase synchrony, suggesting enhanced processing of the habituated standard background stimuli. Finally, during meditation, there was a greater differential early-evoked gamma power to the different stimulus classes. Correlation analysis indicated that this effect stemmed from a meditation state-related increase in early distracter-evoked gamma power and phase synchrony specific to longer-term expert practitioners. The findings suggest that Vipassana meditation evokes a brain state of enhanced perceptual clarity and decreased automated reactivity. PMID:22648958
Hasan, Abul; Helaoui, Mohamed; Ghannouchi, Fadhel M
2017-08-29
In this article, a novel tunable, blocker and clock jitter tolerant, low power, quadrature phase shift frequency selective (QPS-FS) receiver with energy harvesting capability is proposed. The receiver's design embraces and integrates (i) the baseband to radio frequency (RF) impedance translation concept to improve selectivity over that of conventional homodyne receiver topologies and (ii) broadband quadrature phase shift circuitry in the RF path to remove an active multi-phase clock generation circuit in passive mixer (PM) receivers. The use of a single local oscillator clock signal with a passive clock division network improves the receiver's robustness against clock jitter and reduces the source clock frequency by a factor of N, compared to PM receivers using N switches (N≥4). As a consequence, the frequency coverage of the QPS-FS receiver is improved by a factor of N, given a clock source of maximum frequency; and, the power consumption of the whole receiver system can eventually be reduced. The tunable QPS-FS receiver separates the wanted RF band signal from the unwanted blockers/interferers. The desired RF signal is frequency down-converted to baseband, while the undesired blocker/interferer signals are reflected by the receiver, collected and could be energy recycled using an auxiliary energy harvesting device.
Sex differences in kinetic and neuromuscular control during jumping and landing
Márquez, G.; Alegre, L.M.; Jaén, D.; Martin-Casado, L.; Aguado, X.
2017-01-01
In the present study, we analysed the kinetic profile together with the lower limb EMG activation pattern during a countermovement jump and its respective landing phase in males and females. Twenty subjects (10 males and 10 females) took part in the study. One experimental session was conducted in order to record kinetic and electromyographic (EMG) parameters during a countermovement jump (CMJ) and the subsequent landing phase. During the CMJ, males recorded a higher (p<0.001) performance than females in terms of jump height and power production. Stiffness values were lower in males than females due to greater centre of mass displacement during the countermovement (p<0.01). According to the EMG activity, males demonstrated greater (p<0.05) activation during the concentric phase of the jump. However, females revealed a higher co-contraction ratio in the plantar flexors during the push-off phase. During landings males showed higher (p<0.01) peak ground reaction forces (Fpeak), greater (p<0.05) stiffness and a higher maximal displacement of the CoM (p<0.05) than females. EMG analysis revealed greater EMG activity in the tibialis anterior (p<0.05) and rectus femoris (p=0.05) muscles in males. Higher plantar flexor co-activation during landing has also been found in males. Our findings demonstrated different neuromuscular control in males and females during jumping and landing. PMID:28250245
Sex differences in kinetic and neuromuscular control during jumping and landing.
Márquez, G; Alegre, L M; Jaén, D; Martin-Casado, L; Aguado, X
2017-03-01
In the present study, we analysed the kinetic profile together with the lower limb EMG activation pattern during a countermovement jump and its respective landing phase in males and females. Twenty subjects (10 males and 10 females) took part in the study. One experimental session was conducted in order to record kinetic and electromyographic (EMG) parameters during a countermovement jump (CMJ) and the subsequent landing phase. During the CMJ, males recorded a higher (p<0.001) performance than females in terms of jump height and power production. Stiffness values were lower in males than females due to greater centre of mass displacement during the countermovement (p<0.01). According to the EMG activity, males demonstrated greater (p<0.05) activation during the concentric phase of the jump. However, females revealed a higher co-contraction ratio in the plantar flexors during the push-off phase. During landings males showed higher (p<0.01) peak ground reaction forces (F peak ), greater (p<0.05) stiffness and a higher maximal displacement of the CoM (p<0.05) than females. EMG analysis revealed greater EMG activity in the tibialis anterior (p<0.05) and rectus femoris (p=0.05) muscles in males. Higher plantar flexor co-activation during landing has also been found in males. Our findings demonstrated different neuromuscular control in males and females during jumping and landing.
Department of Defense high power laser program guidance
NASA Astrophysics Data System (ADS)
Muller, Clifford H.
1994-06-01
The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).
Automated Array Assembly, Phase 2
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1979-01-01
The Automated Array Assembly Task, Phase 2 of the Low Cost Silicon Solar Array Project is a process development task. The contract provides for the fabrication of modules from large area tandem junction cells (TJC). During this quarter, effort was focused on the design of a large area, approximately 36 sq cm, TJC and process verification runs. The large area TJC design was optimized for minimum I squared R power losses. In the TJM activity, the cell-module interfaces were defined, module substrates were formed and heat treated and clad metal interconnect strips were fabricated.
Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays
NASA Technical Reports Server (NTRS)
Glaser, P. E.
1974-01-01
The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.
Tada, Yuki; Yoshizaki, Takahiro; Tanaka, Izumi; Kanehara, Rieko; Kato, Misao; Hatta, Naoko; Hida, Azumi; Kawano, Yukari
2018-06-09
Previous studies have found more frequent increases in dietary intake and nonrestorative nocturnal sleep during the luteal phase than in the follicular phase, but few studies have investigated how increased energy intake at dinner influences sleep by considering the correlation between female hormone and cardiac autonomic nervous system (ANS) activity. This study examined the effects of energy intake at dinner on ANS activity during nighttime sleep in order to evaluate restorative sleep in healthy women. We also examined whether ANS activity is associated with female hormone dynamics. Twenty-four healthy collegiate women participated in this randomized crossover trial. Each was assigned to receive a High Energy Dinner (HED) or Low Energy Dinner (LED) treatment. Energy ratios of each test meal (breakfast, lunch, and dinner) to total energy intake were 1:1:2 and 1:2:1 for HED and LED treatments, respectively. Each participant wore an ECG recorder before dinner and removed it upon waking the next morning. Power spectral analysis of heart rate variability was used to calculate low frequency (LF), high frequency (HF), and total spectral power (TP). Cardiac sympathetic (SNS) and parasympathetic (PNS) nervous system activity were evaluated as LF/HF and HF/TP, respectively. Mean HF/TP for the entire sleeping period was lower with HED treatment compared to LED treatment (41.7 ± 11.4 vs. 45.0 ± 12.13, P = .034). Intergroup comparisons of the initial 3-h sleeping period revealed that LF/HF (0.87 ± 0.82 vs. 0.66 ± 0.82, P = .013) and HF/TP (45.6 ± 13.9 vs. 51.5 ± 11.8, P = .002) were higher and lower, respectively, with HED treatment compared to LED treatment. Progesterone levels were positively correlated with LF/HF with LED treatment, and negatively correlated with HF/TP with both HED and LED treatments. Higher energy intake at dinner increases and decreases SNS and PNS activities, respectively, resulting in nonrestorative nocturnal sleep. In addition, a negative correlation was observed between progesterone and PNS activity, highlighting the difficulty of increasing PNS activity during sleep in the luteal phase compared to the follicular phase. Copyright © 2018 Elsevier Inc. All rights reserved.
RF waveguide phase-directed power combiners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.
2017-05-02
High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.
Dijk, D J; Shanahan, T L; Duffy, J F; Ronda, J M; Czeisler, C A
1997-01-01
1. The circadian pacemaker regulates the timing, structure and consolidation of human sleep. The extent to which this pacemaker affects electroencephalographic (EEG) activity during sleep remains unclear. 2. To investigate this, a total of 1.22 million power spectra were computed from EEGs recorded in seven men (total, 146 sleep episodes; 9 h 20 min each) who participated in a one-month-long protocol in which the sleep-wake cycle was desynchronized from the rhythm of plasma melatonin, which is driven by the circadian pacemaker. 3. In rapid eye movement (REM) sleep a small circadian variation in EEG activity was observed. The nadir of the circadian rhythm of alpha activity (8.25-10.5 Hz) coincided with the end of the interval during which plasma melatonin values were high, i.e. close to the crest of the REM sleep rhythm. 4. In non-REM sleep, variation in EEG activity between 0.25 and 11.5 Hz was primarily dependent on prior sleep time and only slightly affected by circadian phase, such that the lowest values coincided with the phase of melatonin secretion. 5. In the frequency range of sleep spindles, high-amplitude circadian rhythms with opposite phase positions relative to the melatonin rhythm were observed. Low-frequency sleep spindle activity (12.25-13.0 Hz) reached its crest and high-frequency sleep spindle activity (14.25-15.5 Hz) reached its nadir when sleep coincided with the phase of melatonin secretion. 6. These data indicate that the circadian pacemaker induces changes in EEG activity during REM and non-REM sleep. The changes in non-REM sleep EEG spectra are dissimilar from the spectral changes induced by sleep deprivation and exhibit a close temporal association with the melatonin rhythm and the endogenous circadian phase of sleep consolidation. PMID:9457658
A New Clinical HIFU System (Teleson II)
NASA Astrophysics Data System (ADS)
Ma, Yixin; Symonds-Tayler, Richard; Rivens, Ian H.; ter Haar, Gail R.
2007-05-01
Previous clinical trials with our first prototype HIFU system (Teleson I) for the treatment of liver tumors, demonstrated a major challenge to be treatment of those tumors located behind the ribs. We have designed a new multi-element transducer for rib sparing. Initial simulation and experimental results (using a single channel power amplifier) are very encouraging. A new clinical HIFU system which can drive the multi-element transducer and control each channel independently is being designed and constructed. This second version of a clinical prototype HIFU system consists of a 3D motorised gantry, a multi-channel signal generator, a multi-channel power amplifier, a user interface PC, an embedded controller and auxiliary circuits for real-time interleaving/synchronization control and a to-be-implemented safety monitoring and data logging unit. For multi-element transducers, each element can be individually switched on and off for rib sparing, and phase and amplitude modulated for potential phased array applications. The multi-channel power amplifier can be switched on/off very rapidly at required intervals to interleave with ultrasound B-Scan imaging for HIFU monitoring or radiation force elastography imaging via a dedicated interleaving/timing module. The gantry movement can also be synchronised with power amplifier on/off and phase/amplitude updating for lesion generation under a wide variety of conditions including single lesions, lesion arrays and lesions "tracks" created whilst translating the active transducer. Results from testing the system using excised tissue will be presented.
The energetics of the gradual phase
NASA Technical Reports Server (NTRS)
Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.; Doyle, J. G.; Lemen, J. R.; Pallavicini, R.; Peres, G.; Serio, S.
1986-01-01
Reseachers compare results with those in the chapter by Moore et al. (1980), who reached five main conclusions about the gradual phase: (1) the typical density of the soft X-ray emitting plasma is between 10 to the 11th power and 10 to the 12th power cm-3 for compact flares and between 10 to the 10th power and 10 to the 11th power cm-3 for a large-area flare; (2) cooling is by conduction and radiation in roughly equal proportions; (3) continual heating is needed in the decay phase of two-ribbon flares; (4) continual heating is probably not needed in compact events; (5) most of the soft-X-ray-emitting plasma results from chromospheric evaporation. The goal was to reexamine these problems with the data from the Solar Maximum Mission (SMM) and other supporting instruments as well as to take advantage of recent theoretical advances. SMM is capable of measuring coronal temperatures more accurately and with a better cadence than has been possible before. The SMM data set is also unique in that the complete transit of an active region was observed, with soft X-ray and UV images being taken every few minutes. Researcher's were therefore able to establish the pre-flare conditions of the region and see whether anything has changed as a result of the flare. The assumptions made in attempting to determine the required plasma parameters are described. The derived parameters for the five prime flares are presented, and the role of numerical simulations is discussed.
Analysis of electrical and magnetic bio-signals associated with motor performance and fatigue
NASA Astrophysics Data System (ADS)
Yao, Bing
This dissertation reports findings centered principally on comprehensive research related to human bio-signals (EEG, MEG, EMG and fMRI) acquired during repetitive maximal voluntary contractions (MVC) that induced severe fatigue. Fatigue is a common experience that reduces productivity and quality of life and increases chances of injury. Although abundant information has been gained in the last several decades regarding muscular and spinal-level mechanisms of muscle fatigue, very little is known about how cortical centers control and respond to fatigue. The main purpose of this study was to examine the fatigue effects on the central nervous system by analyzing the bio-signals collected in the designed experiments. Healthy human subjects were asked to perform a series of repetitive handgrip MVCs with their dominant hand until exhaustion. Handgrip forces, electrical activity (EMG) from primary and non-primary muscles, and EEG, MEG, or fMRI signals from different locations of the brain were recorded simultaneously. The time series data were segmented into several physiologically meaningful epochs (time phases), from rest to preparation to movement execution/sustaining. A series of studies, including motor-related cortical potential (MRCP) analysis, power spectrum analysis, time-frequency (spectrogram) analysis of EEG, EEG source localization and nonlinear analysis (fractal dimension and largest Lyapunov exponent), and fMRI analysis, was applied to the data. We hypothesized that the fatigue effects would act differently on brain signals of different phases. The MRCP results showed that the negative potential (NP) related to motor task preparation only had minimal changes with fatigue. The power of all EEG frequencies did not alter significantly during the preparation phase but decreased significantly during the sustained phase of the contraction. The fractal dimension and the largest Lyapunov exponent decreased significantly during the sustained phase as fatigue progressed. On the other hand, the fMRI results only exhibited insignificant fatigue-related reductions of brain activation volume and no significant change of dipole strength derived from multi-channel EEG data. These results have been interpreted by a hypothetical neurophysiological model, in which two groups of cortical neurons (phasic and tonic) are preferentially activated in each physiological phase of the voluntary motor action.
A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC
NASA Astrophysics Data System (ADS)
Siyang, Han; Baoyong, Chi; Xinwang, Zhang; Zhihua, Wang
2014-08-01
A 35-130 MHz/300-360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300-360 MHz) or in low-power mode (35-130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of -132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of -112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply.
NASA Astrophysics Data System (ADS)
Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi
2017-05-01
A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.
Altered Cortical Activation in Adolescents With Acute Migraine: A Magnetoencephalography Study
Xiang, Jing; deGrauw, Xinyao; Korostenskaja, Milena; Korman, Abraham M.; O’Brien, Hope L.; Kabbouche, Marielle A.; Powers, Scott W.; Hershey, Andrew D.
2013-01-01
To quantitatively assess cortical dysfunction in pediatric migraine, 31 adolescents with acute migraine and age- and gender-matched controls were studied using a magnetoencephalography (MEG) system at a sampling rate of 6,000 Hz. Neuromagnetic brain activation was elicited by a finger-tapping task. The spectral and spatial signatures of magnetoencephalography data in 5 to 2,884 Hz were analyzed using Morlet wavelet and beamformers. Compared with controls, 31 migraine subjects during their headache attack phases (ictal) showed significantly prolonged latencies of neuromagnetic activation in 5 to 30 Hz, increased spectral power in 100 to 200 Hz, and a higher likelihood of neuromagnetic activation in the supplementary motor area, the occipital and ipsilateral sensorimotor cortices, in 2,200 to 2,800 Hz. Of the 31 migraine subjects, 16 migraine subjects during their headache-free phases (interictal) showed that there were no significant differences between interictal and control MEG data except that interictal spectral power in 100 to 200 Hz was significantly decreased. The results demonstrated that migraine subjects had significantly aberrant ictal brain activation, which can normalize interictally. The spread of abnormal ictal brain activation in both low- and high-frequency ranges triggered by movements may play a key role in the cascade of migraine attacks. Perspective This is the first study focusing on the spectral and spatial signatures of cortical dysfunction in adolescents with migraine using MEG signals in a frequency range of 5 to 2,884 Hz. This analyzing aberrant brain activation may be important for developing new therapeutic interventions for migraine in the future. PMID:23792072
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Hayano, Yutaka; Saito, Yoshihiko; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2005-11-01
Sum-frequency generation was carried out by mixing 1064 and 1319 nm pulses emitted from actively mode-locked neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers for efficient 589 nm light generation. A radio frequency of approximately 75 MHz was split into two and fed to acousto-optic mode lockers of two lasers for mode-locked operation. The synchronization of the pulses was achieved by controlling the phase difference between the radio frequencies. The maximum output power at 589 nm reached 260 mW, which corresponded to an energy conversion efficiency of more than 13%. The output power was 3.8-fold that in continuous-wave operation.
Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia.
Uhlhaas, Peter J; Linden, David E J; Singer, Wolf; Haenschel, Corinna; Lindner, Michael; Maurer, Konrad; Rodriguez, Eugenio
2006-08-02
Recent theoretical and empirical research on schizophrenia converges on the notion that core aspects of the pathophysiology of the disorder may arise from a dysfunction in the coordination of distributed neural activity. Synchronization of neural responses in the beta-band (15-30 Hz) and gamma-band range (30-80 Hz) has been implicated as a possible neural substrate for dysfunctional coordination in schizophrenia. To test this hypothesis, we examined the electroencephalography (EEG) activity in 19 patients with a Diagnostic and Statistical Manual of Mental Disorder, edition IV criteria, diagnosis of schizophrenia and 19 healthy control subjects during a Gestalt perception task. EEG data were analyzed for phase synchrony and induced spectral power as an index of neural synchronization. Schizophrenia patients were impaired significantly in the detection of images that required the grouping of stimulus elements into coherent object representations. This deficit was accompanied by longer reaction times in schizophrenia patients. Deficits in Gestalt perception in schizophrenia patients were associated with reduced phase synchrony in the beta-band (20-30 Hz), whereas induced spectral power in the gamma-band (40-70 Hz) was mainly intact. Our findings suggest that schizophrenia patients are impaired in the long-range synchronization of neural responses, which may reflect a core deficit in the coordination of neural activity and underlie the specific cognitive dysfunctions associated with the disorder.
Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.
Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan
2017-08-13
Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Muscle activity during the golf swing.
McHardy, A; Pollard, H
2005-11-01
In the right hands, the golf swing is a motion that inspires looks of awe from the public. It is a complex movement of the whole body to generate power to a golf ball to propel the ball great distances with accuracy. This movement relies on the coordinated sequence of muscle activation to produce a fluid and reproducible movement. This paper reviews the literature on golf swing related muscle activity. The phases of this activity are discussed with a view to assisting the practitioner in understanding the swing. Such understanding may help in the management of the injured golfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flanigan, Tom; Pybus, Craig; Roy, Sonya
This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (insteadmore » of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO 2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit applications. Additional performance and reliability enhancements will also be evaluated in Phase 2 to try to improve overall project economics.« less
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J.
2008-05-01
The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.
Solar power satellite system definition study, phase 2.
NASA Technical Reports Server (NTRS)
1979-01-01
A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.
Logic computation in phase change materials by threshold and memory switching.
Cassinerio, M; Ciocchini, N; Ielmini, D
2013-11-06
Memristors, namely hysteretic devices capable of changing their resistance in response to applied electrical stimuli, may provide new opportunities for future memory and computation, thanks to their scalable size, low switching energy and nonvolatile nature. We have developed a functionally complete set of logic functions including NOR, NAND and NOT gates, each utilizing a single phase-change memristor (PCM) where resistance switching is due to the phase transformation of an active chalcogenide material. The logic operations are enabled by the high functionality of nanoscale phase change, featuring voltage comparison, additive crystallization and pulse-induced amorphization. The nonvolatile nature of memristive states provides the basis for developing reconfigurable hybrid logic/memory circuits featuring low-power and high-speed switching. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cell Partition in Two Polymer Aqueous Phases
NASA Technical Reports Server (NTRS)
Harris, J. M.
1985-01-01
Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.
Ultra-wideband microwave photonic phase shifter with configurable amplitude response.
Pagani, M; Marpaung, D; Eggleton, B J
2014-10-15
We introduce a new principle that enables separate control of the amplitude and phase of an optical carrier, simply by controlling the power of two stimulated Brillouin scattering (SBS) pumps. This technique is used to implement a microwave photonic phase shifter with record performance, which solves the bandwidth limitation of previous gain-transparent SBS-based phase shifters, while achieving unprecedented minimum power fluctuations, as a function of phase shift. We demonstrate 360° continuously tunable phase shift, with less than 0.25 dB output power fluctuations, over a frequency band from 1.5 to 31 GHz, limited only by the measurement equipment.
Phase Transitions in Living Neural Networks
NASA Astrophysics Data System (ADS)
Williams-Garcia, Rashid Vladimir
Our nervous systems are composed of intricate webs of interconnected neurons interacting in complex ways. These complex interactions result in a wide range of collective behaviors with implications for features of brain function, e.g., information processing. Under certain conditions, such interactions can drive neural network dynamics towards critical phase transitions, where power-law scaling is conjectured to allow optimal behavior. Recent experimental evidence is consistent with this idea and it seems plausible that healthy neural networks would tend towards optimality. This hypothesis, however, is based on two problematic assumptions, which I describe and for which I present alternatives in this thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a sensory stimulus, and so living neural networks may be incapable of achieving "critical" optimality. I develop a framework known as quasicriticality, in which a relative optimality can be achieved depending on the strength of the environmental influence. Second, the power-law scaling supporting this hypothesis is based on statistical analysis of cascades of activity known as neuronal avalanches, which conflate causal and non-causal activity, thus confounding important dynamical information. In this thesis, I present a new method to unveil causal links, known as causal webs, between neuronal activations, thus allowing for experimental tests of the quasicriticality hypothesis and other practical applications.
Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P
2014-11-01
It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. Copyright © 2014 Elsevier B.V. All rights reserved.
Wakeling, James M.
2015-01-01
This study investigated the influence of cycle frequency and workload on muscle coordination and the ensuing relationship with mechanical efficiency and power output of human limb movement. Eleven trained cyclists completed an array of cycle frequency (cadence)-power output conditions while excitation from 10 leg muscles and power output were recorded. Mechanical efficiency was maximized at increasing cadences for increasing power outputs and corresponded to muscle coordination and muscle fiber type recruitment that minimized both the total muscle excitation across all muscles and the ineffective pedal forces. Also, maximum efficiency was characterized by muscle coordination at the top and bottom of the pedal cycle and progressive excitation through the uniarticulate knee, hip, and ankle muscles. Inefficiencies were characterized by excessive excitation of biarticulate muscles and larger duty cycles. Power output and efficiency were limited by the duration of muscle excitation beyond a critical cadence (120–140 rpm), with larger duty cycles and disproportionate increases in muscle excitation suggesting deteriorating muscle coordination and limitations of the activation-deactivation capabilities. Most muscles displayed systematic phase shifts of the muscle excitation relative to the pedal cycle that were dependent on cadence and, to a lesser extent, power output. Phase shifts were different for each muscle, thereby altering their mechanical contribution to the pedaling action. This study shows that muscle coordination is a key determinant of mechanical efficiency and power output of limb movement across a wide range of mechanical demands and that the excitation and coordination of the muscles is limited at very high cycle frequencies. PMID:26445873
Using Geothermal Electric Power to Reduce Carbon Footprint
NASA Astrophysics Data System (ADS)
Crombie, George W.
Human activities, including the burning of fossil fuels, increase carbon dioxide levels, which contributes to global warming. The research problem of the current study examined if geothermal electric power could adequately replace fossil fuel by 2050, thus reducing the emissions of carbon dioxide while avoiding potential problems with expanding nuclear generation. The purpose of this experimental research was to explore under what funding and business conditions geothermal power could be exploited to replace fossil fuels, chiefly coal. Complex systems theory, along with network theory, provided the theoretical foundation for the study. Research hypotheses focused on parameters, such as funding level, exploration type, and interfaces with the existing power grid that will bring the United States closest to the goal of phasing out fossil based power by 2050. The research was conducted by means of computer simulations, using agent-based modeling, wherein data were generated and analyzed. The simulations incorporated key information about the location of geothermal resources, exploitation methods, transmission grid limits and enhancements, and demand centers and growth. The simulation suggested that rapid and aggressive deployment of geothermal power plants in high potential areas, combined with a phase out of coal and nuclear plants, would produce minimal disruptions in the supply of electrical power in the United States. The implications for social change include reduced risk of global warming for all humans on the planet, reduced pollution due to reduction or elimination of coal and nuclear power, increased stability in energy supply and prices in the United States, and increased employment of United States citizens in jobs related to domestic energy production.
Thermospheric mass density model error variance as a function of time scale
NASA Astrophysics Data System (ADS)
Emmert, J. T.; Sutton, E. K.
2017-12-01
In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcy, W.M.; Dudek, R.A.
1979-03-30
The Trans-Pecos Photovoltaic Concentrating Experiment is the design of a 200 kWe peak photovoltaic concentrating system applied to deep well irrigation in the Trans-Pecos region of Texas. The site selected is typical of deep well irrigation in arid regions of Texas, New Mexico, and Arizona. The existing well utilizes a 200 horse power, three phase, 480 volt induction motor to lift water 540 feet to irrigate 380 acres. The Trans-Pecos Photovoltaic Concentration (PVC) system employs a two axis (azimuth-elevation) tracking parabolic concentrator module that focuses sunlight at 38X concentration on two strings of actively cooled silicon solar cells. The directmore » current from a field of 102 collector modules is converted by a maximum power point electric power conditioning system to three phase alternating current. The power from the power conditioning system is connected through appropriate switchgear in parallel with the utility grid to the well's induction motor. The operational philosophy of the experiment is to displace daytime utility power with solar generated electric power. The solar system is sized to provide approximately 50 percent of the 24 hour energy demand of the motor. This requires an energy exchange with the utility since peak solar power (200 kWe) generated exceeds the peak motor demand (149.2 kWe). The annual energy production is projected to be 511 Mwh using El Paso, Texas solar TMY data. System electrical power production efficiency is projected to be 7.4 percent at the design point, and 7.0 percent on an annual electrical energy production basis. The system is projected to provide 37.8 percent of the 24 hour energy demand of the motor at the design point of March 10, excluding energy delivered to the grid in excess of motor demand. The total energy produced is projected to be 39.0 percent of the 24 hour energy demand of the motor at the design point of March 10.« less
Coax-to-channelised coplanar waveguide in-phase N-way, radial power divider
NASA Technical Reports Server (NTRS)
Simons, R. N.; Ponchak, G. E.
1990-01-01
A novel nonplanar, wideband power divider which makes use of a coax-to-CCPW transition is demonstrated. The transition utilizes a coaxial transformer whose outer conductor is slotted along the length for RF power division and also for exciting the CCPWs in equal amplitude and phase at the radial junction. The measured (8-16 GHz) excess insertion loss at the output ports is 0.5 dB for a four-way divider. The amplitude and phase balance are within 0.5 dB and 5 deg, respectively. The power divider should find applications in the feed network of phased arrays.
Nonlinear Optics Technology. Volume 1. Solid State Laser Technology. Phase 3
1991-01-12
84 Figure 5.6 Modulator diffraction efficiency as a function of peak power for several 86 RF frequencies Figure 5.7 Thermal effects in the modulator. a...far-field profile of a beam making a 87 double pass through the modulator operating with a peak power of 80 W and average power of 1.6 W. b) same...AU three shown incorporate phase conjugation to provide good beam quality. Figure 1.1a is a standard phase conjugated master oscillator power
Zavala, Baltazar; Tan, Huiling; Ashkan, Keyoumars; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Zaghloul, Kareem; Brown, Peter
2016-08-15
The medial prefrontal cortex (mPFC) is thought to control the shift from automatic to controlled action selection when conflict is present or when mistakes have been recently committed. Growing evidence suggests that this process involves frequency specific communication in the theta (4-8Hz) band between the mPFC and the subthalamic nucleus (STN), which is the main target of deep brain stimulation (DBS) for Parkinson's disease. Key in this hypothesis is the finding that DBS can lead to impulsivity by disrupting the correlation between higher mPFC oscillations and slower reaction times during conflict. In order to test whether theta band coherence between the mPFC and the STN underlies adjustments to conflict and to errors, we simultaneously recorded mPFC and STN electrophysiological activity while DBS patients performed an arrowed flanker task. These recordings revealed higher theta phase coherence between the two sites during the high conflict trials relative to the low conflict trials. These differences were observed soon after conflicting arrows were displayed, but before a response was executed. Furthermore, trials that occurred after an error was committed showed higher phase coherence relative to trials that followed a correct trial, suggesting that mPFC-STN connectivity may also play a role in error related adjustments in behavior. Interestingly, the phase coherence we observed occurred before increases in theta power, implying that the theta phase and power may influence behavior at separate times during cortical monitoring. Finally, we showed that pre-stimulus differences in STN theta power were related to the reaction time on a given trial, which may help adjust behavior based on the probability of observing conflict during a task. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Studying three-phase supply in school
NASA Astrophysics Data System (ADS)
Singhal, Amit Kumar; Arun, P.
2009-07-01
The power distributions of nearly all major countries have accepted three-phase distribution as a standard. With increasing power requirements of instrumentation today even a small physics laboratory requires a three-phase supply. While physics students are given an introduction to this in passing, no experimental work is done with three-phase supply due to the possibility of accidents while working with such large power. We believe a conceptual understanding of three-phase supply would be useful for physics students, with hands-on experience using a simple circuit that can be assembled even in a high school laboratory.
A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid
NASA Astrophysics Data System (ADS)
Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.
2012-10-01
Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.
Freire, Jean Carlos A; Hauser-Davis, Rachel Ann; da Costa Lobato, Tarcísio; de Morais, Jefferson M; de Oliveira, Terezinha F; F Saraiva, Augusto Cesar
2017-05-01
Dam constructions in the Amazon have increased exponentially in the last decades, causing several environmental impacts and serious anthropogenic impacts in certain hydroelectric power plant reservoirs in the region have been identified. The assessment of the trophic status of these reservoirs is of interest to indicate man-made changes in the environment, but must take into account the hydrological cycle of the area. This can be relevant for environmental management actions, aiding in the identification of the ecological status of water bodies. In this context, physico-chemical parameters and eutrophication indicators were determined in a hydroelectric power plant reservoir in the Brazilian Amazon to assess trophic variations during the regional hydrological regime phases on the reservoir, namely dry, filling, full and emptying stages. The local hydrological regimes were shown to significantly influence TSS and turbidity, as well as NH 4 , NO 3 , PO 4 , with higher values consistently observed during the filling stage of the reservoir. In addition, differences among the sampling stations regarding land use, population and anthropogenic activities were reflected in the PO 4 3- values during the different hydrological phases.
Du, Zhijia; Wood, David L.; Daniel, Claus; ...
2017-02-09
We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi 0.8Co 0.15Al 0.05O 2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected bymore » Li-ion diffusion in active materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less
High voltage power supply with modular series resonant inverters
Dreifuerst, Gary R.; Merritt, Bernard T.
1995-01-01
A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.
High voltage power supply with modular series resonant inverters
Dreifuerst, G.R.; Merritt, B.T.
1995-07-18
A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.
NASA Astrophysics Data System (ADS)
Mazzini, A.; Husein, A.; Karyono, K.; Lupi, M.; Obermann, A.; Hadi, S.
2015-12-01
The Lusi eruption started the 29th of May 2006 in Eastern Java, Indonesia. Since its birth Lusi presented a pulsating behaviour with geyser-like activity. To date Lusi is still active and never stopped erupting enormous amounts of mud, clasts, water and gas with peaks of activity reaching 180.000 km3/day. The erupting activity is characterized by[ML1] three main behaviours: 1) regular activity, which consists in the constant emission of mud breccia (i.e. viscous mud containing clay, silt, sand and clasts up to 10 cm in diameter) associated with the expulsion of water both in a liquid and vapour state as well as other gasses (i.e. mostly CO2 and CH4). Occasional powerful bursts of mud may reach up ten meters in height. 2) geysering activity consisting in more powerful eruptive events that do not seem to have a regular pattern. These typically lasts up to five minutes and comprise an initial phase marked by an elevated bubbling in the crater zone followed by an increasing amount of vapour released throughout the geysering phase. 3) quasi-absence of degassing from the main crater(s). This phase follows the geysering activity and is generally short-lived In order to investigate the mechanisms controlling Lusi pulsating behaviour, we deployed a network of five seismometers around the crater. The seismic records highlight that the seismic signal of Lusi is characterised by tremor and volcano-tectonic events. Tremor events occur in 1 Hz and 3 Hz frequency bands while volcano tectonic events are rich in high frequencies (i.e. 2-15 Hz). We also identify an emerging signal lasting from approximately one to ten minutes. This signal appears throughout the dataset and it is characterized by a frequency content between 5 Hz and 10 Hz. To verify whether such long-lasting signal could be associated to the geysering phase we coupled the seismic monitoring with a HD camera to record the crater activity. Results reveal that the onset of such signal precedes the visual evidence of geysering activity at the surface. This implies that the signal is not originated in the immediate subsurface. We argue that such signal is generated by the geysering activity and it is caused by the discrete collapse of gas pockets rising through a super-heated fluid column filled with hot mud. [ML1]Comprises??
NASA Astrophysics Data System (ADS)
Basov, N. G.; Efimkov, V. F.; Zubarev, I. G.; Kolobrodov, V. V.; Pastukhov, S. A.; Smirnov, M. G.; Sobolev, V. B.
1988-12-01
A study was made of the characteristics of an amplifier containing neodymium-activated silicate rods, 45 mm in diameter, used in direct amplification and phase conjugation systems. At low output energies the divergence of the output radiation in the presence of a phase-conjugating mirror was half ( ~ 10- 4 rad) that in the case of direct amplification. An increase in the output power caused the divergence to rise more rapidly in the presence of a phase-conjugating mirror, which was tentatively attributed to an earlier manifestation of large-scale self-focusing. Output energies of 130 J in the case of direct amplification and 80 J in the presence of a phase-conjugating mirror were obtained when the output pulse duration was ~ 2 ns and the fraction of the total energy contained within an angle of ~ 10- 4 rad was ~ 0.3.
Automatic phase control in solar power satellite systems
NASA Technical Reports Server (NTRS)
Lindsey, W. C.; Kantak, A. V.
1978-01-01
Various approaches to the problem of generating, maintaining and distributing a coherent, reference phase signal over a large area are suggested, mathematically modeled and analyzed with respect to their ability to minimize: phase build-up, beam diffusion and beam steering phase jitter, cable length, and maximize power transfer efficiency. In addition, phase control configurations are suggested which alleviate the need for layout symmetry.
NASA Astrophysics Data System (ADS)
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.
Characterization of vector stimulated Brillouin scattering gain over wide power range
NASA Astrophysics Data System (ADS)
Li, Yongqian; An, Qi; Li, Xiaojuan; Zhang, Lixin
2017-07-01
The wide range power dependence of vector stimulated Brillouin scattering (SBS) gain is theoretically and experimentally characterized by a mathematical model and measurement system based on the heterodyne pump-Stokes technique. The results show that SBS phase shift is much more tolerant of pump depletion than SBS amplitude gain, hence the performance improvement of the SBS-based distributed sensing system can be achieved by measuring the SBS phase shift spectrum. The discussion about the measured Brillouin spectrum width versus pump power at different Stokes powers reveals that the occurrence of nonnegligible pump depletion imposes a restriction on the determination of pump and Stokes powers in an SBS amplitude gain-based application system. The amplitude gain and phase shift of vector SBS gain increase with the increase of pump power and decrease with the increase of Stokes power, which indicates that the design strategy with smaller Stokes power and higher pump power is reasonable. And the measured center-asymmetry of the SBS phase shift spectrum is mainly caused by the nonlinear refractive index, which puts a limitation on the maximum pump power. The obtained results can provide a useful basis for the optimal design of practical vector SBS gain-based application systems.
Development of Thin-Film Battery Powered Transdermal Medical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, J.B.; Sein, T.
1999-07-06
Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-filmmore » battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.« less
Fluidic Active Transducer for Electricity Generation
Yang, YoungJun; Park, Junwoo; Kwon, Soon-Hyung; Kim, Youn Sang
2015-01-01
Flows in small size channels have been studied for a long time over multidisciplinary field such as chemistry, biology and medical through the various topics. Recently, the attempts of electricity generation from the small flows as a new area for energy harvesting in microfluidics have been reported. Here, we propose for the first time a new fluidic electricity generator (FEG) by modulating the electric double layer (EDL) with two phase flows of water and air without external power sources. We find that an electric current flowed by the forming/deforming of the EDL with a simple separated phase flow of water and air at the surface of the FEG. Electric signals between two electrodes of the FEG are checked from various water/air passing conditions. Moreover, we verify the possibility of a self-powered air slug sensor by applying the FEG in the detection of an air slug. PMID:26511626
The NASA program in Space Energy Conversion Research and Technology
NASA Astrophysics Data System (ADS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
The NASA program in Space Energy Conversion Research and Technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.
1982-01-01
The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.
Microwave power transmitting phased array antenna research project
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1978-01-01
An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.
Development of a Low Inductance Linear Alternator for Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Schifer, Nicholas A.
2017-01-01
The free-piston Stirling power convertor is a promising technology for high efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper, eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations, and compares the predictions with experimental data for one of the configurations that has been built and is currently being tested.
Development of a Low-Inductance Linear Alternator for Stirling Power Convertors
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Schifer, Nicholas A.
2017-01-01
The free-piston Stirling power convertor is a promising technology for high-efficiency heat-to-electricity power conversion in space. Stirling power convertors typically utilize linear alternators for converting mechanical motion into electricity. The linear alternator is one of the heaviest components of modern Stirling power convertors. In addition, state-of-the-art Stirling linear alternators usually require the use of tuning capacitors or active power factor correction controllers to maximize convertor output power. The linear alternator to be discussed in this paper eliminates the need for tuning capacitors and delivers electrical power output in which current is inherently in phase with voltage. No power factor correction is needed. In addition, the linear alternator concept requires very little iron, so core loss has been virtually eliminated. This concept is a unique moving coil design where the magnetic flux path is defined by the magnets themselves. This paper presents computational predictions for two different low inductance alternator configurations. Additionally, one of the configurations was built and tested at GRC, and the experimental data is compared with the predictions.
Liu, Qingtao; Liu, Xiaofang; Zheng, Lirong; Shui, Jianglan
2018-01-26
The environmentally friendly synthesis of highly active Fe-N-C electrocatalysts for proton-exchange membrane fuel cells (PEMFCs) is desirable but remains challenging. A simple and scalable method is presented to fabricate Fe II -doped ZIF-8, which can be further pyrolyzed into Fe-N-C with 3 wt % of Fe exclusively in Fe-N 4 active moieties. Significantly, this Fe-N-C derived acidic PEMFC exhibits an unprecedented current density of 1.65 A cm -2 at 0.6 V and the highest power density of 1.14 W cm -2 compared with previously reported NPMCs. The excellent PEMFC performance can be attributed to the densely and atomically dispersed Fe-N 4 active moieties on the small and uniform catalyst nanoparticles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter
2016-09-01
ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...explored. The primary goal is to understand the effects each modulation strategy has on the conducted electromagnetic interference (EMI) and then
NASA Astrophysics Data System (ADS)
Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.
2017-01-01
We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.
Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A
2016-08-01
A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.
Kyriazis, Thomas A; Terzis, Gerasimos; Boudolos, Konstantinos; Georgiadis, Georgios
2009-09-01
The aim of this study was to investigate changes in shot put performance, muscular power, and neuromuscular activation of the lower extremities, between the preseason and the competition period, in skilled shot put athletes using the rotational technique. Shot put performance was assessed at the start of the pre-season period as well as after 12 weeks, at the competition period, in nine shot putters. Electromyographic (EMG) activity of the right vastus lateralis muscle was recorded during all shot put trials. Maximum squat strength (1RM) and mechanical parameters during the countermovement jump (CMJ) on a force platform were also determined at pre-season and at competition period. Shot put performance increased 4.7% (p < 0.05), while 1RM squat increased 6.5% (p < 0.025). EMG activity during the delivery phase was increased significantly (p < 0.025) after the training period. Shot put performance was significantly related with muscular power and takeoff velocity during the CMJ, at competition period (r = 0.66, p < 0.05 and 0.70, p < 0.05), but not with maximum vertical force. One RM squat was not related significantly with shot put performance. These results suggest that muscular power of the lower extremities is a better predictor of rotational shot put performance than absolute muscular strength in skilled athletes, at least during the competition period.
NASA Astrophysics Data System (ADS)
Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi
2008-01-01
A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase-shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise at the SOA output are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. It is also shown that Gaussian distribution can be useful as a good approximation of the total differential phase noise statistics in the whole operation range. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.
Gating of tactile information through gamma band during passive arm movement in awake primates
Song, Weiguo; Francis, Joseph T.
2015-01-01
To make precise and prompt action in a dynamic environment, the sensorimotor system needs to integrate all related information. The inflow of somatosensory information to the cerebral cortex is regulated and mostly suppressed by movement, which is commonly referred to as sensory gating or gating. Sensory gating plays an important role in preventing redundant information from reaching the cortex, which should be considered when designing somatosensory neuroprosthetics. Gating can occur at several levels within the sensorimotor pathway, while the underlying mechanism is not yet fully understood. The average sensory evoked potential is commonly used to assess sensory information processing, however the assumption of a stereotyped response to each stimulus is still an open question. Event related spectral perturbation (ERSP), which is the power spectrum after time-frequency decomposition on single trial evoked potentials (total power), could overcome this limitation of averaging and provide additional information for understanding the underlying mechanism. To this aim, neural activities in primary somatosensory cortex (S1), primary motor cortex (M1), and ventral posterolateral (VPL) nucleus of thalamus were recorded simultaneously in two areas (S1 and M1 or S1 and VPL) during passive arm movement and rest in awake monkeys. Our results showed that neural activity at different recording areas demonstrated specific and unique response frequency characteristics. Tactile input induced early high frequency responses followed by low frequency oscillations within sensorimotor circuits, and passive movement suppressed these oscillations either in a phase-locked or non-phase-locked manner. Sensory gating by movement was non-phase-locked in M1, and complex in sensory areas. VPL showed gating of non-phase-locked at gamma band and mix of phase-locked and non-phase-locked at low frequency, while S1 showed gating of phase-locked and non-phase-locked at gamma band and an early phase-locked elevation followed by non-phase-locked gating at low frequency. Granger causality (GC) analysis showed bidirectional coupling between VPL and S1, while GC between M1 and S1 was not responsive to tactile input. Thus, these results suggest that tactile input is dominantly transmitted along the ascending direction from VPL to S1, and the sensory input is suppressed during movement through a bottom-up strategy within the gamma-band during passive movement. PMID:26578892
VizieR Online Data Catalog: LCES HIRES/Keck radial velocity Exoplanet Survey (Butler+, 2017)
NASA Astrophysics Data System (ADS)
Butler, R. P.; Vogt, S. S.; Laughlin, G.; Burt, J. A.; Rivera, E. J.; Tuomi, M.; Teske, J.; Arriagada, P.; Diaz, M.; Holden, B.; Keiser, S.
2017-08-01
We present 60949 precision radial velocities of 1624 stars obtained over the past 20 years from the Lick-Carnegie Exoplanet Survey Team (LCES) survey with the HIgh-Resolution Echelle Spectrometer (HIRES) spectrometer on the Keck I telescope. We tabulate a list of 357 significant periodic signals that are of constant period and phase, and not coincident in period and/or phase with stellar activity indices. For this survey, the HIRES spectrometer was configured to operate at a nominal spectral resolving power of R~60000 and wavelength range of 3700-8000Å. (4 data files).
Phase noise cancellation in polarisation-maintaining fibre links
NASA Astrophysics Data System (ADS)
Rauf, B.; Vélez López, M. C.; Thoumany, P.; Pizzocaro, M.; Calonico, D.
2018-03-01
The distribution of ultra-narrow linewidth laser radiation is an integral part of many challenging metrological applications. Changes in the optical pathlength induced by environmental disturbances compromise the stability and accuracy of optical fibre networks distributing the laser light and call for active phase noise cancellation. Here we present a laboratory scale optical (at 578 nm) fibre network featuring all polarisation maintaining fibres in a setup with low optical powers available and tracking voltage-controlled oscillators implemented. The stability and accuracy of this system reach performance levels below 1 × 10-19 after 10 000 s of averaging.
Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter
NASA Astrophysics Data System (ADS)
Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.
2008-06-01
This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.
Influence of the cubic spectral phase of high-power laser pulses on their self-phase modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginzburg, V N; Kochetkov, A A; Yakovlev, I V
2016-02-28
Spectral broadening of high-power transform-limited laser pulses under self-phase modulation in a medium with cubic nonlinearity is widely used to reduce pulse duration and to increase its power. It is shown that the cubic spectral phase of the initial pulse leads to a qualitatively different broadening of its spectrum: the spectrum has narrow peaks and broadening decreases. However, the use of chirped mirrors allows such pulses to be as effectively compressed as transform-limited pulses. (nonlinear optical phenomena)
Study to eliminate ground resonance using active controls
NASA Technical Reports Server (NTRS)
Straub, F. K.
1984-01-01
The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.
Agrawal, Himani; Joshi, Robin; Gupta, Mahesh
2016-08-01
Pearl millet (Pennisetum glaucum) is a rich source of protein, used for present study to hydrolyze protein, peptide separation and its functional activity. Antioxidative bioactive peptide was successfully identified from pearl millet using trypsin enzyme. Different antioxidative potential of isolated peptide were assessed based on activity of DPPH radical, ABTS radical, hydroxyl radical, Fe(2+) chelating ability and reducing power. Bioactive peptide separated by gel-filtration chromatography, showed the higher antioxidant activity as tested by different free radicals. The activity of pearl millet protein hydrolysate fraction was found for DPPH assay (67.66%), ABTS assay (78.81%), Fe(2+) chelating ability (51.20%), hydroxyl assay (60.95%) and reducing power (0.375nm) was further purified using reversed-phase UFLC and subjected to matrix assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) for sequential identification of the peptide. The sequence SDRDLLGPNNQYLPK was identified as antioxidant peptide. Copyright © 2016 Elsevier Ltd. All rights reserved.
Martin, Kate; Webber, Helen; Craven, Michael P; Hollis, Chris; Deighton, Jessica; Law, Roslyn; Fonagy, Peter; Wolpert, Miranda
2017-01-01
Background Evidence suggests that young people want to be active participants in their care and involved in decisions about their treatment. However, there is a lack of digital shared decision-making tools available to support young people in child and adolescent mental health services (CAMHS). Objective The primary aim of this paper is to present the protocol of a feasibility trial for Power Up, a mobile phone app to empower young people in CAMHS to make their voices heard and participate in decisions around their care. Methods In the development phase, 30 young people, parents, and clinicians will take part in interviews and focus groups to elicit opinions on an early version of the app. In the feasibility testing phase, 60 young people from across 7 to 10 London CAMHS sites will take part in a trial looking at the feasibility and acceptability of measuring the impact of Power Up on shared decision making. Results Data collection for the development phase ended in December 2016. Data collection for the feasibility testing phase will end in December 2017. Conclusions Findings will inform the planning of a cluster controlled trial and contribute to the development and implementation of a shared decision-making app to be integrated into CAMHS. Trial Registration ISRCTN77194423; http://www.isrctn.com/ISRCTN77194423 (Archived by WebCite at http://www.webcitation.org/6td6MINP0). ClinicalTrials.gov NCT02987608; https://clinicaltrials.gov/ct2/show/NCT02987608 (Archived by WebCite at http://www.webcitation.org/6td6PNBZM) PMID:29084708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, G. M.; Fitzgerald, E.; Johnson, D. K.
2014-02-12
Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced from Γ to Γ{sup 2} in the “forbidden region.” Themore » relative phase shift between adjacent columns of a LHCD antenna is critical for control of the launched n{sub ∥} spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ∥}.« less
Electric power generation using geothermal brine resources for a proof of concept facility
NASA Technical Reports Server (NTRS)
Hankin, J. W.
1974-01-01
An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.
A thin membrane artificial muscle rotary motor
NASA Astrophysics Data System (ADS)
Anderson, Iain A.; Hale, Thom; Gisby, Todd; Inamura, Tokushu; McKay, Thomas; O'Brien, Benjamin; Walbran, Scott; Calius, Emilio P.
2010-01-01
Desirable rotary motor attributes for robotics include the ability to develop high torque in a low mass body and to generate peak power at low rotational speeds. Electro-active polymer artificial muscles offer promise as actuator elements for robotic motors. A promising artificial muscle technology for use as a driving mechanism for rotary motion is the dielectric elastomer actuator (DEA). We present a membrane DEA motor in which phased actuation of electroded sectors of the motor membrane impart orbital motion to a central drive that turns a rotor. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials. As a membrane it can also form part of the skin of a robot. We have investigated the torque and power of stacked membrane layers. Specific power and torque ratios when calculated using active membrane mass only were 20.8 W/kg and 4.1 Nm/kg, respectively. These numbers compare favorably with a commercially available stepper motor. Multi-membrane fabrication substantially boosts torque and power and increases the active mass of membrane relative to supporting framework. Through finite element modeling, we show the mechanisms governing the maximum torque the device can generate and how the motor can be improved.
NASA Astrophysics Data System (ADS)
Nohavica, D.; Têminová, J.; Berková, D.; Zagrádková, M.; Kortan, I.; Zelinka, I.; Walachová, I.; Malina, V.
1988-11-01
A modified single-phase liquid phase epitaxy method was developed on the basis of a novel variant of the growth boat. The method was used to grow GaInAsP/InP double heterostructures for lasers emitting at 1.3 and 1.55 μm. The main properties of wide-contact diodes (radiation power and threshold current density) were adopted as the characteristics of the quality of heterostructures characterized by different configurations of active and guiding layers. The quality of the structure was confirmed by the fabrication of laser diodes of the following types: stripe with oxide insulation, clad-ridge waveguide, and double-channel planar buried.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
...) engine compressor stall after the Auxiliary Power Unit (APU) becomes the active bleed source for the left side. The most critical condition identified is: --Both engines close to idle (e.g.: descent phase); and --APU running; and --APU bleed button pushed in. In this condition, if the left hand (LH) engine...
NASA Astrophysics Data System (ADS)
Minati, Ludovico; de Candia, Antonio; Scarpetta, Silvia
2016-07-01
Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.
Cyclin B in mouse oocytes and embryos: importance for human reproduction and aneuploidy.
Polański, Zbigniew; Homer, Hayden; Kubiak, Jacek Z
2012-01-01
Oocyte maturation and early embryo development require precise coordination between cell cycle progression and the developmental programme. Cyclin B plays a major role in this process: its accumulation and degradation is critical for driving the cell cycle through activation and inactivation of the major cell cycle kinase, CDK1. CDK1 activation is required for M-phase entry whereas its inactivation leads to exit from M-phase. The tempo of oocyte meiotic and embryonic mitotic divisions is set by the rate of cyclin B accumulation and the timing of its destruction. By controlling when cyclin B destruction is triggered and by co-ordinating this with the completion of chromosome alignment, the spindle assembly checkpoint (SAC) is a critical quality control system important for averting aneuploidy and for building in the flexibility required to better integrate cell cycle progression with development. In this review we focus on cyclin B metabolism in mouse oocytes and embryos and illustrate how the cell cycle-powered clock (in fact cyclin B-powered clock) controls oocyte maturation and early embryo development, thereby providing important insight into human reproduction and potential causes of Down syndrome.
High-Capacity, High-Voltage Composite Oxide Cathode Materials
NASA Technical Reports Server (NTRS)
Hagh, Nader M.
2015-01-01
This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.
Non-equilibrium relaxation in a stochastic lattice Lotka-Volterra model
NASA Astrophysics Data System (ADS)
Chen, Sheng; Täuber, Uwe C.
2016-04-01
We employ Monte Carlo simulations to study a stochastic Lotka-Volterra model on a two-dimensional square lattice with periodic boundary conditions. If the (local) prey carrying capacity is finite, there exists an extinction threshold for the predator population that separates a stable active two-species coexistence phase from an inactive state wherein only prey survive. Holding all other rates fixed, we investigate the non-equilibrium relaxation of the predator density in the vicinity of the critical predation rate. As expected, we observe critical slowing-down, i.e., a power law dependence of the relaxation time on the predation rate, and algebraic decay of the predator density at the extinction critical point. The numerically determined critical exponents are in accord with the established values of the directed percolation universality class. Following a sudden predation rate change to its critical value, one finds critical aging for the predator density autocorrelation function that is also governed by universal scaling exponents. This aging scaling signature of the active-to-absorbing state phase transition emerges at significantly earlier times than the stationary critical power laws, and could thus serve as an advanced indicator of the (predator) population’s proximity to its extinction threshold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: ludovico.minati@ifj.edu; Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków; Candia, Antonio de
2016-07-15
Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-ordermore » one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.« less
Turbulence studies with means of reflectometry at TEXTOR
NASA Astrophysics Data System (ADS)
Krämer-Flecken, A.; Dreval, V.; Soldatov, S.; Rogister, A.; Vershkov, V.; TEXTOR-team
2004-11-01
At TEXTOR, an O-mode heterodyne reflectometer system is installed and operated for the measurement of plasma density fluctuations and turbulence investigations. With two antenna arrays in the equatorial and top positions having two and three horn antennae, respectively, poloidal correlations are investigated under different plasma scenarios. From the amplitude, cross-phase and coherency spectrum, differences in the ohmic and auxiliary heated discharges are investigated. Furthermore the dynamic behaviour of the turbulence is studied in the SOC-IOC transition and in the precursor phase of a disruption. For the latter an increased integrated power spectral density was observed at the X-point of the mode compared with the O-point. Stationary m = 2 mode activity is observed for the first time at TEXTOR by reflectometry. The fluctuation level is calculated for different conditions and rises significantly increasing heating power which is consistent with the L-mode confinement degradation. Correlation measurements yield the measured phase delays which are used to calculate the poloidal phase velocity perpendicular to the magnetic field. In ohmic plasmas the turbulence rotates like a 'rigid body' with constant angular velocity inside the q = 2 surface. The rigid body rotation is broken up during tangential neutral beam injection. From the deduced poloidal wavenumber of the turbulence, most likely ion temperature gradient modes are the driving mechanism of the turbulence.
Higher-order phase transitions on financial markets
NASA Astrophysics Data System (ADS)
Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.
2010-08-01
Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched exponential integral kernel. On this basis a simple practical hint for investors was formulated.
Solid-state transformer-based new traction drive system and control
NASA Astrophysics Data System (ADS)
Feng, Jianghua; Shang, Jing; Zhang, Zhixue; Liu, Huadong; Huang, Zihao
2017-11-01
A new type of traction drive system consisting of solid-state traction transformer (SSTT), inverter unit, auxiliary inverter, traction motor and other key components is built in order to suit the demand of developing the next-generation electric traction system which will be efficient and lightweight, with high power density. For the purpose of reducing system volume and weight and improving efficiency and grid-side power quality, an efficient SSTT optimized topology combining high-voltage cascaded rectifiers with high-power high-frequency LLC resonant converter is proposed. On this basis, an integrated control strategy built upon synchronous rotating reference frame is presented to achieve unified control over fundamental active, reactive and harmonic components. The carrier-interleaving phase shift modulation strategy is proposed to improve the harmonic performance of cascaded rectifiers. In view of the secondary pulsating existing in a single-phase system, the mathematical model of secondary power transfer is built, and the mechanism of pulsating voltage resulting in beat frequency of LLC resonant converter is revealed, so as to design optimum matching of system parameters. Simulation and experimental results have verified that the traction system and control scheme mentioned in this paper are reasonable and superior and that they meet the future application requirements for rail transit.
Concentrating Solar Power Projects - SunCan Dunhuang 100 MW Phase II |
Concentrating Solar Power | NREL 0 MW Phase II Status Date: January 11, 2017 Project Overview ): Beijing Shouhang IHW Technology: Power tower Turbine Capacity: Net: 100.0 MW Gross: 100.0 MW Status: Under construction Do you have more information, corrections, or comments? Background Technology: Power tower Status
Retrieval, Monitoring, and Control Processes: A 7 Tesla fMRI Approach to Memory Accuracy
Risius, Uda-Mareke; Staniloiu, Angelica; Piefke, Martina; Maderwald, Stefan; Schulte, Frank P.; Brand, Matthias; Markowitsch, Hans J.
2012-01-01
Memory research has been guided by two powerful metaphors: the storehouse (computer) and the correspondence metaphor. The latter emphasizes the dependability of retrieved mnemonic information and draws upon ideas about the state dependency and reconstructive character of episodic memory. We used a new movie to unveil the neural correlates connected with retrieval, monitoring, and control processes, and memory accuracy (MAC), according to the paradigm of Koriat and Goldsmith (1996a,b). During functional magnetic resonance imaging, subjects performed a memory task which required (after an initial learning phase) rating true and false statements [retrieval phase (RP)], making confidence judgments in the respective statement [monitoring phase (MP)], and deciding for either venturing (volunteering) the respective answer or withholding the response [control phase (CP)]. Imaging data pointed to common and unique neural correlates. Activations in brain regions related to RP and MAC were observed in the precuneus, middle temporal gyrus, and left hippocampus. MP was associated with activation in the left anterior and posterior cingulate cortex along with bilateral medial temporal regions. If an answer was volunteered (as opposed to being withheld) during the CP, temporal, and frontal as well as middle and posterior cingulate areas and the precuneus revealed activations. Increased bilateral hippocampal activity was found during withholding compared to volunteering answers. The left caudate activation detected during withholding compared to venturing an answer supports the involvement of the left caudate in inhibiting unwanted responses. Contrary to expectations, we did not evidence prefrontal activations during withholding (as opposed to volunteering) answers. This may reflect our design specifications, but alternative interpretations are put forth. PMID:23580061
Designer drugs: the evolving science of drug discovery.
Wanke, L A; DuBose, R F
1998-07-01
Drug discovery and design are fundamental to drug development. Until recently, most drugs were discovered through random screening or developed through molecular modification. New technologies are revolutionizing this phase of drug development. Rational drug design, using powerful computers and computational chemistry and employing X-ray crystallography, nuclear magnetic resonance spectroscopy, and three-dimensional quantitative structure activity relationship analysis, is creating highly specific, biologically active molecules by virtual reality modeling. Sophisticated screening technologies are eliminating all but the most active lead compounds. These new technologies promise more efficacious, safe, and cost-effective medications, while minimizing drug development time and maximizing profits.
PV water pumping: NEOS Corporation recent PV water pumping activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, C.
1995-11-01
NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature publishedmore » by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.« less
NASA Technical Reports Server (NTRS)
Parrott, T. L.; Schein, D. B.; Gridley, D.
1985-01-01
The acoustic response of a semireverberant enclosure with two interacting, velocity-prescribed source distributions was analyzed using standard modal analysis techniques with a view toward a better understanding of active noise control. Different source and enclosure dimensions, source separations, and single-wall admittances were studied over representative frequency bandwidths of 10 Hz with source relative phase as a parameter. Results indicate that power radiated into the enclosure agree qualitatively with the spatial average of the mean square pressure, even though the reverberant field is nondiffuse. Decreases in acoustic power can therefore be used to estimate global noise reduction in a nondiffuse semireverberant environment. As might be expected, parametric studies indicate that maximum power reductions of up to 25 dB can be achieved when secondary and primary sources are compact and closely spaced. Although less success is achieved with increasing frequency and source separation or size, significant suppression of up to 8 dB still occurs over the 1 to 2 Hz bandwidth.
Zhou, Peng; Li, Dongmei; Li, Haitao; Fang, Hongda; Huang, Chuguang; Zhang, Yusheng; Zhang, Hongbiao; Zhao, Li; Zhou, Junjie; Wang, Hua; Yang, Jie
2015-07-01
A sediment core was collected and dated using (210)Pbex dating method off the waterspout of nuclear power base of Daya Bay, northeastern South China Sea. The γ-emitting radionuclides were analyzed using HPGe γ spectrometry, gross alpha and beta radioactivity as well as other geochemical indicators were deliberated to assess the impact of nuclear power plants (NPP) operation and to study the past environment changes. It suggested that NPP provided no new radioactivity source to sediment based on the low specific activity of (137)Cs. Two broad peaks of TOC, TC and LOI accorded well with the commercial operations of Daya Bay NPP (1994.2 and 1994.5) and LNPP Phase I (2002.5 and 2003.3), implying that the mass input of cooling water from NPP may result into a substantial change in the ecological environment and Daya Bay has been severely impacted by human activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Neubauer, M.
A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operationmore » cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.« less
Atmospheric propagation and combining of high-power lasers.
Nelson, W; Sprangle, P; Davis, C C
2016-03-01
In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10 GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.
Internal Dose from Food and Drink Ingestion in the Early Phase after the Accident
NASA Astrophysics Data System (ADS)
Kawai, Masaki; Yoshizawa, Nobuaki; Hirakawa, Sachiko; Murakami, Kana; Takizawa, Mari; Sato, Osamu; Takagi, Shunji; Miyatake, Hirokazu; Takahashi, Tomoyuki; Suzuki, Gen
2017-09-01
Activity concentrations in food and drink, represented by water and vegetables, have been monitored continuously since the Fukushima Daiichi Nuclear Power Plant accident, with a focus on radioactive cesium. On the other hand, iodine-131 was not measured systematically in the early phase after the accident. The activity concentrations of iodine-131 in food and drink are important to estimate internal exposure due to ingestion pathway. When the internal dose from ingestion in the evacuation areas is estimated, water is considered as the main ingestion pathway. In this study, we estimated the values of activity concentrations in water in the early phase after the accident, using a compartment model as an estimation method. The model uses measurement values of activity concentration and deposition rate of iodine-131 onto the ground, which is calculated from an atmospheric dispersion simulation. The model considers how drinking water would be affected by radionuclides deposited into water. We estimated the activity concentrations of water on Kawamata town and Minamisouma city during March of 2011 and the committed effective doses were 0.08 mSv and 0.06 mSv. We calculated the transfer parameters in the model for estimating the activity concentrations in the areas with a small amount of measurement data. In addition, we estimated the committed effective doses from vegetables using atmospheric dispersion simulation and FARMLAND model in case of eating certain vegetables as option information.
The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1
NASA Technical Reports Server (NTRS)
Lee, S. C.
1989-01-01
The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.
Analog phase lock between two lasers at LISA power levels
NASA Astrophysics Data System (ADS)
Diekmann, Christian; Steier, Frank; Sheard, Benjamin; Heinzel, Gerhard; Danzmann, Karsten
2009-03-01
This paper presents the implementation of an analog optical phase-locked-loop with an offset frequency of about 20MHz between two lasers, where the detected light powers were of the order of 31 pW and 200 μW. The goal of this setup was the design and characterization of a photodiode transimpedance amplifier for application in LISA. By application of a transimpedance amplifier designed to have low noise and low power consumption, the phase noise between the two lasers was a factor of two above the shot noise limit down to 60mHz. The achievable phase sensitivity depends ultimately on the available power of the highly attenuated master laser and on the input current noise of the transimpedance amplifier of the photodetector. The limiting noise source below 60mHz was the analog phase measurement system that was used in this experiment. A digital phase measurement system that is currently under development at the AEI will be used in the near future. Its application should improve the sensitivity.
Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter
NASA Astrophysics Data System (ADS)
Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi
2018-03-01
To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.
Three-Phase Time-Multiplexed Planar Power Transmission to Distributed Implants.
Lee, Byunghun; Ahn, Dukju; Ghovanloo, Maysam
2016-03-01
A platform has been presented for wireless powering of receivers (Rx's) that are arbitrarily distributed over a large area. A potential application could be powering of small Rx implants, distributed over large areas of the brain. The transmitter (Tx) consists of three overlapping layers of hexagonal planar spiral coils (hex-PSC) that are horizontally shifted to provide the strongest and most homogeneous electromagnetic flux coverage. The three-layer hex-PSC array is driven by a three-phase time-division-multiplexed power Tx that takes the advantage of the carrier phase shift, coil geometries, and Rx time constant to homogeneously power the arbitrarily distributed Rx's regardless of their misalignments. The functionality of the proposed three-phase power transmission concept has been verified in a detailed scaled-up high-frequency structure simulator Advanced Design System simulation model and measurement setup, and compared with a conventional Tx. The new Tx delivers 5.4 mW to each Rx and achieves, on average, 5.8% power transfer efficiency to the Rx at the worst case 90° angular misalignment, compared with 1.4% by the conventional Tx.
Investigation and Feasibility Assessment of TOPAZ-2 Derivations for Space Power Applications
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Peddicord, Kenneth L.
1998-01-01
The ability to provide continuous power at significant levels is of utmost importance for many space missions, from simple satellite operations to manned Mars missions. One of the main problems faced in delivering solar or chemical space power in the tens of kW range, is the increasingly massive nature of the power source and the costs associated with its launch, operation and maintenance. A national program had been initiated to study the feasibility of using certain advanced technologies in developing an efficient lightweight space power source. The starting point for these studies has been the Russian TOPAZ-2 space reactor system, with the ultimate goal to aid in the development of a TOPAZ-2 derivative which will be ready for flight by the year 2000. The main objective of this project has been to perform feasibility assessment and trade studies which would allow the development of an advanced space nuclear power system based on the in-core thermionic fuel element technology currently used in the Russian TOPAZ-2 reactor. Two of the important considerations in developing the concept are: (1) compliance of the current TOPAZ-2 and of any advanced designs with U.S. nuclear safety expectations, and (2) compliance of the design with the seven years lifetime requirement. The project was composed of two major phases. The initial phase of the project has concentrated on understanding the TOPAZ-2 thermionic reactor in sufficient detail to allow several follow-on tasks. The primary interest during this first phase has been given on identifying the potential of the TOPAZ-2 design for further improvements. The second phase of the project has focused on the feasibility of a TOPAZ-2 system capable of delivering 30-50 kWe. Towards the elimination of single-point failures in the load voltage regulation system an active voltage regulator has been designed to be used in conjunction with the available shunt load voltage regulator. The possible use of a dual-loop, model-based adaptive control system for load-following in the TOPAZ-2 has also been investigated. The objective of this fault-tolerant, autonomous control system is to deliver the demanded electric power at the desired voltage level, by appropriately manipulating the neutron power through the control drums. As a result, sufficient thermal power is produced to meet the required demand in the presence of dynamically changing system operating conditions and potential sensor failures. The designed controller is proposed for use in combination with the currently available shunt regulators, or as a back-up controller when other means of power system control, including some of the sensors, fail.
NASA Astrophysics Data System (ADS)
Zunoubi, Mohammad R.; Anderson, Brian; Naderi, Shadi A.; Madden, Timothy J.; Dajani, Iyad
2017-03-01
The development of high-power fiber lasers is of great interest due to the advantages they offer relative to other laser technologies. Currently, the maximum power from a reportedly single-mode fiber amplifier stands at 10 kW. Though impressive, this power level was achieved at the cost of a large spectral linewidth, making the laser unsuitable for coherent or spectral beam combination techniques required to reach power levels necessary for airborne tactical applications. An effective approach in limiting the SBS effect is to insert an electro-optic phase modulator at the low-power end of a master oscillator power amplifier (MOPA) system. As a result, the optical power is spread among spectral sidebands; thus raising the overall SBS threshold of the amplifier. It is the purpose of this work to present a comprehensive numerical scheme that is based on the extended nonlinear Schrodinger equations that allows for accurate analysis of phase modulated fiber amplifier systems in relation to the group velocity dispersion and Kerr nonlinearities and their effect on the coherent beam combining efficiency. As such, we have simulated a high-power MOPA system modulated via filtered pseudo-random bit sequence format for different clock rates and power levels. We show that at clock rates of ≥30 GHz, the combination of GVD and self-phase modulation may lead to a drastic drop in beam combining efficiency at the multi-kW level. Furthermore, we extend our work to study the effect of cross-phase modulation where an amplifier is seeded with two laser sources.
Sleep Dysfunction and EEG Alterations in Mice Overexpressing Alpha-Synuclein
McDowell, Kimberly A.; Shin, David; Roos, Kenneth P.; Chesselet, Marie-Françoise
2018-01-01
Background: Sleep disruptions occur early and frequently in Parkinson’s disease (PD). PD patients also show a slowing of resting state activity. Alpha-synuclein is causally linked to PD and accumulates in sleep-related brain regions. While sleep problems occur in over 75% of PD patients and severely impact the quality of life of patients and caregivers, their study is limited by a paucity of adequate animal models. Objective: The objective of this study was to determine whether overexpression of wildtype alpha-synuclein could lead to alterations in sleep patterns reminiscent of those observed in PD by measuring sleep/wake activity with rigorous quantitative methods in a well-characterized genetic mouse model. Methods: At 10 months of age, mice expressing human wildtype alpha-synuclein under the Thy-1 promoter (Thy1-aSyn) and wildtype littermates underwent the subcutaneous implantation of a telemetry device (Data Sciences International) for the recording of electromyograms (EMG) and electroencephalograms (EEG) in freely moving animals. Surgeries and data collection were performed without knowledge of mouse genotype. Results: Thy1-aSyn mice showed increased non-rapid eye movement sleep during their quiescent phase, increased active wake during their active phase, and decreased rapid eye movement sleep over a 24-h period, as well as a shift in the density of their EEG power spectra toward lower frequencies with a significant decrease in gamma power during wakefulness. Conclusions: Alpha-synuclein overexpression in mice produces sleep disruptions and altered oscillatory EEG activity reminiscent of PD, and this model provides a novel platform to assess mechanisms and therapeutic strategies for sleep dysfunction in PD. PMID:24867919
Electric Utility Phase I Acid Rain Compliance Strategies for the Clean Air Act Amendments of 1990
1994-01-01
The Acid Rain Program is divided into two time periods; Phase I, from 1995 through 1999, and Phase II, starting in 2000. Phase I mostly affects power plants that are the largest sources of SO2 and NOx . Phase II affects virtually all electric power producers, including utilities and nonutilities. This report is a study of the effects of compliance with Phase I regulations on the costs and operations of electric utilities, but does not address any Phase II impacts.
Bosons with Synthetic Rashba Spin-Orbit Coupling at Finite Power
NASA Astrophysics Data System (ADS)
Anderson, Brandon; Clark, Charles
2013-05-01
Isotropic spin-orbit couplings, such as Rashba in two dimensions, have a continuous symmetry that produces a large degeneracy in the momentum-space dispersion. This degeneracy leads to an enhanced density-of-states, producing novel phases in systems of bosonic atoms. This model is idealistic, however, in that the symmetry of the lasers will weakly break the continuous symmetry to a discrete one in experimental manifestations. This perturbation typically scales inversely with the optical power, and only at infinite power will ideal symmetry be restored. In this talk, we consider the effects of this weak symmetry breaking in a system of bosons at finite power with synthetic Rashba coupling. We solve the mean-field equations and find new phases, such as a stripe phase with a larger symmetry group. We then consider the experimentally relevant scheme where the spin-orbit fields are turned on adiabatically from an initial spin-polarized state. At intermediate power, stripe phases are found, while at sufficiently high power it appears that the system quenches to phases similar to that of the ideal limit. Techniques for optimizing the adiabatic ramping sequence are discussed. NSF PFC Grant PHY-0822671 and by the ARO under the DARPA OLE program.
Advanced, phase-locked, 100 kW, 1.3 GHz magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Michael; Ives, R. Lawrence; Bui, Thuc
Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Here, phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.
Advanced, phase-locked, 100 kW, 1.3 GHz magnetron
Read, Michael; Ives, R. Lawrence; Bui, Thuc; ...
2017-03-06
Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Here, phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.
Phase-front measurements of an injection-locked AlGaAs laser-diode array
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.; Rall, Jonathan A. R.; Abshire, James B.
1989-01-01
The phase-front quality of the primary spatial lobe emitted from an injection-locked gain-guided AlGaAs laser-diode array is measured by using an equal-path, phase-shifting Mach-Zehnder interferometer. Root-mean-square phase errors of 0.037 + or - 0.003 wave are measured for the single spatial lobe, which contained 240-mW cw output power in a single longitudinal mode. This phase-front quality corresponds to a Strehl ratio of S = 0.947, which results in a 0.23-dB power loss from the single lobe's ideal diffraction-limited power. These values are comparable with those measured for single-stripe index-guided AlGaAs lasers.
NASA Astrophysics Data System (ADS)
Tao, R.; Ma, Y.; Si, L.; Dong, X.; Zhou, P.; Liu, Z.
2011-11-01
We present a theoretical and experimental study of a target-in-the-loop (TIL) high-power adaptive phase-locked fiber laser array. The system configuration of the TIL adaptive phase-locked fiber laser array is introduced, and the fundamental theory for TIL based on the single-dithering technique is deduced for the first time. Two 10-W-level high-power fiber amplifiers are set up and adaptive phase locking of the two fiber amplifiers is accomplished successfully by implementing a single-dithering algorithm on a signal processor. The experimental results demonstrate that the optical phase noise for each beam channel can be effectively compensated by the TIL adaptive optics system under high-power applications and the fringe contrast on a remotely located extended target is advanced from 12% to 74% for the two 10-W-level fiber amplifiers.
Age-related changes of task-specific brain activity in normal aging.
Ho, Ming-Chung; Chou, Chia-Yi; Huang, Chin-Fei; Lin, Yu-Te; Shih, Ching-Sen; Han, Shiang-Yi; Shen, Ming-Hsun; Chen, Tsung-Ching; Liang, Chi-lin; Lu, Ming-Chi; Liu, Chia-Ju
2012-01-17
An important question in healthcare for older patients is whether age-related changes in cortical reorganization can be measured with advancing age. This study investigated the factors behind such age-related changes, using time-frequency analysis of event-related potentials (ERPs). We hypothesized that brain rhythms was affected by age-related changes, which could be reflected in the ERP indices. An oddball task was conducted in two experimental groups, namely young participants (N=15; mean age 23.7±2.8 years) and older participants (N=15; mean age 70.1±7.9 years). Two types of stimuli were used: the target (1 kHz frequency) and standard (2 kHz frequency). We scrutinized three ERP indices: event-related spectral power (ERPSP), inter-trial phase-locking (ITPL), and event-related cross-phase coherence (ERPCOH). Both groups performed equally well for correct response rate. However, the results revealed a statistically significant age difference for inter-trial comparison. Compared with the young, the older participants showed the following age-related changes: (a) power activity decreased; however, an increase was found only in the late (P3, 280-450 ms) theta (4-7 Hz) component over the bilateral frontal and temporo-frontal areas; (b) low phase-locking in the early (N1, 80-140 ms) theta band over the parietal/frontal (right) regions appeared; (c) the functional connections decreased in the alpha (7-13 Hz) and beta (13-30 Hz) bands, but no difference emerged in the theta band between the two groups. These results indicate that age-related changes in task-specific brain activity for a normal aging population can be depicted using the three ERP indices. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittman, P F
1979-03-30
This contract is part of a three phase program to design, fabricate, and operate a solar photovoltaic electric power system with concentrating optics. The system will be located beside a Local Operating Headquarters of the Georgia Power Company in Atlanta, Georgia and will provide part of the power for the on-site load. Fresnel lens concentrators will be used in 2-axis tracking arrays to focus solar energy onto silicon solar cells producing a peak power output of 56 kW. The present contract covers Phase I which has as its objective the complete design of the system and necessary subsystems.
Caravaglios, Giuseppe; Castro, Giuseppe; Muscoso, Emma Gabriella; Crivelli, Davide; Balconi, Michela
2016-11-02
Recent studies demonstrated that beta oscillations are elicited during cognitive processes. To investigate their potential as electrophysiological markers of amnestic mild cognitive impairment (aMCI), we recorded beta EEG activity during resting and during an omitted tone task in patients and healthy elderly. Thirty participants were enrolled (15 patients, 15 healthy controls). In particular, we investigated event-related spectral perturbation and intertrial coherence indices. Analyses showed that (a) healthy elderly presented greater beta power at rest than patients with aMCI patients; (b) during the task, healthy elderly were more accurate than aMCI patients and presented greater beta power than aMCI patients; (c) both groups showed qualitatively similar spectral perturbation responses during the task, but different spatiotemporal response patterns; and (d) aMCI patients presented greater beta phase locking than healthy elderly during the task. Results indicate that beta activity in healthy elderly differs from that of patients with aMCI. Furthermore, the analysis of task-related EEG activity extends evidences obtained during resting and suggests that during the prodromal phase of Alzheimer's disease there is a reduced efficiency in information exchange by large-scale neural networks. The study for the first time shows the potential of task-related beta responses as early markers of aMCI impairments. © EEG and Clinical Neuroscience Society (ECNS) 2016.
Feed-forward digital phase and amplitude correction system
Yu, D.U.L.; Conway, P.H.
1994-11-15
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.
Feed-forward digital phase and amplitude correction system
Yu, David U. L.; Conway, Patrick H.
1994-01-01
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumsdaine, A.; Bjorholm, T.; Harris, J.
The Wendelstein 7-X stellarator is in final stages of commissioning, and will begin operation in late 2015. In the first phase, the machine will operate with a limiter, and will be restricted to low power and short pulse. But in 2019, plans are for an actively cooled divertor to be installed, and the machine will operate in steady state at full power. Recently, plasma simulations have indicated that, in this final operational phase, a bootstrap current will evolve in certain scenarios. This will cause the sensitive ends of the divertor target to be overloaded beyond their qualified limit. A highmore » heat flux scraper element (HHF-SE) has been proposed in order to take up some of the convective flux and reduce the load on the divertor. In order to examine whether the HHF-SE will be able to effectively reduce the plasma flux in the divertor region of concern, and to determine how the pumping effectiveness will be affected by such a component, it is planned to include a test divertor unit scraper element (TDU-SE) in 2017 during an earlier operational phase. Several U.S. fusion energy science laboratories have been involved in the design, analysis (structural and thermal finite element, as well as computational fluid dynamics), plasma simulation, planning, prototyping, and diagnostic development around the scraper element program (both TDU-SE and HHF-SE). As a result, this paper presents an overview of all of these activities and their current status.« less
Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald L.; Joe, Jeffrey C.
2015-02-01
For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intendedmore » to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.« less
A novel maximum power point tracking system employing phase comparison techniques
NASA Astrophysics Data System (ADS)
Avaritsiotis, J. N.; Tsitomeneas, S.; Caroubalos, C.
A new MPPT design is presented that is based on the comparison of the phase of a perturbing signal with that of the signal which is the result of the perturbation. More specifically, a voltage ripple is induced on the power loop of the P/V system and its phase is compared to the phase of the resulting ripple on the electric power P = I x V, where I and V are the current and voltage respectively of the P/V generator. A prototype MPPT based on the previous principle has been designed, constructed, and its performance has been studied.
NASA Astrophysics Data System (ADS)
Dã¡Vila, Alã¡N.; Escudero, Christian; López, Jorge, , Dr.
2004-10-01
Several methods have been developed in order to study phase transitions in nuclear fragmentation. The one used in this research is Percolation. This method allows us to adjust resulting data to heavy ion collisions experiments. In systems, such as atomic nuclei or molecules, energy is put into the system. The system's particles move away from each other until their links are broken. Some particles will still be linked. The fragments' distribution is found to be a power law. We are witnessing then a critical phenomenon. In our model the particles are represented as occupied spaces in a cubical array. Each particle has a bound to each one of its 6 neighbors. Each bound can be active if the two particles are linked or inactive if they are not. When two or more particles are linked, a fragment is formed. The probability for a specific link to be broken cannot be calculated, so the probability for a bound to be active is going to be used as parameter when trying to adjust the data. For a given probability p several arrays are generated. The fragments are counted. The fragments' distribution is then adjusted to a power law. The probability that generates the better fit is going to be the critical probability that indicates a phase transition. The better fit is found by seeking the fragments' distribution that gives the minimal chi squared when compared to a power law. As additional evidence of criticality the entropy and normalized variance of the mass are also calculated for each probability.
Aeromechanical Evaluation of Smart-Twisting Active Rotor
NASA Technical Reports Server (NTRS)
Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline;
2014-01-01
An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.
Statistics of the radiated field of a space-to-earth microwave power transfer system
NASA Technical Reports Server (NTRS)
Stevens, G. H.; Leininger, G.
1976-01-01
Statistics such as average power density pattern, variance of the power density pattern and variance of the beam pointing error are related to hardware parameters such as transmitter rms phase error and rms amplitude error. Also a limitation on spectral width of the phase reference for phase control was established. A 1 km diameter transmitter appears feasible provided the total rms insertion phase errors of the phase control modules does not exceed 10 deg, amplitude errors do not exceed 10% rms, and the phase reference spectral width does not exceed approximately 3 kHz. With these conditions the expected radiation pattern is virtually the same as the error free pattern, and the rms beam pointing error would be insignificant (approximately 10 meters).
Closed Loop solar array-ion thruster system with power control circuitry
NASA Technical Reports Server (NTRS)
Gruber, R. P. (Inventor)
1979-01-01
A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.
Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong
2017-06-01
The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.
The Starburst-AGN connection: quenching the fire and feeding the monster
NASA Astrophysics Data System (ADS)
Melnick, Jorge; Telles, Eduardo; De Propris, Roberto; Chu, Zhang-Hu
2015-10-01
The merger of two spiral galaxies is believed to be one of the main channels for the production of elliptical and early-type galaxies. In the process, the system becomes an (ultra) luminous infrared galaxy, or (U)LIRG, that morphs to a quasar, to a K+A galaxy, and finally to an early-type galaxy. The time scales for this metamorphosis are only loosely constrained by observations. In particular, the K+A phase should follow immediately after the quasi stellar object (QSO) phase during which the dust and gas remaining from the (U)LIRG phase are expelled by the active galactic nucleus (AGN). An intermediate class of QSOs with K+A spectral signatures, the post-starburst QSOs (PSQ), may represent the transitional phase between QSOs and K+As. We have compiled a sample of 72 bona fide z < 0.5 PSQ from the SDSS DR7 QSO catalogue. We find the intermediate age populations in this sample to be on average significantly weaker and metal poorer than their putative descendants, the K+A galaxies. The typical spectral energy distribution of PSQ is well fitted by three components: starlight; an obscured power-law; and a hot dust component required to reproduce the mid-IR fluxes. From the slope and bolometric luminosity of the power-law component we estimate typical masses and accretion rates of the AGN, but we find little evidence of powerful radio-loud or strong X-ray emitters in our sample. This may indicate that the power-law component originates in a nuclear starburst rather than in an AGN, as expected if the bulk of their young stars are still being formed, or that the AGN is still heavily enshrouded in dust and gas. We find that both alternatives are problematic and that more and better optical, X-ray, and mm-wave observations are needed to elucidate the evolutionary history of PSQ.
NASA Astrophysics Data System (ADS)
Gourgaud, A.; Thouret, J.-C.; Bourdier, J.-L.
2000-12-01
The Galunggung volcano in western Java (Indonesia) was the site of historical activity in 1822, 1894, 1918, and 1982-83, located in a pre-historical horseshoe-shaped caldera. In 1982-83, a nine-month-long eruption generated successively (1) ash-and-scoria flows channeled in two valleys and extending 6 km from the vent (vulcanian phase 1), (2) surges and ash falls related to the excavation of a wide maar crater, with ash columns 20 km high (phreatomagmatic phase 2), and (3) ash and scoria falls that built a small cone inside the maar crater (strombolian phase 3). During phreatomagmatic phase 2, there was a significant increase of explosivity. Paradoxically, the magma composition had evolved from andesite to primitive magnesian basalt. Jet-plane incidents were recorded during this period: on the June 24 and July 13, 1982, two Boeing 747 aircraft experienced engine power loss when passing through the plume. The vertical variations of grain sizes and xenolith contents of pyroclasts were measured in the 1982-83 eruptive deposits. We show that a progressive increase of the ratio of xenolith versus juvenile magma before the end of vulcanian phase 1 heralded the increase of explosivity leading towards phreatomagmatic phase 2. In the same way, the decrease of the same ratio at the end of the phreatomagmatic phase 2 heralded the decrease of explosivity and the onset of strombolian phase 3. The transition from phase 1 to phase 2 is also marked by a slight but continuous decrease of the vesicularity index of juvenile clasts. We emphasize the increasing efficiency of groundwater/magma interaction during the eruption. The increasing interaction and renewed explosive activity occurred after a period of rest, during which additional groundwater was supplied in the vicinity of the magma column. The data suggest that it would have been possible to predict as soon as April-May 1982 the transition from vulcanian to phreatomagmatic activity, and consequently the corresponding increase in explosivity.
Trellis phase codes for power-bandwith efficient satellite communications
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Highfill, J. H.; Hsu, C. D.; Harkness, R.
1981-01-01
Support work on improved power and spectrum utilization on digital satellite channels was performed. Specific attention is given to the class of signalling schemes known as continuous phase modulation (CPM). The specific work described in this report addresses: analytical bounds on error probability for multi-h phase codes, power and bandwidth characterization of 4-ary multi-h codes, and initial results of channel simulation to assess the impact of band limiting filters and nonlinear amplifiers on CPM performance.
Lightweight Phase-Change Material For Solar Power
NASA Technical Reports Server (NTRS)
Stark, Philip
1993-01-01
Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.
Vergniolle, S.; Boichu, M.; Caplan-Auerbach, J.
2004-01-01
The 1999 basaltic eruption of Shishaldin volcano (Alaska, USA) displayed both classical Strombolian activity and an explosive Subplinian plume. Strombolian activity at Shishaldin occurred in two major phases following the Subplinian activity. In this paper, we use acoustic measurements to interpret the Strombolian activity. Acoustic measurements of the two Strombolian phases show a series of explosions that are modeled by the vibration of a large overpressurised cylindrical bubble at the top of the magma column. Results show that the bubble does not burst at its maximum radius, as expected if the liquid film is stretched beyond its elasticity. But bursting occurs after one cycle of vibration, as a consequence of an instability of the air-magma interface close to the bubble minimum radius. During each Strombolian period, estimates of bubble length and overpressure are calculated. Using an alternate method based on acoustic power, we estimate gas velocity to be 30-60 m/s, in very good agreement with synthetic waveforms. Although there is some variation within these parameters, bubble length and overpressure for the first Strombolian phase are found to be ??? 82 ?? 11 m and 0.083 MPa. For the second Strombolian phase, bubble length and overpressure are estimated at 24 ?? 12 m and 0.15 MPa for the first 17 h after which bubble overpressure shows a constant increase, reaching a peak of 1.4 MPa, just prior to the end of the second Strombolian phase. This peak suggests that, at the time, the magma in the conduit may contain a relatively large concentration of small bubbles. Maximum total gas volume and gas fluxes at the surface are estimated to be 3.3 ?? 107 and 2.9 ?? 103 m3/s for the first phase and 1.0 ?? 108 and 2.2 ?? 103 m3/s for the second phase. This gives a mass flux of 1.2 ?? 103 and 8.7 ?? 102 kg/s, respectively, for the first and the second Strombolian phases. ?? 2004 Elsevier B.V. All rights reserved.
Robonaut 2 - Building a Robot on the International Space Station
NASA Technical Reports Server (NTRS)
Diftler, Myron; Badger, Julia; Joyce, Charles; Potter, Elliott; Pike, Leah
2015-01-01
In 2010, the Robonaut Project embarked on a multi-phase mission to perform technology demonstrations on-board the International Space Station (ISS), showcasing state of the art robotics technologies through the use of Robonaut 2 (R2). This phased approach implements a strategy that allows for the use of ISS as a test bed during early development to both demonstrate capability and test technology while still making advancements in the earth based laboratories for future testing and operations in space. While R2 was performing experimental trials onboard the ISS during the first phase, engineers were actively designing for Phase 2, Intra-Vehicular Activity (IVA) Mobility, that utilizes a set of zero-g climbing legs outfitted with grippers to grasp handrails and seat tracks. In addition to affixing the new climbing legs to the existing R2 torso, it became clear that upgrades to the torso to both physically accommodate the climbing legs and to expand processing power and capabilities of the robot were required. In addition to these upgrades, a new safety architecture was also implemented in order to account for the expanded capabilities of the robot. The IVA climbing legs not only needed to attach structurally to the R2 torso on ISS, but also required power and data connections that did not exist in the upper body. The climbing legs were outfitted with a blind mate adapter and coarse alignment guides for easy installation, but the upper body required extensive rewiring to accommodate the power and data connections. This was achieved by mounting a custom adapter plate to the torso and routing the additional wiring through the waist joint to connect to the new set of processors. In addition to the power and data channels, the integrated unit also required updated electronics boards, additional sensors and updated processors to accommodate a new operating system, software platform, and custom control system. In order to perform the unprecedented task of building a robot in space, extensive practice sessions and meticulous procedures were required. Since crew training time is at a premium, the R2 team took a skills-based training approach to ensure the astronauts were proficient with a basic skill set while refining the detailed procedures over several practice sessions and simulations. In addition to the crew activities, meticulous ground procedures were required in order to upgrade firmware on the upper body motor drivers. The new firmware for the IVA mobility unit needed to be deployed using the old software system. This also provided an opportunity to upgrade the upper body joints with new software and allowed for limited insight into the success of the updates. Complete verification that the updated firmware was successfully loaded was not confirmed until the rewiring of the upper body torso was complete.
Direct Laser Writing of δ- to α-Phase Transformation in Formamidinium Lead Iodide
2017-01-01
Organolead halide perovskites are increasingly considered for applications well beyond photovoltaics, for example, as the active regions within photonic devices. Herein, we report the direct laser writing (DLW: 458 nm cw-laser) of the formamidinium lead iodide (FAPbI3) yellow δ-phase into its high-temperature luminescent black α-phase, a remarkably easy and scalable approach that takes advantage of the material’s susceptibility to transition under ambient conditions. Through the DLW of α-FAPbI3 tracks on δ-FAPbI3 single-crystal surfaces, the controlled and rapid microfabrication of highly luminescent structures exhibiting long-term phase stability is detailed, offering an avenue toward the prototyping of complex perovskite-based optical devices. The dynamics and kinetics of laser-induced δ- to α-phase transformations are investigated in situ by Raman microprobe analysis, as a function of irradiation power, time, temperature, and atmospheric conditions, revealing an interesting connection between oxygen intercalation at the surface and the δ- to α-phase transformation dynamics, an insight that will find application within the wider context of FAPbI3 thermal phase relations. PMID:28763617
Studying Three-Phase Supply in School
ERIC Educational Resources Information Center
Singhal, Amit Kumar; Arun, P.
2009-01-01
The power distributions of nearly all major countries have accepted three-phase distribution as a standard. With increasing power requirements of instrumentation today even a small physics laboratory requires a three-phase supply. While physics students are given an introduction to this in passing, no experimental work is done with three-phase…
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neil, Lori Ross; Conway, T. J.; Tobey, D. H.
The Secure Power Systems Professional Phase III final report was released last year which an appendix of Job Profiles. This new report is that appendix broken out as a standalone document to assist utilities in recruiting and developing Secure Power Systems Professionals at their site.
Engineering the Ideal Array (BRIEFING CHARTS)
2007-03-05
48 V, f = 10 GHz GaN HEMT Transistor i t Dramatically higher: • Output power • Efficiency • Bandwidth GaN HEMT Power Amplifier lifi ...functions – RF amplifiers – 4-bit phase shifters – Amplitude controllers – Summing network – Power control – Latches for phase state – Address
NASA Astrophysics Data System (ADS)
Hatch, Spencer Mark
The magnetosphere-ionosphere (M-I) transition region is the several thousand-kilometer stretch between the cold, dense and variably resistive region of ionized atmospheric gases beginning tens of kilometers above the terrestrial surface, and the hot, tenuous, and conductive plasmas that interface with the solar wind at higher altitudes. The M-I transition region is therefore the site through which magnetospheric conditions, which are strongly susceptible to solar wind dynamics, are communicated to ionospheric plasmas, and vice versa. We systematically study the influence of geomagnetic storms on energy input, electron precipitation, and ion outflow in the M-I transition region, emphasizing the role of inertial Alfven waves both as a preferred mechanism for dynamic (instead of static) energy transfer and particle acceleration, and as a low-altitude manifestation of high-altitude interaction between the solar wind and the magnetosphere, as observed by the FAST satellite. Via superposed epoch analysis and high-latitude distributions derived as a function of storm phase, we show that storm main and recovery phase correspond to strong modulations of measures of Alfvenic activity in the vicinity of the cusp as well as premidnight. We demonstrate that storm main and recovery phases occur during 30% of the four-year period studied, but together account for more than 65% of global Alfvenic energy deposition and electron precipitation, and more than 70% of the coincident ion outflow. We compare observed interplanetary magnetic field (IMF) control of inertial Alfven wave activity with Lyon-Fedder-Mobarry global MHD simulations predicting that southward IMF conditions lead to generation of Alfvenic power in the magnetotail, and that duskward IMF conditions lead to enhanced prenoon Alfvenic power in the Northern Hemisphere. Observed and predicted prenoon Alfvenic power enhancements contrast with direct-entry precipitation, which is instead enhanced postnoon. This situation reverses under dawnward IMF. Despite clear observational and simulated signatures of dayside Alfvenic power, the generation mechanism remains unclear. Last, we present premidnight FAST observations of accelerated precipitation that is best described by a kappa distribution, signaling a nonthermal source population. We examine the implications for the commonly used Knight Relation.
High efficiency thermoelectric power generation using Zintl-type materials
NASA Technical Reports Server (NTRS)
Brown, Shawna (Inventor); Snyder, G. Jeffrey (Inventor); Gascoin, Franck (Inventor); Kauzlarich, Susan (Inventor)
2010-01-01
The invention disclosed herein relates to thermoelectrically-active p-type Zintl phase materials as well as devices utilizing such compounds. Such thermoelectric materials and devices may be used to convert thermal energy into electrical energy, or use electrical energy to produce heat or refrigeration. Embodiments of the invention relate to p-type thermoelectric materials related to the compound Yb.sub.14MnSb.sub.11.
Is muscle coordination affected by loading condition in ballistic movements?
Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe
2015-02-01
This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: P<0.001; peak occurrence: P=0.02) illustrating the specific role of each muscle during the push-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump. Copyright © 2014 Elsevier Ltd. All rights reserved.
Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY
2008-09-02
A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.
Smolka-Danielowska, Danuta
2010-11-01
The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg(-1), 40 K-689 Bq kg(-1), 232Th - 100.8 Bq kg(-1), 235U-13.5 Bq kg(-1), 238U-50 Bq kg(-1) and 228Ac - 82.4 Bq kg(-1).
WISPER: Wirless Space Power Experiment
NASA Technical Reports Server (NTRS)
Hawkins, Joseph
1993-01-01
The 1993 Advanced Design Project at the University of Alaska Fairbanks was to design a spacecraft as a technology demonstration of wireless power transmission (WPT). With cost effectiveness as a design constraint, a micro-satellite in low earth orbit (LEO) was chosen for the mission. Existing and near term technologies were analyzed and selected for the project. In addition to the conceptual design of the payload, support systems, and structure, the analysis included attention to safety, environmental impact, cost, and schedule for construction and operation. Wireless power beaming is not a new concept. Experimental demonstrations and study efforts have continued since the early 1960's. With the latest progress in transmitter and receiver technology, the next natural step is to beam power from earth to space. This proposed flight demonstration will advance the science of power beaming and prove the viability of various applications of WPT in space. Two methods of power beaming will be examined during the two separate phases of the spacecraft life. The first phase will demonstrate the technology and examine the theory of microwave power transmission at a high frequency. Special aspects of the first phase will include a highly accurate attitude control system and a 14 m inflatable parabolic antenna. The second phase will investigate the utilization of high intensity laser power using modified photovoltaic arrays. Special instrumentation on the spacecraft will measure the conversion efficiency from the received microwave or laser power to direct current power.
Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers
NASA Astrophysics Data System (ADS)
Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad
2015-03-01
White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.
Kinetics of a gas adsorption compressor
NASA Technical Reports Server (NTRS)
Chan, C. K.; Tward, E.; Elleman, D. D.
1984-01-01
Chan (1981) has suggested that a process based on gas adsorption could be used as a means to drive a Joule-Thomson (J-T) device. The resulting system has several advantages. It is heat powered, it has no sealing, there are no mechanical moving parts, and no active control is required. In the present investigation, a two-phase model is used to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on a consideration of complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The experimental arrangement for two sets of kinetic tests is discussed, and data regarding the experimental results are presented in graphs. For a theoretical study, a two-phase model was developed to predict the transient behavior of the compressor. A computer code was written to solve the governing equations with the aid of a standard forward marching predictor-corrector method.
NASA Astrophysics Data System (ADS)
Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.
2018-01-01
This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.
A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.
Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam
2013-09-01
A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro .
A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation
Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam
2014-01-01
A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126
Multiphysics modeling of two-phase film boiling within porous corrosion deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu
2016-07-01
Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits.more » Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.« less
Chen, Jiann-Jong; Kung, Che-Min
2010-09-01
The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.
1990-04-01
EXPLOSIVE ACTIVITY . FINDINGS AND MEASUREMENTS FROM EACH IMAGE WILL BE COMBINED IN A GEOGRAPHIC INFORMATION DATA BASE . VARIOUS IMAGE AND MAP PROJECTS WILL BE...PROPOSAL OF LAND MINES DETECTION BY A NUCLEAR ACTIVATION METHOD IS BASED ON A NEW EXTREMELY INTENSE, COMPACT PULSED SOURCE OF 14.1 MeV NEUTRONS (WITH A...CONVENTIONAL KNOWLEDGE- BASED SYSTEMS TOPIC# 38 OFFICE: PM/SBIR IDENT#: 33862 CASE- BASED REASONING (CBR) REPRESENTS A POWERFUL NEW PARADIGM FOR BUILDING EXPERT
Fleet Sizing of Automated Material Handling Using Simulation Approach
NASA Astrophysics Data System (ADS)
Wibisono, Radinal; Ai, The Jin; Ratna Yuniartha, Deny
2018-03-01
Automated material handling tends to be chosen rather than using human power in material handling activity for production floor in manufacturing company. One critical issue in implementing automated material handling is designing phase to ensure that material handling activity more efficient in term of cost spending. Fleet sizing become one of the topic in designing phase. In this research, simulation approach is being used to solve fleet sizing problem in flow shop production to ensure optimum situation. Optimum situation in this research means minimum flow time and maximum capacity in production floor. Simulation approach is being used because flow shop can be modelled into queuing network and inter-arrival time is not following exponential distribution. Therefore, contribution of this research is solving fleet sizing problem with multi objectives in flow shop production using simulation approach with ARENA Software
Thermo-hydraulic actuator as a new way for conversion of solar energy in space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhodolsky, A.T.
1998-07-01
A thermo-hydraulic actuator (THA) to directly convert the energy of continuous radiation into mechanical energy of vibration for use in power or propulsive systems in space is described. A THA consists of a chamber with an active liquid and optical fibers to deliver light energy inside. Power input comes from either argon laser or a solar concentrator 300 mm. in diameter. The principle of THA function is self-organization of a heat cycle that takes place by using a state of liquid (inversion) powered by light up to a temperature much higher than the temperature of boiling. As a result, anmore » excited state of liquid is able to form a single cavity to absorb thermal energy that is available to be converted by the non-equilibrium phase transition of first order into mechanical energy. This work stroke of a THA to form a hydraulic shock has been stimulated by non-linear mechanical motion of a single cavity and non-equilibrium phase transition of first order. The main feature of THA to accumulate energy of light in form of heat between sequential mechanical impulses gives the unique possibility to reach the motive forces induced by solar light by many order of the magnitude greater than the forces available by equilibrium radiation pressure. The first free-piston actuator (FPA) powered by solar light is also described. The construction consists of parabolic collector of diameter of 300mm and a transparent window with mounted actuator that has of a hollow piston with active liquid. Direct generation of hydraulic shocks by THA and preliminary experiments on generation of vibrations within a construction (FPA) has been proposed to be a new subject of interdisciplinary research to go from physical phenomenon observed in laser experiments to engineering development of new vibration machines powered by solar light. To conclude, a project to apply THA in new solar cosmic propulsive systems is discussed.« less
Sanz-Martin, Araceli; Hernández-González, Marisela; Guevara, Miguel Ángel; Santana, Gloria; Gumá-Díaz, Emilio
2014-02-01
The metabolism of alcohol and cognitive functions can vary during the menstrual cycle. Also, both alcohol ingestion and hormonal variations during menstruation have been associated with characteristic changes in electroencephalographic (EEG) activity. AIM. To determine whether EEG activity during a working memory task is affected by acute alcohol consumption, and if these EEG patterns vary in relation to different phases of the menstrual cycle. 24 women who drank a moderate dose of alcohol or placebo during the follicular and early luteal phases of the menstrual cycle. The EEG activity was recorded during performance of viso-spatial working memory task. Although the alcohol did not deteriorate the performance of working memory task, it caused in the EEG a decrease of relative theta power and lower right fronto-parietal correlation in theta and alpha2 bands. Only women who drank alcohol in the follicular phase had a higher relative potency of alpha1, which could indicate a lower level of arousal and attention. These results contribute to a better understanding of the brain mechanisms underlying cognitive changes with alcohol and its relationship to the menstrual cycle.
Development of cost-effective noncarbon sorbents for Hg(0) removal from coal-fired power plants.
Lee, Joo-Youp; Ju, Yuhong; Keener, Tim C; Varma, Rajender S
2006-04-15
Noncarbonaceous materials or mineral oxides (silica gel, alumina, molecular sieves, zeolites, and montmorillonite) were modified with various functional groups such as amine, amide, thiol, urea, and active additives such as elemental sulfur, sodium sulfide, and sodium polysulfide to examine their potential as sorbents for the removal of elemental mercury (Hg(0)) vapor at coal-fired utility power plants. A number of sorbent candidates such as amine- silica gel, urea- silica gel, thiol- silica gel, amide-silica gel, sulfur-alumina, sulfur-molecular sieve, sulfur-montmorillonite, sodium sulfide-montmorillonite, and sodium polysulfide-montmorillonite, were synthesized and tested in a lab-scale fixed-bed system under an argon flow for screening purposes at 70 degrees C and/or 140 degrees C. Several functionalized silica materials reported in previous studies to effectively control heavy metals in the aqueous phase showed insignificant adsorption capacities for Hg(0) control in the gas phase, suggesting that mercury removal mechanisms in both phases are different. Among elemental sulfur-, sodium sulfide-, and sodium polysulfide-impregnated inorganic samples, sodium polysulfide-impregnated montmorillonite K 10 showed a moderate adsorption capacity at 70 degrees C, which can be used for sorbent injection prior to the wet FGD system.
Sousa, Andreia S P; Silva, Augusta; Tavares, João Manuel R S
2013-03-01
The purpose of this study is to analyse the interlimb relation and the influence of mechanical energy on metabolic energy expenditure during gait. In total, 22 subjects were monitored as to electromyographic activity, ground reaction forces and VO2 consumption (metabolic power) during gait. The results demonstrate a moderate negative correlation between the activity of tibialis anterior, biceps femoris and vastus medialis of the trailing limb during the transition between mid-stance and double support and that of the leading limb during double support for the same muscles, and between these and gastrocnemius medialis and soleus of the trailing limb during double support. Trailing limb soleus during the transition between mid-stance and double support was positively correlated to leading limb tibialis anterior, vastus medialis and biceps femoris during double support. Also, the trailing limb centre of mass mechanical work was strongly influenced by the leading limbs, although only the mechanical power related to forward progression of both limbs was correlated to metabolic power. These findings demonstrate a consistent interlimb relation in terms of electromyographic activity and centre of mass mechanical work, being the relations occurred in the plane of forward progression the more important to gait energy expenditure.
A Bayesian adaptive design for biomarker trials with linked treatments.
Wason, James M S; Abraham, Jean E; Baird, Richard D; Gournaris, Ioannis; Vallier, Anne-Laure; Brenton, James D; Earl, Helena M; Mander, Adrian P
2015-09-01
Response to treatments is highly heterogeneous in cancer. Increased availability of biomarkers and targeted treatments has led to the need for trial designs that efficiently test new treatments in biomarker-stratified patient subgroups. We propose a novel Bayesian adaptive randomisation (BAR) design for use in multi-arm phase II trials where biomarkers exist that are potentially predictive of a linked treatment's effect. The design is motivated in part by two phase II trials that are currently in development. The design starts by randomising patients to the control treatment or to experimental treatments that the biomarker profile suggests should be active. At interim analyses, data from treated patients are used to update the allocation probabilities. If the linked treatments are effective, the allocation remains high; if ineffective, the allocation changes over the course of the trial to unlinked treatments that are more effective. Our proposed design has high power to detect treatment effects if the pairings of treatment with biomarker are correct, but also performs well when alternative pairings are true. The design is consistently more powerful than parallel-groups stratified trials. This BAR design is a powerful approach to use when there are pairings of biomarkers with treatments available for testing simultaneously.
NASA Astrophysics Data System (ADS)
Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel
2016-10-01
In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.
Control Strategies for the DAB Based PV Interface System
El-Helw, Hadi M.; Al-Hasheem, Mohamed; Marei, Mostafa I.
2016-01-01
This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138
Dogdibegovic, Emir; Alabri, Nawf S.; Wright, Christopher J.; ...
2017-08-12
This study is to complement an early report (the manuscript is attached for review purpose) on the role of interlayer on activity and performance stability in praseodymium nickelates. The aforementioned report showed a remarkable 48% increase in power density while switching from common GDC interlayer to a new interlayer chemistry (PGCO). Furthermore, a stable long-term performance was linked with suppressed reaction between the cathode and PGCO interlayer. In this article, we report in situ studies of the phase evolution. The high energy XRD studies at a synchrotron source showed fully suppressed phase transition in praseodymium nickelates with PGCO interlayer, whilemore » the electrodes on the GDC interlayer undergo substantial phase transformation. Furthermore, in operando and post-test XRD analyses shown fully suppressed structural changes in electrodes operated in full cells at 750°C and 0.80 V for 500 hours. SEM-EDS analysis showed that the formation of PrO x at the cathode-interlayer interface may play a role in a decrease of mechanical integrity of the interfaces, due to thermal expansion mismatch, leading to a local stress between the two phases. Furthermore, phase evolution at a narrow interface may propagate toward the electrode bulk, leading to structural changes Q1 and performance degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogdibegovic, Emir; Alabri, Nawf S.; Wright, Christopher J.
This study is to complement an early report (the manuscript is attached for review purpose) on the role of interlayer on activity and performance stability in praseodymium nickelates. The aforementioned report showed a remarkable 48% increase in power density while switching from common GDC interlayer to a new interlayer chemistry (PGCO). Furthermore, a stable long-term performance was linked with suppressed reaction between the cathode and PGCO interlayer. In this article, we report in situ studies of the phase evolution. The high energy XRD studies at a synchrotron source showed fully suppressed phase transition in praseodymium nickelates with PGCO interlayer, whilemore » the electrodes on the GDC interlayer undergo substantial phase transformation. Furthermore, in operando and post-test XRD analyses shown fully suppressed structural changes in electrodes operated in full cells at 750°C and 0.80 V for 500 hours. SEM-EDS analysis showed that the formation of PrO x at the cathode-interlayer interface may play a role in a decrease of mechanical integrity of the interfaces, due to thermal expansion mismatch, leading to a local stress between the two phases. Furthermore, phase evolution at a narrow interface may propagate toward the electrode bulk, leading to structural changes Q1 and performance degradation.« less
Machovsky-Capuska, Gabriel E.; Howland, Howard C.; Raubenheimer, David; Vaughn-Hirshorn, Robin; Würsig, Bernd; Hauber, Mark E.; Katzir, Gadi
2012-01-01
Australasian gannets (Morus serrator), like many other seabird species, locate pelagic prey from the air and perform rapid plunge dives for their capture. Prey are captured underwater either in the momentum (M) phase of the dive while descending through the water column, or the wing flapping (WF) phase while moving, using the wings for propulsion. Detection of prey from the air is clearly visually guided, but it remains unknown whether plunge diving birds also use vision in the underwater phase of the dive. Here we address the question of whether gannets are capable of visually accommodating in the transition from aerial to aquatic vision, and analyse underwater video footage for evidence that gannets use vision in the aquatic phases of hunting. Photokeratometry and infrared video photorefraction revealed that, immediately upon submergence of the head, gannet eyes accommodate and overcome the loss of greater than 45 D (dioptres) of corneal refractive power which occurs in the transition between air and water. Analyses of underwater video showed the highest prey capture rates during WF phase when gannets actively pursue individual fish, a behaviour that very likely involves visual guidance, following the transition after the plunge dive's M phase. This is to our knowledge the first demonstration of the capacity for visual accommodation underwater in a plunge diving bird while capturing submerged prey detected from the air. PMID:22874749
Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.
Ramanujam, Arvind; Cirnigliaro, Christopher M; Garbarini, Erica; Asselin, Pierre; Pilkar, Rakesh; Forrest, Gail F
2017-04-20
To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. Single-session. Motion analysis laboratory. Four AB individuals and four individuals with SCI. Powered lower extremity exoskeleton. Temporal-spatial parameters, kinematics, walking velocity and electromyography data. AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P < 0.05) compared to non-EXO walking. Interestingly, when the AB individuals voluntarily assisted the exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P < 0.05). There was muscle activation in several lower limb muscles for SCI group. For AB individuals, there were similarities among EXO and non-EXO walking conditions however there were differences in several lower limb EMGs for phasing of muscle activation. The data suggests that our AB individuals experienced reduction in walking velocity and muscle activation amplitudes while walking in the exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.
Arazpour, Mokhtar; Chitsazan, Ahmad; Bani, Monireh Ahmadi; Rouhi, Gholamreza; Ghomshe, Farhad Tabatabai; Hutchins, Stephen W
2013-10-01
The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person.
Development of a dual-field heteropoplar power converter
NASA Technical Reports Server (NTRS)
Eisenhaure, D. B.; Johnson, B.; Bliamptis, T.; St. George, E.
1981-01-01
The design and testing of a 400 watt, dual phase, dual rotor, field modulated inductor alternator is described. The system is designed for use as a flywheel to ac utility line or flywheel to dc bus (electric vehicle) power converter. The machine is unique in that it uses dual rotors and separately controlled fields to produce output current and voltage which are in phase with each other. Having the voltage and current in phase allows the power electronics to be made of simple low cost components. Based on analytical predictions and experimental results, development of a complete 22 kilowatt (30 Hp) power conversion system is recommended. This system would include power electronics and controls and would replace the inductor alternator with an improved electromagnetic conversion system.
Tampa Electric Company Polk Power Station IGCC project: Project status
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, J.E.; Carlson, M.R.; Hurd, R.
1997-12-31
The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less
NASA developments in solid state power amplifiers
NASA Technical Reports Server (NTRS)
Leonard, Regis F.
1990-01-01
Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.
Circulation and Purification in the LUX-ZEPLIN System Test
NASA Astrophysics Data System (ADS)
Alsum, Shaun; Lz Collaboration
2016-03-01
LZ is a dark-matter direct detection experiment whose detector is a two-phase TPC using approximately seven tons of active xenon as its scintillator. The xenon must have few electronegative impurities to ensure sufficient electron transport through the drift region. The LZ purification system is being prototyped in the LZ system test, a test platform located at SLAC using about 100kg of Xenon, which consists of gas circulation through a SAES getter. We utilize a dual-phase and a gas-phase heat exchanger to reduce needed cooling power. To achieve this circulation we employ an all metal seal triple diaphragm pump, also prototyped in the System Test. This talk will present early results from the system test as well as some baseline LZ designs. The LUX-ZEPLIN dark matter direct detection experiment.
ISTC projects devoted to improving laser beam quality
NASA Astrophysics Data System (ADS)
Malakhov, Yu. I.
2007-05-01
Short overview is done about the activity of ISTC in a direction concerned with improving powerful laser beam quality by means of nonlinear and linear adaptive optics methods. Completed projects #0591 and #1929 resulted in the development of a stimulated Brillouin scattering (SBS) phase conjugation mirror of superhigh fidelity employing the kinoform optical elements (rasters of small lenses) of new generation designed for pulsed or pulse-periodic lasers with nanosecond scale pulse duration. Project #2631 is devoted to development of an adaptive optical system for phase registration and correction of laser beams with wave front vortices. The principles of operation of conventional adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.
Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity
NASA Astrophysics Data System (ADS)
Pittorino, Fabrizio; Ibáñez-Berganza, Miguel; di Volo, Matteo; Vezzani, Alessandro; Burioni, Raffaella
2017-03-01
A collective chaotic phase with power law scaling of activity events is observed in a disordered mean field network of purely excitatory leaky integrate-and-fire neurons with short-term synaptic plasticity. The dynamical phase diagram exhibits two transitions from quasisynchronous and asynchronous regimes to the nontrivial, collective, bursty regime with avalanches. In the homogeneous case without disorder, the system synchronizes and the bursty behavior is reflected into a period doubling transition to chaos for a two dimensional discrete map. Numerical simulations show that the bursty chaotic phase with avalanches exhibits a spontaneous emergence of persistent time correlations and enhanced Kolmogorov complexity. Our analysis reveals a mechanism for the generation of irregular avalanches that emerges from the combination of disorder and deterministic underlying chaotic dynamics.
Resting-state EEG power and coherence vary between migraine phases.
Cao, Zehong; Lin, Chin-Teng; Chuang, Chun-Hsiang; Lai, Kuan-Lin; Yang, Albert C; Fuh, Jong-Ling; Wang, Shuu-Jiun
2016-12-01
Migraine is characterized by a series of phases (inter-ictal, pre-ictal, ictal, and post-ictal). It is of great interest whether resting-state electroencephalography (EEG) is differentiable between these phases. We compared resting-state EEG energy intensity and effective connectivity in different migraine phases using EEG power and coherence analyses in patients with migraine without aura as compared with healthy controls (HCs). EEG power and isolated effective coherence of delta (1-3.5 Hz), theta (4-7.5 Hz), alpha (8-12.5 Hz), and beta (13-30 Hz) bands were calculated in the frontal, central, temporal, parietal, and occipital regions. Fifty patients with episodic migraine (1-5 headache days/month) and 20 HCs completed the study. Patients were classified into inter-ictal, pre-ictal, ictal, and post-ictal phases (n = 22, 12, 8, 8, respectively), using 36-h criteria. Compared to HCs, inter-ictal and ictal patients, but not pre- or post-ictal patients, had lower EEG power and coherence, except for a higher effective connectivity in fronto-occipital network in inter-ictal patients (p < .05). Compared to data obtained from the inter-ictal group, EEG power and coherence were increased in the pre-ictal group, with the exception of a lower effective connectivity in fronto-occipital network (p < .05). Inter-ictal and ictal patients had decreased EEG power and coherence relative to HCs, which were "normalized" in the pre-ictal or post-ictal groups. Resting-state EEG power density and effective connectivity differ between migraine phases and provide an insight into the complex neurophysiology of migraine.
Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Chesters, Dennis; Jenstrom, Del
2000-01-01
In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers. This manuscript presents excerpts from the Horizon proposal's sections that describe the Earth science requirements, the structural -thermal-optical design, the wavefront sensing and control, and the on-orbit validation.
Electromotive force measurements on cells involving beta-alumina solid electrolyte
NASA Technical Reports Server (NTRS)
Choudhury, N. S.
1973-01-01
Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.