Single-Layer Limit of Metallic Indium Overlayers on Si(111).
Park, Jae Whan; Kang, Myung Ho
2016-09-09
Density-functional calculations are used to identify one-atom-thick metallic In phases grown on the Si(111) surface, which have long been sought in quest of the ultimate two-dimensional (2D) limit of metallic properties. We predict two metastable single-layer In phases, one sqrt[7]×sqrt[3] phase with a coverage of 1.4 monolayer (ML; here 1 ML refers to one In atom per top Si atom) and the other sqrt[7]×sqrt[7] phase with 1.43 ML, which indeed agree with experimental evidences. Both phases reveal quasi-1D arrangements of protruded In atoms, leading to 2D-metallic but anisotropic band structures and Fermi surfaces. This directional feature contrasts with the free-electron-like In-overlayer properties that are known to persist up to the double-layer thickness, implying that the ultimate 2D limit of In overlayers may have been achieved in previous studies of double-layer In phases.
A rapid and rational approach to generating isomorphous heavy-atom phasing derivatives
Lu, Jinghua; Sun, Peter D.
2014-01-01
In attempts to replace the conventional trial-and-error heavy-atom derivative search method with a rational approach, we previously defined heavy metal compound reactivity against peptide ligands. Here, we assembled a composite pH and buffer-dependent peptide reactivity profile for each heavy metal compound to guide rational heavy-atom derivative search. When knowledge of the best-reacting heavy-atom compound is combined with mass spectrometry-assisted derivatization, and with a quick-soak method to optimize phasing, it is likely that the traditional heavy-atom compounds could meet the demand of modern high-throughput X-ray crystallography. As an example, we applied this rational heavy-atom phasing approach to determine a previously unknown mouse serum amyloid A2 crystal structure. PMID:25040395
Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures
Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.
2015-01-01
Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.
For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.
Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.
2016-10-12
For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.
Song, Le Xin; Chen, Jie; Zhu, Lin Hong; Xia, Juan; Yang, Jun
2011-09-05
The present work supports a novel paradigm in which the surface structure and stacking behavior of metallic gallium (Ga) were significantly influenced by the preparation process in the presence of organic small molecules (ethanol, acetone, dichloromethane, and diethyl ether). The extent of the effect strongly depends on the polarity of the molecules. Especially, a series of new atom-molecule aggregates consisting of metallic Ga and macrocyclic hosts (cyclodextrins, CDs) were prepared and characterized by various techniques. A comprehensive comparative analysis between free metallic Ga and the Ga samples obtained provides important and at present rare information on the modification in structure, phase transition, and magnetic property of Ga driven by atom-molecule interactions. First, there is a notable difference in microstructure and electronic structure between the different types of Ga samples. Second, differential scanning calorimetry analysis gives us a complete picture (such as the occurrence of a series of metastable phases of Ga in the presence of CDs) that has allowed us to consider that Ga atoms were protected by the shielding effect provided by the cavities of CDs. Third, the metallic Ga distributed in the aggregates exhibits very interesting magnetic property compared to free metallic Ga, such as the uniform zero-field-cooled and field-cooled magnetization processes, the enhanced responses in magnetization to temperature and applied field, and the fundamental change in shape of magnetic hysteresis loops. These significant changes in structural transformation and physical property of Ga provide a novel insight into the understanding of atom-molecule interactions between metallic atoms and organic molecules.
Synthesis and Stability of Lanthanum Superhydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geballe, Zachary M.; Liu, Hanyu; Mishra, Ajay K.
Recent theoretical calculations predict that megabar pressure stabilizes very hydrogen-rich simple compounds having new clathrate-like structures and remarkable electronic properties including room-temperature superconductivity. X-ray diffraction and optical studies demonstrate that superhydrides of lanthanum can be synthesized with La atoms in an fcc lattice at 170 GPa upon heating to about 1000 K. The results match the predicted cubic metallic phase of LaH10 having cages of thirty-two hydrogen atoms surrounding each La atom. Upon decompression, the fcc-based structure undergoes a rhombohedral distortion of the La sublattice. The superhydride phases consist of an atomic hydrogen sublattice with H-H distances of about 1.1more » Å, which are close to predictions for solid atomic metallic hydrogen at these pressures. With stability below 200 GPa, the superhydride is thus the closest analogue to solid atomic metallic hydrogen yet to be synthesized and characterized.« less
A rapid and rational approach to generating isomorphous heavy-atom phasing derivatives.
Lu, Jinghua; Sun, Peter D
2014-09-01
In attempts to replace the conventional trial-and-error heavy-atom derivative search method with a rational approach, we previously defined heavy metal compound reactivity against peptide ligands. Here, we assembled a composite pH- and buffer-dependent peptide reactivity profile for each heavy metal compound to guide rational heavy-atom derivative search. When knowledge of the best-reacting heavy-atom compound is combined with mass spectrometry assisted derivatization, and with a quick-soak method to optimize phasing, it is likely that the traditional heavy-atom compounds could meet the demand of modern high-throughput X-ray crystallography. As an example, we applied this rational heavy-atom phasing approach to determine a previously unknown mouse serum amyloid A2 crystal structure. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Electronic properties of in-plane phase engineered 1T'/2H/1T' MoS2
NASA Astrophysics Data System (ADS)
Thakur, Rajesh; Sharma, Munish; Ahluwalia, P. K.; Sharma, Raman
2018-04-01
We present the first principles studies of semi-infinite phase engineered MoS2 along zigzag direction. The semiconducting (2H) and semi-metallic (1T') phases are known to be stable in thin-film MoS2. We described the electronic and structural properties of the infinite array of 1T'/2H/1T'. It has been found that 1T'phase induced semi-metallic character in 2H phase beyond interface but, only Mo atoms in 2H phase domain contribute to the semi-metallic nature and S atoms towards semiconducting state. 1T'/2H/1T' system can act as a typical n-p-n structure. Also high holes concentration at the interface of Mo layer provides further positive potential barriers.
NASA Astrophysics Data System (ADS)
Mi, Guangbao; Li, Peijie; He, Liangju
2010-09-01
Based on the mechanism of metal solid-liquid phase change and the theory of liquid metal’s micro-inhomogeneity, a physical model is established between latent heats of fusion and vaporization and the numbers of residual bonds and short-range ordered atoms at the melting point inside a metal melt. Meanwhile, the mathematical derivation and proof are also offered. This model produces the numbers of residual bonds and short-range ordered atoms after the solid-liquid phase change only by using basic parameters and thermophysical properties of the crystal structure. Therefore, it presents a more effective way to analyze the melt’s structural information. By using this model, this study calculates the numbers of residual bonds and short-range ordered atoms in Al and Ni melts. The calculated results are consistent with the experimental results. Simultaneously, this study discusses the atomic number’s influence on the numbers of residual bonds and short-range ordered atoms in the melts within the first (IA) and second main group (IIA) elements.
NASA Astrophysics Data System (ADS)
Sovestnov, A. E.; Kapustin, V. K.; Tikhonov, V. I.; Fomin, E. V.; Chernenkov, Yu. P.
2014-08-01
The structure of a metal-carbon composite formed by the pyrolysis of diphthalocyanine of some rare-earth elements (Y, La, Ce, Eu) and uranium in the temperature range T ann = 800-1700°C has been investigated for the first time by the methods of X-ray diffraction analysis and X-ray line shift. It has been shown that, in the general case, the studied pyrolysates consist of three phases. One phase corresponds to the structure of graphite. The second phase corresponds to nitrides, carbides, and oxides of basic metal elements with a crystallite size ranging from 5 to 100 nm. The third phase is amorphous or consisting of crystallites with a size of ˜1 nm. It has been found that all the basic elements (Y, La, Ce, Eu, U) and incorporated iodine atoms in the third phase are in a chemically bound state. The previously unobserved electronic configurations have been revealed for europium. The possibility of including not only atoms of elements forming diphthalocyanine but also other elements (for example, iodine) in the composite structure is of interest, in particular, for the creation of a thermally, chemically, and radiation resistant metal-carbon matrix for the radioactive waste storage.
Atomic structure and glass forming ability of Cu46Zr46Al8 bulk metallic glass
NASA Astrophysics Data System (ADS)
Wang, X. D.; Jiang, Q. K.; Cao, Q. P.; Bednarcik, J.; Franz, H.; Jiang, J. Z.
2008-11-01
By using a combination of state-of-the-art experimental and computational methods, the high glass forming ability (GFA) of Cu46Zr46Al8 alloy is studied from the view of its atomic packing. Three-dimensional atomic configuration is well established. It is found that Al atoms almost homogeneously distribute around Cu and Zr atoms without segregation, causing the local environment around Cu and Zr atoms in Cu46Zr46Al8 bulk metallic glass different from that of the major competing phase of Cu10Zr7. Furthermore, the addition of Al not only increases the amount of icosahedronlike clusters but also makes them more homogeneous distribution, which can enhance the GFA by increasing the structural incompatibility with the competing crystalline phases.
NASA Astrophysics Data System (ADS)
Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.
2013-05-01
We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.
Controlled electron doping into metallic atomic wires: Si(111)4×1-In
NASA Astrophysics Data System (ADS)
Morikawa, Harumo; Hwang, C. C.; Yeom, Han Woong
2010-02-01
We demonstrate the controllable electron doping into metallic atomic wires, indium wires self-assembled on the Si(111) surface, which feature one-dimensional (1D) band structure and temperature-driven metal-insulator transition. The electron filling of 1D metallic bands is systematically increased by alkali-metal adsorption, which, in turn, tunes the macroscopic property, that is, suppresses the metal-insulator transition. On the other hand, the dopant atoms induce a local lattice distortion without a band-gap opening, leading to a microscopic phase separation on the surface. The distinct bifunctional, electronic and structural, roles of dopants in different length scales are thus disclosed.
Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy
NASA Astrophysics Data System (ADS)
Sung, Ji Ho; Heo, Hoseok; Si, Saerom; Kim, Yong Hyeon; Noh, Hyeong Rae; Song, Kyung; Kim, Juho; Lee, Chang-Soo; Seo, Seung-Young; Kim, Dong-Hwi; Kim, Hyoung Kug; Yeom, Han Woong; Kim, Tae-Hwan; Choi, Si-Young; Kim, Jun Sung; Jo, Moon-Ho
2017-11-01
Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T‧) and semiconducting (2H) MoTe2 crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.
Atomically thin gallium layers from solid-melt exfoliation
Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.
2018-01-01
Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039
Phase Transformations and Microstructural Evolution: Part I
Clarke, Amy Jean
2015-08-29
The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less
Zhao, Bingge; Yang, Bin; Abyzov, Alexander S; Schmelzer, Jürn W P; Rodríguez-Viejo, Javier; Zhai, Qijie; Schick, Christoph; Gao, Yulai
2017-12-13
In this paper, the amorphous Ce 68 Al 10 Cu 20 Co 2 (atom %) alloy was in situ prepared by nanocalorimetry. The high cooling and heating rates accessible with this technique facilitate the suppression of crystallization on cooling and the identification of homogeneous nucleation. Different from the generally accepted notion that metallic glasses form just by avoiding crystallization, the role of nucleation and growth in the crystallization behavior of amorphous alloys is specified, allowing an access to the ideal metallic glass free of nuclei. Local atomic configurations are fundamentally significant to unravel the glass forming ability (GFA) and phase transitions in metallic glasses. For this reason, isothermal annealing near T g from 0.001 s to 25,000 s following quenching becomes the strategy to tune local atomic configurations and facilitate an amorphous alloy, a mixed glassy-nanocrystalline state, and a crystalline sample successively. On the basis of the evolution of crystallization enthalpy and overall latent heat on reheating, we quantify the underlying mechanism for the isothermal nucleation and crystallization of amorphous alloys. With Johnson-Mehl-Avrami method, it is demonstrated that the coexistence of homogeneous and heterogeneous nucleation contributes to the isothermal crystallization of glass. Heterogeneous rather than homogeneous nucleation dominates the isothermal crystallization of the undercooled liquid. For the mixed glassy-nanocrystalline structure, an extraordinary kinetic stability of the residual glass is validated, which is ascribed to the denser packed interface between amorphous phase and ordered nanocrystals. Tailoring the amorphous structure by nanocalorimetry permits new insights into unraveling GFA and the mechanism that correlates local atomic configurations and phase transitions in metallic glasses.
Organised surfactant assemblies in analytical atomic spectrometry
NASA Astrophysics Data System (ADS)
Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa
1999-02-01
The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic effect of using vesicles to improve both the separation capabilities of reversed-phase HPLC and the detectability of atomic detectors by on-line vesicular hydride generation is described. In particular, the possible separation mechanisms responsible for micellar and vesicular mobile phases in reversed-phase chromatographies are analysed and compared. The possible effect of modification of stationary phases by monomers of the surfactants should also be taken into account. The application of such on-line couplings to develop new hybrid approaches to tackle modern problems of trace element speciation for As, Hg, Se, and Cd completes this revision of the present interface between analytical atomic spectroscopy and surfactant-based organised assemblies.
A theoretical study of the omega-phase transformation in metals
NASA Astrophysics Data System (ADS)
Sanati, Mahdi
I have studied the formation of o-phase from electronic and mesoscopic (domain wall) points of view. To study the formation of domain walls, I have extended the Landau model of Cook for the o-phase transition by including a spatial gradient (Ginzburg) term of the scalar order parameter. In general, the Landau free energy is an asymmetric double-well potential. From the variational derivative of the total free energy I obtained a static equilibrium condition. By solving this equation for different physical parameters and boundary conditions, I obtained different quasi-one-dimensional soliton-like solutions. These solutions correspond to three different types of domain walls between the o-phase and the beta-matrix. These results are used to model the formation of the o-phase in bcc Ti. Canonical band model and first principles calculations confirmed the instability of the bcc-phase of group III and IV transition metals with respect to the o-phase transformation. I showed that the d-electron density is the controlling parameter for this type of the transformation. Also the possibility of formation of the o-phase for rare earth metals is discussed. First-principles full-potential linear muffin-tin orbital method (FPLMTO) calculations are performed for o-type displacement of the atoms to study the formation of the o-phase in TiAl and Ti 3Al2Nb alloys. The results of my calculations showed an instability in ordered B2 TiAl structure with respect to the o-phase when one third of the Al atoms are replaced by Nb atoms. These phenomena are explained, first by symmetry arguments; then a pair potential model is used to illustrate this instability based on interactions between different pair of atoms derived from the electronic structure. In addition, importance of the atomic arrangements on the structural stability of the Ti3Al2 Nb system is discussed.
Enzymatically Controlled Vacancies in Nanoparticle Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.
In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemicalmore » nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.« less
NASA Astrophysics Data System (ADS)
Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.
2000-11-01
We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.
NASA Astrophysics Data System (ADS)
Bondariev, Vitalii
2016-09-01
In this work thermogravimetric-DTG/DSC analysis result for samples of nanocomposite metal-dielectric (FeCoZr)x(CaF2)100-x are presents. Series of samples with, metallic phase content x = 24 - 68 at.% were produced by ionbeam sputtering method in mixed atmosphere of gas argon and oxygen. Study of thermal properties, phase shifts and process of change in mass of nanocomposites were performed using the thermoanalytical system TGA/DSC-1/1600 HF (MettlerToledoInstruments). High-precision weight has a weighing range 1μg - 1g with an accuracy 1μg. The furnace makes it possible to regulate the temperature in range from room temperature to 1600°C and heating rate is 0.01 - 150°C min. After analysis of the results established that initial and final mass of samples of the nanocomposite (FeCoZr)x(CaF2)100-x are different, namely the sample mass is increased by 2 - 20%. It is related to the oxidation of metallic phase particles of nanocomposite. DTG and DSC analysis demonstrated that oxidation of metallic phase is held in two steps, at first oxidized iron atoms, and followed oxidation of the cobalt atoms, what can be seen on the waveform in the form of two humps and whereby oxides Fe2O3, Fe3O4, Co2O3, Co3O4 are formed. Oxide coatings on the surface of atoms represents an additional barrier to electron transfer charges. When a voltage is applied to the layer of the nanocomposite are three possible ways to transfer of charges between atoms and particles of metal, whereby each has its own relaxation time.
Sanchez, Sergio I; Small, Matthew W; Bozin, Emil S; Wen, Jian-Guo; Zuo, Jian-Min; Nuzzo, Ralph G
2013-02-26
This study examines structural variations found in the atomic ordering of different transition metal nanoparticles synthesized via a common, kinetically controlled protocol: reduction of an aqueous solution of metal precursor salt(s) with NaBH₄ at 273 K in the presence of a capping polymer ligand. These noble metal nanoparticles were characterized at the atomic scale using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM). It was found for monometallic samples that the third row, face-centered-cubic (fcc), transition metal [(3M)-Ir, Pt, and Au] particles exhibited more coherently ordered geometries than their second row, fcc, transition metal [(2M)-Rh, Pd, and Ag] analogues. The former exhibit growth habits favoring crystalline phases with specific facet structures while the latter samples are dominated by more disordered atomic arrangements that include complex systems of facets and twinning. Atomic pair distribution function (PDF) measurements further confirmed these observations, establishing that the 3M clusters exhibit longer ranged ordering than their 2M counterparts. The assembly of intracolumn bimetallic nanoparticles (Au-Ag, Pt-Pd, and Ir-Rh) using the same experimental conditions showed a strong tendency for the 3M atoms to template long-ranged, crystalline growth of 2M metal atoms extending up to over 8 nm beyond the 3M core.
NASA Astrophysics Data System (ADS)
Sachtler, W. M. H.
1984-11-01
In equilibrium, the composition of the surface of an alloy will, in general, differ from that of the bulk. The broken-bond model is applicable to alloys with atoms of virtually equal size. If the heat of alloy formation is zero, the component of lower heat of atomization is found enriched in the surface. If both partners have equal heats of sublimination, the surface of a diluted alloy is enriched with the minority component. Size effects can enhance or weaken the electronic effects. In general, lattice strain can be relaxed by precipitating atoms of deviating size on the surface. Two-phase alloys are described by the "cherry model", i.e. one alloy phase, the "kernel" is surrounded by another alloy, the "flesh", and the surface of the outer phase, the "skin" displays a deviating surface composition as in monophasic alloys. In the presence of molecules capable of forming chemical bonds with individual metal atoms, "chemisorption induced surface segregation" can be observed at low temperatures, i.e. the surface becomes enriched with the metal forming the stronger chemisorption bonds.
First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki
2017-06-01
The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.
Song, Gwang Yeom; Oh, Chadol; Sinha, Soumyadeep; Son, Junwoo; Heo, Jaeyeong
2017-07-19
Atomic layer deposition was adopted to deposit VO x thin films using vanadyl tri-isopropoxide {VO[O(C 3 H 7 )] 3 , VTIP} and water (H 2 O) at 135 °C. The self-limiting and purge-time-dependent growth behaviors were studied by ex situ ellipsometry to determine the saturated growth conditions for atomic-layer-deposited VO x . The as-deposited films were found to be amorphous. The structural, chemical, and optical properties of the crystalline thin films with controlled phase formation were investigated after postdeposition annealing at various atmospheres and temperatures. Reducing and oxidizing atmospheres enabled the formation of pure VO 2 and V 2 O 5 phases, respectively. The possible band structures of the crystalline VO 2 and V 2 O 5 thin films were established. Furthermore, an electrochemical response and a voltage-induced insulator-to-metal transition in the vertical metal-vanadium oxide-metal device structure were observed for V 2 O 5 and VO 2 films, respectively.
NASA Astrophysics Data System (ADS)
Mangan, T. P.; Frankland, V. L.; Murray, B. J.; Plane, J. M. C.
2017-08-01
The uptake and potential reactivity of metal atoms on water ice can be an important process in planetary atmospheres and on icy bodies in the interplanetary and interstellar medium. For instance, metal atom uptake affects the gas-phase chemistry of the Earth's mesosphere, and has been proposed to influence the agglomeration of matter into planets in protoplanetary disks. In this study the fate of Mg and K atoms incorporated into water-ice films, prepared under ultra-high vacuum conditions at temperatures of 110-140 K, was investigated. Temperature-programmed desorption experiments reveal that Mg- and K-containing species do not co-desorb when the ice sublimates, demonstrating that uptake on ice particles causes irreversible removal of the metals from the gas phase. This implies that uptake on ice particles in terrestrial polar mesospheric clouds accelerates the formation of large meteoric smoke particles (≥1 nm radius above 80 km) following sublimation of the ice. Energetic sputtering of metal-dosed ice layers by 500 eV Ar+ and Kr+ ions shows that whereas K reacts on (or within) the ice surface to form KOH, adsorbed Mg atoms are chemically inert. These experimental results are consistent with electronic structure calculations of the metals bound to an ice surface, where theoretical adsorption energies on ice are calculated to be -68 kJ mol-1 for K, -91 kJ mol-1 for Mg, and -306 kJ mol-1 for Fe. K can also insert into a surface H2O to produce KOH and a dangling H atom, in a reaction that is slightly exothermic.
Metal-silica sol-gel materials
NASA Technical Reports Server (NTRS)
Stiegman, Albert E. (Inventor)
2002-01-01
The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.
Critical points of metal vapors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S.
2015-09-15
A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for mostmore » metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.« less
Atomic scale modelling of hexagonal structured metallic fission product alloys
Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.
2015-01-01
Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629
Size versus electronic factors in transition metal carbide and TCP phase stability
NASA Astrophysics Data System (ADS)
Pettifor, D. G.; Seiser, B.; Margine, E. R.; Kolmogorov, A. N.; Drautz, R.
2013-09-01
The contributions of atomic size and electronic factors to the structural stability of transition metal carbides and topologically close-packed (TCP) phases are investigated. The hard-sphere model that has been used by Cottrell to rationalize the occurrence of the octahedral and trigonal local coordination polyhedra within the transition metal carbides is shown to have limitations in TiC since density functional theory (DFT) predicts that the second most metastable phase closest to the B1 (NaCl) ground state takes the B? (BN) structure type with 5-atom local coordination polyhedra with very short Ti-C bond lengths. The importance of electronic factors in the TCP phases is demonstrated by DFT predictions that the A15, ? and ? phases are stabilized between groups VI and VII of the elemental transition metals, whereas the ? and Laves phases are destabilized. The origin of this difference is related to the bimodal shape parameter of the electronic density of states by using the bond-order potential expansion of the structural energy within a canonical tight-binding model. The importance of the size factor in the TCP phases is illustrated by the DFT heats of formation for the binary systems Mo-Re, Mo-Ru, Nb-Re and Nb-Ru which show that the ? and Laves phases become more and more stable compared to A15, ? and ? as the size factor increases from Mo-Re through to Nb-Ru.
Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons
Gordon, John Howard
2014-09-09
A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.
Conductive metal oxide film and method of making
Windisch, Jr., Charles F.; Exarhos, Gregory J.
1999-01-01
The present invention is a method for reducing a dopant in a film of a metal oxide wherein the dopant is reduced and the first metal oxide is substantially not reduced. The method of the present invention relies upon exposing the film to reducing conditions for a predetermined time and reducing a valence of the metal from a positive valence to a zero valence and maintaining atoms with a zero valence in an atomic configuration within the lattice structure of the metal oxide. According to the present invention, exposure to reducing conditions may be achieved electrochemically or achieved in an elevated temperature gas phase.
Conductive metal oxide film and method of making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windisch, C.F. Jr.; Exarhos, G.J.
1999-11-23
The present invention is a method for reducing a dopant in a film of a metal oxide wherein the dopant is reduced and the first metal oxide is substantially not reduced. The method of the present invention relies upon exposing the film to reducing conditions for a predetermined time and reducing a valence of the metal from a positive valence to a zero valence and maintaining atoms with a zero valence in an atomic configuration within the lattice structure of the metal oxide. According to the present invention, exposure to reducing conditions may be achieved electrochemically or achieved in anmore » elevated temperature gas phase.« less
Origin of Transitions between Metallic and Insulating States in Simple Metals
Naumov, Ivan I.; Hemley, Russell J.
2015-04-17
Unifying principles that underlie recently discovered transitions between metallic and insulating states in elemental solids under pressure are developed. Using group theory arguments and first principles calculations, we show that the electronic properties of the phases involved in these transitions are controlled by symmetry principles not previously recognized. The valence bands in these systems are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms, and which are not necessarily all symmetrical. The character of the Wannier functions is closely related to the degree of s-p(-d) hybridization and reflects multi-center chemical bondingmore » in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as re-entrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of novel behavior such as phases having three-dimensional Dirac-like points. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been identified or reported (e.g., Li, Na, and Ca).« less
Grain boundaries structures and wetting in doped silicon, nickel and copper
NASA Astrophysics Data System (ADS)
Meshinchi Asl, Kaveh
This thesis reports a series of fundamental investigations of grain boundary wetting, adsorption and structural (phases) transitions in doped Ni, Cu and Si with technological relevance to liquid metal embrittlement, liquid metal corrosion and device applications. First, intrinsically ductile metals are prone to catastrophic failure when exposed to certain liquid metals, but the atomic level mechanism for this effect is not fully understood. A nickel sample infused with bismuth atoms was characterized and a bilayer interfacial phase that is the underlying cause of embrittlement was observed. In a second related study, we showed that addition of minor impurities can significantly enhance the intergranular penetration of bismuth based liquids in polycrystalline nickel and copper, thereby increasing the liquid metal corrosion rates. Furthermore, we extended a concept that was initially proposed in the Rice-Wang model for grain boundary embrittlement to explain our observations of the impurity-enhanced intergranular penetration of liquid metals. Finally, a grain-boundary transition from a bilayer to an intrinsic is observed in the Si-Au system. This observation directly shows that a grain boundary can exhibit a first-order "phase" transition, which often implies abrupt changes in properties.
Metastable States Arising from the Ablation of Solid Copper
NASA Astrophysics Data System (ADS)
Andrejeva, Anna; Harris, Joe; Wright, Tim
2014-06-01
Laser ablation is a popular method for generating metal atoms so that metal clusters, complexes, and molecules may be investigated in gas phase spectroscopic studies. However, the initial production of a highly energetic metal plasma from the surface of a solid metal target can produce atoms which are not in their ground electronic state, and consequently atomic spectra can become quite complicated due to transitions arising from metastable atomic excited states which remain populated on the experimental timescale. Presented herein are details of the laser vaporisation source in use by our group. Spectra of atomic copper are presented, recorded via (1+1') and (2+1) resonance enhanced multiphoton ionisation (REMPI) spectroscopy. The energetic regions examined are expected to correspond to the (4s24p) 2P ← 2S and the (4s2nd) 2D ← 2S Rydberg series respectively, but the observed spectra also exhibit many additional contributions which are found to arise from electronically excited states, and these will be discussed.
The origins of particle size effects in heterogeneous catalysis
NASA Astrophysics Data System (ADS)
Bond, Geoffrey C.
1985-06-01
Model calculations are presented to show how the fraction of atoms at the surface of small metal particles increases as their size diminishes in the range 10 to 2 nm. Such particles are prepared either by condensing atoms or aggregates from the vapour phase onto a support, or by chemical methods in the liquid phase, i.e. the traditional routes for preparing supported metal catalysts. The first group of methods leads to artificially pure materials in which the contact between metal and support is poor. The second group of methods leads to the introduction of impurities, to a greater variety of forms of particle, but to a generally firmer binding of metal to support: this permits electronic interactions between the components to occur. Recent literature on the chemisorptive and catalytic properties of metal particles, usually less than 10 nm in size, suggests that certain classes of reaction may be designated as "structure-insensitive" in that their rates depend only minimally on particle size, whereas others, denoted as "structure-sensitive", have rates which either increase or decrease with size. After discounting trivial effects, a hard core of results remains, demanding explanation. Although certain hydrocarbon transformations appear to need sites comprising more than a certain minimum number of atoms, it is thought that the electronic character of surface atoms plays a greater role than their geometric disposition.
Naz, Gul Jabeen; Dong, Dandan; Geng, Yaoxiang; Wang, Yingmin; Dong, Chuang
2017-08-22
It is known that bulk metallic glasses follow simple composition formulas [cluster](glue atom) 1 or 3 with 24 valence electrons within the framework of the cluster-plus-glue-atom model. Though the relevant nearest-neighbor cluster can be readily identified from a devitrification phase, the glue atoms remains poorly defined. The present work is devoted to understanding the composition rule of Fe-(B,P,C) based multi-component bulk metallic glasses, by introducing a cluster-based eutectic liquid model. This model regards a eutectic liquid to be composed of two stable liquids formulated respectively by cluster formulas for ideal metallic glasses from the two eutectic phases. The dual cluster formulas are first established for binary Fe-(B,C,P) eutectics: [Fe-Fe 14 ]B 2 Fe + [B-B 2 Fe 8 ]Fe ≈ Fe 83.3 B 16.7 for eutectic Fe 83 B 17 , [P-Fe 14 ]P + [P-Fe 9 ]P 2 Fe≈Fe 82.8 P 17.2 for Fe 83 P 17 , and [C-Fe 6 ]Fe 3 + [C-Fe 9 ]C 2 Fe ≈ Fe 82.6 C 17.4 for Fe 82.7 C 17.3 . The second formulas in these dual-cluster formulas, being respectively relevant to devitrification phases Fe 2 B, Fe 3 P, and Fe 3 C, well explain the compositions of existing Fe-based transition metals-metalloid bulk metallic glasses. These formulas also satisfy the 24-electron rule. The proposition of the composition formulas for good glass formers, directly from known eutectic points, constitutes a new route towards understanding and eventual designing metallic glasses of high glass forming abilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selle, J E
Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussedmore » in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.« less
Liquid-metal atomization for hot working preforms
NASA Technical Reports Server (NTRS)
Grant, N. J.; Pelloux, R. M.
1974-01-01
Rapid quenching of a liquid metal by atomization or splat cooling overcomes the major limitation of most solidification processes, namely, the segregation of alloying elements, impurities, and constituent phases. The cooling rates of different atomizing processes are related to the dendrite arm spacings and to the microstructure of the atomized powders. The increased solubility limits and the formation of metastable compounds in splat-cooled alloys are discussed. Consolidation of the powders by hot isostatic compaction, hot extrusion, or hot forging and rolling processes yields billets with properties equivalent to or better than those of the wrought alloys. The application of this powder processing technology to high-performance alloys is reviewed.
Method for decontamination of radioactive metal surfaces
Bray, L.A.
1996-08-13
Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.
Metallic hydrogen with a strong electron-phonon interaction at a pressure of 300-500 GPa
NASA Astrophysics Data System (ADS)
Degtyarenko, N. N.; Mazur, E. A.; Grishakov, K. S.
2017-08-01
Atomic metallic hydrogen with a lattice with FDDD symmetry is shown to have a stable phase under hydrostatic compression pressure in the range of 350-500 GPа. The resulting structure has a stable spectrum regarding the collapse of the phonons. Ab-unitio simulation method has been used to calculate the structural, electronic, phononic and other characteristics of the normal metallic phase of the hydrogen at a pressure of 350-500 GPA.
Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu
2017-08-11
The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.
Initiation with an electron beam of chemical reactions of interest for visible wavelength lasers
NASA Technical Reports Server (NTRS)
Whittier, J. S.; Cool, T. A.
1976-01-01
A description is given of the first results obtained with a new shock tube-electron beam facility designed to provide a versatile means for the systematic search for laser operation among several candidate metal atom-oxidizer systems. According to the current experimental approach, metal atoms are obtained in the vapor phase by the dissociation of metal compounds. A shock tube is employed to provide a short duration flow through an array of 29 supersonic flow-mixing nozzles. A high energy electron accelerator is used for the rapid initiation of chemical reaction in a mixed flow of encapsulated metal and oxidizer.
Messman, J.D.; Rains, T.C.
1981-01-01
A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.
The transition to the metallic state in low density hydrogen
McMinis, Jeremy; Morales, Miguel A.; Ceperley, David M.; ...
2015-11-18
Solid atomic hydrogen is one of the simplest systems to undergo a metal-insulator transition. Near the transition, the electronic degrees of freedom become strongly correlated and their description provides a difficult challenge for theoretical methods. As a result, the order and density of the phase transition are still subject to debate. In this work we use diffusion quantum Monte Carlo to benchmark the transition between the paramagnetic and anti-ferromagnetic phases of ground state body centered cubic atomic hydrogen. We locate the density of the transition by computing the equation of state for these two phases and identify the phase transitionmore » order by computing the band gap near the phase transition. These benchmark results show that the phase transition is continuous and occurs at a Wigner-Seitz radius of r s = 2.27(3)a 0. As a result, we compare our results to previously reported density functional theory, Hedin s GW approximation, and dynamical mean field theory results.« less
Materials science: Clockwork at the atomic scale
NASA Astrophysics Data System (ADS)
Ležaić, Marjana
2016-05-01
Design rules for exotic materials known as polar metals have been put into practice in thin films. The findings will motivate studies of how a phenomenon called screening can be manipulated to generate new phases in metals. See Letter p.68
Sonoluminescence and acoustic cavitation
NASA Astrophysics Data System (ADS)
Choi, Pak-Kon
2017-07-01
Sonoluminescence (SL) is light emission under high-temperature and high-pressure conditions of a cavitating bubble under intense ultrasound in liquid. In this review, the fundamentals of the interactions between the sound field and the bubble, and between bubbles are explained. Experimental results on high-speed shadowgraphy of bubble dynamics and multibubble SL are shown, demonstrating that the SL intensity is closely related to the bubble dynamics. SL studies of alkali-metal atom (Na and K) emission are summarized. The spectral measurements in solutions with different noble-gas dissolutions and in surfactant solutions, and the results of spatiotemporal separation of SL distribution strongly suggested that the site of alkali-metal atom emission is the gas phase inside bubbles. The spectral studies indicated that alkali-metal atom lines are composed of two kinds of lines: a component that is broadened and shifted from the original D lines arises from van der Waals molecules formed between alkali-metal atoms and noble-gas atoms under extreme conditions at bubble collapse. The other spectral component exhibiting no broadening and no shift was suggested to originate from higher temperature bubbles than those producing the broadened component.
Lithium Assisted “Dissolution–Alloying” Synthesis of Nanoalloys from Individual Bulk Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkholtz, Heather M.; Gallagher, James R.; Li, Tao
2016-04-12
We report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (similar to 200 degrees C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, which results in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron X-ray adsorption techniques. Then, upon the conversion of metal lithium tomore » LiOH in humid air, the Pd and Pt atoms undergo an alloying process to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted "dissolution-alloying" method bypasses many complications intrinsic to conventional ion reduction-based nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less
Lithium assisted “dissolution–alloying” synthesis of nanoalloys from individual bulk metals
Barkholtz, Heather M.; Gallagher, James R.; Li, Tao; ...
2016-03-27
Here, we report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (~200°C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, resulting in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron Xray adsorption techniques. Then, upon the conversion of metal lithium to LiOH in humid air,more » the Pd and Pt atoms undergo an alloying process, to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted “dissolutionalloying” method bypasses many complications intrinsic to conventional ion reductionbased nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less
In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions
NASA Astrophysics Data System (ADS)
Aierken, Yierpan; Sevik, Cem; Gülseren, Oğuz; Peeters, François M.; Çakır, Deniz
2018-07-01
There is an increasing need to understand interfaces between two-dimensional materials to realize an energy efficient boundary with low contact resistance and small heat dissipation. In this respect, we investigated the impact of charge and substitutional atom doping on the electronic transport properties of the hybrid metallic-semiconducting lateral junctions, formed between metallic (1T and 1T d ) and semiconducting (1H) phases of MoS2 by means of first-principles and non-equilibrium Green function formalism based calculations. Our results clearly revealed the strong influence of the type of interface and crystallographic orientation of the metallic phase on the transport properties of these systems. The Schottky barrier height, which is the dominant mechanism for contact resistance, was found to be as large as 0.63 eV and 1.19 eV for holes and electrons, respectively. We found that armchair interfaces are more conductive as compared to zigzag termination due to the presence of the metallic Mo zigzag chains that are directed along the transport direction. In order to manipulate these barrier heights we investigated the influence of electron doping of the metallic part (i.e. 1T d -MoS2). We observed that the Fermi level of the hybrid system moves towards the conduction band of semiconducting 1H-MoS2 due to filling of 4d-orbital of metallic MoS2, and thus the Schottky barrier for electrons decreases considerably. Besides electron doping, we also investigated the effect of substitutional doping of metallic MoS2 by replacing Mo atoms with either Re or Ta. Due to its valency, Re (Ta) behaves as a donor (acceptor) and reduces the Schottky barrier for electrons (holes). Since Re and Ta based transition metal dichalcogenides crystallize in either the 1T d or 1T phase, substitutional doping with these atom favors the stabilization of the 1T d phase of MoS2. Co-doping of hybrid structure results in an electronic structure, which facilities easy dissociation of excitons created in the 1H part.
In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions.
Aierken, Yierpan; Sevik, Cem; Gülseren, Oğuz; Peeters, François M; Çakır, Deniz
2018-07-20
There is an increasing need to understand interfaces between two-dimensional materials to realize an energy efficient boundary with low contact resistance and small heat dissipation. In this respect, we investigated the impact of charge and substitutional atom doping on the electronic transport properties of the hybrid metallic-semiconducting lateral junctions, formed between metallic (1T and 1T d ) and semiconducting (1H) phases of MoS 2 by means of first-principles and non-equilibrium Green function formalism based calculations. Our results clearly revealed the strong influence of the type of interface and crystallographic orientation of the metallic phase on the transport properties of these systems. The Schottky barrier height, which is the dominant mechanism for contact resistance, was found to be as large as 0.63 eV and 1.19 eV for holes and electrons, respectively. We found that armchair interfaces are more conductive as compared to zigzag termination due to the presence of the metallic Mo zigzag chains that are directed along the transport direction. In order to manipulate these barrier heights we investigated the influence of electron doping of the metallic part (i.e. 1T d -MoS 2 ). We observed that the Fermi level of the hybrid system moves towards the conduction band of semiconducting 1H-MoS 2 due to filling of 4d-orbital of metallic MoS 2 , and thus the Schottky barrier for electrons decreases considerably. Besides electron doping, we also investigated the effect of substitutional doping of metallic MoS 2 by replacing Mo atoms with either Re or Ta. Due to its valency, Re (Ta) behaves as a donor (acceptor) and reduces the Schottky barrier for electrons (holes). Since Re and Ta based transition metal dichalcogenides crystallize in either the 1T d or 1T phase, substitutional doping with these atom favors the stabilization of the 1T d phase of MoS 2 . Co-doping of hybrid structure results in an electronic structure, which facilities easy dissociation of excitons created in the 1H part.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghvaei, Amir Hossein, E-mail: Amirtaghvaei@gmail.com; Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz; Stoica, Mihai
2014-06-01
The influence of ball milling on the atomic structure and magnetic properties of the Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass with a high thermal stability and excellent soft magnetic properties has been investigated. After 14 h of milling, the obtained powders were found to consist mainly of an amorphous phase and a small fraction of the (Co,Fe){sub 21}Ta{sub 2}B{sub 6} nanocrystals. The changes in the reduced pair correlation functions suggest noticeable changes in the atomic structure of the amorphous upon ball milling. Furthermore, it has been shown that milling is accompanied by introduction of compressive and dilatational sites inmore » the glassy phase and increasing the fluctuation of the atomic-level hydrostatic stress without affecting the coordination number of the nearest neighbors. Ball milling has decreased the thermal stability and significantly affected the magnetic properties through increasing the saturation magnetization, Curie temperature of the amorphous phase and coercivity. - Highlights: • Ball milling affected the atomic structure of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass. • Mechanically-induced crystallization started after 4 h milling. • Milling increased the fluctuation of the atomic-level hydrostatic stress in glass. • Ball milling influenced the thermal stability and magnetic properties.« less
Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles
Veith, Gabriel M.; Lupini, Andrew R.; Baggetto, Loïc; ...
2013-12-03
Here, we report evidence for the formation of nitrogen-rich precious metal nanoparticles (Pt, Pd) prepared by reactive sputtering of the pure metal in a N 2 plasma. The composition of the nanoparticles varies as a function of particle size and growth conditions. For the smallest particles the nitrogen content appears to be as high as 6.7 N atoms for each Pd atom or 5.9 N atoms for each Pt atom whereas bulk films have nominal compositions of Pt 7.3N and Pd 2.5N. The nanoparticles are metastable in air and moisture, slowly decomposing over several years. This paper describes the synthesismore » of these materials along with experimental evidence of the composition, oxidation state, and growth modes. Moreover, the catalytic properties of these N-rich nanoparticles were accessed by rotating disk electrode electrochemical studies, the liquid phase oxidation of benzyl alcohol and gas phase CO oxidation and support the experimental evidence for the materials composition.« less
Gallium-rich Pd-Ga phases as supported liquid metal catalysts
NASA Astrophysics Data System (ADS)
Taccardi, N.; Grabau, M.; Debuschewitz, J.; Distaso, M.; Brandl, M.; Hock, R.; Maier, F.; Papp, C.; Erhard, J.; Neiss, C.; Peukert, W.; Görling, A.; Steinrück, H.-P.; Wasserscheid, P.
2017-09-01
A strategy to develop improved catalysts is to create systems that merge the advantages of heterogeneous and molecular catalysis. One such system involves supported liquid-phase catalysts, which feature a molecularly defined, catalytically active liquid film/droplet layer adsorbed on a porous solid support. In the past decade, this concept has also been extended to supported ionic liquid-phase catalysts. Here we develop this idea further and describe supported catalytically active liquid metal solutions (SCALMS). We report a liquid mixture of gallium and palladium deposited on porous glass that forms an active catalyst for alkane dehydrogenation that is resistant to coke formation and is thus highly stable. X-ray diffraction and X-ray photoelectron spectroscopy, supported by theoretical calculations, confirm the liquid state of the catalytic phase under the reaction conditions. Unlike traditional heterogeneous catalysts, the supported liquid metal reported here is highly dynamic and catalysis does not proceed at the surface of the metal nanoparticles, but presumably at homogeneously distributed metal atoms at the surface of a liquid metallic phase.
Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.
Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F
2018-01-22
Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dahlqvist, Martin; Lu, Jun; Meshkian, Rahele; Tao, Quanzheng; Hultman, Lars; Rosen, Johanna
2017-01-01
The enigma of MAX phases and their hybrids prevails. We probe transition metal (M) alloying in MAX phases for metal size, electronegativity, and electron configuration, and discover ordering in these MAX hybrids, namely, (V2/3Zr1/3)2AlC and (Mo2/3Y1/3)2AlC. Predictive theory and verifying materials synthesis, including a judicious choice of alloying M from groups III to VI and periods 4 and 5, indicate a potentially large family of thermodynamically stable phases, with Kagomé-like and in-plane chemical ordering, and with incorporation of elements previously not known for MAX phases, including the common Y. We propose the structure to be monoclinic C2/c. As an extension of the work, we suggest a matching set of novel MXenes, from selective etching of the A-element. The demonstrated structural design on simultaneous two-dimensional (2D) and 3D atomic levels expands the property tuning potential of functional materials. PMID:28776034
Use of metallic glasses for fabrication of structures with submicron dimensions
Wiley, John D.; Perepezko, John H.
1986-01-01
Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.
Von Appen, Jörg; Eck, Bernhard; Dronskowski, Richard
2010-11-15
The phase diagram of (Fe(1-x) Mn(x))(3)C has been investigated by means of density-functional theory (DFT) calculations at absolute zero temperature. The atomic distributions of the metal atoms are not random-like as previously proposed but we find three different, ordered regions within the phase range. The key role is played by the 8d metal site which forms, as a function of the composition, differing magnetic layers, and these dominate the physical properties. We calculated the magnetic moments, the volumes, the enthalpies of mixing and formation of 13 different compositions and explain the changes of the macroscopic properties with changes in the electronic and magnetic structures by means of bonding analyses using the Crystal Orbital Hamilton Population (COHP) technique. 2010 Wiley Periodicals, Inc.
Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales
NASA Astrophysics Data System (ADS)
Dongare, Avinash M.
2014-12-01
A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.
Schouteden, Koen; Lauwaet, Koen; Janssens, Ewald; Barcaro, Giovanni; Fortunelli, Alessandro; Van Haesendonck, Chris; Lievens, Peter
2014-02-21
Preformed Co clusters with an average diameter of 2.5 nm are produced in the gas phase and are deposited under controlled ultra-high vacuum conditions onto a thin insulating NaCl film on Au(111). Relying on a combined experimental and theoretical investigation, we demonstrate visualization of the three-dimensional atomic structure of the Co clusters by high-resolution scanning tunneling microscopy (STM) using a Cl functionalized STM tip that can be obtained on the NaCl surface. More generally, use of a functionalized STM tip may allow for systematic atomic structure determination with STM of nanoparticles that are deposited on metal surfaces.
1980-11-01
Ao-A093 950 NORTHWESTERN UNIV EVANSTON IL DEPT OF M4ECHANICAL ND-ETC F/S 7/4 INVESTIGATION OF 1ETAL AND METAL OXIDE CLUSTERS S1ALL ENOUGH TO--ETC(U...34 " 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reveroe side if necessary snd Identify by block number) Clusters , Nucleation, Molecular Beam, Free...contract a variety of techniques have been employed to study the properties of small atomic and molecular clusters formed in the gas phase via
McCarthy, P.; Chattopadhyay, M.; Millhauser, G.L.; Tsarevsky, N.V.; Bombalski, L.; Matyjaszewski, K.; Shimmin, D.; Avdalovic, N.; Pohl, C.
2010-01-01
Atom transfer radical polymerization (ATRP) was employed to create isolated, metal-containing nanoparticles on the surface of non-porous polymeric beads with the goal of developing a new immobilized metal affnity chromatography (IMAC) stationary phase for separating prion peptides and proteins. Transmission electron microscopy was used to visualize nanoparticles on the substrate surface. Individual ferritin molecules were also visualized as ferritin–nanoparticle complexes. The column's resolving power was tested by synthesizing peptide analogs to the copper binding region of prion protein and injecting mixtures of these analogs onto the column. As expected, the column was capable of separating prion-related peptides differing in number of octapeptide repeat units (PHGGGWGQ), (PHGGGWGQ)2, and (PHGGGWGQ)4. Unexpectedly, the column could also resolve peptides containing the same number of repeats but differing only in the presence of a hydrophilic tail, Q → A substitution, or amide nitrogen methylation. PMID:17481564
Diffusion and phase change characterization by mass spectrometry
NASA Technical Reports Server (NTRS)
Koslin, M. E.; White, F. A.
1979-01-01
The high temperature diffusion of trace elements in metals and alloys was investigated. Measurements were made by high sensitivity mass spectrometry in which individual atoms were detected, and quantitative data was obtained for zircaloy-2, 304 stainless steel, and tantalum. Additionally, a mass spectrometer was also an analytical tool for determining an allotropic phase change for stainless steel at 955 C, and a phase transition region between 772 C and 1072 C existing for zircaloy-2. Diffusion rates were measured in thin (0.001" (0.0025 cm) and 0.0005" (0.0013 cm)) ribbons which were designed as high temperature thermal ion sources, with the alkali metals as naturally occurring impurities. In the temperature and pressure regime where diffusion measurements were made, the solute atoms evaporated from the ribbon filaments when the impurities diffused to the surface, with a fraction of these impurity atoms ionized according to the Langmuir-Saha relation. The techniques developed can be applied to many other alloys important to space vehicles and supersonic transports; and, with appropriate modifications, to the diffusion of impurities in composites.
Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries
Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID
2005-01-04
The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.
di Lena, Fabio; Matyjaszewski, Krzysztof
2009-11-07
An electrospray ionization mass spectrometer equipped with a quadrupole ion trap as the mass analyzer provided a powerful tool for the investigation of metal ligand affinities of catalysts for atom transfer radical polymerization. It allowed, in particular, (i) the identification, in a library of ligands, of the most stable, and thus active, copper catalysts; (ii) the assessment of the effects of the reaction medium on the relative stabilities of the catalyst complexes; and (iii) the evaluation of the influence of the nature of the ligand on both the complex halogenophilicity and the metal-ligand stabilities in the gas-phase.
Boron-Based Hydrogen Storage: Ternary Borides and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajo, John J.
DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less
Metal-insulator-superconductor transition of spin-3/2 atoms on optical lattices
NASA Astrophysics Data System (ADS)
De Silva, Theja N.
2018-01-01
We use a slave-rotor approach within a mean-field theory to study the competition of metallic, Mott-insulating, and superconducting phases of spin-3/2 fermions subjected to a periodic optical lattice potential. In addition to the metallic, the Mott-insulating, and the superconducting phases that are associated with the gauge symmetry breaking of the spinon field, we identify an emerging superconducting phase that breaks both roton and spinon field gauge symmetries. This superconducting phase emerges as a result of the competition between spin-0 singlet and spin-2 quintet interaction channels naturally available for spin-3/2 systems. The two superconducting phases can be distinguished from each other by quasiparticle weight. We further discuss the properties of these phases for both two-dimensional square and three-dimensional cubic lattices at zero and finite temperatures.
Skelton, J M; Elliott, S R
2013-05-22
Phase-change materials are the alloys at the heart of an emerging class of next-generation, non-volatile digital memory technologies. However, the widely studied Ge-Sb-Te system possesses several undesirable properties, and enhancing its properties, e.g. by doping, is an area of active research. Various first-row transition-metal dopants have been shown to impart useful property enhancements, but a systematic study of the entire period has yet to be undertaken, and little has been done to investigate their interaction with the host material at the atomic level. We have carried out first-principles computer simulations of the complete phase-change cycle in Ge2Sb2Te5 doped with each of the ten first-row transition metals. In this article, we present a comprehensive survey of the electronic, magnetic and optical properties of these doped materials. We discuss in detail their atomic-level structure, and relate the microscopic behaviours of the dopant atoms to their influence on the Ge2Sb2Te5 host. By considering an entire family of similar materials, we identify trends and patterns which might be used to predict suitable dopants for optimizing materials for specific phase-change applications. The computational method employed here is general, and this materials-discovery approach could be applied in the future to study other families of potential dopants for such materials.
NASA Astrophysics Data System (ADS)
Tadjer, Marko J.; Wheeler, Virginia D.; Downey, Brian P.; Robinson, Zachary R.; Meyer, David J.; Eddy, Charles R.; Kub, Fritz J.
2017-10-01
Amorphous vanadium oxide (VO2) films deposited by atomic layer deposition (ALD) were crystallized with an ex situ anneal at 660-670 °C for 1-2 h under a low oxygen pressure (10-4 to 10-5 Torr). Under these conditions the crystalline VO2 phase was maintained, while formation of the V2O5 phase was suppressed. Electrical transition from the insulator to the metallic phase was observed in the 37-60 °C range, with an ROFF/RON ratio of up to about 750 and ΔTC ≅ 7-10 °C. Lateral electric field applied across two-terminal device structures induced a reversible phase change, with a room temperature transition field of about 25 kV/cm in the VO2 sample processed with the 2 h long O2 anneal. Both the width and slope of the field induced MIT I-V hysteresis were dependent upon the VO2 crystalline quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Janpreet; Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com; Singh, Gurinder
To improve the phase change characteristics of Ge{sub 2}Sb{sub 2}Te{sub 5} (GST), doping is used as one of the effective methods. 4.4 atomic % of Pb doped GST has been studied using first principle calculations. No effect of doping on Te-Ge and Te-Sb bond length has been observed, but the Te-Te bond gets shrink with Pb doping. Due to which the Sb{sub 2}Te{sub 3} segregates as a second phase, with increased doping concentration of Pb in GST alloy. Using such type of calculation, we can calculate the desirable concentration of dopant atoms to prepare the desired material. We can controlmore » any segregation in required material with pre-theoretical calculations. The metallic nature of Pd doped GST has been discussed with band structure plots. The metallic character of alloys calculated as in this paper will be helpful to understand the tuning of conductivity of phase change materials, which helps to enhance the phase change properties.« less
All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition
NASA Astrophysics Data System (ADS)
Lausund, Kristian Blindheim; Nilsen, Ola
2016-11-01
Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.
The dynamical properties of a Rydberg hydrogen atom between two parallel metal surfaces
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Hong-Yun; Yang, Shan-Ying; Lin, Sheng-Lu
2011-03-01
This paper presents the dynamical properties of a Rydberg hydrogen atom between two metal surfaces using phase space analysis methods. The dynamical behaviour of the excited hydrogen atom depends sensitively on the atom—surface distance d. There exists a critical atom—surface distance dc = 1586 a.u. When the atom—surface distance d is larger than the critical distance dc, the image charge potential is less important than the Coulomb potential, the system is near-integrable and the electron motion is regular. As the distance d decreases, the system will tend to be non-integrable and unstable, and the electron might be captured by the metal surfaces. Project supported by the National Natural Science Foundation of China (Grant No. 10774093) and the Natural Science Foundation of Shandong Province (Grant No. ZR2009FZ006).
Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil
2012-01-01
Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature. PMID:22312454
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.
Mott insulators are materials in which strong correlations among the electrons induce an unconventional insulating state. Rich interplay between the structural, magnetic, and electronic degrees of freedom resulting from the electron correlation can lead to unusual complexity of Mott materials on the atomic scale, such as microscopically heterogeneous phases or local structural correlations that deviate significantly from the average structure. Such behavior must be studied by suitable experimental techniques, i.e. "local probes", that are sensitive to this local behavior rather than just the bulk, average properties. In this thesis, I will present results from our studies of multiple families of Mott insulators using two such local probes: muon spin relaxation (muSR), a probe of local magnetism; and pair distribution function (PDF) analysis of x-ray and neutron total scattering, a probe of local atomic structure. In addition, I will present the development of magnetic pair distribution function analysis, a novel method for studying local magnetic correlations that is highly complementary to the muSR and atomic PDF techniques. We used muSR to study the phase transition from Mott insulator to metal in two archetypal Mott insulating systems: RENiO3 (RE = rare earth element) and V2O3. In both of these systems, the Mott insulating state can be suppressed by tuning a nonthermal parameter, resulting in a "quantum" phase transition at zero temperature from the Mott insulating state to a metallic state. In RENiO3, this occurs through variation of the rare-earth element in the chemical composition; in V 2O3, through the application of hydrostatic pressure. Our results show that the metallic and Mott insulating states unexpectedly coexist in phase-separated regions across a large portion of parameter space near the Mott quantum phase transition and that the magnitude of the ordered antiferromagnetic moment remains constant across the phase diagram until it is abruptly destroyed at the quantum phase transition. Taken together, these findings point unambiguously to a first-order quantum phase transition in these systems. We also conducted x-ray and neutron PDF experiments, which suggest that the distinct atomic structures associated with the insulating and metallic phases similarly coexist near the quantum phase transition. These results have significant implications for our understanding of the Mott metal-insulator quantum phase transition in real materials. The second part of this thesis centers on the derivation and development of the magnetic pair distribution function (mPDF) technique and its application to the antiferromagnetic Mott insulator MnO. The atomic PDF method involves Fourier transforming the x-ray or neutron total scattering intensity from reciprocal space into real space to directly reveal the local atomic correlations in a material, which may deviate significantly from the average crystallographic structure of that material. Likewise, the mPDF method involves Fourier transforming the magnetic neutron total scattering intensity to probe the local correlations of magnetic moments in the material, which may exist on short length scales even when the material has no long-range magnetic order. After deriving the fundamental mPDF equations and providing a proof-of-principle by recovering the known magnetic structure of antiferromagnetic MnO, we used this technique to investigate the short-range magnetic correlations that persist well into the paramagnetic phase of MnO. By combining the mPDF measurements with ab initio calculations of the spin-spin correlation function in paramagnetic MnO, we were able to quantitatively account for the observed mPDF. We also used the mPDF data to evaluate competing ab initio theories, thereby resolving some longstanding questions about the magnetic exchange interactions in MnO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemarie, Gabriel; Delande, Dominique; Chabe, Julien
Using a cold atomic gas exposed to laser pulses - a realization of the chaotic quasiperiodic kicked rotor with three incommensurate frequencies - we study experimentally and theoretically the Anderson metal-insulator transition in three dimensions. Sensitive measurements of the atomic wave function and the use of finite-size scaling techniques make it possible to unambiguously demonstrate the existence of a quantum phase transition and to measure its critical exponents. By taking proper account of systematic corrections to one-parameter scaling, we show the universality of the critical exponent {nu}=1.59{+-}0.01, which is found to be equal to the one previously computed for themore » Anderson model.« less
Stabilization mechanism of γ-Mg17Al12 and β-Mg2Al3 complex metallic alloys
NASA Astrophysics Data System (ADS)
Vrtnik, S.; Jazbec, S.; Jagodič, M.; Korelec, A.; Hosnar, L.; Jagličić, Z.; Jeglič, P.; Feuerbacher, M.; Mizutani, U.; Dolinšek, J.
2013-10-01
Large-unit-cell complex metallic alloys (CMAs) frequently achieve stability by lowering the kinetic energy of the electron system through formation of a pseudogap in the electronic density of states (DOS) across the Fermi energy ɛF. By employing experimental techniques that are sensitive to the electronic DOS in the vicinity of ɛF, we have studied the stabilization mechanism of two binary CMA phases from the Al-Mg system: the γ-Mg17Al12 phase with 58 atoms in the unit cell and the β-Mg2Al3 phase with 1178 atoms in the unit cell. Since the investigated alloys are free from transition metal elements, orbital hybridization effects must be small and we were able to test whether the alloys obey the Hume-Rothery stabilization mechanism, where a pseudogap in the DOS is produced by the Fermi surface-Brillouin zone interactions. The results have shown that the DOS of the γ-Mg17Al12 phase exhibits a pronounced pseudogap centered almost exactly at ɛF, which is compatible with the theoretical prediction that this phase is stabilized by the Hume-Rothery mechanism. The disordered cubic β-Mg2Al3 phase is most likely entropically stabilized at high temperatures, whereas at lower temperatures stability is achieved by undergoing a structural phase transition to more ordered rhombohedral β‧ phase at 214 ° C, where all atomic sites become fully occupied. No pseudogap in the vicinity of ɛF was detected for the β‧ phase on the energy scale of a few 100 meV as determined by the ‘thermal observation window’ of the Fermi-Dirac function, so that the Hume-Rothery stabilization mechanism is not confirmed for this compound. However, the existence of a much broader shallow pseudogap due to several critical reciprocal lattice vectors \\buildrel{\\rightharpoonup}\\over{G} that simultaneously satisfy the Hume-Rothery interference condition remains the most plausible stabilization mechanism of this phase. At Tc = 0.85 K, the β‧ phase undergoes a superconducting transition, which slightly increases the cohesive energy and may contribute to relative stability of this phase against competing neighboring phases.
Susarla, Sandhya; Kochat, Vidya; Kutana, Alex; ...
2017-08-15
Transition metal dichalcogenide (TMD) alloys form a broad class of two-dimensional (2D) layered materials with tunable bandgaps leading to interesting optoelectronic applications. In the bottom-up approach of building these atomically thin materials, atomic doping plays a crucial role. Here we demonstrate a single step CVD (chemical vapor deposition) growth procedure for obtaining binary alloys and heterostructures by tuning atomic composition. We show that a minute doping of tin during the growth phase of the Mo 1–xW xS 2 alloy system leads to formation of lateral and vertical heterostructure growth. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imagingmore » and density functional theory (DFT) calculations also support the modified stacking and growth mechanism due to the nonisomorphous Sn substitution. Our experiments demonstrate the possibility of growing heterostructures of TMD alloys whose spectral responses can be desirably tuned for various optoelectronic applications.« less
Pauling, L
1988-06-01
Single-grain precession x-ray diffraction photographs of Al(6)CuLi(3) have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 A, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the beta-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al(37)Cu(3)Li(21)Mg(3), and to GaMg(2)Zn(3). A theory of icosahedral quasicrystals and amorphous metals is described.
Pauling, Linus
1988-01-01
Single-grain precession x-ray diffraction photographs of Al6CuLi3 have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 Å, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the β-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al37Cu3Li21Mg3, and to GaMg2Zn3. A theory of icosahedral quasicrystals and amorphous metals is described. PMID:16593929
Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering.
Voiry, Damien; Goswami, Anandarup; Kappera, Rajesh; e Silva, Cecilia de Carvalho Castro; Kaplan, Daniel; Fujita, Takeshi; Chen, Mingwei; Asefa, Tewodros; Chhowalla, Manish
2015-01-01
Chemical functionalization of low-dimensional materials such as nanotubes, nanowires and graphene leads to profound changes in their properties and is essential for solubilizing them in common solvents. Covalent attachment of functional groups is generally achieved at defect sites, which facilitate electron transfer. Here, we describe a simple and general method for covalent functionalization of two-dimensional transition metal dichalcogenide nanosheets (MoS₂, WS₂ and MoSe₂), which does not rely on defect engineering. The functionalization reaction is instead facilitated by electron transfer between the electron-rich metallic 1T phase and an organohalide reactant, resulting in functional groups that are covalently attached to the chalcogen atoms of the transition metal dichalcogenide. The attachment of functional groups leads to dramatic changes in the optoelectronic properties of the material. For example, we show that it renders the metallic 1T phase semiconducting, and gives it strong and tunable photoluminescence and gate modulation in field-effect transistors.
NASA Astrophysics Data System (ADS)
Silvera, Isaac F.; Dias, Ranga
2018-06-01
Hydrogen is the simplest and most abundant element in the Universe. There are two pathways for creating metallic hydrogen under high pressures. Over 80 years ago Wigner and Huntington predicted that if solid molecular hydrogen was sufficiently compressed in the T = 0 K limit, molecules would dissociate to form atomic metallic hydrogen (MH). We have observed this transition at a pressure of 4.95 megabars. MH in this form has probably never existed on Earth or in the Universe; it may be a room temperature superconductor and is predicted to be metastable. If metastable it will have an important technological impact. Liquid metallic hydrogen can also be produced at intermediate pressures and high temperatures and is believed to make up ~90% of the planet Jupiter. We have observed this liquid–liquid transition, also known as the plasma phase transition, at pressures of ~1–2 megabar and temperatures ~1000–2000 K. However, in this paper we shall focus on the Wigner–Huntington transition. We shall discuss the methods used to observe metallic hydrogen at extreme conditions of static pressure in the laboratory, extending our understanding of the phase diagram of the simplest atom in the periodic table.
Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses
Lan, S.; Ren, Y.; Wei, X. Y.; ...
2017-03-17
An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in-situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clustersmore » over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase which forms the room-temperature glass phase upon quenching. Finally, the outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat-treatment.« less
Atomic Layer Deposition of Vanadium Dioxide and a Temperature-dependent Optical Model.
Currie, Marc; Mastro, Michael A; Wheeler, Virginia D
2018-05-23
Vanadium dioxide is a material that has a reversible metal-insulator phase change near 68 °C. To grow VO2 on a wide variety of substrates, with wafer-scale uniformity and angstrom level control of thickness, the method of atomic-layer deposition was chosen. This ALD process enables high-quality, low-temperature (≤150 °C) growth of ultrathin films (100-1000 Å) of VO2. For this demonstration, the VO2 films were grown on sapphire substrates. This low temperature growth technique produces mostly amorphous VO2 films. A subsequent anneal in an ultra-high vacuum chamber with a pressure of 7x10 -4 Pa of ultra-high purity (99.999%) oxygen produced oriented, polycrystalline VO2 films. The crystallinity, phase, and strain of the VO2 were determined by Raman spectroscopy and X-ray diffraction, while the stoichiometry and impurity levels were determined by X-ray photoelectron spectroscopy, and finally the morphology was determined by atomic force microscopy. These data demonstrate the high-quality of the films grown by this technique. A model was created to fit to the data for VO2 in its metallic and insulating phases in the near infrared spectral region. The permittivity and refractive index of the ALD VO2 agreed well with the other fabrication methods in its insulating phase, but showed a difference in its metallic state. Finally, the analysis of the films' optical properties enabled the creation of a wavelength- and temperature-dependent model of the complex optical refractive index for developing VO2 as a tunable refractive index material.
Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, In Soo; Li, Zhanyong; Zheng, Jian
Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novelmore » catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.« less
NASA Astrophysics Data System (ADS)
Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.
2017-10-01
Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.
Pauling, Linus
1989-01-01
Consideration of the relation between bond length and bond number and the average atomic volume for different ways of packing atoms leads to the conclusion that the average ligancy of atoms in a metal should increase when a phase change occurs on increasing the pressure. Minimum volume for each value of the ligancy results from triangular coordination polyhedra (with triangular faces), such as the icosahedron and the Friauf polyhedron. Electron transfer may permit atoms of an element to assume different ligancies. Application of these principles to Cs(IV) and Cs(V), which were previously assigned structures with ligancy 8 and 6, respectively, has led to the assignment to Cs(IV) of a primitive cubic unit cell with a = 16.11 Å and with about 122 atoms in the cube and to Cs(V) of a primitive cubic unit cell resembling that of Mg32(Al,Zn)49, with a = 16.97 Å and with 162 atoms in the cube. PMID:16578839
Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS 2
Yamaguchi, Hisato; Blancon, Jean-Christophe; Kappera, Rajesh; ...
2014-12-18
A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. We investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS 2) under photo-excitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS 2, after the metallic phase transformation (1T-phase), the photocurrent peak ismore » observed towards the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are few meV for 1T- and ~200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photo responsivity by more than one order of magnitude, a crucial parameter in achieving high performance optoelectronic devices. The obtained results pave a pathway for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where Ohmic contacts are necessary for achieving high efficiency devices with low power consumption.« less
Hussaini, Zahra; Lin, Pin Ann; Natarajan, Bharath; Zhu, Wenhui; Sharma, Renu
2018-03-01
For many reaction processes, such as catalysis, phase transformations, nanomaterial synthesis etc., nanoscale observations at high spatial (sub-nanometer) and temporal (millisecond) resolution are required to characterize and comprehend the underlying factors that favor one reaction over another. The combination of such spatial and temporal resolution (up to 600 µs), while rich in information, produces a large number of snapshots, each of which must be analyzed to obtain the structural (and thereby chemical) information. Here we present a methodology for automated quantitative measurement of real-time atomic position fluctuations in a nanoparticle. We leverage a combination of several image processing algorithms to precisely identify the positions of the atomic columns in each image. A geometric model is then used to measure the time-evolution of distances and angles between neighboring atomic columns to identify different phases and quantify local structural fluctuations. We apply this technique to determine the atomic-level fluctuations in the relative fractions of metal and metal-carbide phases in a cobalt catalyst nanoparticle during single-walled carbon nanotube (SWCNT) growth. These measurements provided a means to obtain the number of carbon atoms incorporated into and released from the catalyst particle, thereby helping resolve carbon reaction pathways during SWCNT growth. Further we demonstrate the use of this technique to measure the reaction kinetics of iron oxide reduction. Apart from reducing the data analysis time, the statistical approach allows us to measure atomic distances with sub-pixel resolution. We show that this method can be applied universally to measure atomic positions with a precision of 0.01 nm from any set of atomic-resolution video images. With the advent of high time-resolution direct detection cameras, we anticipate such methods will be essential in addressing the metrology problem of quantifying large datasets of time-resolved images in future. Published by Elsevier B.V.
Pressurized feed-injection spray-forming apparatus
Berry, R.A.; Fincke, J.R.; McHugh, K.M.
1995-08-29
A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.
Pressurized feed-injection spray-forming apparatus
Berry, Ray A.; Fincke, James R.; McHugh, Kevin M.
1995-01-01
A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.
Nanostructures nucleation in carbon-metal gaseous phase: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Galiullina, G. M.; Orekhov, N. D.; Stegailov, V. V.
2018-01-01
We perform nonequilibrium molecular dynamics simulation of carbon nanoclusters nucleation and early stages of growth from the gaseous phase. We analyze the catalytic effect of iron atoms on the nucleation kinetics and structure of the resultant nanoparticles. Reactive Force Field (ReaxFF) is used in the simulations for the description of bond formation and dissociation during the nucleation process at the nanoscale. The catalytic effect of iron reveals itself even on nanosecond simulation times: iron atoms accelerate the process of clustering but result in less graphitized carbon structures.
Some Applications of Fast Atom Bombardment Mass Spectrometry.
1985-08-01
heated probe - E1 mass spectra of certain metal carboxylates 3 , where M4 (OCOR)60 is often the parent vapour-phase species. In fact, Zn3 (OCOCH 3)30+ is...using FABMS(1 7J. A Rhodium based catalyst complex also gave good spectra(1)- Metal carboxylates are common corrosion products(1 3 ). Figure 10 shows the
The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5100 PC Atomic Absorption Spectrophotometer (PE 5100). These procedures are used for the determination of the target trace metal, as in soil, house dust, f...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jager, Marieke F.; Ott, Christian; Kraus, Peter M.
We present coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO 2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M 2,3 edge is used to track the insulator-to-metal phase transition in VO 2 . This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase,more » and measures the phase-transition dynamics in the insulating phase. An understanding of the VO 2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V 3+/d 2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d 2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. In conclusion, the findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.« less
Jager, Marieke F.; Ott, Christian; Kraus, Peter M.; Kaplan, Christopher J.; Pouse, Winston; Marvel, Robert E.; Haglund, Richard F.; Neumark, Daniel M.; Leone, Stephen R.
2017-01-01
Coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M2,3 edge is used to track the insulator-to-metal phase transition in VO2. This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase, and measures the phase-transition dynamics in the insulating phase. An understanding of the VO2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V3+/d2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. The findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials. PMID:28827356
Jager, Marieke F.; Ott, Christian; Kraus, Peter M.; ...
2017-08-21
We present coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO 2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M 2,3 edge is used to track the insulator-to-metal phase transition in VO 2 . This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase,more » and measures the phase-transition dynamics in the insulating phase. An understanding of the VO 2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V 3+/d 2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d 2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. In conclusion, the findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.« less
Lithium-aluminum-magnesium electrode composition
Melendres, Carlos A.; Siegel, Stanley
1978-01-01
A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhrmann, C.; Hoebing, T.; Bergner, A.
2015-08-07
The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emittermore » effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.« less
NASA Astrophysics Data System (ADS)
Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan
2015-03-01
Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.
All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition
Lausund, Kristian Blindheim; Nilsen, Ola
2016-01-01
Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic–inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios. PMID:27876797
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzik, Matylda N., E-mail: Matylda.Guzik@ife.no; Physics Department, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller; Hauback, Bjorn C.
2012-02-15
La{sub 2-x}Mg{sub x}Ni{sub 7} and its hydrides/deuterides were investigated by high resolution synchrotron powder X-ray and neutron diffraction. Upon deuteration the single phase sample of the intermetallic compound with the refined composition La{sub 1.63}Mg{sub 0.37}Ni{sub 7} (space group: P6{sub 3}/mmc) expands isotropically, in contrast to the Mg free phase. The hydrogen uptake, {approx}9 D/f.u., is higher than in La{sub 2}Ni{sub 7}D{sub 6.5}. The refined composition accounts for La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8} (beta-phase). Rietveld refinements using the neutron and synchrotron diffraction data suggest that deuterium atoms occupy 5 different interstitial sites within both AB{sub 2} and AB{sub 5} slabs, eithermore » in an ordered or a disordered way. All determined D sites have an occupancy >50% and the shortest D-D contact is 1.96(3) A. It is supposed that a competition between the tendency to form directional bonds and repulsive D-D (H-H) interactions is the most important factor that influences the distribution of deuterium atoms in this structure. A hitherto unknown second, alpha-phase with composition La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 0.56}, crystallizing with the same hexagonal symmetry as La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8}, has been discovered. The unit cell parameters for this D-poor phase differ slightly from those of the intermetallic. Alpha-phase displays only one D site (4f, space group: P6{sub 3}/mmc) occupied >50%, which is not populated in the D-rich beta-phase. This hydrogen/deuterium induced site depopulation can be explained by repulsive D-D (H-H) interactions that are likely to influence non-occupancy of certain interstices in metal lattice when absorbing hydrogen. - Graphical abstract: The detailed D atoms arrangement in La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8} differs significantly from the previously reported La{sub 1.5}Mg{sub 0.5}Ni{sub 7}D{sub 8.9(9.1)}. The present model consists of only five deuterium sites as opposed to nine proposed for La{sub 1.5}Mg{sub 0.5}Ni{sub 7}D{sub 8.9(9.1)}. The reported four remaining deuterium atom positions in La{sub 1.5}Mg{sub 0.5}Ni{sub 7}D{sub 8.9(9.1)} were not found in the investigated La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8}. The five Ni atoms have deuterium among their nearest neighbors, which surround them in a way similar to configurations observed in some complex transition metal hydrides and already reported for metallic hydrides. In the presented deuterium-rich phase, deformed tetrahedron, rigid trigonal pyramids as well as disordered and deformed saddle-like configuration are observed. Highlights: Black-Right-Pointing-Pointer Alpha- and beta-phase for La{sub 2-x}Mg{sub x}Ni{sub 7}-H system have been characterized. Black-Right-Pointing-Pointer Five different interstitial sites are occupied by deuterium/hydrogen atoms in the beta-phase. Black-Right-Pointing-Pointer One D/H site has been determined in the alpha-phase. Black-Right-Pointing-Pointer Deuterium/hydrogen induced site depopulation during phase transformation is observed. Black-Right-Pointing-Pointer Ni atoms tend to have tetrahedral-like D/H atom coordination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Honggyu; Marshall, Patrick B.; Ahadi, Kaveh
The lattice response of a prototype Mott insulator, SmTiO 3, to hole doping is investigated with atomic-scale spatial resolution. SmTiO 3 films are doped with Sr on the Sm site with concentrations that span the insulating and metallic sides of the filling-controlled Mott metal-insulator transition (MIT). The GdFeO 3-type distortions are investigated using an atomic resolution scanning transmission electron microscopy technique that can resolve small lattice distortions with picometer precision. We show that these distortions are gradually and uniformly reduced as the Sr concentration is increased without any phase separation. Significant distortions persist into the metallic state. In conclusion, themore » results present a new picture of the physics of this prototype filling-controlled MIT, which is discussed.« less
Kim, Honggyu; Marshall, Patrick B.; Ahadi, Kaveh; ...
2017-11-02
The lattice response of a prototype Mott insulator, SmTiO 3, to hole doping is investigated with atomic-scale spatial resolution. SmTiO 3 films are doped with Sr on the Sm site with concentrations that span the insulating and metallic sides of the filling-controlled Mott metal-insulator transition (MIT). The GdFeO 3-type distortions are investigated using an atomic resolution scanning transmission electron microscopy technique that can resolve small lattice distortions with picometer precision. We show that these distortions are gradually and uniformly reduced as the Sr concentration is increased without any phase separation. Significant distortions persist into the metallic state. In conclusion, themore » results present a new picture of the physics of this prototype filling-controlled MIT, which is discussed.« less
NASA Astrophysics Data System (ADS)
Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro
2018-06-01
We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.
Strong influence of off-site symmetry positions of hydrogen atoms in ScH3 hcp phases
NASA Astrophysics Data System (ADS)
Pakornchote, T.; Bovornratanaraks, T.; Vannarat, S.; Pinsook, U.
2016-01-01
We investigate the wave-like arrangements of H atoms around metal plane (Hm) in the ScH3 hcp phase by using the ab-initio method. We found that only P63 / mmc, P 3 bar c 1, P63cm and P63 phases are energetically favorable. The wave-like arrangement allows the off-site symmetry positions of the H atoms, and leads to substantial changes in the pair distribution between Sc and H atoms which are associating with the changes in the electronic structure in such a way that the total energy is lowering. The symmetry breaking from P63mmc is also responsible for the band gap opening. In the P63 structure, the calculated band gap is 0.823 eV and 1.223 eV using GGA and sX-LDA functionals, respectively. This band gap can be compared with 1.7 eV derived from the optical measurement and 1.55 eV from the HSE06 calculation. Thus, the broken symmetry structures can be viewed as Peierls distortion of the P63 / mmc structure. Furthermore, we found that only the P63 structure is dynamically stable, unlike YH3 where the P63cm structure is also stable. The stability of P63 comes from sufficiently strong interactions between two neighboring H atoms at their off-site symmetry positions, i.e. near the metal plane and near the tetragonal site. The P63 phonon density of states is in good agreement with the data from the neutron experiment.
NASA Astrophysics Data System (ADS)
Zhang, Yijun; Liu, Ming; Peng, Bin; Zhou, Ziyao; Chen, Xing; Yang, Shu-Ming; Jiang, Zhuang-De; Zhang, Jie; Ren, Wei; Ye, Zuo-Guang
2016-01-01
Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe2O3 and superparamagnetic Fe3O4 with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe2O3 in a reducing atmosphere leads to the formation of the spinel Fe3O4 phase which displays a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. The ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.
Challenges of sulfur SAD phasing as a routine method in macromolecular crystallography.
Doutch, James; Hough, Michael A; Hasnain, S Samar; Strange, Richard W
2012-01-01
The sulfur SAD phasing method allows the determination of protein structures de novo without reference to derivatives such as Se-methionine. The feasibility for routine automated sulfur SAD phasing using a number of current protein crystallography beamlines at several synchrotrons was examined using crystals of trimeric Achromobacter cycloclastes nitrite reductase (AcNiR), which contains a near average proportion of sulfur-containing residues and two Cu atoms per subunit. Experiments using X-ray wavelengths in the range 1.9-2.4 Å show that we are not yet at the level where sulfur SAD is routinely successful for automated structure solution and model building using existing beamlines and current software tools. On the other hand, experiments using the shortest X-ray wavelengths available on existing beamlines could be routinely exploited to solve and produce unbiased structural models using the similarly weak anomalous scattering signals from the intrinsic metal atoms in proteins. The comparison of long-wavelength phasing (the Bijvoet ratio for nine S atoms and two Cu atoms is ~1.25% at ~2 Å) and copper phasing (the Bijvoet ratio for two Cu atoms is 0.81% at ~0.75 Å) for AcNiR suggests that lower data multiplicity than is currently required for success should in general be possible for sulfur phasing if appropriate improvements to beamlines and data collection strategies can be implemented.
Theoretical study of hydrogen storage in metal hydrides.
Oliveira, Alyson C M; Pavão, A C
2018-05-04
Adsorption, absorption and desorption energies and other properties of hydrogen storage in palladium and in the metal hydrides AlH 3 , MgH 2 , Mg(BH 4 ) 2 , Mg(BH 4 )(NH 2 ) and LiNH 2 were analyzed. The DFT calculations on cluster models show that, at a low concentration, the hydrogen atom remains adsorbed in a stable state near the palladium surface. By increasing the hydrogen concentration, the tetrahedral and the octahedral sites are sequentially occupied. In the α phase the tetrahedral site releases hydrogen more easily than at the octahedral sites, but the opposite occurs in the β phase. Among the hydrides, Mg(BH 4 ) 2 shows the highest values for both absorption and desorption energies. The absorption energy of LiNH 2 is higher than that of the palladium, but its desorption energy is too high, a recurrent problem of the materials that have been considered for hydrogen storage. The release of hydrogen, however, can be favored by using transition metals in the material structure, as demonstrated here by doping MgH 2 with 3d and 4d-transition metals to reduce the hydrogen atomic charge and the desorption energy.
Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts
NASA Astrophysics Data System (ADS)
Cox, D. M.; Kaldor, A.; Zakin, M. R.
1987-01-01
Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.
Alkali metal intercalated fullerene-like MS(2) (M = W, Mo) nanoparticles and their properties.
Zak, Alla; Feldman, Yishay; Lyakhovitskaya, Vera; Leitus, Gregory; Popovitz-Biro, Ronit; Wachtel, Ellen; Cohen, Hagai; Reich, Shimon; Tenne, Reshef
2002-05-01
Layered metal disulfides-MS(2) (M = Mo, W) in the form of fullerene-like nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The alkali metal concentration in the host lattice was found to depend on the kind of sample and the experimental conditions. Furthermore, an inhomogeneity of the intercalated samples was observed. The product consisted of both nonintercalated and intercalated phases. X-ray diffraction analysis and transmission electron microscopy of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 A) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. Deintercalation of the hydrated alkali atoms and restacking of the MS(2) layers was observed in all the samples after prolonged exposure to the atmosphere. Electric field induced deintercalation of the alkali metal atoms from the host lattice was also observed by means of the XPS technique. Magnetic moment measurements for all the samples indicate a diamagnetic to paramagnetic transition after intercalation. Measurements of the transport properties reveal a semiconductor to metal transition for the heavily K intercalated 2H-MoS(2). Other samples show several orders of magnitude decrease in resistivity and two- to five-fold decrease in activation energies upon intercalation. These modifications are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Recovery of the pristine compound properties (diamagnetism and semiconductivity) was observed as a result of deintercalation.
Atomically resolved calcium phosphate coating on a gold substrate.
Metoki, Noah; Baik, Sung-Il; Isheim, Dieter; Mandler, Daniel; Seidman, David N; Eliaz, Noam
2018-05-10
Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.
Metallic surface states in elemental electrides
NASA Astrophysics Data System (ADS)
Naumov, Ivan I.; Hemley, Russell J.
2017-07-01
Recent high-pressure studies have uncovered an alternative class of materials, insulating electride phases created by compression of simple metals. These exotic insulating phases develop an unusual electronic structure: the valence electrons move away from the nuclei and condense at interstitial sites, thereby acquiring the role of atomic anions or even molecules. We show that they are also topological phases as they exhibit a wide diversity of metallic surface states (SSs) that are controlled by the bulk electronic structure. The electronic reconstruction occurs that involves charge transfer between the surfaces of opposite polarity making both of them metallic, resembling the appearance of the two-dimensional gas at the renowned SrTi O3 /LaAl O3 interface. Remarkably, these materials thus embody seemingly disparate physical concepts—chemical electron localization, topological control of bulk-surface conductivity, and the two-dimensional electron gas. Such metallic SSs could be probed by direct electrical resistance or by standard photoemission measurements on recovery to ambient conditions.
Fabricating Large-Area Sheets of Single-Layer Graphene by CVD
NASA Technical Reports Server (NTRS)
Bronikowski, Michael; Manohara, Harish
2008-01-01
This innovation consists of a set of methodologies for preparing large area (greater than 1 cm(exp 2)) domains of single-atomic-layer graphite, also called graphene, in single (two-dimensional) crystal form. To fabricate a single graphene layer using chemical vapor deposition (CVD), the process begins with an atomically flat surface of an appropriate substrate and an appropriate precursor molecule containing carbon atoms attached to substituent atoms or groups. These molecules will be brought into contact with the substrate surface by being flowed over, or sprayed onto, the substrate, under CVD conditions of low pressure and elevated temperature. Upon contact with the surface, the precursor molecules will decompose. The substituent groups detach from the carbon atoms and form gas-phase species, leaving the unfunctionalized carbon atoms attached to the substrate surface. These carbon atoms will diffuse upon this surface and encounter and bond to other carbon atoms. If conditions are chosen carefully, the surface carbon atoms will arrange to form the lowest energy single-layer structure available, which is the graphene lattice that is sought. Another method for creating the graphene lattice includes metal-catalyzed CVD, in which the decomposition of the precursor molecules is initiated by the catalytic action of a catalytic metal upon the substrate surface. Another type of metal-catalyzed CVD has the entire substrate composed of catalytic metal, or other material, either as a bulk crystal or as a think layer of catalyst deposited upon another surface. In this case, the precursor molecules decompose directly upon contact with the substrate, releasing their atoms and forming the graphene sheet. Atomic layer deposition (ALD) can also be used. In this method, a substrate surface at low temperature is covered with exactly one monolayer of precursor molecules (which may be of more than one type). This is heated up so that the precursor molecules decompose and form one monolayer of the target material.
Predicted reentrant melting of dense hydrogen at ultra-high pressures
Geng, Hua Y.; Wu, Q.
2016-01-01
The phase diagram of hydrogen is one of the most important challenges in high-pressure physics and astrophysics. Especially, the melting of dense hydrogen is complicated by dimer dissociation, metallization and nuclear quantum effect of protons, which together lead to a cold melting of dense hydrogen when above 500 GPa. Nonetheless, the variation of the melting curve at higher pressures is virtually uncharted. Here we report that using ab initio molecular dynamics and path integral simulations based on density functional theory, a new atomic phase is discovered, which gives an uplifting melting curve of dense hydrogen when beyond 2 TPa, and results in a reentrant solid-liquid transition before entering the Wigner crystalline phase of protons. The findings greatly extend the phase diagram of dense hydrogen, and put metallic hydrogen into the group of alkali metals, with its melting curve closely resembling those of lithium and sodium. PMID:27834405
A Transition to Metallic Hydrogen: Evidence of the Plasma Phase Transition
NASA Astrophysics Data System (ADS)
Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan
The insulator-metal transition in hydrogen is one of the most outstanding problems in condensed matter physics. The high-pressure metallic phase is now predicted to be liquid atomic from T =0 K to very high temperatures. We have conducted measurements of optical properties of hot dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K in a diamond anvil cell using pulsed laser heating of the sample. We present evidence in two forms: a plateau in the heating curves (average laser power vs temperature) characteristic of a first-order phase transition with latent heat, and changes in transmittance and reflectance characteristic of a metal for temperatures above the plateau temperature. For thick films the reflectance saturates at ~0.5. The phase line of this transition has a negative slope in agreement with theories of the so-called plasma phase transition. The NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H supported this research.
Platinum clusters with precise numbers of atoms for preparative-scale catalysis.
Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa
2017-09-25
Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.
Dicke superradiance as nondestructive probe for the state of atoms in optical lattices
NASA Astrophysics Data System (ADS)
ten Brinke, Nicolai; Schützhold, Ralf
2016-04-01
We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.
Li, Yang; Chen, Yue; Liu, Jian-Rong; Hu, Qing-Miao; Yang, Rui
2016-01-01
Creep resistance is one of the key properties of titanium (Ti) alloys for high temperature applications such as in aero engines and gas turbines. It has been widely recognized that moderate addition of Si, especially when added together with some other elements (X), e.g., Mo, significantly improves the creep resistance of Ti alloys. To provide some fundamental understandings on such a cooperative effect, the interactions between Si and X in both hexagonal close-packed α and body-centered cubic β phases are systematically investigated by using a first-principles method. We show that the transition metal (TM) atoms with the number of d electrons (Nd) from 3 to 7 are attractive to Si in α phase whereas those with Nd > 8 and simple metal (SM) alloying atoms are repulsive to Si. All the alloying atoms repel Si in the β phase except for the ones with fewer d electrons than Ti. The electronic structure origin underlying the Si-X interaction is discussed based on the calculated electronic density of states and Bader charge. Our calculations suggest that the beneficial X-Si cooperative effect on the creep resistance is attributable to the strong X-Si attraction. PMID:27466045
Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO2 Nanowires.
Asayesh-Ardakani, Hasti; Nie, Anmin; Marley, Peter M; Zhu, Yihan; Phillips, Patrick J; Singh, Sujay; Mashayek, Farzad; Sambandamurthy, Ganapathy; Low, Ke-Bin; Klie, Robert F; Banerjee, Sarbajit; Odegard, Gregory M; Shahbazian-Yassar, Reza
2015-11-11
There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO2) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO2 are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WxV1-xO2 nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122̅) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO2 structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.
NASA Astrophysics Data System (ADS)
Cholid Djunaidi, Muhammad; Lusiana, Retno A.; Rahayu, Maya D.
2017-06-01
Chromium metal(VI) is a valuable metal but in contrary has high toxicity, so the separation and recovery from waste are very important. One method that can be used for the separation and recovery of chromium (VI) is a Supported Liquid Membrane (SLM). SLM system contains of three main components: a supporting membrane, organic solvents and carrier compounds. The supported Membrane used in this research is Polytetrafluoroethylene (PTFE), organic solvent is kerosene, and the carrier compound used is aliquat 336. The supported liquid membrane is placed between two phases, namely, feed phase as the source of analyte (Cr(VI)) and the receiving phase as the result of separation. Feed phase is the electroplating waste which contains of chromium metal with pH variation about 4, 6 and 9. Whereas the receiving phase are the solution of HCl, NaOH, HCl-NaCl and NaOH-NaCl with pH variation about 1, 3, 5 and 7. The efficiency separation is determined by measurement of chromium in the feed and the receiving phase using AAS (Atomic Absorption Spectrophotometry). The experiment results show that transport of Chrom (VI) by Supported Liquid membrane (SLM) is influenced by pH solution in feed phase and receiving phase as well as NaCl in receiving phase. The highest chromium metal is transported from feed phase about 97,78%, whereas in receiving phase shows about 58,09%. The highest chromium metal transport happens on pH 6 in feed phase, pH 7 in receiving phase with the mixture of NaOH and NaCl using carrier compound aliquat 336.
Temperature effects on the atomic structure and kinetics in single crystal electrochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gründer, Yvonne; Markovic, Nenad M.; Thompson, Paul
2015-01-01
The influence of temperature on the atomic structure at the electrochemical interface has been studied using in-situ surface x-ray scattering (SXS) during the formation of metal monolayers on a Au(111) electrode. For the surface reconstruction of Au(111), higher temperatures increase the mobility of surface atoms in the unreconstructed phase which then determines the surface ordering during the formation of the reconstruction. For the underpotential deposition (UPD) systems, the surface diffusion of the depositing metal adatoms is significantly reduced at low temperatures which results in the frustration of ordered structures in the case of Cu UPD, occurring on a Br-modified surface,more » and in the formation of a disordered Ag monolayer during Ag UPD. The results indicate that temperature changes affect the mass transport and diffusion of metal adatoms on the electrode surface. This demonstrates the importance of including temperature as a variable in studying surface structure and reactions at the electrochemical interface.« less
Viets, J.G.
1978-01-01
Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.
NASA Technical Reports Server (NTRS)
Kelton, K. F.; Croat, T. K.; Gangopadhyay, A.; Holland-Moritz, D.; Hyers, Robert W.; Rathz, Thomas J.; Robinson, Michael B.; Rogers, Jan R.
2001-01-01
Undercooling experiments and thermal physical property measurements of metallic alloys on the International Space Station (ISS) are planned. This recently-funded research focuses on fundamental issues of the formation and structure of highly-ordered non-crystallographic phases (quasicrystals) and related crystal phases (crystal approximants), and the connections between the atomic structures of these phases and those of liquids and glasses. It extends studies made previously by us of the composition dependence of crystal nucleation processes in silicate and metallic glasses, to the case of nucleation from the liquid phase. Motivating results from rf-levitation and drop-tube measurements of the undercooling of Ti/Zr-based liquids that form quasicrystals and crystal approximants are discussed. Preliminary measurements by electrostatic levitation (ESL) are presented.
Tanskanen, A; Karppinen, M
2018-06-12
Iron terephthalate coordination network thin films can be fabricated using the state-of-the-art gas-phase atomic/molecular layer deposition (ALD/MLD) technique in a highly controlled manner. Iron is an Earth-abundant and nonhazardous transition metal, and with its rich variety of potential applications an interesting metal constituent for the inorganic-organic coordination network films. Our work underlines the role of the metal precursor used when aiming at in-situ ALD/MLD growth of crystalline inorganic-organic thin films. We obtain crystalline iron terephthalate films when FeCl 3 is employed as the iron source whereas depositions based on the bulkier Fe(acac) 3 precursor yield amorphous films. The chemical composition and structure of the films are investigated with GIXRD, XRR, FTIR and XPS.
NASA Astrophysics Data System (ADS)
Inb-Elhaj, M.; Guillon, D.; Skoulios, A.; Maldivi, P.; Giroud-Godquin, A. M.; Marchon, J.-C.
1992-12-01
EXAFS was used to investigate the local structure of the polar spines of rhodium (II) soaps in the columnar liquid crystalline state. It was also used to ascertain the degree of blending of the cores in binary mixtures of rhodium (II) and copper (II) soaps. For the pure rhodium soaps, the columns are shown to result from the stacking of binuclear metal-metal bonded dirhodium tetracarboxylate units bonded to one another by apical ligation of the metal atom of each complex with one of the oxygen atoms of the adjacent molecule. Mixtures of rhodium (II) and copper (II) soaps give a hexagonal columnar mesophase in which pure rhodium and pure copper columns are randomly distributed.
Xu, Jun; Lucier, Bryan E G; Sinelnikov, Regina; Terskikh, Victor V; Staroverov, Viktor N; Huang, Yining
2015-10-05
The paraelectric-ferroelectric phase transition in two isostructural metal-organic frameworks (MOFs) [NH4 ][M(HCOO)3 ] (M=Mg, Zn) was investigated by in situ variable-temperature (25) Mg, (67) Zn, (14) N, and (13) C solid-state NMR (SSNMR) spectroscopy. With decreasing temperature, a disorder-order transition of NH4 (+) cations causes a change in dielectric properties. It is thought that [NH4 ][Mg(HCOO)3 ] exhibits a higher transition temperature than [NH4 ][Zn(HCOO)3 ] due to stronger hydrogen-bonding interactions between NH4 (+) ions and framework oxygen atoms. (25) Mg and (67) Zn NMR parameters are very sensitive to temperature-induced changes in structure, dynamics, and dielectric behavior; stark spectral differences across the paraelectric-ferroelectric phase transition are intimately related to subtle changes in the local environment of the metal center. Although (25) Mg and (67) Zn are challenging nuclei for SSNMR experiments, the highly spherically symmetric metal-atom environments in [NH4 ][M(HCOO)3 ] give rise to relatively narrow spectra that can be acquired in 30-60 min at a low magnetic field of 9.4 T. Complementary (14) N and (13) C SSNMR experiments were performed to probe the role of NH4 (+) -framework hydrogen bonding in the paraelectric-ferroelectric phase transition. This multinuclear SSNMR approach yields new physical insights into the [NH4 ][M(HCOO)3 ] system and shows great potential for molecular-level studies on electric phenomena in a wide variety of MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Thermal Pressure in Low Metallicity Galaxies
NASA Astrophysics Data System (ADS)
Wolfire, Mark; McKee, Christopher; Ostriker, Eve C.; Bolatto, Alberto; Jenkins, Edward
2015-08-01
The thermal pressure in the diffuse interstellar medium (ISM) is a relatively small fraction of the total ISM pressure yet it is extremely important for the evolution of the ISM phases. A multi-phase medium can exist between a range of thermal pressures Pmin < Pth < Pmax. The phase separation is driven by thermal instability and produces a cold (T ˜ 100 K) neutral atomic gas and a warm (T ˜ 8000 K) neutral atomic gas separated by thermally unstable gas. At thermal pressures greater than Pmax only the cold phase can exist and at thermal pressures less than Pmin only the warm phase can exist. The ISM is also highly turbulent and turbulence can both initiate the thermal phase transition and be produced in a rapid phase transition. Hydrodynamic modeling also points to a strong two-phase distribution (.e.g., Kim et al. 2011; Audit & Hennebelle 2010) with a median thermal pressure in the cold gas very near the expected two-phase pressure. Global, theoretical models including star-formation feedback have been developed for the molecular fraction in galactic disks using, at their core, the paradigm that thermal pressure determines the phase transitions to warm, cold, or multiphase medium (e.g., Krumholz et al. 2009; Ostriker et al. 2010).Here we present a phase diagram for a low metallicity galaxy using the Small Magellanic Clouds as an example. We find that although the heating rates and metallicities can differ by factors of 5 to 10 from the Milky Way, the resulting two-phase pressure and physical conditions of the phases are not very different from Galactic. We also confirm that a widely used fitting function for Pmin presented in Wolfire et al. 2003 provides an accurate prediction for the new results. We demonstrate how the variation in input parameters determine the final pressures and physical conditions.
Trends in tungsten coil atomic spectrometry
NASA Astrophysics Data System (ADS)
Donati, George L.
Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective methods for trace metal determinations in several different samples, representing an important asset in today's analytical chemistry.
Thermal stability of atomic layer deposited WCxNy electrodes for metal oxide semiconductor devices
NASA Astrophysics Data System (ADS)
Zonensain, Oren; Fadida, Sivan; Fisher, Ilanit; Gao, Juwen; Danek, Michal; Eizenberg, Moshe
2018-01-01
This study is a thorough investigation of the chemical, structural, and electrical stability of W based organo-metallic films, grown by atomic layer deposition, for future use as gate electrodes in advanced metal oxide semiconductor structures. In an earlier work, we have shown that high effective work-function (4.7 eV) was produced by nitrogen enriched films (WCxNy) dominated by W-N chemical bonding, and low effective work-function (4.2 eV) was produced by hydrogen plasma resulting in WCx films dominated by W-C chemical bonding. In the current work, we observe, using x-ray diffraction analysis, phase transformation of the tungsten carbide and tungsten nitride phases after 900 °C annealing to the cubic tungsten phase. Nitrogen diffusion is also observed and is analyzed with time-of-flight secondary ion mass spectroscopy. After this 900 °C anneal, WCxNy effective work function tunability is lost and effective work-function values of 4.7-4.8 eV are measured, similar to stable effective work function values measured for PVD TiN up to 900 °C anneal. All the observed changes after annealing are discussed and correlated to the observed change in the effective work function.
ERIC Educational Resources Information Center
Sinfelt, John H.
1985-01-01
Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…
Transition of a small-bipolaron gas to a Fröhlich polaron in a deformable lattice
NASA Astrophysics Data System (ADS)
Hettiarachchi, Gayan Prasad; Muhid, Mohd Nazlan Mohd; Hamdan, Halimaton
2018-04-01
The electronic properties of guest Cs atoms in a deformable lattice are investigated at various densities n . Low values of n show optical absorptions of small bipolarons. At intermediate n values, new bands appear in the midinfrared (MIR) and high-frequency regions, which coexist with the small bipolaron bands. With a further increase in n , the small bipolaron bands become less discernible and subsequently disappear, resulting in the appearance of a Drude component superimposed on a MIR sideband suggesting a phase transition to a polaronic metal. In this itinerant phase, an approximately twofold mass enhancement is observed. This continuous transition of a gas of small bipolarons to a polaronic metal characterized by a Fröhlich polaron reveals an important part of the complex phase diagram of the metal-insulator transition in a deformable lattice.
NASA Astrophysics Data System (ADS)
Erkisi, A.; Surucu, G.; Deligoz, E.
2018-03-01
In this study, the structural, electronic, magnetic, and mechanical properties of perovskite oxides PbM1/2Nb1/2O3 (M = Fe, Co and Ni) are investigated. The systems are treated in ferromagnetic order. The calculations are carried out in the framework of density functional theory (DFT) within the plane-wave pseudopotential method. The exchange-correlation potential is approximated by generalized-gradient spin approach (GGA). The intra-atomic Coulomb repulsion is also taken into account in calculations (GGA + U). We have considered two generalized-gradient spin approximation functionals, which are Perdew-Burke-Ernzerhof (PBE) and PBE for solids (PBEsol) for structural parameter calculations when it included Hubbard potential. Although the spin-polarized electronic band structures of PbCo1/2Nb1/2O3 and PbNi1/2Nb1/2O3 systems exhibit metallic property in ferromagnetic phase, a bandgap is observed in spin-down states of PbFe1/2Nb1/2O3 resulting in half-metallic behavior. The main reason for this behavior is attributed to the hybridization between d-states of transition metal atoms and p-states of oxygen atoms. The stability mechanically and the calculated mechanical properties by using elastic constants show that these compounds are mechanically stable in tetragonal phase and have anisotropic character mechanically.
In situ REM and ex situ SPM studies of silicon (111) surface
NASA Astrophysics Data System (ADS)
Aseev, A. L.; Kosolobov, S. S.; Latyshev, A. V.; Song, Se Ahn; Saranin, A. A.; Zotov, A. V.; Lifshits, V. G.
2005-09-01
Combination of experimental methods, including ultrahigh vacuum in situ reflection electron microscopy, scanning tunnelling microscopy and atomic force microscopy, has been applied for analysis of surface structure and dynamic processes on silicon (111) surfaces during sublimation, rapid temperature cooling, oxygen reactions and metal-silicon surface phase formation. From analysis of triangular negative islands, 0.08 nm in depth, which were forming during quenching, it was deduced the effective activation energy of the island generation is equalled to 0.35 eV and made conclusion that the (1 × 1) (7 × 7) phase transition on Si(111) assumes to be responsible for the negative island nucleation. On the base of the in situ REM study, the dependence of step motion, initiated by surface vacancies generation during oxygen-silicon interaction, on the terrace width was measured. Peculiarities of the initial stages of silicon surface oxidation at low pressures were considered. From precision measurements, the top silicon atom density was determined for the metal-silicon surface phase formed during Na, Ca, Mg and Ag deposition on clean silicon (111) surface.
Development of an inter-atomic potential for the Pd-H binary system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Jonathan A.; Hoyt, Jeffrey John; Leonard, Francois Leonard
2007-09-01
Ongoing research at Sandia National Laboratories has been in the area of developing models and simulation methods that can be used to uncover and illuminate the material defects created during He bubble growth in aging bulk metal tritides. Previous efforts have used molecular dynamics calculations to examine the physical mechanisms by which growing He bubbles in a Pd metal lattice create material defects. However, these efforts focused only on the growth of He bubbles in pure Pd and not on bubble growth in the material of interest, palladium tritide (PdT), or its non-radioactive isotope palladium hydride (PdH). The reason formore » this is that existing inter-atomic potentials do not adequately describe the thermodynamics of the Pd-H system, which includes a miscibility gap that leads to phase separation of the dilute (alpha) and concentrated (beta) alloys of H in Pd at room temperature. This document will report the results of research to either find or develop inter-atomic potentials for the Pd-H and Pd-T systems, including our efforts to use experimental data and density functional theory calculations to create an inter-atomic potential for this unique metal alloy system.« less
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-03-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
NASA Astrophysics Data System (ADS)
Tahiri, M.; Hasnaoui, A.; Sbiaai, K.
2018-06-01
In this work, we employed molecular dynamics (MD) simulations to study Ti-Al metallic glasses (MGs) using the embedded atom method (EAM) potential to model the atomic interaction with different compositions. The results showed evidence of the metallic glass formation induced by the split occurring in the second peak of the radial distribution function (RDF) curves implying both Ti and Al atoms. The common neighbor analysis (CNA) method confirmed the presence of the icosahedral clusters with a maximum amount observed for an alloy with 75 pct of Al. Analysis of coordination numbers (CNs) indicated that the total CNs are nearly unchanged in these systems. Finally, Voronoi tessellation analyses (VTA) showed a higher value of the number of icosahedral units at Ti25Al75 composition. This specific composition represents a nearby peritectic point localized at a low melting point in the Ti-Al binary phase diagram. The glass forming ability (GFA) becomes important when the fraction of Al increases by forming and connecting "icosahedral-like" clusters (12-coordinated <0, 0, 12, 0> and 13-coordinated <0, 1, 10, 2>) and by playing a main role in the structure stability of the Ti-Al MGs.
Zhang, Yijun; Liu, Ming; Peng, Bin; ...
2016-01-27
Highly-ordered and conformal iron oxide nanotube arrays on an atomic scale are successfully prepared by atomic layer deposition (ALD) with controlled oxidization states and tunable magnetic properties between superparamagnetism and ferrimagnetism. Non-magnetic α-Fe 2O 3 and superparamagnetic Fe 2O 3with a blocking temperature of 120 K are in-situ obtained by finely controlling the oxidation reaction. Both of them exhibit a very small grain size of only several nanometers due to the nature of atom-by-atom growth of the ALD technique. Post-annealing α-Fe 2O 3 in a reducing atmosphere leads to the formation of the spinel Fe 3O 4 phase which displaysmore » a distinct ferrimagnetic anisotropy and the Verwey metal-insulator transition that usually takes place only in single crystal magnetite or thick epitaxial films at low temperatures. Finally, the ALD deposition of iron oxide with well-controlled phase and tunable magnetism demonstrated in this work provides a promising opportunity for the fabrication of 3D nano-devices to be used in catalysis, spintronics, microelectronics, data storages and bio-applications.« less
The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...
Sustained phase separation and spin glass in Co-doped K x Fe 2 - y Se 2 single crystals
Ryu, Hyejin; Wang, Kefeng; Opacic, M.; ...
2015-11-19
We describe Co substitution effects in K xFe 2-y-zCo zSe 2 (0.06 ≤ z ≤ 1.73) single crystal alloys. By 3.5% of Co doping superconductivity is suppressed whereas phase separation of semiconducting K 2Fe 4Se 5 and superconducting/metallic K xFe 2Se 2 is still present. We show that the arrangement and distribution of superconducting phase (stripe phase) is connected with the arrangement of K, Fe and Co atoms. Semiconducting spin glass is found in proximity to superconducting state, persisting for large Co concentrations. At high Co concentrations ferromagnetic metallic state emerges above the spin glass. This is coincident withmore » changes of the unit cell, arrangement and connectivity of stripe conducting phase.« less
First-order metal-insulator transitions in vanadates from first principles
NASA Astrophysics Data System (ADS)
Kumar, Anil; Rabe, Karin
2013-03-01
Materials that exhibit first-order metal-insulator transitions, with the accompanying abrupt change in the conductivity, have potential applications as switches in future electronic devices. Identification of materials and exploration of the atomic-scale mechanisms for switching between the two electronic states is a focus of current research. In this work, we search for first-order metal-insulator transitions in transition metal compounds, with a particular focus on d1 and d2 systems, by using first principles calculations to screen for an alternative low-energy state having not only a electronic character opposite to that of the ground state, but a distinct structure and/or magnetic ordering which would permit switching by an applied field or stress. We will present the results of our investigation of the perovskite compounds SrVO3, LaVO3, CaVO3, YVO3, LaTiO3 and related layered phase, including superlattices and Ruddlesden-Popper phases. While the pure compounds do not satisfy the search criteria, the layered phases show promising results.
Site occupancy of interstitial deuterium atoms in face-centred cubic iron
Machida, Akihiko; Saitoh, Hiroyuki; Sugimoto, Hidehiko; Hattori, Takanori; Sano-Furukawa, Asami; Endo, Naruki; Katayama, Yoshinori; Iizuka, Riko; Sato, Toyoto; Matsuo, Motoaki; Orimo, Shin-ichi; Aoki, Katsutoshi
2014-01-01
Hydrogen composition and occupation state provide basic information for understanding various properties of the metal–hydrogen system, ranging from microscopic properties such as hydrogen diffusion to macroscopic properties such as phase stability. Here the deuterization process of face-centred cubic Fe to form solid-solution face-centred cubic FeDx is investigated using in situ neutron diffraction at high temperature and pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å3 per deuterium atom. The minor occupation of the tetrahedral site is thermally driven by the intersite movement of deuterium atoms along the ‹111› direction in the face-centred cubic metal lattice. PMID:25256789
Phase transformations at interfaces: Observations from atomistic modeling
Frolov, T.; Asta, M.; Mishin, Y.
2016-10-01
Here, we review the recent progress in theoretical understanding and atomistic computer simulations of phase transformations in materials interfaces, focusing on grain boundaries (GBs) in metallic systems. Recently developed simulation approaches enable the search and structural characterization of GB phases in single-component metals and binary alloys, calculation of thermodynamic properties of individual GB phases, and modeling of the effect of the GB phase transformations on GB kinetics. Atomistic simulations demonstrate that the GB transformations can be induced by varying the temperature, loading the GB with point defects, or varying the amount of solute segregation. The atomic-level understanding obtained from suchmore » simulations can provide input for further development of thermodynamics theories and continuous models of interface phase transformations while simultaneously serving as a testing ground for validation of theories and models. They can also help interpret and guide experimental work in this field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver; Siemon, John
The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation andmore » phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.« less
NASA Astrophysics Data System (ADS)
Ju, Byongsun
2005-11-01
As the microelectronic devices are aggressively scaled down to the 1999 International Technology Roadmap, the advanced complementary metal oxide semiconductor (CMOS) is required to increase packing density of ultra-large scale integrated circuits (ULSI). High-k alternative dielectrics can provide the required levels of EOT for device scaling at larger physical thickness, thereby providing a materials pathway for reducing the tunneling current. Zr silicates and its end members (SiO2 and ZrO2) and Zr-Si oxynitride films, (ZrO2)x(Si3N 4)y(SiO2)z, have been deposited using a remote plasma-enhanced chemical vapor deposition (RPECVD) system. After deposition of Zr silicate, the films were exposed to He/N2 plasma to incorporate nitrogen atoms into the surface of films. The amount of incorporated nitrogen atoms was measured by on-line Auger electron spectrometry (AES) as a function of silicate composition and showed its local minimum around the 30% silicate. The effect of nitrogen atoms on capacitance-voltage (C-V) and leakage-voltage (J-V) were also investigated by fabricating metal-oxide-semiconductor (MOS) capacitors. Results suggested that incorporating nitrogen into silicate decreased the leakage current in SiO2-rich silicate, whereas the leakage increased in the middle range of silicate. Zr-Si oxynitride was a pseudo-ternary alloy and no phase separation was detected by x-ray photoelectron spectroscopy (XPS) analysis up to 1100°C annealing. The leakage current of Zr-Si oxynitride films showed two different temperature dependent activation energies, 0.02 eV for low temperature and 0.3 eV for high temperature. Poole-Frenkel emission was the dominant leakage mechanism. Zr silicate alloys with no Si3N4 phase were chemically separated into the SiO2 and ZrO2 phase as annealed above 900°C. While chemical phase separation in Zr silicate films with Si 3N4 phase (Zr-Si oxynitride) were suppressed as increasing the amount of Si3N4 phase due to the narrow bonding network m Si3N4 phase. (3.4 bonds/atom for Si3 N4 network, 2.67 bonds/atom for SiO2 network).
NASA Astrophysics Data System (ADS)
Ungar, Goran
Following the discovery of quasicrystals by Shechtman and Cahn in 1984, for the following 20 years the new field of QCs was confined to metal alloys and atomic-scale structures. Then, with the discovery of a liquid crystal phase possessing dodecagonal QC symmetry], research interest has extended from metal alloys to those where the motifs were no longer single atoms but assemblies of many molecules. In dendron-based liquid quasicrystals (LQC) between 10-50 molecules form a supramolecular sphere with 103 - 104 atoms. In 2007 a 2-d quasiperiodic phase was found in three-arm star ABC polymers. In 2012 the first linear diblock copolymer was reported to form a sphere-based bulk QC phase, similar to that in dendrimer LQC but on a still larger scale. In the same year bulk QC domains were reported in ``hard'' nanoporous silica, produced however, again from a ``soft'' lyotropic template. The symmetry of all confirmed soft QCs so far is 12-fold. Another important development in soft QCs is the observation of complex QC approximants in a number of side-branched polyphilic LC honeycombs, described by multicolour tilings. In fact, recently we found a genuine dodecagonal QC in such systems, the first example of a 2D LQC. Furthermore, we succeeded in direct AFM imaging of the xy plane of a dendrimer LQC. The images confirm the ``half-step'' inflation rule, proposed earlier but not confirmed until now. Funding is acknowledged from Leverhulme Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se; Grehl, Thomas; Brongersma, Hidde H.
2016-03-15
A broad and expanding range of materials can be produced by atomic layer deposition at relatively low temperatures, including both oxides and metals. For many applications of interest, however, it is desirable to grow more tailored and complex materials such as semiconductors with a certain doping, mixed oxides, and metallic alloys. How well such mixed materials can be accomplished with atomic layer deposition requires knowledge of the conditions under which the resulting films will be mixed, solid solutions, or laminated. The growth and lamination of zinc oxide and tin oxide is studied here by means of the extremely surface sensitivemore » technique of low energy ion scattering, combined with bulk composition and thickness determination, and x-ray diffraction. At the low temperatures used for deposition (150 °C), there is little evidence for atomic scale mixing even with the smallest possible bilayer period, and instead a morphology with small ZnO inclusions in a SnO{sub x} matrix is deduced. Postannealing of such laminates above 400 °C however produces a stable surface phase with a 30% increased density. From the surface stoichiometry, this is likely the inverted spinel of zinc stannate, Zn{sub 2}SnO{sub 4}. Annealing to 800 °C results in films containing crystalline Zn{sub 2}SnO{sub 4}, or multilayered films of crystalline ZnO, Zn{sub 2}SnO{sub 4}, and SnO{sub 2} phases, depending on the bilayer period.« less
The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotter, Aaron; Conroy, Charlie; Cargile, Phillip
2017-05-10
In the era of large stellar spectroscopic surveys, there is an emphasis on deriving not only stellar abundances but also the ages for millions of stars. In the context of Galactic archeology, stellar ages provide a direct probe of the formation history of the Galaxy. We use the stellar evolution code MESA to compute models with atomic diffusion—with and without radiative acceleration—and extra mixing in the surface layers. The extra mixing consists of both density-dependent turbulent mixing and envelope overshoot mixing. Based on these models we argue that it is important to distinguish between initial, bulk abundances (parameters) and current,more » surface abundances (variables) in the analysis of individual stellar ages. In stars that maintain radiative regions on evolutionary timescales, atomic diffusion modifies the surface abundances. We show that when initial, bulk metallicity is equated with current, surface metallicity in isochrone age analysis, the resulting stellar ages can be systematically overestimated by up to 20%. The change of surface abundances with evolutionary phase also complicates chemical tagging, which is the concept that dispersed star clusters can be identified through unique, high-dimensional chemical signatures. Stars from the same cluster, but in different evolutionary phases, will show different surface abundances. We speculate that calibration of stellar models may allow us to estimate not only stellar ages but also initial abundances for individual stars. In the meantime, analyzing the chemical properties of stars in similar evolutionary phases is essential to minimize the effects of atomic diffusion in the context of chemical tagging.« less
Knapp, Caroline E; Carmalt, Claire J; McMillan, Paul F; Wann, Derek A; Robertson, Heather E; Rankin, David W H
2008-12-28
The structure of the vapour produced upon heating the dimethylalkoxygallane [Me(2)GaOCH(2)CH(2)NMe(2)](2) has been studied by gas-phase electron diffraction and ab initio molecular orbital calculations; only the monomeric form [Me(2)GaOCH(2)CH(2)NMe(2)] is observed in the vapour, with the nitrogen atom forming a dative bond with the metal centre.
Corsini, Niccolo R C; Zhang, Yuanpeng; Little, William R; Karatutlu, Ali; Ersoy, Osman; Haynes, Peter D; Molteni, Carla; Hine, Nicholas D M; Hernandez, Ignacio; Gonzalez, Jesus; Rodriguez, Fernando; Brazhkin, Vadim V; Sapelkin, Andrei
2015-11-11
Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.
Superconductivity in metal coated graphene
NASA Astrophysics Data System (ADS)
Uchoa, Bruno; Castro Neto, Antonio
2007-03-01
Graphene, a single atomic layer of graphite, is a two dimensional (2D) zero gap insulator with a high electronic mobility between nearest neighbor carbon sites. The unique electronic properties of graphene, from the semi-metallic behavior to the observation of an anomalous quantum Hall effect and a zero field quantized minimum of conductivity derive from the relativistic nature of its quasiparticles. By doping graphene, it behaves in several aspects as a conventional Fermi liquid, where electrons may form Cooper pairs by coupling with a bosonic mode. In this talk, we develop a mean-field phenomenology of superconductivity in a honeycomb lattice. We predict the possibility of two distinct phases, a singlet s-wave phase and a novel p+ip wave phase in the singlet channel. At half filling, the p+ip phase is gapless and superconductivity is a hidden order. We propose a few possible sources of Cooper pairing instability in graphene coated with alkaline and transition metals, and similar low dimensional graphene based devices.
NASA Astrophysics Data System (ADS)
Di Liberto, M.; Malpetti, D.; Japaridze, G. I.; Morais Smith, C.
2014-08-01
We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long-studied four-Fermi-point unconventional metal.
NASA Astrophysics Data System (ADS)
Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri
2015-04-01
An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modelling methodology. See DOI: 10.1039/c5nr00800j
Formation of fivefold axes in the FCC-metal nanoclusters
NASA Astrophysics Data System (ADS)
Myasnichenko, Vladimir S.; Starostenkov, Mikhail D.
2012-11-01
Formation of atomistic structures of metallic Cu, Au, Ag clusters and bimetallic Cu-Au clusters was studied with the help of molecular dynamics using the many-body tight-binding interatomic potential. The simulation of the crystallization process of clusters with the number of atoms ranging from 300 to 1092 was carried out. The most stable configurations of atoms in the system, corresponding to the minimum of potential energy, was found during super-fast cooling from 1000 K. Atoms corresponding to fcc, hcp, and Ih phases were identified by the method of common neighbor analysis. Incomplete icosahedral core can be discovered at the intersection of one of the Ih axes with the surface of monometallic cluster. The decahedron-shaped structure of bimetallic Cu-Au cluster with seven completed icosahedral cores was obtained. The principles of the construction of small bimetallic clusters with icosahedral symmetry and increased fractal dimensionality were offered.
Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires
NASA Astrophysics Data System (ADS)
Shevyrtalov, S.; Zhukov, A.; Medvedeva, S.; Lyatun, I.; Zhukova, V.; Rodionova, V.
2018-05-01
In this manuscript, radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires with high excess Ni as a result of high-temperature annealing was observed. Partial manganese evaporation from the outer part of the metallic nucleus and glass melting results in the formation of manganese oxide at the surface. The lack of manganese due to its evaporation induces Ni3Ga formation in the intermediate part, while in the middle part of the metallic nucleus, the residual L21 phase with an average chemical composition of Ni60Mn9Ga31 remains. The layered structure exhibits soft ferromagnetic behavior below 270 K. The results were discussed taking into account the chemical composition, arising internal stresses, recrystallization, and atomic ordering.
Lan, Hangzhen; Salmi, Leo D; Rönkkö, Tuukka; Parshintsev, Jevgeni; Jussila, Matti; Hartonen, Kari; Kemell, Marianna; Riekkola, Marja-Liisa
2018-09-18
New chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (Fe 2 O 3 ) film or aluminum oxide (Al 2 O 3 ) film above terephthalic acid (H 2 BDC) or trimesic acid (H 3 BTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor. As the first documented instance of all-gas phase synthesis of SPME Arrow coatings, preparation parameters including CVR/conversion time and temperature, acetic acid volume, and metal oxide film/metal-ligand films thickness were investigated. The optimal coatings exhibited crystalline structures, excellent uniformity, satisfactory thickness (2-7.5 μm), and high robustness (>80 times usage). To study the practical usefulness of the coatings for the extraction, several analytes with different chemical properties were tested. The Fe-BDC coating was found to be the most selective and sensitive for the determination of benzene ring contained compounds due to its highly hydrophobic surface and unsaturated metal site. UIO-66 coating was best for small polar, aromatic, and long chain polar compounds owing to its high porosity. The usefulness of new coatings were evaluated for gas chromatography-mass spectrometer (GC-MS) determination of several analytes, present in wastewater samples at three levels of concentration, and satisfactory results were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Hyo Jin; Hong, Sung Hwan; Park, Hae Jin; Kim, Young Seok; Kim, Jeong Tae; Na, Young Sang; Lim, Ka Ram; Wang, Wei-Min; Kim, Ki Buem
2018-03-01
In the present study, the influence of atomic ratio of Zr to Ti on the microstructure and mechanical properties of Ni-Cu-Zr-Ti-Si-Sn alloys is investigated. The alloys were designed by fine replacement of Ti for Zr from Ni39Cu20Zr36-xTixSi2Sn3. The increase of Ti content enhances glass forming ability of the alloy by suppression of formation of (Ni, Cu)10(Zr, Ti)7 phase during solidification. With further increasing Ti content up to 24 at.%, the B2 phase is introduced in the amorphous matrix with a small amount of B19' phase from alloy melt. The bulk metallic glass composite containing B2 phase with a volume fraction of 10 vol% exhibits higher fracture strength ( 2.5 GPa) than that of monolithic bulk metallic glass ( 2.3 GPa). This improvement is associated to the individual mechanical characteristics of the B2 phase and amorphous matrix. The B2 phase exhibits higher hardness and modulus than those of amorphous matrix as well as effective stress accommodation up to the higher stress level than the yield strength of amorphous matrix. The large stress accommodation capacity of the hard B2 phase plays an important factor to improve the mechanical properties of in situ Ni-based bulk metallic glass composites.
2D transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras
2017-08-01
Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.
Impact of thermal atomic displacements on the Curie temperature of 3 d transition metals
NASA Astrophysics Data System (ADS)
Ruban, A. V.; Peil, O. E.
2018-05-01
It is demonstrated that thermally induced atomic displacements from ideal lattice positions can produce considerable effect on magnetic exchange interactions and, consequently, on the Curie temperature of Fe. Thermal lattice distortion should, therefore, be accounted for in quantitatively accurate theoretical modeling of the magnetic phase transition. At the same time, this effect seems to be not very important for magnetic exchange interactions and the Curie temperature of Co and Ni.
First principles study of surface stability and segregation of PdRuRh ternary metal alloy system
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki
2018-05-01
The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.
NASA Astrophysics Data System (ADS)
Ovcharenko, V. E.; Ivanov, K. V.; Mokhovikov, A. A.
2017-12-01
Exemplified by metal-ceramic composite TiC-(Ni-Cr) with the ratio of components 50:50, the paper presents findings of the study on patterns of nanoscale structural-phase state formation in the surface layer of the composite under pulsed electron irradiation in inert gas plasmas with different ionization energies and atomic weights and their influence on tribological and strength properties of the surface layer.
Novel materials for electronic device fabrication using ink-jet printing technology
NASA Astrophysics Data System (ADS)
Kumashiro, Yasushi; Nakako, Hideo; Inada, Maki; Yamamoto, Kazunori; Izumi, Akira; Ishihara, Masamichi
2009-11-01
Novel materials and a metallization technique for the printed electronics were studied. Insulator inks and conductive inks were investigated. For the conductive ink, the nano-sized copper particles were used as metallic sources. These particles were prepared from a copper complex by a laser irradiation process in the liquid phase. Nano-sized copper particles were consisted of a thin copper oxide layer and a metal copper core wrapped by the layer. The conductive ink showed good ink-jettability. In order to metallize the printed trace of the conductive ink on a substrate, the atomic hydrogen treatment was carried out. Atomic hydrogen was generated on a heated tungsten wire and carried on the substrate. The temperature of the substrate was up to 60 °C during the treatment. After the treatment, the conductivity of a copper trace was 3 μΩ cm. It was considered that printed wiring boards can be easily fabricated by employing the above materials.
Achievement of high coercivity in sintered R-Fe-B magnets based on misch-metal by dual alloy method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, E, E-mail: niue@aphy.iphy.ac.cn; Wang, Zhen-Xi; Beijing Zhong Ke San Huan Research, No.10 Chuangxin Road, Changping District, Beijing 102200
2014-03-21
The R-Fe-B (R, rare earth) sintered magnets prepared with different ratio of alloys of MM-Fe-B (MM, misch-metal) and Nd-Fe-B by dual alloy method were investigated. As expected, the high ratio of MM-Fe-B alloy degrades the hard magnetic properties heavily with intrinsic coercivity lower than 5 kOe. When the atomic ratio MM/R ≤ 21.5% the magnetic properties can reach a practical level of B{sub r} ≥ 12.1 kGs, H{sub cj} ≥ 10.7 kOe, and (BH){sub max} ≥ 34.0 MGOe. And the effect of H{sub cj} enhancement by the grain boundary diffusion process is obvious when MM/R ≤ 21.5%. It is revealed that the decrement of intrinsic magnetic properties of R{sub 2}Fe{submore » 14}B matrix phase is not the main reason of the degradation of the magnets with high MM ratio. The change of deteriorated microstructure together with phase component plays fundamental roles in low H{sub cj}. In high MM ratio magnets, (a) after annealing, Ce atoms inside main phase are inclined to be segregated in the outer layer of the main phase grains; (b) there is no thin layer of Ce-rich phase as an analogue of Nd-rich phase to separate main phase grains; (c) excessive Ce tends to form CeFe{sub 2} grains.« less
NASA Astrophysics Data System (ADS)
Shmorgun, V. G.; Bogdanov, A. I.; Gurevich, L. M.
2016-03-01
The methods of electron, optical, and atomic force microscopy are used to study the structure, morphology and phase composition of local regions of fused metal in an explosion-welded nickel-aluminum composite. It is shown that the diffusion zone formed due to the heat treatment repeats the contour of the fuse in the first stage and then "absorbs" it upon duration of the hold thus leveling the phase composition. ANi2Al3 Aluminide layer forms on the side of nickel and a NiAl3 layer forms on the side of aluminum.
Electronic structure and magnetism of titanium substituted Cd3P2: An ab-initio study
NASA Astrophysics Data System (ADS)
Jaiganesh, G.; Jaya, S. Mathi
2018-05-01
Using the ab-initio computations that are based on the density functional theory, we have investigated the magnetism and electronic properties of one and two Ti atom substituted Cd3P2 compound. The magnetic stability of the substituted compounds was obtained by analyzing the minimum total energies in nonmagnetic, ferromagnetic and antiferromagnetic phases. Our results indicated the formation of magnetic order in one and two Ti atom substituted Cd3P2 as well as metallic characteristics in these systems. A significant value of the magnetic moment of Ti atom is observed from our calculations. We further find that the neighboring Cd and P atoms too acquire a small magnetic moment.
Theory of metal atom-water interactions and alkali halide dimers
NASA Technical Reports Server (NTRS)
Jordan, K. D.; Kurtz, H. A.
1982-01-01
Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.
Novel 3D metallic boron nitride containing only sp2 bonds
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhang, Wei; Huai, Ping
2017-09-01
As the closest isoelectronic analogue of carbon, boron nitride (BN) shares a similar structure with carbon from 1D nanotubes, 2D nanosheets, and 3D diamond structures. However, most BN structures are insulators, which limits their application. In this work, under the inspiration of the sp2 hybridized carbon honeycomb, we propose a hexagonal phase of BN consisting of only sp2 bonds, which exhibits intriguingly intrinsic metallicity. First-principles calculations confirm that this phase is both thermally and dynamically stable. Moreover, the calculations on the band structure, partial density states and electron localization function suggest that the metallic behavior is attributable to the delocalized B-2p electrons, leading to second-neighbor interaction between the p z states of sp2-bonded B atoms in adjacent layers. Our findings not only enrich the BN allotrope family with 3D structures but also stimulate further experimental interest in applications of metallic BN in electronic devices.
NASA Astrophysics Data System (ADS)
Nagasawa, Riki; Asayama, Yoshihiro; Nakayama, Takashi
2018-04-01
Metal-atom diffusion from metal electrodes into SiO2 in electric fields was studied using first-principles calculations. It was shown in the case without electric field that the diffusion barrier of a metal atom is mainly made of the cohesive energy of bulk metal layers, while the shape of the diffusion potential reflects the hybridization of the metal-atom state with metal-induced gap states (MIGSs) and the electron transfer between the metal atom and the electrode. We found that the metal-atom diffusion is markedly accelerated by the applied electric field, such that the diffusion barrier ϕB(E) decreases almost linearly with increasing electric field strength E. By analyzing the physical origins of the metal-atom diffusion, we derived the universal formula to estimate the diffusion barrier in the electric field, which is closely related to MIGSs.
Quantum Griffiths singularity of superconductor-metal transition in Ga thin films.
Xing, Ying; Zhang, Hui-Min; Fu, Hai-Long; Liu, Haiwen; Sun, Yi; Peng, Jun-Ping; Wang, Fa; Lin, Xi; Ma, Xu-Cun; Xue, Qi-Kun; Wang, Jian; Xie, X C
2015-10-30
The Griffiths singularity in a phase transition, caused by disorder effects, was predicted more than 40 years ago. Its signature, the divergence of the dynamical critical exponent, is challenging to observe experimentally. We report the experimental observation of the quantum Griffiths singularity in a two-dimensional superconducting system. We measured the transport properties of atomically thin gallium films and found that the films undergo superconductor-metal transitions with increasing magnetic field. Approaching the zero-temperature quantum critical point, we observed divergence of the dynamical critical exponent, which is consistent with the Griffiths singularity behavior. We interpret the observed superconductor-metal quantum phase transition as the infinite-randomness critical point, where the properties of the system are controlled by rare large superconducting regions. Copyright © 2015, American Association for the Advancement of Science.
Lithium-aluminum-iron electrode composition
Kaun, Thomas D.
1979-01-01
A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.
Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin I.
2016-01-01
This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.
NASA Astrophysics Data System (ADS)
Xie, Y.; Sohn, S.; Schroers, J.; Cha, J. J.
2017-11-01
Crystallization is a complex process that involves multiscale physics such as diffusion of atomic species over multiple length scales, thermodynamic energy considerations, and multiple possible intermediate states. In situ crystallization experiments inside a transmission electron microscope (TEM) using nanostructured metallic glasses (MGs) provide a unique platform to study directly crystallization kinetics and pathways. Here, we study the embryonic state of eutectic growth using Pt-Ni-Cu-P MG nanorods under in situ TEM. We directly observe the nucleation and growth of a Ni-rich polymorphic phase, followed by the nucleation and slower growth of a Cu-rich phase. The suppressed growth kinetics of the Cu-rich phase is attributed to locally changing chemical compositions. In addition, we show that growth can be controlled by incorporation of an entire nucleus instead of individual atoms. Such a nucleus has to align with the crystallographic orientation of a larger grain before it can be incorporated into the crystal. By directly observing the crystallization processes, particularly the early stages of non-polymorphic growth, in situ TEM crystallization studies of MG nanostructures provide a wealth of information, some of which can be applied to typical bulk crystallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, Jason
1999-02-12
Numerous researchers have studied the relevant material properties of so-called AB 5 alloys for battery applications. These studies involved LaNi 5 substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, developmentmore » of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB 5 alloy powder for further processing advantage. Gas atomization processing of the AB 5 alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB 5 alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB 5 alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB 5 production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable future.« less
Felix, Vitor; Drew, Michael G B; Webber, Philip R A; Beer, Paul D
2006-01-28
Molecular modelling studies have been carried out on two bis(calix[4]diquinone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH(2))(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na(+), K(+), Rb(+), and Cs(+) in dmso solution. Conformational analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb(+) approximately K(+) > Cs(+) > Na(+), which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs(+) and K(+) complexes is only 0.60, showing that has only a slight preference for K(+). For the larger receptor , which is better suited to metal complexation, the binding affinity follows the pattern Cs(+) > Rb(+) > K(+) > Na(+), with energy differences of 5.75, 2.61, 2.78 kcal mol(-1) which is perfectly consistent with experimental results.
Science Using an Electrostatic Levitation Furnace in the MUCAT Sector at the APS
NASA Technical Reports Server (NTRS)
Goldman, A.; Kelton, K. F.; Rogers, J. R.
2004-01-01
The original motivation for the construction of the BESL prototype was to obtain the first proof of a 50-year-old hypothesis regarding the solidification of liquid metals. Since the 1950s it has been known that under proper conditions liquid metals can be cooled below their melting temperature (undercooled) without crystallizing to the stable solid phase. In 1952 Frank proposed that this was because the atoms in the metallic liquid were arranged with the symmetry of an icosahedron, a Platonic solid consisting of 20 tetrahedra (4-sided pyramid-shaped polyhedra) arranged around a common center. Since this local atomic order is incompatible with the long-range translational periodicity of crystal phases, a barrier is formed to the formation of small regions of the crystal phase, the nucleation barrier. A proof of Frank's hypothesis required a direct correlation between measured icosahedral order in the undercooled liquid and the nucleation barrier. The tendency of sample containers to catalyze nucleation obscured this relation, requiring containerless techniques. Combining containerless processing techniques for electrostatically levitated droplets (ESL) with x-ray synchrotron methods, a team from Washington University, St. Louis, MO, NASA Marshall Space Flight Center, and MUCAT at the APS demonstrated an increasing icosahedral order in TiZrNi liquids with decreasing temperature below the melting temperature. The increased icosahedral order caused the transformation of the liquid to a metastable icosahedral quasicrystal phase, instead of the stable tetrahedrally-coordinated crystal intermetallic, giving the first clear demonstration of the connection between the nucleation barrier and the local structure of the liquid, verifying Frank's hypothesis for this alloy.
Mechanistic characterization of chloride interferences in electrothermal atomization systems
Shekiro, J.M.; Skogerboe, R.K.; Taylor, Howard E.
1988-01-01
A computer-controlled spectrometer with a photodiode array detector has been used for wavelength and temperature resolved characterization of the vapor produced by an electrothermal atomizer. The system has been used to study the chloride matrix interference on the atomic absorption spectrometric determination of manganese and copper. The suppression of manganese and copper atom populations by matrix chlorides such as those of calcium and magnesium is due to the gas-phase formation of an analyte chloride species followed by the diffusion of significant fractions of these species from the atom cell prior to completion of the atomization process. The analyte chloride species cannot be formed when matrix chlorides with metal-chloride bond dissociation energies above those of the analyte chlorides are the principal entitles present. The results indicate that multiple wavelength spectrometry used to obtain temperature-resolved spectra is a viable tool in the mechanistic characterization of interference effects observed with electrothermal atomization systems. ?? 1988 American Chemical Society.
Composition formulas of binary eutectics
Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.
2015-01-01
The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618
NASA Astrophysics Data System (ADS)
Kabiruzzaman, Md; Ahmed, Rezwan; Nakagawa, Takeshi; Mizuno, Seigi
2017-10-01
Coadsorption of two heavy metals, Pb and Bi, on Cu(001) at room temperature has been studied using low energy electron diffraction (LEED). c(4 × 4), c(2 × 2), and c(9√{ 2}×√{ 2}) phases are obtained at different coverages; here, we have determined the best-fit structure of c(4 × 4) phase. This structure can be described as a 1D substitutional chain arrangement of Pb and Bi atoms between the Cu rows along the [110] direction. The unit cell in the two-dimensional (2D) surface consists of one Bi atom, two Pb atoms, and four Cu atoms with one vacancy at the center. The optimal structure parameters demonstrate that Bi atoms are located at fourfold-hollow sites and that Pb atoms are laterally displaced by 0.78 Å from the fourfold-hollow site toward the vacancy. The reasons for the formation of the c(4 × 4) structure upon deposition of Pb and Bi on Cu(001) are discussed in comparison with a similar structure formed by the individual adsorption of Pb on the same substrate.
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-24
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
Choi, Woon Ih; Wood, Brandon C.; Schwegler, Eric; ...
2015-09-22
Transition metal (TM) atoms in porphyrin–like complexes play important roles in many protein and enzymetic systems, where crystal–field effects are used to modify d–orbital levels. Inspired by the tunable electronic structure of these motifs, a high–throughput computational search for synthetic hydrogen catalysts is performed based on a similar motif of TM atoms embedded into the lattice of graphene. Based on an initial list of 300 possible embedding geometries, binders, and host atoms, descriptors for stability and catalytic activity are applied to extract ten promising candidates for hydrogen evolution, two of which are expected to exhibit high activity for hydrogen oxidation.more » In several instances, the active TM atoms are earth–abundant elements that show no activity in the bulk phase, highlighting the importance of the coordination environment in tuning the d–orbitals. In conclusion, it is found that the most active candidates involve a hitherto unreported surface reaction pathway that involves a Kubas–complex intermediate, which significantly lowers the kinetic barrier associated with hydrogen dissociation and association.« less
Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
Farmer, Joseph C.; Wong, Frank M.G.; Haslam, Jeffery J.; Yang, Nancy; Lavernia, Enrique J.; Blue, Craig A.; Graeve, Olivia A.; Bayles, Robert; Perepezko, John H.; Kaufman, Larry; Schoenung, Julie; Ajdelsztajn, Leo
2014-07-15
A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).
Corrosion resistant amorphous metals and methods of forming corrosion resistant amorphous metals
Farmer, Joseph C [Tracy, CA; Wong, Frank M. G. [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Yang, Nancy [Lafayette, CA; Lavernia, Enrique J [Davis, CA; Blue, Craig A [Knoxville, TN; Graeve, Olivia A [Reno, NV; Bayles, Robert [Annandale, VA; Perepezko, John H [Madison, WI; Kaufman, Larry [Brookline, MA; Schoenung, Julie [Davis, CA; Ajdelsztajn, Leo [Walnut Creek, CA
2009-11-17
A system for coating a surface comprises providing a source of amorphous metal, providing ceramic particles, and applying the amorphous metal and the ceramic particles to the surface by a spray. The coating comprises a composite material made of amorphous metal that contains one or more of the following elements in the specified range of composition: yttrium (.gtoreq.1 atomic %), chromium (14 to 18 atomic %), molybdenum (.gtoreq.7 atomic %), tungsten (.gtoreq.1 atomic %), boron (.ltoreq.5 atomic %), or carbon (.gtoreq.4 atomic %).
Exposing high-energy surfaces by rapid-anneal solid phase epitaxy
Wang, Y.; Song, Y.; Peng, R.; ...
2017-08-08
The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmaiah, Srinivasa; Taufour, Valentin; Iowa State Univ., Ames, IA
Bi 21.2(1)(Mn 1–xCo x ) 20 is a new metastable phase which is synthesized via Bi self-flux, adopts a highly fibrous morpholo-gy, and decomposes endothermically near 168 °C. It crystallizes in the orthorhombic space group Imma with unit cell parameters α = 19.067(4) Å, $b$ = 4.6071(10) Å and c = 11.583(4) Å, adopting a low-temperature modification of BiNi-type structure by forming columns along the b-axis. Wave-length-dispersive X-ray spectroscopy (WDS) confirms the presence of Co in the structure, which is found to be 7 at.%. In each column, the transition metal (T) and Bi atoms construct a double-walled nanotubular arrangementmore » of atoms around the disordered central Bi atoms. Electronic structure calculations (LMTO-ASA, LSDA) show that the calculated Fermi level falls into a pseudogap and also indicate a possible low-temperature magnetic ordering in the phase.« less
Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)
NASA Astrophysics Data System (ADS)
Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.
2005-06-01
Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.
Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal
2016-08-26
thin mate- rials. However, despite the inversion asymmetry of the single layer, the typical crystal stacking restores inversion symmetry for even...typically do not produce SH signals when inversion symmetry is restored in their multilayer counterparts. Group VI transition metal dichalcogenides (TMDCs...group D3h). However, adjacent layers of the 2H are mirrored to restore the inversion symmetry, while the layers in the 3R phase retain the same
Method of producing silicon. [gas phase reactor multiple injector liquid feed system
NASA Technical Reports Server (NTRS)
Wolf, C. B.; Meyer, T. N. (Inventor)
1980-01-01
A liquid reactant injector assembly suited for the injection of liquid reactant into a high temperature metal reductant vapor and carrier gas stream for the production of metal is presented. The assembly is especially adapted for the continuous production of high purity silicon by the reduction of SiCl4 with sodium. The assembly includes a refractory-lined, hollow metal shell having ten equally-spaced, concentric, radially directed ports provided in the shell and wall. A hydraulic, atomizing type spray nozzle is mounted in each of the ports recessed from the inner wall surface.
Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations
Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F.; ...
2016-03-04
Chemical imaging at the atomic-scale provides a useful real-space approach to chemically investigate solid crystal structures, and has been recently demonstrated in aberration corrected scanning transmission electron microscopy (STEM). Atomic-scale chemical imaging by STEM using energy-dispersive X-ray spectroscopy (EDS) offers easy data interpretation with a one-to-one correspondence between image and structure but has a severe shortcoming due to the poor efficiency of X-ray generation and collection. As a result, it requires a long acquisition time of typical > few 100 seconds, limiting its potential applications. Here we describe the development of an atomic-scale STEM EDS chemical imaging technique that cutsmore » the acquisition time to one or a few seconds, efficiently reducing the acquisition time by more than 100 times. This method was demonstrated using LaAlO 3 (LAO) as a model crystal. Applying this method to the study of phase transformation induced by electron-beam radiation in a layered lithium transition-metal (TM) oxide, i.e., Li[Li 0.2Ni 0.2Mn 0.6]O 2 (LNMO), a cathode materials for lithium-ion batteries, we obtained a time-series of the atomic-scale chemical imaging, showing the transformation progressing by preferably jumping of Ni atoms from the TM layers into the Li-layers. The new capability offers an opportunity for temporal, atomic-scale chemical mapping of crystal structures for the investigation of materials susceptible to electron irradiation as well as phase transformation and dynamics at the atomic-scale.« less
Robust half-metallicity of hexagonal SrNiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gao-Yuan; Ma, Chun-Lan, E-mail: machunlan@126.com; Chen, Da
In the rich panorama of the electronic and magnetic properties of 3d transition metal oxides SrMO{sub 3} (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu), one member (SrNiO{sub 3}) is missing. In this paper we use GGA+U method based on density functional theory to examine its properties. It is found that SrNiO{sub 3} is a ferromagnetic half-metal. The charge density map shows a high degree of ionic bonding between Sr and other atoms. Meanwhile, a covalent-bonding Ni–O–Ni–O–Ni chain is observed. The spin density contour of SrNiO{sub 3} further indicates that the magnetic interaction between Ni atoms mediated by O ismore » semicovalent exchange. The density of states are examined to explore the unusual indirect magnetic-exchange mechanism. Corresponding to the total energies results, a robust half-metallic character is observed, suggesting a promising giant magneto-optical Kerr property of the material. The partial density of states are further examined to explore the origin of ferromagnetic half-metallicity. The O atoms are observed to have larger contribution at fermi level than Ni atoms to the spin-polarized states, demonstrating that O atoms play a critical role in ferromagnetic half-metallicity of SrNiO{sub 3}. Hydrostatic pressure effect is examined to evaluate how robust the half-metallic ferromagnetism is. - Graphical abstract: (a) The total energy as a function of the lattice constant a for hexagonal SrNiO3 with various magnetic phases. (b) The total electronic density of states for hexagonal SrNiO{sub 3} with FM configuration from GGA+U calculations. (c) Total electron-density distribution in the (110) plane. The colors gradually change from cyan (through pink) to yellow corresponding to charge density value from 0 to 4.0. (d) The magnetization density map in the (110) plane. The colors range from blue (through green) to red corresponding to magnetization density value from −0.15 to 0.45. Black and white contours stand for positive and negative values, respectively. - Highlights: • Hexagonal SrNiO{sub 3} is studied using first-principles method for the first time. • It is predicted that SrNiO{sub 3} is a ferromagnetic half metal. • The half-metallic ferromagnetism survives upon a pressure up to 20 GPa.« less
Hunt, Sarah J; Cliffe, Matthew J; Hill, Joshua A; Cairns, Andrew B; Funnell, Nicholas P; Goodwin, Andrew L
2015-01-14
The metal-organic framework copper(i) tricyanomethanide, Cu(tcm), undergoes a ferroelastic transition on cooling below T f = 240 K. Thermal expansion measurements reveal an order-of-magnitude variation in framework flexibility across T f . The low-temperature phase α-Cu(tcm) exhibits colossal positive and negative thermal expansion that is the strongest ever reported for a framework material. On exposure to acetonitrile, Cu(tcm) undergoes a reconstructive solid-phase transition to acetonitrilocopper(i) tricyanomethanide. This transition can be reversed by heating under vacuum. Infrared spectroscopy measurements are sensitive to the phase change, suggesting that Cu(tcm) may find application in solid-phase acetonitrile sensing.
Duwal, Sakun; Yoo, Choong-Shik
2016-02-16
Pressure-induced structural and electronic transformations of tungsten disulfide (WS 2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2H c phase to hexagonal 2H a phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS 2 under non-hydrostatic compression. Interestingly, this transition ismore » absent in hydrostatic conditions using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS 2 that may occur at low temperature near the metallization.« less
First-principles study of ternary Li-Al-Te compounds under high pressure
NASA Astrophysics Data System (ADS)
Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Xie, Hui; Liu, Bingbing; Zhou, Qiang; Cui, Tian
2018-02-01
The ternary Li-Al-Te compounds were investigated by the first-principle evolutionary calculation based on density function theory. Apart from the known structure, I-42d LiAlTe2 and P3m1 LiAlTe2, several new structures were discovered, P-3m1 LiAlTe2, Pnma LiAlTe2, C2/c Li9AlTe2, Immm Li9AlTe2 and P4/mmm Li6AlTe. We determined that the I-42d LiAlTe2 firstly changed to P-3m1 phase at 6 GPa, and then into the Pnma structure at 65 GPa, Pnma phase was stable up at least to 120 GPa. I-42d LiAlTe2 was a pseudo-direct band gap semiconductor, but P-3m1 LiAlT2 was an indirect band gap semiconductor. This may be caused by the pressure effect. Subsequently, it was metallized under pressure. Pnma LiAlTe2 was also metallic at the pressure we studied. C2/c Li9AlTe2 was stable above 4 GPa, then turned into Immm phase at 60 GPa. C2/c Li9AlTe2 was an indirect band gap semiconductor. The results show that P4/mmm Li6AlTe was stable and metallized in the pressure range of 0.7-120 GPa. The calculations of DOS and PDOS indicate that the arrangement of electrons near Fermi energy can be affected by the increase of Li. The calculated ELF results and Bader charge analysis indicate that there was no covalent bond between Al and Te atoms for high-pressure Pnma LiAlTe2, Li9AlTe2 and Li6AlTe. For Li9AlTe2 and Li6AlTe, different from LiAlTe2, Al atoms not connect with Te atoms, but link with Li atoms. The results were further proved by Mulliken population analysis. And the weak covalent bonds between Li and Al atoms stem from the hybridization of Li s and Al p presented in PDOS diagrams. We further deduced that the pressure effect and the increase of Li content may result in the disappearance of Al-Te bonds for Li-Al-Te compound under extreme pressure.
Schwarz, Helmut; Shaik, Sason; Li, Jilai
2017-12-06
This Perspective discusses a story of one molecule (methane), a few metal-oxide cationic clusters (MOCCs), dopants, metal-carbide cations, oriented-electric fields (OEFs), and a dizzying mechanistic landscape of methane activation! One mechanism is hydrogen atom transfer (HAT), which occurs whenever the MOCC possesses a localized oxyl radical (M-O • ). Whenever the radical is delocalized, e.g., in [MgO] n •+ the HAT barrier increases due to the penalty of radical localization. Adding a dopant (Ga 2 O 3 ) to [MgO] 2 •+ localizes the radical and HAT transpires. Whenever the radical is located on the metal centers as in [Al 2 O 2 ] •+ the mechanism crosses over to proton-coupled electron transfer (PCET), wherein the positive Al center acts as a Lewis acid that coordinates the methane molecule, while one of the bridging oxygen atoms abstracts a proton, and the negatively charged CH 3 moiety relocates to the metal fragment. We provide a diagnostic plot of barriers vs reactants' distortion energies, which allows the chemist to distinguish HAT from PCET. Thus, doping of [MgO] 2 •+ by Al 2 O 3 enables HAT and PCET to compete. Similarly, [ZnO] •+ activates methane by PCET generating many products. Adding a CH 3 CN ligand to form [(CH 3 CN)ZnO] •+ leads to a single HAT product. The CH 3 CN dipole acts as an OEF that switches off PCET. [MC] + cations (M = Au, Cu) act by different mechanisms, dictated by the M + -C bond covalence. For example, Cu + , which bonds the carbon atom mostly electrostatically, performs coupling of C to methane to yield ethylene, in a single almost barrier-free step, with an unprecedented atomic choreography catalyzed by the OEF of Cu + .
Theoretical study of negatively charged Fe(-)-(H2O)(n ≤ 6) clusters.
Castro, Miguel
2012-06-14
Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.
Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide
Sampson, Matthew D.; Emery, Jonathan D.; Pellin, Michael J.; ...
2017-04-05
The atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H 2-plasma pretreatment of the Au substrate prior to gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Almore » 2O 3 ALD inhibition. This is the first example of Al 2O 3 ALD inhibition from a vapor-deposited SAM. Inhibition of Al 2O 3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. As a result, atomic force microscopy (AFM) and grazing incidence x-ray fluorescence (GIXRF) further reveals insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.« less
Inhibiting Metal Oxide Atomic Layer Deposition: Beyond Zinc Oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampson, Matthew D.; Emery, Jonathan D.; Pellin, Michael J.
The atomic layer deposition (ALD) of several metal oxides is selectivity inhibited on alkanethiol self-assembled monolayers (SAMs) on Au and the eventual nucleation mechanism is investigated. The inhibition ability of the SAM is significantly improved by the in situ H 2-plasma pretreatment of the Au substrate prior to gas-phase deposition of a long-chain alkanethiol, 1-dodecanethiol (DDT). This more rigorous surface preparation inhibits even aggressive oxide ALD precursors, including trimethylaluminum and water, for at least 20 cycles. We study the effect that ALD precursor purge times, growth temperature, alkanethiol chain length, alkanethiol deposition time, and plasma treatment time have on Almore » 2O 3 ALD inhibition. This is the first example of Al 2O 3 ALD inhibition from a vapor-deposited SAM. Inhibition of Al 2O 3, ZnO, and MnO ALD processes are compared, revealing the versatility of this selective surface treatment. As a result, atomic force microscopy (AFM) and grazing incidence x-ray fluorescence (GIXRF) further reveals insight into the mechanism by which the well-defined surface chemistry of ALD may eventually be circumvented to allow metal oxide nucleation and growth on SAM-modified surfaces.« less
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J
2018-04-28
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
NASA Astrophysics Data System (ADS)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-01
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
Catalysis applications of size-selected cluster deposition
Vajda, Stefan; White, Michael G.
2015-10-23
In this Perspective, we review recent studies of size-selected cluster deposition for catalysis applications performed at the U.S. DOE National Laboratories, with emphasis on work at Argonne National Laboratory (ANL) and Brookhaven National Laboratory (BNL). The focus is on the preparation of model supported catalysts in which the number of atoms in the deposited clusters is precisely controlled using a combination of gas-phase cluster ion sources, mass spectrometry, and soft-landing techniques. This approach is particularly effective for investigations of small nanoclusters, 0.5-2 nm (<200 atoms), where the rapid evolution of the atomic and electronic structure makes it essential to havemore » precise control over cluster size. Cluster deposition allows for independent control of cluster size, coverage, and stoichiometry (e.g., the metal-to-oxygen ratio in an oxide cluster) and can be used to deposit on any substrate without constraints of nucleation and growth. Examples are presented for metal, metal oxide, and metal sulfide cluster deposition on a variety of supports (metals, oxides, carbon/diamond) where the reactivity, cluster-support electronic interactions, and cluster stability and morphology are investigated. Both UHV and in situ/operando studies are presented that also make use of surface-sensitive X-ray characterization tools from synchrotron radiation facilities. Novel applications of cluster deposition to electrochemistry and batteries are also presented. This review also highlights the application of modern ab initio electronic structure calculations (density functional theory), which can essentially model the exact experimental system used in the laboratory (i.e., cluster and support) to provide insight on atomic and electronic structure, reaction energetics, and mechanisms. As amply demonstrated in this review, the powerful combination of atomically precise cluster deposition and theory is able to address fundamental aspects of size-effects, cluster-support interactions, and reaction mechanisms of cluster materials that are central to how catalysts function. Lastly, the insight gained from such studies can be used to further the development of novel nanostructured catalysts with high activity and selectivity.« less
Diffusion anisotropy of poor metal solute atoms in hcp-Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scotti, Lucia, E-mail: lxs234@bham.ac.uk; Mottura, Alessandro, E-mail: a.mottura@bham.ac.uk
2015-05-28
Atom migration mechanisms influence a wide range of phenomena: solidification kinetics, phase equilibria, oxidation kinetics, precipitation of phases, and high-temperature deformation. In particular, solute diffusion mechanisms in α-Ti alloys can help explain their excellent high-temperature behaviour. The purpose of this work is to study self- and solute diffusion in hexagonal close-packed (hcp)-Ti, and its anisotropy, from first-principles using the 8-frequency model. The calculated diffusion coefficients show that diffusion energy barriers depend more on bonding characteristics of the solute rather than the size misfit with the host, while the extreme diffusion anisotropy of some solute elements in hcp-Ti is a resultmore » of the bond angle distortion.« less
Design of Functional Layered Oxide Materials Through Understanding Structure-Property Relationships
NASA Astrophysics Data System (ADS)
Strayer, Megan E.
A fundamental understanding of structure-property relationships is imperative in the rational design of new materials for tailored applications. In this dissertation, structureproperty relationships are exploited in layered oxides and their composite materials. Recent advances in characterization techniques have allowed for more in-depth investigations into both the atomic level structure and properties of these materials. This dissertation focuses on understanding the structure-property relationships in supported catalytic systems and ferroelectric materials to aid in the rational design of functional materials. In Chapter 2, a correlation between the enthalpy of nanoparticle adsorption to oxide supports and the subsequent growth of these nanoparticles as a function of temperature is investigated. When deposited onto layered niobium oxide and tantalum oxide supports, rhodium hydroxide nanoparticles remain small and evenly dispersed upon heating to 750 °C. Using isothermal titration calorimetry, the bonding enthalpy of rhodium hydroxide nanoparticles to oxide supports is quantified for the first time under the wet synthetic conditions of catalyst preparation. Rh(OH)3 is concluded to have a strong, covalent interaction with the early transition metal oxide supports, and the interfacial bonding is hypothesized to occur through Rh - O - Nb bonding. Chapter 3 extends the studies in Chapter 2 to include supported metal, metal oxide, and metal hydroxide nanoparticles in the cobalt, nickel and copper triads. The data confirms a strong correlation between the heats of interaction and stability of the supported nanoparticles. Both experimental data and density functional theory calculations demonstrate that the support and nanoparticle compositions impact the heat of interaction and that the qualitative periodic trends of the metal bonding interaction are independent of the metal oxidation state. A strong bond is shown computationally to arise from the formation of mixed d-states between an adsorbed metal atom and a metal atom in the support. A preliminary investigation into the synthesis and stability of catalytically relevant ligand-free metal nanoparticles is presented in Chapter 4. The nanoparticles are synthesized via base hydrolysis and reduction with methanol. When deposited onto a niobium oxide support, the nanoparticles are thermally stable at temperatures up to 900 °C. The mechanism of platinum nanoparticle formation is still largely unknown, and a synthesis of rhodium and iridium ligand-free nanoparticles is reported. In Chapter 5, the n = 2 Dion Jacobson family A'LaB2O 7 (A': Rb, Cs; B: Nb, Ta) is reported as non-centrosymmetric and piezoelectric at room temperature for the first time. This non-centrosymmetry is predicted to arise from two nonpolar oxygen octahedral rotational modes condensing via the hybrid improper ferroelectricity mechanism. Rietveld refinement of synchrotron X-ray diffraction data is unable to confirm an acentric crystal structure as peak splitting is evident, revealing that multiple phases are likely present in these materials. Chapter 6 presents temperature-dependent synchrotron X-ray diffraction and neutron diffraction Rietveld refinement analysis of CsLaNb2O 7 to investigate the crystal structure and mechanism of non-centrosymmetry. The crystal structure is found to be in the centrosymmetric P4/mmm phase at 600 K and above. From 550 K to 350 K, the space group is assigned to the non-centrosymmetric Amm2 phase, as SHG signal is steadily increasing over this temperature range. Unfortunately, the 300 K and below crystal structure(s) have yet to be solved. Currently, both single-phase and dual-phase models are being refined in the synchrotron X-ray and neutron diffraction data.
Unraveling Metal-insulator Transition Mechanism of VO2 Triggered by Tungsten Doping
Tan, Xiaogang; Yao, Tao; Long, Ran; Sun, Zhihu; Feng, Yajuan; Cheng, Hao; Yuan, Xun; Zhang, Wenqing; Liu, Qinghua; Wu, Changzheng; Xie, Yi; Wei, Shiqiang
2012-01-01
Understanding the mechanism of W-doping induced reduction of critical temperature (TC) for VO2 metal-insulator transition (MIT) is crucial for both fundamental study and technological application. Here, using synchrotron radiation X-ray absorption spectroscopy combined with first-principles calculations, we unveil the atomic structure evolutions of W dopant and its role in tailoring the TC of VO2 MIT. We find that the local structure around W atom is intrinsically symmetric with a tetragonal-like structure, exhibiting a concentration-dependent evolution involving the initial distortion, further repulsion, and final stabilization due to the strong interaction between doped W atoms and VO2 lattices across the MIT. These results directly give the experimental evidence that the symmetric W core drives the detwisting of the nearby asymmetric monoclinic VO2 lattice to form rutile-like VO2 nuclei, and the propagations of these W-encampassed nuclei through the matrix lower the thermal energy barrier for phase transition. PMID:22737402
Cooling rate dependence and local structure in aluminum monatomic metallic glass
NASA Astrophysics Data System (ADS)
Kbirou, M.; Trady, S.; Hasnaoui, A.; Mazroui, M.
2017-10-01
The local atomic structure in aluminium monatomic metallic glass is studied using molecular dynamics simulations combined with the embedded atom method (EAM). We have used a variety of analytical methods to characterise the atomic configurations of our system: the Pair Distribution Function (PDF), the Common Neighbour Analysis (CNA) and the Voronoi Tessellation Analysis. CNA was used to investigate the order change from liquid to amorphous phases, recognising that the amount of icosahedral clusters increases with the decrease of temperature. The Voronoi analysis revealed that the icosahedral-like polyhedral are the predominant ones. It has been observed that the PDF function shows a splitting in the second peak, which cannot be attributed to the only ideal icosahedral polyhedron 〈0, 0, 12, 0〉, but also to the formation of other Voronoi polyhedra 〈0, 1, 10, 2〉 . Further, the PDFs were then integrated giving the cumulative coordination number in order to compute the fractal dimension (df).
Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang
2016-01-01
The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm2), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current. PMID:26902593
Kim, Howon; Lin, Shi -Zeng; Graf, Matthias J.; ...
2016-09-08
Local disordered nanostructures in an atomically thick metallic layer on a semiconducting substrate play significant and decisive roles in transport properties of two-dimensional (2D) conductive systems. We measured the electrical conductivity through a step of monoatomic height in a truly microscopic manner by using as a signal the superconducting pair correlation induced by the proximity effect. The transport property across a step of a one-monolayer Pb surface metallic phase, formed on a Si(111) substrate, was evaluated by inducing the pair correlation around the local defect and measuring its response, i.e., the reduced density of states at the Fermi energy usingmore » scanning tunneling microscopy. We found that the step resistance has a significant contribution to the total resistance on a nominally flat surface. Our study also revealed that steps in the 2D metallic layer terminate the propagation of the pair correlation. Furthermore, superconductivity is enhanced between the first surface step and the superconductor–normal-metal interface by reflectionless tunneling when the step is located within a coherence length.« less
Kim, Howon; Lin, Shi-Zeng; Graf, Matthias J; Miyata, Yoshinori; Nagai, Yuki; Kato, Takeo; Hasegawa, Yukio
2016-09-09
Local disordered nanostructures in an atomically thick metallic layer on a semiconducting substrate play significant and decisive roles in transport properties of two-dimensional (2D) conductive systems. We measured the electrical conductivity through a step of monoatomic height in a truly microscopic manner by using as a signal the superconducting pair correlation induced by the proximity effect. The transport property across a step of a one-monolayer Pb surface metallic phase, formed on a Si(111) substrate, was evaluated by inducing the pair correlation around the local defect and measuring its response, i.e., the reduced density of states at the Fermi energy using scanning tunneling microscopy. We found that the step resistance has a significant contribution to the total resistance on a nominally flat surface. Our study also revealed that steps in the 2D metallic layer terminate the propagation of the pair correlation. Superconductivity is enhanced between the first surface step and the superconductor-normal-metal interface by reflectionless tunneling when the step is located within a coherence length.
Nolan, Michael
2012-04-07
The modification of cerium dioxide with nanoscale metal clusters is intensely researched for catalysis applications, with gold, silver, and copper having been particularly well studied. The interaction of the metal cluster with ceria is driven principally by a localised interaction between a small number of metal atoms (as small as one) and the surface and understanding the fundamentals of the interaction of metal atoms with ceria surfaces is therefore of great interest. Much attention has been focused on the interaction of metals with the (111) surface of ceria, since this is the most stable surface and can be grown as films, which are probed experimentally. However, nanostructures exposing other surfaces such as (110) show high activity for reactions including CO oxidation and require further study; these nanostructures could be modified by deposition of metal atoms or small clusters, but there is no information to date on the atomic level details of metal-ceria interactions involving the (110) surface. This paper presents the results of density functional theory (DFT) corrected for on-site Coulomb interactions (DFT+U) calculations of the adsorption of a number of different metal atoms at an extended ceria (110) surface; the metals are Au, Ag, Cu, Al, Ga, In, La, Ce, V, Cr, and Fe. Upon adsorption all metals are oxidised, transferring electron(s) to the surface, resulting in localised surface distortions. The precise details depend on the identity of the metal atom. Au, Ag, Cu each transfer one electron to the surface, reducing one Ce ion to Ce(3+), while of the trivalent metals, Al and La are fully oxidised, but Ga and In are only partially oxidised. Ce and the transition metals are also partially oxidised, with the number of reduced Ce ions possible in this surface no more than three per adsorbed metal atom. The predicted oxidation states of the adsorbed metal atoms should be testable in experiments on ceria nanostructures modified with metal atoms.
Suleiman, Ibrahim A; Radny, Marian W; Gladys, Michael J; Smith, Phillip V; Mackie, John C; Kennedy, Eric M; Dlugogorski, Bogdan Z
2011-06-07
The effect of chlorine (Cl) chemisorption on the energetics and atomic structure of the Cu(001) surface over a wide range of chlorine pressures and temperatures has been studied using equilibrium ab initio atomistic thermodynamics to elucidate the formation of cuprous chloride (CuCl) as part of the Deacon reaction on copper metal. The calculated surface free energies show that the 1/2 monolayer (ML) c(2 × 2)-Cl phase with chlorine atoms adsorbed at the hollow sites is the most stable structure for a wide range of Cl chemical potential, in agreement with experimental observations. It is also found that at very low pressure and exposure, but elevated temperature, the 1/9 ML and 1/4 ML phases become the most stable. By contrast, a high coverage of Cl does not lead to thermodynamically stable geometries. The subsurface adsorption of Cl atoms, however, dramatically increases the stability of the 1 ML and 2 ML adsorption configurations providing a possible pathway for the formation of the bulk-chloride surface phases in the kinetic regime.
Thimmaiah, Srinivasa; Taufour, Valentin; Iowa State Univ., Ames, IA; ...
2016-11-15
Bi 21.2(1)(Mn 1–xCo x ) 20 is a new metastable phase which is synthesized via Bi self-flux, adopts a highly fibrous morpholo-gy, and decomposes endothermically near 168 °C. It crystallizes in the orthorhombic space group Imma with unit cell parameters α = 19.067(4) Å, $b$ = 4.6071(10) Å and c = 11.583(4) Å, adopting a low-temperature modification of BiNi-type structure by forming columns along the b-axis. Wave-length-dispersive X-ray spectroscopy (WDS) confirms the presence of Co in the structure, which is found to be 7 at.%. In each column, the transition metal (T) and Bi atoms construct a double-walled nanotubular arrangementmore » of atoms around the disordered central Bi atoms. Electronic structure calculations (LMTO-ASA, LSDA) show that the calculated Fermi level falls into a pseudogap and also indicate a possible low-temperature magnetic ordering in the phase.« less
Mixing of MnPc electronic states at the MnPc/Au(110) interface
NASA Astrophysics Data System (ADS)
Gargiani, Pierluigi; Lisi, Simone; Avvisati, Giulia; Mondelli, Pierluigi; Fatale, Sara; Betti, Maria Grazia
2017-10-01
Manganese-phthalocyanines form assembled chains with a variety of ordered super-structures, flat lying along the Au(110) reconstructed channels. The chains first give rise to a ×5 symmetry reconstruction, while further deposition of MnPc leads to a ×7 periodicity at the completion of the first single layer. A net polarization with the formation of an interface dipole is mainly due to the molecular π-states located on the macrocycles pyrrole rings, while the central metal ion induces a reduction in the polarization, whose amount is related to the Mn-Au interaction. The adsorption-induced interface polarization is compared to other 3d-metal phthalocyanines, to unravel the role of the central metal atom configuration in the interaction process of the d-states. The MnPc adsorption on Au(110) induces the re-hybridization of the electronic states localized on the central metal atom, promoting a charge redistribution of the molecular orbitals of the MnPc molecules. The molecule-substrate interaction is controlled by a symmetry-determined mixing between the electronic states, involving also the molecular empty orbitals with d character hybridized with the nitrogen atoms of the pyrrole ring, as deduced by photoemission and X-ray absorption spectroscopy exploiting light polarization. The symmetry-determined mixing between the electronic states of the Mn metal center and of the Au substrate induces a density of states close to the Fermi level for the ×5 phase.
Femtosecond Optical and X-Ray Measurement of the Semiconductor-to-Metal Transition in VO2
NASA Astrophysics Data System (ADS)
Cavalleri, Andrea; Toth, Csaba; Squier, Jeff; Siders, Craig; Raksi, Ferenc; Forget, Patrick; Kieffer, Jean-Claude
2001-03-01
While the use of ultrashort visible pulses allows access to ultrafast changes in the optical properties during phase transitions, measurement of the correlation between atomic movement and electronic rearrangement has proven more elusive. Here, we report on the conjunct measurement of ultrafast electronic and structural dynamics during a semiconductor-to-metal phase transition in VO2. Rearrangement of the unit cell from monoclinic to rutile (measured by ultrafast x-ray diffraction) is accompanied by a sharp increase in the electrical conductivity and perturbation of the optical properties (measured with ultrafast visible spectroscopy). Ultrafast x-ray diffraction experiments were performed using femtosecond bursts of Cu-Ka from a laser generated plasma source. A clear rise of the diffraction signal originating from the impulsively generated metallic phase was observable on the sub-picosecond timescale. Optical experiments were performed using time-resolved microscopy, providing temporally and spatially resolved measurements of the optical reflectivity at 800 nm. The data indicate that the reflectivity of the low-temperature semiconducting solid is driven to that of the equilibrium, high-temperature metallic phase within 400 fs after irradiation with a 50-fs laser pulse at fluences in excess of 10 mJ/cm2. In conclusion, the data presented in this contribution suggest that the semiconductor-to-metal transition in VO2 occurs within 500 fs after laser-irradiation. A nonthermal physical mechanism governs the re-arrangement.
The optical gap in VO2 insulating phases is dominated by Coulomb repulsion
NASA Astrophysics Data System (ADS)
Hendriks, Christopher; Walter, Eric; Krakauer, Henry; Huffman, Tyler; Qazilbash, Mumtaz
Under doping, tensile strain or heating, vanadium dioxide (VO2) transforms from an insulating monoclinic (M1) to a metallic rutile (R) phase, progressing through intermediate insulating triclinic (T) and magnetic (M2) phases. Broadband optical spectroscopy data have been obtained on the T and M2 phases in the same sample. While only half the V atoms are dimerized in M2 compared to M1 and T, the measured optical gap is essentially unaltered by the first-order structural phase transition between them. Moreover, the optical interband features in the T and M2 phases are remarkably similar to those previously observed in the well-studied M1 phase. This shows that the electronic structure is insensitive to the lattice structure. Our ab-initio HSE optical conductivity calculations on the insulating phases of VO2 are in excellent agreement with the experimental measurements. We will discuss the choice of α, the fraction of exact exchange. As the energy gap is insensitive to the different lattice structures of the three insulating phases, we rule out Peierls effects as the dominant contributor to the opening of the gap. Rather, the energy gap arises from intra-atomic Coulomb correlations. Supported by ONR.
Suppression and enhancement of decoherence in an atomic Josephson junction
NASA Astrophysics Data System (ADS)
Japha, Yonathan; Zhou, Shuyu; Keil, Mark; Folman, Ron; Henkel, Carsten; Vardi, Amichay
2016-05-01
We investigate the role of interatomic interactions when a Bose gas, in a double-well potential with a finite tunneling probability (a ‘Bose-Josephson junction’), is exposed to external noise. We examine the rate of decoherence of a system initially in its ground state with equal probability amplitudes in both sites. The noise may induce two kinds of effects: firstly, random shifts in the relative phase or number difference between the two wells and secondly, loss of atoms from the trap. The effects of induced phase fluctuations are mitigated by atom-atom interactions and tunneling, such that the dephasing rate may be suppressed by half its single-atom value. Random fluctuations may also be induced in the population difference between the wells, in which case atom-atom interactions considerably enhance the decoherence rate. A similar scenario is predicted for the case of atom loss, even if the loss rates from the two sites are equal. We find that if the initial state is number-squeezed due to interactions, then the loss process induces population fluctuations that reduce the coherence across the junction. We examine the parameters relevant for these effects in a typical atom chip device, using a simple model of the trapping potential, experimental data, and the theory of magnetic field fluctuations near metallic conductors. These results provide a framework for mapping the dynamical range of barriers engineered for specific applications and set the stage for more complex atom circuits (‘atomtronics’).
Identification and properties of the non-cubic phases of Mg 2Pb
Li, Yuwei; Bian, Guang; Singh, David J.
2016-12-20
Mg 2Pb occurs in the cubic fluorite structure and is a semimetal with a band structure strongly affected by spin-orbit interaction on the Pb p states. Its properties are therefore of interest in the context of topological materials. In addition a different phase of Mg 2Pb was experimentally reported, but its crystal structure and properties remain unknown. Here we determine the structure of this phase using ab initio evolutionary methods and report its properties. The energy of one tetragonal phase, space group P4/ nmm, is 2 meV per atom higher than that of the ground state structure supporting the experimentalmore » observation. We find this tetragonal phase to be a compenstated anisotropic metal with strong spin orbit effects. As a result, many other metastable structures have also been identified, especially one orthorhombic structure, space group Pnma, of which energy is 17 meV per atom higher than that of ground state structure and which perhaps could be the phase that was reported based on similarity of lattice parameters.« less
Bowron, Daniel T; Booth, Jonathan; Barrow, Nathan S; Sutton, Patricia; Johnson, Simon R
2018-05-23
Low levels of transition metal oxides in alkali borosilicate glass systems can drastically influence crystallisation and phase separation properties. We investigated the non-monotonic effect of manganese doping on suppressing crystallisation, and the influence on optical properties by iron oxide doping, in terms of local atomic structure. Structural models based on empirical potential structure refinement were generated from neutron and X-ray scattering data, and compared against multinuclear solid-state NMR. This revealed that a 2.5% manganese doping had a disruptive effect on the entire glass network, supressing crystallisation of an undesired bismuth silicate phase, and that iron species preferentially locate near borate tetrahedra. Preventing phase separation and controlling crystallisation behaviour of glass are critical to the ultimate properties of automotive glass enamels.
NASA Astrophysics Data System (ADS)
Ma, Jingrui; Tang, Kun; Mao, Haoyuan; Ye, Jiandong; Zhu, Shunming; Xu, Zhonghua; Yao, Zhengrong; Gu, Shulin; Zheng, Youdou
2018-03-01
Highly mismatched ZnO1-xSx:N alloy films with various x were deposited on c-plane sapphire substrates by a near-equilibrium method, metal-organic chemical vapor deposition. The sulfur concentration in the films could be tuned by changing the flow rate of H2S during the growth process. The films that could maintain single phase have an upper limit for x ∼ 0.15, which is smaller than the x values obtained from other non-equilibrium-grown samples (x ∼ 0.23). When x > 0.15, phases other than the wurtzite ZnO (W-ZnO) one appeared. Those phases were ascribed to the sulfur-diluted W-ZnO like phase, low x W-ZnO like phase, and high x W-ZnS like phase. The S contents in different phase has been determined by using Vegard's law and the X-ray photoelectron spectroscopy. Meanwhile, the compositional dependence of the bandgap energy in the ZnO1-xSx alloyed material has been investigated and studied comparing with other reported results. The dispersed bowing parameter b and the mechanism of the phase separation in samples grown by both the near-equilibrium method and the non-equilibrium one have also been discussed based on the difference of the atomic radius and electronegativity of the oxygen and sulfur atoms. Furthermore, the Raman and photoluminescence spectra have shown that the sulfur incorporation may suppress zinc interstitials related defects, while the oxygen vacancies related defects may be easily formed at the same time. These results indicate that ZnO1-xSx films could be beneficial to the realization of p-type doping in ZnO, although no obvious p-type characteristic has been attained in the work yet.
Doping Scheme in Atomic Chain Electronics
NASA Technical Reports Server (NTRS)
Toshishige, Yamada
1997-01-01
Due to the dramatic reduction in MOS size, there appear many unwanted effects. In these small devices, the number of dopant atoms in the channel is not macroscopic and electrons may suffer significantly different scattering from device to device since the spatial distribution of dopant atoms is no longer regarded as continuous. This prohibits integration, while it is impossible to control such dopant positions within atomic scale. A fundamental solution is to create electronics with simple but atomically precise structures, which could be fabricated with recent atom manipulation technology. All the constituent atoms are placed as planned, and then the device characteristics are deviation-free, which is mandatory for integration. Atomic chain electronics belongs to this category. Foreign atom chains or arrays form devices, and they are placed on the atomically flat substrate surface. We can design the band structure and the resultant Fermi energy of these structures by manipulating the lattice constant. Using the tight-binding theory with universal parameters, it has been predicted that isolated Si chains and arrays are metallic, Mg chains are insulating, and Mg arrays have metallic and insulating phases [1]. The transport properties along a metallic chain have been studied, emphasizing the role of the contact to electrodes [2]. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along die chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of pant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.
Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium.
Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao
2017-12-01
The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.
Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao
2017-07-01
The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.
NASA Astrophysics Data System (ADS)
Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam
2018-05-01
We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.
First-principles studies on 3d transition metal atom adsorbed twin graphene
NASA Astrophysics Data System (ADS)
Li, Lele; Zhang, Hong; Cheng, Xinlu; Miyamoto, Yoshiyuki
2018-05-01
Twin graphene is a new two-dimensional semiconducting carbon allotrope which is proposed recently. The structural, magnetic and electronic properties are investigated for 3d transition metal (TM) atom adsorbed twin graphene by means of GGA+U calculations. The results show most of single 3d transition metal atom except Zn can make twin graphene magnetization. The adsorption of single TM atom can also make the twin graphene systems turn to half metal (V adsorption), half-semiconductor (Fe adsorption) or metal (Sc, Cr, Mn, Co and Cu adsorption). The semiconducting nature still exists for Ti, Ni and Zn adsorption. All the 3d TM adatoms belong to n-type doping for transferring charge to the neighboring C atoms and have strong covalent bond with these C atoms. The influence of Hubbard U value on half-metallic V adsorbed system is also considered. As the U increases, the system can gradually transform from metal to half metal and metal. The effect of the coverage is investigated for two TM atoms (Sc-Fe) adsorption, too. We can know TM atoms adsorbed twin graphene have potentials to be spintronic device and nanomagnets from the results.
First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys
NASA Astrophysics Data System (ADS)
Khatta, Swati; Tripathi, S. K.; Prakash, Satya
2017-09-01
The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.
A rational approach to heavy-atom derivative screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, M. Gordon; Radaev, Sergei; Sun, Peter D., E-mail: psun@nih.gov
2010-04-01
In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom-derivative screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. Despite the development in recent times of a range of techniques for phasing macromolecules, the conventional heavy-atom derivatization method still plays a significant role in protein structure determination. However, this method has become less popular in modern high-throughput oriented crystallography, mostly owing to its trial-and-error nature, which often results in lengthy empirical searches requiring large numbers of well diffracting crystals. In addition, the phasingmore » power of heavy-atom derivatives is often compromised by lack of isomorphism or even loss of diffraction. In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom derivative-screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. The method includes three basic steps: (i) the selection of likely reactive compounds for a given protein and specific crystallization conditions based on pre-defined heavy-atom compound reactivity profiles, (ii) screening of the chosen heavy-atom compounds for their ability to form protein adducts using mass spectrometry and (iii) derivatization of crystals with selected heavy-metal compounds using the quick-soak method to maximize diffraction quality and minimize non-isomorphism. Overall, this system streamlines the process of heavy-atom compound identification and minimizes the problem of non-isomorphism in phasing.« less
Structure and decomposition of the silver formate Ag(HCO{sub 2})
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puzan, Anna N., E-mail: anna_puzan@mail.ru; Baumer, Vyacheslav N.; Mateychenko, Pavel V.
Crystal structure of the silver formate Ag(HCO{sub 2}) has been determined (orthorhombic, sp.gr. Pccn, a=7.1199(5), b=10.3737(4), c=6.4701(3)Å, V=477.88(4) Å{sup 3}, Z=8). The structure contains isolated formate ions and the pairs Ag{sub 2}{sup 2+} which form the layers in (001) planes (the shortest Ag–Ag distances is 2.919 in the pair and 3.421 and 3.716 Å between the nearest Ag atoms of adjacent pairs). Silver formate is unstable compound which decompose spontaneously vs time. Decomposition was studied using Rietveld analysis of the powder diffraction patterns. It was concluded that the diffusion of Ag atoms leads to the formation of plate-like metal particlesmore » as nuclei in the (100) planes which settle parallel to (001) planes of the silver formate matrix. - Highlights: • Silver formate Ag(HCO{sub 2}) was synthesized and characterized. • Layered packing of Ag-Ag pairs in the structure was found. • Decomposition of Ag(HCO{sub 2}) and formation of metal phase were studied. • Rietveld-refined micro-structural characteristics during decomposition reveal the space relationship between the matrix structure and forming Ag phase REPLACE with: Space relationship between the matrix structure and forming Ag phase.« less
NASA Astrophysics Data System (ADS)
Özer, Mustafa M.; Weitering, Hanno H.
2013-07-01
Deposition of Mg on Si(111)7 × 7 produces an epitaxial magnesium silicide layer. Under identical annealing conditions, the thickness of this Mg2Si(111) layer increases with deposition amount, reaching a maximum of 4 monolayer (ML) and decreasing to ˜3 ML at higher Mg coverage. Excess Mg coalesces into atomically flat, crystalline Mg(0001) films. This surprising growth mode can be attributed to the accidental commensurability of the Mg(0001), Si(111), and Mg2Si(111) interlayer spacing and the concurrent minimization of in-plane Si mass transfer and domain-wall energies. The commensurability of the interlayer spacing defines a highly unique solid-phase epitaxial growth process capable of producing trilayer structures with atomically abrupt interfaces and atomically smooth surface morphologies.
Whispering galleries and the control of artificial atoms.
Forrester, Derek Michael; Kusmartsev, Feodor V
2016-04-28
Quantum computation using artificial-atoms, such as novel superconducting circuits, can be sensitively controlled by external electromagnetic fields. These fields and the self-fields attributable to the coupled artificial-atoms influence the amount of quantum correlation in the system. However, control elements that can operate without complete destruction of the entanglement of the quantum-bits are difficult to engineer. Here we investigate the possibility of using closely-spaced-linear arrays of metallic-elliptical discs as whispering gallery waveguides to control artificial-atoms. The discs confine and guide radiation through the array with small notches etched into their sides that act as scatterers. We focus on π-ring artificial-atoms, which can generate their own spontaneous fluxes. We find that the micro-discs of the waveguides can be excited by terahertz frequency fields to exhibit whispering-modes and that a quantum-phase-gate composed of π-rings can be operated under their influence. Furthermore, we gauge the level of entanglement through the concurrence measure and show that under certain magnetic conditions a series of entanglement sudden-deaths and revivals occur between the two qubits. This is important for understanding the stability and life-time of qubit operations using, for example, a phase gate in a hybrid of quantum technologies composed of control elements and artificial-atoms.
Near-infrared–driven decomposition of metal precursors yields amorphous electrocatalytic films
Salvatore, Danielle A.; Dettelbach, Kevan E.; Hudkins, Jesse R.; Berlinguette, Curtis P.
2015-01-01
Amorphous metal-based films lacking long-range atomic order have found utility in applications ranging from electronics applications to heterogeneous catalysis. Notwithstanding, there is a limited set of fabrication methods available for making amorphous films, particularly in the absence of a conducting substrate. We introduce herein a scalable preparative method for accessing oxidized and reduced phases of amorphous films that involves the efficient decomposition of molecular precursors, including simple metal salts, by exposure to near-infrared (NIR) radiation. The NIR-driven decomposition process provides sufficient localized heating to trigger the liberation of the ligand from solution-deposited precursors on substrates, but insufficient thermal energy to form crystalline phases. This method provides access to state-of-the-art electrocatalyst films, as demonstrated herein for the electrolysis of water, and extends the scope of usable substrates to include nonconducting and temperature-sensitive platforms. PMID:26601148
Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.
Barskiy, Danila A; Ke, Lucia A; Li, Xingyang; Stevenson, Vincent; Widarman, Nevin; Zhang, Hao; Truxal, Ashley; Pines, Alexander
2018-05-10
Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.
Lind, Cora; Gates, Stacy D.; Pedoussaut, Nathalie M.; Baiz, Tamam I.
2010-01-01
Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG) processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.
Persistent three- and four-atom orbital molecules in the spinel Al V2O4
NASA Astrophysics Data System (ADS)
Browne, Alexander J.; Kimber, Simon A. J.; Attfield, J. Paul
2017-10-01
Electronic instabilities in transition-metal compounds may lead to ground states containing orbital molecules when direct metal-metal orbital interactions occur. The spinel Al V2O4 was reported to contain V717 + orbital heptamers that emerge below a 700 K charge ordering transition. Our x-ray total scattering analysis of Al V2O4 between 300 and 1100 K reveals a very different picture as the postulated heptamers are found to be pairs of spin-singlet V39 + trimers and V48 + tetramers, and these orbital molecules persist to at least 1100 K in a disordered high-temperature cubic phase.
Hanasaki, N; Watanabe, K; Ohtsuka, T; Kézsmárki, I; Iguchi, S; Miyasaka, S; Tokura, Y
2007-08-24
The metal-insulator transition has been investigated for pyrochlore molybdates R(2)Mo(2)O(7) with nonmagnetic rare-earth ions R. The dynamical scaling analysis of ac susceptibility reveals that the geometrical frustration causes the atomic spin-glass state. The reentrant spin-glass phase exists below the ferromagnetic transition. The electronic specific heat is enhanced as compared to the band calculation result, perhaps due to the orbital fluctuation in the half-metallic ferromagnetic state. The large specific heat is rather reduced upon the transition, likely because the short-range antiferromagnetic fluctuation shrinks the Fermi surface.
Kiran, K; Suresh Kumar, K; Suvardhan, K; Janardhanam, K; Chiranjeevi, P
2007-08-17
2-{[1-(2-Hydroxynaphthyl) methylidene] amino} benzoic acid (HNMABA) was synthesized for solid phase extraction (SPE) to the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples by flame atomic absorption spectrophotometry (FAAS). These metals were sorbed as HNMABA complexes on activated carbon (AC) at the pH range of 5.0+/-0.2 and eluted with 6 ml of 1M HNO3 in acetone. The effects of sample volume, eluent volume and recovery have been investigated to enhance the sensitivity and selectivity of proposed method. The effect of interferences on the sorption of metal ions was studied. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The detection limits for the metals studied were in the range of 0.75-3.82 microg ml(-1). The proposed system produced satisfactory results for the determination of Co, Cu, Ni, Zn and Cd metals in environmental and biological samples.
Bonds Between Metal Atoms: A New Mode of Transition Metal Chemistry.
ERIC Educational Resources Information Center
Cotton, F. Albert; Chisholm, Malcolm H.
1982-01-01
Discusses polynuclear metal clusters (containing two or more metal atoms bonded to one another as well as to nonmetallic elements), including their formation and applications. Studies of bonds between metal atoms reveal superconductors, organic-reaction catalysts, and photosensitive complexes that may play a role in solar energy. (JN)
Sen, Rupam; Mal, Dasarath; Lopes, Armandina M L; Brandão, Paula; Araújo, João P; Lin, Zhi
2013-10-01
Two new layered transition metal carboxylate frameworks, [Co3(L)2(H2O)6]·2H2O () and [Ni3(L)2(H2O)6]·2H2O () (L = tartronate anion or hydroxymalonic acid), have been synthesized and characterized by X-ray single crystal analysis. Both compounds have similar 2D structures. In both compounds there are two types of metal centers where one center is doubly bridged by the alkoxy oxygen atoms through μ2-O bridging to form a 1D infinite chain parallel to the crystallographic b-axis with the corners shared between the metal polyhedra. Magnetic susceptibility measurements revealed the existence of antiferromagnetic short range correlations between Co(Ni) intra-chain metal centers (with exchange constants JCo = -22.6 and JNi = -35.4 K). At low temperatures, long range order is observed in both compounds at Néel temperatures of 11 (for ) and 16 (for ) K, revealing that other exchange interactions, rather than the intra-chain ones, play a role in these systems. Whereas compound has an antiferromagnetic ground state, compound exhibits a ferromagnetic component, probably due to spin canting. Isothermal magnetization data unveiled a rich phase diagram with three metamagnetic phase transitions below 8 K in compound .
Ignition and combustion characteristics of metallized propellants, phase 2
NASA Technical Reports Server (NTRS)
Mueller, D. C.; Turns, S. R.
1994-01-01
Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine Isp efficiencies, accounting for radiation and two phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of five.
Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan
2016-02-01
Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.
Attosecond control of electrons emitted from a nanoscale metal tip.
Krüger, Michael; Schenk, Markus; Hommelhoff, Peter
2011-07-06
Attosecond science is based on steering electrons with the electric field of well controlled femtosecond laser pulses. It has led to the generation of extreme-ultraviolet pulses with a duration of less than 100 attoseconds (ref. 3; 1 as = 10(-18) s), to the measurement of intramolecular dynamics (by diffraction of an electron taken from the molecule under scrutiny) and to ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Electrons liberated from solids by few-cycle laser pulses are also predicted to show a strong light-phase sensitivity, but only very small effects have been observed. Here we report that the spectra of electrons undergoing photoemission from a nanometre-scale tungsten tip show a dependence on the carrier-envelope phase of the laser, with a current modulation of up to 100 per cent. Depending on the carrier-envelope phase, electrons are emitted either from a single sub-500-attosecond interval of the 6-femtosecond laser pulse, or from two such intervals; the latter case leads to spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Owing to field enhancement at the tip, a simple laser oscillator reaches the peak electric field strengths required for attosecond experiments at 100-megahertz repetition rates, rendering complex amplified laser systems dispensable. Practically, this work represents a simple, extremely sensitive carrier-envelope phase sensor, which could be shrunk in volume to about one cubic centimetre. Our results indicate that the attosecond techniques developed with (and for) atoms and molecules can also be used with solids. In particular, we foresee subfemtosecond, subnanometre probing of collective electron dynamics (such as plasmon polaritons) in solid-state systems ranging in scale from mesoscopic solids to clusters and to single protruding atoms. ©2011 Macmillan Publishers Limited. All rights reserved
DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip
2017-10-11
Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal < Pt ox . Pt iso species exhibited a 2-fold greater turnover frequency for CO oxidation than 1 nm Pt metal clusters but share an identical reaction mechanism. We propose the active catalytic sites are cationic interfacial Pt atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.
Phase Transformations and Microstructural Evolution: Part II
Clarke, Amy Jean
2015-10-30
The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less
NASA Astrophysics Data System (ADS)
Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal
2014-12-01
An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.
Thin Metallic Films From Solvated Metal Atoms
NASA Astrophysics Data System (ADS)
Trivino, Galo C.; Klabunde, Kenneth J.; Dale, Brock
1988-02-01
Metals were evaporated under vacuum and the metal atoms solvated by excess organic solvents at low temperature. Upon warming stable colloidal metal particles were formed by controlled metal atom clustering. The particles were stabilized toward flocculation by solvation and electrostatic effects. Upon solvent removal the colloidal particles grew to form thin films that were metallic in appearance, but showed higher resistivities than pure metallic films. Gold, palladium, platinium, and especially indium are discussed.
Jensen, R.J.; Rice, W.W.; Beattie, W.H.
1975-10-28
A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.
Computational investigation of half-Heusler compounds for spintronics applications
NASA Astrophysics Data System (ADS)
Ma, Jianhua; Hegde, Vinay I.; Munira, Kamaram; Xie, Yunkun; Keshavarz, Sahar; Mildebrath, David T.; Wolverton, C.; Ghosh, Avik W.; Butler, W. H.
2017-01-01
We present first-principles density functional calculations of the electronic structure, magnetism, and structural stability of 378 XYZ half-Heusler compounds (with X = Cr, Mn, Fe, Co, Ni, Ru, Rh; Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Ga, In, Si, Ge, Sn, P, As, Sb). We find that a "Slater-Pauling gap" in the density of states (i.e., a gap or pseudogap after nine states in the three atom primitive cell) in at least one spin channel is a common feature in half-Heusler compounds. We find that the presence of such a gap at the Fermi energy in one or both spin channels contributes significantly to the stability of a half-Heusler compound. We calculate the formation energy of each compound and systematically investigate its stability against all other phases in the open quantum materials database (OQMD). We represent the thermodynamic phase stability of each compound as its distance from the convex hull of stable phases in the respective chemical space and show that the hull distance of a compound is a good measure of the likelihood of its experimental synthesis. We find low formation energies and mostly correspondingly low hull distances for compounds with X = Co, Rh, or Ni, Y = Ti or V, and Z = P, As, Sb, or Si. We identify 26 18-electron semiconductors, 45 half-metals, and 34 near half-metals with negative formation energy that follow the Slater-Pauling rule of three electrons per atom. Our calculations predict several new, as-yet unknown, thermodynamically stable phases, which merit further experimental exploration—RuVAs, CoVGe, FeVAs in the half-Heusler structure, and NiScAs, RuVP, RhTiP in the orthorhombic MgSrSi-type structure. Further, two interesting zero-moment half-metals, CrMnAs and MnCrAs, are calculated to have negative formation energy. In addition, our calculations predict a number of hitherto unreported semiconducting (e.g., CoVSn and RhVGe), half-metallic (e.g., RhVSb), and near half-metallic (e.g., CoFeSb and CoVP) half-Heusler compounds to lie close to the respective convex hull of stable phases, and thus may be experimentally realized under suitable synthesis conditions, resulting in potential candidates for various semiconducting and spintronics applications.
Nelson, Joey; Wasylenki, Laura; Bargar, John R.; ...
2017-08-05
Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. Furthermore, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Joey; Wasylenki, Laura; Bargar, John R.
Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. Furthermore, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder.
Distribution of metals between particulate and gaseous forms in a volcanic plume
Hinkley, T.K.
1991-01-01
In order to gain information on the distribution of metals between particles and gaseous forms in the plume of Kilauea volcano, a filter designed to collect metals associated with particles was followed in series by two other collectors intended to trap metals present in gaseous (atomic, molecular, or complexed) form: first an acid-bubbler bath and then a cold trap. Of the six metals measured, all of the In, Tl and Bi, and almost all of the Cd, Pb and Cu were found on the filter. None of any of the metals was detected in the acid-bubbler bath. Masses equivalent to 0.3% of the amount of Cd on the filter, 0.4% of the amount of Pb, and 9.3% of the Cu, were measured in the cold trap. The results indicate that all or nearly all of the six metals were partitioned to the particulate portion of the physical mixture of gases and particles that constitutes a volcanic plume, but that there may be systematic differences between chalcophile metals in the ways they are partitioned between particulate and gaseous phases in a cooled plume, and possibly differences in the acidity or other chemical properties of the molecular phases. ?? 1991 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Downey, Brian P.; Wheeler, Virginia D.; Meyer, David J.
2017-06-01
We demonstrate the thermally actuated phase change of VO2 films formed by atomic layer deposition and subsequent thermal annealing on InAlN/AlN/GaN heterostructures. To locally raise the device temperature above the VO2 semiconductor-metal transition temperature, a two-dimensional electron gas formed within the InAlN/AlN/GaN heterostructure was used as an integrated resistive heater. An ON/OFF resistance ratio of nearly 103 was achieved for 50 nm VO2 films over a temperature range of 25 to 105 °C. The time required to switch the VO2 film from high- to low-resistance states was shown to depend on the applied heater power, with sub-microsecond transition times achieved.
X-ray Diffraction Study of Order-Disorder Phase Transition in CuMPt6 (M=3d Elements) Alloys
NASA Astrophysics Data System (ADS)
Ahmed, Ejaz; Takahashi, Miwako; Iwasaki, Hiroshi; Ohshima, Ken-ichi
2009-01-01
We investigated the ordering behavior of ternary CuMPt6 alloys with M=Ti, V, Cr, Mn, Fe, Co, and Ni by high-temperature polycrystalline X-ray diffraction. The alloys undergo a phase transition from the fcc disordered state to the Cu3Au-type ordered state, except for the alloy with M=Ni, in which only short-range order forms. The transition temperature Tc is highest (1593 K) for M=Ti and decreases almost monotonically with increasing atomic number to 1153 K for M=Co. The observed dependence of ordering tendency on the atomic number of M is discussed in the light of the theory of ordering in transition-metal alloys and its significance for the study of ordering in ternary alloys.
NASA Astrophysics Data System (ADS)
Polenov, Yu. V.; Egorova, E. V.; Shestakov, G. A.
2018-01-01
The kinetics of the decomposition of thiourea dioxide and the reduction of cadmium cations by thiourea dioxide in an aqueous ammonia solution are studied. The kinetic parameters of these reactions are calculated using experimental data, allowing us to adjust conditions for the synthesis of cadmium coatings on carbon fiber of grade UKN-M-12K. The presence of the metal crystalline phase on the fiber is confirmed by means of X-ray diffraction, and its amount is measured via atomic absorption spectroscopy.
Synthesis of Hf 8O 7, a new binary hafnium oxide, at high pressures and high temperatures
Bayarjargal, L.; Morgenroth, W.; Schrodt, N.; ...
2017-01-23
In this paper, two binary phases in the system Hf-O have been synthesized at pressures between 12 and 34 GPa and at temperatures up to 3000 K by reacting Hf with HfO 2 using a laser-heated diamond anvil cell. In situ X-ray diffraction in conjunction with density functional theory calculations has been employed to characterize a previously unreported tetragonal Hf 8O 7 phase. This phase has a structure which is based on an fcc Hf packing with oxygen atoms occupying octahedral interstitial positions. Its predicted bulk modulus is 223(1) GPa. The second phase has a composition close to Hf 6O,more » where oxygen atoms occupy octahedral interstitial sites in an hcp Hf packing. Its experimentally determined bulk modulus is 128(30) GPa. Finally, the phase diagram of Hf metal was further constrained at high pressures and temperatures, where we show that α-Hf transforms to β-Hf around 2160(150) K and 18.2 GPa and β-Hf remains stable up to at least 2800 K at this pressure.« less
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo
Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) film on SrTiO3 (STO) substrate. The variations in out-of-plane lattice constant and BO6 octahedral rotation across the PSMO/STO interface strongly depend on the thickness of PSMO films. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI’) phase is formed during the cubic-to-tetragonal phase transition of STO, apparently due to enhanced electron-phonon interaction and atomic disorder in the film.more » The transport properties of the FI’ phase in the 30-nm film are masked because of the reduced interfacial effect and smaller interface-to-volume ratio. This work demonstrates how thickness-dependent interfacial coupling leads to formation of the theoretically predicted novel ferromagnetic-polaronic insulator in systems, as illustrated in a new phase diagram, that are otherwise ferromagnetic metals (FM) in bulk form.« less
Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.
Narayanan, Badri; Chan, Henry; Kinaci, Alper; Sen, Fatih G; Gray, Stephen K; Chan, Maria K Y; Sankaranarayanan, Subramanian K R S
2017-11-30
A fundamental understanding of the inter-relationships between structure, morphology, atomic scale dynamics, chemistry, and physical properties of mixed metallic-covalent systems is essential to design novel functional materials for applications in flexible nano-electronics, energy storage and catalysis. To achieve such knowledge, it is imperative to develop robust and computationally efficient atomistic models that describe atomic interactions accurately within a single framework. Here, we present a unified Tersoff-Brenner type bond order potential (BOP) for a Co-C system, trained against lattice parameters, cohesive energies, equation of state, and elastic constants of different crystalline phases of cobalt as well as orthorhombic Co 2 C derived from density functional theory (DFT) calculations. The independent BOP parameters are determined using a combination of supervised machine learning (genetic algorithms) and local minimization via the simplex method. Our newly developed BOP accurately describes the structural, thermodynamic, mechanical, and surface properties of both the elemental components as well as the carbide phases, in excellent accordance with DFT calculations and experiments. Using our machine-learnt BOP potential, we performed large-scale molecular dynamics simulations to investigate the effect of metal/carbon concentration on the structure and mechanical properties of porous architectures obtained via self-assembly of cobalt nanoparticles and fullerene molecules. Such porous structures have implications in flexible electronics, where materials with high electrical conductivity and low elastic stiffness are desired. Using unsupervised machine learning (clustering), we identify the pore structure, pore-distribution, and metallic conduction pathways in self-assembled structures at different C/Co ratios. We find that as the C/Co ratio increases, the connectivity between the Co nanoparticles becomes limited, likely resulting in low electrical conductivity; on the other hand, such C-rich hybrid structures are highly flexible (i.e., low stiffness). The BOP model developed in this work is a valuable tool to investigate atomic scale processes, structure-property relationships, and temperature/pressure response of Co-C systems, as well as design organic-inorganic hybrid structures with a desired set of properties.
Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material
Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.
1996-01-01
An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.
Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material
Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.
1996-09-24
An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.
Processing and characterization of Zr-based metallic glass by laser direct deposition
NASA Astrophysics Data System (ADS)
Bae, Heehun
Bulk Metallic Glass has become famous for its exceptional mechanical and corrosion properties. Especially, Zirconium has been the prominent constituent in Bulk Metallic Glass due to its superior glass forming ability, the ability to form amorphous phase with low cooling rate, thereby giving advantages in structural applications. In this study, Zirconium powder was alloyed with Aluminum, Nickel and Copper powder at an atomic ratio of 65:10:10:15, respectively. Using the ball milling process to mix the powders, Zr65Al10Ni 10Cu15 amorphous structure was manufactured by laser direct deposition. Laser power and laser scanning speed were optimized to increase the fraction of amorphous phase. X-ray Diffraction confirmed the existence of both amorphous and crystalline phase by having a wide halo peak and sharp intense peak in the spectrum. Differential Scanning Calorimetry proved the presence of amorphous phase and glass transition was observed to be around 655 K. Scanning electron microscopy showed the microstructure of the deposited sample to have repetitive amorphous and crystalline phase as XRD examined. Crystalline phase resulted from the laser reheating and remelting process due to subsequent laser scan. Laser direct deposited amorphous/crystalline composite showed Vickers Hardness of 670 Hv and exhibited improved corrosion resistance in comparison to fully-crystallized sample. The compression test showed that, due to the existence of crystalline phase, fracture strain of Zr65Al10Ni10Cu 15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass.
Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon
2017-06-01
We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.
Nucleation and microstructure development in Cr-Mo-V tool steel during gas atomization
NASA Astrophysics Data System (ADS)
Behúlová, M.; Grgač, P.; Čička, R.
2017-11-01
Nucleation studies of undercooled metallic melts are of essential interest for the understanding of phase selection, growth kinetics and microstructure development during their rapid non-equilibrium solidification. The paper deals with the modelling of nucleation processes and microstructure development in the hypoeutectic tool steel Ch12MF4 with the chemical composition of 2.37% C, 12.06 % Cr, 1.2% Mo, 4.0% V and balance Fe [wt. %] in the process of nitrogen gas atomization. Based on the classical theory of homogeneous nucleation, the nucleation temperature of molten rapidly cooled spherical particles from this alloy with diameter from 40 μm to 600 μm in the gas atomization process is calculated using various estimations of parameters influencing the nucleation process - the Gibbs free energy difference between solid and liquid phases and the solid/liquid interfacial energy. Results of numerical calculations are compared with experimentally measured nucleation temperatures during levitation experiments and microstructures developed in rapidly solidified powder particles from the investigated alloy.
Length-dependent structural stability of linear monatomic Cu wires
NASA Astrophysics Data System (ADS)
Singh, Gurvinder; Kumar, Krishan; Singh, Baljinder; Moudgil, R. K.
2018-05-01
We present first-principle calculations based on density functional theory for the finite-length monatomic Cu atom linear wires. The structure and its stability with increasing wire length in terms of number of atoms (N) is determined. Interestingly, the bond length is found to exhibit an oscillatory structure (the so-called magic length phenomenon), with a qualitative change in oscillatory behavior as one moves from even N wire to odd N wire. The even N wires follow simple even-odd oscillations whereas odd N wires show a phase change at the half length of the wires. The stability of the wire structure, determined in terms of the wire formation energy, also contains even-odd oscillation as a function of wire length. However, the oscillations in formation energy reverse its phase after the wire length is increased beyond N=12. Our findings are seen to be qualitatively consistent with recent simulations for a similar class finite-length metal atom wires.
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen
2018-04-01
The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.
Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics
Hunter, A.
2016-01-01
In this paper, we discuss the formulation, recent developments and findings obtained from a mesoscale mechanics technique called phase field dislocation dynamics (PFDD). We begin by presenting recent advancements made in modelling face-centred cubic materials, such as integration with atomic-scale simulations to account for partial dislocations. We discuss calculations that help in understanding grain size effects on transitions from full to partial dislocation-mediated slip behaviour and deformation twinning. Finally, we present recent extensions of the PFDD framework to alternative crystal structures, such as body-centred cubic metals, and two-phase materials, including free surfaces, voids and bi-metallic crystals. With several examples we demonstrate that the PFDD model is a powerful and versatile method that can bridge the length and time scales between atomistic and continuum-scale methods, providing a much needed understanding of deformation mechanisms in the mesoscale regime. PMID:27002063
Jensen, R.J.; Rice, W.W.; Beattie, W.H.
1975-10-28
A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)
Anthemidis, A; Kazantzi, V; Samanidou, V; Kabir, A; Furton, K G
2016-08-15
A novel flow injection-fabric disk sorptive extraction (FI-FDSE) system was developed for automated determination of trace metals. The platform was based on a minicolumn packed with sol-gel coated fabric media in the form of disks, incorporated into an on-line solid-phase extraction system, coupled with flame atomic absorption spectrometry (FAAS). This configuration provides minor backpressure, resulting in high loading flow rates and shorter analytical cycles. The potentials of this technique were demonstrated for trace lead and cadmium determination in environmental water samples. The applicability of different sol-gel coated FPSE media was investigated. The on-line formed complex of metal with ammonium pyrrolidine dithiocarbamate (APDC) was retained onto the fabric surface and methyl isobutyl ketone (MIBK) was used to elute the analytes prior to atomization. For 90s preconcentration time, enrichment factors of 140 and 38 and detection limits (3σ) of 1.8 and 0.4μgL(-1) were achieved for lead and cadmium determination, respectively, with a sampling frequency of 30h(-1). The accuracy of the proposed method was estimated by analyzing standard reference materials and spiked water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111)
NASA Astrophysics Data System (ADS)
Mette, Gerson; Sutter, Denys; Gurdal, Yeliz; Schnidrig, Stephan; Probst, Benjamin; Iannuzzi, Marcella; Hutter, Jürg; Alberto, Roger; Osterwalder, Jürg
2016-04-01
The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort.The molecular ligand pyrphyrin, a tetradentate bipyridine based macrocycle, represents an interesting but widely unexplored class of molecules. It resembles the well-known porphyrin, but consists of pyridyl subunits instead of pyrroles. Metal complexes based on pyrphyrin ligands have recently shown promise as water reduction catalysts in homogeneous photochemical water splitting reactions. In this study, the adsorption and metalation of pyrphyrin on a single crystalline Au(111) surface is investigated in an ultrahigh vacuum by means of scanning tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy and density functional theory. Pyrphyrin coverages of approximately one monolayer and less are obtained by sublimation of the molecules on the substrate kept at room temperature. The molecules self-assemble in two distinct phases of long-range molecular ordering depending on the surface coverage. The deposition of cobalt metal and subsequent annealing lead to the formation of Co-ligated pyrphyrin molecules accompanied by a pronounced change of the molecular self-assembly. Electronic structure calculations taking the herringbone reconstruction of Au(111) into account show that the molecules are physisorbed, but preferred adsorption sites are identified where Co and the N atoms of the two terminal cyano groups are optimally coordinated to the surface Au atoms. An intermediate state of the metalation reaction is observed and the reaction steps for the Co metalation of pyrphyrin molecules on Au(111) are established in a joint experimental and computational effort. Electronic supplementary information (ESI) available: More details and results of the XPS experiments and the DFT calculation including also the coordinates of the calculated configurations. See DOI: 10.1039/C5NR08953K
Hund’s rule in superatoms with transition metal impurities
Medel, Victor M.; Reveles, Jose Ulises; Khanna, Shiv N.; Chauhan, Vikas; Sen, Prasenjit; Castleman, A. Welford
2011-01-01
The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund’s rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMgn clusters where TM is a 3d atom. The clusters exhibit Hund’s filling, opening the pathway to superatoms with magnetic shells. PMID:21646542
Hund's rule in superatoms with transition metal impurities.
Medel, Victor M; Reveles, Jose Ulises; Khanna, Shiv N; Chauhan, Vikas; Sen, Prasenjit; Castleman, A Welford
2011-06-21
The quantum states in metal clusters bunch into supershells with associated orbitals having shapes resembling those in atoms, giving rise to the concept that selected clusters could mimic the characteristics of atoms and be classified as superatoms. Unlike atoms, the superatom orbitals span over multiple atoms and the filling of orbitals does not usually exhibit Hund's rule seen in atoms. Here, we demonstrate the possibility of enhancing exchange splitting in superatom shells via a composite cluster of a central transition metal and surrounding nearly free electron metal atoms. The transition metal d states hybridize with superatom D states and result in enhanced splitting between the majority and minority sets where the moment and the splitting can be controlled by the nature of the central atom. We demonstrate these findings through studies on TMMg(n) clusters where TM is a 3d atom. The clusters exhibit Hund's filling, opening the pathway to superatoms with magnetic shells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca
2015-09-21
Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties ofmore » equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.« less
Transparent conducting oxide induced by liquid electrolyte gating
NASA Astrophysics Data System (ADS)
ViolBarbosa, Carlos; Karel, Julie; Kiss, Janos; Gordan, Ovidiu-dorin; Altendorf, Simone G.; Utsumi, Yuki; Samant, Mahesh G.; Wu, Yu-Han; Tsuei, Ku-Ding; Felser, Claudia; Parkin, Stuart S. P.
2016-10-01
Optically transparent conducting materials are essential in modern technology. These materials are used as electrodes in displays, photovoltaic cells, and touchscreens; they are also used in energy-conserving windows to reflect the infrared spectrum. The most ubiquitous transparent conducting material is tin-doped indium oxide (ITO), a wide-gap oxide whose conductivity is ascribed to n-type chemical doping. Recently, it has been shown that ionic liquid gating can induce a reversible, nonvolatile metallic phase in initially insulating films of WO3. Here, we use hard X-ray photoelectron spectroscopy and spectroscopic ellipsometry to show that the metallic phase produced by the electrolyte gating does not result from a significant change in the bandgap but rather originates from new in-gap states. These states produce strong absorption below ˜1 eV, outside the visible spectrum, consistent with the formation of a narrow electronic conduction band. Thus WO3 is metallic but remains colorless, unlike other methods to realize tunable electrical conductivity in this material. Core-level photoemission spectra show that the gating reversibly modifies the atomic coordination of W and O atoms without a substantial change of the stoichiometry; we propose a simple model relating these structural changes to the modifications in the electronic structure. Thus we show that ionic liquid gating can tune the conductivity over orders of magnitude while maintaining transparency in the visible range, suggesting the use of ionic liquid gating for many applications.
Anomalous expansion of the copper-apical-oxygen distance in superconducting cuprate bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hua; Yacoby, Yizhak; Butko, Vladimir Y.
2010-08-27
We have introduced an improved x-ray phase-retrieval method with unprecedented speed of convergence and precision, and used it to determine with sub-Angstrom resolution the complete atomic structure of epitaxial La{sub 2-x}Sr{sub x}CuO{sub 4} ultrathin films. We focus on superconducting heterostructures built from constituent materials that are not superconducting in bulk samples. Single-phase metallic or superconducting films are also studied for comparison. The results show that this phase-retrieval diffraction method enables accurate measurement of structural modifications in near-surface layers, which may be critically important for elucidation of surface-sensitive experiments. Specifically we find that, while the copper-apical-oxygen distance remains approximately constant inmore » single-phase films, it shows a dramatic increase from the metallic-insulating interface of the bilayer towards the surface by as much as 0.45 {angstrom}. The apical-oxygen displacement is known to have a profound effect on the superconducting transition temperature.« less
Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang
2015-04-01
The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu 40Zr 51Al 9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at T x ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (T m ~ 900K),more » and the crossover temperature is roughly twice of the glass-transition temperature (T g). Below T x, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below T x and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less
Mukherjee, Arijita; Sa, Niya; Phillips, Patrick J.; ...
2017-02-13
Batteries based on Mg metal anode can promise much higher specific volumetric capacity and energy density compared to Li-ion systems and are, at the same time, safer and more cost-effective. While previous experimental reports have claimed reversible Mg intercalation into beyond Chevrel phase cathodes, they provide limited evidence of true Mg intercalation other than electrochemical data. Transmission electron microscopy techniques provide unique capabilities to directly image Mg intercalation and quantify the redox reaction within the cathode material. Here, we present a systematic study of Mg insertion into orthorhombic V 2O 5, combining aberration-corrected scanning transmission electron microscopy (STEM) imaging, electronmore » energy-loss spectroscopy (EELS), and energy-dispersive X-ray spectroscopy (EDX) analysis. We compare the results from an electrochemically cycled V 2O 5 cathode in a prospective full cell with Mg metal anode with a chemically synthesized MgV 2O 5 sample. Results suggest that the electrochemically cycled orthorhombic V 2O 5 cathode shows a local formation of the theoretically predicted ϵ-Mg0.5V2O5 phase; however, the intercalation levels of Mg are lower than predicted. Lastly, this phase is different from the chemically synthesized sample, which is found to represent the δ-MgV 2O 5 phase.« less
NASA Astrophysics Data System (ADS)
Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.
2017-02-01
Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.
Exotic species with explicit noble metal-noble gas-noble metal linkages.
Moreno, Norberto; Restrepo, Albeiro; Hadad, C Z
2018-02-14
We present a study of the isoelectronic Pt 2 Ng 2 F 4 and [Au 2 Ng 2 F 4 ] 2+ species with noble gas atoms (Ng = Kr, Xe, Rn) acting as links bridging the two noble metal atoms. The stability of the species is investigated using several thermodynamic, kinetic and reactivity indicators. The results are compared against [AuXe 4 ] 2+ , which is thermodynamically unstable in the gas phase but is stabilized in the solid state to the point that it has been experimentally detected as [AuXe 4 ](Sb 2 F 11 ) 2 (S. Seidel and K. Seppelt, Science, 2000, 290, 117-118). Our results indicate that improving upon [AuXe 4 ] 2+ , these exotic combinations between the a priori non-reactive noble metals and noble gases lead to metastable species, and, therefore, they have the possibility of existing in the solid state under adequate conditions. Our calculations include accurate energies and geometries at both the CCSD/SDDALL and MP2/SDDALL levels. We offer a detailed description of the nature of the bonding interactions using orbital and density-based analyses. The computational evidence suggests partially covalent and ionic interactions as the stabilization factors.
Point defects in the 1 T' and 2 H phases of single-layer MoS2: A comparative first-principles study
NASA Astrophysics Data System (ADS)
Pizzochero, Michele; Yazyev, Oleg V.
2017-12-01
The metastable 1 T' phase of layered transition metal dichalcogenides has recently attracted considerable interest due to electronic properties, possible topological phases, and catalytic activity. We report a comprehensive theoretical investigation of intrinsic point defects in the 1 T' crystalline phase of single-layer molybdenum disulfide (1 T'-MoS2 ) and provide comparison to the well-studied semiconducting 2 H phase. Based on density functional theory calculations, we explore a large number of configurations of vacancy, adatom, and antisite defects and analyze their atomic structure, thermodynamic stability, and electronic and magnetic properties. The emerging picture suggests that, under thermodynamic equilibrium, 1 T'-MoS2 is more prone to hosting lattice imperfections than the 2 H phase. More specifically, our findings reveal that the S atoms that are closer to the Mo atomic plane are the most reactive sites. Similarly to the 2 H phase, S vacancies and adatoms in 1 T'-MoS2 are very likely to occur while Mo adatoms and antisites induce local magnetic moments. Contrary to the 2 H phase, Mo vacancies in 1 T'-MoS2 are expected to be an abundant defect due to the structural relaxation that plays a major role in lowering the defect formation energy. Overall, our study predicts that the realization of high-quality flakes of 1 T'-MoS2 should be carried out under very careful laboratory conditions but at the same time the facile defects introduction can be exploited to tailor physical and chemical properties of this polymorph.
Dispersive detection of radio-frequency-dressed states
NASA Astrophysics Data System (ADS)
Jammi, Sindhu; Pyragius, Tadas; Bason, Mark G.; Florez, Hans Marin; Fernholz, Thomas
2018-04-01
We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular, we use dressed detection to measure populations and population differences of atoms prepared in their clock states. Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect both clock states simultaneously and obtain population difference as well as the total atom number. The scheme also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector, which should technically enable quantum noise limited measurements with prospects for the preparation of spin squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock schemes, atom interferometers, and other experiments using dressed atoms.
Equations of state for hydrogen and deuterium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerley, Gerald Irwin
2003-12-01
This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixturemore » models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bin; Chen, Yongjin; Han, Xiaodong, E-mail: wzhang0@mail.xjtu.edu.cn, E-mail: ema@jhu.edu, E-mail: xdhan@bjut.edu.cn
Disorder-induced electron localization and metal-insulator transitions (MITs) have been a very active research field starting from the seminal paper by Anderson half a century ago. However, pure Anderson insulators are very difficult to identify due to ubiquitous electron-correlation effects. Recently, an MIT has been observed in electrical transport measurements on the crystalline state of phase-change GeSbTe compounds, which appears to be exclusively disorder driven. Subsequent density functional theory simulations have identified vacancy disorder to localize electrons at the Fermi level. Here, we report a direct atomic scale chemical identification experiment on the rocksalt structure obtained upon crystallization of amorphous Ge{submore » 2}Sb{sub 2}Te{sub 5}. Our results confirm the two-sublattice structure resolving the distribution of chemical species and demonstrate the existence of atomic disorder on the Ge/Sb/vacancy sublattice. Moreover, we identify a gradual vacancy ordering process upon further annealing. These findings not only provide a structural underpinning of the observed Anderson localization but also have implications for the development of novel multi-level data storage within the crystalline phases.« less
Persistent mobility edges and anomalous quantum diffusion in order-disorder separated quantum films
NASA Astrophysics Data System (ADS)
Zhong, Jianxin; Stocks, G. Malcolm
2007-01-01
A concept of order-disorder separated quantum films is proposed for the design of ultrathin quantum films of a few atomic layers thick with unconventional transport properties. The concept is demonstrated through studying an atomic bilayer comprised of an ordered layer and a disordered layer. Without the disordered layer or the ordered layer, the system is a conducting two-dimensional (2D) crystal or an insulating disordered 2D electron system. Without the order-disorder phase separation, a disordered bilayer is insulating under large disorder. In an order-disorder separated atomic bilayer, however, we show that the system behaves remarkably different from conventional ordered or disordered electron systems, exhibiting metal-insulator transitions with persistent mobility edges and superdiffusive anomalous quantum diffusion.
A predictive structural model for bulk metallic glasses
Laws, K. J.; Miracle, D. B.; Ferry, M.
2015-01-01
Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural defects that discourage glass formation; we impose efficient local packing around all atoms simultaneously; and we enforce structural self-consistency. Fewer than a dozen binary structures satisfy these constraints, but extra degrees of freedom in structures with three or more different atom sizes significantly expand the number of relatively stable, ‘bulk' metallic glasses. The present work gives a new approach towards achieving the long-sought goal of a predictive capability for bulk metallic glasses. PMID:26370667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Alan K; Brown, Victoria L.; Rugg, Brandon K.
The adhesion of 100 nm thick electron-beam deposited Au and Pt and magnetron sputtered Au thin films onto poly(methyl methacrylate) (PMMA) substrates can be significantly enhanced to over 90% adhesion by either spin-casting or vapor-exposure to hydrohalocarbon solvents prior to metal deposition compared to samples that are either cleaned in isopropyl alcohol or pre-treated with a remote O2 plasma. X-ray photoelectron spectroscopy (XPS) and evolved gas Fourier transform infrared spectroscopy (EGA-FTIR) reveal the presence of residual halogenated solvent molecules at the PMMA surface which chemically activates the surface to produce a stable chemical interaction between the noble metal film andmore » the PMMA. Density functional theory (DFT) calculations show that the halogenated solvent molecules preferentially form a Lewis acid-base adduct with the oxygen atoms in the ester group in PMMA which is consistent with the measured enthalpy of desorption of chloroform (CHCl3) on PMMA determined by EGA-FTIR to be 36 kJ mol-1. The DFT model also supports the experimentally observed change in the high resolution XPS O 1s peak at 533.77 eV after metallization attributed to a change in the local bonding environment of the bridging O in the PMMA ester group. DFT also predicts that the deposited metal atom (M) inserts into the C-X bond where X is the halogen atom on either CHCl3 or bromoform (CHBr3) to form a O M X interaction that is observed by a M-X bond in the high resolution XPS Cl 2p3/2 peak at 198.03 eV and Br 3p3/2 peak at 182.06 eV. A range of solvents with differing polarities for PMMA pre-treatment have been used and it is proposed that non-complexing solvents result in significant metal adhesion improvement. The Gutmann acceptor number can be used to predict the effectiveness of solvent treatment for noble metal adhesion. A model is proposed in which the bond energy of the C-X bond of the solvent must be sufficiently low so that the C-X bond can be cleaved to form the M-X bond. Supporting this model, a negative control of vapor phase exposure to fluoroform (CHF3) is shown to have no effect on noble metal adhesion due to the higher bond dissociation energy of the C-F bond compared to the C-Cl and C-Br bond energy. The surface activation of vapor-phase exposed PMMA surfaces is technologically significant for the fabrication of polymer microdevices requiring Au or Pt metallization.« less
Ferromagnetism and spin glass ordering in transition metal alloys (invited)
NASA Astrophysics Data System (ADS)
Crane, S.; Carnegie, D. W., Jr.; Claus, H.
1982-03-01
Magnetic properties of transition metal alloys near the percolation threshold are often complicated by metallurgical effects. Alloys like AuFe, VFe, CuNi, RhNi, and PdNi are in general not random solid solutions but have various degrees of atomic clustering or short-range order (SRO), depending on the heat treatment. First, it is shown how the magnetic ordering temperature of these alloys varies with the degree of clustering or SRO. Second, by systematically changing this degree of clustering or SRO, important information can be obtained about the magnetic phase diagram. In all these alloys below the percolation limit, the onset of ferromagnetic order is probably preceded by a spin glass-type ordering. However, details of the magnetic phase diagram near the critical point can be quite different alloy systems.
Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
NASA Astrophysics Data System (ADS)
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
Separation of metal ions in nitrate solution by ultrasonic atomization
NASA Astrophysics Data System (ADS)
Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka
2004-11-01
In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.
Thermal stability of hexagonal OsB2
NASA Astrophysics Data System (ADS)
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.
2014-11-01
The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. During the heating, the sacrificial reaction 2OsB2+3O2→2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276-426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.
Heterogeneity in magnetic complex oxides
NASA Astrophysics Data System (ADS)
Arenholz, Elke
Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by imprinting the BiFeO3 domain pattern in an adjacent La0.7Sr0.3MnO3 layer, understanding the metal-insulator transition in strained VO2 thin films and identifying a three-dimensional quasi-long-range electronic supermodulation in YBa2Cu3O7-x/La0.7Ca0.3MnO3 heterostructures. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Crown oxygen-doping graphene with embedded main-group metal atoms
NASA Astrophysics Data System (ADS)
Wu, Liyuan; Wang, Qian; Yang, Chuanghua; Quhe, Ruge; Guan, Pengfei; Lu, Pengfei
2018-02-01
Different main-group metal atoms embedded in crown oxygen-doping graphene (metal@OG) systems are studied by the density functional theory. The binding energies and electronic structures are calculated by using first-principles calculations. The binding energy of metal@OG system mainly depends on the electronegativity of the metal atom. The lower the value of the electronegativity, the larger the binding energy, indicating the more stable the system. The electronic structure of metal@OG arouses the emergence of bandgap and shift of Dirac point. It is shown that interaction between metal atom and crown oxygen-doping graphene leads to the graphene's stable n-doping, and the metal@OG systems are stable semiconducting materials, which can be used in technological applications.
Determination of some metal ions in various meat and baby food samples by atomic spectrometry.
Daşbaşı, Teslima; Saçmacı, Şerife; Ülgen, Ahmet; Kartal, Şenol
2016-04-15
In this paper, we report a simple and rapid solid phase extraction system for the separation/preconcentration and determination of Cd(II), Co(II), Cu(II), Fe(III), Cr(III), Pb(II), and Zn(II) ions by flame atomic absorption spectrometry (FAAS). This method is based upon the retention of metal ions on a column packed with poly[N-(3-methyl-1H-indole-1-yl)]-2-methacrylamide-co-2-acrylamido-2-methyl-1-propane sulphonic acid-co divinylbenzene] (MMAD) resin as a solid-phase extraction (SPE) sorbent at pH 8. At the optimized conditions, the limits of detection (3 s/b) between 0.12 and 1.6 μg L(-1), preconcentration factor of 100, and the relative standard deviation of ⩽1.8% were achieved (n=10). The accuracy of the method was verified by analyzing certified reference materials (CRMs) and performing recovery experiments. The developed method was successfully applied to the various natural water, meat products and baby food samples. The recoveries of analyte ions were found in added real samples and CRMs from 95% to 102%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation
He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay
2016-01-01
At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922
Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz
2016-11-15
In this study, a simple and rapid solid phase extraction/preconcentration procedure was developed for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly(N-cyclohexylacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (NCA-co-DVB-co-AMPS) (hereafter CDAP) was synthesized and characterized. The influences of the analytical parameters such as pH of the sample solution, type and concentration of eluent, flow rates of the sample and eluent, volume of the sample and eluent, amount of chelating resin, and interference of ions were examined. The limit of detection (LOD) of analytes were found (3s) to be in the range of 0.65-1.90μgL(-1). Preconcentration factor (PF) of 200 and the relative standard deviation (RSD) of ⩽2% were achieved (n=11). The developed method was applied for determination of analytes in some dairy samples and certified reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J
2013-09-03
A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.
2013-07-09
A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.
Describing a Strongly Correlated Model System with Density Functional Theory.
Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth
2017-07-06
The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.
Interaction of size-selected gold nanoclusters with dopamine
NASA Astrophysics Data System (ADS)
Montone, Georgia R.; Hermann, Eric; Kandalam, Anil K.
2016-12-01
We present density functional theory based results on the interaction of size-selected gold nanoclusters, Au10 and Au20, with dopamine molecule. The gold clusters interact strongly with the nitrogen site of dopamine, thereby forming stable gold-dopamine complexes. Our calculations further show that there is no site specificity on the planar Au10 cluster with all the edge gold atoms equally preferred. On the other hand, in the pyramidal Au20 cluster, the vertex metal atom is the most active site. As the size increased from Au10 to Au20, the interaction strength has shown a declining trend. The effect of aqueous environment on the interaction strengths were also studied by solvation model. It is found that the presence of solvent water stabilizes the interaction between the metal cluster and dopamine molecule, even though for Au10 cluster the energy ordering of the isomers changed from that of the gas-phase.
Electron-doping by hydrogen in transition-metal dichalcogenides
NASA Astrophysics Data System (ADS)
Oh, Sehoon; Im, Seongil; Choi, Hyoung Joon
Using first-principles calculations, we investigate the atomic and electronic structures of 2H-phase transition-metal dichalcogenides (TMDC), 2H-MX2, with and without defects, where M is Mo or W and X is S, Se or Te. We find that doping of atomic hydrogen on 2H-MX2 induces electron doping in the conduction band. To understand the mechanism of this electron doping, we analyze the electronic structures with and without impurities. We also calculate the diffusion energy barrier to discuss the spatial stability of the doping. Based on these results, we suggest a possible way to fabricate elaborately-patterned circuits by modulating the carrier type of 2H-MoTe2. We also discuss possible applications of this doping in designing nano-devices. This work was supported by NRF of Korea (Grant No. 2011-0018306) and KISTI supercomputing center (Project No. KSC-2016-C3-0052).
Selective Aerobic Oxidation of Alcohols over Atomically-Dispersed Non-Precious Metal Catalysts
Xie, Jiahan; Yin, Kehua; Serov, Alexey; ...
2016-12-15
Catalytic oxidation of alcohols often requires the presence of expensive transition metals. We show that earth-abundant Fe atoms dispersed throughout a nitrogen-containing carbon matrix catalyze the oxidation of benzyl alcohol and 5-hydroxymethylfurfural by O 2 in the aqueous phase. Furthermore, the activity of the catalyst can be regenerated by a mild treatment in H 2. An observed kinetic isotope effect indicates that β-H elimination from the alcohol is the kinetically relevant step in the mechanism, which can be accelerated by substituting Fe with Cu. Dispersed Cr, Co, and Ni also convert alcohols, demonstrating the general utility of metal–nitrogen–carbon materials formore » alcohol oxidation catalysis. Oxidation of aliphatic alcohols is substantially slower than that of aromatic alcohols, but adding 2,2,6,6-tetramethyl-1-piperidinyloxy as a co-catalyst with Fe can significantly improve the reaction rate.« less
Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.
Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias
2018-05-01
Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lin, Qisheng; Miller, Gordon J
2018-01-16
Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural complexity can be realized by small amounts of Li replacing Zn atoms in the parent binary compounds CaZn 2 , CaZn 3 , and CaZn 5 ; their phase formation and bonding schemes can be rationalized by Fermi surface-Brillouin zone interactions between nearly free-electron states. "Cation-rich", electron-poor polar intermetallics have emerged using rare earth metals as the electropositive ("cationic") component together metal/metalloid clusters that mimic the backbones of aromatic hydrocarbon molecules, which give evidence of extensive electronic delocalization and multicenter bonding. Thus, we can identify three distinct, valence electron-poor, polar intermetallic systems that have yielded unprecedented phases adopting novel structures containing complex clusters and intriguing bonding characteristics. In this Account, we summarize our recent specific progress in the developments of novel Au-rich BaAl 4 -type related structures, shown in the "gold-rich grid", lithiation-modulated Ca-Li-Zn phases stabilized by different bonding characteristics, and rare earth-rich polar intermetallics containing unprecedented hydrocarbon-like planar Co-Ge metal clusters and pronounced delocalized multicenter bonding. We will focus mainly on novel structural motifs, bonding analyses, and the role of valence electrons for phase stability.
Multibillion-atom Molecular Dynamics Simulations of Plasticity, Spall, and Ejecta
NASA Astrophysics Data System (ADS)
Germann, Timothy C.
2007-06-01
Modern supercomputing platforms, such as the IBM BlueGene/L at Lawrence Livermore National Laboratory and the Roadrunner hybrid supercomputer being built at Los Alamos National Laboratory, are enabling large-scale classical molecular dynamics simulations of phenomena that were unthinkable just a few years ago. Using either the embedded atom method (EAM) description of simple (close-packed) metals, or modified EAM (MEAM) models of more complex solids and alloys with mixed covalent and metallic character, simulations containing billions to trillions of atoms are now practical, reaching volumes in excess of a cubic micron. In order to obtain any new physical insights, however, it is equally important that the analysis of such systems be tractable. This is in fact possible, in large part due to our highly efficient parallel visualization code, which enables the rendering of atomic spheres, Eulerian cells, and other geometric objects in a matter of minutes, even for tens of thousands of processors and billions of atoms. After briefly describing the BlueGene/L and Roadrunner architectures, and the code optimization strategies that were employed, results obtained thus far on BlueGene/L will be reviewed, including: (1) shock compression and release of a defective EAM Cu sample, illustrating the plastic deformation accompanying void collapse as well as the subsequent void growth and linkup upon release; (2) solid-solid martensitic phase transition in shock-compressed MEAM Ga; and (3) Rayleigh-Taylor fluid instability modeled using large-scale direct simulation Monte Carlo (DSMC) simulations. I will also describe our initial experiences utilizing Cell Broadband Engine processors (developed for the Sony PlayStation 3), and planned simulation studies of ejecta and spall failure in polycrystalline metals that will be carried out when the full Petaflop Opteron/Cell Roadrunner supercomputer is assembled in mid-2008.
Interdiffusion-driven synthesis of tetragonal chromium (III) oxide on BaTi O3
NASA Astrophysics Data System (ADS)
Asa, M.; Vinai, G.; Hart, J. L.; Autieri, C.; Rinaldi, C.; Torelli, P.; Panaccione, G.; Taheri, M. L.; Picozzi, S.; Cantoni, M.
2018-03-01
Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/BaTi O3 heterostructures grown on SrTi O3 (100) substrates. Chromium thin films (1-2 nm thickness) are deposited by molecular beam epitaxy on the BaTi O3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTi O3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with C r2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-C r2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.
Metal-atom Interactions and Clustering in Organic Semiconductor Systems
NASA Astrophysics Data System (ADS)
Tomita, Yoko; Park, Tea-uk; Nakayama, Takashi
2017-07-01
The interatomic interactions and clustering of metal atoms have been studied by first-principles calculations in graphene, pentacene, and polyacetylene as representative organic systems. It is shown that long-range repulsive Coulomb interaction appears between metal atoms with small electronegativity such as Al due to their ionization on host organic molecules, inducing their scattered distribution in organic systems. On the other hand, metal atoms with large electronegativity such as Au are weakly bonded to organic molecules, easily diffuse in molecular solids, and prefer to combine with each other owing to their short-range strong metallic-bonding interaction, promoting metal cluster generation in organic systems.
The Use of Atomic-Force Microscopy for Studying the Crystallization Process of Amorphous Alloys
NASA Astrophysics Data System (ADS)
Elmanov, G. N.; Ivanitskaya, E. A.; Dzhumaev, P. S.; Skrytniy, V. I.
The crystallization process of amorphous alloys is accompanied by the volume changes as a result of structural phase transitions. This leads to changes in the surface topography, which was studied by atomic force microscopy (AFM). The changes of the surface topography, structure and phase composition during multistage crystallization process of the metallic glasses with composition Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 (AWS BNi2) has been investigated. The obtained results on changing of the surface topography in crystallization process are in good agreement with the data of X-ray diffraction analysis (XRD). The nature of redistribution of some alloy components in the crystallization process has been suggested.
de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos
2016-09-14
An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.
Local structural aspects of metal-metal transition in IrTe2 from x-ray PDF
NASA Astrophysics Data System (ADS)
Yu, Runze; Abeykoon, Milinda; Zhou, Haidong; Yin, Weiguo; Bozin, Emil S.
Evolution of local atomic structure across the metal-metal transition in IrTe2 is explored by pair distribution function (PDF) analysis of x-ray total scattering data over 80 K
Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro
2017-06-01
Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.
NASA Astrophysics Data System (ADS)
Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Coasne, Benoit; Bocquet, Lydéric; Siria, Alessandro
2017-06-01
Room-temperature ionic liquids (RTILs) are new materials with fundamental importance for energy storage and active lubrication. They are unusual liquids, which challenge the classical frameworks of electrolytes, whose behaviour at electrified interfaces remains elusive, with exotic responses relevant to their electrochemical activity. Using tuning-fork-based atomic force microscope nanorheological measurements, we explore here the properties of confined RTILs, unveiling a dramatic change of the RTIL towards a solid-like phase below a threshold thickness, pointing to capillary freezing in confinement. This threshold is related to the metallic nature of the confining materials, with more metallic surfaces facilitating freezing. This behaviour is interpreted in terms of the shift of the freezing transition, taking into account the influence of the electronic screening on RTIL wetting of the confining surfaces. Our findings provide fresh views on the properties of confined RTIL with implications for their properties inside nanoporous metallic structures, and suggests applications to tune nanoscale lubrication with phase-changing RTILs, by varying the nature and patterning of the substrate, and application of active polarization.
Via Method for Lithography Free Contact and Preservation of 2D Materials.
Telford, Evan J; Benyamini, Avishai; Rhodes, Daniel; Wang, Da; Jung, Younghun; Zangiabadi, Amirali; Watanabe, Kenji; Taniguchi, Takashi; Jia, Shuang; Barmak, Katayun; Pasupathy, Abhay N; Dean, Cory R; Hone, James
2018-02-14
Atomically thin 2D materials span the common components of electronic circuits as metals, semiconductors, and insulators, and can manifest correlated phases such as superconductivity, charge density waves, and magnetism. An ongoing challenge in the field is to incorporate these 2D materials into multilayer heterostructures with robust electrical contacts while preventing disorder and degradation. In particular, preserving and studying air-sensitive 2D materials has presented a significant challenge since they readily oxidize under atmospheric conditions. We report a new technique for contacting 2D materials, in which metal via contacts are integrated into flakes of insulating hexagonal boron nitride, and then placed onto the desired conducting 2D layer, avoiding direct lithographic patterning onto the 2D conductor. The metal contacts are planar with the bottom surface of the boron nitride and form robust contacts to multiple 2D materials. These structures protect air-sensitive 2D materials for months with no degradation in performance. This via contact technique will provide the capability to produce "atomic printed circuit boards" that can form the basis of more complex multilayer heterostructures.
Li, Yang; Li, JiaHao; Liu, BaiXin
2015-10-28
Nucleation is one of the most essential transformation paths in phase transition and exerts a significant influence on the crystallization process. Molecular dynamics simulations were performed to investigate the atomic-scale nucleation mechanisms of NiTi metallic glasses upon devitrification at various temperatures (700 K, 750 K, 800 K, and 850 K). Our simulations reveal that at 700 K and 750 K, nucleation is polynuclear with high nucleation density, while at 800 K it is mononuclear. The underlying nucleation mechanisms have been clarified, manifesting that nucleation can be induced either by the initial ordered clusters (IOCs) or by the other precursors of nuclei evolved directly from the supercooled liquid. IOCs and other precursors stem from the thermal fluctuations of bond orientational order in supercooled liquids during the quenching process and during the annealing process, respectively. The simulation results not only elucidate the underlying nucleation mechanisms varied with temperature, but also unveil the origin of nucleation. These discoveries offer new insights into the devitrification mechanism of metallic glasses.
Use of dc Ar microdischarge with nonlocal plasma for identification of metal samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryavtsev, A. A., E-mail: akud@ak2138.spb.edu; Stefanova, M. S.; Pramatarov, P. M.
2015-04-07
The possibility of using the collisional electron spectroscopy (CES) method for the detection of atoms from metal samples is experimentally verified. The detection and identification of metal atoms from a Pt sample in the nonlocal plasma of short (without positive column) dc Ar microdischarge at intermediate pressures (5–30 Torr) is realized in this work. Cathode sputtering is used for atomization of the metal under analysis. The identification of the analyzed metal is made from the energy spectra of groups of fast nonlocal electrons—characteristic electrons released in the Penning ionization of the Pt atoms by Ar metastable atoms and molecules. The acquisitionmore » of the electron energy spectra is performed using an additional electrode—a sensor located at the boundary of the discharge volume. The Pt characteristic Penning electrons form the maxima in the electron energy spectra at the energies of their appearance, which are 2.6 eV and 1.4 eV. From the measured energy of the maxima, identification of the metal atoms is accomplished. The characteristic Ar maxima due to pair collisions between Ar metastable atoms and molecules and super-elastic collisions are also recorded. This study demonstrates the possibility of creating a novel microplasma analyzer for atoms from metal samples.« less
Shuttling single metal atom into and out of a metal nanoparticle.
Wang, Shuxin; Abroshan, Hadi; Liu, Chong; Luo, Tian-Yi; Zhu, Manzhou; Kim, Hyung J; Rosi, Nathaniel L; Jin, Rongchao
2017-10-10
It has long been a challenge to dope metal nanoparticles with a specific number of heterometal atoms at specific positions. This becomes even more challenging if the heterometal belongs to the same group as the host metal because of the high tendency of forming a distribution of alloy nanoparticles with different numbers of dopants due to the similarities of metals in outmost electron configuration. Herein we report a new strategy for shuttling a single Ag or Cu atom into a centrally hollow, rod-shaped Au 24 nanoparticle, forming AgAu 24 and CuAu 24 nanoparticles in a highly controllable manner. Through a combined approach of experiment and theory, we explain the shuttling pathways of single dopants into and out of the nanoparticles. This study shows that the single dopant is shuttled into the hollow Au 24 nanoparticle either through the apex or side entry, while shuttling a metal atom out of the Au 25 to form the Au 24 nanoparticle occurs mainly through the side entry.Doping a metal nanocluster with heteroatoms dramatically changes its properties, but it remains difficult to dope with single-atom control. Here, the authors devise a strategy to dope single atoms of Ag or Cu into hollow Au nanoclusters, creating precise alloy nanoparticles atom-by-atom.
Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels.
Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka
2015-01-01
Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature.
Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels
Subramanian, Balasubramanian; Maruthamuthu, Sundaram; Rajan, Senthilperumal Thanka
2015-01-01
Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.%) of approximately 1.5 μm and 3 μm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. PMID:26491304
PERIODIC CLASSIFICATION AND THE PROUST LAW (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinck, E.; Feschotte, P.
1962-04-01
Progress realized in the knowledge of the solid state has permitted the identification of numerous crystalline phases whose composition was not defined in the meaning of the Proust law. Its rigorous validity has nevertheless served as a beginning for atomic theory; it continues to be utilized in the measurement of atomic weights and remains valid for the vast region of organic chemistry. The investigation of the limits of the validity of the Proust law leads to some peculiarities of the metallic state which are closely connected to the periodic classification of elements. A new arrangement of the periodic table, permittingmore » for the first time the integration of the rare earths and giving to hydrogen a very special place, takes into consideration a distinction between true metals and earth metals. This distinction is imposed by the fact that the Proust law, valid for compounds between metalloids and earth metals, is not always followed when these same metalloids unite with true metals. Finally. this law loses all significance in alloys between true metals. The exceptions to this rule are explained by the specialization of chemical properties which is shown when one passes from short periods to long periods, hydrogen and the metals with short period being considered as undifferentiated elements. The usage of a point of view borrowed from embryology permits, thus, the chemical and even the physical properties of these elements to be better connected. (tr-auth)« less
Dimensionally Controlled Lithiation of Chromium Oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fister, Tim T.; Hu, Xianyi; Esbenshade, Jennifer
Oxide conversion reactions are an alternative approach for high capacity lithium ion batteries but are known to suffer from structural irreversibility associated with the phase separation and reconstitution of reduced metal species and Li2O. In particular, the morphology of the reduced metal species is thought to play a critical role in the electrochemical properties of a conversion material. Here we use a model electrode with alternating layers of chromium and chromium oxide to better understand and control these phase changes in real-time and at molecular length scales. Despite lacking crystallinity at the atomic scale, this superstructure is observed (with X-raymore » reflectivity, XR) to lithiate and delithiate in a purely one-dimensional manner, preserving the layered structure. The XR data show that the metal layers act as nucleation sites for the reduction of chromium in the conversion reaction. Irreversibility during delithiation is due to the formation of a ternary phase, LiCrO2, which can be further delithiated at higher potentials. The results reveal that the combination of confining lithiation to nanoscale sheets of Li2O and the availability of reaction sites in the metal layers in the layered structure is a strategy for improving the reversibility and mass transport properties that can be used in a wide range of conversion materials.« less
NASA Astrophysics Data System (ADS)
Ouahrani, Tarik
2013-09-01
Local properties of the XSiP2 (X = Be, Mg, Cd, Zn and Hg) compounds are revisited through the partition of static thermodynamic properties under pressure. We pay attention to the metallization that occurs when the investigated compounds undergo a phase transition from chalcopyrite to the NaCl structure. Electron localization function analysis shows that the local valence basin attractors values decrease as a function of pressure. As the pressure increases, the tetragonal distortion ( c/ a) diminishes while the degree of ionicity enhances. In addition, by means of atom in molecule approach, atomic-like local compressibility and pressures are analyzed. We found that the basins volumes of the investigated compounds in the NaCl phase have lower compressibilities than those in the chalcopyrite phase. According to the predicted core-valence basins, the phosphorus cation is found to be the more affected by the hydrostatic pressure.
NASA Astrophysics Data System (ADS)
Nadutov, V. M.; Vashchuk, D. L.; Karbivskii, V. L.; Volosevich, P. Yu.; Davydenko, O. A.
2018-04-01
The effect of cold plastic deformation by upsetting (e = 1.13) on structure and hybridised bonds of carbon in the fcc Invar Fe-30.9%Ni-1.23% C alloy was studied by means of X-ray phase analysis and X-ray photoelectron spectroscopy. Carbon precipitates along grain boundaries and inside of grains in the alloy after annealing and plastic deformation were revealed. The presence of mainly sp2- and sp3-hybridised C-C bonds attributing to graphite and amorphous carbon as well as the carbon bonds with impurity atoms and metallic Fe and Ni atoms in austenitic phase were revealed in the annealed and deformed alloy. It was shown for the first time that plastic deformation of the alloy results in partial destruction of the graphite crystal structure, increasing the relative part of amorphous carbon, and redistribution of carbon between structural elements as well as in a solid solution of austenitic phase.
Atomic switches: atomic-movement-controlled nanodevices for new types of computing
Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu
2011-01-01
Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. PMID:27877376
First-principles studies of hydrogen interaction with ultrathin Mg and Mg-based alloy films
NASA Astrophysics Data System (ADS)
Yoon, Mina; Weitering, Hanno H.; Zhang, Zhenyu
2011-01-01
The search for technologically and economically viable storage solutions for hydrogen fuel would benefit greatly from research strategies that involve systematic property tuning of potential storage materials via atomic-level modification. Here, we use first-principles density-functional theory to investigate theoretically the structural and electronic properties of ultrathin Mg films and Mg-based alloy films and their interaction with atomic hydrogen. Additional delocalized charges are distributed over the Mg films upon alloying them with 11.1% of Al or Na atoms. These extra charges contribute to enhance the hydrogen binding strength to the films. We calculated the chemical potential of hydrogen in Mg films for different dopant species and film thickness, and we included the vibrational degrees of freedom. By comparing the chemical potential with that of free hydrogen gas at finite temperature (T) and pressure (P), we construct a hydrogenation phase diagram and identify the conditions for hydrogen absorption or desorption. The formation enthalpies of metal hydrides are greatly increased in thin films, and in stark contrast to its bulk phase, the hydride state can only be stabilized at high P and T (where the chemical potential of free H2 is very high). Metal doping increases the thermodynamic stabilities of the hydride films and thus significantly helps to reduce the required pressure condition for hydrogen absorption from H2 gas. In particular, with Na alloying, hydrogen can be absorbed and/or desorbed at experimentally accessible T and P conditions.
Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal
2014-12-10
An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls. Copyright © 2014 Elsevier B.V. All rights reserved.
Interfacial phenomena in high-kappa dielectrics
NASA Astrophysics Data System (ADS)
Mathew, Anoop
The introduction of novel high-kappa dielectric materials to replace the traditional SiO2 insulating layer in CMOS transistors is a watershed event in the history of transistor development. Further, replacement of the traditional highly-doped polycrystalline silicon gate electrode with a new set of materials for metal gates complicates the transition and introduces further integration challenges. A whole variety of new material surfaces and interfaces are thus introduced that merit close investigation to determine parameters for optimal device performance. Nitrogen is a key component that improves the performance of a variety of materials for the next generation of these CMOS transistors. Nitrogen is introduced into new gate dielectric materials such as hafnium silicates as well as in potential metal gate materials such as hafnium nitride. A photoemission study of the binding energies of the various atoms in these systems using photoemission reveals the nature of the atomic bonding. The current study compares hafnium silicates of various compositions which were thermally nitrided at different temperatures in ammonia, hafnium nitrides, and thin HfO2 films using photoelectron spectroscopy. A recurring theme that is explored is the competition between oxygen and nitrogen atoms in bonding with hafnium and other atoms. The N 1s photoemission peak is seen to have contributions from its bonding with hafnium, oxygen, and silicon atoms. The Hf 4f and O 1s spectra similarly exhibit signatures of their bonding environment with their neighboring atoms. Angle resolved photoemission and in-situ annealing/argon sputtering experiments are used to elucidate the nature of the bonding and its evolution with processing. A nondestructive profilitng of nitrogen distribution as a function of composition in nitrided hafnium silicates is also constructed using angle resolved photoemission as a function of the take-off angle. These results are corroborated with depth reconstruction obtained using medium energy ion scattering (MEIS). A comparison of samples nitrided at progressively increasing temperatures in an ammonia environment shows substitution of oxygen with nitrogen atoms and increasing penetration of nitrogen into the gate stack. Trends in the binding energy of the the as-prepared hafnium silicates suggest that they are non-phase separated, and the binding energy of the hafnium and silicon track the relative composition. Upon being subject to rapid thermal annealing, the samples are observed to show behavior consistent with phase separation. There is also the evidence of charges at the oxide/Si interface that modify the expected behavior of the shifts in binding energy. In another set of experiments, a one-cycle atomic layer deposition (ALD) growth reaction on the water terminated Si(100) -- (2x1) surface is shown to lead to successful nucleation, high metal oxide coverage, and an abrupt metal-oxide/silicon interface as confirmed by photoemission, reflection high energy electron diffraction (RHEED), and Rutherford back scattering (RBS) measurements. Photoemission results confirm the coordination states of the hafnium and oxygen atoms. A Hf 4f core level shift is observed and assigned to the presence of the Si-O-Hf bonding environment with the more electronegative Si atom inducing the binding energy shift. This Hf 4f shift is smaller than that reported previously for silicates because of the difference of the semiconductor bonding environment. The subspecies *(O)2HfCl2 and *OHfCl3 are seen to be the predominant intermediate species in these reactions and photoemission results provide corroborative evidence for their presence. Experiments indicate that the hydroxyl sites bound to Si(100) are active for adsorption. The abrupt interface could be useful for aggressive Effective Oxide Thickness (EOT) scaling.
Hybrid sp2+sp3 carbon phases created from carbon nanotubes
NASA Astrophysics Data System (ADS)
Tingaev, M. I.; Belenkov, E. A.
2017-11-01
Using the density functional theory in the gradient approximation (DFT-GGA) methods was calculated the geometrically optimized structure and electronic properties for six new hybrid carbon phases. These hybrid phases consists of atoms in three - and four-coordinated (sp2+sp3-hybridized) states. The initial structure of the carbon phases was constructed by partial cross-linking of (8,0) carbon nanotube bundles. Sublimation energies calculated for hybrid phases above the sublimation energy of cubic diamond, however, fall into the range of values typical for carbon materials, which are stable under normal conditions. The density of electronic states at the Fermi energy for the two phases is non-zero and these phases should have metallic properties. The other hybrid phases should be semiconductors with a band gap from 0.5 to 1.1 eV.
Overcoming nanoscale friction barriers in transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Cammarata, Antonio; Polcar, Tomas
2017-08-01
We study the atomic contributions to the nanoscale friction in layered M X2 (M =Mo , W; X =S , Se, Te) transition metal dichalcogenides by combining ab initio techniques with group-theoretical analysis. Starting from stable atomic configurations, we propose a computational method, named normal-modes transition approximation (NMTA), to individuate possible sliding paths from only the analysis of the phonon modes of the stable geometry. The method provides a way to decompose the atomic displacements realizing the layer sliding in terms of phonon modes of the stable structure, so as to guide the selection and tuning of specific atomic motions promoting M X2 sheets gliding, and to adjust the corresponding energy barrier. The present results show that main contributions to the nanoscale friction are due to few low frequency phonon modes, corresponding to rigid shifts of M X2 layers. We also provide further evidences that a previously reported Ti-doped MoS2 phase is a promising candidate as new material with enhanced tribologic properties. The NMTA approach can be exploited to tune the energetic and the structural features of specific phonon modes, and, thanks to its general formulation, can also be applied to any solid state system, irrespective of the chemical composition and structural topology.
Fullerene-like (IF) Nb(x)Mo(1-x)S2 nanoparticles.
Deepak, Francis Leonard; Cohen, Hagai; Cohen, Sidney; Feldman, Yishay; Popovitz-Biro, Ronit; Azulay, Doron; Millo, Oded; Tenne, Reshef
2007-10-17
IF-Mo1-xNbxS2 nanoparticles have been synthesized by a vapor-phase reaction involving the respective metal halides with H2S. The IF-Mo1-xNbxS2 nanoparticles, containing up to 25% Nb, were characterized by a variety of experimental techniques. Analysis of the powder X-ray powder diffraction, X-ray photoelectron spectroscopy, and different electron microscopy techniques shows that the majority of the Nb atoms are organized as nanosheets of NbS2 within the MoS2 host lattice. Most of the remaining Nb atoms (3%) are interspersed individually and randomly in the MoS2 host lattice. Very few Nb atoms, if any, are intercalated between the MoS2 layers. A sub-nanometer film of niobium oxide seems to encoat the majority of the nanoparticles. X-ray photoelectron spectroscopy in the chemically resolved electrical measurement mode (CREM) and scanning probe microscopy measurements of individual nanoparticles show that the mixed IF nanoparticles are metallic independent of the substitution pattern of the Nb atoms in the lattice of MoS2 (whereas unsubstituted IF-MoS2 nanoparticles are semiconducting). Furthermore the IF-Mo1-xNbxS2 nanoparticles are found to exhibit interesting single electron tunneling effects at low temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, B.I.; Oguchi, T.; Jansen, H.J.F.
1986-07-15
Ground-state electronic and structural properties of Lu under pressure are investigated with use of the self-consistent all-electron total-energy linear muffin-tin orbital band-structure method within a local-density-functional approximation. Pressure-induced structural transitions are found to occur in the following sequence: hcp--(Sm-type)--dhcp--fcc, which is the same as that observed in the crystal structures of the trivalent rare-earth metals with decreasing atomic number. This structural transition is correlated with the increase in the number of d-italic electrons under pressure.
Effect of tritium and decay helium on the fracture toughness properties of stainless steel weldments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, M. J.; West, S.; Tosten, M. H.
2008-07-15
J-Integral fracture toughness tests were conducted on tritium-exposed-and- aged Types 304L and 21-6-9 stainless steel weldments in order to measure the combined effects of tritium and its decay product, helium-3 on the fracture toughness properties. Initially, weldments have fracture toughness values about three times higher than base-metal values. Delta-ferrite phase in the weld microstructure improved toughness provided no tritium was present in the microstructure. After a tritium-exposure-and-aging treatment that resulted in {approx}1400 atomic parts per million (appm) dissolved tritium, both weldments and base metals had their fracture toughness values reduced to about the same level. The tritium effect was greatermore » in weldments (67 % reduction vs. 37% reduction) largely because the ductile discontinuous delta-ferrite phase was embrittled by tritium and decay helium. For both base metals and weldments, fracture toughness values decreased with increasing decay helium content in the range tested (50-800 appm). (authors)« less
Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Howard A.; Koel, Bruce E.; Bernasek, Steven L.
The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timelymore » problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies included (i) quantum mechanical calculations that allow inclusion of many thousands of atoms for the characterization of the interface of liquid metals exposed to continuous bombardment by deuterium and tritium as expected in fusion, (ii) molecular dynamics studies of the phase behavior of liquid metals, which (a) utilize thermodynamic properties computed using our quantum mechanical calculations and (b) establish material and wetting properties of the liquid metals, including relevant eutectics, (iii) experimental investigations of the surface science of liquid metals, interacting both with the solid substrate as well as gaseous species, and (iv) fluid dynamical studies that incorporate the material and surface science results of (ii) and (iii) in order to characterize flow in capillary porous materials and the thin-film flow along curved boundaries, both of which are potentially major components of plasma-facing materials. The outcome of these integrated studies was new understanding that enables developing design rules useful for future developments of the plasma-facing components critical to the success of fusion energy systems.« less
Kamada, T
The extraction behaviour of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of nameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of arsenic(III) and differential determination of arsenic(III) and arsenic(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone or nitrobenzene, when the aqueous phase/solvent volume ratio is 5 and the injection volume in the carbon tube is 20 mul, the sensitivities for 1% absorption are 0.4 and 0.5 part per milliard of arsenic, respectively. The relative standard deviations are ca. 3%. Interference by many metal ions can be prevented by masking with EDTA. The proposed methods are applied satisfactorily for determination of As(III) and As(V) in various types of water.
Phase identification in boron-containing powder metallurgy steel using EBSD in combination with EPMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Cai, Wen-Zhang
2016-03-15
Boron (B) is extensively used to induce liquid phase sintering (LPS) in powder metallurgy (PM) steels and thereby increase the densification. The alloying elements in B-containing PM steels affect the boride phase, stability of the boride, the temperature of liquid formation, and the progress of LPS. However, the boride phase has not been systematically identified yet. The main objective of this study was to clarify the influences of alloying elements, including C, Cr, and Ni, on the boride phases using electron backscatter diffraction (EBSD) in combination with electron probe microanalysis (EPMA). Network structures consisting of ferrite, Fe{sub 2}B boride, andmore » Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. The portions of Fe{sub 2}B were sufficiently larger than those of Fe{sub 3}C, and Fe{sub 3}C was mostly distributed at the interfaces between ferrite and Fe{sub 2}B. Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely changes the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase, where M represents the metallic elements, including Fe, Cr, Mo, and Ni. Furthermore, Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not. - Highlights: • Network structures consisting of ferrite, Fe{sub 2}B boride, and Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. • Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely transforms the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase. • Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Atwani, Osman; Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; Gonderman, Sean
We investigated the effect of silicide formation on ion-induced nanopatterning of silicon with various ultrathin metal coatings. Silicon substrates coated with 10 nm Ni, Fe, and Cu were irradiated with 200 eV argon ions at normal incidence. Real time grazing incidence small angle x-ray scattering (GISAXS) and x-ray fluorescence (XRF) were performed during the irradiation process and real time measurements revealed threshold conditions for nanopatterning of silicon at normal incidence irradiation. Three main stages of the nanopatterning process were identified. The real time GISAXS intensity of the correlated peaks in conjunction with XRF revealed that the nanostructures remain for amore » time period after the removal of the all the metal atoms from the sample depending on the binding energy of the metal silicides formed. Ex-situ XPS confirmed the removal of all metal impurities. In-situ XPS during the irradiation of Ni, Fe, and Cu coated silicon substrates at normal incidence demonstrated phase separation and the formation of different silicide phases that occur upon metal-silicon mixing. Silicide formation leads to nanostructure formation due the preferential erosion of the non-silicide regions and the weakening of the ion induced mass redistribution.« less
The metallization and superconductivity of dense hydrogen sulfide
NASA Astrophysics Data System (ADS)
Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming
2014-05-01
Hydrogen sulfide (H2S) is a prototype molecular system and a sister molecule of water (H2O). The phase diagram of solid H2S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S-H bond and larger atomic core difference between H and S. Metallization is yet achieved for H2O, but it was observed for H2S above 96 GPa. However, the metallic structure of H2S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H2S at pressure ranges of 10-200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H2S with an estimated maximal transition temperature of ˜80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH4, GeH4, etc.).
Metal atomization spray nozzle
Huxford, Theodore J.
1993-01-01
A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.
Ab initio theory of noble gas atoms in bcc transition metals.
Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian
2018-06-18
Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.
ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS
Long, R.L.
1958-09-30
A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.
The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes
NASA Astrophysics Data System (ADS)
Mentel, Juergen
2018-01-01
A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material density is traced back to a locally reduced work function generated by a locally enhanced emitter ion current density.
Transport properties of RCo_2B_2C with R = Dy, Ho, and Pr single
NASA Astrophysics Data System (ADS)
Duran, Alejandro; Escudero, Roberto
2002-03-01
Single crystals of (Dy, Ho, Pr)Co_2B_2C have been grown by a cold copper crucible method. Metallurgical and structural studies indicate that this borocarbide family melts incongruently and crystallizes as a derivative structure of the ThCr_2Si_2. The family accepts rare earth atoms depending on the type of transition metals used to form the compound. For instance with Ni atoms, all lanthanides ranging from the large lanthanum to lutetium ions are reported to form RNi_2B_2C single crystals, so far no single crystals have been obtained when changing Ni by Cobalt. A comparison of the structural parameters of the RCo_2B_2C with the RNiHo, Pr) compounds indicate that the atomic distance between transition metal atoms contracts with the insertion of the Co ion, resulting in an increasing of the c parameter and decreasing volume. Several recent reports published in the current literature related on the physical properties of RCo_2B_2C (R = rare earth metals and Y) have been only performed on polycrystalline samples, they commonly contain small amounts of second phases. High quality single crystals are necessaries in order to better understand the physical properties, such as anisotropy in the transport and in the magnetic properties. In this report we show magnetic susceptibility and resistivity measurements performed in single crystals in the ab-plane and c direction for 2 - 320 K temperature range for the three single crystals of (Dy, Ho, Pr)Co_2B_2C.
Syntheses and crystal structures of "unligated" copper(I) and copper(II) trifluoroacetates.
Cotton, F A; Dikarev, E V; Petrukhina, M A
2000-12-25
Two extremely unstable copper trifluoroacetates with no exogenous ligands, namely, Cu(O2CCF3) (1) and Cu(O2CCF3)2 (2), are prepared for the first time and obtained in crystalline form by deposition from the vapor phase. Their structures are determined by X-ray crystallography. The crystallographic parameters are as follows: for 1, monoclinic space group P2(1)/c, with a = 9.7937(6) A, b = 15.322(1) A, c = 12.002(1) A, beta = 106.493(9) degrees, and Z = 4; for 2, orthorhombic space group Pcca, with a = 16.911(1) A, b = 10.5063(9) A, c = 9.0357(6) A, and Z = 4. Both structures are unique among other CuI and CuII carboxylates, as well as among metal carboxylates in general. Compound 1 consists of a planar rhombus of four copper atoms with sides of 2.719(1)-2.833(1) A and trifluoroacetate ligands bridging the pairs of adjacent metal atoms alternately above and below the plane. The tetrameric units are further aggregated in a polymeric zigzag ribbon [Cu4(O2CCF3)4]infinity by virtue of intermolecular Cu...O contacts. The structure of 2 is built on cis bis-bridged dimers in which every metal atom is also connected with two copper atoms of the neighboring units. The stacking planes in this extended chain are almost perpendicular to one another. The Cu...Cu distance inside the dimer is 3.086(2) A, indicating a nonbonding interaction.
Metal Ion Modeling Using Classical Mechanics
2017-01-01
Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509
Artificial two-dimensional polar metal at room temperature.
Cao, Yanwei; Wang, Zhen; Park, Se Young; Yuan, Yakun; Liu, Xiaoran; Nikitin, Sergey M; Akamatsu, Hirofumi; Kareev, M; Middey, S; Meyers, D; Thompson, P; Ryan, P J; Shafer, Padraic; N'Diaye, A; Arenholz, E; Gopalan, Venkatraman; Zhu, Yimei; Rabe, Karin M; Chakhalian, J
2018-04-18
Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO 3 /SrTiO 3 /LaTiO 3 . A combination of atomic resolution scanning transmission electron microscopy with electron energy-loss spectroscopy, optical second harmonic generation, electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.
Artificial two-dimensional polar metal at room temperature
Cao, Yanwei; Wang, Zhen; Park, Se Young; ...
2018-04-18
Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO 3/SrTiO 3/LaTiO 3. A combination of atomic resolution scanning transmission electron microscopy with electron energy-loss spectroscopy, optical second harmonic generation,more » electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Lastly, our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.« less
Artificial two-dimensional polar metal at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yanwei; Wang, Zhen; Park, Se Young
Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO 3/SrTiO 3/LaTiO 3. A combination of atomic resolution scanning transmission electron microscopy with electron energy-loss spectroscopy, optical second harmonic generation,more » electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Lastly, our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.« less
A universal preconditioner for simulating condensed phase materials.
Packwood, David; Kermode, James; Mones, Letif; Bernstein, Noam; Woolley, John; Gould, Nicholas; Ortner, Christoph; Csányi, Gábor
2016-04-28
We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.
A universal preconditioner for simulating condensed phase materials
NASA Astrophysics Data System (ADS)
Packwood, David; Kermode, James; Mones, Letif; Bernstein, Noam; Woolley, John; Gould, Nicholas; Ortner, Christoph; Csányi, Gábor
2016-04-01
We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor of two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.
Lateral Interactions in Monolayer Thick Mercury Films
NASA Astrophysics Data System (ADS)
Kime, Yolanda Jan
An understanding of lateral adatom-adatom interactions is often an important part of understanding electronic structure and adsorption energetics in monolayer thick films. In this dissertation I use angle-resolved photoemission and thermal desorption spectroscopies to explore the relationship between the adatom-adatom interaction and other characteristics of the adlayer, such as electronic structure, defects, or coexistent structural phases in the adlayer. Since Hg binds weakly to many substrates, the lateral interactions are often a major contribution to the dynamics of the overlayer. Hg adlayer systems are thus ideal for probing lateral interactions. The electronic structures of Hg adlayers on Ag(100), Cu(100), and Cu_3Au(100) are studied with angle-resolved ultraviolet photoemission. The Hg atomic 5d_{5/2} electronic band is observed to split into two levels following adsorption onto some surfaces. The energetic splitting of the Hg 5d_{5/2} level is found to be directly correlated to the adlayer homogeneous strain energy. The existence of the split off level also depends on the order or disorder of the Hg adlayer. The energetics of Hg adsorption on Cu(100) are probed using thermal desorption spectroscopy. Two different ordered adlayer structures are observed for Hg adsorption on Cu(100) at 200 K. Under some adsorption conditions and over a range of exposures, the two phases are seen to coexist on the surface prior to the thermal desorption process. A phase transition from the more dense to the less dense phase is observed to occur during the thermal desorption process. Inherent differences in defect densities are responsible for the observed differences between lateral interactions measured previously with equilibrium (atom beam scattering) and as measured by the non-equilibrium (thermal desorption) technique reported here. Theoretical and experimental evidence for an indirect through-metal interaction between adatoms is also discussed. Although through-metal interactions may play a role in some adsorption systems, there is little compelling evidence that this effect is significant in many experimental reports where the through metal bond is invoked.
Decomposition Products of Phosphine Under Pressure: PH 2 Stable and Superconducting?
Shamp, Andrew; Terpstra, Tyson; Bi, Tiange; ...
2016-02-17
Evolutionary algorithms (EA) coupled with Density Functional Theory (DFT) calculations have been used to predict the most stable hydrides of phosphorous (PH n, n = 1 - 6) at 100, 150 and 200 GPa. At these pressures phosphine is unstable with respect to decomposition into the elemental phases, as well as PH 2 and H 2. Three metallic PH 2 phases were found to be dynamically stable and superconducting between 100-200 GPa. One of these contains five formula units in the primitive cell and has C2=m symmetry (5FU-C2=m). It is comprised of 1D periodic PH 3-PH-PH 2-PH-PH 3 oligomers. Twomore » structurally related phases consisting of phosphorous atoms that are octahedrally coordinated by four phosphorous atoms in the equatorial positions and two hydrogen atoms in the axial positions (I4=mmm and 2FU-C 2=m) were the most stable phases between 160-200 GPa. Their superconducting critical temperatures (Tc) were computed as being 70 and 76 K, respectively, via the Allen-Dynes modified McMillan formula and using a value of 0.1 for the Coulomb pseudopotential, . Our results suggest that the superconductivity recently observed by Drozdov, Eremets and Troyan when phosphine was subject to pressures of 207 GPa in a diamond anvil cell may result from these, and other, decomposition products of phosphine.« less
Decomposition Products of Phosphine Under Pressure: PH 2 Stable and Superconducting?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamp, Andrew; Terpstra, Tyson; Bi, Tiange
Evolutionary algorithms (EA) coupled with Density Functional Theory (DFT) calculations have been used to predict the most stable hydrides of phosphorous (PH n, n = 1 - 6) at 100, 150 and 200 GPa. At these pressures phosphine is unstable with respect to decomposition into the elemental phases, as well as PH 2 and H 2. Three metallic PH 2 phases were found to be dynamically stable and superconducting between 100-200 GPa. One of these contains five formula units in the primitive cell and has C2=m symmetry (5FU-C2=m). It is comprised of 1D periodic PH 3-PH-PH 2-PH-PH 3 oligomers. Twomore » structurally related phases consisting of phosphorous atoms that are octahedrally coordinated by four phosphorous atoms in the equatorial positions and two hydrogen atoms in the axial positions (I4=mmm and 2FU-C 2=m) were the most stable phases between 160-200 GPa. Their superconducting critical temperatures (Tc) were computed as being 70 and 76 K, respectively, via the Allen-Dynes modified McMillan formula and using a value of 0.1 for the Coulomb pseudopotential, . Our results suggest that the superconductivity recently observed by Drozdov, Eremets and Troyan when phosphine was subject to pressures of 207 GPa in a diamond anvil cell may result from these, and other, decomposition products of phosphine.« less
Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals
NASA Astrophysics Data System (ADS)
Wang, J.; Anderoglu, O.; Hirth, J. P.; Misra, A.; Zhang, X.
2009-07-01
High resolution transmission electron microscopy of nanotwinned Cu films revealed Σ3 {112} incoherent twin boundaries (ITBs), with a repeatable pattern involving units of three {111} atomic planes. Topological analysis shows that Σ3 {112} ITBs adopt two types of atomic structure with differing arrangements of Shockley partial dislocations. Atomistic simulations were performed for Cu and Al. These studies revealed the structure of the two types of ITBs, the formation mechanism and stability of the associated 9R phase, and the influence of stacking fault energies on them. The results suggest that Σ3 {112} ITBs may migrate through the collective glide of partial dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmowski, W.; Gierlotka, S.; Wang, Z.
Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids,more » but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.« less
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...
2017-03-21
Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less
Cobalt Modification of Thin Rutile Films Magnetron-Sputtered in Vacuum
NASA Astrophysics Data System (ADS)
Afonin, N. N.; Logacheva, V. A.
2018-04-01
Using X-ray phase analysis, atomic force microscopy, and secondary ion mass-spectrometry, the phase formation and component distribution in a Co-TiO2 film system have been investigated during magnetron sputtering of the metal on the oxide and subsequent vacuum annealing. It has been found that cobalt diffuses deep into titanium oxide to form complex oxides CoTi2O5 and CoTiO3. A mechanism behind their formation at grain boundaries throughout the thickness of the TiO2 film is suggested. It assumes the reactive diffusion of cobalt along grain boundaries in the oxide. A quantitative model of reactive interdiffusion in a bilayer polycrystalline metal-oxide film system with limited solubility of components has been developed. The individual diffusion coefficients of cobalt and titanium have been determined in the temperature interval 923-1073 K.
Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes.
Salameh, Samir; van der Veen, Monique A; Kappl, Michael; van Ommen, J Ruud
2017-03-14
In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles.
Strain manipulation of Majorana fermions in graphene armchair nanoribbons
NASA Astrophysics Data System (ADS)
Wang, Zhen-Hua; Castro, Eduardo V.; Lin, Hai-Qing
2018-01-01
Graphene nanoribbons with armchair edges are studied for externally enhanced but realistic parameter values: enhanced Rashba spin-orbit coupling due to proximity to a transition-metal dichalcogenide, such as WS2, and enhanced Zeeman field due to exchange coupling with a magnetic insulator, such as EuS under an applied magnetic field. The presence of s -wave superconductivity, induced either by proximity or by decoration with alkali-metal atoms, such as Ca or Li, leads to a topological superconducting phase with Majorana end modes. The topological phase is highly sensitive to the application of uniaxial strain with a transition to the trivial state above a critical strain well below 0.1%. This sensitivity allows for real-space manipulation of Majorana fermions by applying nonuniform strain profiles. Similar manipulation is also possible by applying an inhomogeneous Zeeman field or chemical potential.
Metal atomization spray nozzle
Huxford, T.J.
1993-11-16
A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.
Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal
NASA Astrophysics Data System (ADS)
Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif
2018-07-01
Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.
Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal
NASA Astrophysics Data System (ADS)
Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif
2018-04-01
Low-temperature phase separations (T < 500 °C), resulting in changes in mechanical and corrosion properties, of super duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.
Atomic Scale Control of Competing Electronic Phases in Ultrathin Correlated Oxides
NASA Astrophysics Data System (ADS)
Shen, Kyle
2015-03-01
Ultrathin epitaxial thin films offer a number of unique advantages for engineering the electronic properties of correlated transition metal oxides. For example, atomically thin films can be synthesized to artificially confine electrons in two dimensions. Furthermore, using a substrate with a mismatched lattice constant can impose large biaxial strains of larger than 3% (Δa / a), much larger than can achieved in bulk single crystals. Since these dimensionally confined or strained systems may necessarily be less than a few unit cells thick, investigating their properties and electronic structure can be particularly challenging. We employ a combination of reactive oxide molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to investigate how dimensional confinement and epitaxial strain can be used to manipulate electronic properties and structure in correlated transition metal oxide thin films. We describe some of our recent work manipulating and studying the electronic structure of ultrathin LaNiO3 through a thickness-driven metal-insulator transition between three and two unit cells (Nature Nanotechnology 9, 443, 2014), where coherent Fermi liquid-like quasiparticles are suppressed at the metal-insulator transition observed in transport. We also will describe some recent unpublished work using epitaxial strain to drive a Lifshitz transition in atomically thin films of the spin-triplet ruthenate superconductor Sr2RuO4, where we also can dramatically alter the quasiparticle scattering rates and drive the system towards non-Fermi liquid behavior near the critical point (B. Burganov, C. Adamo, in preparation). Funding provided by the Office of Naval Research and Air Force Office of Scientific Research.
Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals
NASA Astrophysics Data System (ADS)
Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.
2018-01-01
Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.
NASA Astrophysics Data System (ADS)
Echevarría, F.; Reguera, L.; González M, M.; Galicia, J.; Ávila, M.; Reguera, E.
2018-02-01
Hydrothermal recrystallization appears to be an appropriate treatment to explore the structural diversity of porous coordination polymers. In this contribution, such a post-synthesis treatment is applied to divalent transition metal nitroprussides, T[Fe(CN)5NO]•xH2O with T =Mn, Fe, Co, Ni, Cu, Zn, Cd. This family of compounds forms an interesting series of nanoporous coordination polymers with a wide structural diversity, related to the synthesis route used and the solid hydration degree (x). The effect of a hydrothermal recrystallization of previously prepared fine powders using the precipitation method, on their crystal structure and related properties is herein discussed. In this series of coordination polymers, for Fe, Co, Ni the precipitated powders are obtained as cubic phase, with a high porosity related to presence of systematic vacancies for building unit [Fe(CN)5NO]. For Fe and Co a structural transition, from cubic to orthorhombic, was observed, which is associated to formation of a most compact structure. The crystal structure for the new orthorhombic phases was refined from the collected powder HR-XRD patterns. For Ni, the cubic phase remains stable even for large heating time, which is ascribed to the high polarizing power of this metal. The high porosity for the cubic phase allows an easy accommodation for the local deformations around the Ni atom coordination sphere. The structural information from XRD was complemented with CO2 and H2 adsorption and TG data, IR and UV-vis spectra, and magnetic measurements. The magnetic data, through the presence of spin-orbit coupling for Fe and Co in the two phases, provide fine details on the coordination environment for the metal linked at the N ends of the CN group.
Naeemullah; Kazi, Tasneem G; Shah, Faheem; Afridi, Hassan I; Baig, Jameel Ahmed; Soomro, Abdul Sattar
2013-01-01
A simple method for the preconcentration of cadmium (Cd) and nickel (Ni) in drinking and wastewater samples was developed. Cloud point extraction has been used for the preconcentration of both metals, after formation of complexes with 8-hydroxyquinoline (8-HQ) and extraction with the surfactant octylphenoxypolyethoxyethanol (Triton X-114). Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation, and the Cd and Ni contents were measured by flame atomic absorption spectrometry. The experimental variables, such as pH, amounts of reagents (8-HQ and Triton X-114), temperature, incubation time, and sample volume, were optimized. After optimization of the complexation and extraction conditions, enhancement factors of 80 and 61, with LOD values of 0.22 and 0.52 microg/L, were obtained for Cd and Ni, respectively. The proposed method was applied satisfactorily for the determination of both elements in drinking and wastewater samples.
Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition.
Meng, Xiangbo; Geng, Dongsheng; Liu, Jian; Li, Ruying; Sun, Xueliang
2011-04-22
Atomic layer deposition (ALD) was used to synthesize graphene-based metal oxide nanocomposites. This strategy was fulfilled on the preparation of TiO(2)-graphene nanosheet (TiO(2)-GNS) nanocomposites using titanium isopropoxide and water as precursors. The synthesized nanocomposites demonstrated that ALD exhibited many benefits in a controllable means. It was found that the as-deposited TiO(2) was tunable not only in its morphologies but also in its structural phases. As for the former, TiO(2) was transferable from nanoparticles to nanofilms with increased cycles. With regard to the latter, TiO(2) was changeable from amorphous to crystalline phase, and even a mixture of the two with increased growth temperatures (up to 250 °C). The underlying growth mechanisms were discussed and the resultant TiO(2)-GNS nanocomposites have great potentials for many applications, such as photocatalysis, lithium-ion batteries, fuel cells, and sensors.
Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen
2018-03-28
Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Ruiz, Juan A.; Cooper, Alan R.; Li, Guosheng
Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniquesmore » suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.« less
Surface structure in simple liquid metals: An orbital-free first-principles study
NASA Astrophysics Data System (ADS)
González, D. J.; González, L. E.; Stott, M. J.
2006-07-01
Molecular dynamics simulations of the liquid-vapor interfaces in simple sp-bonded liquid metals have been performed using first-principles methods. Results are presented for liquid Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl, and Si at thermodynamic conditions near their respective triple points, for samples of 2000 particles in a slab geometry. The longitudinal ionic density profiles exhibit a pronounced stratification extending several atomic diameters into the bulk, which is a feature already experimentally observed in liquid K, Ga, In, Sn, and Hg. The wavelength of the ionic oscillations shows a good scaling with the radii of the associated Wigner-Seitz spheres. The structural rearrangements at the interface are analyzed in terms of the transverse pair correlation function, the coordination number, and the bond-angle distribution between nearest neighbors. The valence electronic density profile also shows (weaker) oscillations whose phase, with respect to those of the ionic profile, changes from opposite phase in the alkalis to almost in-phase for Si.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, R.L.; MacQueen, D.B.; Bader, K.E.
1997-12-31
Alkali Metal Thermoelectric Converters (AMTEC) are efficient direct energy conversion devices that depend on the use of highly conductive beta-alumina membranes for their operation. The key component of the AMTEC system is a highly conductive Na-{beta}{double_prime}-alumina solid electrolyte which conducts sodium ions from the high to low temperature zone, thereby generating electricity. AMTEC cells convert thermal to electrical energy by using heat to produce and maintain an alkali metal concentration gradient across the ion transporting BASE membrane. They have developed a method for producing pure phase Na-{beta}{double_prime}-alumina and K-{beta}{double_prime}-alumina powders from single phase nano-sized carboxylato-alumoxanes precursors. Sodium or potassium ionsmore » (the mobile ions) and either Mg{sup 2+} or Li{sup +} ions (which stabilize the {beta}{double_prime}-alumina structure) can be atomically dispersed into the carboxylato-alumoxane lattice at low (< 100 C) temperature. Calculation of the carboxylato-alumoxane precursors at 1,200--1,500 C produces pure phase {beta}{double_prime}-alumina powders.« less
Prediction of novel stable Fe-V-Si ternary phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Manh Cuong; Chen, Chong; Zhao, Xin
Genetic algorithm searches based on a cluster expansion model are performed to search for stable phases of Fe-V-Si ternary. Here, we identify a new thermodynamically, dynamically and mechanically stable ternary phase of Fe 5V 2Si with 2 formula units in a tetragonal unit cell. The formation energy of this new ternary phase is -36.9 meV/atom below the current ternary convex hull. The magnetic moment of Fe in the new structure varies from -0.30-2.52 μ B depending strongly on the number of Fe nearest neighbors. The total magnetic moment is 10.44 μ B/unit cell for new Fe 5V 2Si structure andmore » the system is ordinarily metallic.« less
Prediction of novel stable Fe-V-Si ternary phase
Nguyen, Manh Cuong; Chen, Chong; Zhao, Xin; ...
2018-10-28
Genetic algorithm searches based on a cluster expansion model are performed to search for stable phases of Fe-V-Si ternary. Here, we identify a new thermodynamically, dynamically and mechanically stable ternary phase of Fe 5V 2Si with 2 formula units in a tetragonal unit cell. The formation energy of this new ternary phase is -36.9 meV/atom below the current ternary convex hull. The magnetic moment of Fe in the new structure varies from -0.30-2.52 μ B depending strongly on the number of Fe nearest neighbors. The total magnetic moment is 10.44 μ B/unit cell for new Fe 5V 2Si structure andmore » the system is ordinarily metallic.« less
NASA Astrophysics Data System (ADS)
Gusev, Aleksandr I.
2000-01-01
Data on order-disorder phase transformations in strongly nonstoichiometric carbides and nitrides MXy (X=C, N) of Group IV and V transition metals at temperatures below 1300-1400 K are reviewed. The order-parameter functional method as applied to atomic and vacancy ordering in strongly nonstoichiometric MXy compounds and to phase equilibrium calculations for M-X systems is discussed. Phase diagram calculations for the Ti-C, Zr-C, Hf-C, V-C, Nb-C, Ta-C, Ti-N, and Ti-B-C systems (with the inclusion of the ordering of nonstoichiometric carbides and nitrides) and those for pseudobinary carbide M(1)C-M(2)C systems are presented. Heat capacity, electrical resistivity and magnetic susceptibility changes at reversible order-disorder phase transformations in nonstoichiometric carbides are considered.
Reconfigurable Electronics and Non-Volatile Memory Research
2011-10-14
Sources of metal dopants were elemental metals and as well as, metal-Se compounds, and there was no evident difference in the measured Raman and Electron...similar in nature. Intensity of the most of the sample reduces with dopant concentration. This is due to the reduction in Ge-Ge and Ge-Se bonds as...the metal is incorporated into the glass. The metal dopant atoms will bond with the Se atoms [5] reducing the number of Se atoms that are available
NASA Technical Reports Server (NTRS)
Rafelski, Marc; Gardner, Jonathan P.; Fumagalli, Michele; Neeleman, Marcel; Teplitz, Harry I.; Grogin, Norman; Koekemoer, Anton M.; Scarlata, Claudia
2016-01-01
Current observational evidence suggests that the star formation rate (SFR)efficiency of neutral atomic hydrogen gas measured in damped Ly(alpha) systems (DLAs) at z approx. 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS)relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z approx. 1, z approx. 2, and z approx. 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is approx. 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.
Solid-State Diffusional Behaviors of Functional Metal Oxides at Atomic Scale.
Chen, Jui-Yuan; Huang, Chun-Wei; Wu, Wen-Wei
2018-02-01
Metal/metal oxides have attracted extensive research interest because of their combination of functional properties and compatibility with industry. Diffusion and thermal reliability have become essential issues that require detailed study to develop atomic-scaled functional devices. In this work, the diffusional reaction behavior that transforms piezoelectric ZnO into magnetic Fe 3 O 4 is investigated at the atomic scale. The growth kinetics of metal oxides are systematically studied through macro- and microanalyses. The growth rates are evaluated by morphology changes, which determine whether the growth behavior was a diffusion- or reaction-controlled process. Furthermore, atom attachment on the kink step is observed at the atomic scale, which has important implications for the thermodynamics of functional metal oxides. Faster growth planes simultaneously decrease, which result in the predominance of low surface energy planes. These results directly reveal the atomic formation process of metal oxide via solid-state diffusion. In addition, the nanofabricated method provides a novel approach to investigate metal oxide evolution and sheds light on diffusional reaction behavior. More importantly, the results and phenomena of this study provide considerable inspiration to enhance the material stability and reliability of metal/oxide-based devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microstructure Evolution of TiC Particles In Situ, Synthesized by Laser Cladding
Liu, Yanhui; Ding, Jieqiong; Qu, Weicheng; Su, Yu; Yu, Zhishui
2017-01-01
In this paper, a TiC reinforcement metal matrix composite coating is produced using nickel and graphite mixing powder on the surface ofTi-6Al-4V alloy by laser radiation. The microstructure of the coatings is investigated by XRD, SEM and EDS. Results show that most of the TiC phase is granular, with a size of several micrometers, and a few of the TiC phases are petals or flakes. At the cross-section of the coatings, a few special TiC patterns are found and these TiC patterns do not always occur at the observed cross-section. The even distribution of the TiC phase in the coatings confirms that the convection of the laser-melted pool leads to the homogenization of titanium atoms from the molten substrate, and carbon atoms from the preplace powder layer, by the mass transfer. The characteristics of the TiC pattern confirm that the morphology and distribution of the primary TiC phase could be influenced by convection. Two main reasons for this are that the density of the TiC phase is lower than the liquid melt, and that the primary TiC phase precipitates from the pool with a high convection speed at high temperature. PMID:28772641
Microstructure Evolution of TiC Particles In Situ, Synthesized by Laser Cladding.
Liu, Yanhui; Ding, Jieqiong; Qu, Weicheng; Su, Yu; Yu, Zhishui
2017-03-11
In this paper, a TiC reinforcement metal matrix composite coating is produced using nickel and graphite mixing powder on the surface ofTi-6Al-4V alloy by laser radiation. The microstructure of the coatings is investigated by XRD, SEM and EDS. Results show that most of the TiC phase is granular, with a size of several micrometers, and a few of the TiC phases are petals or flakes. At the cross-section of the coatings, a few special TiC patterns are found and these TiC patterns do not always occur at the observed cross-section. The even distribution of the TiC phase in the coatings confirms that the convection of the laser-melted pool leads to the homogenization of titanium atoms from the molten substrate, and carbon atoms from the preplace powder layer, by the mass transfer. The characteristics of the TiC pattern confirm that the morphology and distribution of the primary TiC phase could be influenced by convection. Two main reasons for this are that the density of the TiC phase is lower than the liquid melt, and that the primary TiC phase precipitates from the pool with a high convection speed at high temperature.
Engineering Electronic Properties of Strongly Correlated Metal Thin Films
NASA Astrophysics Data System (ADS)
Eaton, Craig
This dissertation reports on advances in synthesis and characterization of high quality perovskite metals with strong electron correlation. These materials have attracted considerable attention for their potential application as an active electronic material in logic applications utilizing the Mott type metal-to-insulator transition. CaVO3 and SrVO3 correlated metal oxide films have been grown by hybrid-molecular beam epitaxy (MBE), where alkaline earth cations are supplied using a conventional effusion cell and the transition metal vanadium is supplied using the metal-organic precursor vanadium (V) oxytriisopropoxide. Oxygen is available in both molecular and remote plasma activated forms. Titanate-based band insulators, namely SrTiO3 and CaTiO3, have also been grown using titanium tetra-isopropoxide as metal-organic precursor. The grown films have been characterized using reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), atomic force microscopy (AFM), transition electron microscopy (TEM), and electrical properties have been determined using temperature dependent resistivity and Hall measurements. Optimized films exhibit high quality Kiessig fringes, with substrate limited rocking curve widths of 8 arc seconds in the case of CaVO3 and 17 arc seconds in the case of SrVO3. Both vanadate films grew in a step-flow mode with atomic steps visible after growth by AFM. In SrVO3, the perovskite phase remained present with a gradual lattice expansion away from the optimal cation flux ratio. For CaVO3, the films remained phase pure and with little change in lattice parameter throughout a growth window that spanned a 30% range in cation flux ratios. While an abrupt increase of lattice parameter was found for CaVO3 films grown under Carich conditions, films grown under V-rich conditions revealed a gradual reduction in lattice parameter, in contrast to SrVO3 where all defects have been shown to increase unit cell volume. Low resistivity and high residual resistivity ration complex vanadate thin films have been demonstrated. Methods for growing minimally strained SrVO3 films on (LaAlO 3)0.3(Sr2AlTaO6)0.7 substrates (0.7% tensile) were expanded to other substrates with different lattice mismatches, namely SrTiO3 (1.8% tensile) and LaAlO3 (1.3% compressive). Varying strain modifies bond angles or overlap, and can give rise to an insulating ground state. Changes in the film surface morphology derived from atomic force microscopy (AFM) was used to discriminate optimal growth conditions on each substrate. Films grown at each strain state remain strongly metallic at 10 nm thickness. Low temperature resistivity measurements, which demonstrates a marked increase in low temperature resistivity with respect to those films grown at optimized growth parameters, were found to be substrate dependent. The thickness of films grown on SrTiO3 are optimized for maximum thickness without cracking. Use of epitaxial strain as a mechanism for enabling a Mott transition was not demonstrated at strains and conditions attempted within this study. The experimental support of this hypothesis could not be experimentally confirmed within the range of strains studied here. Finally, high quality epitaxial SrTiO3-SrVO3-SrTiO 3 heterostructures are grown on (LaAlO3)0.3(Sr 2AlTaO6)0.7 substrates by hybrid MBE. RHEED, XRD, and TEM showed that these structures are of high structural quality, with atomically and chemically abrupt interfaces. By fixing the thickness of the SrTiO3 confinement layers to be 15 nm and decreasing the thickness of the SrVO3 from 50 nm down to 1.2 nm, it has been demonstrated that the system transitions from a strongly-correlated metal to an insulating state, as shown by temperature dependent resistivity and carrier concentration measurements. For films with thickness larger than 1.2 nm, the resistivity versus temperature is described by Fermi liquid behavior. Below this critical thickness the material undergoes an electronic phase transition into a variable-range hopping insulating phase. The results of this dissertation show that high quality vanadate thin films can be grown by hybrid MBE. Their electronic ground state, metallic in the bulk phase, can be effectively changed using geometrical confinement, while epitaxial strain was found to have a negligible effect. The ability to grow CaVO3 in a self-regulated fashion holds promise that the favorable growth kinetics in hybrid MBE might be a general characteristic of the metalorganic precursor employed.
Ab Initio Studies of Metal Hexaboride Materials
NASA Astrophysics Data System (ADS)
Schmidt, Kevin M.
Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron-terminations produce the lowest energies for di-cations of CaB6, SrB6 and BaB6, while tri-valent LaB6 minimizes its surface energy by arranging the metal ions in parallel rows on the surface. Studies involving hydrogen suggest that a single molecule per surface unit-cell is possible, and evidence is given for a dissociative adsorption pathway. Ternary mixtures of metal hexaborides containing two alkaline-earth cations in each crystal are also investigated with electronic structure methods. Multiple geometries are used to understand how spatial arrangements of cations within the mixture can affect properties related to stability. Bond-lengths within the boron framework are found to be heavily dependent upon the local cation environment, and energies taken at absolute zero suggest certain stoichiometries naturally lead to phase splitting.
Effect of Surface Preparation and Gas Flow on Nitrogen Atom Surface Recombination
NASA Technical Reports Server (NTRS)
Prok, George M.
1961-01-01
The effects of surface preparation and gas flow on the recombination of nitrogen atoms at copper and platinum surfaces were determined. Atoms were generated by an electrodeless 2450-megacycle-per-second discharge, and their concentration was measured by gas-phase titration with nitric oxide. Test surfaces were either vacuum-evaporated films or spheres machined from bulk metal and cemented around small glass-bead thermistors. Heat released by recombination was measured as the difference in electrical energy required to maintain a given thermistor temperature with and without a catalytic surface exposed. Recombination coefficients measured at flow velocities of 1120, 1790, 2250, and 3460 centimeters per second and at pressures of 0.42 and 0.59 millimeter of mercury showed that flow conditions had no effect. The results were also independent of atom concentration. A rough indication of the temperature dependence was obtained; it was greater for copper than for platinum. Platinum films deposited on platinum or on glass had the same activity - about 3 percent of the atoms impinging recombined. With copper, however, the glass substrate greatly reduced the percent of atoms recombining over that of a bulk copper substrate where 4 percent of the impinging atoms recombined. This effect could be overcome by depositing a second film on top of the first. Bulk metal samples were subjected to various surface treatments including polishing, degreasing with a chlorinated hydrocarbon, washing with nitric acid, and rinsing with water. Polished, degreased platinum had low activity compared to an evaporated film, but nitric acid treatment made it equivalent. Polished, degreased copper was only slightly less active than a copper film; nitric acid etching decreased the activity still further, probably by preferentially exposing facets of low catalytic efficiency.
Atomic and electronic structures of Si(1 1 1)-(√3 x √3)R30°-Au and (6 × 6)-Au surfaces.
Patterson, C H
2015-12-02
Si(1 1 1)-Au surfaces with around one monolayer of Au exhibit many ordered structures and structures containing disordered domain walls. Hybrid density functional theory (DFT) calculations presented here reveal the origin of these complex structures and tendency to form domain walls. The conjugate honeycomb chain trimer (CHCT) structure of the [Formula: see text]-Au phase contains Si atoms with non-bonding surface states which can bind Au atoms in pairs in interstices of the CHCT structure and make this surface metallic. Si adatoms adsorbed on the [Formula: see text]-Au surface induce a gapped surface through interaction with the non-bonding states. Adsorption of extra Au atoms in interstitial sites of the [Formula: see text]-Au surface is stabilized by interaction with the non-bonding orbitals and leads to higher coverage ordered structures including the [Formula: see text]-Au phase. Extra Au atoms bound in interstitial sites of the [Formula: see text]-Au surface result in top layer Si atoms with an SiAu4 butterfly wing configuration. The structure of a [Formula: see text]-Au phase, whose in-plane top atomic layer positions were previously determined by an electron holography technique (Grozea et al 1998 Surf. Sci. 418 32), is calculated using total energy minimization. The Patterson function for this structure is calculated and is in good agreement with data from an in-plane x-ray diffraction study (Dornisch et al 1991 Phys. Rev. B 44 11221). Filled and empty state scanning tunneling microscopy (STM) images are calculated for domain walls and the [Formula: see text]-Au structure. The [Formula: see text]-Au phase is 2D chiral and this is evident in computed and actual STM images. [Formula: see text]-Au and domain wall structures contain the SiAu4 motif with a butterfly wing shape. Chemical bonding within the Si-Au top layers of the [Formula: see text]-Au and [Formula: see text]-Au surfaces is analyzed and an explanation for the SiAu4 motif structure is given.
Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto
2003-01-01
A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).
The phase diagram of solid hydrogen at high pressure: A challenge for first principles calculations
NASA Astrophysics Data System (ADS)
Azadi, Sam; Foulkes, Matthew
2015-03-01
We present comprehensive results for the high-pressure phase diagram of solid hydrogen. We focus on the energetically most favorable molecular and atomic crystal structures. To obtain the ground-state static enthalpy and phase diagram, we use semi-local and hybrid density functional theory (DFT) as well as diffusion quantum Monte Carlo (DMC) methods. The closure of the band gap with increasing pressure is investigated utilizing quasi-particle many-body calculations within the GW approximation. The dynamical phase diagram is calculated by adding proton zero-point energies (ZPE) to static enthalpies. Density functional perturbation theory is employed to calculate the proton ZPE and the infra-red and Raman spectra. Our results clearly demonstrate the failure of DFT-based methods to provide an accurate static phase diagram, especially when comparing insulating and metallic phases. Our dynamical phase diagram obtained using fully many-body DMC calculations shows that the molecular-to-atomic phase transition happens at the experimentally accessible pressure of 374 GPa. We claim that going beyond mean-field schemes to obtain derivatives of the total energy and optimize crystal structures at the many-body level is crucial. This work was supported by the UK engineering and physics science research council under Grant EP/I030190/1, and made use of computing facilities provided by HECTOR, and by the Imperial College London high performance computing centre.
Man, Michael K. L.; Deckoff-Jones, Skylar; Winchester, Andrew; ...
2016-02-12
Semiconducting 2D materials, like transition metal dichalcogenides (TMDs), have gained much attention for their potential in opto-electronic devices, valleytronic schemes, and semi-conducting to metallic phase engineering. However, like graphene and other atomically thin materials, they lose key properties when placed on a substrate like silicon, including quenching of photoluminescence, distorted crystalline structure, and rough surface morphology. The ability to protect these properties of monolayer TMDs, such as molybdenum disulfide (MoS 2), on standard Si-based substrates, will enable their use in opto-electronic devices and scientific investigations. Here we show that an atomically thin buffer layer of hexagonal-boron nitride (hBN) protects themore » range of key opto-electronic, structural, and morphological properties of monolayer MoS 2 on Si-based substrates. The hBN buffer restores sharp diffraction patterns, improves monolayer flatness by nearly two-orders of magnitude, and causes over an order of magnitude enhancement in photoluminescence, compared to bare Si and SiO 2 substrates. Lastly, our demonstration provides a way of integrating MoS 2 and other 2D monolayers onto standard Si-substrates, thus furthering their technological applications and scientific investigations.« less
LEO P: HOW MANY METALS CAN A VERY LOW MASS, ISOLATED GALAXY RETAIN?
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew
Leo P is a gas-rich dwarf galaxy with an extremely low gas-phase oxygen abundance (3% solar). The isolated nature of Leo P enables a quantitative measurement of metals lost solely due to star formation feedback. We present an inventory of the oxygen atoms in Leo P based on the gas-phase oxygen abundance measurement, the star formation history (SFH), and the chemical enrichment evolution derived from resolved stellar populations. The SFH also provides the total amount of oxygen produced. Overall, Leo P has retained 5% of its oxygen; 25% of the retained oxygen is in the stars while 75% is in the gas phase. Thismore » is considerably lower than the 20%–25% calculated for massive galaxies, supporting the trend for less efficient metal retention for lower-mass galaxies. The retention fraction is higher than that calculated for other alpha elements (Mg, Si, Ca) in dSph Milky Way satellites of similar stellar mass and metallicity. Accounting only for the oxygen retained in stars, our results are consistent with those derived for the alpha elements in dSph galaxies. Thus, under the assumption that the dSph galaxies lost the bulk of their gas mass through an environmental process such as tidal stripping, the estimates of retained metal fractions represent underestimates by roughly a factor of four. Because of its isolation, Leo P provides an important datum for the fraction of metals lost as a function of galaxy mass due to star formation.« less
Thin Metallic Films from Solvated Metal Atoms.
1987-07-14
platinium , and especially indium are discussed. N, ; ,, -- !, : N) By Dist , , . N S f1 -- ~~r, 821-19 C[ Thin metallic films from solvated metal atoms...metallic films. Cold, palladium, platinium , and especially indium are discussed. 1- INTRQDUCTION In the field of chemistry an active and broad area of
MoS2 edges and heterophase interfaces: energy, structure and phase engineering
NASA Astrophysics Data System (ADS)
Zhou, Songsong; Han, Jian; Sun, Jianwei; Srolovitz, David J.
2017-06-01
The transition metal dichalcogenides exhibit polymorphism; i.e. both 2H and 1T‧ crystal structures, each with unique electronic properties. These two phases can coexist within the same monolayer microstructure, producing 2H/1T‧ interfaces. Here we report a systematic investigation of the energetics of the experimentally most important MoS2 heterophase interfaces and edges. The stable interface and edge structures change with chemical potential (these edges/interfaces are usually non-stoichiometric). Stable edges tend to be those of highest atomic density and the stable interfaces correspond to those with local atomic structure very similar to the 2H crystal. The interfacial energies are lower than those of the edges, and the 1T‧ edges have lower energy than the 2H edges. Because the 1T‧ edges have much lower energy than the 2H edges, a sufficiently narrow 1T‧ ribbon will be more stable than the corresponding 2H ribbon (this critical width is much larger in MoTe2 than in MoS2). Similarly, a large 2H flake have an equilibrium strip of 1T‧ along its edge (again this effect is much larger in MoTe2 than in MoS2). Application of tensile strains can increase the width of the stable 1T‧ strip or the critical thickness below which a ribbon favors the 1T‧ structure. These effects provide a means to phase engineer transition metal dichalcogenide microstructures.
Molecule-assisted ferromagnetic atomic chain formation
NASA Astrophysics Data System (ADS)
Kumar, Manohar; Sethu, Kiran Kumar Vidya; van Ruitenbeek, Jan M.
2015-06-01
One dimensional systems strongly enhance the quantum character of electron transport. Such systems can be realized in 5 d transition metals Au, Pt, and Ir, in the form of suspended monatomic chains between bulk leads. Atomic chains between ferromagnetic leads would open up many perspectives in the context of spin-dependent transport and spintronics, but the evidence suggests that for pure metals only the mentioned three 5 d metals are susceptible to chain formation. It has been argued that the stability of atomic chains made up from ferromagnetic metals is compromised by the same exchange interaction that produces the local moments. Here we demonstrate that magnetic atomic chains can be induced to form in break junctions under the influence of light molecules. Explicitly, we find deuterium assisted chain formation in the 3 d ferromagnetic transition metals Fe and Ni. Chain lengths up to eight atoms are formed upon stretching the ferromagnetic atomic contact in deuterium atmosphere at cryogenic temperatures. From differential conductance spectra vibronic states of D2 can be identified, confirming the presence of deuterium in the atomic chains. Shot noise spectroscopy indicates the presence of weakly spin polarized transmission channels.
Dispersion Forces of Solids under Stress. Chemisorption under Stress.
1984-08-01
The objective of the research summerized here was to determine the stress ce dependence of the chemical potential of atoms chemisorbed to metal...received by the scientific- engineering community. In- terest was shown to carry out the experiments suggested in our paper and we hope that this phase...out several benchmark theoretical investi- gations on our chemostress effect. These papers were well received by both .* scientific and engineering
Quackenbush, Nicholas F; Paik, Hanjong; Woicik, Joseph C; Arena, Dario A; Schlom, Darrell G; Piper, Louis F J
2015-08-21
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.
A resonant ultrasound spectroscopy study of the phase transitions in Na0.75CoO2
NASA Astrophysics Data System (ADS)
Keppens, Veerle; Sergienko, Ivan; Jin, Rongying
2005-03-01
The layered transition metal oxides NaxCoO2 have attracted much interest in the past few years. Crystals with the x˜0.75 composition undergo an order-disorder transition near 340 K, a spin-density-wave transition near 22 K and other subtle transitions at intermediate temperatures. These phase transitions, likely related to a rearrangement of the Na atoms among the available sites, have been mapped out using resonant ultrasound spectroscopy. The results are modeled within the Landau theory for second order phase transitions. [Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725
Pang, Haosheng; Li, Minglin; Gao, Chenghui; Huang, Haili; Zhuo, Weirong; Hu, Jianyue; Wan, Yaling; Luo, Jing; Wang, Weidong
2018-03-27
The single-layer molybdenum disulfide (SLMoS2) nanosheets have been experimentally discovered to exist in two different polymorphs, which exhibit different electrical properties, metallic or semiconducting. Herein, molecular dynamics (MD) simulations of nanoindentation and uniaxial compression were conducted to investigate the phase transition of SLMoS2 nanosheets. Typical load-deflection curves, stress-strain curves, and local atomic structures were obtained. The loading force decreases sharply and then increases again at a critical deflection under the nanoindentation, which is inferred to the phase transition. In addition to the layer thickness, some related bond lengths and bond angles were also found to suddenly change as the phase transition occurs. A bell-like hollow, so-called residual deformation, was found to form, mainly due to the lattice distortion around the waist of the bell. The effect of indenter size on the residual hollow was also analyzed. Under the uniaxial compression along the armchair direction, a different phase transition, a uniformly quadrilateral structure, was observed when the strain is greater than 27.7%. The quadrilateral structure was found to be stable and exhibit metallic conductivity in view of the first-principle calculation.
Determination of labile copper, cobalt, and chromium in textile mill wastewater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crain, J.S.; Essling, A.M.; Kiely, J.T.
1997-01-01
Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals ofmore » interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.« less
Koyanagi, Gregory K; Bohme, Diethard K
2006-02-02
The chemistry of carbon dioxide has been surveyed systematically with 46 atomic cations at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and allowed to cool radiatively and to thermalize by collisions with Ar and He atoms prior to reaction downstream in a flow tube in helium buffer gas at 0.35 +/- 0.01 Torr and 295 +/- 2 K. Rate coefficients and products were measured for the reactions of first-row atomic ions from K(+) to Se(+), of second-row atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of third-row atomic ions from Cs(+) to Bi(+). CO(2) was found to react in a bimolecular fashion by O atom transfer only with 9 early transition-metal cations: the group 3 cations Sc(+), Y(+), and La(+), the group 4 cations Ti(+), Zr(+), and Hf(+), the group 5 cations Nb(+) and Ta(+), and the group 6 cation W(+). Electron spin conservation was observed to control the kinetics of O atom transfer. Addition of CO(2) was observed for the remaining 37 cations. While the rate of addition was not measurable some insight was obtained into the standard free energy change, DeltaG(o), for CO(2) ligation from equilibrium constant measurements. A periodic variation in DeltaG(o) was observed for first row cations that is consistent with previous calculations of bond energies D(0)(M(+)-CO(2)). The observed trends in D(0) and DeltaG(o) are expected from the variation in electrostatic attraction between M(+) and CO(2) which follows the trend in atomic-ion size and the trend in repulsion between the orbitals of the atomic cations and the occupied orbitals of CO(2). Higher-order CO(2) cluster ions with up to four CO(2) ligands also were observed for 24 of the atomic cations while MO(2)(+) dioxide formation by sequential O atom transfer was seen only with Hf(+), Nb(+), Ta(+), and W(+).
Church, S.E.; Mosier, E.L.; Motooka, J.M.
1987-01-01
We have applied partial digestion procedures, primarily oxalic acid and aqua regia leaches, to several regional geochemical reconnaissance studies carried out using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) analytical methods. We have chosen to use these two acids because the oxalic acid primarily attacks those compounds formed during secondary geochemical processes, whereas aqua regia will digest the primary sulfide phases as well as secondary phases. Application of the partial digestion technique has proven superior to total digestion because the concentration of metals in hydromorphic compounds and the sulfides is enhanced relative to the metals bound in the unattacked silicate phases. The aqua regia digestion attacks and leaches metals from the mafic chain silicates and the phyllosilicates (coordination number of VI or more), yielding a characteristic geochemical signature, but does not leach appreciable metal from many other silicates. In order to interpret the results from these leach studies, we have initiated an investigation of a large suite of hand-picked mineral separates. The study includes analyses of about two hundred minerals representing the common rock-forming minerals as well as end-member compositions of various silicates, oxides, sulfides, carbonates, sulfates, and some vanadates, molybdates, tungstates, and phosphates. The objective of this study is to evaluate the effect of leaching by acids of particular lattice sites in specific mineral structures. ?? 1987.
Heavy metal contents of play dough, face and finger paint samples sold in turkish markets.
Erbas, Zeliha; Karatepe, Aslihan; Soylak, Mustafa
2017-08-01
Lead, cadmium, nickel, manganese, cobalt and copper contents of some play dough, face and finger paint samples were determined by using a new solid phase extraction method which has been developed by using multi-walled carbon nanotube with patent blue (V) sodium salt to selectively separate and preconcentrate these metal ions. Flame atomic absorption spectrometry was used to determine the metal ions. Analytical parameters affecting the complex formation and solid phase extraction performance such as pH, the amount of ligand and volume of sample solution were investigated. The recoveries of the studied metal ions were not affected by the foreign ions. Analytes were recovered quantitatively at pH 5.5 and with a nitric acid of 2molL -1 as eluent. Analysis of a certified reference material was performed to validate the method before applying it to determine the metal ions in the real samples. Detection limits were found to be as Pb(II): 7.71μgL -1 , Cu(II): 1.43μgL -1 , Cd(III): 0.21μgL -1 , Mn(II): 0.47μgL -1 , Ni(II): 3.52μgL -1 and Co(II): 1.96μgL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Copper-silver-titanium filler metal for direct brazing of structural ceramics
Moorhead, Arthur J.
1987-01-01
A method of joining ceramics and metals to themselves and to one another is described using a brazing filler metal consisting essentially of 35 to 50 atomic percent copper, 15 to 50 atomic percent silver and 10 to 45 atomic percent titanium. This method produces strong joints that can withstand high service temperatures and oxidizing environments.
Study of the electronic structure and half-metallicity of CaMnO3/BaTiO3 superlattice
NASA Astrophysics Data System (ADS)
Wang, Kai; Jiang, Wei; Chen, Jun-Nan; Huang, Jian-Qi
2016-09-01
In this paper, the electronic structure, magnetic properties and half-metallicity of the CaMnO3/BaTiO3 superlattice are investigated by employing the first-principle calculation based on density functional theory within the GGA or GGA + U exchange-correlation functional. The CaMnO3/BaTiO3 superlattice is constructed by the cubic CaMnO3 and the tetragonal ferroelectric BaTiO3 growing alternately along (0 0 1) direction. The cubic CaMnO3 presents a robust half-metallicity and a metastable ferromagnetic phase. Its magnetic moment is an integral number of 3.000 μB per unit cell. However, the CaMnO3/BaTiO3 superlattice has a stable ferromagnetic phase, for which the magnetic moment is 12.000 μB per unit cell. It also retains the robust half-metallicity which mainly results from the strong hybridization between Mn and O atoms. The results show that the constructed CaMnO3/BaTiO3 superlattice exhibits superior magnetoelectric properties. It may provide a theoretical reference for the design and preparation of new multiferroic materials.
Atomic-scale epitaxial aluminum film on GaAs substrate
NASA Astrophysics Data System (ADS)
Fan, Yen-Ting; Lo, Ming-Cheng; Wu, Chu-Chun; Chen, Peng-Yu; Wu, Jenq-Shinn; Liang, Chi-Te; Lin, Sheng-Di
2017-07-01
Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.
Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.
Liu, Lichen; Corma, Avelino
2018-05-23
Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.
Novel systems and methods for quantum communication, quantum computation, and quantum simulation
NASA Astrophysics Data System (ADS)
Gorshkov, Alexey Vyacheslavovich
Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.
Related Structure Characters and Stability of Structural Defects in a Metallic Glass
Niu, Xiaofeng; Feng, Shidong; Pan, Shaopeng
2018-01-01
Structural defects were investigated by a recently proposed structural parameter, quasi-nearest atom (QNA), in a modeled Zr50Cu50 metallic glass through molecular dynamics simulations. More QNAs around an atom usually means that more defects are located near the atom. Structural analysis reveals that the spatial distribution of the numbers of QNAs displays to be clearly heterogeneous. Furthermore, QNA is closely correlated with cluster connections, especially four-atom cluster connections. Atoms with larger coordination numbers usually have less QNAs. When two atoms have the same coordination number, the atom with larger five-fold symmetry has less QNAs. The number of QNAs around an atom changes rather frequently and the change of QNAs might be correlated with the fast relaxation metallic glasses. PMID:29565298
A universal preconditioner for simulating condensed phase materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Packwood, David; Ortner, Christoph, E-mail: c.ortner@warwick.ac.uk; Kermode, James, E-mail: j.r.kermode@warwick.ac.uk
2016-04-28
We introduce a universal sparse preconditioner that accelerates geometry optimisation and saddle point search tasks that are common in the atomic scale simulation of materials. Our preconditioner is based on the neighbourhood structure and we demonstrate the gain in computational efficiency in a wide range of materials that include metals, insulators, and molecular solids. The simple structure of the preconditioner means that the gains can be realised in practice not only when using expensive electronic structure models but also for fast empirical potentials. Even for relatively small systems of a few hundred atoms, we observe speedups of a factor ofmore » two or more, and the gain grows with system size. An open source Python implementation within the Atomic Simulation Environment is available, offering interfaces to a wide range of atomistic codes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Geng Bang; Malliakas, Christos D.; Lin, Jian
To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP 2, beta-ThCu 2P 2, and ThCu 5P 3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP 2 can be described as a filled UTe 2-type with both dimeric P 2 4- and monomeric P 3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu 2P 2 contains only P 3- anions and is isostructural with BaCumore » 2S 2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu 5P 3 adopts the YCo 5P 3-type structure consisting of P 3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu 2P 2 indicate a metal. These new compounds may be charge-balanced and formulated as Th 4+Cu +(P 2 4-) 1/2P 3-, Th 4+(Cu +) 2(P 3-) 2, and Th 4+(Cu +) 5(P 3-) 3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. In conclusion, titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP 2 and UCu 2P 2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.« less
Jin, Geng Bang; Malliakas, Christos D.; Lin, Jian
2017-09-28
To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP 2, beta-ThCu 2P 2, and ThCu 5P 3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP 2 can be described as a filled UTe 2-type with both dimeric P 2 4- and monomeric P 3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu 2P 2 contains only P 3- anions and is isostructural with BaCumore » 2S 2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu 5P 3 adopts the YCo 5P 3-type structure consisting of P 3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu 2P 2 indicate a metal. These new compounds may be charge-balanced and formulated as Th 4+Cu +(P 2 4-) 1/2P 3-, Th 4+(Cu +) 2(P 3-) 2, and Th 4+(Cu +) 5(P 3-) 3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. In conclusion, titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP 2 and UCu 2P 2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.« less
Moncho, Salvador; Autschbach, Jochen
2010-01-12
A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.
Highly monodisperse multiple twinned AuCu-Pt trimetallic nanoparticles with high index surfaces.
Khanal, Subarna; Bhattarai, Nabraj; McMaster, David; Bahena, Daniel; Velazquez-Salazar, J Jesus; Jose-Yacaman, Miguel
2014-08-14
Trimetallic nanoparticles possess different properties than their mono- and bi-metallic counterparts, opening a wide range of possibilities for diverse potential applications with the notion to study possible morphology, atomic ordering, reduce precious metal consumption and many others. In this paper, we present a comprehensive experimental study on AuCu-Pt trimetallic nanoparticles with an average diameter of 15 ± 1.0 nm, synthesized in a one-pot synthesis method and characterized by the Cs-corrected scanning transmission electron microscopy technique that allowed us to probe the structure at the atomic level resolution. A new way to control the nanoparticle morphology by the presence of third metal (Pt) is also discussed by the overgrowth of Pt on the as prepared AuCu core by Frank-van der Merwe (FM) layer-by-layer and Stranski-Krastanov (SK) island-on-wetting-layer growth modes. With the application of this research, we are now a step closer to produce optimum catalysts in which the active phase forms only surface monolayers. In addition, the nanoalloy exhibits high index facet surfaces with {211} and {321} families that are highly open-structure surfaces and are interesting for the catalytic applications.
Highly Monodisperse Multiple Twinned AuCu/Pt Trimetallic Nanoparticles with High Index Surfaces
Khanal, Subarna; Bhattarai, Nabraj; McMaster, David; Bahena, Daniel; Velazquez-Salazar, J. Jesus
2014-01-01
Trimetallic nanoparticles present different properties than their mono- and bi-metallic counterparts, opening a wide range of possibilities for diverse potential applications with the notion to study possible morphology, atomic ordering, reduce precious metal consumption and many others. In this paper, we are presenting a comprehensive experimental study on AuCu/Pt trimetallic nanoparticles with an average diameter 15 ± 1.0 nm, synthesized in one-pot synthesis method and characterized by Cs-corrected scanning transmission electron microscopy technique that allowed us to probe the structure at the atomic level resolution. A new way to control the nanoparticle morphology by the presence of third metal (Pt) is also discussed by the overgrowth of Pt on as prepared AuCu core by Frank–van der Merwe (FM) layer-by-layer and Stranski–Krastanov (SK) island-on-wetting-layer growth modes. With the application of this research, we are now a step closer to produce optimum catalysts in which the active phase forms only surface monolayers. In addition, the nanoalloy presents high index facet surfaces with {211} and {321} families, that are highly open-structure surfaces and are interesting for the catalytic applications. PMID:24975090
Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid
NASA Astrophysics Data System (ADS)
Puosi, F.; Jakse, N.; Pasturel, A.
2018-04-01
As it approaches the glass transition, particle motion in liquids becomes highly heterogeneous and regions with virtually no mobility coexist with liquid-like domains. This complex dynamic is believed to be responsible for different phenomena including non-exponential relaxation and the breakdown of the Stokes-Einstein relation. Understanding the relationships between dynamical heterogeneities and local structure in metallic liquids and glasses is a major scientific challenge. Here we use classical molecular dynamics simulations to study the atomic dynamics and microscopic structure of Cu50Zr50 alloy in the supercooling regime. Dynamical heterogeneities are identified via an isoconfigurational analysis. We demonstrate the transition from isolated to clustering low mobility with decreasing temperature. These slow clusters, whose sizes grow upon cooling, are also associated with concentration fluctuations, characterized by a Zr-enriched phase, with a composition CuZr2 . In addition, a structural analysis of slow clusters based on Voronoi tessellation evidences an increase with respect of the bulk system of the fraction of Cu atoms having a local icosahedral order. These results are in agreement with the consolidated scenario of the relevant role played by icosahedral order in the dynamic slowing-down in supercooled metal alloys.
NASA Astrophysics Data System (ADS)
Hess, D. W.
1986-05-01
Radiofrequency (rf) discharges have been used to deposit films of tungsten, molybdenum and titanium silicide. As-deposited tungsten films, from tungsten hexafluoride and hydrogen source gases, were metastable (beta W), with significant (>1 atomic percent) fluorine incorporation. Film resistivities were 40-55 micro ohm - cm due to the beta W, but dropped to about 8 micro ohm cm after a short heat treatment at 700 C which resulted in a phase transition to alpha W (bcc form). The high resistivity (>10,000 micro ohm) associated with molybdenum films deposited from molybdenum hexafluoride and hydrogen appeared to be a result of the formation of molybdenum trifluoride in the deposited material. Titanium silicide films formed from a discharge of titanium tetrachloride, silane, and hydrogen, displayed resistivities of about 150 micro ohm cm, due to small amounts of oxygen and chlorine incorporated during deposition. Plasma etching studies of tungsten films with fluorine containing gases suggest that the etchant species for tungsten in these discharges are fluorine atoms.
Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide
NASA Astrophysics Data System (ADS)
Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew
2018-04-01
Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.
The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study
NASA Astrophysics Data System (ADS)
Ballhaus, C.; Ryan, C. G.; Mernagh, T. P.; Green, D. H.
1994-01-01
This paper describes new experimental and analytical techniques to study element partitioning behavior between crystalline material and a late- to post-magmatic fluid phase. Samples of the fluid phase are isolated at experimental run conditions as synthetic fluid in quartz. Individual fluid inclusions are later analyzed for dissolved metals using Proton Induced X-ray Emission (PIXE). Back reactions between fluid and solid phases during quenching are prevented because the fluid is isolated at the experimental pressure, temperature ( P, T) conditions before quenching occurs. The technique is applied to study the partitioning of chalcophile elements (Fe, Ni, Cu, Pt and Au) between sulfide phases, metal alloys and supercritical SiO 2-NaCl-saturated H2O ± CH4- CO2- H2S fluids. Synthetic Ni-Cu-rich monosulfide solid solution (mss) doped with PtS or Au is packed in a quartz capsule and, together with a hydrogen buffer capsule and compounds to generate a fluid phase, welded shut in an outer Pt or Au metal capsule. The fluid phase is generated by combustion and reaction of various C-H-O fluid components during heating. Depending on capsule material and sample composition, the run products consist of platiniferous or auriferous mss, Pt-Fe, or ( Au, Cu) alloy phases, PtS, Fe 3O 4, sometimes a Cu-rich sulfide melt, and a fluid phase. Samples of the fluid are trapped in the walls of the quartz sample capsule as polyphase fluid inclusions. All phases are now available for analysis: fluid speciation is analyzed by piercing the outer metal capsule under vacuum and feeding the released fluid into a mass spectrometer. Phases and components within fluid inclusions are identified with Raman spectroscopy. Platinum and gold in solid solution in mss are determined with a CAMECA SX50 electron microanalyser. Metal contents trapped in selected fluid inclusions are determined quantitatively by in situ analysis with a proton microprobe using PIXE and a correction procedure specifically developed for quantitative fluid inclusion analysis. Initial results of metal solubilities in the fluid are as follows. Iron decreases from above 6,000 ppm under reduced conditions in the presence of H 2S in the fluid, to less than 1,000 ppm if hematite is stable in the crystalline run product. Copper and gold concentrations in the fluid range from about 600 to over 1200 and from 150 to about 270 ppm, respectively. The solubilities of these two metals in NaCl-saturated fluids are apparently independent of fluid speciations covered here. Nickel is mostly below detection limit (<10 ppm) and apparently poorly soluble in high-temperature fluid phases. Platinum concentrations in fluid inclusions are highly variable even among fluid inclusions of single runs, possibly because Pt tends to form multi-atom complexes in fluid phases.
Tunable reactivity of supported single metal atoms by impurity engineering of the MgO(001) support.
Pašti, Igor A; Johansson, Börje; Skorodumova, Natalia V
2018-02-28
Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single atoms supported by doped MgO(001). By introducing B, C and N impurities into the MgO(001) surface, the interaction between the surface and the supported metal adatoms can be adjusted. Impurity atoms act as strong binding sites for Au and Pd adatoms and can help to produce highly dispersed metal particles. The reactivity of metal atoms supported by doped MgO(001), as probed by CO, is altered compared to their counterparts on pristine MgO(001). We find that Pd atoms on doped MgO(001) are less reactive than on perfect MgO(001). In contrast, Au adatoms bind CO much more strongly when placed on doped MgO(001). In the case of Au on N-doped MgO(001) we find that charge redistribution between the metal atom and impurity takes place even when not in direct contact, which enhances the interaction of Au with CO. The presented results suggest possible ways for optimizing the reactivity of oxide supported metal catalysts through impurity engineering.
Gilroy, Kyle D; Yang, Xuan; Xie, Shuifen; Zhao, Ming; Qin, Dong; Xia, Younan
2018-06-01
Controlling the surface structure of metal nanocrystals while maximizing the utilization efficiency of the atoms is a subject of great importance. An emerging strategy that has captured the attention of many research groups involves the conformal deposition of one metal as an ultrathin shell (typically 1-6 atomic layers) onto the surface of a seed made of another metal and covered by a set of well-defined facets. This approach forces the deposited metal to faithfully replicate the surface atomic structure of the seed while at the same time serving to minimize the usage of the deposited metal. Here, the recent progress in this area is discussed and analyzed by focusing on the synthetic and mechanistic requisites necessary for achieving surface atomic replication of precious metals. Other related methods are discussed, including the one-pot synthesis, electrochemical deposition, and skin-layer formation through thermal annealing. To close, some of the synergies that arise when the thickness of the deposited shell is decreased controllably down to a few atomic layers are highlighted, along with how the control of thickness can be used to uncover the optimal physicochemical properties necessary for boosting the performance toward a range of catalytic reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Çakır, D.; Gülseren, O.
2011-08-01
In this study, we have investigated the interaction of various different atomic and molecular species (H, C, O, H2, and O2) with the monatomic chains of Au, Ag, and Cu via total-energy calculations using the plane-wave pseudopotential method based on density functional theory. The stability, energetics, mechanical, and electronic properties of the clean and contaminated Au, Ag, and Cu nanowires have been presented. We have observed that the interaction of H, C, or O atoms with the monatomic chains are much stronger than the one of H2 or O2 molecules. The atomic impurities can easily be incorporated into these nanowires; they form stable and strong bonds with these one-dimensional structures when they are inserted in or placed close to the nanowires. Moreover, the metal-atomic impurity bond is much stronger than the metal-metal bond. Upon elongation, the nanowires contaminated with atomic impurities usually break from the remote metal-metal bond. We have observed both metallic and semiconducting contaminated nanowires depending on the type of impurity, whereas all clean monatomic chains of Au, Cu, and Ag exhibit metallic behavior. Our findings indicate that the stability and the electronic properties of these monatomic chains can be tuned by using appropriate molecular or atomic additives.
Polarized internal target apparatus
Holt, Roy J.
1986-01-01
A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.
NASA Astrophysics Data System (ADS)
Sugiyama, Hiroki; Kosugi, Toshihiko; Yokoyama, Haruki; Murata, Koichi; Yamane, Yasuro; Tokumitsu, Masami; Enoki, Takatomo
2008-04-01
This paper reports InGaAs/InP composite-channel (CC) high electron mobility transistors (HEMTs) grown by metal-organic vapor-phase epitaxy (MOVPE) with excellent breakdown and high-speed characteristics. Atomic force microscopy (AFM) reveals high-quality heterointerfaces between In(Ga,Al)As and In(Al)P. Fabricated 80-nm-gate CC HEMTs exhibit on- and off-state breakdown (burnout) voltages estimated at higher than 3 and 8 V. An excellent current-gain cutoff frequency ( fT) of 186 GHz is also obtained in the CC HEMTs. The on-wafer uniformity of CC-HEMT characteristics is comparable to those of our mature 100-nm-gate InGaAs single-channel HEMTs. Bias-stress aging tests reveals that the lifetime of CC HEMTs is expected to be comparable to that of our conventional InGaAs single-channel HEMTs.
Ghaedi, M; Montazerozohori, M; Haghdoust, S; Zaare, F; Soylak, M
2013-04-01
A solid phase extraction method for enrichment-separation and the determination of cobalt (Co(2+)), copper (Cu(2+)), nickel (Ni(2+)), zinc (Zn(2+)) and lead (Pb(2+)) ions in real samples has been proposed. The influences of some analytical parameters like pH, flow rate, eluent type and interference of matrix ions on recoveries of analytes were optimized. The limits of detection were found in the range of 1.6-3.9 µg L(-1), while preconcentration factor for all understudy metal ions were found to be 166 with loading half time (t 1/2) less than 10 min. The procedure was applied for the enrichment-separation of analyte ions in environmental samples with recoveries higher than 94.8% and relative SD <4.9% (N = 5).
NASA Astrophysics Data System (ADS)
Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.
2018-04-01
Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.
Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide
NASA Astrophysics Data System (ADS)
Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay
2015-11-01
Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm-2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ~10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach.
Pressure-induced superconductivity in the iron-based ladder material BaFe2S3.
Takahashi, Hiroki; Sugimoto, Akira; Nambu, Yusuke; Yamauchi, Touru; Hirata, Yasuyuki; Kawakami, Takateru; Avdeev, Maxim; Matsubayashi, Kazuyuki; Du, Fei; Kawashima, Chizuru; Soeda, Hideto; Nakano, Satoshi; Uwatoko, Yoshiya; Ueda, Yutaka; Sato, Taku J; Ohgushi, Kenya
2015-10-01
All the iron-based superconductors identified so far share a square lattice composed of Fe atoms as a common feature, despite having different crystal structures. In copper-based materials, the superconducting phase emerges not only in square-lattice structures but also in ladder structures. Yet iron-based superconductors without a square-lattice motif have not been found, despite being actively sought out. Here, we report the discovery of pressure-induced superconductivity in the iron-based spin-ladder material BaFe2S3, a Mott insulator with striped-type magnetic ordering below ∼120 K. On the application of pressure this compound exhibits a metal-insulator transition at about 11 GPa, followed by the appearance of superconductivity below Tc = 14 K, right after the onset of the metallic phase. Our findings indicate that iron-based ladder compounds represent promising material platforms, in particular for studying the fundamentals of iron-based superconductivity.
Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes
2017-01-01
In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles. PMID:28186771
NASA Astrophysics Data System (ADS)
Kaneko, Tomoaki; Saito, Riichiro
2017-11-01
Energetics and electronic structures of alkali metal (Li, Na, K, Rb, and Cs) and alkaline earth metal (Be, Mg, Ca, Sr, and Ba) atoms intercalated bilayer graphene are systematically investigated using first-principles calculations based on density functional theory. Formation of alkali and alkaline earth metal atoms intercalated bilayer graphene is exothermic except for Be and Mg. The interlayer state between two graphene layers is occupied for K, Rb, Cs, Ca, Sr, and Ba. We find that the energetic position of the interlayer states between bilayer graphene monotonically shifts downward with increasing of interlayer distance. The interlayer distances of more than 4.5 Å and 4.0 Å, respectively, are necessary for the occupation of the interlayer state in bilayer graphene for alkali and alkaline earth metal atoms, which is almost independent of the intercalant metal species. We discuss the relevance to occurrence of superconductivity for the metal intercalated bilayer graphene in terms of the occupation of the interlayer state and the phonon frequency of metal ions.
Probing ‘Spin-Forbidden’ Oxygen Atom Transfer: Gas-Phase Reactions of Chromium-Porphyrin Complexes
Fornarini, Simonetta; Lanucara, Francesco; Warren, Jeffrey J.
2010-01-01
Oxygen-atom transfer reactions of metalloporphyrin species play an important role in biochemical and synthetic oxidation reactions. An emerging theme in this chemistry is that spin-state changes can play important roles, and a ‘two-state’ reactivity model has been extensively applied especially in iron-porphyrin systems. Herein we explore the gas phase oxygen-atom transfer chemistry of meso-tetrakis(pentafluorophenyl)porphyrin (TPFPP) chromium complexes, as well as some other tetradentate macrocyclic ligands. Electrospray ionization in concert with Fourier transform ion cyclotron resonance (FT-ICR) spectrometry has been used to characterize and observe reactivity of the ionic species [(TPFPP)CrIII]+ (1) and [(TPFPP)CrVO]+ (2). These are an attractive system to examine the effects of spin state change on oxygen atom transfer because the d1 CrV species are doublets while the CrIII complexes have quartet ground states with high-lying doublet excited states. In the gas phase, [(TPFPP)CrIII]+ forms adducts with a variety of neutral donors but O-atom transfer is only observed for NO2. Pyridine N-oxide adducts of 1 do yield 2 upon collision induced dissociation (CID), but the ethylene oxide, DMSO, and TEMPO analogs do not. [(TPFPP)CrVO]+ is shown by its reactivity and by CID experiments to be a terminal metal-oxo with a single vacant coordination site. It also displays limited reaction chemistry, being deoxygenated only by the very potent reductant P(OMe)3. In general, [(TPFPP)CrVO]+ species are much less reactive than the Fe and Mn analogs. Thermochemical analysis of the reactions points towards the involvement of spin issues in the lower observed reactivity of the chromium complexes. PMID:20218631
Spinel-structured metal oxide on a substrate and method of making same by molecular beam epitaxy
Chambers, Scott A.
2006-02-21
A method of making a spinel-structured metal oxide on a substrate by molecular beam epitaxy, comprising the step of supplying activated oxygen, a first metal atom flux, and at least one other metal atom flux to the surface of the substrate, wherein the metal atom fluxes are individually controlled at the substrate so as to grow the spinel-structured metal oxide on the substrate and the metal oxide is substantially in a thermodynamically stable state during the growth of the metal oxide. A particular embodiment of the present invention encompasses a method of making a spinel-structured binary ferrite, including Co ferrite, without the need of a post-growth anneal to obtain the desired equilibrium state.
Effect of interfacial species on shear strength of metal-sapphire contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1979-01-01
The interfacial shear strength of the metal-insulator system has been studied by means of the coefficient of static friction of copper, nickel, or gold contacts on sapphire in ultrahigh vacuum. The effect on contact strength of adsorbed oxygen, nitrogen, chlorine, and carbon monoxide on the metal surfaces is reported. It was found that exposures as low as 1 L of O2 on Ni produced observable increases in contact strength, whereas exposures of 3 L of Cl2 lead to a decrease in contact strength. These results imply that submonolayer concentrations of these species at the interface of a thin Ni film on Al2O3 should affect film adhesion similarly. The atomic mechanism by which these surface or interface phases affect interfacial strength is not yet understood.
Dmowski, W; Gierlotka, S; Wang, Z; Yokoyama, Y; Palosz, B; Egami, T
2017-07-26
Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids, but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.
Geada, Isidro Lorenzo; Ramezani-Dakhel, Hadi; Jamil, Tariq; Sulpizi, Marialore; Heinz, Hendrik
2018-02-19
Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard-Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals.
NASA Astrophysics Data System (ADS)
Lyon, Jonathan T.; Gruene, Philipp; Fielicke, André; Meijer, Gerard; Rayner, David M.
2009-11-01
The binding of carbon monoxide to iron, ruthenium, rhenium, and tungsten clusters is studied by means of infrared multiple photon dissociation spectroscopy. The CO stretching mode is used to probe the interaction of the CO molecule with the metal clusters and thereby the activation of the C-O bond. CO is found to adsorb molecularly to atop positions on iron clusters. On ruthenium and rhenium clusters it also binds molecularly. In the case of ruthenium, binding is predominantly to atop sites, however higher coordinated CO binding is also observed for both metals and becomes prevalent for rhenium clusters containing more than nine atoms. Tungsten clusters exhibit a clear size dependence for molecular versus dissociative CO binding. This behavior denotes the crossover to the purely dissociative CO binding on the earlier transition metals such as tantalum.
A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals.
Wilson, S R; Mendelev, M I
2016-04-14
We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).
A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals
NASA Astrophysics Data System (ADS)
Wilson, S. R.; Mendelev, M. I.
2016-04-01
We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).
Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy
Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth; ...
2018-03-30
Here, we demonstrate here that locally stabilized structure and compositional segregation at grain boundaries in a complex multicomponent alloy can be modified using high temperature homogenization treatment to influence the kinetics of phase transformations initiating from grain boundaries during subsequent low temperature annealing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography of a model multicomponent metallic alloy —uranium-10 wt% molybdenum (U-10Mo) a nuclear fuel, that is highly relevant to worldwide nuclear non-proliferation efforts, we demonstrate the ability to change the structure and compositional segregation at grain boundary, which then controls the subsequent discontinuous precipitation kinetics during sub-eutectoid annealing.more » A change in grain boundary from one characterized by segregation of Mo and impurities at grain boundary to a phase boundary with a distinct U 2MoSi 2C wetting phase precipitates introducing Ni and Al rich interphase complexions caused a pronounced reduction in area fraction of subsequent discontinuous precipitation. The broader implication of this work is in highlighting the role of grain boundary structure and composition in metallic alloys on dictating the fate of grain boundary initiated phase transformations like discontinuous precipitation or cellular transformation. This work highlights a new pathway to tune the grain boundary structure and composition to tailor the final microstructure of multicomponent metallic alloys.« less
Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth
Here, we demonstrate here that locally stabilized structure and compositional segregation at grain boundaries in a complex multicomponent alloy can be modified using high temperature homogenization treatment to influence the kinetics of phase transformations initiating from grain boundaries during subsequent low temperature annealing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography of a model multicomponent metallic alloy —uranium-10 wt% molybdenum (U-10Mo) a nuclear fuel, that is highly relevant to worldwide nuclear non-proliferation efforts, we demonstrate the ability to change the structure and compositional segregation at grain boundary, which then controls the subsequent discontinuous precipitation kinetics during sub-eutectoid annealing.more » A change in grain boundary from one characterized by segregation of Mo and impurities at grain boundary to a phase boundary with a distinct U 2MoSi 2C wetting phase precipitates introducing Ni and Al rich interphase complexions caused a pronounced reduction in area fraction of subsequent discontinuous precipitation. The broader implication of this work is in highlighting the role of grain boundary structure and composition in metallic alloys on dictating the fate of grain boundary initiated phase transformations like discontinuous precipitation or cellular transformation. This work highlights a new pathway to tune the grain boundary structure and composition to tailor the final microstructure of multicomponent metallic alloys.« less
Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan; Yablokova, Ganna
2017-02-01
In this work, we present material chemistry in the hydrothermal synthesis of new complex structure materials based on various dosage ratios of Fe and Ce (1:0, 2:1, 1:1, 1:2, 0:1), characterize them by the relevant methods that allow characterization of both crystalline and amorphous phases and correlate their structure/surface properties with the adsorptive performance of the five toxic anions. The applied synthesis conditions resulted in the formation of different compounds of Fe and Ce components. The Fe-component was dominated by various phases of Fe hydrous oxides, whereas the Ce-component was composed of various phases of Ce carbonates. The presence of two metal salts in raw materials resulted in the formation of a mesoporous structure and averaged the surface area compared to one metal-based material. The surface of all Fe-Ce composites was abundant in Fe component phases. Two-metal systems showed stronger anion removal performance than one-metal materials. The best adsorption was demonstrated by Fe-Ce based materials that had low crystallinity, that were rich in phases and that exhibited surfaces were abundant in greater number of surface functional groups. Notably, Fe extended fine structures simulated by EXAFS in these better adsorbents were rich from oscillations from both heavy and light atoms. This work provides new insights on the structure of composite inorganic materials useful to develop their applications in adsorption and catalysis. It also presents new inorganic anion exchangers with very high removal potential to fluoride and arsenate. Copyright © 2016 Elsevier Inc. All rights reserved.
Cooling rate dependence of simulated Cu{sub 64.5}Zr{sub 35.5} metallic glass structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryltsev, R. E.; Ural Federal University, 19 Mira Str., 620002 Ekaterinburg; L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow
Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of Cu{sub 64.5}Zr{sub 35.5} alloy during the cooling in a wide range of cooling rates γ ∈ (1.5 ⋅ 10{sup 9}, 10{sup 13}) K/s. Investigating short- and medium-range orders, we show that the structure of Cu{sub 64.5}Zr{sub 35.5} metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to an increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the γ{sub min} = 1.5 ⋅ 10{supmore » 9} K/s. Analysing the structure of the glass at γ{sub min}, we observe the formation of nano-sized crystalline grain of Cu{sub 2}Zr intermetallic compound with the structure of Cu{sub 2}Mg Laves phase. The structure of this compound is isomorphous with that for Cu{sub 5}Zr intermetallic compound. Both crystal lattices consist of two types of clusters: Cu-centered 13-atom icosahedral-like cluster and Zr-centered 17-atom Frank-Kasper polyhedron Z16. That suggests the same structural motifs for the metallic glass and intermetallic compounds of Cu–Zr system and explains the drastic increase of the abundances of these clusters observed at γ{sub min}.« less
Template-free vapor-phase growth of patrónite by atomic layer deposition
Weimer, Matthew S.; McCarthy, Robert F.; Emery, Jonathan D.; ...
2017-03-09
Despite challenges to control stoichiometry in the vanadium-sulfur system, template-free growth of patrónite, VS 4, thin films is demonstrated for the first time. A novel atomic layer deposition (ALD) process enables the growth of phase pure films and the study of electrical and vibrational properties of the quasi-one-dimensional (1D) transition metal sulfide. Self-limiting surface chemistry during ALD of VS4 is established via in situ quartz crystal microbalance and quadrupole mass spectrometry between 150 to 200 °C. The V precursor, unconventionally, sheds all organic components in the first half-cycle, while the H 2S half-cycle generates the disulfide dimer moiety, S 2more » -2, and oxidizes V 3+ to V 4+. X-ray analysis establishes VS 4 crystallinity and phase purity, as well as a self-limiting growth rate of 0.33 Å/cy, modest roughness (2.4 nm) and expected density (2.7g/cm 3 ). Phase pure films enable a new assignment of vibrational modes and corresponding Raman activity of VS4 that is corroborated by density functional theory (DFT) calculations. Lastly, at elevated growth temperatures, a change in the surface mechanism provides a synthetic route to a second vanadium-sulfur phase, V 2S 3.« less
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo; ...
2016-06-08
Interfaces with subtle differences in atomic and electronic structures in perovskite ABO 3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr 0.67Sr 0.33MnO 3 film on SrTiO 3 substrate. The variations in the out-of-plane lattice constant and BO 6 octahedral rotation across the Pr 0.67Sr 0.33MnO 3/SrTiO 3 interface strongly depend on the thickness of the Pr 0.67Sr 0.33MnO 3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition ofmore » SrTiO 3, apparently due to the enhanced electron–phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.« less
Interfacial Coupling-Induced Ferromagnetic Insulator Phase in Manganite Film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bangmin; Wu, Lijun; Yin, Wei-Guo
Interfaces with subtle differences in atomic and electronic structures in perovskite ABO 3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. Here, we report an integrated study of unusual transport, magnetic, and structural properties of Pr 0.67Sr 0.33MnO 3 film on SrTiO 3 substrate. The variations in the out-of-plane lattice constant and BO 6 octahedral rotation across the Pr 0.67Sr 0.33MnO 3/SrTiO 3 interface strongly depend on the thickness of the Pr 0.67Sr 0.33MnO 3 film. In the 12-nm film, a new interface-sensitive ferromagnetic polaronic insulator (FI') phase is formed during the cubic-to-tetragonal phase transition ofmore » SrTiO 3, apparently due to the enhanced electron–phonon interaction and atomic disorder in the film. The transport properties of the FI' phase in the 30-nm film are masked because of the reduced interfacial coupling and smaller interface-to-volume ratio. In conclusion, this work demonstrates how thickness-dependent interfacial coupling leads to the formation of a theoretically predicted ferromagnetic–polaronic insulator, as illustrated in a new phase diagram, that is otherwise ferromagnetic metal (FM) in bulk form.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiuyun; Sun, Yi; Ma, Liang; Zhao, Xinli; Yao, Xiaojing
2018-07-01
Borophene, a two-dimensional monolayer made of boron atoms, has attracted wide attention due to its appealing properties. Great efforts have been devoted to fine tuning its electronic and magnetic properties for desired applications. Herein, we theoretically investigate the versatile electronic and magnetic properties of bilayer borophene (BLB) intercalated by 3d transition metal (TM) atoms, TM@BLBs (TM = Ti-Fe), using ab initio calculations. Four allotropes of AA-stacking (α 1-, β-, β 12- and χ 3-) BLBs with different intercalation concentrations of TM atoms are considered. Our results show that the TM atoms are strongly bonded to the borophene layers with fairly large binding energies, around 6.31 ∼ 15.44 eV per TM atom. The BLBs with Cr and Mn intercalation have robust ferromagnetism, while for the systems decorated with Fe atoms, fruitful magnetic properties, such as nonmagnetic, ferromagnetic or antiferromagnetic, are identified. In particular, the α 1- and β-BLBs intercalated by Mn or Fe atom can be transformed into a semiconductor, half metal or graphene-like semimetal. Moreover, some heavily doped TM@BLBs expose high Curie temperatures above room temperature. The attractive properties of TM@BLBs entail an efficient way to modulate the electronic and magnetic properties of borophene sheets for advanced applications.
Sangiovanni, D G; Gueorguiev, G K; Kakanakova-Georgieva, A
2018-06-19
Metal organic chemical vapor deposition (MOCVD) of group III nitrides on graphene heterostructures offers new opportunities for the development of flexible optoelectronic devices and for the stabilization of conceptually-new two-dimensional materials. However, the MOCVD of group III nitrides is regulated by an intricate interplay of gas-phase and surface reactions that are beyond the resolution of experimental techniques. We use density-functional ab initio molecular dynamics (AIMD) with van der Waals corrections to identify atomistic pathways and associated electronic mechanisms driving precursor/surface reactions during metal organic vapor phase epitaxy at elevated temperatures of aluminum nitride on graphene, considered here as model case study. The results presented provide plausible interpretations of atomistic and electronic processes responsible for delivery of Al, C adatoms, and C-Al, CHx, AlNH2 admolecules on pristine graphene via precursor/surface reactions. In addition, the simulations reveal C adatom permeation across defect-free graphene, as well as exchange of C monomers with graphene carbon atoms, for which we obtain rates of ∼0.3 THz at typical experimental temperatures (1500 K), and extract activation energies Eexca = 0.28 ± 0.13 eV and attempt frequencies Aexc = 2.1 (×1.7±1) THz via Arrhenius linear regression. The results demonstrate that AIMD simulations enable understanding complex precursor/surface reaction mechanisms, and thus propose AIMD to become an indispensable routine prediction-tool toward more effective exploitation of chemical precursors and better control of MOCVD processes during synthesis of functional materials.
Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)
NASA Technical Reports Server (NTRS)
Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.
1993-01-01
Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.
NASA Astrophysics Data System (ADS)
Kang, Yoon-Gu; Kim, Sun-Woo; Cho, Jun-Hyung
2017-12-01
Low-dimensional electron systems often show a delicate interplay between electron-phonon and electron-electron interactions, giving rise to interesting quantum phases such as the charge density wave (CDW) and magnetism. Using the density-functional theory (DFT) calculations with the semilocal and hybrid exchange-correlation functionals as well as the exact-exchange plus correlation in the random-phase approximation (EX + cRPA), we systematically investigate the ground state of the metallic atom wires containing dangling-bond (DB) electrons, fabricated by partially hydrogenating the GaN(10 1 ¯0 ) and ZnO(10 1 ¯0 ) surfaces. We find that the CDW or antiferromagnetic (AFM) order has an electronic energy gain due to a band-gap opening, thereby being more stabilized compared to the metallic state. Our semilocal DFT calculation predicts that both DB wires in GaN(10 1 ¯0 ) and ZnO(10 1 ¯0 ) have the same CDW ground state, whereas the hybrid DFT and EX + cRPA calculations predict the AFM ground state for the former DB wire and the CDW ground state for the latter one. It is revealed that more localized Ga DB electrons in GaN(10 1 ¯0 ) prefer the AFM order, while less localized Zn DB electrons in ZnO(10 1 ¯0 ) the CDW formation. Our findings demonstrate that the drastically different ground states are competing in the DB wires created on the two representative compound semiconductor surfaces.
Stegmaier, Saskia; Fässler, Thomas F
2011-12-14
The synthesis and crystal structure of the first ternary A-Cu-Sn intermetallic phases for the heavier alkali metals A = Na to Cs is reported. The title compounds A(12)Cu(12)Sn(21) show discrete 33-atom intermetalloid Cu-Sn clusters {Sn@Cu(12)@Sn(20)}, which are composed of {Sn(20)} pentagonal dodecahedra surrounding {Cu(12)} icosahedra with single Sn atoms at the center. Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21) were characterized by single-crystal XRD studies, and the successful synthesis of analogous A-Cu-Sn compounds with A = Rb and Cs is deduced from powder XRD data. The isotypic A(12)Cu(12)Sn(21) phases crystallize in the cubic space group Pn ̅3m (No. 224), with the Cu-Sn clusters adopting a face centered cubic arrangement. A formal charge of 12- can be assigned to the {Sn@Cu(12)@Sn(20)} cluster unit, and the interpretation of the title compounds as salt-like intermetallic phases featuring discrete anionic intermetalloid [Sn@Cu(12)@Sn(20)](12-) clusters separated by alkali metal cations is supported by electronic structure calculations. For both Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21), DFT band structure calculations (TB-LMTO-ASA) reveal a band gap. The discrete [Sn@Cu(12)@Sn(20)](12-) cluster is analyzed in consideration of the molecular orbitals obtained from hybrid DFT calculations (Gaussian 09) for the cluster anion. The [Sn@Cu(12)@Sn(20)](12-) cluster MOs can be classified with labels indicating the numbers of radial and angular nodes, in the style of spherical shell models of cluster bonding. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Chabot, N. L.
2017-12-01
As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.
2015-03-25
lime glass, the polyhedron -center atoms are all silicon and each silicon atom is surrounded by four oxygen atoms (while each oxygen atom is connected...of metallic force-field functions (in the pure metallic environment) within the force-field function database used in the present work. Consequently
Alqadami, Ayoub A; Abdalla, Mohammad Abulhassan; AlOthman, Zeid A; Omer, Kamal
2013-01-14
A novel and highly sensitive method for the determination of some heavy metals in skin whitening cosmetics creams using multiwalled carbon nanotubes MWCNTs as solid phase extraction sorbent for the preconcentration of these heavy metals prior to their determination by inductively coupled plasma atomic emission spectrometry is described. Different practical parameters have been thoroughly investigated and the optimum experimental conditions were employed. The developed method was then applied for the determination of arsenic, bismuth, cadmium, mercury, lead and titanium in samples of skin whitening cosmetics. The detection limits under these conditions for As, Bi, Cd, Pb, Hg and Ti were 2.4, 4.08, 0.3, 2.1, 1.8, and 1.8 ng·mL-1, respectively. The relative standard deviations (RSDs) were found to be less than 2.0%. For validation, a certified reference material of NIST SRM 1570a spinach leaves was analyzed and the determined values were in good agreement with the certified values. The recoveries for spiked samples were found to be in the range of 89.6-104.4%.
NASA Astrophysics Data System (ADS)
Miller, M. K.; Powers, K. A.; Nanstad, R. K.; Efsing, P.
2013-06-01
The Ringhals Units 3 and 4 reactors in Sweden are pressurized water reactors (PWRs) designed and supplied by Westinghouse Electric Company, with commercial operation in 1981 and 1983, respectively. The reactor pressure vessels (RPVs) for both reactors were fabricated with ring forgings of SA 508 class 2 steel. Surveillance blocks for both units were fabricated using the same weld wire heat, welding procedures, and base metals used for the RPVs. The primary interest in these weld metals is because they have very high nickel contents, with 1.58 and 1.66 wt.% for Unit 3 and Unit 4, respectively. The nickel content in Unit 4 is the highest reported nickel content for any Westinghouse PWR. Although both welds contain less than 0.10 wt.% copper, the weld metals have exhibited high irradiation-induced Charpy 41-J transition temperature shifts in surveillance testing. The Charpy impact 41-J shifts and corresponding fluences are 192 °C at 5.0 × 1023 n/m2 (>1 MeV) for Unit 3 and 162 °C at 6.0 × 1023 n/m2 (>1 MeV) for Unit 4. These relatively low-copper, high-nickel, radiation-sensitive welds relate to the issue of so-called late-blooming nickel-manganese-silicon phases. Atom probe tomography measurements have revealed ˜2 nm-diameter irradiation-induced precipitates containing manganese, nickel, and silicon, with phosphorus evident in some of the precipitates. However, only a relatively few number of copper atoms are contained within the precipitates. The larger increase in the transition temperature shift in the higher copper weld metal from the Ringhals R3 Unit is associated with copper-enriched regions within the manganese-nickel-silicon-enriched precipitates rather than changes in their size or number density.
Polarized internal target apparatus
Holt, R.J.
1984-10-10
A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.
Metal/silicon Interfaces and Their Oxidation Behavior - Photoemission Spectroscopy Analysis.
NASA Astrophysics Data System (ADS)
Yeh, Jyh-Jye
Synchrotron radiation photoemission spectroscopy was used to study Ni/Si and Au/Si interface properties on the atomic scale at room temperature, after high temperature annealing and after oxygen exposures. Room temperature studies of metal/Si interfaces provide background for an understanding of the interface structure after elevated temperature annealing. Oxidation studies of Si surfaces covered with metal overlayers yield insight about the effect of metal atoms in the Si oxidation mechanisms and are useful in the identification of subtle differences in bonding relations between atoms at the metal/Si interfaces. Core level and valence band spectra with variable surface sensitivities were used to study the interactions between metal, Si, and oxygen for metal coverages and oxide thickness in the monolayer region. Interface morphology at the initial stage of metal/Si interface formation and after oxidation was modeled on the basis of the evolutions of metal and Si signals at different probing depths in the photoemission experiment. Both Ni/Si and Au/Si interfaces formed at room temperature have a diffusive region at the interface. This is composed of a layer of metal-Si alloy, formed by Si outdiffusion into the metal overlayer, above a layer of interstitial metal atoms in the Si substrate. Different atomic structures of these two regions at Ni/Si interface can account for the two different growth orientations of epitaxial Ni disilicides on the Si(111) surface after thermal annealing. Annealing the Au/Si interface at high temperature depletes all the Au atoms except for one monolayer of Au on the Si(111) surface. These phenomena are attributed to differences in the metal-Si chemical bonding relations associated with specific atomic structures. After oxygen exposures, both the Ni disilicide surface and Au covered Si surfaces (with different coverages and surface orderings) show silicon in higher oxidation states, in comparison to oxidized silicon on a clean surface. Preferential Si dioxide growth on the Au/Si surface is related to the strong distortion of the Si lattice when Au-Si bonds are formed. In comparison, a monolayer of Ni on a Si surface, with its weaker Ni-Si bond, does not enhance oxide formation.
Solvent extraction: the coordination chemistry behind extractive metallurgy.
Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B
2014-01-07
The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.
McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.
2001-01-01
A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.
Growth of Au on Ni(110): A Semiempirical Modeling of Surface Alloy Phases
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ibanez-Meier, Rodrigo; Ferrante, John
1995-01-01
Recent experiments using scanning tunneling microscopy show evidence for the formation of surface alloys of otherwise immiscible metals. Such is the case for Au deposited in Ni(110), where experiments by Pleth Nielsen el al.indicate that at low Au coverage (less than 0. 5 ML), Au atoms replace Ni atoms in the surface layer forming a surface alloy while the Ni atoms form islands on the surface. In this paper, we present results of a theoretical modeling of this phenomenon using the recently developed Bozzolo-Ferrante-Smith method for alloys. We provide results of an extensive analysis of the growth process that strongly support the conclusions drawn from the experiment: at very low coverages, there is a tendency for dimer formation on the overlayer, which later exchange positions with Ni atoms in the surface layer, thus accounting for the large number of substituted dimers. Ni island formation as well as other alternative short-range-order patterns are discussed.
Mn doped InSb studied at the atomic scale by cross-sectional scanning tunneling microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, S. J. C.; Bocquel, J.; Koenraad, P. M., E-mail: p.m.koenraad@tue.nl
2015-11-30
We present an atomically resolved study of metal-organic vapor epitaxy grown Mn doped InSb. Both topographic and spectroscopic measurements have been performed by cross-sectional scanning tunneling microscopy (STM). The measurements on the Mn doped InSb samples show a perfect crystal structure without any precipitates and reveal that Mn acts as a shallow acceptor. The Mn concentration of the order of ∼10{sup 20 }cm{sup −3} obtained from the cross-sectional STM data compare well with the intended doping concentration. While the pair correlation function of the Mn atoms showed that their local distribution is uncorrelated beyond the STM resolution for observing individual dopants,more » disorder in the Mn ion location giving rise to percolation pathways is clearly noted. The amount of clustering that we see is thus as expected for a fully randomly disordered distribution of the Mn atoms and no enhanced clustering or second phase material was observed.« less
Polar Metals by Geometric Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. H.; Puggioni, D.; Yuan, Y.
2016-05-05
Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions(1). Quantum physics supports this view(2), demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals(3)-it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases(4). Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO(3) perovskite nickelatesmore » using a strategy based on atomic-scale control of inversion-preserving (centric) displacements(5). We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra-the structural signatures of perovskites-owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported(6-10), non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.« less
Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh
2015-12-07
Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al{sub 2}O{sub 3} under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metalmore » behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm{sup −1} of FWHM 10.3 cm{sup −1} and atomic smooth interfaces.« less
Teo, Boon K; Yang, Huayan; Yan, Juanzhu; Zheng, Nanfeng
2017-10-02
Understanding the nucleation and growth pathways of nanocrystallites allows precise control of the size and shape of functional crystalline nanomaterials of importance in nanoscience and nanotechnology. This paper provides a detailed analysis of the stereochemical and electronic requirements of three series of nanoclusters based on face-centered cubes (fcc) as the basic building blocks, namely, 1-, 2-, and 3-D assemblages of fcc to form superrods (n), supersquares (n 2 ), and supercubes (n 3 ). The generating functions for calculating the numbers (and arrangements) of surface and interior metal atoms, as well as the number and dispositions of the ligands, for these particular sequences of fcc metal clusters of the general formula [M m (SR) l (PR' 3 ) 8 ] q (where M = coinage metals; SR = thiolates (or group XI ligands), and PR' 3 = phosphines) are presented. An electron-counting scheme based on the jelliumatic shell nodel, a variant of the jellium model, predicts the electron requirements and hence the chemical compositions that are critical in the design and synthesis of the next generation of giant nanoclusters in the nanorealm. The ligand binding specificities, which are keys to effective surface ligand control of the size and shape of these nanoclusters, are defined. Finally, a connection is made with regard to the growth of fcc metals, n 3 , from fcc supercubes (n < 10) to fcc nanocrystallites/particles (10 < n < 10 2 ) and to fcc bulk phase (n > 10 2 ).
Torreggiani, Armida; Domènech, Jordi; Orihuela, Ruben; Ferreri, Carla; Atrian, Sílvia; Capdevila, Mercè; Chatgilialoglu, Chryssostomos
2009-06-08
Metallothioneins (MTs) are sulfur-rich proteins capable of binding metal ions to give metal clusters. The metal-MT aggregates used in this work were Zn- and Cd-QsMT, where QsMT is an MT from the plant Quercus suber. Reactions of reductive reactive species (H(*) atoms and e(aq)(-)), produced by gamma irradiation of water, with Zn- and Cd-QsMT were carried out in both aqueous solutions and vesicle suspensions, and were characterized by different approaches. By using a biomimetic model based on unsaturated lipid vesicle suspensions, the occurrence of tandem protein/lipid damage was shown. The reactions of reductive reactive species with methionine residues and/or sulfur-containing ligands afford diffusible sulfur-centred radicals, which migrate from the aqueous phase to the lipid bilayer and transform the cis double bond of the oleate moiety into the trans isomer. Tailored experiments allowed the reaction mechanism to be elucidated in some detail. The formation of sulfur-centred radicals is accompanied by the modification of the metal-QsMT complexes, which were monitored by various spectroscopic and spectrometric techniques (Raman, CD, and ESI-MS). Attack of the H(*) atom and e(aq)(-) on the metal-QsMT aggregates can induce significant structural changes such as partial deconstruction and/or rearrangement of the metal clusters and breaking of the protein backbone. Substantial differences were observed in the behaviour of the Zn- and Cd-QsMT aggregates towards the reactive species, depending on the different folding of the polypeptide in these two cases.
On the Non-Metallicity of 2.2 nm Au 246 (SR) 80 Nanoclusters
Zhou, Meng; Zeng, Chenjie; Song, Yongbo; ...
2017-11-22
The transition from molecular to plasmonic behaviour in metal nanoparticles with increasing size remains a central question in nanoscience. Here, we report that the giant 246-gold-atom nanocluster (2.2 nm in gold core diameter) protected by 80 thiolate ligands is surprisingly non-metallic based on UV/Vis and femtosecond transient absorption spectroscopy as well as electrochemical measurements. Specifically, the Au246 nanocluster exhibits multiple excitonic peaks in transient absorption spectra and electron dynamics independent of the pump power, which are in contrast to the behaviour of metallic gold nanoparticles. Moreover, a prominent oscillatory feature with frequency of 0.5 THz can be observed in almostmore » all the probe wavelengths. The phase and amplitude analysis of the oscillation suggests that it arises from the wavepacket motion on the ground state potential energy surface, which also indicates the presence of a small band-gap and thus non-metallic or molecular-like behaviour.« less
Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin
2018-06-15
We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.
First-principles study of the heavy metal atoms X (X=Au, Hg, Tl or Pb) doped monolayer WS2
NASA Astrophysics Data System (ADS)
Xie, Ling-Yun; Zhang, Jian-Min
2017-12-01
The heavy metal atoms X (X = Au, Hg, Tl or Pb) doped monolayer WS2 systems have been studied by using the spin-polarized first-principles calculations. Although pure monolayer WS2 system is a nonmagnetic semiconductor with a direct band gap of 1.820 eV, the Au and Hg atoms doped monolayer WS2 systems change to half-metal (HM) ferromagnets with the total magnetic moments 0.697 and 1.776 μB as well as the smaller spin-down gaps 0.605 and 0.527 eV, respectively, while the Tl and Pb atoms doped monolayer WS2 systems change to magnetic metal with the total magnetic moment 0.584 μB and a nonmagnetic metal. From the minimization of the formation energy, we find that it is easy to incorporate these heavy metal atoms into monolayer WS2 system under S-rich condition, especially for the Au doped monolayer WS2 system not only easily to be formed but also a HM ferromagnet, and thus the best candidate used in the spintronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnov, P. O., E-mail: kpo1980@gmail.com; Eliseeva, N. S.; Kuzubov, A. A., E-mail: alex_xx@rambler.ru
2012-01-15
The use of carbon nanotubes coated by atoms of transition metals to store molecular hydrogen is associated with the problem of the aggregation of these atoms, which leads to the formation of metal clusters. The quantum-chemical simulation of cluster models of the carbon surface of a graphene type with scandium and titanium atoms has been performed. It has been shown that the presence of five- and seven-membered rings, in addition to six-membered rings, in these structures makes it possible to strongly suppress the processes of the migration of metal atoms over the surface, preventing their clustering.
Structural and optical properties of MgxAl1-xHy gradient thin films: a combinatorial approach
NASA Astrophysics Data System (ADS)
Gremaud, R.; Borgschulte, A.; Chacon, C.; van Mechelen, J. L. M.; Schreuders, H.; Züttel, A.; Hjörvarsson, B.; Dam, B.; Griessen, R.
2006-07-01
The structural, optical and dc electrical properties of MgxAl1-x (0.2≤x≤0.9) gradient thin films covered with Pd/Mg are investigated before and after exposure to hydrogen. We use hydrogenography, a novel high-throughput optical technique, to map simultaneously all the hydride forming compositions and the kinetics thereof in the gradient thin film. Metallic Mg in the MgxAl1-x layer undergoes a metal-to-semiconductor transition and MgH2 is formed for all Mg fractions x investigated. The presence of an amorphous Mg-Al phase in the thin film phase diagram enhances strongly the kinetics of hydrogenation. In the Al-rich part of the film, a complex H-induced segregation of MgH2 and Al occurs. This uncommon large-scale segregation is evidenced by metal and hydrogen profiling using Rutherford backscattering spectrometry and resonant nuclear analysis based on the reaction 1H(15N,αγ)12C. Besides MgH2, an additional semiconducting phase is found by electrical conductivity measurements around an atomic [Al]/[Mg] ratio of 2 (x=0.33). This suggests that the film is partially transformed into Mg(AlH4)2 at around this composition.
Leo P: How Many Metals Can a Very Low Mass, Isolated Galaxy Retain?
NASA Astrophysics Data System (ADS)
McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew; Cannon, John M.; Salzer, John J.; Rhode, Katherine L.; Adams, Elizabeth A. K.; Berg, Danielle; Giovanelli, Riccardo; Haynes, Martha P.
2015-12-01
Leo P is a gas-rich dwarf galaxy with an extremely low gas-phase oxygen abundance (3% solar). The isolated nature of Leo P enables a quantitative measurement of metals lost solely due to star formation feedback. We present an inventory of the oxygen atoms in Leo P based on the gas-phase oxygen abundance measurement, the star formation history (SFH), and the chemical enrichment evolution derived from resolved stellar populations. The SFH also provides the total amount of oxygen produced. Overall, Leo P has retained 5% of its oxygen; 25% of the retained oxygen is in the stars while 75% is in the gas phase. This is considerably lower than the 20%-25% calculated for massive galaxies, supporting the trend for less efficient metal retention for lower-mass galaxies. The retention fraction is higher than that calculated for other alpha elements (Mg, Si, Ca) in dSph Milky Way satellites of similar stellar mass and metallicity. Accounting only for the oxygen retained in stars, our results are consistent with those derived for the alpha elements in dSph galaxies. Thus, under the assumption that the dSph galaxies lost the bulk of their gas mass through an environmental process such as tidal stripping, the estimates of retained metal fractions represent underestimates by roughly a factor of four. Because of its isolation, Leo P provides an important datum for the fraction of metals lost as a function of galaxy mass due to star formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Yuan; Xing, Yaya; Ma, Guanxiong
2015-07-15
The (In{sub 0.95−x}Fe{sub x}Cu{sub 0.05}){sub 2}O{sub 3} (x = 0.06, 0.08, 0.15, and 0.20) films prepared by RF-magnetron sputtering were investigated by the combination of x-ray absorption spectroscopy (XAS) at Fe, Cu, and O K-edge. Although the Fe and O K-edge XAS spectra show that the Fe atoms substitute for the In sites of In{sub 2}O{sub 3} lattice for all the films, the Cu K-edge XAS spectra reveal that the codoped Cu atoms are separated to form the Cu metal clusters. After being annealed in air, the Fe atoms are still substitutionally incorporated into the In{sub 2}O{sub 3} lattice, while the Cumore » atoms form the CuO secondary phases. With the increase of Fe concentration, the bond length R{sub Fe-O} shortens and the Debye–Waller factor σ{sup 2}{sub Fe-O} increases in the first coordination shell of Fe, which are attributed to the relaxation of oxygen environment around the substitutional Fe ions. The forming of Cu relating secondary phases in the films is due to high ionization energy of Cu atoms, leading that the Cu atoms are energetically much harder to be oxidized to substitute for the In sites of In{sub 2}O{sub 3} lattice than Fe atoms. These results provide new experimental guidance in the preparation of the codoped In{sub 2}O{sub 3} based dilute magnetic oxides.« less
Method of producing microporous joints in metal bodies
Danko, Joseph C.
1982-01-01
Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.
NASA Astrophysics Data System (ADS)
Goerens, Christian; Fokwa, Boniface P. T.
2012-08-01
Polycrystalline samples and single crystals of the new complex boride Ti1+xRh2-x+yIr3-yB3 (x=0.68; y=1.06) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-Ray diffraction as well as EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase, which represents a new structure type containing trans zigzag B4 fragments as well as isolated boron atoms crystallizes in the orthorhombic space group Pbam (Nr. 55) with the lattice parameters a=8.620(1) Å, b=14.995(2) Å and c=3.234(1) Å. First-principles density functional theory calculations using the Vienna ab-initio simulation package (VASP) were performed on an appropriate structural model (using a supercell approach) and the experimental crystallographic data could be reproduced accurately. Based on this model, the density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the trans zigzag B4 fragment, which induce a clear differentiation of two types of metal-boron contacts with different strength. The observed three-dimensional metal-metal interaction is in good agreement with the predicted metallic behavior.
Method for preparing high temperature superconductor
Balachandran, Uthamalingam; Chudzik, Michael P.
2002-01-01
A method of depositing a biaxially textured metal oxide on a substrate defining a plane in which metal oxide atoms are vaporized from a source to form a plume of metal oxide atoms. Atoms in the plume disposed at a selected angle in a predetermined range of angles to the plane of the substrate are allowed to contact the substrate while preventing atoms outside a selected angle from reaching the substrate. The preferred range of angles is 40.degree.-70.degree. and the preferred angle is 60.degree..+-.5.degree.. A moving substrate is disclosed.
Microstructural characterization of a Zr-Ti-Ni-Mn-V-Cr based AB 2-type battery alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhan
1999-01-01
Transmission Electron Microscopy (TEM), combined with X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) was employed to investigate a proprietary and multicomponent AB 2 type Nickel-Metal Hydride (Ni-MH) battery alloy. This material was prepared by High Pressure Gas Atomization (HPGA) and examined in both the as-atomized and heat treated condition. TEM examination showed a heavily faulted dendritic growth structure in as-atomized powder. Selected Area Diffraction (SAD) showed that this region consisted of both a cubic C15 structure with lattice constant a=7.03 and a hexagonal C14 structure with lattice parameter a=4.97 Å, c=8.11 Å. The Orientation Relationship (OR) between the C14 and C15 structures was determined to be (111)[1more » $$\\bar{1}$$0] C15//(0001)[11$$\\bar{2}$$0] C14. An interdendritic phase possessing the C14 structure was also seen. There was also a very fine grain region consisting of the C14 structure. Upon heat treatment, the faulted structure became more defined and appeared as intercalation layers within the grains. Spherical particles rich in Zr and Ni appeared scattered at the grain boundaries instead of the C14 interdendritic phase. The polycrystalline region also changed to a mixture of C14 and C15 structures. These results as well as phase stability of the C15 and C14 structures based on a consideration of atomic size factor and the average electron concentration are discussed.« less
Electronic transition in La1-xSrxTiO3
NASA Astrophysics Data System (ADS)
Hays, C. C.; Zhou, J.-S.; Markert, J. T.; Goodenough, J. B.
1999-10-01
The transition with increasing x in La1-xSrxTiO3 from an antiferromagnetic, p-type polaronic conductor to an n-type metal with an enhanced Pauli paramagnetism was investigated by monitoring changes in structure, magnetic properties, and, under different hydrostatic pressures, the resistance and thermoelectric power of ceramic samples. We conclude that LaTiO3 is an itinerant-electron antiferromagnet and the transition is first order with a phase separation associated with cooperative oxygen-atom displacements that segregate strongly correlated states from Fermi-liquid states. The Néel temperature TN~145 K decreases precipitously to 100 K at the phase limit x=0.045+/-0.005 the two-phase domain extends over the compositions 0.045<=x<=0.08.
Berry, David A; Shekhawat, Dushyant; Smith, Mark; Haynes, Daniel
2013-07-16
The disclosure relates to a method of utilizing a catalyst system for an oxidation process on a gaseous hydrocarbon stream with a mitigation of carbon accumulation. The system is comprised of a catalytically active phase deposited onto an oxygen conducting phase, with or without supplemental support. The catalytically active phase has a specified crystal structure where at least one catalytically active metal is a cation within the crystal structure and coordinated with oxygen atoms within the crystal structure. The catalyst system employs an optimum coverage ratio for a given set of oxidation conditions, based on a specified hydrocarbon conversion and a carbon deposition limit. Specific embodiments of the catalyst system are disclosed.
First-principles study of the Kondo physics of a single Pu impurity in a Th host
Zhu, Jian -Xin; Albers, R. C.; Haule, K.; ...
2015-04-23
Based on its condensed-matter properties, crystal structure, and metallurgy, which includes a phase diagram with six allotropic phases, plutonium is one of the most complicated pure elements in its solid state. Its anomalous properties, which are indicative of a very strongly correlated state, are related to its special position in the periodic table, which is at the boundary between the light actinides that have itinerant 5f electrons and the heavy actinides that have localized 5f electrons. As a foundational study to probe the role of local electronic correlations in Pu, we use the local-density approximation together with a continuous-time quantummore » Monte Carlo simulation to investigate the electronic structure of a single Pu atom that is either substitutionally embedded in the bulk and or adsorbed on the surface of a Th host. This is a simpler case than the solid phases of Pu metal. With the Pu impurity atom we have found a Kondo resonance peak, which is an important signature of electronic correlations, in the local density of states around the Fermi energy. We show that the peak width of this resonance is narrower for Pu atoms at the surface of Th than for those in the bulk due to a weakened Pu - 5f hybridization with the ligands at the surface.« less
Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts.
Li, Shu-Long; Yin, Hui; Kan, Xiang; Gan, Li-Yong; Schwingenschlögl, Udo; Zhao, Yong
2017-11-15
We use first-principles calculations to systematically explore the potential of transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) embedded in buckled monolayer g-C 3 N 4 as single-atom catalysts. We show that clustering of Sc and Ti on g-C 3 N 4 is thermodynamically impeded and that V, Cr, Mn, and Cu are much less susceptible to clustering than the other TM atoms under investigation. Strong bonding of the transition metal atoms in the cavities of g-C 3 N 4 and high diffusion barriers together are responsible for single-atom fixation. Analysis of the CO oxidation process indicates that embedding of Cr and Mn in g-C 3 N 4 gives rise to promising single-atom catalysts at low temperature.
Heavily doped GaAs:Te layers grown by MOVPE using diisopropyl telluride as a source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniltsev, V. M.; Demidov, E. V.; Drozdov, M. N.
2016-11-15
The capabilities of GaAs epitaxial layers extremely heavily doped with tellurium by metal-organic vapor-phase epitaxy using diisopropyl telluride as a source are studied. It is shown that tellurium incorporation into GaAs occurs to an atomic concentration of 10{sup 21} cm{sup –3} without appreciable diffusion and segregation effects. Good carrier concentrations (2 × 10{sup 19} cm{sup –3}) and specific contact resistances of non-alloyed ohmic contacts (1.7 × 10{sup –6} Ω cm{sup 2}) give grounds to use such layers to create non-alloyed ohmic contacts in electronic devices. A sharp decrease in the electrical activity of Te atoms, a decrease in the electronmore » mobility, and an increase in the contact resistance at atomic concentrations above 2 × 10{sup 20} cm{sup –3} are detected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susarla, Sandhya; Kochat, Vidya; Kutana, Alex
Transition metal dichalcogenide (TMD) alloys form a broad class of two-dimensional (2D) layered materials with tunable bandgaps leading to interesting optoelectronic applications. In the bottom-up approach of building these atomically thin materials, atomic doping plays a crucial role. Here we demonstrate a single step CVD (chemical vapor deposition) growth procedure for obtaining binary alloys and heterostructures by tuning atomic composition. We show that a minute doping of tin during the growth phase of the Mo 1–xW xS 2 alloy system leads to formation of lateral and vertical heterostructure growth. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imagingmore » and density functional theory (DFT) calculations also support the modified stacking and growth mechanism due to the nonisomorphous Sn substitution. Our experiments demonstrate the possibility of growing heterostructures of TMD alloys whose spectral responses can be desirably tuned for various optoelectronic applications.« less
Li, Xiang; Eustis, Soren N; Bowen, Kit H; Kandalam, Anil
2008-09-28
The gas-phase, iron and cobalt cyclooctatetraene cluster anions, [Fe(1,2)(COT)](-) and [Co(COT)](-), were generated using a laser vaporization source and studied using mass spectrometry and anion photoelectron spectroscopy. Density functional theory was employed to compute the structures and spin multiplicities of these cluster anions as well as those of their corresponding neutrals. Both experimental and theoretically predicted electron affinities and photodetachment transition energies are in good agreement, authenticating the structures and spin multiplicities predicted by theory. The implied spin magnetic moments of these systems suggest that [Fe(COT)], [Fe(2)(COT)], and [Co(COT)] retain the magnetic moments of the Fe atom, the Fe(2) dimer, and the Co atom, respectively. Thus, the interaction of these transition metal, atomic and dimeric moieties with a COT molecule does not quench their magnetic moments, leading to the possibility that these combinations may be useful in forming novel magnetic materials.
Atomization of metal (Materials Preparation Center)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a color video of a liquid metal stream being atomized by high pressure gas. This material was cast at the Ames Laboratory's Materials Preparation Center http://www.mpc.ameslab.gov WARNING - AUDIO IS LOUD.
Development of a model and computer code to describe solar grade silicon production processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models, and computer codes based on these models were developed which allow prediction of the product distribution in chemical reactors in which gaseous silicon compounds are converted to condensed phase silicon. The reactors to be modeled are flow reactors in which silane or one of the halogenated silanes is thermally decomposed or reacted with an alkali metal, H2 or H atoms. Because the product of interest is particulate silicon, processes which must be modeled, in addition to mixing and reaction of gas-phase reactants, include the nucleation and growth of condensed Si via coagulation, condensation, and heterogeneous reaction.
Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.
2016-01-01
Abstract Carbenes of platinum and palladium, PtC3 and PdC3, were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and ab initio calculations confirm that both molecules are linear. The geometry of PtC3 was accurately determined by fitting to the experimental moments of inertia of twenty‐six isotopologues. The results are consistent with the proposal of an autogenic isolobal relationship between O, Au+, and Pt atoms. PMID:26879473
Nanometer-sized materials for solid-phase extraction of trace elements.
Hu, Bin; He, Man; Chen, Beibei
2015-04-01
This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.
Recent advances in transition metal-catalyzed N -atom transfer reactions of azides
Driver, Tom G.
2011-01-01
Transition metal-catalyzed N-atom transfer reactions of azides provide efficient ways to construct new carbon–nitrogen and sulfur–nitrogen bonds. These reactions are inherently green: no additive besides catalyst is needed to form the nitrenoid reactive intermediate, and the by-product of the reaction is environmentally benign N2 gas. As such, azides can be useful precursors for transition metal-catalyzed N-atom transfer to sulfides, olefins and C–H bonds. These methods offer competitive selectivities and comparable substrate scope as alternative processes to generate metal nitrenoids. PMID:20617243
Zhang, Xiuyun; Sun, Yi; Ma, Liang; Zhao, Xinli; Yao, Xiaojing
2018-07-27
Borophene, a two-dimensional monolayer made of boron atoms, has attracted wide attention due to its appealing properties. Great efforts have been devoted to fine tuning its electronic and magnetic properties for desired applications. Herein, we theoretically investigate the versatile electronic and magnetic properties of bilayer borophene (BLB) intercalated by 3d transition metal (TM) atoms, TM@BLBs (TM = Ti-Fe), using ab initio calculations. Four allotropes of AA-stacking (α 1 -, β-, β 12 - and χ 3 -) BLBs with different intercalation concentrations of TM atoms are considered. Our results show that the TM atoms are strongly bonded to the borophene layers with fairly large binding energies, around 6.31 ∼ 15.44 eV per TM atom. The BLBs with Cr and Mn intercalation have robust ferromagnetism, while for the systems decorated with Fe atoms, fruitful magnetic properties, such as nonmagnetic, ferromagnetic or antiferromagnetic, are identified. In particular, the α 1 - and β-BLBs intercalated by Mn or Fe atom can be transformed into a semiconductor, half metal or graphene-like semimetal. Moreover, some heavily doped TM@BLBs expose high Curie temperatures above room temperature. The attractive properties of TM@BLBs entail an efficient way to modulate the electronic and magnetic properties of borophene sheets for advanced applications.
NASA Astrophysics Data System (ADS)
Romankov, S.; Park, Y. C.; Shchetinin, I. V.
2017-11-01
Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.
Hamada, Ikutaro; Uozumi, Akifumi; Morikawa, Yoshitada; Yanase, Akira; Katayama-Yoshida, Hiroshi
2011-11-23
Periodic density functional theory was used to investigate the stability and electronic structures of precious-metal atoms in the vicinity of LaFe(1-x)M(x)O(3) (M = Pd, Rh, Pt) perovskite catalyst surfaces. It was found that the surface segregation of Pd and Pt is significantly stabilized by the introduction of O vacancies, whereas the solid-solution phase is favorable for Rh, suggesting an important role of O vacancies in the self-regeneration of Pd and Pt. On the basis of the results, we propose a possible scenario for the self-regeneration of the precious metal in the perovskite catalyst.
Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures
Sunkara, Mahendra Kumar [Louisville, KY; Vaddiraju, Sreeram [Mountain View, CA; Mozetic, Miran [Ljubljan, SI; Cvelbar, Uros [Idrija, SI
2009-09-22
A process for the rapid synthesis of metal oxide nanoparticles at low temperatures and methods which facilitate the fabrication of long metal oxide nanowires. The method is based on treatment of metals with oxygen plasma. Using oxygen plasma at low temperatures allows for rapid growth unlike other synthesis methods where nanomaterials take a long time to grow. Density of neutral oxygen atoms in plasma is a controlling factor for the yield of nanowires. The oxygen atom density window differs for different materials. By selecting the optimal oxygen atom density for various materials the yield can be maximized for nanowire synthesis of the metal.
Atomic and electronic structure of Pd40Ni40P20 bulk metallic glass from ab initio simulations
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Fujita, T.; Konno, K.; Matsuura, M.; Chen, M. W.; Inoue, A.; Kawazoe, Y.
2011-10-01
The atomic structure of Pd40Ni40P20 bulk metallic glass has been simulated using an ab initio molecular dynamics method with projector-augmented wave pseudopotentials for electron-ion interaction and generalized gradient approximation for exchange-correlation energy. The calculated extended x-ray absorption fine structure (EXAFS) spectra of Pd-K and Ni-K edges, the mass density, and the electronic structure agree remarkably well with the available experimental data and the EXAFS spectra measured at the SPring-8 synchrotron radiation facility. Our results show that the atomic structure can be described in terms of P-centered polyhedra. There are no two P atoms that are nearest neighbors at this composition, and this could be a reason for the observed optimal P concentration of about 20 at.%. The neighboring polyhedra share metal (M) atoms and form a polar covalently bonded random network of P-M-P favoring certain angles. The remaining M atoms act as metallic glue with a tendency of nanoscale clustering of Pd-Pd and Ni-Ni atoms.
Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.
Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang
2016-10-31
Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.
Atomically Thin Al2O3 Films for Tunnel Junctions
NASA Astrophysics Data System (ADS)
Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.
2017-06-01
Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuyuan; Wu, Zili; Wen, Jianguo
2015-01-01
Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorodmore » support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.« less
Atomic origin of the spin-polarization of the Co2FeAl Heusler compound
NASA Astrophysics Data System (ADS)
Liang, Jaw-Yeu; Lam, Tu-Ngoc; Lin, Yan-Cheng; Chang, Shu-Jui; Lin, Hong-Ji; Tseng, Yuan-Chieh
2016-02-01
Using synchrotron x-ray techniques, we studied the Co2FeAl spin-polarization state that generates the half-metallicity of the compound during an A2 (low-spin) → B2 (high-spin) phase transition. Given the advantage of element specificity of x-ray techniques, we could fingerprint the structural and magnetic cross-reactions between Co and Fe within a complex Co2FeAl structure deposited on a MgO (0 0 1) substrate. X-ray diffraction and extended x-ray absorption fine structure investigations determined that the Co atoms preferably populate the (1/4,1/4,1/4) and (3/4,3/4,3/4) sites during the development of the B2 phase. X-ray magnetic spectroscopy showed that although the two magnetic elements were ferromagnetically coupled, they interacted in a competing manner via a charge-transfer effect, which enhanced Co spin polarization at the expense of Fe spin polarization during the phase transition. This means that the spin-polarization of Co2FeAl was electronically dominated by Fe in A2 whereas the charge transfer turned the dominance to Co upon B2 formation. Helicity-dependent x-ray absorption spectra also revealed that only the minority state of Co/Fe was involved in the charge-transfer effect whereas the majority state was independent of it. Despite an overall increase of Co2FeAl magnetization, the charge-transfer effect created an undesired trade-off during the Co-Fe exchange interactions, because of the presence of twice as many X sites (Co) as Y sites (Fe) in the Heusler X 2 YZ formula. This suggests that the spin-polarization of Co2FeAl is unfortunately regulated by compromising the enhanced X (Co) sites and the suppressed Y (Fe) sites, irrespective of the development of the previously known high-spin-polarization phase of B2. This finding provides a possible cause for the limited half-metallicity of Co2FeAl discovered recently. Electronic tuning between the X and Y sites is necessary to further increase the spin-polarization, and likely the half-metallicity as well, of the compound.
Investigation of the microstructure of metallic droplets on Ga(AsBi)/GaAs
NASA Astrophysics Data System (ADS)
Sterzer, E.; Knaub, N.; Ludewig, P.; Straubinger, R.; Beyer, A.; Volz, K.
2014-12-01
Low Bi content GaAs is a promising material for new optical devices with less heat production. The growth of such devices by metal organic vapor phase epitaxy faces several challenges. This paper summarizes results of the formation of metallic droplets during the epitaxial growth of Ga(AsBi) using all-liquid group III and V precursors. The samples that are grown, investigated by atomic force microscopy and scanning electron microscopy, show a different metal droplet distribution over the surface depending on the growth temperature and the V/III ratio of the precursors. Investigations with energy dispersive X-ray analysis and selective etching prove the appearance of phase separated Ga-Bi and pure Bi droplets at growth temperatures between 375 °C and 425 °C, which is explainable by the phase diagram of Ga-Bi. Since the pure Bi droplets show a preferred orientation on the surface after cool-down, transmission electron microscopy measurements were done by using the dark field imaging mode in addition to electron diffraction and high resolution imaging. These experiments show the single crystalline structure of the Bi droplets. The comparison of experimental diffraction patterns with image simulation shows a preferred alignment of Bi {10-1} lattice planes parallel to GaAs {202} lattice planes with the formation of a coincidence lattice. Thus it is possible to derive a model of how the Bi droplets evolve on the GaAs surface.
NASA Astrophysics Data System (ADS)
Davydov, S. Yu.
2017-08-01
For single-layer graphene placed on a metal substrate, the influence of intra- and interatomic Coulomb repulsion of electrons ( U and G, respectively) on its phase diagram is considered in the framework of an extended Hartree-Fock theory. The general solution of the problem is presented, on the basis of which special cases allowing for analytical consideration are analyzed: free and epitaxial graphene with and without regard for the energy of the electron transition between neighboring atoms of graphene. Three regions of the phase diagram are considered: spin and charge density waves (SDW and CDW, respectively) and the semimetal (SM) state uniform in the spin and charge. The main attention is paid to undoped graphene. It is shown that the allowance for the interaction with a metal substrate expands the SM existence domain. However, in all the considered cases, the boundary between the SDW and CDW states is described by the equation U = zG, where z = 3 is the number of nearest neighbors in graphene. The widening of the SM state region also results from the doping of graphene, and the effect is independent of the sign of free carriers introduced into epitaxial graphene by the substrate. According to estimates made, the only state possible in the buffer layer is the metal-type SM state, whereas, in epitaxial graphene, the CDW state is possible. The influence of temperature on the phase diagram of epitaxial graphene is discussed.
Metallic Interface at the Boundary Between Band and Mott Insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kancharla, Srivenkateswara S; Dagotto, Elbio R
2006-01-01
Motivated by experiments on atomically smooth layers of LaTiO3, a Mott insulator, sandwiched between layers of SrTiO3, a band insulator, a simple model for such heterostructures is studied using quasi one-dimensional lattices and the Lanczos method. Taking both the local and long-range Coulomb interactions into account, and computing the layer dependent local density of states, a metallic state was found at the interface whose extent strongly depends on the dielectric constant of the material. We also observed that the antiferromagnetic correlations in the bulk Mott phase persist into the metallic region. Our conclusions are in excellent agreement with recently reportedmore » results for this model in the opposite limit of infinite dimensions6,7, thus providing an alternative tool to study electronic reconstruction effects in heterostructures.« less
Half-metallic ferromagnetism in substitutionally doped boronitrene
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-11-01
We perform first-principles molecular dynamics simulations to investigate the magnetoelectronic response of substitutionally doped boronitrene to thermal excitation. We show that the local geometry, size, and edge termination of the substitutional complexes of boron, carbon, or nitrogen determine the thermodynamic stability of the monolayer. We find that hexagonal boron or triangular carbon clusters induce finite magnetic moments with 100% spin-polarized Fermi-level electrons in boronitrene. In such carbon substitutions, the spontaneous magnetic moment increases with the size of the embedded carbon cluster, and results in half-metallic ferrimagnetism above 750 K with a corresponding Curie point of 1250 K, above which the magnetization density vanishes. We predict an ultrahigh temperature half-metallic ferromagnetic phase in impurity-free boronitrene, when any three nearest-neighbor nitrogen atoms are substituted with boron, with unquenched magnetic moment up to its melting point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmowski, W.; Gierlotka, S.; Wang, Z.
Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids,more » but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.« less
Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr
Zhao, Shijun; Osetsky, Yuri; Zhang, Yanwen
2017-02-13
In single-phase concentrated solid-solution alloys (CSAs), including high entropy alloys (HEAs), remarkable mechanical properties are exhibited, as well as extraordinary corrosion and radiation resistance compared to pure metals and dilute alloys. But, the mechanisms responsible for these properties are unknown in many cases. In this work, we employ ab initio molecular dynamics based on density functional theory to study the diffusion of interstitial atoms in Ni and Ni-based face-centered cubic CSAs including NiFe, NiCo and NiCoCr. We model the defect trajectories over >100 ps and estimate tracer diffusion coefficients, correlation factors and activation energies. Furthermore, we found that the diffusionmore » mass transport in CSAs is not only slower than that in pure components, i.e. sluggish diffusion, but also chemically non-homogeneous. The results obtained here can be used in understanding and predicting the atomic segregation and phase separation in CSAs under irradiation conditions.« less
Atom-efficient route for converting incineration ashes into heavy metal sorbents.
Chiang, Yi Wai; Santos, Rafael M; Vanduyfhuys, Kenneth; Meesschaert, Boudewijn; Martens, Johan A
2014-01-01
Bottom ashes produced from municipal solid-waste incineration are suitable for sorbent synthesis because of their inherent composition, high alkalinity, metastable mineralogy, and residual heat. This work shows that bottom ashes can be atom-efficiently converted into valuable sorbents without the need for costly and hazardous chemicals. The ashes were hydrothermally treated in rotary autoclaves at autogenic pH conditions to promote the conversion of precursor mineral phases into zeolites and layered silicate hydrates. Two main mineral phases were formed: katoite and sodium aluminum phosphate silicate hydrate. These mineral alterations are accompanied by a tenfold increase in specific surface area and a twofold reduction in average particle size. Performance evaluation of the new sorbents for Cd(2+), Zn(2+), and Pb(2+) adsorption at pH5 indicates sorption capacities of 0.06, 0.08, and 0.22 mmol g(-1), respectively, which are similar to those of natural adsorbents and synthetic materials obtained from more demanding synthesis conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unified Description of the Optical Phonon Modes in N-Layer MoTe2
NASA Astrophysics Data System (ADS)
Froehlicher, Guillaume; Lorchat, Etienne; Fernique, François; Joshi, Chaitanya; Molina-Sánchez, Alejandro; Wirtz, Ludger; Berciaud, Stéphane
N -layer transition metal dichalcogenides (denoted MX2) provide a unique platform to investigate the evolution of the physical properties between the bulk (3D) and monolayer (quasi-2D) limits. Here, we present a unified analysis of the optical phonon modes in N-layer 2 H -MX2. The 2 H -phase (or hexagonal phase) is the most common polytype for semiconducting MX2 (such as MoS2). Using Raman spectroscopy, we have measured the manifold of low-frequency (rigid layer), mid-frequency (involving intralayer displacement of the chalcogen atoms only), and high-frequency (involving intralayer displacements of all atoms) Raman-active modes in N = 1 to 12 layer 2 H -molybdenenum ditelluride (MoTe2). For each monolayer mode, the N-dependent phonon frequencies give rise to fan diagrams that are quantitatively fit to a force constant model. This analysis allows us to deduce the frequencies of all the bulk (including silent) optical phonon modes.
Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam
2013-01-01
8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t 1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417
Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.
Kriegner, D; Wintersberger, E; Kawaguchi, K; Wallentin, J; Borgström, M T; Stangl, J
2011-10-21
High resolution x-ray diffraction is used to study the structural properties of the wurtzite polytype of InP nanowires. Wurtzite InP nanowires are grown by metal-organic vapor phase epitaxy using S-doping. From the evaluation of the Bragg peak position we determine the lattice parameters of the wurtzite InP nanowires. The unit cell dimensions are found to differ from the ones expected from geometric conversion of the cubic bulk InP lattice constant. The atomic distances along the c direction are increased whereas the atomic spacing in the a direction is reduced in comparison to the corresponding distances in the zinc-blende phase. Using core/shell nanowires with a thin core and thick nominally intrinsic shells we are able to determine the lattice parameters of wurtzite InP with a negligible influence of the S-doping due to the much larger volume in the shell. The determined material properties will enable the ab initio calculation of electronic and optical properties of wurtzite InP nanowires.
Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.; Arena, Dario A.; Schlom, Darrell G.; Piper, Louis F. J.
2015-01-01
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions. PMID:28793516
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.
2015-08-21
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe amore » low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. Generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.« less
NASA Astrophysics Data System (ADS)
Greczynski, Grzegorz
2016-09-01
High-power pulsed magnetron sputtering (HIPIMS) is particularly attractive for growth of transition metal (TM) nitride alloys for two reasons: (i) the high ionization degree of the sputtered metal flux, and (ii) the time separation of metal- and gas-ion fluxes incident at the substrate. The former implies that ion fluxes originating from elemental targets operated in HIPIMS are distinctly different from those that are obtained during dc magnetron sputtering (DCMS), which helps to separate the effects of HIPIMS and DCMS metal-ion fluxes on film properties. The latter feature allows one to minimize compressive stress due to gas-ion irradiation, by synchronizing the pulsed substrate bias with the metal-rich-plasma portion of the HIPIMS pulse. Here, we use pseudobinary TM nitride model systems TiAlN, TiSiN, TiTaN, and TiAlTaN to carry out experiments in a hybrid configuration with one target powered by HIPIMS, the other operated in DCMS mode. This allows us to probe the roles of intense and metal-ion fluxes (n = 1 , 2) from HIPIMS-powered targets on film growth kinetics, microstructure, and physical properties over a wide range of M1M2N alloy compositions. TiAlN and TiSiN mechanical properties are shown to be determined by the average metal-ion momentum transfer per deposited atom. Irradiation with lighter metal-ions (M1 =Al+ or Si+ during M1-HIPIMS/Ti-DCMS) yields fully-dense single-phase cubic Ti1-x (M1)x N films. In contrast, with higher-mass film constituent ions such as Ti+, easily exceeds the threshold for precipitation of second phase w-AlN or Si3N4. Based on the above results, a new PVD approach is proposed which relies on the hybrid concept to grow dense, hard, and stress-free thin films with no external heating. The primary targets, Ti and/or Al, operate in DCMS mode providing a continuous flux of sputter-ejected metal atoms to sustain a high deposition rate, while a high-mass target metal, Ta, is driven by HIPIMS to serve as a pulsed source of energetic heavy-metal ions to densify the dilute TiTaN and/or TiAlTaN alloys. No external heating is used and the substrate temperature does not exceed 120 °C. This development allows for widening the application range of hard TM nitride coatings to new classes of technologically-relevant temperature-sensitive substrates, such as components made by plastics, glasses, aluminum alloys, and tempered steels. Author wants to acknowledge the financial support from VINN Excellence Center Functional Nanoscale Materials (FunMat) Grant 2005 02666.
Platinum-coated non-noble metal-noble metal core-shell electrocatalysts
Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir
2015-04-14
Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.
Microstructure formation on liquid metal surface under pulsed action
NASA Astrophysics Data System (ADS)
Genin, D. E.; Beloplotov, D. V.; Panchenko, A. N.; Tarasenko, V. F.
2018-04-01
Experimental study and theoretical analysis of growth of microstructures (microtowers) on liquid metals by fs laser pulses have been carried out. Theoretical analysis has been performed on the basis of the two-temperature model. Compared to ns laser pulses, in fs irradiation regimes the heat-affected zone is strongly localized resulting in much larger temperatures and temperature gradients. In the experimental irradiation regimes, the surface temperature of liquid metals studied may reach or even exceed a critical level that culminates in phase explosion or direct atomization of a metal surface layer. However, before explosive ablation starts, a stress wave with an amplitude up to several GPa is formed which demolishes oxide covering. Moreover, at high laser fluences laser-induced breakdown is developed in oxide layer covering the metal surface that leads to destruction/ablation of oxide without damaging metal underneath. An overall scenario of microstructure growth with fs laser pulses is similar to that obtained for ns irradiation regimes though the growth threshold is lower due to smaller heat-conduction losses. Also we managed to obtain microstructures formation by the action of spark discharge.