Sample records for phase behavior surface

  1. Phase-field modeling of diffusional phase behaviors of solid surfaces: A case study of phase-separating Li XFePO 4 electrode particles

    DOE PAGES

    Heo, Tae Wook; Chen, Long-Qing; Wood, Brandon C.

    2015-04-08

    In this paper, we present a comprehensive phase-field model for simulating diffusion-mediated kinetic phase behaviors near the surface of a solid particle. The model incorporates elastic inhomogeneity and anisotropy, diffusion mobility anisotropy, interfacial energy anisotropy, and Cahn–Hilliard diffusion kinetics. The free energy density function is formulated based on the regular solution model taking into account the possible solute-surface interaction near the surface. The coherency strain energy is computed using the Fourier-spectral iterative-perturbation method due to the strong elastic inhomogeneity with a zero surface traction boundary condition. Employing a phase-separating Li XFePO 4 electrode particle for Li-ion batteries as a modelmore » system, we perform parametric three-dimensional computer simulations. The model permits the observation of surface phase behaviors that are different from the bulk counterpart. For instance, it reproduces the theoretically well-established surface modes of spinodal decomposition of an unstable solid solution: the surface mode of coherent spinodal decomposition and the surface-directed spinodal decomposition mode. We systematically investigate the influences of major factors on the kinetic surface phase behaviors during the diffusional process. Finally, our simulation study provides insights for tailoring the internal phase microstructure of a particle by controlling the surface phase morphology.« less

  2. Engineering Surface Critical Behavior of (2 +1 )-Dimensional O(3) Quantum Critical Points

    NASA Astrophysics Data System (ADS)

    Ding, Chengxiang; Zhang, Long; Guo, Wenan

    2018-06-01

    Surface critical behavior (SCB) refers to the singularities of physical quantities on the surface at the bulk phase transition. It is closely related to and even richer than the bulk critical behavior. In this work, we show that three types of SCB universality are realized in the dimerized Heisenberg models at the (2 +1 )-dimensional O(3) quantum critical points by engineering the surface configurations. The ordinary transition happens if the surface is gapped in the bulk disordered phase, while the gapless surface state generally leads to the multicritical special transition, even though the latter is precluded in classical phase transitions because the surface is in the lower critical dimension. An extraordinary transition is induced by the ferrimagnetic order on the surface of the staggered Heisenberg model, in which the surface critical exponents violate the results of the scaling theory and thus seriously challenge our current understanding of extraordinary transitions.

  3. Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels.

    PubMed

    Schenck, Daniel M; Fiegel, Jennifer

    2016-03-09

    Lung surfactant has been observed at all surfaces of the airway lining fluids and is an important contributor to normal lung function. In the conducting airways, the surfactant film lies atop a viscoelastic mucus gel. In this work, we report on the characterization of the tensiometric and phase domain behavior of lung surfactant at the air-liquid interface of mucus-like viscoelastic gels. Poly(acrylic acid) hydrogels were formulated to serve as a model mucus with bulk rheological properties that matched those of tracheobronchial mucus secretions. Infasurf (Calfactant), a commercially available pulmonary surfactant derived from calf lung extract, was spread onto the hydrogel surface. The surface tension lowering ability and relaxation of Infasurf films on the hydrogels was quantified and compared to Infasurf behavior on an aqueous subphase. Infasurf phase domains during surface compression were characterized by fluorescence microscopy and phase shifting interferometry. We observed that increasing the bulk viscoelastic properties of the model mucus hydrogels reduced the ability of Infasurf films to lower surface tension and inhibited film relaxation. A shift in the formation of Infasurf condensed phase domains from smaller, more spherical domains to large, agglomerated, multilayer structures was observed with increasing viscoelastic properties of the subphase. These studies demonstrate that the surface behavior of lung surfactant on viscoelastic surfaces, such as those found in the conducting airways, differs significantly from aqueous, surfactant-laden systems.

  4. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation.

    PubMed

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-02-21

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.

  5. Characterization of Bitumen Micro-Mechanical Behaviors Using AFM, Phase Dynamics Theory and MD Simulation

    PubMed Central

    Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin

    2017-01-01

    Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570

  6. Equivalent Aqueous Phase Modulation of Domain Segregation in Myelin Monolayers and Bilayer Vesicles

    PubMed Central

    Oliveira, Rafael G.; Schneck, Emanuel; Funari, Sergio S.; Tanaka, Motomu; Maggio, Bruno

    2010-01-01

    Purified myelin can be spread as monomolecular films at the air/aqueous interface. These films were visualized by fluorescence and Brewster angle microscopy, showing phase coexistence at low and medium surface pressures (<20–30 mN/m). Beyond this threshold, the film becomes homogeneous or not, depending on the aqueous subphase composition. Pure water as well as sucrose, glycerol, dimethylsulfoxide, and dimethylformamide solutions (20% in water) produced monolayers that become homogeneous at high surface pressures; on the other hand, the presence of salts (NaCl, CaCl2) in Ringer's and physiological solution leads to phase domain microheterogeneity over the whole compression isotherm. These results show that surface heterogeneity is favored by the ionic milieu. The modulation of the phase-mixing behavior in monolayers is paralleled by the behavior of multilamellar vesicles as determined by small-angle and wide-angle x-ray scattering. The correspondence of the behavior of monolayers and multilayers is achieved only at high surface pressures near the equilibrium adsorption surface pressure; at lower surface pressures, the correspondence breaks down. The equilibrium surface tension on all subphases corresponds to that of the air/alkane interface (27 mN/m), independently on the surface tension of the clean subphase. PMID:20816062

  7. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone.

    PubMed

    Meeus, Joke; Chen, Xinyong; Scurr, David J; Ciarnelli, Valeria; Amssoms, Katie; Roberts, Clive J; Davies, Martyn C; van Den Mooter, Guy

    2012-09-01

    Injectable controlled-release formulations are of increasing interest for the treatment of chronic diseases. This study aims to develop and characterize a polymeric matrix for intramuscular or subcutaneous injection, consisting of two biocompatible polymers, particularly suitable for formulating poorly soluble drugs. For this matrix, the water-insoluble polymer poly(lactic-co-glycolic acid) (PLGA) is combined with the water-soluble polymer polyvinylpyrrolidone (PVP). Microparticles of these two polymers were prepared by spray drying. The phase behavior of the samples was studied by means of modulated differential scanning calorimetry and the results showed that phase separation occurred in the bulk sample through evidence of two mixed amorphous phases, namely, a PLGA-rich phase and a PVP-rich phase. Characterization of the samples by scanning electron microscopy demonstrated that the spray-dried particles were hollow with a thin shell. Because of the importance in relation to stability and drug release, information about the surface of the microparticles was collected by different complementary surface analysis techniques. Atomic force microscopy gathered information about the morphology and phase behavior of the microparticle surface. Time-of-flight secondary ion mass spectrometry analysis of the particles revealed that the surface consisted mainly of the PLGA-rich phase. This was confirmed by X-ray photoelectron spectroscopy at an increased sampling depth (≈ 10 nm). Nanothermal analysis proved to be an innovative way to thermally detect the presence of the PLGA-dominated surface layer and the underlying PVP phase. Taken together, this information provides a rational basis for predicting the likely drug release behavior this formulation will display. Copyright © 2012 Wiley Periodicals, Inc.

  8. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    PubMed

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Crystalline Structure and Vacancy Ordering across a Surface Phase Transition in Sn/Cu(001).

    PubMed

    Martínez-Blanco, J; Joco, V; Quirós, C; Segovia, P; Michel, E G

    2018-01-18

    We report a surface X-ray diffraction study of the crystalline structure changes and critical behavior across the (3√2 × √2)R45° → (√2 × √2)R45° surface phase transition at 360 K for 0.5 monolayers of Sn on Cu(100). The phase transition is of the order-disorder type and is due to the disordering of the Cu atomic vacancies present in the low temperature phase. Two different atomic sites for Sn atoms, characterized by two different heights, are maintained across the surface phase transition.

  10. Abrasion behavior of aluminum and composite skin coupons, stiffened skins and stiffened panels representative of transport airplane structures

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1985-01-01

    A three-phase investigation was conducted to compare the friction and wear response of aluminum and graphite-epoxy composite materials when subjected to loading conditions similar to those experienced by the skin panels on the underside of a transport airplane during an emergency belly landing on a runway surface. The first phase involved a laboratory test which used a standard belt sander to provide the sliding abrasive surface. Small skin-coupon test specimens were abraded over a range of pressures and velocities to determine the effects of these variables on the coefficient of friction and wear rate. The second phase involved abrading I-beam stiffened skins on actual runway surface over the same range of pressures and velocities used in the first phase. In the third phase, large stiffened panels which most closely resembled transport fuelage skin construction were abraded on a runway surface. This report presents results from each phase of the investigation and shows comparisons between the friction and wear behavior of the aluminum and graphite-epoxy composite materials.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    K., S C; M., T C

    Plastic bonded explosives (PBX) generally consist of 85 - 95 % by weight energetic material, such as HMX, and 5 - 15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX {beta}-phase to {delta}-phase transition in PBX 9501 is similar to that inmore » neat HMX. However, in the presence of the PBX 9501 binder, {delta}-phase HMX readily converts back to {beta}-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of {delta}-phase to {beta}-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the surface molecules of the {delta}-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the {delta}-phase to {beta}-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.« less

  12. Phase-field modeling of void anisotropic growth behavior in irradiated zirconium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, G. M.; Wang, H.; Lin, De-Ye

    2017-06-01

    A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on voidmore » growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.« less

  13. Origin of change in molecular-weight dependence for polymer surface tension.

    PubMed

    Thompson, R B; Macdonald, J R; Chen, P

    2008-09-01

    Self-consistent-field theory is used to reproduce the behavior of polymer surface tension with molecular-weight for both lower and higher molecular-weight polymers. The change in behavior of the surface tension between these two regimes is shown to be due to the almost total exclusion of polymer from the nonpolymer bulk phase. The predicted two regime surface tension behavior with molecular-weight and the exclusion explanation are shown to be valid for a range of different polymer compressibilities.

  14. Strain-induced alignment and phase behavior of blue phase liquid crystals confined to thin films.

    PubMed

    Bukusoglu, Emre; Martinez-Gonzalez, Jose A; Wang, Xiaoguang; Zhou, Ye; de Pablo, Juan J; Abbott, Nicholas L

    2017-12-06

    We report on the influence of surface confinement on the phase behavior and strain-induced alignment of thin films of blue phase liquid crystals (BPs). Confining surfaces comprised of bare glass, dimethyloctadecyl [3-(trimethoxysilyl)propyl] ammonium chloride (DMOAP)-functionalized glass, or polyvinyl alcohol (PVA)-coated glass were used with or without mechanically rubbing to influence the azimuthal anchoring of the BPs. These experiments reveal that confinement can change the phase behavior of the BP films. For example, in experiments performed with rubbed-PVA surfaces, we measured the elastic strain of the BPs to change the isotropic-BPII phase boundary, suppressing formation of BPII for film thicknesses incommensurate with the BPII lattice. In addition, we observed strain-induced alignment of the BPs to exhibit a complex dependence on both the surface chemistry and azimuthal alignment of the BPs. For example, when using bare glass surfaces causing azimuthally degenerate and planar anchoring, BPI oriented with (110) planes of the unit cell parallel to the contacting surfaces for thicknesses below 3 μm but transitioned to an orientation with (200) planes aligned parallel to the contacting surfaces for thicknesses above 4 μm. In contrast, BPI aligned with (110) planes parallel to confining surfaces for all other thicknesses and surface treatments, including bare glass with uniform azimuthal alignment. Complementary simulations based on minimization of the total free energy (Landau-de Gennes formalism) confirmed a thickness-dependent reorientation due to strain of BPI unit cells within a window of surface anchoring energies and in the absence of uniform azimuthal alignment. In contrast to BPI, BPII did not exhibit thickness-dependent orientations but did exhibit orientations that were dependent on the surface chemistry, a result that was also captured in simulations by varying the anchoring energies. Overall, the results in this paper reveal that the orientations assumed by BPs in thin films reflect a complex interplay of surface interactions and elastic energies associated with strain of the BP lattice. The results also provide new principles and methods to control the structure and properties of BP thin films, which may find use in BP-templated material synthesis, and BP-based optical and electronic devices.

  15. Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization.

    PubMed

    O'Brien, Matthew N; Girard, Martin; Lin, Hai-Xin; Millan, Jaime A; Olvera de la Cruz, Monica; Lee, Byeongdu; Mirkin, Chad A

    2016-09-20

    In this work, we present a joint experimental and molecular dynamics simulations effort to understand and map the crystallization behavior of polyhedral nanoparticles assembled via the interaction of DNA surface ligands. In these systems, we systematically investigated the interplay between the effects of particle core (via the particle symmetry and particle size) and ligands (via the ligand length) on crystallization behavior. This investigation revealed rich phase diagrams, previously unobserved phase transitions in polyhedral crystallization behavior, and an unexpected symmetry breaking in the ligand distribution on a particle surface. To understand these results, we introduce the concept of a zone of anisotropy, or the portion of the phase space where the anisotropy of the particle is preserved in the crystallization behavior. Through comparison of the zone of anisotropy for each particle we develop a foundational roadmap to guide future investigations.

  16. Prediction of Phase Separation of Immiscible Ga-Tl Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Kim, Han Gyeol; Kang, Youn-Bae; Kaptay, George; Lee, Joonho

    2017-06-01

    Phase separation temperature of Ga-Tl liquid alloys was investigated using the constrained drop method. With this method, density and surface tension were investigated together. Despite strong repulsive interactions, molar volume showed ideal mixing behavior, whereas surface tension of the alloy was close to that of pure Tl due to preferential adsorption of Tl. Phase separation temperatures and surface tension values obtained with this method were close to the theoretically calculated values using three different thermodynamic models.

  17. Van der Waals model for phase transitions in thermoresponsive surface films.

    PubMed

    McCoy, John D; Curro, John G

    2009-05-21

    Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.

  18. Spontaneous and Flow-Driven Interfacial Phase Change: Dynamics of Microemulsion Formation at the Pore Scale.

    PubMed

    Tagavifar, Mohsen; Xu, Ke; Jang, Sung Hyun; Balhoff, Matthew T; Pope, Gary A

    2017-11-14

    The dynamic behavior of microemulsion-forming water-oil-amphiphiles mixtures is investigated in a 2.5D micromodel. The equilibrium phase behavior of such mixtures is well-understood in terms of macroscopic phase transitions. However, what is less understood and where experimental data are lacking is the coupling between the phase change and the bulk flow. Herein, we study the flow of an aqueous surfactant solution-oil mixture in porous media and analyze the dependence of phase formation and spatial phase configurations on the bulk flow rate. We find that a microemulsion forms instantaneously as a boundary layer at the initial surface of contact between the surfactant solution and oil. The boundary layer is temporally continuous because of the imposed convection. In addition to the imposed flow, we observe spontaneous pulsed Marangoni flows that drag the microemulsion and surfactant solution into the oil stream, forming large (macro)emulsion droplets. The formation of the microemulsion phase at the interface distinguishes the situation from that of the more common Marangoni flow with only two phases present. Additionally, an emulsion forms via liquid-liquid nucleation or the Ouzo effect (i.e., spontaneous emulsification) at low flow rates and via mechanical mixing at high flow rates. With regard to multiphase flow, contrary to the common belief that the microemulsion is the wetting liquid, we observe that the minor oil phase wets the solid surface. We show that a layered flow pattern is formed because of the out-of-equilibrium phase behavior at high volumetric flow rates (order of 2 m/day) where advection is much faster than the diffusive interfacial mass transfer and transverse mixing, which promote equilibrium behavior. At lower flow rates (order of 30 cm/day), however, the dynamic and equilibrium phase behaviors are well-correlated. These results clearly show that the phase change influences the macroscale flow behavior.

  19. Thermoresponsive light scattering device utilizing surface behavior effects between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation

    NASA Astrophysics Data System (ADS)

    Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto

    2018-06-01

    We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.

  20. Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.

    PubMed

    Borden, Mark A; Pu, Gang; Runner, Gabriel J; Longo, Marjorie L

    2004-06-01

    Langmuir trough methods and fluorescence microscopy were combined to investigate the phase behavior and microstructure of monolayer shells coating micron-scale bubbles (microbubbles) typically used in biomedical applications. The monolayer shell consisted of a homologous series of saturated acyl chain phospholipids and an emulsifier containing a single hydrophobic stearate chain and polyethylene glycol (PEG) head group. PEG-emulsifier was fully miscible with expanded phase lipids and phase separated from condensed phase lipids. Phase coexistence was observed in the form of dark condensed phase lipid domains surrounded by a sea of bright, emulsifier-rich expanded phase. A rich assortment of condensed phase area fractions and domain morphologies, including networks and other novel structures, were observed in each batch of microbubbles. Network domains were reproduced in Langmuir monolayers under conditions of heating-cooling followed by compression-expansion, as well as in microbubble shells that underwent surface flow with slight compression. Domain size decreased with increased cooling rate through the phase transition temperature, and domain branching increased with lipid acyl chain length at high cooling rates. Squeeze-out of the emulsifier at a surface pressure near 35 mN/m was indicated by a plateau in Langmuir isotherms and directly visualized with fluorescence microscopy, although collapse of the solid lipid domains occurred at much higher surface pressures. Compression of the monolayer past the PEG-emulsifier squeeze-out surface pressure resulted in a dark shell composed entirely of lipid. Under certain conditions, the PEG-emulsifier was reincorporated upon subsequent expansion. Factors that affect shell formation and evolution, as well as implications for the rational design of microbubbles in medical applications, are discussed.

  1. Phase Behavior of Patchy Spheroidal Fluids.

    NASA Astrophysics Data System (ADS)

    Carpency, Thienbao

    We employ Gibbs-ensemble Monte Carlo computer simulation to assess the impact of shape anisotropy and particle interaction anisotropy on the phase behavior of a colloidal (or, by extension, protein) fluid comprising patchy ellipsoidal particles, with an emphasis on critical behavior. More specifically, we obtain the fluid-fluid equilibrium phase diagram of hard prolate ellipsoids having Kern-Frenkel surface patches under a variety of conditions and study the critical behavior of these fluids as a function of particle shape parameters. It is found that the dependence of the critical temperature on aspect ratio for particles having the same volume can be described approximately in terms of patch solid angles. In addition, ordering in the fluid that is associated with particle elongation is also found to be an important factor in dictating phase behavior. The G. Harold & Leila Y. Mathers Foundation.

  2. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shi-Yu, E-mail: buaasyliu@gmail.com; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong; Liu, Shiyang

    Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustainedmore » complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.« less

  3. Fourier Transform Infrared Absorption Spectroscopy of Gas-Phase and Surface Reaction Products during Si Etching in Inductively Coupled Cl2 Plasmas

    NASA Astrophysics Data System (ADS)

    Miyata, Hiroki; Tsuda, Hirotaka; Fukushima, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2011-10-01

    A better understanding of plasma-surface interactions is indispensable during etching, including the behavior of reaction or etch products, because the products on surfaces and in the plasma are important in passivation layer formation through their redeposition on surfaces. In practice, the nanometer-scale control of plasma etching would still rely largely on such passivation layer formation as well as ion-enhanced etching on feature surfaces. This paper presents in situ Fourier transform infrared (FTIR) absorption spectroscopy of gas-phase and surface reaction products during inductively coupled plasma (ICP) etching of Si in Cl2. The observation was made in the gas phase by transmission absorption spectroscopy (TAS), and also on the substrate surface by reflection absorption spectroscopy (RAS). The quantum chemical calculation was also made of the vibrational frequency of silicon chloride molecules. The deconvolution of the TAS spectrum revealed absorption features of Si2Cl6 and SiClx (x = 1-3) as well as SiCl4, while that of the RAS spectrum revealed relatively increased absorption features of unsaturated silicon chlorides. A different behavior was also observed in bias power dependence between the TAS and RAS spectra.

  4. Dynamic order in a surface process

    NASA Astrophysics Data System (ADS)

    Eiswirth, M.; Ertl, G.

    1988-09-01

    Under certain well-defined conditions ( p co,p_{{text{O}}_{text{2}} } , T) the rate of catalytic oxidation of CO on a Pt(110) surface may exhibit sustained temporal oscillations with an autonomous frequency v 0. Small amplitude modulation ofp_{{text{O}}_{text{2}} } with frequency v p causes a variety of phenomena characteristic for systems of nonlinear dynamics which may be identified with temporal order and show formal similarities to spatial order of surface phases: Periodic behavior for certain rational numbers of v p/v0 — corresponding to commensurate surface structures; quasiperiodic behavior characterized by an irrational ratio of the periods of perturbation and response — corresponding to incommensurate structures; and critical slowing down near the boundary of a transition to quasiperiodicity which has its counterpart in the critical fluctuations near a (spatial) phase transition.

  5. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    NASA Astrophysics Data System (ADS)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  6. Curvature-induced microswarming and clustering of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac; Glotzer, Sharon

    Non-equilibrium active matter systems exhibit many unique phenomena, such as motility-induced phase separation and swarming. However, little is known about how these behaviors depend on the geometry of the environment. To answer this question, we use Brownian dynamics simulations to study the effects of Gaussian curvature on self-propelled particles by confining them to the surface of a sphere. We find that a modest amount of curvature promotes phase separation by altering the shape of a cluster's boundary. Alternatively, particles on surfaces of high curvature experience reduced phase separation and instead form microswarms, where particles share a common orbit. We show that this novel flocking behavior is distinct from other previously studied examples, in that it is not explicitly incorporated into our model through Vicsek-like alignment rules nor torques. Rather, we find that microswarms emerge solely due to the geometric link between orientation and velocity, a property exclusive to surfaces with non-zero Gaussian curvature. These findings reveal the important role of local environment on the global emergent behavior of non-equilibrium systems. Center for Bio-Inspired Engineering (DOE Award # DE-SC0000989).

  7. Wetting in a phase separating polymer blend film: quench depth dependence

    PubMed

    Geoghegan; Ermer; Jungst; Krausch; Brenn

    2000-07-01

    We have used 3He nuclear reaction analysis to measure the growth of the wetting layer as a function of immiscibility (quench depth) in blends of deuterated polystyrene and poly(alpha-methylstyrene) undergoing surface-directed spinodal decomposition. We are able to identify three different laws for the surface layer growth with time t. For the deepest quenches, the forces driving phase separation dominate (high thermal noise) and the surface layer grows with a t(1/3) coarsening behavior. For shallower quenches, a logarithmic behavior is observed, indicative of a low noise system. The crossover from logarithmic growth to t(1/3) behavior is close to where a wetting transition should occur. We also discuss the possibility of a "plating transition" extending complete wetting to deeper quenches by comparing the surface field with thermal noise. For the shallowest quench, a critical blend exhibits a t(1/2) behavior. We believe this surface layer growth is driven by the curvature of domains at the surface and shows how the wetting layer forms in the absence of thermal noise. This suggestion is reinforced by a slower growth at later times, indicating that the surface domains have coalesced. Atomic force microscopy measurements in each of the different regimes further support the above. The surface in the region of t(1/3) growth is initially somewhat rougher than that in the regime of logarithmic growth, indicating the existence of droplets at the surface.

  8. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull

    USGS Publications Warehouse

    Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin

    2013-01-01

    Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  9. At-sea behavior varies with lunar phase in a nocturnal pelagic seabird, the swallow-tailed gull.

    PubMed

    Cruz, Sebastian M; Hooten, Mevin; Huyvaert, Kathryn P; Proaño, Carolina B; Anderson, David J; Afanasyev, Vsevolod; Wikelski, Martin

    2013-01-01

    Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase.

  10. The effects of Nitinol phases on corrosion and fatigue behavior

    NASA Astrophysics Data System (ADS)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  11. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate

    DOE PAGES

    Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen; ...

    2017-10-30

    Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less

  12. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen

    Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less

  13. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Liang; Chen-Wiegart, Yu-Chen K.

    2017-10-30

    Olivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3%lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism andmore » the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation com-pounds in general and can help guide the design of better electrodes.« less

  14. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    NASA Astrophysics Data System (ADS)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  15. Topography and behavior of Sertoli cells in sparse culture during the transitional remodeling phase.

    PubMed

    Tung, P S; Choi, A H; Fritz, I B

    1988-01-01

    We report observations on the behavior of Sertoli cells in sparse culture during the period from the time of plating to the time of initial confluence (the transitional remodeling phase). Changes in shape, structure, and polarity of cells, as well as changes in migration patterns and cell-cell association patterns, have been followed during the transitional remodeling phase with the aid of topographical markers. These markers are based upon differences between ultrastructural features of the basolateral and apicolateral surfaces. The basolateral surface is characterized by plasmalemmal blebs, whereas the apicolateral surface is characterized by filopodial extensions. Structural differences observed in situ remain evident in Sertoli cells isolated by sequential enzymatic treatments that are described. Another marker is provided by laminin-binding sites, which are detected exclusively on the blebbed, basolateral surfaces of freshly prepared Sertoli cell aggregates. The orientation described is sustained during the initial radial migration of Sertoli cells explanted on uncoated glass coverslips. Under these conditions, blebs are detected only on the dorsal surfaces, and filopodial extensions are evident only on the ventral surfaces. In contrast, Sertoli cells sparsely plated on a reconstituted basement membrane (air-dried Matrigel) migrate rapidly, display an extraordinary capacity to form elaborate cytoplasmic extensions for cell-cell and cell-substratum contacts, and readily retract blebs and filopodial extensions. These cells do not form mosaic borders, whereas cells plated on uncoated glass do form a monolayer with mosaic-like borders. Cells sparsely seeded on gelated Matrigel migrate preferentially at gaps between adjacent cell explants, and develop a compact cell-cell association pattern. These cells display few, if any, cytoplasmic extensions. We compare the behavior of Sertoli cells sparsely plated on Matrigel with the behavior of Sertoli cells in situ during different stages of development.

  16. Theoretical Analysis of the Longitudinal Behavior of an Automatically Controlled Supersonic Interceptor During the Attack Phase

    NASA Technical Reports Server (NTRS)

    Gates, Ordway B., Jr.; Woodling, C. H.

    1959-01-01

    Theoretical analysis of the longitudinal behavior of an automatically controlled supersonic interceptor during the attack phase against a nonmaneuvering target is presented. Control of the interceptor's flight path is obtained by use of a pitch rate command system. Topics lift, and pitching moment, effects of initial tracking errors, discussion of normal acceleration limited, limitations of control surface rate and deflection, and effects of neglecting forward velocity changes of interceptor during attack phase.

  17. Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lendrum, Conrad D.; Ingham, Bridget; Lin, Binhua

    2012-02-06

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position {alpha} to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of {approx}6. Themore » role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.« less

  18. Characterization of Carbonates by Spectral Induced Polarization

    NASA Astrophysics Data System (ADS)

    Hupfer, Sarah; Halisch, Matthias; Weller, Andreas

    2017-04-01

    This study investigates the complex electrical conductivity of carbonate samples by Spectral Induced Polarization (SIP). The analysis is conducted in combination with petrophysical, mineralogical and geochemical measurements. SIP is a useful tool to obtain more detailed information about rock properties and receive a more qualitative pore space characterization. Rock parameters like permeability, pore-size and -surface area can be predicted. Up to this point, sandstones or sandy materials were investigated in detail by laboratory SIP-measurements. Several robust empirical relationships were found that connect IP-signals and petrophysical parameters (surface area, surface conductivity and cation exchange capacity). Different types of carbonates were analyzed with laboratory SIP-measurements. Rock properties like grain density, porosity, permeability and surface area were determined by petrophysical measurements. Geochemistry and mineralogy were used to differentiate the carbonate types. First results of the SIP-measurements showed polarization effects for all different types. Four different phase behavior were observed in the phase spectra. A constant phase angle, a constant slope, a combination of both and a maximum type could be identified. Each phase behavior can be assigned to the specific carbonate type used, but the constant phase occurs at two carbonate types. Further experiments were conducted to get more insight the phase behavior and get explanations. 1. Approach: An expected phase peak frequency for each sample was calculated to check if this frequency is within the measured spectrum of 2 mHz to 100 Hz. 2. Approach: Significantly reducing of the fluid conductivity to increase phase signal for a better interpretation. 3. Approach: The cation-exchange-capacity (CEC) was regarded as a factor as well. A dependence between imaginary part of conductivity and CEC was detected. 4. Approach: Imaging procedures (scanning electron microscope, x-ray computed tomography, microscopy) were used to create a qualitative image of the carbonate samples and to investigate the pore space, for example the ratio of connected to non-connected pore space. A comparison between SIP data and the petrophysical data of the sample set showed that the phase behavior of carbonates is highly complicated and challenging compared with sandstones. It seems that there is no correlation between polarization effects and any petrophysical parameter. Ongoing investigations and measurements will be conducted to get more insight to the polarization effects of carbonates.

  19. Differential partition of virulent Aeromonas salmonicida and attenuated derivatives possessing specific cell surface alterations in polymer aqueous-phase systems

    NASA Technical Reports Server (NTRS)

    Van Alstine, J. M.; Trust, T. J.; Brooks, D. E.

    1986-01-01

    Two-polymer aqueous-phase systems in which partitioning of biological matter between the phases occurs according to surface properties such as hydrophobicity, charge, and lipid composition are used to compare the surface properties of strains of the fish pathogen Aeromonas salmonicida. The differential ability of strains to produce a surface protein array crucial to their virulence, the A layer, and to produce smooth lipopolysaccharide is found to be important in the partitioning behavior of Aeromonas salmonicida. The presence of the A layer is shown to decrease the surface hydrophilicity of the pathogen, and to increase specifically its surface affinity for fatty acid esters of polyethylene glycol. The method has application to the analysis of surface properties crucial to bacterial virulence, and to the selection of strains and mutants with specific surface characteristics.

  20. Bilayer Ising system designed with half-integer spins: Magnetic hysteresis, compensation behaviors and phase diagrams

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin

    2016-08-01

    In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.

  1. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes

    PubMed Central

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-01-01

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064

  2. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    PubMed

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  3. Lipid phase behavior studied with a quartz crystal microbalance: A technique for biophysical studies with applications in screening

    NASA Astrophysics Data System (ADS)

    Peschel, Astrid; Langhoff, Arne; Uhl, Eva; Dathathreyan, Aruna; Haindl, Susanne; Johannsmann, Diethelm; Reviakine, Ilya

    2016-11-01

    Quartz crystal microbalance (QCM) is emerging as a versatile tool for studying lipid phase behavior. The technique is attractive for fundamental biophysical studies as well applications because of its simplicity, flexibility, and ability to work with very small amounts of material crucial for biomedical studies. Further progress hinges on the understanding of the mechanism, by which a surface-acoustic technique such as QCM, senses lipid phase changes. Here, we use a custom-built instrument with improved sensitivity to investigate phase behavior in solid-supported lipid systems of different geometries (adsorbed liposomes and bilayers). We show that we can detect a model anesthetic (ethanol) through its effect on the lipid phase behavior. Further, through the analysis of the overtone dependence of the phase transition parameters, we show that hydrodynamic effects are important in the case of adsorbed liposomes, and viscoelasticity is significant in supported bilayers, while layer thickness changes make up the strongest contribution in both systems.

  4. At–Sea Behavior Varies with Lunar Phase in a Nocturnal Pelagic Seabird, the Swallow-Tailed Gull

    PubMed Central

    Cruz, Sebastian M.; Hooten, Mevin; Huyvaert, Kathryn P.; Proaño, Carolina B.; Anderson, David J.; Afanasyev, Vsevolod; Wikelski, Martin

    2013-01-01

    Strong and predictable environmental variability can reward flexible behaviors among animals. We used long-term records of activity data that cover several lunar cycles to investigate whether behavior at-sea of swallow-tailed gulls Creagrus furcatus, a nocturnal pelagic seabird, varied with lunar phase in the Galápagos Islands. A Bayesian hierarchical model showed that nighttime at-sea activity of 37 breeding swallow-tailed gulls was clearly associated with changes in moon phase. Proportion of nighttime spent on water was highest during darker periods of the lunar cycle, coinciding with the cycle of the diel vertical migration (DVM) that brings prey to the sea surface at night. Our data show that at-sea behavior of a tropical seabird can vary with environmental changes, including lunar phase. PMID:23468889

  5. Surface effect on compensation and critical behaviors of a ferrimagnetic mixed-spin (1, 3/2) Ising system with two alternating layers

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Lv, Dan; Liu, Ying; Yang, Yi; Gao, Zhong-yue; Zhao, Xue-ru

    2017-12-01

    A Monte Carlo simulation has been used to study the magnetic properties and the critical behaviors of a ferrimagnetic mixed spin-1 and spin-3/2 Ising system with two alternating layers on a honeycomb lattice. Particular emphasis is given to the effects of the surface exchange coupling R1 = J1S/J1, R2 = J2S/J1, R3 = J3S/J1, the surface single-ion anisotropy DS/J1 and the layer thickness L on the magnetizations, phase diagrams and hysteresis loops of the system. Some characteristic phenomena have been found, depending on the competition among the surface parameters R1, R2, R3 and DS. In particular, we have also found that, for appropriate values of surface parameters, there exist three critical surface parameters R1C, R3C and DSC/J1, where the phase transition temperature Tc is independent of the layer thickness L.

  6. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    NASA Astrophysics Data System (ADS)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  7. On the interfacial thermodynamics of nanoscale droplets and bubbles

    NASA Astrophysics Data System (ADS)

    Corti, David S.; Kerr, Karl J.; Torabi, Korosh

    2011-07-01

    We present a new self-consistent thermodynamic formalism for the interfacial properties of nanoscale embryos whose interiors do not exhibit bulklike behavior and are in complete equilibrium with the surrounding mother phase. In contrast to the standard Gibbsian analysis, whereby a bulk reference pressure based on the same temperature and chemical potentials of the mother phase is introduced, our approach naturally incorporates the normal pressure at the center of the embryo as an appropriate reference pressure. While the interfacial properties of small embryos that follow from the use of these two reference pressures are different, both methods yield by construction the same reversible work of embryo formation as well as consistency between their respective thermodynamic and mechanical routes to the surface tension. Hence, there is no a priori reason to select one method over another. Nevertheless, we argue, and demonstrate via a density-functional theory (with the local density approximation) analysis of embryo formation in the pure component Lennard-Jones fluid, that our new method generates more physically appealing trends. For example, within the new approach the surface tension at all locations of the dividing surface vanishes at the spinodal where the density profile spanning the embryo and mother phase becomes completely uniform (only the surface tension at the Gibbs surface of tension vanishes in the Gibbsian method at this same limit). Also, for bubbles, the location of the surface of tension now diverges at the spinodal, similar to the divergent behavior exhibited by the equimolar dividing surface (in the Gibbsian method, the location of the surface of tension vanishes instead). For droplets, the new method allows for the appearance of negative surface tensions (the Gibbsian method always yields positive tensions) when the normal pressures within the interior of the embryo become less than the bulk pressure of the surrounding vapor phase. Such a prediction, which is allowed by thermodynamics, is consistent with the interpretation that the mother phase's attempted compression of the droplet is counterbalanced by the negative surface tension, or free energy cost to decrease the interfacial area. Furthermore, for these same droplets, the surface of tension can no longer be meaningfully defined (the surface of tension always remains well defined in the Gibbsian method). Within the new method, the dividing surface at which the surface tension equals zero emerges as a new lengthscale, which has various thermodynamic analogs to and similar behavior as the surface of tension.

  8. Towards an avatar for deciphering the modes of three-phase interactions in lava lakes

    NASA Astrophysics Data System (ADS)

    Suckale, J.; Qin, Z.; Culha, C.; Lev, E.

    2016-12-01

    An avatar is the virtual representation of a character, system or idea. Here, we present progress towards building a numerical avatar for lava lakes that allows us to constrain the modes of multiphase interactions between crystals, gas, and magmatic fluid in the interior of lava lakes. We focus on lava lakes, because they expose the free surface of magma to direct observations. They hence offer a unique window into different regimes of the three-phase flow dynamics of crystals, gases, and melts in magmatic convection more generally. The multiphase interactions between crystals, gases and melt give rise to nonlinear and unstable behavior in magmatic systems and are hence key for understanding the behavior of the bulk magma, but are notoriously difficult to capture in numerical models. Our avatar approach solves the full set of governing equations entailing the momentum, mass, and energy balance for each of the three phases at the scale of individual crystals or bubble interfaces. It hence obviates the need for simplifying assumptions regarding the individual behavior of the three phases or their mutual coupling to achieve a minimally preconditioned virtual representation of a lava lake. To identify the multi-phase regime at depth, we compute the observational signatures of different multiphase regimes, both in terms of surface velocity and temperature distribution, and compare the computed synthetic data to observational surface data for lava lakes. We focus specifically on the lava lake dynamics at Mount Erebus, Antarctica, and Kīlauea, Hawai'i. These two lava lakes are particularly well observed, which presents a compelling opportunity for closely linking modeling and observations. The also exhibit notably different circulation patterns. We hypothesize that Erebus and Kīlauea highlight different mechanisms through which multiphase interactions alter magmatic convection and eruptive behavior in basaltic systems. We suggest that volumetric flow effects like bubble dynamics and spatially heterogeneous crystal retention may dominate the behavior at Erebus and that surface effects resulting primarily from the formation of a cool skin on top of the lake govern the dynamics observed at Kīlauea.

  9. Phase diagram and universality of the Lennard-Jones gas-liquid system.

    PubMed

    Watanabe, Hiroshi; Ito, Nobuyasu; Hu, Chin-Kun

    2012-05-28

    The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class.

  10. Surface critical behavior of thin Ising films at the ‘special point’

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Bekhechi, Smaine

    2003-03-01

    The critical surface phenomena of a magnetic thin Ising film is studied using numerical Monte-Carlo method based on Wolff cluster algorithm. With varying the surface coupling, js= Js/ J, the phase diagram exhibits a special surface coupling jsp at which all the films have a unique critical temperature Tc for an arbitrary thickness n. In spite of this, the critical exponent of the surface magnetization at the special point is found to increase with n. Moreover, non-universal features as well as dimensionality crossover from two- to three-dimensional behavior are found at this point.

  11. The photometric functions of Phobos and Deimos. II - Surface photometry of Deimos

    NASA Technical Reports Server (NTRS)

    Noland, M.; Veverka, J.

    1977-01-01

    Mariner 9 television pictures of Deimos are used to study the uniformity of a certain photometric scattering parameter over the surface of the satellite. It is shown that the photometric data considered satisfy the reciprocity principle and that the Hapke-Irvine scattering law is adequate for describing the surface. Phase functions for Deimos are obtained from scans along the photometric equator, and the photometric behavior of the brightest and darkest areas on the satellite's disk is examined. The results indicate that the surface of Deimos is covered uniformly by a dark and texturally complex material whose photometric behavior is well-represented by the Hapke-Irvine law, that the intrinsic phase coefficient of this material is about 0.017 mag/deg over the phase-angle range from 20 to 80 deg, and that slightly brighter material is present near some craters. Since enhanced brightening was not observed at the specular point of the photometric equator in any of the pictures studied, it is concluded that large exposures of solid rock are absent from the Mars-facing side of Deimos.

  12. Phase behavior of diblock copolymer/star-shaped polymer thin film mixtures.

    PubMed

    Zhao, Junnan; Sakellariou, Georgios; Green, Peter F

    2016-05-07

    We investigated the phase behavior of thin film, thickness h≈ 100 nm, mixtures of a polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer with star-shaped polystyrene (SPS) molecules of varying functionalities f, where 4 ≤f≤ 64, and molecular weights per arm Marm. The miscibility of the system and the surface composition varied appreciably with Marm and f. For large values of Marm, regardless of f, the miscibility of the system was qualitatively similar to that of linear chain PS/PS-b-P2VP mixtures - the copolymer chains aggregate to form micelles, each composed of an inner P2VP core and PS corona, which preferentially segregate to the free surface. On the other hand, for large f and small Marm, SPS molecules preferentially resided at the free surface. Moreover, blends containing SPS molecules with the highest values of f and lowest values of Marm were phase separated. These observations are rationalized in terms of competing entropic interactions and the dependence of the surface tension of the star-shaped molecules on Marm and f.

  13. Nanocrystals in compression: unexpected structural phase transition and amorphization due to surface impurities.

    PubMed

    Liu, Gang; Kong, Lingping; Yan, Jinyuan; Liu, Zhenxian; Zhang, Hengzhong; Lei, Pei; Xu, Tao; Mao, Ho-Kwang; Chen, Bin

    2016-06-09

    We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium-doped brookite amorphizes above 20 GPa. The abnormal structural evolution observed in yttrium-doped TiO2 does not agree with the reported phase stability of nano titania polymorphs, thus suggesting that the physical properties of the interior of nanocrystals can be controlled by the surface, providing an unconventional and new degree of freedom in search for nanocrystals with novel tunable properties that can trigger applications in multiple areas of industry and provoke more related basic science research.

  14. Sideways Views of the Moon: Mapping Directional Thermal Emission with Diviner

    NASA Astrophysics Data System (ADS)

    Greenhagen, B. T.; Bandfield, J.; Bowles, N. E.; Hayne, P. O.; Sefton-Nash, E.; Warren, T.; Paige, D. A.

    2017-12-01

    Systematic off-nadir observations can be used to characterize the emission phase function and radiative balance of the lunar surface. These are critical inputs for thermophysical models used to derive surface properties and study a wide range of dynamic surface properties, such as the stability of volatiles and development and evolution of regolith, on the Moon and other airless bodies. After over eight years in operation and well into its 3rd extended science mission, NASA's Lunar Reconnaissance Orbiter (LRO) Diviner Lunar Radiometer (Diviner) continues to reveal the extreme nature of the Moon's thermal environments, thermophysical properties, and surface composition. Diviner data are also used to characterize thermal emission behavior that is fundamental to airless bodies with fine-particulate surfaces, including epiregolith thermal gradients and thermal-scale surface roughness. Diviner's extended operations have provided opportunities to observe the lunar surface with a wide range of viewing geometries. Together Diviner's self-articulation and LRO's non-sun-synchronous polar orbit offer a unique platform to observe the lunar surface and characterize the emission phase behavior and radiative balance. Recently, Diviner completed global off-nadir observations at 50° and 70° in the anti-sun (low phase) direction with 8 different local times each. This fall, we'll begin a third campaign to observe the Moon at 50° emission in the pro-sun (high phase) direction. Here we present this new global off-nadir dataset, highlight models and laboratory experiments used to interpret the data, and describe the role of these data in studying the Moon and other airless bodies.

  15. The behavior of commensurate-incommensurate transitions using the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghui; Lu, Yanli; Chen, Zheng

    2018-02-01

    We study the behavior of the commensurate-incommensurate (CI) transitions by using a phase field crystal model. The model is capable of modeling both elastic and plastic deformation and can simulate the evolution of the microstructure of the material at the atomic scale and the diffusive time scale, such as for adsorbed monolayer. Specifically, we study the behavior of the CI transitions as a function of lattice mismatch and the amplitude of substrate pinning potential. The behavior of CI phase transitions is revealed with the increase of the amplitude of pinning potential in some certain lattice mismatches. We find that for the negative lattice mismatch absorbed monolayer undergoes division, reorganization and displacement as increasing the amplitude of substrate pinning potential. In addition, for the positive mismatch absorbed monolayer undergoes a progress of phase transformation after a complete grain is split. Our results accord with simulations for atomic models of absorbed monolayer on a substrate surface.

  16. Effect of various electrokinetic treatment regimes on solids surface properties and thermal behavior of oil sediments.

    PubMed

    Kariminezhad, Esmaeel; Elektorowicz, Maria

    2018-04-10

    The electrokinetic process has shown its ability to separate the different material phases. However, not much is known about the effect of the electric fields on the surface properties of solids in the oil sediments and their behavior under different electrical regimes. In this study, the effect of four different types of electrical current on the surface properties of oil sediments was investigated, namely constant direct current (CDC), pulsed direct current (PDC), incremental direct current (IDC) and decremental direct current (DDC). X-ray photoelectron spectroscopy (XPS) analyses showed a decrease in the concentration of carbon from 99% in centrifuged samples to 63% on the surface of the solids in the PDC-treated oil sediment. Wettability alteration and contact angle studies showed an enhance in hydrophilicity of the solids following electrokinetic treatment. A significant change in carbon and oxygen-containing functionalities at the surface solids of the DDC-treated sediment was also observed. Thermogravimetric analyses (TGA) confirmed the ability of electrokinetic treatment in separating the phases by shifting the thermogram profiles towards lower temperatures. The findings showed that the electrokinetic process exerts its effect by altering the surface properties of the sediment solids and destabilizing water-in-oil emulsions to facilitate phase separation of this complex waste. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.

    2014-11-01

    Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  18. Electrochemical corrosion behavior and MG-63 osteoblast-like cell response of surface-treated titanium

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Kwan; Jang, Ju-Woong

    2004-10-01

    Commercially pure titanium is used as a clinical implant material for many orthopedic and dental implant devices owing to its excellent corrosion resistance and good biocompatibility. However, there remains concern over the release of metal ions from prostheses and unresolved questions about its behavior in a biological environment. Our research investigated the influence of surface oxide thickness and phase on the corrosion resistance in 0.9% NaCl solution by potentiostat and XRD. Also, the MG-63 osteoblast like cell morphology and proliferation were studied to evaluate the biocompatibility in terms of surface treatment. It is demonstrated that a substantial decrease in the current density may be attained due to surface oxide thickening and phase transformation by thermal oxidation. The osteoblast adhesion morphology and proliferation data indicated that the osteoblast cell response is not conspicuously influenced by the thermal oxidation and nitric acid passivation treatments but by surface roughness and porosity of 3rd networking.

  19. Microgravity Fluid Separation Physics: Experimental and Analytical Results

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. Michael; Schrage, Dean S.

    1997-01-01

    Effective, low power, two-phase separation systems are vital for the cost-effective study and utilization of two-phase flow systems and flow physics of two-phase flows. The study of microgravity flows have the potential to reveal significant insight into the controlling mechanisms for the behavior of flows in both normal and reduced gravity environments. The microgravity environment results in a reduction in gravity induced buoyancy forces acting on the discrete phases. Thus, surface tension, viscous, and inertial forces exert an increased influence on the behavior of the flow as demonstrated by the axisymmetric flow patterns. Several space technology and operations groups have studied the flow behavior in reduced gravity since gas-liquid flows are encountered in several systems such as cabin humidity control, wastewater treatment, thermal management, and Rankine power systems.

  20. Topological Properties and the Dynamical Crossover from Mixed-Valence to Kondo-Lattice Behavior in the Golden Phase of SmS.

    PubMed

    Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I

    2015-04-24

    We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.

  1. Inhibited phase behavior of gas hydrates in graphene oxide: influences of surface and geometric constraints.

    PubMed

    Kim, Daeok; Kim, Dae Woo; Lim, Hyung-Kyu; Jeon, Jiwon; Kim, Hyungjun; Jung, Hee-Tae; Lee, Huen

    2014-11-07

    Porous materials have provided us unprecedented opportunities to develop emerging technologies such as molecular storage systems and separation mechanisms. Pores have also been used as supports to contain gas hydrates for the application in gas treatments. Necessarily, an exact understanding of the properties of gas hydrates in confining pores is important. Here, we investigated the formation of CO2, CH4 and N2 hydrates in non-interlamellar voids in graphene oxide (GO), and their thermodynamic behaviors. For that, low temperature XRD and P-T traces were conducted to analyze the water structure and confirm hydrate formation, respectively, in GO after its exposure to gaseous molecules. Confinement and strong interaction of water with the hydrophilic surface of graphene oxide reduce water activity, which leads to the inhibited phase behavior of gas hydrates.

  2. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less

  3. Axelrod's model with surface tension

    NASA Astrophysics Data System (ADS)

    Pace, Bruno; Prado, Carmen P. C.

    2014-06-01

    In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding from the set of potentially interacting neighbors those that would never possibly exchange. Although the alteration proposed does not alter the state space topologically, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behavior is considerably richer, and cultural regions become stable leading to the formation of different spatiotemporal patterns. A metastable "glassy" phase emerges between the globalized phase and the disordered, multicultural phase.

  4. Phase behavior of charged colloids on spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  5. Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State.

    PubMed

    Ghaeli, Ima; de Moraes, Mariana A; Beppu, Marisa M; Lewandowska, Katarzyna; Sionkowska, Alina; Ferreira-da-Silva, Frederico; Ferraz, Maria P; Monteiro, Fernando J

    2017-08-18

    Miscibility is an important issue in biopolymer blends for analysis of the behavior of polymer pairs through the detection of phase separation and improvement of the mechanical and physical properties of the blend. This study presents the formulation of a stable and one-phase mixture of collagen and regenerated silk fibroin (RSF), with the highest miscibility ratio between these two macromolecules, through inducing electrostatic interactions, using salt ions. For this aim, a ternary phase diagram was experimentally built for the mixtures, based on observations of phase behavior of blend solutions with various ratios. The miscibility behavior of the blend solutions in the miscible zones of the phase diagram was confirmed quantitatively by viscosimetric measurements. Assessing the effects of biopolymer mixing ratio and salt ions, before and after dialysis of blend solutions, revealed the importance of ion-specific interactions in the formation of coacervate-based materials containing collagen and RSF blends that can be used in pharmaceutical, drug delivery, and biomedical applications. Moreover, the conformational change of silk fibroin from random coil to beta sheet, in solution and in the final solid films, was detected by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. Scanning electron microscopy (SEM) exhibited alterations of surface morphology for the biocomposite films with different ratios. Surface contact angle measurement illustrated different hydrophobic properties for the blended film surfaces. Differential scanning calorimetry (DSC) showed that the formation of the beta sheet structure of silk fibroin enhances the thermal stability of the final blend films. Therefore, the novel method presented in this study resulted in the formation of biocomposite films whose physico-chemical properties can be tuned by silk fibroin conformational changes by applying different component mixing ratios.

  6. Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5

    PubMed Central

    Jiao, Lin; Chen, Ye; Kohama, Yoshimitsu; Graf, David; Bauer, E. D.; Singleton, John; Zhu, Jian-Xin; Weng, Zongfa; Pang, Guiming; Shang, Tian; Zhang, Jinglei; Lee, Han-Oh; Park, Tuson; Jaime, Marcelo; Thompson, J. D.; Steglich, Frank; Si, Qimiao; Yuan, H. Q.

    2015-01-01

    Conventional, thermally driven continuous phase transitions are described by universal critical behavior that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behavior remain open issues. Here we report measurements of heat capacity and de Haas–van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (Bc0 ≈ 50 T) in the heavy-fermion metal CeRhIn5. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B0* ≈ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn5 suggest that the Fermi-surface change at B0* is associated with a localized-to-itinerant transition of the Ce-4f electrons in CeRhIn5. Taken in conjunction with pressure experiments, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn5, a significant step toward the derivation of a universal phase diagram for QCPs. PMID:25561536

  7. Drop impact onto a thin film: Miscibility effect

    NASA Astrophysics Data System (ADS)

    Chen, Ningli; Chen, H.; Amirfazli, A.

    2017-09-01

    In this work a systematic experimental study was performed to understand the process of liquid drop impact onto a thin film made of a different liquid from drop. The drop and film liquids can be miscible or immiscible. Three general outcomes of deposition, crown formation without splashing, and splashing, were observed in the advancing phase of the drop impact onto a solid surface covered by either a miscible or an immiscible thin film. However, for a miscible film, a larger Weber number and film thickness are needed for the formation of a crown and splashing comparing with immiscible cases. The advancing phase of drop impact onto a thin immiscible film with a large viscosity is similar to that of drop impact onto a dry surface; for a miscible film viscous film, the behavior is far from that of a dry surface. The behavior of liquid lamella in the receding phase of drop impact onto a thin miscible film is reported for the first time. The results show that immiscibility is not a necessary condition for the existence of a receding phase. The existence of a receding phase is highly dependent on the interfacial tension between the drop and the film. The miscibility can significantly affect the receding morphology as it will cause mixing of the two liquids.

  8. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary.

    PubMed

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-06-01

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS 2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS 2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS 2 .

  9. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    NASA Astrophysics Data System (ADS)

    Chen, Jyun-Hong; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong

    2018-06-01

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as a field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in the FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not been previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  10. N -Sm A -Sm C phase transitions probed by a pair of elastically bound colloids

    NASA Astrophysics Data System (ADS)

    M, Muhammed Rasi; Zuhail, K. P.; Roy, Arun; Dhara, Surajit

    2018-03-01

    The competing effect of surface anchoring of dispersed microparticles and elasticity of nematic and cholesteric liquid crystals has been shown to stabilize a variety of topological defects. Here we study a pair of colloidal microparticles with homeotropic and planar surface anchoring across N -Sm A -Sm C phase transitions. We show that below the Sm A -Sm C phase transition the temperature dependence of interparticle separation (D ) of colloids with homeotropic anchoring shows a power-law behavior; D ˜(1-T /TA C) α , with an exponent α ≈0.5 . For colloids with planar surface anchoring the angle between the joining line of the centers of the two colloids and the far field director shows characteristic variation elucidating the phase transitions.

  11. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    PubMed

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indacochea, J. E.; Gattu, V. K.; Chen, X.

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviorsmore » of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite materials made with added lanthanide and uranium oxides. These analyses show the corrosion behaviors of the alloy/ceramic composite materials are very similar to the corrosion behaviors of multi-phase alloy waste forms, and that the presence of oxide inclusions does not impact the corrosion behaviors of the alloy phases. Mixing with metallic waste streams is beneficial to lanthanide and uranium oxides in that they react with Zr in the fuel waste to form highly durable zirconates. The measured corrosion behaviors suggest properly formulated composite materials would be suitable waste forms for combined metallic and oxide waste streams generated during electrometallurgical reprocessing of spent nuclear fuel. Electrochemical methods are suitable for evaluating the durability and modeling long-term behavior of composite waste forms: the degradation model developed for metallic waste forms can be applied to the alloy phases formed in the composite and an affinity-based mineral dissolution model can be applied to the ceramic phases.« less

  13. Grain boundary diffusion behaviors in hot-deformed Nd2Fe14B magnets by PrNd-Cu low eutectic alloys

    NASA Astrophysics Data System (ADS)

    Tang, Xu; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Yin, Wenzong; Lee, Don; Yan, Aru

    2018-01-01

    High coercivity of hot-deformed Nd2Fe14B magnets was obtained by grain boundary diffusion. Comparable squareness and similar magnetic properties for samples diffusing from side and pole surfaces show little discrepancies if quantities of the infiltrated PrNd-Cu low eutectic alloys is enough to obtain sufficient diffusion. However, the microstructures and higher characteristic peak ratios show preferable orientation of grains near surfaces of the sample diffused from side surfaces than that from pole surfaces. Amorphous Nd-rich phases and crystal Fe-rich phases were both observed in the diffused magnets. The enhancement of coercivity is considered to be resulted from grain boundary optimization and magnetic isolation which is caused by the thickened nonmagnetic intergranular phases.

  14. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less

  15. Intra- and inter-group coordination patterns reveal collective behaviors of football players near the scoring zone.

    PubMed

    Duarte, Ricardo; Araújo, Duarte; Freire, Luís; Folgado, Hugo; Fernandes, Orlando; Davids, Keith

    2012-12-01

    This study examined emergent coordination processes in collective patterns of behavior in 3 vs 3 sub-phases of the team sport of association football near the scoring zone. We identified coordination tendencies for the centroid (i.e., team center) and surface area (i.e., occupied space) of each sub-group of performers (n=20 plays). We also compared these kinematic variables at three key moments of play using mixed-model ANOVAs. The centroids demonstrated a strong symmetric relation that described the coordinated attacking/defending actions of performers in this sub-phase of play. Conversely, analysis of the surface area of each team did not reveal a clear coordination pattern between sub-groups. But the difference in the occupied area between the attacking and defending sub-groups significantly increased over time. Findings emphasized that major changes in sub-group behaviors occurred just before an assisted pass was made (i.e., leading to a loss of stability in the 3 vs 3 sub-phases). Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A review of molecular phase separation in binary self-assembled monolayers of thiols on gold surfaces

    NASA Astrophysics Data System (ADS)

    Ong, Quy; Nianias, Nikolaos; Stellacci, Francesco

    2017-09-01

    Binary self-assembled monolayers (SAMs) on gold surfaces have been known to undergo molecular phase separation to various degrees and have been subject to both experimental and theoretical studies. On gold nanoparticles in particular, binary SAMs ligand shells display intriguing morphologies. Consequently, unexpected behaviors of the nanoparticles with respect to their biological, chemical, and interfacial properties have been observed. It is critical that the phase separation of binary SAMs be understood at both molecular and macroscopic level to create, and then manipulate, the useful properties of the functionalized surfaces. We look into the current understanding of molecular phase separation of binary SAMs on gold surfaces, represented by Au(111) flat surfaces and Au nanoparticles, from both theoretical and experimental aspects. We point out shortcomings and describe several research strategies that will address them in the future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Pule Pileni.

  17. Computer-Generated Phase Diagrams for Binary Mixtures.

    ERIC Educational Resources Information Center

    Jolls, Kenneth R.; And Others

    1983-01-01

    Computer programs that generate projections of thermodynamic phase surfaces through computer graphics were used to produce diagrams representing properties of water and steam and the pressure-volume-temperature behavior of most of the common equations of state. The program, program options emphasizing thermodynamic features of interest, and…

  18. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    PubMed

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  19. Effect of Sequence Blockiness on the Morphologies of Surface-grafted Elastin-like Polypeptides

    NASA Astrophysics Data System (ADS)

    Albert, Julie; Sintavanon, Kornkanok; Mays, Robin; MacEwan, Sarah; Chilkoti, Ashutosh; Genzer, Jan

    2014-03-01

    The inter- and intra- molecular interactions among monomeric units of copolymers and polypeptides depend strongly on monomer sequence distribution and dictate the phase behavior of these species both in solution and on surfaces. To study the relationship between sequence and phase behavior, we have designed a series of elastin-like polypeptides (ELPs) with controlled monomer sequences that mimic copolymers with various co-monomer sequence distributions and attached them covalently to silicon substrates from buffer solutions at temperatures below and above the bulk ELPs' lower critical solution temperatures (LCSTs). The dependence of ELP grafting density on solution temperature was examined by ellipsometry and the resultant surface morphologies were examined in air and under water with atomic force microscopy. Depositions performed above the LCST resulted in higher grafting densities and greater surface roughness of ELPs relative to depositions carried out below the LCST. In addition, we are using gradient substrates to examine the effect of ELP grafting density on temperature responsiveness.

  20. Complex Source and Radiation Behaviors of Small Elements of Linear and Matrix Flexible Ultrasonic Phased-Array Transducers

    NASA Astrophysics Data System (ADS)

    Amory, V.; Lhémery, A.

    2008-02-01

    Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.

  1. Sintering behavior of ultrafine silicon carbide powders obtained by vapor phase reaction

    NASA Technical Reports Server (NTRS)

    Okabe, Y.; Miyachi, K.; Hojo, J.; Kato, A.

    1984-01-01

    The sintering behavior of ultrafine SiC powder with average particle size of about 0.01-0.06 microns produced by a vapor phase reaction of the Me4Si-H2 system was studied at the temperature range of 1400-2050 deg. It was found that the homogeneous dispersion of C on SiC particles is important to remove the surface oxide layer effectively. B and C and inhibitive effect on SiC grain growth.

  2. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy.

    PubMed

    Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E

    2014-12-01

    The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.

  3. Extension of the carotenoid test to superficially porous C18 bonded phases, aromatic ligand types and new classical C18 bonded phases.

    PubMed

    Lesellier, E

    2012-11-30

    The recent introduction of new stationary phases for liquid chromatography based on superficially porous particles, called core-shell or fused-core, dramatically improved the separation performances through very high efficiency, due mainly to reduced eddy diffusion. However, few studies have evaluated the retention and selectivity of C18 phases based on such particles, despite some retention order change reported in literature between some of these phases. The carotenoid test has been developed a few years ago in the goal to compare the chromatographic properties of C18 bonded phases. Based on the analysis of carotenoid pigments by using Supercritical Fluid Chromatography (SFC), it allows, with a single analysis, to measure three main properties of reversed phase chromatography stationary phases: hydrophobicity, polar surface activity and shape selectivity. Previous studies showed the effect of the endcapping treatment, the bonding density, the pore size, and the type of bonding (monomeric vs. polymeric) on these studied properties, and described the classification map used for a direct column comparison. It was applied to ten ODS superficially porous stationary phases, showing varied chromatographic behaviors amongst these phases. As expected, due to the lower specific surface area, these superficially porous phases are less hydrophobic than the fully porous one. In regards of the polar surface activity (residual silanols) and to the shape selectivity, some of these superficially porous phases display close chromatographic properties (Poroshell 120, Halo C18, Ascentis Express, Accucore C18, Nucleoshell C18 on one side and Aeris Wide pore, Aeris peptide and Kinetex XDB on the other side), whereas others, Kinetex C18 and Halo peptide ES C18 display more specific ones. Besides, they can be compared to classical fully porous phases, in the goal to improve method transfer from fully to superficially porous particles. By the way, the paper also report the extension of the test to other ligands such as naphtyl, cholester, phenyl-hexyl, or to the new ODS bonded phases, such as charge surface hybrid phases, High Strength Silica, and Hybrid ones, and also presents results for identical brands using different particle size, such as Luna and Synergi phases. Phenyl-hexyl and napthyl ligands show rather close properties, low hydrophobicity, high polar surface activity and specific shape selectivity, whereas, at the opposite, the cholester phase display a polymeric behavior and a high hydrophobicity. Finally, additional classical (fully porous particles) C18 bonded phases are also reported to complete the data set presented in previous papers. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Nucleation and Epitaxy-Mediated Phase Transformation of a Precursor Cadmium Carbonate Phase at the Calcite/Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riechers, Shawn L.; Rosso, Kevin M.; Kerisit, Sebastien N.

    Mineral nucleation can be catalyzed by the presence of mineral substrates; however, the mechanisms of heterogeneous nucleation remain poorly understood. A combination of in situ time-sequenced measurements and nano-manipulation experiments were performed using atomic force microscopy (AFM) to probe the mechanisms of heteroepitaxial nucleation of otavite (CdCO3) on calcite (CaCO3) single crystals that exposed the (10-14) surface. Otavite and calcite are isostructural carbonates that display a 4% lattice mismatch, based on their (10-14) surface areas. AFM observations revealed a two-stage process in the nucleation of cadmium carbonate surface precipitates. As evidenced by changes in height, shape, growth behavior, and frictionmore » signal of the precipitates, a precursor phase was observed to initially form on the surface and subsequently undergo an epitaxy-mediated phase transformation to otavite, which then grew epitaxially. Nano-manipulation experiments, in which the applied force was increased progressively until precipitates were removed from the surface, showed that adhesion of the precursor phase to the substrate was distinctively weaker than that of the epitaxial phase, consistent with that of an amorphous phase. These findings demonstrate for the first time that heterogeneous mineral nucleation can follow a non-classical pathway like that found in homogenous aqueous conditions.« less

  5. Nucleation Behavior of Oxygen-Acetylene Torch-Produced Diamond Films

    NASA Technical Reports Server (NTRS)

    Roberts, F. E.

    2003-01-01

    A mechanism is presented for the nucleation of diamond in the combustion flame environment. A series of six experiments and two associated simulations provide results from which the mechanism was derived. A substantial portion of the prior literature was reviewed and the data and conclusions from the previous experimenters were found to support the proposed mechanism. The nucleation mechanism builds on the work of previous researchers but presents an approach to nucleation in a detail and direction not fully presented heretofore. This work identifies the gas phase as the controlling environment for the initial formation steps leading to nucleation. The developed mechanism explains some of the difficulty which has been found in producing single crystal epitaxial films. An experiment which modified the initial gas phase precursor using methane and carbon monoxide is presented. Addition of methane into the precursor gases was found to be responsible for pillaring of the films. Atomic force microscopy surface roughness data provides a reasonable look at suppression of nucleation by carbon monoxide. Surface finish data was taken on crystals which were open to the nucleation environment and generally parallel to the substrate surface. The test surfaces were measured as an independent measure of the instantaneous nucleation environent. A gas flow and substrate experiment changed the conditions on the surface of the sample by increasing the gas flow rate while remaining on a consistent point of the atomic constituent diagram, and by changing the carbide potential of the substrate. Two tip modification experiments looked at the behavior of gas phase nucleation by modifying the shape and behavior of the flame plasma in which the diamond nucleation is suspected to occur. Diamond nucleation and growth was additionally examined using a high-velocity oxygen fuel gun and C3H6 as the fuel gas phase precursor with addition of carbon monoxide gas 01 addition of liquid toluene.

  6. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  7. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography.

    PubMed

    Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2014-02-21

    In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity.

    PubMed

    Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Projection of the Liquidus Surface of the Co - Sn - Bi System

    NASA Astrophysics Data System (ADS)

    Abilov, Ch. I.; Allazov, M. R.; Sadygova, S. G.

    2016-11-01

    The crystallization behavior of phases in alloys of the Co - Sn - Bi system is studied by the methods of differential thermal (DTA), x-ray phase (XRP) and x-ray diffraction (XRD) analyses and hardness measurement. The projection of the liquidus surface is plotted. The boundaries of layering, the development of the monovariant processes, and the coordinates of the nonvariant equilibrium compositions are determined. Compositions of (Co3Sn2)1 - x Bi x solid solutions suitable for the production of antifriction materials are suggested.

  10. Zn2+-dependent surface behavior of diacylglycerol pyrophosphate and its mixtures with phosphatidic acid at different pHs

    PubMed Central

    Villasuso, Ana L.; Wilke, Natalia; Maggio, Bruno; Machado, Estela

    2014-01-01

    Diacylglycerol pyrophosphate (DGPP) is a minor lipid that attenuates the phosphatidic acid (PA) signal, and also DGPP itself would be a signaling lipid. Diacylglycerol pyrophosphate is an anionic phospholipid with a pyrophosphate group attached to diacylglycerol that was shown to respond to changes of pH, thus affecting the surface organization of DGPP and their interaction with PA. In this work, we have investigated how the presence of Zn2+ modulates the surface organization of DGPP and its interaction with PA at acidic and basic pHs. Both lipids formed expanded monolayers at pHs 5 and 8. At pH 5, monolayers formed by DGPP became stiffer when Zn2+was added to the subphase, while the surface potential decreased. At this pH, Zn2+ induced a phase transition from an expanded to a condensed-phase state in monolayers formed by PA. Conversely, at pH 8 the effects induced by the presence of Zn2+ on the surface behaviors of the pure lipids were smaller. Thus, the interaction of the bivalent cation with both lipids was modulated by pH and by the ionization state of the polar head groups. Mixed monolayers of PA and DGPP showed a non-ideal behavior and were not affected by the presence of Zn2+ at pH 8. This could be explained considering that when mixed, the lipids formed a closely packed monolayer that could not be further modified by the cation. Our results indicate that DGPP and PA exhibit expanded- and condensed-phase states depending on pH, on the proportion of each lipid in the film and on the presence of Zn2+. This may have implications for a possible role of DGPP as a signaling lipid molecule. PMID:25120554

  11. Surface phase stability and surfactant behavior of InAsSb alloy surfaces.

    NASA Astrophysics Data System (ADS)

    Anderson, Evan M.; Lundquist, Adam M.; Pearson, Chris; Millunchick, Joanna M.

    InAsSb has the narrowest bandgap of any of the conventional III-V semiconductors: low enough for long wavelength infrared applications. Such devices are sensitive to point defects, which can be detrimental to performance. To control these defects, all aspects of synthesis must be considered, especially the atomic bonding at the surface. We use an ab initio statistical mechanics approach that combines density functional theory with a cluster expansion formalism to determine the stable surface reconstructions of Sb (As) on InAs (InSb) substrates. The surface phase diagram of Sb on InAs is dominated by Sb-dimer termination α2(2x4) and β2(2x4) and c(4x4). Smaller regions of mixed Sb-As dimers appear for high Sb chemical potentials and intermediate As chemical potential. We propose that InAsSb films could be grown on (2x4), which maintain bulk-like stoichiometry, to eliminate the formation of typically observed n-type defects. Scanning tunneling microscopy and reflection high energy electron diffraction confirm the calculated phase diagram. Based on these calculations, we propose a new mechanism for the surfactant behavior of Sb in these materials. We gratefully acknowledge Chakrapani Varanasi and the support of the Department of Defense, Army Research Office via the Grant Number W911NF-12-1-0338.

  12. Martian thermal tides from the surface to the atmosphere

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Withers, P.

    2017-12-01

    The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal tides at the surface, above that surface location and in the atmosphere. Thermal tides are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal tides. Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography. In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time. 2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating tides, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from "appropriately quiet" Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the pressure measurements from Curiosity in Gale Crater, and assess to what degree the "pure" tidal signatures are muddled by various complicating factors, e.g. topography.

  13. Martian thermal tides from the surface to the atmosphere

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, Christina; Withers, Paul

    2017-10-01

    The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal tides at the surface, above that surface location and in the atmosphere. Thermal tides are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal tides.Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography.In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time.2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating tides, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from “appropriately quiet” Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the pressure measurements from Curiosity in Gale Crater, and assess to what degree the “pure” tidal signatures are muddled by various complicating factors, e.g. topography.

  14. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, A., E-mail: alexander.aman@ovgu.de; Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg; Majcherek, S.

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression andmore » restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.« less

  15. Understanding the bond-energy, hardness, and adhesive force from the phase diagram via the electron work function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hao; Huang, Xiaochen; Li, Dongyang, E-mail: dongyang.li@ualberta.ca

    2014-11-07

    Properties of metallic materials are intrinsically determined by their electron behavior. However, relevant theoretical treatment involving quantum mechanics is complicated and difficult to be applied in materials design. Electron work function (EWF) has been demonstrated to be a simple but fundamental parameter which well correlates properties of materials with their electron behavior and could thus be used to predict material properties from the aspect of electron activities in a relatively easy manner. In this article, we propose a method to extract the electron work functions of binary solid solutions or alloys from their phase diagrams and use this simple approachmore » to predict their mechanical strength and surface properties, such as adhesion. Two alloys, Fe-Ni and Cu-Zn, are used as samples for the study. EWFs extracted from phase diagrams show same trends as experimentally observed ones, based on which hardness and surface adhesive force of the alloys are predicted. This new methodology provides an alternative approach to predict material properties based on the work function, which is extractable from the phase diagram. This work may also help maximize the power of phase diagram for materials design and development.« less

  16. New stationary phase for hydrophilic interaction chromatography to separate chito-oligosaccharides with degree of polymerization 2-6.

    PubMed

    Zhai, Xingchen; Zhao, Haitian; Zhang, Min; Yang, Xin; Sun, Jingming; She, Yongxin; Dong, Aijun; Zhang, Hua; Yao, Lei; Wang, Jing

    2018-04-01

    A new 3‑aminophenylboronic acid-functionalized stationary phase based on silica for hydrophilic interaction liquid chromatography (HILIC) was developed and showed great HILIC characteristics on separation for chito‑oligosaccharides. The material was synthesized by grafting 3‑aminophenylboronic acid group to silica, and it was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and thermal gravimetric analysis (TGA). Nucleobases and nucleosides were used to evaluate the retention property and to investigate retention mechanism by the models designed for description of partitioning and surface adsorption through adjusting ratio of water in the mobile phase. Parameters affecting chromatography behavior such as ionic strength, buffer pH and column temperature were also investigated. Results have indicated that the retention mechanism was a combination of partitioning and surface adsorption, and the hydrogen bond seemed to be the main force for the retention behavior. Finally, the new 3‑aminophenylboronic acid-functionalized based on silica stationary phase was applied to separate chito-oligosaccharide samples with optimized mobile phase conditions and showed acceptable chromatograms. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    PubMed

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  18. Surface energy effect on nonlinear buckling and postbuckling behavior of functionally graded piezoelectric cylindrical nanoshells under lateral pressure

    NASA Astrophysics Data System (ADS)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Zhao, Jing

    2018-04-01

    In this paper, the surface energy effect on the nonlinear buckling and postbuckling behavior of functionally graded piezoelectric (FGP) cylindrical nanoshells subjected to lateral pressure is studied based on the electro-elastic surface/interface theory together with von-Kármán-Donnell-type kinematics of nonlinearity. The total strain energy of the FGP nanoshell, including surface energy, is derived by considering the constitutive formulations of surface phase. The principle of minimum potential energy is utilized to establish the nonlinear governing differential equations, and the singular perturbation technique is employed to obtain the asymptotic solutions. Then, two sets of comparison are conducted to validate the present work, and some numerical examples are given to study the effects of surface parameters, power law index and aspect ratio on the buckling and postbuckling behavior of FGP nanoshells. The results show that the critical buckling load and postbuckling path of FGP nanoshell are significantly size-dependent.

  19. Influence of charge and flexibility on smectic phase formation in filamentous virus suspensions

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin R.; Fraden, Seth

    2007-07-01

    We present experimental measurements of the cholesteric-smectic phase transition of suspensions of charged semiflexible rods as a function of rod flexibility and surface charge. The rod particles consist of the bacteriophage M13 and closely related mutants, which are structurally identical to M13, but vary either in contour length and therefore ratio of persistence length to contour length, or surface charge. Surface charge is altered in two ways; by changing solution pH and by comparing M13 with fd virus, a virus which differs from M13 only by the substitution of a single charged amino acid for a neutral one per viral coat protein. Phase diagrams are measured as a function of particle length, particle charge, and ionic strength. The experimental results are compared with existing theoretical predictions for the phase behavior of flexible rods and charged rods.

  20. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. R. L.

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  1. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles

    NASA Astrophysics Data System (ADS)

    Kazemiabnavi, Saeed; Malik, Rahul; Orvananos, Bernardo; Abdellahi, Aziz; Ceder, Gerbrand; Thornton, Katsuyo

    2018-04-01

    Surface modification of active cathode particles is commonly observed in battery research as either a surface phase evolving during the cycling process, or intentionally engineered to improve capacity retention, rate capability, and/or thermal stability of the cathode material. Here, a continuum-scale model is developed to simulate the galvanostatic charge/discharge of a cathode particle with core-shell heterostructure. The particle is assumed to be comprised of a core material encapsulated by a thin layer of a second phase that has a different open-circuit voltage. The effect of the potential difference between the surface and bulk phases (Ω) on the kinetics of lithium intercalation and the galvanostatic charge/discharge profiles is studied at different values of Ω, C-rates, and exchange current densities. The difference between the Li chemical potential in the surface and bulk phases of the cathode particle results in a concentration difference between these two phases. This leads to a charge/discharge asymmetry in the galvanostatic voltage profiles, causing a decrease in the accessible capacity of the particle. These effects are more significant at higher magnitudes of surface-bulk potential difference. The proposed model provides detailed insight into the kinetics and voltage behavior of the intercalation/de-intercalation processes in core-shell heterostructure cathode particles.

  2. Improved corrosion resistance on biodegradable magnesium by zinc and aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Xu, Ruizhen; Yang, Xiongbo; Suen, Kai Wong; Wu, Guosong; Li, Penghui; Chu, Paul K.

    2012-12-01

    Magnesium and its alloys have promising applications as biodegradable materials, and plasma ion implantation can enhance the corrosion resistance by modifying the surface composition. In this study, suitable amounts of zinc and aluminum are plasma-implanted into pure magnesium. The surface composition, phases, and chemical states are determined, and electrochemical tests and electrochemical impedance spectroscopy (EIS) are conducted to investigate the surface corrosion behavior and elucidate the mechanism. The corrosion resistance enhancement after ion implantation is believed to stem from the more compact oxide film composed of magnesium oxide and aluminum oxide as well as the appearance of the β-Mg17Al12 phase.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Eric; Boreman, Glenn, E-mail: gboreman@uncc.edu; D'Archangel, Jeffrey

    Near- and far-field measurements of phase-ramped loop and patch structures are presented and compared to simulations. The far-field deflection measurements show that the phase-ramped structures can deflect a beam away from specular reflection, consistent with simulations. Scattering scanning near-field optical microscopy of the elements comprising the phase ramped structures reveals part of the underlying near-field phase contribution that dictates the far-field deflection, which correlates with the far-field phase behavior that was expected. These measurements provide insight into the resonances, coupling, and spatial phase variation among phase-ramped frequency selective surface (FSS) elements, which are important for the performance of FSS reflectarrays.

  4. Bimodality and regime behavior in atmosphere-ocean interactions during the recent climate change

    NASA Astrophysics Data System (ADS)

    Fallah, Bijan; Sodoudi, Sahar

    2015-06-01

    Maximum covariance analysis (MCA) and isometric feature mapping (Isomap) are applied to investigate the spatio-temporal atmosphere-ocean interactions otherwise hidden in observational data for the period of 1979-2010. Despite an established long-term surface warming trend for the whole northern hemisphere, sea surface temperatures (SST) in the East Pacific have remained relatively constant for the period of 2001-2010. Our analysis reveals that SST anomaly probability density function of the leading two Isomap components is bimodal. We conclude that Isomap shows the existence of two distinct regimes in surface ocean temperature, resembling the break and active phases of rainfall over equatorial land areas. These regimes occurred within two separated time windows during the past three decades. Strengthening of trade winds over Pacific was coincident with the cold phase of east equatorial Pacific. This pattern was reversed during the warm phase of east equatorial Pacific. The El Niño event of 1997/1998 happened within the transition mode between these two regimes and may be a trigger for the SST changes in the Pacific. Furthermore, we suggest that Isomap, compared with MCA, provides more information about the behavior and predictability of the inter-seasonal atmosphere-ocean interactions.

  5. Effects of the Treating Time on Microstructure and Erosion Corrosion Behavior of Salt-Bath-Nitrided 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji

    2013-08-01

    The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.

  6. Enhancement of bronze alloy surface properties by FSP second-phase particle incorporation

    DOE PAGES

    Ajayi, O. O.; Lorenzo-Martin, Cinta

    2017-06-15

    This study presents results of an experimental study to evaluate friction stir processing (FSP) with and without hard second-phase particle incorporation as a means to enhance surface properties and wear performance of C86300 manganese bronze alloy. FSP of flat bronze alloy specimens was conducted with hardened H-13 tool steel to create a 3-mm-thick processed surface layer. The process was also used to incorporate B 4C particles, thereby creating a metal-matrix composite layer on the alloy surface. FSP alone was observed to produce substantial reduction in grain size (from an initial value of 350 mu m to 1-5 μm). FSP withoutmore » particle incorporation resulted in modest surface hardening due to grain refinement and dispersion hardening. Under lubricated contact in block-on-ring testing with a hardened steel counter face, FSP produced substantial reduction (about 3X) in bronze wear after polishing of processing surface roughening. FSP with hard B 4C second-phase particle incorporation further reduced wear by up to 20X. The improvement in wear behavior is attributed to grain refinement and load shielding by second-phase particles, as determined by wear mechanism analysis.« less

  7. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  8. Origin of in-plane anisotropic resistivity in the antiferromagnetic phase of Fe1 +xTe

    NASA Astrophysics Data System (ADS)

    Kaneshita, Eiji; Tohyama, Takami

    2016-07-01

    Motivated by a recent experimental report on in-plane anisotropic resistivity in the double-striped antiferromagnetic phase of FeTe, we theoretically calculate in-plane resistivity by applying a memory function approach to the ordered phase. We find that the resistivity is larger along an antiferromagnetically ordered direction than along a ferromagnetically ordered one, consistent with experimental observation. The anisotropic results are mainly contributed from Drude weight, whose behavior is attributed to Fermi surface topology of the ordered phase.

  9. Impact of asymmetric martensite and austenite nucleation and growth behavior on the phase stability and hysteresis of freestanding shape-memory nanoparticles

    NASA Astrophysics Data System (ADS)

    Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg

    2018-03-01

    Martensitic transformations in nanoscaled shape-memory alloys exhibit characteristic features absent for the bulk counterparts. Detailed understanding is required for applications in micro- and nanoelectromechanical systems, and experimental limitations render atomistic simulation an important complementary approach. Using a recently developed, accurate potential we investigate the phase transformation in freestanding Ni-Ti shape-memory nanoparticles with molecular-dynamics simulations. The results confirm that the decrease in the transformation temperature with decreasing particle size is correlated with an overstabilization of the austenitic surface energy over the martensitic surface energy. However, a detailed atomistic analysis of the nucleation and growth behavior reveals an unexpected difference in the mechanisms determining the austenite finish and martensite start temperature. While the austenite finish temperature is directly affected by a contribution of the surface energy difference, the martensite start temperature is mostly affected by the transformation strain, contrary to general expectations. This insight not only explains the reduced transformation temperature but also the reduced thermal hysteresis in freestanding nanoparticles.

  10. Ion Implantation Metallurgy: A Study of the Composition, Structure and Corrosion Behavior of Surface Alloys Formed by Ion Implantation.

    DTIC Science & Technology

    1980-04-01

    spots are due to the " phase ). Dark field imaging of the a" phase shows a large density of small precipitates uniformly distributed in the ferrite . In...density of defect structures and small precipitates of Fe 16N2 (a"). Although there exists some evidence of martensitic transformation in aged speci...implantation into 304 stainless steel ha-s been shown to produce a micro- crystalline surface alloy saturated with P. Combined electrochemical and XPS studies

  11. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  12. Crystallization features of normal alkanes in confined geometry.

    PubMed

    Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin

    2014-01-21

    How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D) confining environment. We have studied multiple parameters of these microencapsulated n-alkanes, including surface freezing, metastability of the rotator phase, and the phase separation behaviors of n-alkane mixtures using differential scanning calorimetry (DSC), temperature-dependent X-ray diffraction (XRD), and variable-temperature solid-state nuclear magnetic resonance (NMR). Our investigations revealed new direct evidence for the existence of surface freezing in microencapsulated n-alkanes. By examining the differences among chain packing and nucleation kinetics between bulk alkane solid solutions and their microencapsulated counterparts, we also discovered a mechanism responsible for the formation of a new metastable bulk phase. In addition, we found that confinement suppresses lamellar ordering and longitudinal diffusion, which play an important role in stabilizing the binary n-alkane solid solution in microcapsules. Our work also provided new insights into the phase separation of other mixed system, such as waxes, lipids, and polymer blends in confined geometry. These works provide a profound understanding of the relationship between molecular structure and material properties in the context of crystallization and therefore advance our ability to improve applications incorporating polymeric and molecular materials.

  13. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.

  14. Separation of aqueous two-phase polymer systems in microgravity

    NASA Technical Reports Server (NTRS)

    Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.

    1984-01-01

    Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.

  15. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  16. The influence of spray-drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release.

    PubMed

    Meeus, Joke; Lenaerts, Maité; Scurr, David J; Amssoms, Katie; Davies, Martyn C; Roberts, Clive J; Van Den Mooter, Guy

    2015-04-01

    For ternary solid dispersions, it is indispensable to characterize their structure, phase behavior, and the spatial distribution of the dispersed drug as this might influence the release profile and/or stability of these formulations. This study shows how formulation (feed concentration) and process (feed rate, inlet air temperature, and atomizing air pressure) parameters can influence the characteristics of ternary spray-dried solid dispersions. The microspheres considered here consist of a poly(lactic-co-glycolic acid) (PLGA) surface layer and an underlying polyvinylpyrrolidone (PVP) phase. A poorly soluble active pharmaceutical ingredient (API) was molecularly dispersed in this matrix. Differences were observed in component miscibility, phase heterogeneity, particle size, morphology, as well as API surface coverage for selected spray-drying parameters. Observed differences are likely because of changes in the droplet generation, evaporation, and thus particle formation processes. However, varying particle characteristics did not influence the drug release of the formulations studied, indicating the robustness of this approach to produce particles of consistent drug release characteristics. This is likely because of the fact that the release is dominated by diffusion from the PVP layer through pores in the PLGA surface layer and that observed differences in the latter have no influence on the release. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. STRUCTURAL, SURFACE MORPHOLOGICAL AND MAGNETIC STUDIES OF Zn1-xFexS (x=0.00-0.10) DILUTED MAGNETIC SEMICONDUCTORS GROWN BY CO-PRECIPITATION METHOD

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Ghazanfar, M.; Arooj, N.; Riaz, S.; Hussain, S. Sajjad; Naseem, S.

    We have fabricated Zn1-xFexS (x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10) diluted magnetic semiconductors using co-precipitation method. X-ray diffraction patterns depict that Zn1-xFexS appears as a dominant phase with cubic zinc blende structure and nanoscale crystallite size. In addition, a secondary phase of rhombohedral ZnS also appears; however, no additional phase arises that primarily belongs to Fe dopant. Using Debye-Scherrer relation, the crystallite size is found to be in the range of 20-27nm, which is in good agreement with the crystallite size calculated using the Williamson-Hall (WH) plot method. The appearance of secondary phase provoked to study the residual strain using Stokes-Wilson equation, which is nearly consistent to that observed using WH plot method. The surface morphology, revealed using scanning electron microscopy, depicts non-uniform surface structure with a variety of grains and void dimensions. Hysteresis loops measured for Zn1-xFexS at room temperature (RT) illustrate a paramagnetic behavior at higher fields; however, small ferromagnetic behavior is evident due to the small openings of the measured hysteresis loops around the origin. The measured RT ferromagnetism reveals the potential spintronic device applications of the studied diluted magnetic semiconductors.

  18. Synthesis and amphiphilic properties of decanoyl esters of tri- and tetraethylene glycol.

    PubMed

    Zhu, Ying; Molinier, Valérie; Queste, Sébastien; Aubry, Jean-Marie

    2007-08-15

    Well-defined decanoyl triethylene glycol ester and decanoyl tetraethylene glycol ester were synthesized and compared to their ether counterparts (C(10)E(4) and C(10)E(3)). Their physicochemical properties i.e. critical micelle concentrations (CMC), cloud points, and equilibrium surface tensions were determined. Binary water-surfactant phase behavior was also studied by polarized optical microscopy. The stability of the ester bond was determined by investigating alkaline hydrolysis of the compounds. It was found that CMC, cloud point and equilibrium surface tension are roughly the same for corresponding ethers and esters. In the binary diagram, the esters form only lamellar phases, the area of which is smaller than that of the ether counterparts. These different behaviors can be related to the modification of the molecular conformation induced by the replacement of the ether group by the ester group.

  19. Approach to knowledge of the interaction between the constituents of contact lenses and ocular tears: mixed monolayers of poly(methyl methacrylate) and dipalmitoyl phosphatidyl choline.

    PubMed

    Miñones Conde, M; Conde, O; Trillo, J M; Miñones, J

    2011-04-05

    Mixed monolayers of poly(methyl methacrylate) (PMMA), the main component of hard contact lenses, and dipalmitoyl phosphatidyl choline (DPPC), a characteristic phospholipidic constituent of ocular tear films, were selected as an in vitro model in order to observe the behavior of contact lenses on the eye. Using Langmuir monolayer and Brewster angle microscopy (BAM) techniques, the interaction between both components was analyzed from the data of surface pressure-area isotherms, compressional modulus-surface pressure, and relative film thickness versus time elapsed from the beginning of compression, together with BAM images. Regardless of the surface pressure at which the molecular/monomer areas (A(m)) were recorded, the A(m) mole fractions of PMMA (X(PMMA)) plots show that the experimental results match the theoretical values calculated from additivity rule A(m) = X(PMMA)A(PMMA) + X(DPPC)A(DPPC). The application of the Crisp phase rule to the phase diagram of the PMMA-DPPC system can explain the existence of a mixed monolayer made up of miscible components with ideal behavior at surface pressures below 25 mN/m. However, at very high surface pressures, when collapse is reached (at 60 mN/m), the single collapsed components are segregated into two independent phases. These results allows us to argue that PMMA hard contact lenses in the eye do not alter the structural characteristics of the phospholipid (DPPC) in tears.

  20. The effect of changes in surface wettability on two-phase saturated flow in horizontal replicas of single natural fractures.

    PubMed

    Bergslien, Elisa; Fountain, John

    2006-12-15

    By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.

  1. Investigations on transparent liquid-miscibility gap systems

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nishioka, G.; Ross, S.

    1979-01-01

    Sedimentation and phase separation is a well known occurrence in monotectic or miscibility gap alloys. Previous investigations indicate that it may be possible to prepare such alloys in a low-gravity space environment but recent experiments indicate that there may be nongravity dependent phase separation processes which can hinder the formation of such alloys. Such phase separation processes are studied using transparent liquid systems and holography. By reconstructing holograms into a commercial-particle-analysis system, real time computer analysis can be performed on emulsions with diameters in the range of 5 micrometers or greater. Thus dynamic effects associated with particle migration and coalescence can be studied. Characterization studies on two selected immiscible systems including an accurate determination of phase diagrams, surface and interfacial tension measurements, surface excess and wetting behavior near critical solution temperatures completed.

  2. Melting of the Dipalmitoylphosphatidylcholine Monolayer.

    PubMed

    Xu, Lu; Bosiljevac, Gordon; Yu, Kyle; Zuo, Yi Y

    2018-04-17

    Langmuir monolayer self-assembled at the air-water interface represents an excellent model for studying phase transition and lipid polymorphism in two dimensions. Compared with numerous studies of phospholipid phase transitions induced by isothermal compression, there are very scarce reports on two-dimensional phase transitions induced by isobaric heating. This is mainly due to technical difficulties of continuously regulating temperature variations while maintaining a constant surface pressure in a classical Langmuir-type film balance. Here, with technological advances in constrained drop surfactometry and closed-loop axisymmetric drop shape analysis, we studied the isobaric heating process of the dipalmitoylphosphatidylcholine (DPPC) monolayer. It is found that temperature and surface pressure are two equally important intensive properties that jointly determine the phase behavior of the phospholipid monolayer. We have determined a critical point of the DPPC monolayer at a temperature of 44 °C and a surface pressure of 57 mN/m. Beyond this critical point, no phase transition can exist in the DPPC monolayer, either by isothermal compression or by isobaric heating. The melting process of the DPPC monolayer studied here provides novel insights into the understanding of a wide range of physicochemical and biophysical phenomena, such as surface thermodynamics, critical phenomena, and biophysical study of pulmonary surfactants.

  3. A comparison of the physical and chemical processes governing the CO2 laser-induced pyrolysis and deflagration of XM39 and M43

    NASA Astrophysics Data System (ADS)

    Fetherolf, B. L.; Litzinger, T. A.; Lu, Y.-C.; Kuo, Kenneth K.

    1993-11-01

    The RDX-based composite propellants XM39 and M43 are similar in composition but exhibit significant differences in burning behavior. Experimental studies of the physical and chemical processes governing the CO2 laser-induced pyrolysis and deflagration of these two materials were conducted to characterize these differences in behavior and to gain some insight into the mechanisms responsible for the observed differences. Tests were conducted at one, three, and five atmospheres and laser heat fluxes of 100 - 1000 W/sq cm. Quantitative gaseous species profiles were measured with a microprobe/mass spectrometer system and both gas-phase temperature profiles and surface temperatures were measured with fine-wire thermocouples. Both materials exhibited similar gas-phase reaction chemistry to that of RDX with a primary nonluminous flame zone due to the reaction of CH2O and NO2 and a final luminous flame zone where HCN, NO, and a smaller amount of N2O were consumed to form the final products. However, the gas-phase zonal structure was significantly stretched out in comparison to the structure for pure RDX. The luminous flame was only observed above three atmospheres for M43 and above five atmospheres for XM39. Species and temperature measurements at the surfaces of the pyrolyzing propellants appeared to indicate more reaction in the condensed phase (i.e., melt layer) for M43 than for XM39. Subsurface gas species were measured by placing a probe within a hole drilled partway through a sample of XM39. The results indicated substantially less H2O, CH2O, HCN, and NO2 than were measured directly above the surface. This result and the observation of a temperature rise of about 100 degrees within the first 150 microns above the surface for both XM39 and M43 support the possible existence of a thin gas-phase reaction zone directly above the propellant surface.

  4. A Laterally-Mobile Mixed Polymer/Polyelectrolyte Brush Undergoes a Macroscopic Phase Separation

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoung; Park, Hae-Woong; Tsouris, Vasilios; Choi, Je; Mustafa, Rafid; Lim, Yunho; Meron, Mati; Lin, Binhua; Won, You-Yeon

    2013-03-01

    We studied mixed PEO and PDMAEMA brushes. The question we attempted to answer was: When the chain grafting points are laterally mobile, how will this lateral mobility influence the structure and phase behavior of the mixed brush? Two different model mixed PEO/PDMAEMA brush systems were prepared: a mobile mixed brush by spreading a mixture of two diblock copolymers, PEO-PnBA and PDMAEMA-PnBA, onto the air-water interface, and an inseparable mixed brush using a PEO-PnBA-PDMAEMA triblock copolymer having respective brush molecular weights matched to those of the diblock copolymers. These two systems were investigated by surface pressure-area isotherm, X-ray reflectivity and AFM imaging measurements. The results suggest that the mobile mixed brush undergoes a lateral macroscopic phase separation at high chain grafting densities, whereas the inseparable system is only microscopically phase separated under comparable brush density conditions. We also conducted an SCF analysis of the phase behavior of the mixed brush system. This analysis further supported the experimental findings. The macroscopic phase separation observed in the mobile system is in contrast to the microphase separation behavior commonly observed in two-dimensional laterally-mobile small molecule mixtures.

  5. VOLTAGE CLAMP BEHAVIOR OF IRON-NITRIC ACID SYSTEM AS COMPARED WITH THAT OF NERVE MEMBRANE

    PubMed Central

    Tasaki, I.; Bak, A. F.

    1959-01-01

    The current-voltage relation for the surface layer of an iron wire immersed in nitric acid was investigated by the voltage clamp technique. Comparing the phase of nitric acid to the axoplasm and the metallic phase to the external fluid medium for the nerve fiber, a striking analogy was found between the voltage clamp behavior of the iron-nitric acid system and that of the nerve membrane. The current voltage curve was found to consist of three parts: (a) a straight line representing the behavior of the resting (passive) membrane, (b) a straight line representing the fully excited (active) state, and (c) an intermediate zone connecting (a) and (b). It was shown that in the intermediate zone, the surface of iron consisted of a fully active patch (or patches) surrounded by a remaining resting area. The phenomenon corresponding to "repetitive firing of responses under voltage clamp" in the nerve membrane was demonstrated in the intermediate zone. The behavior of the cobalt electrode system was also investigated by the same technique. An attempt was made to interpret the phenomenon of initiation and abolition of an active potential on the basis of the thermodynamics of irreversible processes. PMID:13654740

  6. The COSIMA experiments and their verification, a data base for the validation of two phase flow computer codes

    NASA Astrophysics Data System (ADS)

    Class, G.; Meyder, R.; Stratmanns, E.

    1985-12-01

    The large data base for validation and development of computer codes for two-phase flow, generated at the COSIMA facility, is reviewed. The aim of COSIMA is to simulate the hydraulic, thermal, and mechanical conditions in the subchannel and the cladding of fuel rods in pressurized water reactors during the blowout phase of a loss of coolant accident. In terms of fuel rod behavior, it is found that during blowout under realistic conditions only small strains are reached. For cladding rupture extremely high rod internal pressures are necessary. The behavior of fuel rod simulators and the effect of thermocouples attached to the cladding outer surface are clarified. Calculations performed with the codes RELAP and DRUFAN show satisfactory agreement with experiments. This can be improved by updating the phase separation models in the codes.

  7. Analysis of Surface and Bulk Behavior in Ni-Pd Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Rondald D.

    2003-01-01

    The most salient features of the surface structure and bulk behavior of Ni-Pd alloys have been studied using the BFS method for alloys. Large-scale atomistic simulations were performed to investigate surface segregation profiles as a function of temperature, crystal face, and composition. Pd enrichment of the first layer was observed in (111) and (100) surfaces, and enrichment of the top two layers occurred for (110) surfaces. In all cases, the segregation profile shows alternate planes enriched and depleted in Pd. In addition, the phase structure of bulk Ni-Pd alloys as a function of temperature and composition was studied. A weak ordering tendency was observed at low temperatures, which helps explain the compositional oscillations in the segregation profiles. Finally, based on atom-by-atom static energy calculations, a comprehensive explanation for the observed surface and bulk features will be presented in terms of competing chemical and strain energy effects.

  8. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Technical Monitor); Yeboah, Yaw D.

    2003-01-01

    This project was conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aimed at providing data to supplement the ongoing NASA research activities on flame spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. During this investigation, the detailed physics of flame spread across liquid pools was revealed using particle image velocimetry (PIV), 3-dimensional Laser Doppler velocimetry (LDV) and high-speed video imaging system (HSVS). Flow fields (front and side views) of both the liquid and gas phases were visually investigated for the three subflash regimes of flame spread behavior. Some interesting findings obtained from the front and side views on flame spread across butanol pools are presented. PIV results showed the size of the transient vortex in the liquid phase near the flame front varied with the initial pool temperature. The transient vortex ahead of the flame front in the gas phase was, for the first time, clearly observed located just within 0-3 mm above the liquid surface and its size was dependent on the initial pool temperature. We calculated the flow velocity at 1 mm below the liquid surface near the flame front and inferred the generation mechanism of the vortex in the gas phase. Finally, after comparison of the flow velocity of the liquid surface and the flame spread rate, a reasonable explanation to the formation mechanism of the pulsating characteristic was proposed. This explanation is compatible with the previous numerical calculations and deductions.

  9. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-01

    Several studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.

  10. Critical behavior of phase interfaces in porous media: Analysis of scaling properties with the use of noncoherent and coherent light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D. A., E-mail: zimnykov@sgu.ru; Sadovoi, A. V.; Vilenskii, M. A.

    2009-02-15

    Image sequences of the surface of disordered layers of porous medium (paper) obtained under noncoherent and coherent illumination during capillary rise of a liquid are analyzed. As a result, principles that govern the critical behavior of the interface between liquid and gaseous phases during its pinning are established. By a cumulant analysis of speckle-modulated images of the surface and by the statistical analysis of binarized difference images of the surface under noncoherent illumination, it is shown that the macroscopic dynamics of the interface at the stage of pinning is mainly controlled by the power law dependence of the appearance ratemore » of local instabilities (avalanches) of the interface on the critical parameter, whereas the growth dynamics of the local instabilities is controlled by the diffusion of a liquid in a layer and weakly depends on the critical parameter. A phenomenological model is proposed for the macroscopic dynamics of the phase interface for interpreting experimental data. The values of critical indices are determined that characterize the samples under test within this model. These values are compared with the results of numerical simulation for discrete models of directed percolation corresponding to the Kardar-Parisi-Zhang equation.« less

  11. Surface phase behavior of di-n-tetradecyl hydrogen phosphate in Langmuir monolayers at the air-water interface.

    PubMed

    Hossain, Md Mufazzal; Iimura, Ken-Ichi; Kato, Teiji

    2006-10-01

    Surface phase behavior of di-n-tetradecyl hydrogen phosphate, DTP, has been studied by measuring pi-A isotherms with a film balance and observing monolayer morphology with a Brewster angle microscopy (BAM) at different temperatures. A generalized phase diagram, which shows a triple point for gas (G), liquid-expanded (LE) and liquid-condensed (LC) phases at about 32 degrees C, is constructed for the amphiphile. Below the triple point, a first-order G-LC phase transition has been shown to occur, whereas a first-order G-LE phase transition followed by another first-order LE-LC transition has been found to take place at a temperature above the triple point. The amphiphile shows the fingering LC domains with uniform brightness indicating the presence of untilted molecules. The domain shapes are independent of the change in temperature and compression rate. The existence of similar fingering domains over a wide range of temperature is rather uncommon in the monolayer systems and is considered to be due to the restricted movement of the molecules incorporating into the LC phase. Because the two-alkyl chains are directly attached to two covalent bonds of the phosphate head group, the rearrangement of the molecules, which is an essential condition for the circular domain formation, needs the movement of the whole molecules including the hydration sphere. The difficulty related to such a movement of the molecules causes fingering domains, which are independent of external variables.

  12. Modes of supraglacial lake drainage and dynamic ice sheet response

    NASA Astrophysics Data System (ADS)

    Das, S. B.; Behn, M. D.; Joughin, I. R.

    2011-12-01

    We investigate modes of supraglacial lake drainage using geophysical, ground, and remote sensing observations over the western margin of the Greenland ice sheet. Lakes exhibit a characteristic life cycle defined by a pre-drainage, drainage, and post-drainage phase. In the pre-drainage phase winter snow fills pre-existing cracks and stream channels, efficiently blocking past drainage conduits. As temperatures increase in the spring, surface melting commences, initially saturating the snow pack and subsequently forming a surface network of streams that fills the lake basins. Basins continue to fill until lake drainage commences, which for individual lakes occurs at different times depending on the previous winter snow accumulation and summer temperatures. Three styles of drainage behavior have been observed: (1) no drainage, (2) slow drainage over the side into an adjacent pre-existing crack, and (3) rapid drainage through a new crack formed beneath the lake basin. Moreover, from year-to-year individual lakes exhibit different drainage behaviors. Lakes that drain slowly often utilize the same outflow channel for multiple years, creating dramatic canyons in the ice. Ultimately, these surface channels are advected out of the lake basin and a new channel forms. In the post-drainage phase, melt water continues to access the bed typically through a small conduit (e.g. moulin) formed near a local topographic minimum along the main drainage crack, draining the lake catchment throughout the remainder of the melt season. This melt water input to the bed leads to continued basal lubrication and enhanced ice flow compared to background velocities. Lakes that do not completely drain freeze over to form a surface ice layer that persists into the following year. Our results show that supraglacial lakes show a spectrum of drainage behaviors and that these styles of drainage lead to varying rates and timing of surface meltwater delivery to the bed resulting in different dynamic ice responses.

  13. Wetting of silicone oil onto a cell-seeded substrate

    NASA Astrophysics Data System (ADS)

    Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung

    2017-11-01

    Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.

  14. Rough surfaces: Is the dark stuff just shadow?. ;Who knows what evil lurks in the hearts of men? The shadow knows!;☆

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.

    2017-06-01

    Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "powerlaw" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes in to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.

  15. Rough Surfaces: Is the Dark Stuff Just Shadow?: "Who knows what evil lurks in the hearts of men? The shadow knows!"

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Chambers, Lindsey B.; Hendrix, Amanda R.

    2016-01-01

    Remote observations of the surfaces of airless planetary objects are fundamental to inferring the physical structure and compositional makeup of the surface material. A number of forward models have been developed to reproduce the photometric behavior of these surfaces, based on specific, assumed structural properties such as macroscopic roughness and associated shadowing. Most work of this type is applied to geometric albedos, which are affected by complicated effects near zero phase angle that represent only a tiny fraction of the net energy reflected by the object. Other applications include parameter fits to resolved portions of some planetary surface as viewed over a range of geometries. The spherical albedo of the entire object (when it can be determined) captures the net energy balance of the particle more robustly than the geometric albedo. In most treatments involving spherical albedos, spherical albedos and particle phase functions are often treated as if they are independent, neglecting the effects of roughness. In this paper we take a different approach. We note that whatever function captures the phase angle dependence of the brightness of a realistic rough, shadowed, flat surface element relative to that of a smooth granular surface of the same material, it is manifested directly in both the integral phase function and the spherical albedo of the object. We suggest that, where broad phase angle coverage is possible, spherical albedos may be easily corrected for the effects of shadowing using observed (or assumed) phase functions, and then modeled more robustly using smooth-surface regolith radiative transfer models without further imposed (forward-modeled) shadowing corrections. Our approach attributes observed "power law" phase functions of various slope (and "linear" ranges of magnitude-vs.-phase angle) to shadowing, as have others, and goes on to suggest that regolith-model-based inferences of composition based on shadow-uncorrected spherical albedos overestimate the amount of absorbing material contained in the regolith.

  16. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    NASA Astrophysics Data System (ADS)

    Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.

    2013-05-01

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe x Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.

  17. The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    NASA Astrophysics Data System (ADS)

    Chandler, David; Limmer, David

    2013-03-01

    Our detailed and controlled studies of free energy surfaces for models of water find no evidence for reversible polyamorphism, and a general theoretical analysis of the phase behavior of cold water in nano pores shows that measured behaviors of these systems reflect surface modulation and dynamics of ice, not a liquid-liquid critical point. A few workers reach different conclusions, reporting evidence of a liquid-liquid critical point in computer simulations of supercooled water. In some cases, it appears that these contrary results are based upon simulation algorithms that are inconsistent with principles of statistical mechanics, such as using barostats that do not reproduce the correct distribution of volume fluctuations. In other cases, the results appear to be associated with difficulty equilibrating the supercooled material and mistaking metastability for coarsening of the ordered ice phase. In this case, sufficient information is available for us to reproduce the contrary results and to establish that they are artifacts of finite time sampling. This finding leads us to the conclusion that two distinct, reversible liquid phases do not exist in models of supercooled water.

  18. Microstructure and corrosion behavior of laser processed NiTi alloy.

    PubMed

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Moisture-Induced Amorphous Phase Separation of Amorphous Solid Dispersions: Molecular Mechanism, Microstructure, and Its Impact on Dissolution Performance.

    PubMed

    Chen, Huijun; Pui, Yipshu; Liu, Chengyu; Chen, Zhen; Su, Ching-Chiang; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Foster, Kimberly; Gudmundsson, Olafur; Qian, Feng

    2018-01-01

    Amorphous phase separation (APS) is commonly observed in amorphous solid dispersions (ASD) when exposed to moisture. The objective of this study was to investigate: (1) the phase behavior of amorphous solid dispersions composed of a poorly water-soluble drug with extremely low crystallization propensity, BMS-817399, and PVP, following exposure to different relative humidity (RH), and (2) the impact of phase separation on the intrinsic dissolution rate of amorphous solid dispersion. Drug-polymer interaction was confirmed in ASDs at different drug loading using infrared (IR) spectroscopy and water vapor sorption analysis. It was found that the drug-polymer interaction could persist at low RH (≤75% RH) but was disrupted after exposure to high RH, with the advent of phase separation. Surface morphology and composition of 40/60 ASD at micro-/nano-scale before and after exposure to 95% RH were also compared. It was found that hydrophobic drug enriched on the surface of ASD after APS. However, for the 40/60 ASD system, the intrinsic dissolution rate of amorphous drug was hardly affected by the phase behavior of ASD, which may be partially attributed to the low crystallization tendency of amorphous BMS-817399 and enriched drug amount on the surface of ASD. Intrinsic dissolution rate of PVP decreased resulting from APS, leading to a lower concentration in the dissolution medium, but supersaturation maintenance was not anticipated to be altered after phase separation due to the limited ability of PVP to inhibit drug precipitation and prolong the supersaturation of drug in solution. This study indicated that for compounds with low crystallization propensity and high hydrophobicity, the risk of moisture-induced APS is high but such phase separation may not have profound impact on the drug dissolution performance of ASDs. Therefore, application of ASD technology on slow crystallizers could incur low risks not only in physical stability but also in dissolution performance. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Multiphase materials with lignin. VI. Effect of cellulose derivative structure on blend morphology with lignin

    Treesearch

    Timothy G. Rials; Wolfgang G. Glasser

    1989-01-01

    Polymeric blends of lignin with ethyl cellulose (EC) and cellulose acetate/butyrate (CAB) prepared by solution casting from dioxane. Fracture surface analysis by scanning electron microscopy revealed phase separation when the lignin content exceeded 10% for blends with EC and 5% in the CAB system. While this phase behavior is as predicted for the EC blends, a greater...

  1. Phase behavior of Langmuir monolayers with ionic molecular heads: Molecular simulations

    NASA Astrophysics Data System (ADS)

    González-Castro, Carlos A.; Ramírez-Santiago, Guillermo

    2015-03-01

    We carried out Monte Carlo simulations in the N ,Π,T ensemble of a Langmuir monolayer coarse-grained molecular model. Considering that the hydrophilic groups can be ionized by modulating acid-base interactions, here we study the phase behavior of a model that incorporates the short-range steric and long-range ionic interactions. The simulations were carried out in the reduced temperature range 0.1 ≤T*<4.0 , where there is a competition of these interactions. Different order parameters were calculated and analyzed for several values of the reduced surface pressure in the interval, 1 ≤Π*≤40. For most of the surface pressures two directions of molecular tilt were found: (i) towards the nearest neighbor (NN) at low temperatures, T*<0.7, and most of the values of Π* and (ii) towards next-nearest neighbors (NNN) in the temperature interval 0.7 ≤T*<1.1 for Π*<25. We also found the coexistence of the NN and NNN at intermediate temperatures and Π*>25 . A low-temperature reentrant disorder-order-disorder transition in the positions of the molecular heads and in the collective tilt of the tails was found for all the surface pressure values. It was also found that the molecular tails arranged forming "rotating patterns" in the temperature interval, 0.5

  2. Transient behavior of granular materials with symmetric conditions for tumbler shapes and fill fractions

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas; Si, Yun

    2014-11-01

    The typical granular motion in circular tumblers is considered steady-state since there are no features to disrupt the top surface layer dimension. In polygon tumblers, however, the flowing layer is perpetually changing length, which creates unsteady conditions with corresponding change in the flow behavior. Prior work showed the minimization of free surface energy is independent of tumbler dimension, particle size, and rotation rate. This subsequent research reports on experiments where dimensional symmetry of the free surface in triangular and square tumblers with varying fill fractions do not necessarily produce the symmetric flow behaviors. Results of the quasi-2D tumbler experiment show that other dimensions aligned with gravity and the instantaneous free surface influence the phase when extrema for angle of repose and other flow features occur. The conclusion is that 50% fill fraction may produce geometric symmetry of dimensions, but the symmetry point of flow likely occurs at a lower fill fraction.

  3. Motion of the surface of the human tympanic membrane measured with stroboscopic holography

    PubMed Central

    Cheng, Jeffrey Tao; Aarnisalo, Antti A.; Harrington, Ellery; Hernandez-Montes, Maria del Socorro; Furlong, Cosme; Merchant, Saumil N.; Rosowski, John J.

    2010-01-01

    Sound-induced motion of the surface of the human tympanic membrane (TM) was studied by stroboscopic holographic interferometery, which measures the amplitude and phase of the displacement at each of about 40000 points on the surface of the TM. Measurements were made with tonal stimuli of 0.5, 1, 4 and 8 kHz. The magnitude and phase of the sinusoidal displacement of the TM at each driven frequency were derived from the fundamental Fourier component of the raw displacement data computed from stroboscopic holograms of the TM recorded at eight stimulus phases. The correlation between the Fourier estimates and measured motion data was generally above 0.9 over the entire TM surface. We used three data presentations: (i) Plots of the phasic displacements along a single chord across the surface of the TM, (ii) Phasic surface maps of the displacement of the entire TM surface, and (iii) Plots of the Fourier derived amplitude and phase-angle of the surface displacement along four diameter lines that define and bisect each of the four quadrants of the TM. These displays led to some common conclusions: At 0.5 and 1 kHz, the entire TM moved roughly in-phase with some small phase delay apparent between local areas of maximal displacement in the posterior half of the TM. At 4 and 8 kHz, the motion of the TM became more complicated with multiple local displacement maxima arranged in rings around the manubrium. The displacements at most of these maxima were roughly in-phase, while some moved out-of-phase. Superposed on this in- and out-of-phase behavior were significant cyclic variations in phase with location of less than 0.2 cycles or occasionally rapid half-cycle step-like changes in phase. The high frequency displacement amplitude and phase maps discovered in this study can not be explained by any single wave motion, but are consistent with a combination of low and higher order modal motions plus some small traveling-wave-like components. The observations of the dynamics of TM surface motion from this study will help us better understand the sound-receiving function of the TM and how it couples sound to the ossicular chain and inner ear. PMID:20034549

  4. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  5. Osteoselection supported by phase separated polymer blend films.

    PubMed

    Gulsuner, Hilal Unal; Gengec, Nevin Atalay; Kilinc, Murat; Erbil, H Yildirim; Tekinay, Ayse B

    2015-01-01

    The instability of implants after placement inside the body is one of the main obstacles to clinically succeed in periodontal and orthopedic applications. Adherence of fibroblasts instead of osteoblasts to implant surfaces usually results in formation of scar tissue and loss of the implant. Thus, selective bioadhesivity of osteoblasts is a desired characteristic for implant materials. In this study, we developed osteoselective and biofriendly polymeric thin films fabricated with a simple phase separation method using either homopolymers or various blends of homopolymers and copolymers. As adhesive and proliferative features of cells are highly dependent on the physicochemical properties of the surfaces, substrates with distinct chemical heterogeneity, wettability, and surface topography were developed and assessed for their osteoselective characteristics. Surface characterizations of the fabricated polymer thin films were performed with optical microscopy and SEM, their wettabilities were determined by contact angle measurements, and their surface roughness was measured by profilometry. Long-term adhesion behaviors of cells to polymer thin films were determined by F-actin staining of Saos-2 osteoblasts, and human gingival fibroblasts, HGFs, and their morphologies were observed by SEM imaging. The biocompatibility of the surfaces was also examined through cell viability assay. Our results showed that heterogeneous polypropylene polyethylene/polystyrene surfaces can govern Saos-2 and HGF attachment and organization. Selective adhesion of Saos-2 osteoblasts and inhibited adhesion of HGF cells were achieved on micro-structured and hydrophobic surfaces. This work paves the way for better control of cellular behaviors for adjustment of cell material interactions. © 2014 Wiley Periodicals, Inc.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajayi, O. O.; Lorenzo-Martin, Cinta

    This study presents results of an experimental study to evaluate friction stir processing (FSP) with and without hard second-phase particle incorporation as a means to enhance surface properties and wear performance of C86300 manganese bronze alloy. FSP of flat bronze alloy specimens was conducted with hardened H-13 tool steel to create a 3-mm-thick processed surface layer. The process was also used to incorporate B 4C particles, thereby creating a metal-matrix composite layer on the alloy surface. FSP alone was observed to produce substantial reduction in grain size (from an initial value of 350 mu m to 1-5 μm). FSP withoutmore » particle incorporation resulted in modest surface hardening due to grain refinement and dispersion hardening. Under lubricated contact in block-on-ring testing with a hardened steel counter face, FSP produced substantial reduction (about 3X) in bronze wear after polishing of processing surface roughening. FSP with hard B 4C second-phase particle incorporation further reduced wear by up to 20X. The improvement in wear behavior is attributed to grain refinement and load shielding by second-phase particles, as determined by wear mechanism analysis.« less

  7. Phase-sensitive detection of acoustically stimulated electromagnetic response in steel

    NASA Astrophysics Data System (ADS)

    Yamada, Hisato; Yotsuji, Junichi; Ikushima, Kenji

    2018-07-01

    The signal amplitude and the phase of acoustically stimulated electromagnetic (ASEM) response have been investigated in steel. In the ASEM method, magnetization is temporally modulated with the radio frequency (rf) of irradiated ultrasonic waves through magnetomechanical coupling. The first-harmonic components of the induced rf dipolar magnetic fields are detected using a resonant loop antenna. The signal amplitude of ASEM waves is determined by the magnitude of local piezomagnetic coefficients on an acoustically excited spot. Here, we divided the ASEM waves into the “in-phase” and “quadrature” components by phase-sensitive detection (PSD). On the basis of the linear response theory, we provided the theoretical formalism of ASEM response by introducing local complex piezomagnetic coefficients, d loc = d‧ + id‧‧. We investigated the magnetic field (H) dependence of the individual components on the different surface conditions of steel plates. The in-phase component [∝ d‧(H)] shows a hysteresis loop on the machined surface of a steel plate, in which d‧(H) switches sign at two finite field values, ±H 0. The inversion of magnetization associated with the applied static fields is thus definitely observed in the PSD measurements. In addition, we measured the hysteresis behaviors on a steel surface with a thin mill scale (iron oxide layers). The hysteresis loop broadens and a significant contribution of the quadrature component [∝ d‧‧(H)] is found. We discuss the origin of the hysteresis behaviors of d‧ and d‧‧ using the Debye relaxation model.

  8. Surface effects and discontinuity behavior in nano-systems composed of Prussian blue analogues

    NASA Astrophysics Data System (ADS)

    Drissi, L. B.; Zriouel, S.; Bahmad, L.

    2018-04-01

    Magnetic properties and hysteresis loops of a nano-ferrimagnetic surface-bulk Prussian blue analogues (PBA) have been studied by means of Monte Carlo simulations. We have reported the effects of the magnetic and the crystal fields, as well as the intermediate and the bulk couplings, the temperature and the size on the phase diagram, the magnetization, the susceptibility, the hysteresis loops, the critical and the discontinuity temperatures of the model. The thermal dependence of the coercivity and the remanent magnetization are also discussed. This study shows a number of characteristic behaviors, such as the discontinuities in the magnetizations, the existence of Q- and N-types behaviors in the Néel classification nomenclature and the occurrence of single and triple hysteresis loops with high number of step-like plateaus. The obtained results make ferrimagnetic surface-bulk PBA useful for technological applications such as thermo-optical recording.

  9. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    PubMed

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  10. Corkscrews and singularities in fruitflies - Resetting behavior of the circadian eclosion rhythm.

    NASA Technical Reports Server (NTRS)

    Winfree, A. T.

    1971-01-01

    Description of experiments undertaken to define the phase-resetting behavior of the circadian rhythm of pupal eclosion in populations of fruitflies. An attempt is made to determine how and why the resetting response depends on the duration of a standard perturbation as well as on the time at which it is given. Plotting a three-dimensional graph of the measured emergence centroids vs the stimulus variables, the data are found to spiral up around a vertical rotation axis. Using a computer, a smooth surface, called the resetting surface, which approximately fits the helicoidal cloud of data points, is obtained and is shown to be best described as a vertical corkscrew linking together tilted planes. This corkscrew feature of the resetting surface is taken to indicate that there is an isolated perturbation following which there is either no circadian rhythm of emergence in the steady state, or one of unpredictable phase. A hypothesis concerning the clock dynamics underlying the eclosion rhythm is briefly sketched which encompasses the main features of known resetting data using single discrete pulses of any perturbing agent.

  11. Three-Phase Coexistence in Colloidal Rod-Plate Mixtures.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-09-01

    Aqueous suspensions of clay particles, such as montmorillonite (MMT) platelets and sepiolite (Sep) rods, tend to form gels at concentrations around 1 vol %. For Sep rods, adsorbing sodium polyacrylate to the surface allows for an isotropic-nematic phase separation to be seen instead. Here, MMT is added to such Sep suspensions, resulting in a complex phase behavior. Across a range of clay concentrations, separation into three phases is observed: a lower, nematic phase dominated by Sep rods, a MMT-rich middle layer, which is weakly birefringent and probably a gel, and a dilute top phase. Analysis of phase volumes suggests that the middle layer may contain as much as 6 vol % MMT.

  12. Dissipative gravitational bouncer on a vibrating surface

    NASA Astrophysics Data System (ADS)

    Espinoza Ortiz, J. S.; Lagos, R. E.

    2017-12-01

    We study the dynamical behavior of a particle flying under the influence of a gravitational field, with dissipation constant λ (Stokes-like), colliding successive times against a rigid surface vibrating harmonically with restitution coefficient α. We define re-scaled dimensionless dynamical variables, such as the relative particle velocity Ω with respect to the surface’s velocity; and the real parameter τ accounting for the temporal evolution of the system. At the particle-surface contact point and for the k‧th collision, we construct the mapping described by (τk ; Ω k ) in order to analyze the system’s nonlinear dynamical behavior. From the dynamical mapping, the fixed point trajectory is computed and its stability is analyzed. We find the dynamical behavior of the fixed point trajectory to be stable or unstable, depending on the values of the re-scaled vibrating surface amplitude Γ, the restitution coefficient α and the damping constant λ. Other important dynamical aspects such as the phase space volume and the one cycle vibrating surface (decomposed into absorbing and transmitting regions) are also discussed. Furthermore, the model rescues well known results in the limit λ = 0.

  13. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  14. An experimental evaluation of the application of the Kirchhoff formulation for sound radiation from an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.

    1977-01-01

    The Kirchhoff integral formulation is evaluated for its effectiveness in quantitatively predicting the sound radiated from an oscillating airfoil whose chord length is comparable with the acoustic wavelength. A rigid airfoil section was oscillated at samll amplitude in a medium at rest to produce the sound field. Simultaneous amplitude and phase measurements were made of surface pressure and surface velocity distributions and the acoustic free field. Measured surface pressure and motion are used in applying the theory, and airfoil thickness and contour are taken into account. The result was that the theory overpredicted the sound pressure level by 2 to 5, depending on direction. Differences are also noted in the sound field phase behavior.

  15. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation

    PubMed Central

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan

    2018-01-01

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379

  16. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation.

    PubMed

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng

    2018-04-06

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.

  17. Discotic columnar liquid crystal studied in the bulk and nanoconfined states by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Busselez, Rémi; Cerclier, Carole V.; Ndao, Makha; Ghoufi, Aziz; Lefort, Ronan; Morineau, Denis

    2014-10-01

    A prototypical Gay Berne discotic liquid crystal was studied by means of molecular dynamics simulations both in the bulk state and under confinement in a nanoporous channel. The phase behavior of the confined system strongly differs from its bulk counterpart: the bulk isotropic-to-columnar transition is replaced by a continuous ordering from a paranematic to a columnar phase. Moreover, a new transition is observed at a lower temperature in the confined state, which corresponds to a reorganization of the intercolumnar order. It reflects the competing effects of pore surface interaction and genuine hexagonal packing of the columns. The translational molecular dynamics in the different phases has been thoroughly studied and discussed in terms of collective relaxation modes, non-Gaussian behavior, and hopping processes.

  18. Phase-field study on geometry-dependent migration behavior of voids under temperature gradient in UO2 crystal matrix

    NASA Astrophysics Data System (ADS)

    Chen, Weijin; Peng, Yuyi; Li, Xu'an; Chen, Kelang; Ma, Jun; Wei, Lingfeng; Wang, Biao; Zheng, Yue

    2017-10-01

    In this work, a phase-field model is established to capture the void migration behavior under a temperature gradient within a crystal matrix, with an appropriate consideration of the surface diffusion mechanism and the vapor transport mechanism. The interfacial energy and the coupling between the vacancy concentration field and the crystal order parameter field are carefully modeled. Simulations are performed on UO2. The result shows that for small voids (with an area ≤ πμm2), the well-known characteristics of void migration, in consistence with the analytical model, can be recovered. The migration is manifested by a constant velocity and a minor change of the void shape. In contrast, for large voids (with an area of ˜10 μm2) initially in circular shapes, significant deformation of the void from a circular to cashew-like shape is observed. After long-time migration, the deformed void would split into smaller voids. The size-dependent behavior of void migration is due to the combined effect of the interfacial energy (which tends to keep the void in circular shape) and the surface diffusion flow (which tends to deform the void due to the nonuniform diffusion along the surface). Moreover, the initial shape of the void modifies the migration velocity and the time point when splitting occurs (for large voids) at the beginning of migration due to the shape relaxation of the void. However, it has a minor effect on the long-time migration. Our work reveals novel void migration behaviors in conditions where the surface-diffusion mechanism is dominant over the vapor transport mechanism; meanwhile, the size of the void lies at a mediate size range.

  19. Surface Composition of NiPd Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Khalil, Joe; Bozzolo, Guillermo; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Surface segregation in Ni-Pd alloys has been studied using the BFS method for alloys. Not only does the method predict an oscillatory segregation profile but it also indicates that the number of Pd-enriched surface planes can vary as a function of orientation. The segregation profiles were computed as a function of temperature, crystal face, and composition. Pd enrichment of the first layer is observed in (111) and (100) surfaces, and enrichment of the top two layers occurs for (110) surfaces. In all cases, the segregation profile shows oscillations that are actually related to weak ordering tendencies in the bulk. An atom-by-atom analysis was performed to identify the competing mechanisms leading to the observed surface behaviors. Large-scale atomistic simulations were also performed to investigate the temperature dependence of the segregation profiles as well as for analysis of the bulk structures. Finally, the observed surface behaviors are discussed in relation to the bulk phase structure of Ni-Pd alloys, which exhibit a tendency to weakly order.

  20. The finite-size effect in thin liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Śliwa, I.

    2018-05-01

    Effects of surface ordering in liquid crystal systems confined between cell plates are of great theoretical and experimental interest. Liquid crystals introduced in thin cells are known to be strongly stabilized and ordered by cell plates. We introduce a new theoretical method for analyzing the effect of surfaces on local molecular ordering in thin liquid crystal systems with planar geometry of the smectic layers. Our results show that, due to the interplay between pair long-range intermolecular forces and nonlocal, relatively short-range, surface interactions, both orientational and translational orders of liquid crystal molecules across confining cells are very complex. In particular, it is demonstrated that the SmA, nematic, and isotropic phases can coexist. The phase transitions from SmA to nematic, as well as from nematic to isotropic phases, occur not simultaneously in the whole volume of the system but begin to appear locally in some regions of the LC sample. Phase transition temperatures are demonstrated to be strongly affected by the thickness of the LC system. The dependence of the corresponding shifts of phase transition temperatures on the layer number is shown to exhibit a power law character. This new type of scaling behavior is concerned with the coexistence of local phases in finite systems. The influence of a specific character of interactions of molecules with surfaces and other molecules on values of the resulting critical exponents is also analyzed.

  1. Liquid-solid surface phase transformation of fluorinated fullerene on monolayer tungsten diselenide

    NASA Astrophysics Data System (ADS)

    Song, Zhibo; Wang, Qixing; Li, Ming-Yang; Li, Lain-Jong; Zheng, Yu Jie; Wang, Zhuo; Lin, Tingting; Chi, Dongzhi; Ding, Zijing; Huang, Yu Li; Thye Shen Wee, Andrew

    2018-04-01

    Hybrid van der Waals heterostructures constructed by the integration of organic molecules and two-dimensional (2D) transition metal dichalcogenide (TMD) materials have useful tunable properties for flexible electronic devices. Due to the chemically inert and atomically smooth nature of the TMD surface, well-defined crystalline organic films form atomically sharp interfaces facilitating optimal device performance. Here, the surface phase transformation of the supramolecular packing structure of fluorinated fullerene (C60F48 ) on single-layer tungsten diselenide (WSe2) is revealed by low-temperature scanning tunneling microscopy, from thermally stable liquid to solid phases as the coverage increases. Statistical analysis of the intermolecular interaction potential reveals that the repulsive dipole-dipole interaction induced by interfacial charge transfer and substrate-mediated interactions play important roles in stabilizing the liquid C60F48 phases. Theoretical calculations further suggest that the dipole moment per C60F48 molecule varies with the surface molecule density, and the liquid-solid transformation could be understood from the perspective of the thermodynamic free energy for open systems. This study offers insights into the growth behavior at 2D organic/TMD hybrid heterointerfaces.

  2. Copoly(Imide Siloxane) Abhesive Materials with Varied Siloxane Oligomer Length

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.

    2010-01-01

    Incorporation of PDMS moieties into a polyimide matrix lowered the surface energy resulting in enhanced adhesive interactions. Polyimide siloxane materials were generated using amine-terminated PDMS oligomers of different lengths to study changes in surface migration behavior, phase segregation, mechanical, thermal, and optical properties. These materials were characterized using contact angle goniometry, tensile testing, and differential scanning calorimetry. The surface migration behavior of the PDMS component depended upon the siloxane molecular weight as indicated by distinct relationships between PDMS chain length and advancing water contact angles. Similar correlations were observed for percent elongation values obtained from tensile testing, while the addition of PDMS reduced the modulus. High fidelity topographical modification via laser ablation patterning further reduced the polyimide siloxane surface energy. Initial particulate adhesion testing experiments demonstrated that polyimide siloxane materials exhibited greater abhesive interactions relative to their respective homopolyimides.

  3. Surface thermodynamic analysis of fluid confined in a cone and comparison with the sphere-plate and plate-plate geometries.

    PubMed

    Zargarzadeh, Leila; Elliott, Janet A W

    2013-10-22

    The behavior of pure fluid confined in a cone is investigated using thermodynamic stability analysis. Four situations are explained on the basis of the initial confined phase (liquid/vapor) and its pressure (above/below the saturation pressure). Thermodynamic stability analysis (a plot of the free energy of the system versus the size of the new potential phase) reveals whether the phase transition is possible and, if so, the number and type (unstable/metastable/stable) of equilibrium states in each of these situations. Moreover we investigated the effect of the equilibrium contact angle and the cone angle (equivalent to the confinement's surface separation distance) on the free energy (potential equilibrium states). The results are then compared to our previous study of pure fluid confined in the gap between a sphere and a flat plate and the gap between two flat plates.1 Confined fluid behavior of the four possible situations (for these three geometries) can be explained in a unified framework under two categories based on only the meniscus shape (concave/convex). For systems with bulk-phase pressure imposed by a reservoir, the stable coexistence of pure liquid and vapor is possible only when the meniscus is concave.

  4. Numerical investigation on thermal behaviors of two-dimensional latent thermal energy storage with PCM and aluminum foam

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Ercole, D.; Manca, O.; Nardini, S.

    2017-01-01

    A numerical investigation on Latent Heat Thermal Energy Storage System (LHTESS) based on a phase change material (PCM) is accomplished. The PCM is a pure paraffin wax with a low thermal conductivity. An aluminum metal foam is employed to enhance the PCM thermal behaviors. The geometry is a vertical shell-and-tube LHTESS made with two concentric aluminum tubes. The internal surface of the hollow cylinder is assumed at a constant temperature above the melting temperature of the PCM to simulate the heat transfer from a hot fluid. The external surface is assumed adiabatic. The phase change of the PCM is modelled with the enthalpy porosity theory while the metal foam is considered as a porous media in Darcy-Forchheimer assumption and the Boussinesq approximation is employed. Local thermal non-equilibrium (LTNE) model is assumed. The results are compared in terms of melting time and temperature fields as a function of time for the charging and discharging phases for different porosities and an assigned pore per inch. Results show that the metal foam improves significantly the heat transfer in the LHTESS giving a faster phase change process with respect to pure PCM, reducing the melting time more than one order of magnitude.

  5. Cluster formation and phase separation in heteronuclear Janus dumbbells

    NASA Astrophysics Data System (ADS)

    Munaò, G.; O'Toole, P.; Hudson, T. S.; Costa, D.; Caccamo, C.; Sciortino, F.; Giacometti, A.

    2015-06-01

    We have recently investigated the phase behavior of model colloidal dumbbells constituted by two identical tangent hard spheres, with the first being surrounded by an attractive square-well interaction (Janus dumbbells, Munaó et al 2014 Soft Matter 10 5269). Here we extend our previous analysis by introducing in the model the size asymmetry of the hard-core diameters and study the enriched phase scenario thereby obtained. By employing standard Monte Carlo simulations we show that in such ‘heteronuclear Janus dumbbells’ a larger hard-sphere site promotes the formation of clusters, whereas in the opposite condition a gas-liquid phase separation takes place, with a narrow interval of intermediate asymmetries wherein the two phase behaviors may compete. In addition, some peculiar geometrical arrangements, such as lamellæ, are observed only around the perfectly symmetric case. A qualitative agreement is found with recent experimental results, where it is shown that the roughness of molecular surfaces in heterogeneous dimers leads to the formation of colloidal micelles.

  6. Ejection of Particles from the Free Surface of Shock-Loaded Lead into Vacuum and Gas Medium

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, V. A.; Mikhailov, A. L.; Erunov, S. V.; Antipov, M. V.; Fedorov, A. V.; Syrunin, M. A.; Kulakov, E. V.; Kleshchevnikov, O. A.; Yurtov, I. V.; Utenkov, A. A.; Finyushin, S. A.; Chudakov, E. A.; Kalashnikov, D. A.; Pupkov, A. S.; Chapaev, A. V.; Mishanov, A. V.; Glushikhin, V. V.; Fedoseev, A. V.; Tagirov, R. R.; Kostyukov, S. A.; Tagirova, I. Yu.; Saprykina, E. V.

    2017-12-01

    The presence and behavior of a gas-metal interfacial layer at the free surface of shock-wave driven flying vehicles in gases of various compositions and densities has not been sufficiently studied so far. We present new comparative data on "dusting" from the free surface of lead into vacuum and gas as dependent on the surface roughness, pressure amplitude at the shock-wave front, and phase state of the material. Methods of estimating the mass flux of ejected particles in the presence of a gas medium at the free metal surface are proposed.

  7. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    NASA Astrophysics Data System (ADS)

    Singh, Manish Kumar; Manda, Premkumar; Singh, A. K.; Mandal, R. K.

    2015-10-01

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ˜9 atom per cent; 8 atom per cent and Ag ˜ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phases arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.

  8. Review-Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems.

    PubMed

    Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram

    2017-01-01

    Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself.

  9. Impact deformation behavior of duplex and superaustenitic stainless steels welds by split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Hoa; Huang, Chih-Sheng; Lee, Woei-Shyan; Chen, Tao-Hsing; Wu, Chia-Chang; Lien, Charles; Tsai, Hung-Yin

    2009-12-01

    A considerable volume of γ phase increases in the fusion zone (weld metal) for two duplex stainless steels after a high-strain-rate impact. The strain-induced γ phase formation in the fusion zone results in local hardness variation depending on the strain rate. The α phase content in the fusion zone decreases as the impact strain rate increases for SAF 2205 DSS and SAF 2507 DSS. The results of the two-phase content measured by Ferritoscope correspond to that assessed by image analyses. In contrast, superaustenite stainless steel is unaffected by such an impact owing to its fully stable austenization. Impacted welds at a high strain rate of 5 × 103 s-1 reveal feather-like surface creases along the solidified curved columnar grain boundaries. The apparent surface creases are formed due to the presence of diffuse Lüders bands, which are caused by heavy plastic deformation in coarse-grain materials.

  10. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be more attractive for larger sized nanoparticles. The nanoparticle aggregates are characterized by mass fractal.

  11. Improved light-induced cell detachment on rutile TiO₂ nanodot films.

    PubMed

    Cheng, Kui; Sun, Yu; Wan, Hongping; Wang, Xiaozhao; Weng, Wenjian; Lin, Jun; Wang, Huiming

    2015-10-01

    Anatase TiO2 nanodot films have been found to be able to release cells under light illumination with excellent efficiency and safety. In the present study, we investigated the effects of rutile contents in TiO2 nanodot films on such light induced cell detachment behavior. The results showed that TiO2 nanodot films with different contents of rutile phase have been prepared successfully. The content of rutile phase increased with the increase in calcination temperature. All films possessed good cell adhesion but there was a decrease in cell proliferation with the increasing content of rutile phase. Single cell detachment assay showed that the films with high rutile contents (calcined at 900°C and 1100°C) showed better cell detachment performance. That was ascribed to the changes of the secondary structure of extracellular proteins adsorbed on the nanodot surface after ultraviolet (365 nm, UV365) illumination. In addition, cell sheets detached through UV365 illumination maintained high activity and could be further used in tissue engineering. The present work showed that the existence of rutile phase is helpful in cell detachment behavior and it could be utilized to optimize light-induced cell detachment behavior. This work discovers that the presence of rutile phase in TiO2 nanodot films could improve the light-induced cell detachment behavior, although rutile phase is inferior to anatase phase on light induced superhydrophilicity. That strongly supported that the behaviors of adsorbed proteins are crucial in acquiring cell sheet with light illumination. In fact, the state and behavior of adsorbed protein greatly affect the interaction between biomaterials and living cells. Therefore, we consider this work is not only important in harvesting cells or cell sheets through light illumination, but also helpful in further understanding of interaction between biomaterials and cells. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Evidence for phase change memory behavior in In2(SexTe1-x)3 thin films

    NASA Astrophysics Data System (ADS)

    Matheswaran, P.; Sathyamoorthy, R.; Asokan, K.

    2012-08-01

    Crystalline In2(Se0.5Te0.5)3 thin films are prepared by thermal evaporation and subsequently annealed at 300°C in Ar atmosphere. SEM image of the crystalline sample shows spherical nature of constituents, distributed uniformly throughout the surface. Island structure of the surface is clearly visible after switching. Elemental composition of the sample remains unchanged even after switching. Temperature dependent I-V analysis shows stoichiometric phase change at 80°C [from In2(Se0.5Te0.5)3 to In2Te3 and In2Se3 phase], where current switches three orders of magnitude higher than that in lower temperature. Further rise in temperature results increase in current only after switching, where threshold voltage remains constant.

  13. Column Experiments to Interpret Weathering in Columbia Hills

    NASA Technical Reports Server (NTRS)

    Hausrath, E. M.; Morris, R.V.; Ming, D.W.; Golden, D.C.; Galindo, C.; Sutter, B.

    2009-01-01

    Phosphate mobility has been postulated as an indicator of early aqueous activity on Mars. In addition, rock surfaces analyzed by the Mars Exploration Rover Spirit are consistent with the loss of a phosphate- containing mineral To interpret phosphate alteration behavior on Mars, we performed column dissolution experiments leaching the primary phases Durango fluorapatite, San Carlos olivine, and basalt glass (Stapafjell Volcano, courtesy of S. Gislason, University of Iceland) [3,4]) with acidic solutions. These phases were chosen to represent quickly dissolving phases likely present in Columbia Hills. Column dissolution experiments are closer to natural dissolution conditions than batch experiments, although they can be difficult to interpret. Acidic solutions were used because the leached layers on the surfaces of these rocks have been interpreted as resulting from acid solutions [5].

  14. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  15. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films

    NASA Astrophysics Data System (ADS)

    Khoryani, Zahra; Seyfi, Javad; Nekoei, Mehdi

    2018-01-01

    The main aim of this research is to study the effects of polymer molecular weight as well as non-solvent concentration on the phase separation, surface morphology and wettability of polyvinyl chloride (PVC) films. Gel permeation chromatography (GPC) results showed that the Mn of the used PVC grades is 6 × 104, 8.7 × 104 and 1.26 × 105 g/mol. It was found that a proper combination of polymer molecular weight and non-solvent content could result in superhydrophobic and self-cleaning behaviors. Scanning electron microscopy (SEM) results demonstrated that addition of ethanol causes the polymer chains to be severely aggregated at the films' surface forming strand-like structures decorated by nano-scale polymer spheres. The polymer molecular weight was found to affect the degree of porosity which is highly influential on the hydrophobicity of the films. The mechanism of phase separation process was also discussed and it was found that the instantaneous demixing is the dominant mechanism once higher contents of non-solvent were used. However, a delayed demixing mechanism was detected when the lower molecular weight PVC has been used which resulted in a pore-less and dense skin layer. Differential scanning calorimetry was also utilized to study the crystallization and glass transition behavior of samples.

  16. High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected to Immersion Corrosion for Mining Wheel Applications

    NASA Astrophysics Data System (ADS)

    Dicecco, Sante; Altenhof, William; Hu, Henry; Banting, Richard

    2017-04-01

    In an effort to better understand the impact of material degradation on the fatigue life of mining wheels made of a high-strength low alloy carbon steel (Q345), this study seeks to evaluate the effect of surface corrosion on the high-cycle fatigue behavior of the Q345 alloy. The fatigue behavior of the polished and corroded alloy was investigated. Following exposure to a 3.5 wt.% NaCl saltwater solution, polished and corroded fatigue specimens were tested using an R.R. Moore rotating-bending fatigue apparatus. Microstructural analyses via both optical microscopy and scanning electron microscopy (SEM) revealed that one major phase, α-iron phase, ferrite, and one minor phase, colony pearlite, existed in the extracted Q345 alloy. The results of the fatigue testing showed that the polished and corroded specimens had an endurance strength of approximately 295 and 222 MPa, respectively, at 5,000,000 cycles. The corroded surface condition resulted in a decrease in the fatigue strength of the Q345 alloy by 24.6%. Scanning electron microscope fractography indicated that failure modes for polished and corroded fatigue specimens were consistent in the high-cycle low loading fatigue regime. Conversely, SEM fractography of low-cycle high-loading fatigue specimens found considerable differences in fracture surfaces between the corroded and polished fatigue specimens.

  17. Wear and friction behavior of Al-TiB2-nano-Gr hybrid composites fabricated through ultrasonic cavitation assisted stir casting

    NASA Astrophysics Data System (ADS)

    Poria, Suswagata; Sutradhar, Goutam; Sahoo, Prasanta

    2018-05-01

    The present study reports the role of nano-graphite particles in determining wear and friction behavior of Al-TiB2-nano-Gr hybrid composites. Ultrasonic cavitation assisted stir casting method has been used for fabrication of composites. Al-Si5Cu3 alloy is used as base alloy along with micro sized TiB2 hard ceramic particles (2.5 and 5.5 wt%) as reinforcement and nano-Gr particles (2 and 4 wt%) as solid lubricant additives. SEM micrographs, EDAX spectrum and optical images are considered to observe uniform dispersion of reinforcing phases. Micro-hardness is evaluated using Vicker’s microhardness tester. Hardness is seen to increase with incorporation of TiB2 while the same decreases with incorporation of graphite. Wear and friction of composites are tested for varying load (10 to 40 N) and sliding speed (0.2 to 0.4 m s‑1) using a pin-on-disk tribometer. Worn surfaces are characterized using SEM and EDAX analysis. Wear resistance of composites increases with incorporation of reinforcing phases together. Nano-Gr particles are easily sheared out from the sub-surface and provide a layer over the tribo-surface of composite that enhances friction and wear behavior. Wear mechanism in composites is predominantly adhesion while abrasion and ploughing is prominent in base alloy.

  18. Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces

    NASA Astrophysics Data System (ADS)

    Loverde, Sharon M.; Solis, Francisco J.; Olvera de La Cruz, Monica

    2007-06-01

    We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an interface, with a neutral nonselective molecular background. We determine the coexistence between a high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to scale as ɛ/(lBψ3/2), where ψ is the effective charge density, lB is the Bjerrum length, and ɛ is the cohesive energy.

  19. One-step triple-phase interfacial synthesis of polyaniline-coated polypyrrole composite and its application as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Lei, Wen; He, Ping; Zhang, Susu; Dong, Faqin; Ma, Yongjun

    2014-11-01

    We first present an alternative one-step route for constructing a novel polyaniline (PANI)-coated polypyrrole (PPy) composite in an ingenious triple-phase interface system, where PPy and PANI are prepared in individual non-interference interfaces and, in the middle aqueous phase, smaller PANI particles are uniformly coated on the surface of PPy particles, forming a core-shell structure. The prepared PPy/PANI composite electrode shows a superior capacitance behavior that is more suitable for supercapacitor application.

  20. MER Surface Phase; Blurring the Line Between Fault Protection and What is Supposed to Happen

    NASA Technical Reports Server (NTRS)

    Reeves, Glenn E.

    2008-01-01

    An assessment on the limitations of communication with MER rovers and how such constraints drove the system design, flight software and fault protection architecture, blurring the line between traditional fault protection and expected nominal behavior, and requiring the most novel autonomous and semi-autonomous elements of the vehicle software including communication, surface mobility, attitude knowledge acquisition, fault protection, and the activity arbitration service.

  1. Cation effects on phosphatidic acid monolayers at various pH conditions.

    PubMed

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pH<10, DPPA monolayers on water are predominantly populated by neutral species and display the highest packing density. Cations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication.

    PubMed

    Chau, S W; Hsu, K L; Chen, S C; Liou, T M; Shih, K C

    2004-07-30

    The droplet impingement into a cavity at micrometer-scale is one of important fluidic issues for microfabrications, e.g. the inkjet deposition process in the PLED display manufacturing. The related micro-fluidic behaviors in the deposition process should be carefully treated to ensure the desired quality of microfabrication. The droplets generally dispensing from an inkjet head, which contains an array of nozzles, have a volume in several picoliters, while each nozzle responds very quickly and jets the droplets into cavities on substrates with micrometer size. The nature of droplet impingement depends on the fluid properties, the initial state of droplet, the impact parameters and the surface characteristics. The commonly chosen non-dimensional numbers to describe this process are the Weber number, the Reynolds number, the Ohnesorge number, and the Bond number. This paper discusses the influences of fluid properties of a Newtonian fluid, such as surface tension and fluid viscosity, on micro-fluidic characteristics for a certain jetting speed in the deposition process via a numerical approach, which indicates the impingement process consists of four different phases. In the first phase, the droplet stretching outwards rapidly, where inertia force is dominated. In the second phase, the recoiling of droplet is observed, where surface tension becomes the most important force. In the third phase, the gravitational force pulls the droplet surface towards cavity walls. The fourth phase begins when the droplet surface touches cavity walls and ends when the droplet obtains a stable shape. If the fluid viscosity is relatively small, the droplet surface touches cavity walls in the second phase. A stable fluid layer would not form if the viscosity is relatively small.

  3. Containerless Measurement of Thermophysical Properties of Ti-Zr-Ni Alloys

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Bradshaw, Richard C.; Rogers, Jan C.; Rathz, Thomas J.; Lee, Geun W.; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2004-01-01

    The surface tension, viscosity, density, and thermal expansion of Ti-Zr-Ni alloys were measured for a number of compositions by electrostatic levitation methods. Containerless methods greatly reduce heterogeneous nucleation, increasing access to the undercooled liquid regime at finite cooling rates. The density and thermal expansion are measured optically, while the surface tension and viscosity are measured by the oscillating drop method. The measured alloys include compositions which form a metastable quasicrystal phase from the undercooled liquid, and alloys close to the composition of several multi-component bulk metallic glass-forming alloys. Measurements of surface tension show behavior typical of transition metals at high temperature, but a sudden decrease in the deeply undercooled liquid for alloys near the quasicrystal-forming composition range, but not for compositions which form the solid-solution phase first.

  4. Hot Corrosion Behavior of Ti-48Al and Ti-48Al-2Cr Intermetallic Alloys Produced by Electric Current Activated Sintering

    NASA Astrophysics Data System (ADS)

    Garip, Y.; Ozdemir, O.

    2018-06-01

    In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.

  5. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    NASA Astrophysics Data System (ADS)

    Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.

  6. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    PubMed

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  7. Liquid-vapor relations for the system NaCl-H2O: summary of the P-T- x surface from 300° to 500°C

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1989-01-01

    Experimental data on the vapor-liquid equilibrium relations for the system NaCl-H2O were compiled and compared in order to provide an improved estimate of the P-T-x surface between 300° to 500°C, a range for which the system changes from subcritical to critical behavior. Data for the three-phase curve (halite + liquid + vapor) and the NaCl-H2O critical curve were evaluated, and the best fits for these extrema then were used to guide selection of best fit for isothermal plots for the vapor-liquid region in-between. Smoothing was carried out in an iterative procedure by replotting the best-fit data as isobars and then as isopleths, until an internally consistent set of data was obtained. The results are presented in table form that will have application to theoretical modelling and to the understanding of two-phase behavior in saline geothermal systems.

  8. Spin-fluctuation-induced non-Fermi-liquid behavior with suppressed superconductivity in LiFe 1-xCo xAs

    DOE PAGES

    Y. M. Dai; Miao, H.; Xing, L. Y.; ...

    2015-09-15

    A series of LiFe 1–xCo xAs compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe 1–xCo xAs is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFemore » 1–xCo xAs where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.« less

  9. Droplet Impact Onto A Flat Plate: Inclined Verses Moving Surfaces

    NASA Astrophysics Data System (ADS)

    Tsai, Scott; Bird, James C.; Stone, Howard A.

    2008-11-01

    Much research has been conducted on the impact of droplets normal to flat surfaces. However, very little research has been carried out on oblique impacts, even though they occur frequently in nature and industry. We experiment with the effects of tangential and normal impact velocities on the behavior of a droplet as it impacts a flat plate. The plate is inclined in the first case, and in the second case the plate is rotated via an electric motor. The asymmetric nature of the impact causes asymmetric splashing, such that under certain conditions only part of the rim splashes. Using a high-speed camera, we demonstrate that the splash threshold of inclined and moving surfaces are quantitatively similar, with only small differences. We also develop a phase diagram of splashing showing which phase occurs given a tangential and normal impact velocity. Such a phase diagram is useful for both engineering design and for the evaluation of splash-prediction models.

  10. PAHs behavior in surface water and groundwater of the Yellow River estuary: Evidence from isotopes and hydrochemistry.

    PubMed

    Li, Jing; Li, Fadong; Liu, Qiang

    2017-07-01

    Large-scale irrigation projects have impacted the regional surface-groundwater interactions in the North China Plain (NCP). Given this concern, the aim of this study is to evaluate levels of PAH pollution, identify the sources of the PAHs, analyze the influence of surface-groundwater interactions on PAH distribution, and propose urgent management strategies for PAHs in China's agricultural areas. PAH concentrations, hydrochemical indicators and stable isotopic compositions (δ 18 O and δ 2 H) were determined for surface water (SW) and groundwater (GW) samples. PAHs concentrations in surface water and groundwater varied from 11.84 to 393.12 ng/L and 8.51-402.84 ng/L, respectively, indicating mild pollution. The seasonal variations showed the following trend: PAHs in surface water at the low-water phase > PAHs in groundwater at the low-water phase > PAHs in surface water at the high-water phase > PAHs in groundwater at the high-water phase. Hydrochemical and δ 18 O value of most groundwater samples distributed between the Yellow River and seawater. The mean value of mixture ratio of the Yellow River water recharge to the groundwater was 65%, few anomalous sites can reach to 90%. Surface-groundwater interactions influence the spatial distribution of PAHs in the study area. In light of the ongoing serious pollution, management practices for source control, improved control technologies, and the construction of a monitoring network to warn of increased risk are urgently needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

    PubMed Central

    Liu, Minglu; Wang, Robert Y.

    2015-01-01

    Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing. PMID:26573146

  12. Investigating hygroscopic behavior and phase separation of organic/inorganic mixed phase aerosol particles with FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Cziczo, D. J.

    2013-12-01

    Atmospheric aerosol particles can be composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have very well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. For example, the deliquescence relative humidity of pure ammonium sulfate is about 80% and its efflorescence point is about 35%. This behavior of ammonium sulfate is important to atmospheric chemistry because some reactions, such as the hydrolysis of nitrogen pentoxide, occur on aqueous but not crystalline surfaces. Deliquescence and efflorescence of simple inorganic salt particles have been investigated by a variety of methods, such as IR spectroscopy, tandem mobility analysis and electrodynamic balance. Field measurements have shown that atmospheric aerosol are not typically a single inorganic salt, instead they often contain organic as well as inorganic species. Mixed inorganic/organic aerosol particles, while abundant in the atmosphere, have not been studied as extensively. Many recent studies have focused on microscopy techniques that require deposition of the aerosol on a glass slide, possibly changing its surface properties. This project investigates the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O:C ratios, including glycerol, 1,2,6-hexanetriol, 1,4-butanediol and 1,5-pentanediol have been investigated. This project aims to study gas-phase exchange in these aerosol systems to determine if exchange is impacted when phase separation occurs.

  13. Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images

    NASA Astrophysics Data System (ADS)

    Masoumzadeh, N.; Oklay, N.; Kolokolova, L.; Sierks, H.; Fornasier, S.; Barucci, M. A.; Vincent, J.-B.; Tubiana, C.; Güttler, C.; Preusker, F.; Scholten, F.; Mottola, S.; Hasselmann, P. H.; Feller, C.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B. J. R.; Debei, S.; De Cecco, M.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Hall, I.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Shi, X.; Thomas, N.

    2017-03-01

    Aims: We aim to explore the behavior of the opposition effect as an important tool in optical remote sensing on the nucleus of comet 67P/ Churyumov-Gerasimenko (67P), using Rosetta-OSIRIS images acquired in different filters during the approach phase, July-August 2014 and the close flyby images on 14 of February 2015, which contain the spacecraft shadow. Methods: We based our investigation on the global and local brightness from the surface of 67P with respect to the phase angle, also known as phase curve. The local phase curve corresponds to a region that is located at the Imhotep-Ash boundary of 67P. Assuming that the region at the Imhotep-Ash boundary and the entire nucleus have similar albedo, we combined the global and local phase curves to study the opposition-surge morphology and constrain the structure and properties of 67P. The model parameters were furthermore compared with other bodies in the solar system and existing laboratory study. Results: We found that the morphological parameters of the opposition surge decrease monotonically with wavelength, whereas in the case of coherent backscattering this behavior should be the reverse. The results from comparative analysis place 67P in the same category as the two Mars satellites, Phobos and Deimos, which are notably different from all airless bodies in the solar system. The similarity between the surface phase function of 67P and a carbon soot sample at extremely small angles is identified, introducing regolith at the boundary of the Imhotep-Ash region of 67P as a very dark and fluffy layer.

  14. Constructing polyatomic potential energy surfaces by interpolating diabatic Hamiltonian matrices with demonstration on green fluorescent protein chromophore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jae Woo; Rhee, Young Min, E-mail: ymrhee@postech.ac.kr; Department of Chemistry, Pohang University of Science and Technology

    2014-04-28

    Simulating molecular dynamics directly on quantum chemically obtained potential energy surfaces is generally time consuming. The cost becomes overwhelming especially when excited state dynamics is aimed with multiple electronic states. The interpolated potential has been suggested as a remedy for the cost issue in various simulation settings ranging from fast gas phase reactions of small molecules to relatively slow condensed phase dynamics with complex surrounding. Here, we present a scheme for interpolating multiple electronic surfaces of a relatively large molecule, with an intention of applying it to studying nonadiabatic behaviors. The scheme starts with adiabatic potential information and its diabaticmore » transformation, both of which can be readily obtained, in principle, with quantum chemical calculations. The adiabatic energies and their derivatives on each interpolation center are combined with the derivative coupling vectors to generate the corresponding diabatic Hamiltonian and its derivatives, and they are subsequently adopted in producing a globally defined diabatic Hamiltonian function. As a demonstration, we employ the scheme to build an interpolated Hamiltonian of a relatively large chromophore, para-hydroxybenzylidene imidazolinone, in reference to its all-atom analytical surface model. We show that the interpolation is indeed reliable enough to reproduce important features of the reference surface model, such as its adiabatic energies and derivative couplings. In addition, nonadiabatic surface hopping simulations with interpolation yield population transfer dynamics that is well in accord with the result generated with the reference analytic surface. With these, we conclude by suggesting that the interpolation of diabatic Hamiltonians will be applicable for studying nonadiabatic behaviors of sizeable molecules.« less

  15. Comparison of Coarse-Grained Approaches in Predicting Polymer Nanocomposite Phase Behavior

    DOE PAGES

    Koski, Jason P.; Ferrier, Robert C.; Krook, Nadia M.; ...

    2017-11-02

    Because of the considerable parameter space, efficient theoretical and simulation methods are required to predict the morphology and guide experiments in polymer nanocomposites (PNCs). Unfortunately, theoretical and simulation methods are restricted in their ability to accurately map to experiments based on necessary approximations and numerical limitations. In this study, we provide direct comparisons of two recently developed coarse-grained approaches for modeling polymer nanocomposites (PNCs): polymer nanocomposite field theory (PNC-FT) and dynamic mean-field theory (DMFT). These methods are uniquely suited to efficiently capture mesoscale phase behavior of PNCs in comparison to other theoretical and simulation frameworks. We demonstrate the ability ofmore » both methods to capture macrophase separation and describe the thermodynamics of PNCs. We systematically test how the nanoparticle morphology in PNCs is affected by a uniform probability distribution of grafting sites, common in field-based methods, versus random discrete grafting sites on the nanoparticle surface. We also analyze the accuracy of the mean-field approximation in capturing the phase behavior of PNCs. Moreover, the DMFT method introduces the ability to describe nonequilibrium phase behavior while the PNC-FT method is strictly an equilibrium method. With the DMFT method we are able to show the evolution of nonequilibrium states toward their equilibrium state and a qualitative assessment of the dynamics in these systems. These simulations are compared to experiments consisting of polystyrene grafted gold nanorods in a poly(methyl methacrylate) matrix to ensure the model gives results that qualitatively agree with the experiments. This study reveals that nanoparticles in a relatively high matrix molecular weight are trapped in a nonequilibrium state and demonstrates the utility of the DMFT framework in capturing nonequilibrium phase behavior of PNCs. In conclusion, both the PNC-FT and DMFT framework are promising methods to describe the thermodynamic and nonequilibrium phase behavior of PNCs.« less

  16. Comparison of Coarse-Grained Approaches in Predicting Polymer Nanocomposite Phase Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koski, Jason P.; Ferrier, Robert C.; Krook, Nadia M.

    Because of the considerable parameter space, efficient theoretical and simulation methods are required to predict the morphology and guide experiments in polymer nanocomposites (PNCs). Unfortunately, theoretical and simulation methods are restricted in their ability to accurately map to experiments based on necessary approximations and numerical limitations. In this study, we provide direct comparisons of two recently developed coarse-grained approaches for modeling polymer nanocomposites (PNCs): polymer nanocomposite field theory (PNC-FT) and dynamic mean-field theory (DMFT). These methods are uniquely suited to efficiently capture mesoscale phase behavior of PNCs in comparison to other theoretical and simulation frameworks. We demonstrate the ability ofmore » both methods to capture macrophase separation and describe the thermodynamics of PNCs. We systematically test how the nanoparticle morphology in PNCs is affected by a uniform probability distribution of grafting sites, common in field-based methods, versus random discrete grafting sites on the nanoparticle surface. We also analyze the accuracy of the mean-field approximation in capturing the phase behavior of PNCs. Moreover, the DMFT method introduces the ability to describe nonequilibrium phase behavior while the PNC-FT method is strictly an equilibrium method. With the DMFT method we are able to show the evolution of nonequilibrium states toward their equilibrium state and a qualitative assessment of the dynamics in these systems. These simulations are compared to experiments consisting of polystyrene grafted gold nanorods in a poly(methyl methacrylate) matrix to ensure the model gives results that qualitatively agree with the experiments. This study reveals that nanoparticles in a relatively high matrix molecular weight are trapped in a nonequilibrium state and demonstrates the utility of the DMFT framework in capturing nonequilibrium phase behavior of PNCs. In conclusion, both the PNC-FT and DMFT framework are promising methods to describe the thermodynamic and nonequilibrium phase behavior of PNCs.« less

  17. Investigation of the phase velocities of guided acoustic waves in soft porous layers.

    PubMed

    Boeckx, L; Leclaire, P; Khurana, P; Glorieux, C; Lauriks, W; Allard, J F

    2005-02-01

    A new experimental method for measuring the phase velocities of guided acoustic waves in soft poroelastic or poroviscoelastic plates is proposed. The method is based on the generation of standing waves in the material and on the spatial Fourier transform of the displacement profile of the upper surface. The plate is glued on a rigid substrate so that it has a free upper surface and a nonmoving lower surface. The displacement is measured with a laser Doppler vibrometer along a line corresponding to the direction of propagation of plane surface waves. A continuous sine with varying frequencies was chosen as excitation signal to maximize the precision of the measurements. The spatial Fourier transform provides the wave numbers, and the phase velocities are obtained from the relationship between wave number and frequency. The phase velocities of several guided modes could be measured in a highly porous foam saturated by air. The modes were also studied theoretically and, from the theoretical results, the experimental results, and a fitting procedure, it was possible to determine the frequency behavior of the complex shear modulus and of the complex Poisson ratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional methods.

  18. Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning.

    PubMed

    Hong, Siang-Jie; Chang, Feng-Ming; Chou, Tung-He; Chan, Seong Heng; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2011-06-07

    Contact angle hysteresis of a sessile drop on a substrate consists of continuous invasion of liquid phase with the advancing angle (θ(a)) and contact line pinning of liquid phase retreat until the receding angle (θ(r)) is reached. Receding pinning is generally attributed to localized defects that are more wettable than the rest of the surface. However, the defect model cannot explain advancing pinning of liquid phase invasion driven by a deflating bubble and continuous retreat of liquid phase driven by the inflating bubble. A simple thermodynamic model based on adhesion hysteresis is proposed to explain anomalous contact angle hysteresis of a captive bubble quantitatively. The adhesion model involves two solid–liquid interfacial tensions (γ(sl) > γ(sl)′). Young’s equation with γ(sl) gives the advancing angle θ(a) while that with γ(sl)′ due to surface rearrangement yields the receding angle θ(r). Our analytical analysis indicates that contact line pinning represents frustration in surface free energy, and the equilibrium shape corresponds to a nondifferential minimum instead of a local minimum. On the basis of our thermodynamic model, Surface Evolver simulations are performed to reproduce both advancing and receding behavior associated with a captive bubble on the acrylic glass.

  19. Morphological Evolution and Weak Interface Development within CVD-Zirconia Coating Deposited on Hi-Nicalon Fiber

    NASA Technical Reports Server (NTRS)

    Li, Hao; Lee, Jinil; Libera, Matthew R.; Lee, Woo Y.; Kebbede, Anteneh; Lance, Michael J.; Wang, Hongyu; Morscher, Gregory N.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The phase contents and morphology of a ZrO2 fiber coating deposited at 1050 C on Hi-Nicalon(Tm) by chemical vapor deposition were examined as a function of deposition time from 5 to 120 min. The morphological evolution in the ZrO2 coating was correlated to the development of delamination within the ZrO2 coating. The delamination appears to occur as a result of: (1) continuous formation of tetragonal ZrO2 nuclei on the deposition surface; (2) martensitic transformation of the tetragonal phase to a monoclinic phase upon reaching a critical grain size; and (3) development of significant compressive hoop stresses due to the volume dilation associated with the transformation. Our observations suggest that it will be of critical importance to further understand and eventually control the nucleation and grain growth behavior of CVD ZrO2 and its phase transformation behavior for its potential applications for composites.

  20. Stability conditions and mechanism of cream soaps: role of glycerol.

    PubMed

    Sagitani, Hiromichi

    2014-01-01

    Fatty acids, fatty acid potassium soaps, glycerol and water are essential ingredients in the production of stable cream soaps. In this study, the behavior of these components in solution was investigated to elucidate the stability conditions and mechanism of cream soaps. It was determined that the cream soaps were a dispersion of 1:1 acid soap (1:1 molar ratio of potassium soap/fatty acid) crystals in the lamellar gel phase, which has confirmed from the phase behavior diagrams and small angle X-ray scattering data. Glycerol was crucial ingredient in the formation of the lamellar gel phase. The cleansing process of the cream soaps was also evaluated using the same diagrams. The structure of the continuous phase in cream soaps changed from lamellar gel to a micellar aqueous solution upon the addition of water. This structural change during the washing process is important in producing the foaming activity of acid soaps to wash away dirt or excess fats from the skin surface.

  1. Self-Limited Growth in Pentacene Thin Films

    PubMed Central

    2017-01-01

    Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought. PMID:28287698

  2. Self-Limited Growth in Pentacene Thin Films.

    PubMed

    Pachmajer, Stefan; Jones, Andrew O F; Truger, Magdalena; Röthel, Christian; Salzmann, Ingo; Werzer, Oliver; Resel, Roland

    2017-04-05

    Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.

  3. Cathode surface effects and H.F.-behaviour of vacuum arcs

    NASA Astrophysics Data System (ADS)

    Fu, Yan Hong

    To gain a better understanding of the essential processes occurring during a vacuum arc interruption for the further development of the vacuum arc circuit breaker, cathode spot behavior, current interruption, dielectrical recovery and overvoltage generation are investigated. An experimental study on cathode spot behavior of the DC vacuum arc in relation to cathode surface roughness and a qualitative physical model to interpret the results are reported. An experimental investigation on the High Frequency (HF) current interruption, multiple recognitions and voltage escalation phenomena is reported. A calculation program to predict the level of overvoltages generated by the operation of a vacuum breaker in a realistic single phase circuit is developed. Detailed results are summarized.

  4. Mechanistic insights into the oxidation behavior of Ni alloys in high-temperature CO 2

    DOE PAGES

    Oleksak, Richard P.; Baltrus, John P.; Nakano, Jinichiro; ...

    2017-06-01

    We present results of a Ni superalloy oxidized for short times in high purity CO 2 and similarly in Ar containing ≤ 1 ppb O 2. A detailed analysis of the oxidized surfaces reveals striking similarities for the two exposure environments, suggesting O 2 impurities control the oxidation process in high-temperature CO 2. Selective oxidation results in Cr-rich oxide layers grown by 2 outward diffusion, while Cr vacancies left in the metal contribute to significant void formation at the oxide/metal interface. Unlike for most of the alloy surface, the oxidation behavior of secondary phase metal carbides is considerably different inmore » the two environments.« less

  5. Surface Phase Stability and Surfactant Behavior on InAsSb

    NASA Astrophysics Data System (ADS)

    Anderson, Evan M.

    InAsSb and related III-As/III-Sb heterostructures are of technological interest for applications in long wavelength infrared optoelectronic devices. However, there remain challenges to growing high quality material for these devices due to the complex interaction between As and Sb. While this interaction has been the subject of intense study, little work has focused on how As and Sb behave at the material surface with even fewer investigations into the atomic scale details of the InAsSb surface. This is a major gap in current knowledge because these materials are typically grown via vapor deposition methods, one atomic layer at a time. Thus, all processes impacting the growth of the crystal and its resultant properties occur at the surface. Despite this, the atomic scale details of the surface phases and processes impacting the Sb-As interaction have not previously been reported. This dissertation investigates the surface As-Sb interaction at an atomistic scale and its modification through different surface chemistry to be used as a guide for future experiments to improve the quality InAsSb of heterostructures by manipulating the surface phase during growth. In order to accomplish this, first principles calculations and experiments are used to investigate this system from three complimentary vantage points. First, the influence of Sb on the InAs surface and the stable surface phases of this system are investigated. Next, a similar approach is used on the opposite compositional extreme of the InAsSb system: As on the surface of InSb. Finally, the interaction of As and Sb is modified by the use of Bi as a surfactant during growth of InAsSb films. The interaction between As and Sb is found to be driven through the formation of surface phases and Bi is found to alter this interaction. Phase diagrams of both Sb on InAs and As on InSb show that As and Sb are driven to intermix through the formation of alloyed surface phases. Additionally, these phases range from having bulk-like stoichiometry to being highly As or Sb rich for the full InAsSb compositional range, indicating that surface stoichiometry is a controllable parameter for InAsSb growth. Sb is shown to intermix with the InAs surface by roughening the surface in a process driven by a phase transition. This interaction between Sb and InAs is stronger than previously thought, which has implications for the crystal growth problem of compositional broadening of the interfaces of III-As/III-Sb heterostructures. Finally, applying Bi to the surface of InAsSb during growth shows that modifies the interaction between As and Sb by catalyzing the formation of InAs, which decreases Sb incorporation. The results of this dissertation lay the foundation for optimization of the crystal growth surface in order to improve the properties of InAsSb and arsenide/antimonide heterostructures.

  6. Flexible echolocation behavior of trawling bats during approach of continuous or transient prey cues

    PubMed Central

    Übernickel, Kirstin; Tschapka, Marco; Kalko, Elisabeth K. V.

    2013-01-01

    Trawling bats use echolocation not only to detect and classify acoustically continuous cues originated from insects at and above water surfaces, but also to detect small water-dwelling prey items breaking the water surface for a very short time, producing only transient cues to be perceived acoustically. Generally, bats need to adjust their echolocation behavior to the specific task on hand, and because of the diversity of prey cues they use in hunting, trawling bats should be highly flexible in their echolocation behavior. We studied the adaptations in the behavior of Noctilio leporinus when approaching either a continuous cue or a transient cue that disappeared during the approach of the bat. Normally the bats reacted by dipping their feet in the water at the cue location. We found that the bats typically started to adapt their calling behavior at approximately 410 ms before prey contact in continuous cue trials, but were also able to adapt their approach behavior to stimuli onsets as short as 177 ms before contact, within a minimum reaction time of 50.9 ms in response to transient cues. In both tasks the approach phase ended between 32 and 53 ms before prey contact. Call emission always continued after the end of the approach phase until around prey contact. In some failed capture attempts, call emission did not cease at all after prey contact. Probably bats used spatial memory to dip at the original location of the transient cue after its disappearance. The duration of the pointed dips was significantly longer in transient cue trials than in continuous cue trials. Our results suggest that trawling bats possess the ability to modify their generally rather stereotyped echolocation behavior during approaches within very short reaction times depending on the sensory information available. PMID:23675352

  7. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and feedback to other added processes remain important, which could encourage mineralogical research into multiphase systems. Feedback from the compositionally complex slab to the dynamic trench may improve understanding on the mechanics of slab behavior in the upper and lower mantle and surface behavior of the subducting and overriding plates. Běhounková, M., and H. Cízková, Long-wavelength character of subducted slabs in the lower mantle, Earth and Planetary Science Letters, 275, 43-53, 2008. Fukao, Y., M. Obayashi, T. Nakakuki, and the Deep Slab Project Group, Stagnant slab: A review, Annual Reviews of Earth and Planetary Science, 37, 19-46, 2009. Ricard, Y., E. Mattern, and J. Matas, Synthetic tomographic images of slabs from mineral physics, in Earth's Deep Mantle: Structure, Composition, and Evolution, Geophysical Monograph Series, vol. 160, American Geophysical Union, 2005.

  8. Liquid spreading on ceramic-coated carbon nanotube films and patterned microstructures

    NASA Astrophysics Data System (ADS)

    Zhao, Hangbo; Hart, A. John

    2015-11-01

    We study the capillary-driven liquid spreading behavior on films and microstructures of ceramic-coated vertically aligned carbon nanotubes (CNTs) fabricated on quartz substrates. The nanoscale porosity and micro-scale dimensions of the CNT structures, which can be precisely varied by the fabrication process, enable quantitative measurements that can be related to analytical models of the spreading behavior. Moreover, the conformal alumina coating by atomic layer deposition (ALD) prevents capillary-induced deformation of the CNTs upon meniscus recession, which has complicated previous studies of this topic. Washburn-like liquid spreading behavior is observed on non-patterned CNT surfaces, and is explained using a scaling model based on the balance of capillary driving force and the viscous drag force. Using these insights, we design patterned surfaces with controllable spreading rates and study the contact line pinning-depinning behavior. The nanoscale porosity, controllable surface chemistry, and mechanical stability of coated CNTs provide significantly enhanced liquid-solid interfacial area compared to solid microstructures. As a result, these surface designs may be useful for applications such as phase-change heat transfer and electrochemical energy storage. Funding for this project is provided by the National Institutes of Health and the MIT Center for Clean Water and Clean Energy supported by the King Fahd University of Petroleum and Minerals.

  9. Review—Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems

    PubMed Central

    Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram

    2018-01-01

    Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself. PMID:29731515

  10. Imaging domain walls between nematic quantum Hall phases on the surface of bismuth

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Randeria, Mallika T.; Feldman, Benjamin E.; Ji, Huiwen; Cava, Robert J.; Yazdani, Ali

    The sensitivity of nematic electronic phases to disorder results in short range ordering and the formation of domains. Local probes are required to investigate the character of these domains and the boundaries between them, which remain hidden in global measurements that average over microscopic configurations. In this talk, I will describe measurements performed with a scanning tunneling microscope to study local nematic order on the surface of bismuth at high magnetic field. By imaging individual anisotropic cyclotron orbit wavefunctions that are pinned to atomic-scale surface defects, we directly resolve local nematic behavior and study the evolution of nematic states across a domain wall. Through spectroscopic mapping, we explore how the broken-symmetry Landau levels disperse across the domain wall, the influence of exchange interactions at such a boundary, and the formation of one-dimensional edge states.

  11. The Connection Between Local Icosahedral Order in Metallic Liquids and the Nucleation Behavior of Ordered Phases

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Gangopadhyay, A. K.; Lee, G. W.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, M. B.; Schenk, T.; Simonet, V.

    2003-01-01

    Over fifty years ago, David Turnbull showed that the temperature of many metallic liquids could be decreased far below their equilibrium melting temperature before crystallization occurred. To explain those surprising results, Charles Frank hypothesized that the local structures of undercooled metallic liquids are different from those of crystal phases, containing a significant degree of icosahedral order that is incompatible with extended periodicity. Such structural differences must create a barrier to the formation crystal phases, explaining the observed undercooling behavior. If true, the nucleation from the liquid of phases with extended icosahedral order should be easier. Icosahedral order is often favored in small clusters, as observed recently in liquid-like clusters of pure Pb on the (111) surface of Si[3], for example. However, it has never been shown that an increasing preference for icosahedral phase formation can be directly linked with the development of icosahedral order in the undercooled liquid. Owing to the combination of very recent advances in levitation techniques and the availability of synchrotron x-ray and high flux neutron facilities, this is shown here.

  12. Synthesis-driven, structure-dependent optical behavior in phase-tunable NaYF 4:Yb,Er-based motifs and associated heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haiqing; Han, Jinkyu; McBean, Coray

    Understanding the key parameters necessary for generating uniform Er,Yb co-activated NaYF 4 possessing various selected phases (i.e. cubic or hexagonal) represents an important chemical strategy towards tailoring optical behavior in these systems. In this paper, we report on a straightforward hydrothermal synthesis in which the separate effects of reaction temperature, reaction time, and precursor stoichiometry in the absence of any surfactant were independently investigated. Interestingly, the presence and the concentration of NH 4OH appear to be the most critical determinants of the phase and morphology. For example, with NH 4OH as an additive, we have observed the formation of novelmore » hierarchical nanowire bundles which possess overall lengths of ~5 μm and widths of ~1.5 μm but are composed of constituent component sub-units of long, ultrathin (~5 nm) nanowires. These motifs have yet to be reported as distinctive morphological manifestations of fluoride materials. The optical properties of as-generated structures have also been carefully analyzed. Specifically, we have observed tunable, structure-dependent energy transfer behavior associated with the formation of a unique class of NaYF 4–CdSe quantum dot (QD) heterostructures, incorporating zero-dimensional (0D), one-dimensional (1D), and three-dimensional (3D) NaYF 4 structures. Our results have demonstrated the key roles of the intrinsic morphology-specific physical surface area and porosity as factors in governing the resulting opto-electronic behavior. Finally and specifically, the trend in energy transfer efficiency correlates well with the corresponding QD loading within these heterostructures, thereby implying that the efficiency of FRET appears to be directly affected by the amount of QDs immobilized onto the external surfaces of the underlying fluoride host materials.« less

  13. Synthesis-driven, structure-dependent optical behavior in phase-tunable NaYF 4:Yb,Er-based motifs and associated heterostructures

    DOE PAGES

    Liu, Haiqing; Han, Jinkyu; McBean, Coray; ...

    2017-01-03

    Understanding the key parameters necessary for generating uniform Er,Yb co-activated NaYF 4 possessing various selected phases (i.e. cubic or hexagonal) represents an important chemical strategy towards tailoring optical behavior in these systems. In this paper, we report on a straightforward hydrothermal synthesis in which the separate effects of reaction temperature, reaction time, and precursor stoichiometry in the absence of any surfactant were independently investigated. Interestingly, the presence and the concentration of NH 4OH appear to be the most critical determinants of the phase and morphology. For example, with NH 4OH as an additive, we have observed the formation of novelmore » hierarchical nanowire bundles which possess overall lengths of ~5 μm and widths of ~1.5 μm but are composed of constituent component sub-units of long, ultrathin (~5 nm) nanowires. These motifs have yet to be reported as distinctive morphological manifestations of fluoride materials. The optical properties of as-generated structures have also been carefully analyzed. Specifically, we have observed tunable, structure-dependent energy transfer behavior associated with the formation of a unique class of NaYF 4–CdSe quantum dot (QD) heterostructures, incorporating zero-dimensional (0D), one-dimensional (1D), and three-dimensional (3D) NaYF 4 structures. Our results have demonstrated the key roles of the intrinsic morphology-specific physical surface area and porosity as factors in governing the resulting opto-electronic behavior. Finally and specifically, the trend in energy transfer efficiency correlates well with the corresponding QD loading within these heterostructures, thereby implying that the efficiency of FRET appears to be directly affected by the amount of QDs immobilized onto the external surfaces of the underlying fluoride host materials.« less

  14. Re-Analysis of the Solar Phase Curves of the Icy Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah; Verbiscer, Anne

    1997-01-01

    Re-analysis of the solar phase curves of the icy Galilean satellites demonstrates that the quantitative results are dependent on the single particle scattering function incorporated into the photometric model; however, the qualitative properties are independent. The results presented here show that the general physical characteristics predicted by a Hapke model (B. Hapke, 1986, Icarus 67, 264-280) incorporating a two parameter double Henyey-Greenstein scattering function are similar to the predictions given by the same model incorporating a three parameter double Henyey-Greenstein scattering function as long as the data set being modeled has adequate coverage in phase angle. Conflicting results occur when the large phase angle coverage is inadequate. Analysis of the role of isotropic versus anisotropic multiple scattering shows that for surfaces as bright as Europa the two models predict very similar results over phase angles covered by the data. Differences arise only at those phase angles for which there are no data. The single particle scattering behavior between the leading and trailing hemispheres of Europa and Ganymede is commensurate with magnetospheric alterations of their surfaces. Ion bombardment will produce more forward scattering single scattering functions due to annealing of potential scattering centers within regolith particles (N. J. Sack et al., 1992, Icarus 100, 534-540). Both leading and trailing hemispheres of Europa are consistent with a high porosity model and commensurate with a frost surface. There are no strong differences in predicted porosity between the two hemispheres of Callisto, both are consistent with model porosities midway between that deduced for Europa and the Moon. Surface roughness model estimates predict that surface roughness increases with satellite distance from Jupiter, with lunar surface roughness values falling midway between those measured for Ganymede and Callisto. There is no obvious variation in predicted surface roughness with hemisphere for any of the Galilean satellites.

  15. A complex systems analysis of stick-slip dynamics of a laboratory fault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, David M.; Tordesillas, Antoinette, E-mail: atordesi@unimelb.edu.au; Small, Michael

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructedmore » by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.« less

  16. Pressure-Induced Amorphization and a New High Density Amorphous Metallic Phase in Matrix-Free Ge Nanoparticles.

    PubMed

    Corsini, Niccolo R C; Zhang, Yuanpeng; Little, William R; Karatutlu, Ali; Ersoy, Osman; Haynes, Peter D; Molteni, Carla; Hine, Nicholas D M; Hernandez, Ignacio; Gonzalez, Jesus; Rodriguez, Fernando; Brazhkin, Vadim V; Sapelkin, Andrei

    2015-11-11

    Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.

  17. Change of Precipitation Behavior and Impact Toughness with Depths in Quenched Thick SAF 2507 Super Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ahiale, Godwin Kwame; Kim, Doo-Hyun; Yang, Won-Jon; Lee, Jong-Hoon; Oh, Yong-Jun

    2018-03-01

    We investigated the change of precipitation behavior and impact resistance as a function of depth from the surface of thick block of SAF 2507 super duplex stainless steel with the thickness (T) of 200 mm after water quenching from 1050 °C. The amount of detrimental sigma phase increased smoothly until the depth of 0.25T, followed by a rapid increase from 0.25T to the center. However, the impact strength decreased significantly with only 1.3% of area fraction of sigma phase as the depth increased past 0.1T. Based on fractography analysis for the samples at such small depth ranges, the distance between the sigma phase particles affected the relative amount of initiating brittle cracks in front of the notch and was one of the crucial factors that dramatically reduced impact resistance with depth.

  18. Electron nematic fluid in a strained S r3R u2O7 film

    NASA Astrophysics Data System (ADS)

    Marshall, Patrick B.; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne

    2018-04-01

    S r3R u2O7 belongs to the family of layered strontium ruthenates and exhibits a range of unusual emergent properties, such as electron nematic behavior and metamagnetism. Here, we show that epitaxial film strain significantly modifies these phenomena. In particular, we observe enhanced magnetic interactions and an electron nematic phase that extends to much higher temperatures and over a larger magnetic-field range than in bulk single crystals. Furthermore, the films show an unusual anisotropic non-Fermi-liquid behavior that is controlled by the direction of the applied magnetic field. At high magnetic fields, the metamagnetic transition to a ferromagnetic phase recovers isotropic Fermi-liquid behavior. The results support the interpretation that these phenomena are linked to the special features of the Fermi surface, which can be tuned by both film strain and an applied magnetic field.

  19. Extreme high temperature redox kinetics in ceria: exploration of the transition from gas-phase to material-kinetic limitations

    DOE PAGES

    Ji, Ho-Il; Davenport, Timothy C.; Gopal, Chirranjeevi Balaji; ...

    2016-07-18

    The redox kinetics of undoped ceria (CeO 2-δ) are investigated by the electrical conductivity relaxation method in the oxygen partial pressure range of -4.3 ≤ log(pO 2/atm) ≤ -2.0 at 1400 °C. It is demonstrated that extremely large gas flow rates, relative to the mass of the oxide, are required in order to overcome gas phase limitations and access the material kinetic properties. Using these high flow rate conditions, the surface reaction rate constant k chem is found to obey the correlation log(k chem/cm s -1) = (0.84 ± 0.02) × log(pO 2/atm) - (0.99 ± 0.05) and increases withmore » oxygen partial pressure. This increase contrasts the known behavior of the dominant defect species, oxygen vacancies and free electrons, which decrease in concentration with increasing oxygen partial pressure. For the sample geometries employed, diffusion was too fast to be detected. At low gas flow rates, the relaxation process becomes limited by the capacity of the sweep gas to supply/remove oxygen to/from the oxide. An analytical expression is derived for the relaxation in the gas-phase limited regime, and the result reveals an exponential decay profile, identical in form to that known for a surface reaction limited process. Thus, measurements under varied gas flow rates are required to differentiate between surface reaction limited and gas flow limited behavior.« less

  20. Extreme high temperature redox kinetics in ceria: exploration of the transition from gas-phase to material-kinetic limitations.

    PubMed

    Ji, Ho-Il; Davenport, Timothy C; Gopal, Chirranjeevi Balaji; Haile, Sossina M

    2016-08-03

    The redox kinetics of undoped ceria (CeO2-δ) are investigated by the electrical conductivity relaxation method in the oxygen partial pressure range of -4.3 ≤ log(pO2/atm) ≤ -2.0 at 1400 °C. It is demonstrated that extremely large gas flow rates, relative to the mass of the oxide, are required in order to overcome gas phase limitations and access the material kinetic properties. Using these high flow rate conditions, the surface reaction rate constant kchem is found to obey the correlation log(kchem/cm s(-1)) = (0.84 ± 0.02) × log(pO2/atm) - (0.99 ± 0.05) and increases with oxygen partial pressure. This increase contrasts the known behavior of the dominant defect species, oxygen vacancies and free electrons, which decrease in concentration with increasing oxygen partial pressure. For the sample geometries employed, diffusion was too fast to be detected. At low gas flow rates, the relaxation process becomes limited by the capacity of the sweep gas to supply/remove oxygen to/from the oxide. An analytical expression is derived for the relaxation in the gas-phase limited regime, and the result reveals an exponential decay profile, identical in form to that known for a surface reaction limited process. Thus, measurements under varied gas flow rates are required to differentiate between surface reaction limited and gas flow limited behavior.

  1. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized using a Direct Electrochemical Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas

    In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less

  2. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized using a Direct Electrochemical Method

    DOE PAGES

    Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas; ...

    2018-06-01

    In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less

  3. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized Using a Direct Electrochemical Method.

    PubMed

    Lapp, Aliya S; Duan, Zhiyao; Marcella, Nicholas; Luo, Long; Genc, Arda; Ringnalda, Jan; Frenkel, Anatoly I; Henkelman, Graeme; Crooks, Richard M

    2018-05-11

    In this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2- , a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H atom capping layer prevents deposition of Pt multilayers. We applied this method to ∼1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to the well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).

  4. Behavioral indicators to detect ovarian phase in the dromedary she-camel.

    PubMed

    Padalino, B; Rateb, S A; Ibrahim, N B; Monaco, D; Lacalandra, G M; El-Bahrawy, K A

    2016-06-01

    This pilot study was conducted to test the hypothesis that female camels behave differently in various ovarian phases in the presence of a restrained male camel. The aim was to identify behavioral patterns which could be used as indicators to detect ovulatory phase by visual observation in the presence of a restrained virile bull. Twenty-four healthy, nonpregnant, and nonlactating adult females were used. Transrectal ultrasonography was performed for each animal once a week over a 3-week period to determine the phase of the ovarian cycle. Females were considered to be in the ovulatory phase (O) when there was at least one preovulatory follicle (12<Ø<19 mm) protruding from the ovarian surface, and in the nonovulatory phase (NO), when growing follicles, regressing follicles, or corpora lutea were detected. Immediately after examination, each female was freely exposed to a restrained bull for 15 minutes, and her behaviors were filmed. The videos were analyzed through a focal animal-sampling ethogram (states: looking at the male; looking outside; standing close to the male; searching; and lying down; events: interaction with the male; urination; defecation; sound emission; and steps). A score for tail position (tail score: 1 = close to the vulva, 2 = horizontal, 3 = vertical) and for interest in the bull (male time score: from 1 to 5; 1 = <20% of observation period spent near the bull; 5 = more than 80%) were recorded. Ovulatory phase camels showed higher interest in the male than nonovulatory phases: they stood close to the male for longer periods (P = 0.0159), interacted with the male more frequently (P = 0.0004), and tended to lie down in front of him (P = 0.1202). Moreover, ovulatory phase had a significant effect on male time score (P < 0.01), mature follicular ovarian phase being associated with higher scores. Seeking the male has already been proposed as a behavioral indicator of estrus in camels, this has now been confirmed using a standardized ethogram. The present results clarify that camels behave differently in different ovarian phases and that monitoring their behavior in the presence of a restrained bull could help detect their ovulatory phase. This would have profound implications for enhancing fertility in dromedary camels by improving timing of mating or artificial insemination. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Development of a tuned interfacial force field parameter set for the simulation of protein adsorption to silica glass.

    PubMed

    Snyder, James A; Abramyan, Tigran; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A

    2012-12-01

    Adsorption free energies for eight host-guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5-9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface.

  6. Development of a Tuned Interfacial Force Field Parameter Set for the Simulation of Protein Adsorption to Silica Glass

    PubMed Central

    Snyder, James A.; Abramyan, Tigran; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.

    2012-01-01

    Adsorption free energies for eight host–guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5–9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface. PMID:22941539

  7. Reorganization of lipid domain distribution in giant unilamellar vesicles upon immobilization with different membrane tethers.

    PubMed

    Sarmento, M J; Prieto, M; Fernandes, Fábio

    2012-11-01

    Characterization of phase coexistence in biologically relevant lipid mixtures is often carried out through confocal microscopy of giant unilamellar lipid vesicles (GUVs), loaded with fluorescent membrane probes. This last analysis is generally limited to the vesicle hemisphere further away from the coverslip, in order to avoid artifacts induced by the interaction with the solid surface, and immobilization of vesicles is in many cases required in order to carry out intensity, lifetime or single-molecule based microscopy. This is generally achieved through the use of membrane tethers adhering to a coverslip surface. Here, we aimed to determine whether GUV immobilization through membrane tethers induces changes in lipid domain distribution within liposomes displaying coexistence of lipid lamellar phases. Confocal imaging and a Förster resonance energy transfer (FRET) methodology showed that biotinylated phospholipids present significantly different membrane phase partition behavior upon protein binding, depending on the presence or absence of a linker between the lipid headgroup and the biotinyl moiety. Membrane phases enriched in a membrane tether displayed in some cases a dramatically increased affinity for the immobilization surface, effectively driving sorting of lipid domains to the adherent membrane area, and in some cases complete sequestering of a lipid phase to the interaction surface was observed. On the light of these results, we conclude that tethering of lipid membranes to protein surfaces has the potential to drastically reorganize the distribution of lipid domains, and this reorganization is solely dictated by the partition properties of the protein-tether complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The golden-mean surface pattern to enhance flow mixing in micro-channel.

    PubMed

    Wang, J F; Liu, Y; Xu, Y S

    2009-04-01

    Mixing of analytes and reagents in microfluidic devices is often crucial to the effective functioning of lab-on-a-chip. It is possible to affect the mixing in microfluidics by intelligently controlling the thermodynamic and chemical properties of the substrate surface. Numerous studies have shown that the phase behavior of mixtures is significantly affected by surface properties of microfluidics. For example, the phase separation between the fluids can be affected by heterogeneous patterns on the substrate. The patterned substrate can offer an effective means to control fluid behavior and in turn to enhance mixing. The golden mean is a ratio that is present in the growth patterns of many biological systems--the spiral formed by a shell or the curve of a fern, for example. The golden mean or golden section was derived by the ancient Greeks. Like "pi" the golden mean ratio is an irrational number 1.618, or (square root{5} + 1) / 2. It was found that the golden mean was an optimum ratio in natural convection heat transfer problem (Liu and Phan-Thien, Numer Heat Transf 37:613-630, 2000). In this study, we numerically studied the effect of optimum surface pattern on mixing in a micro channel and found that the flow oscillation and chaotic mixing were enhanced apparently when the ratio of hydrophobic and hydrophilic boundary follows the golden mean.

  9. Acid base properties of cyanobacterial surfaces I: Influences of growth phase and nitrogen metabolism on cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Significant efforts have been made to elucidate the chemical properties of bacterial surfaces for the purposes of refining surface complexation models that can account for their metal sorptive behavior under diverse conditions. However, the influence of culturing conditions on surface chemical parameters that are modeled from the potentiometric titration of bacterial surfaces has received little regard. While culture age and metabolic pathway have been considered as factors potentially influencing cell surface reactivity, statistical treatments have been incomplete and variability has remained unconfirmed. In this study, we employ potentiometric titrations to evaluate variations in bacterial surface ligand distributions using live cells of the sheathless cyanobacterium Anabaena sp. strain PCC 7120, grown under a variety of batch culture conditions. We evaluate the ability for a single set of modeled parameters, describing acid-base surface properties averaged over all culture conditions tested, to accurately account for the ligand distributions modeled for each individual culture condition. In addition to considering growth phase, we assess the role of the various assimilatory nitrogen metabolisms available to this organism as potential determinants of surface reactivity. We observe statistically significant variability in site distribution between the majority of conditions assessed. By employing post hoc Tukey-Kramer analysis for all possible pair-wise condition comparisons, we conclude that the average parameters are inadequate for the accurate chemical description of this cyanobacterial surface. It was determined that for this Gram-negative bacterium in batch culture, ligand distributions were influenced to a greater extent by nitrogen assimilation pathway than by growth phase.

  10. Effect of vesicle size on the prodan fluorescence in diheptadecanoylphosphatidylcholine bilayer membrane under atmospheric and high pressures.

    PubMed

    Goto, Masaki; Sawaguchi, Hiroshi; Tamai, Nobutake; Matsuki, Hitoshi; Kaneshina, Shoji

    2010-08-17

    The bilayer phase behavior of diheptadecanoylphosphatidylcholine (C17PC) with different vesicle sizes (large multilamellar vesicle (LMV) and giant multilamellar vesicle (GMV)) was investigated by fluorescence spectroscopy using a polarity-sensitive fluorescent probe Prodan under atmospheric and high pressures. The difference in phase transitions and thermodynamic quantities of the transition was hardly observed between LMV and GMV used here. On the contrary, the Prodan fluorescence in the bilayer membranes changed depending on the size of vesicles as well as on the phase states. From the second derivative of fluorescence spectra, the three-dimensional image plots in which we can see the location of Prodan in the bilayer membrane as blue valleys were constructed for LMV and GMV under atmospheric pressure. The following characteristic behavior was found: (1) the Prodan molecules in GMV can be distributed to not only adjacent glycerol backbone region, but also near bulk-water region in the lamellar gel or ripple gel phase; (2) the blue valleys of GMV became deeper than those of LMV because of the greater surface density of the Prodan molecules per unit area of GMV than LMV; (3) the liquid crystalline phase of the bilayer excludes the Prodan molecules to a more hydrophilic region at the membrane surface with an increase in vesicle size; (4) the accurate information as to the phase transitions is gradually lost with increasing vesicle size. Under the high-pressure condition, the difference in Prodan fluorescence between LMV and GMV was essentially the same as the difference under atmospheric pressure except for the existence of the pressure-induced interdigitated gel phase. Further, we found that Prodan fluorescence spectra in the interdigitated gel phase were especially affected by the size of vesicles. This study revealed that the Prodan molecules can move around the headgroup region by responding not only to the phase state but also to the vesicle size, and they become a useful membrane probe, detecting important membrane properties such as the packing stress.

  11. Origin of Spinel Nanocheckerboards via First Principles

    NASA Astrophysics Data System (ADS)

    Kornbluth, Mordechai; Marianetti, Chris A.

    2015-06-01

    Self-organizing nanocheckerboards have been experimentally fabricated in Mn-based spinels but have not yet been explained with first principles. Using density-functional theory, we explain the phase diagram of the ZnMnxGa2 -xO4 system and the origin of nanocheckerboards. We predict total phase separation at zero temperature and then show the combination of kinetics, thermodynamics, and Jahn-Teller physics that generates the system's observed behavior. We find that the {011 } surfaces are strongly preferred energetically, which mandates checkerboard ordering by purely geometrical considerations.

  12. Rheology and microstructure of filled polymer melts

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin John

    The states of particle dispersion in polymer nanocomposite melts are studied through rheological characterization of nanocomposite melt mechanical properties and small angle X-ray scattering measurement of the particle microstructure. The particle microstructure probed with scattering is related to bulk flow mechanics to determine the origin of slow dynamics in these complex dispersions: whether a gel or glass transition or a slowing down of dispersing phase dynamics. These studies were conducted to understand polymer mediated particle-particle interactions and potential particle-polymer phase separation. The phase behavior of the dispersion will be governed by enthalpic and entropic contributions. A variety of phases are expected: homogeneous fluid, phase separated, or non-equilibrium gel. The effects of dispersion control parameters, namely particle volume fraction, polymer molecular weight, and polymer-particle surface affinity, on the phase behavior of 44 nm silica dispersions are studied in low molecular weight polyethylene oxide (PEO), polyethylene oxide dimethylether (PEODME), and polytetrahydrofuran (PTHF). Scattering measurements of the particle second virial coefficient in PEO melts indicates repulsive particles by a value slightly greater than unity. In PEO nanocomposites, dispersion dynamics slow down witnessed by a plateau in the elastic modulus as the particle separation approaches the length scale of the polymer radius of gyration. As the polymer molecular weight is increased, the transition shifts to lower particle volume fractions. Below polymer entanglement, the slow dynamics mimics that of a colloidal glass by the appearance of two relaxation times in the viscous modulus that display power law scaling with volume fraction. Above entanglement, the slow dynamics is qualitatively different resembling the behavior of a gelled suspension yet lacking any sign of scattering from particle agglomerates. As polymer molecular weight is increased at a fixed volume fraction, two strain yielding events emerge. Further particle loading leads to the formation of a particle-polymer network and the onset of brittle mechanical behavior. The performance of PEO nanocomposites is contrasted by PEODME and PTHF nanocomposites where a change in the polymer segment-surface activity changes the slow dynamics of the nanocomposite and the microstructure of particles in the melt. Slow dynamics and the particle microstructure indicate a gelled suspension as volume fraction is raised with particles in or near contact and support the turning on of particle attractions in the melt.

  13. Thermomechanical testing of high-temperature composites - Thermomechanical fatigue (TMF) behavior of SiC(SCS-6)/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Bartolotta, Paul; Ellis, John R.

    1992-01-01

    Thermomechanical testing techniques recently developed for monolithic structural alloys were successfully extended to continuous fiber reinforced composite materials in plate form. The success of this adaptation was verified on a model metal matrix composite (MMC) material, namely SiC(SCS-6)/Ti-15V-3Cr-3Al-3Sn. Effects of heating system type and specimen preparation are also addressed. Cyclic lives determined under full thermomechanical conditions were shown to be significantly reduced from those obtained under comparable isothermal and in-phase bi-thermal conditions. Fractography and metallography from specimens subjected to isothermal, out-of-phase and in-phase conditions reveal distinct differences in damage-failure modes. Isothermal metallography revealed extensive matrix cracking associated with fiber damage throughout the entire cross-section of the specimen. Out-of-phase metallography revealed extensive matrix damage associated with minimal (if any) fiber cracking. However, the damage was located exclusively at surface and near-surface locations. In-phase conditions produced extensive fiber cracking throughout the entire cross-section, associated with minimal (if any) matrix damage.

  14. Thermomechanical testing techniques for high-temparature composites: TMF behavior of SiC(SCS-6)/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Ellis, J. Rodney; Bartolotta, Paul A.

    1990-01-01

    Thermomechanical testing techniques recently developed for monolithic structural alloys were successfully extended to continuous fiber reinforced composite materials in plate form. The success of this adaptation was verified on a model metal matrix composite (MMC) material, namely SiC(SCS-6)/Ti-15V-3Cr-3Al-3Sn. Effects of heating system type and specimen preparation are also addressed. Cyclic lives determined under full thermo-mechanical conditions were shown to be significantly reduced from those obtained under comparable isothermal and in-phase bi-thermal conditions. Fractography and metallography from specimens subjected to isothermal, out-of-phase and in-phase conditions reveal distinct differences in damage-failure modes. Isothermal metallography revealed extensive matrix cracking associated with fiber damage throughout the entire cross-section of the specimen. Out-of-phase metallography revealed extensive matrix damage associated with minimal (if any) fiber cracking. However, the damage was located exclusively at surface and near-surface locations. In-phase conditions produced extensive fiber cracking throughout the entire cross-section, associated with minimal (if any) matrix damage.

  15. Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.

    PubMed

    Aboud, Damon G K; Kietzig, Anne-Marie

    2015-09-15

    Oblique drop impacts were performed at high speeds (up to 27 m/s, We > 9000) with millimetric water droplets, and a linear model was applied to define the oblique splashing threshold. Six different sample surfaces were tested: two substrate materials of different inherent surface wettability (PTFE and aluminum), each prepared with three different surface finishes (smooth, rough, and textured to support superhydrophobicity). Our choice of surfaces has allowed us to make several novel comparisons. Considering the inherent surface wettability, we discovered that PTFE, as the more hydrophobic surface, exhibits lower splashing thresholds than the hydrophilic surface of aluminum of comparable roughness. Furthermore, comparing oblique impacts on smooth and textured surfaces, we found that asymmetrical spreading and splashing behaviors occurred under a wide range of experimental conditions on our smooth surfaces; however, impacts occurring on textured surfaces were much more symmetrical, and one-sided splashing occurred only under very specific conditions. We attribute this difference to the air-trapping nature of textured superhydrophobic surfaces, which lowers the drag between the spreading lamella and the surface. The reduced drag affects oblique drop impacts by diminishing the effect of the tangential component of the impact velocity, causing the impact behavior to be governed almost exclusively by the normal velocity. Finally, by comparing oblique impacts on superhydrophobic surfaces at different impact angles, we discovered that although the pinning transition between rebounding and partial rebounding is governed primarily by the normal impact velocity, there is also a weak dependence on the tangential velocity. As a result, pinning is inhibited in oblique impacts. This led to the observation of a new behavior in highly oblique impacts on our superhydrophobic surfaces, which we named the stretched rebound, where the droplet is extended into an elongated pancake shape and rebounds while still outstretched, without exhibiting a recession phase.

  16. Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars

    USGS Publications Warehouse

    Johnson, J. R.; Kirk, R.; Soderblom, L.A.; Gaddis, L.; Reid, R.J.; Britt, D.T.; Smith, P.; Lemmon, M.; Thomas, N.; Bell, J.F.; Bridges, N.T.; Anderson, R.; Herkenhoff, K. E.; Maki, J.; Murchie, S.; Dummel, A.; Jaumann, R.; Trauthan, F.; Arnold, G.

    1999-01-01

    Reflectance measurements of selected rocks and soils over a wide range of illumination geometries obtained by the Imager for Mars Pathfinder (IMP) camera provide constraints on interpretations of the physical and mineralogical nature of geologic materials at the landing site. The data sets consist of (1) three small "photometric spot" subframed scenes, covering phase angles from 20?? to 150??; (2) two image strips composed of three subframed images each, located along the antisunrise and antisunset lines (photometric equator), covering phase angles from ???0?? to 155??; and (3) full-image scenes of the rock "Yogi," covering phase angles from 48?? to 100??. Phase functions extracted from calibrated data exhibit a dominantly backscattering photometric function, consistent with the results from the Viking lander cameras. However, forward scattering behavior does appear at phase angles >140??, particularly for the darker gray rock surfaces. Preliminary efforts using a Hapke scattering model are useful in comparing surface properties of different rock and soil types but are not well constrained, possibly due to the incomplete phase angle availability, uncertainties related to the photometric function of the calibration targets, and/or the competing effects of diffuse and direct lighting. Preliminary interpretations of the derived Hapke parameters suggest that (1) red rocks can be modeled as a mixture of gray rocks with a coating of bright and dark soil or dust, and (2) gray rocks have macroscopically smoother surfaces composed of microscopically homogeneous, clear materials with little internal scattering, which may imply a glass-like or varnished surface. Copyright 1999 by the American Geophysical Union.

  17. Carbon solids in oxygen-deficient explosives (LA-UR-13-21151)

    NASA Astrophysics Data System (ADS)

    Peery, Travis

    2013-06-01

    The phase behavior of excess carbon in oxygen-deficient explosives has a significant effect on detonation properties and product equations of state. Mixtures of fuel oil in ammonium nitrate (ANFO) above a stoichiometric ratio demonstrate that even small amounts of graphite, on the order of 5% by mole fraction, can substantially alter the Chapman-Jouget (CJ) state properties, a central ingredient in modeling the products equation of state. Similar effects can be seen for Composition B, which borders the carbon phase boundary between graphite and diamond. Nano-diamond formation adds complexity to the product modeling because of surface adsorption effects. I will discuss these carbon phase issues in our equation of state modeling of detonation products, including our statistical mechanics description of carbon clustering and surface chemistry to properly treat solid carbon formation. This work is supported by the Advanced Simulation and Computing Program, under the NNSA.

  18. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium.

    PubMed

    Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao

    2017-12-01

    The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.

  19. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao

    2017-07-01

    The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.

  20. Microstructural evolution and wear behaviors of laser cladding Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC

    NASA Astrophysics Data System (ADS)

    Song, R.; Li, J.; Shao, J. Z.; Bai, L. L.; Chen, J. L.; Qu, C. C.

    2015-11-01

    The Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements' microstructure, namely TiCp+(TiB+TiC)e, (TiB+TiC)e and TiBp+(TiB+TiC)e (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.

  1. Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E.

    Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B,more » NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.« less

  2. Self-spreading of the wetting ridge during stick-slip on a viscoelastic surface

    DOE PAGES

    Park, S. J.; Bostwick, J. B.; De Andrade, V.; ...

    2017-10-23

    Dynamic wetting behaviors on soft solids are important to interpret complex biological processes from cell–substrate interactions. Despite intensive research studies over the past half-century, the underlying mechanisms of spreading behaviors are not clearly understood. The most interesting feature of wetting on soft matter is the formation of a “wetting ridge”, a surface deformation by a competition between elasticity and capillarity. Dynamics of the wetting ridge formed at the three-phase contact line underlies the dynamic wetting behaviors, but remains largely unexplored mostly due to limitations in indirect observation. Here, we directly visualize wetting ridge dynamics during continuous- and stick-slip motions onmore » a viscoelastic surface using X-ray microscopy. Strikingly, we discover that the ridge spreads spontaneously during stick and triggers contact line depinning (stick-to-slip transition) by changing the ridge geometry which weakens the contact line pinning. Finally, we clarify ‘viscoelastic-braking’, ‘stick-slipping’, and ‘stick-breaking’ spreading behaviors through the ridge dynamics. In stick-breaking, no ridge-spreading occurs and contact line pinning (hysteresis) is enhanced by cusp-bending while preserving a microscopic equilibrium at the ridge tip. We have furthered the understanding of spreading behaviors on soft solids and demonstrated the value of X-ray microscopy in elucidating various dynamic wetting behaviors on soft solids as well as puzzling biological issues.« less

  3. Designing of a small wearable conformal phased array antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.

  4. Models of globular proteins in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wentzel, Nathaniel James

    Protein crystallization is a continuing area of research. Currently, there is no universal theory for the conditions required to crystallize proteins. A better understanding of protein crystallization will be helpful in determining protein structure and preventing and treating certain diseases. In this thesis, we will extend the understanding of globular proteins in aqueous solutions by analyzing various models for protein interactions. Experiments have shown that the liquid-liquid phase separation curves for lysozyme in solution with salt depend on salt type and salt concentration. We analyze a simple square well model for this system whose well depth depends on salt type and salt concentration, to determine the phase coexistence surfaces from experimental data. The surfaces, calculated from a single Monte Carlo simulation and a simple scaling argument, are shown as a function of temperature, salt concentration and protein concentration for two typical salts. Urate Oxidase from Asperigillus flavus is a protein used for studying the effects of polymers on the crystallization of large proteins. Experiments have determined some aspects of the phase diagram. We use Monte Carlo techniques and perturbation theory to predict the phase diagram for a model of urate oxidase in solution with PEG. The model used includes an electrostatic interaction, van der Waals attraction, and a polymerinduced depletion interaction. The results agree quantitatively with experiments. Anisotropy plays a role in globular protein interactions, including the formation of hemoglobin fibers in sickle cell disease. Also, the solvent conditions have been shown to play a strong role in the phase behavior of some aqueous protein solutions. Each has previously been treated separately in theoretical studies. Here we propose and analyze a simple, combined model that treats both anisotropy and solvent effects. We find that this model qualitatively explains some phase behavior, including the existence of a lower critical point under certain conditions.

  5. Dissolution behavior and early bone apposition of calcium phosphate-coated machined implants

    PubMed Central

    Hwang, Ji-Wan; Lee, Eun-Ung; Lee, Jung-Seok; Jung, Ui-Won; Lee, In-Seop

    2013-01-01

    Purpose Calcium phosphate (CaP)-coated implants promote osseointegration and survival rate. The aim of this study was to (1) analyze the dissolution behavior of the residual CaP particles of removed implants and (2) evaluate bone apposition of CaP-coated machined surface implants at the early healing phase. Methods Mandibular premolars were extracted from five dogs. After eight weeks, the implants were placed according to drilling protocols: a nonmobile implant (NI) group and rotational implant (RI) group. For CaP dissolution behavior analysis, 8 implants were removed after 0, 1, 2, and 4 weeks. The surface morphology and deposition of the coatings were observed. For bone apposition analysis, block sections were obtained after 1-, 2-, and 4-week healing periods and the specimens were analyzed. Results Calcium and phosphorus were detected in the implants that were removed immediately after insertion, and the other implants were composed mainly of titanium. There were no notable differences between the NI and RI groups in terms of the healing process. The bone-to-implant contact and bone density in the RI group showed a remarkable increase after 2 weeks of healing. Conclusions It can be speculated that the CaP coating dissolves early in the healing phase and chemically induces early bone formation regardless of the primary stability. PMID:24455442

  6. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  7. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia.

    PubMed

    Lai, Xuan; Si, Wenjie; Jiang, Danyu; Sun, Ting; Shao, Longquan; Deng, Bin

    2017-11-01

    The purpose of this study is to elucidate the effects of small-grit grinding on the mechanical behaviors and ageing resistance of a super-translucent dental zirconia and to investigate the necessity of glazing for the small-grit ground zirconia. Small-grit grinding was performed using two kinds of silicon carbide abrasive papers. The control group received no grinding. The unground surfaces and the ground surfaces were glazed by an experienced dental technician. Finally, the zirconia materials were thermally aged in water at 134°C for 5h. After aforementioned treatments, we observed the surface topography and the microstructures, and measured the extent of monoclinic phase, the nano-hardness and nano-modulus of the possible transformed zone and the flexural strength. Small-grit grinding changed the surface topography. The zirconia microstructure did not change obviously after surface treatments and thermal ageing; however, the glaze in contact with zirconia showed cracks after thermal ageing. Small-grit grinding did not induce a phase transformation but improved the flexural strength and ageing resistance. Glazing prevented zirconia from thermal ageing but severely diminished the flexural strength. The nano-hardness and nano-modulus of the surface layer were increased by ultrafine grinding. The results suggest that small-grit grinding is beneficial to the strength and ageing resistance of the super-translucent dental zirconia; however, glazing is not necessary and even impairs the strength for the super-translucent dental zirconia. This study is helpful to the researches about dental grinding tools and maybe useful for dentists to choose reasonable zirconia surface treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Acousto-optical assessment of skin viscoelasticity

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean J.; Duncan, Donald D.

    2003-07-01

    A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto-optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.

  9. Optical assessment of tissue mechanics: acousto-optical elastography of skin

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean J.

    2003-10-01

    A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto - optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.

  10. Electrochemical Performance Estimation of Anodized AZ31B Magnesium Alloy as Function of Change in the Current Density

    NASA Astrophysics Data System (ADS)

    Girón, L.; Aperador, W.; Tirado, L.; Franco, F.; Caicedo, J. C.

    2017-08-01

    The anodized AZ31B magnesium alloys were synthesized via electrodeposition processes. The aim of this work was to determine the electrochemical behavior of magnesium alloys by using anodized alloys as a protective coating. The anodized alloys were characterized by x-ray diffraction, exhibiting the crystallography orientation for Mg and MgO phases. The x-ray photoelectron spectroscopy was used to determine the chemical composition of anodized magnesium alloys. By using electrochemical impedance spectroscopy and Tafel curves, it was possible to estimate the electrochemical behavior of anodized AZ31B magnesium alloys in Hank's balanced salt solution (HBSS). Scanning electron microscopy was performed to analyze chemical changes and morphological surface changes on anodized Mg alloys due to the reaction in HBSS/anodized magnesium surface interface. Electrochemical behavior in HBSS indicates that the coatings may be a promising material for biomedical industry.

  11. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2014-01-01

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903

  12. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration.

    PubMed

    Birkner, Nancy; Navrotsky, Alexandra

    2014-04-29

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings.

  13. The Three-D Flow Structures of Gas and Liquid Generated by a Spreading Flame Over Liquid Fuel

    NASA Technical Reports Server (NTRS)

    Tashtoush, G.; Ito, A.; Konishi, T.; Narumi, A.; Saito, K.; Cremers, C. J.

    1999-01-01

    We developed a new experimental technique called: Combined laser sheet particle tracking (LSPT) and laser holographic interferometry (HI), which is capable of measuring the transient behavior of three dimensional structures of temperature and flow both in liquid and gas phases. We applied this technique to a pulsating flame spread over n-butanol. We found a twin vortex flow both on the liquid surface and deep in the liquid a few mm below the surface and a twin vortex flow in the gas phase. The first twin vortex flow at the liquid surface was observed previously by NASA Lewis researchers, while the last two observations are new. These observations revealed that the convective flow structure ahead of the flame leading edge is three dimensional in nature and the pulsating spread is controlled by the convective flow of both liquid and gas.

  14. Unsteady blade pressure measurements for the SR-7A propeller at cruise conditions

    NASA Technical Reports Server (NTRS)

    Heidelberg, L. J.; Nallasamy, M.

    1990-01-01

    The unsteady blade surface pressures were measured on the SR-7A propeller. The freestream Mach no., inflow angle, and advance ratio were varied while measurements were made at nine blade stations. At a freestream Mach no. of 0.8, the data in terms of unsteady pressure coefficient vs. azimuth angle are compared to an unsteady 3-D Euler solution, yielding very encouraging results. The code predicts the shape (phase) of the waveform very well, while the magnitude is over-predicted in many cases. At tunnel Mach nos. below 0.6, an unusually large response on the suction surface at 0.15 chord and 0.88 radius was observed. The behavior of this response suggests the presence of a leading edge vortex. The midchord measuring stations on the suction surface exhibit a response that leads the forcing function while most other locations show a phase lag.

  15. Characterization of Lifshitz transitions in topological nodal line semimetals

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Li, Linhu; Gong, Jiangbin; Chen, Shu

    2018-04-01

    We introduce a two-band model of three-dimensional nodal line semimetals (NLSMs), the Fermi surface of which at half-filling may form various one-dimensional configurations of different topology. We study the symmetries and "drumhead" surface states of the model, and find that the transitions between different configurations, namely, the Lifshitz transitions, can be identified solely by the number of gap-closing points on some high-symmetry planes in the Brillouin zone. A global phase diagram of this model is also obtained accordingly. We then investigate the effect of some extra terms analogous to a two-dimensional Rashba-type spin-orbit coupling. The introduced extra terms open a gap for the NLSMs and can be useful in engineering different topological insulating phases. We demonstrate that the behavior of surface Dirac cones in the resulting insulating system has a clear correspondence with the different configurations of the original nodal lines in the absence of the gap terms.

  16. Finite-Size Effects on the Behavior of the Susceptibility in van der Waals Films Bounded by Strongly Absorbing Substrates

    NASA Technical Reports Server (NTRS)

    Dantchev, Daniel; Rudnick, Joseph; Barmatz, M.

    2007-01-01

    We study critical point finite-size effects in the case of the susceptibility of a film in which interactions are characterized by a van der Waals-type power law tail. The geometry is appropriate to a slab-like system with two bounding surfaces. Boundary conditions are consistent with surfaces that both prefer the same phase in the low temperature, or broken symmetry, state. We take into account both interactions within the system and interactions between the constituents of the system and the material surrounding it. Specific predictions are made with respect to the behavior of 3He and 4He films in the vicinity of their respective liquid-vapor critical points.

  17. Underwater behavior of sperm whales off Kaikoura, New Zealand, as revealed by a three-dimensional hydrophone array.

    PubMed

    Miller, Brian; Dawson, Stephen; Vennell, Ross

    2013-10-01

    Observations are presented of the vocal behavior and three dimensional (3D) underwater movements of sperm whales measured with a passive acoustic array off the coast of Kaikoura, New Zealand. Visual observations and vocal behaviors of whales were used to divide dive tracks into different phases, and depths and movements of whales are reported for each of these phases. Diving depths and movement information from 75 3D tracks of whales in Kaikoura are compared to one and two dimensional tracks of whales studied in other oceans. While diving, whales in Kaikoura had a mean swimming speed of 1.57 m/s, and, on average, dived to a depth of 427 m (SD = 117 m), spending most of their time at depths between 300 and 600 m. Creak vocalizations, assumed to be the prey capture phase of echolocation, occurred throughout the water column from sea surface to sea floor, but most occurred at depths of 400-550 m. Three dimensional measurement of tracking revealed several different "foraging" strategies, including active chasing of prey, lining up slow-moving or unsuspecting prey, and foraging on demersal or benthic prey. These movements provide the first 3D descriptions underwater behavior of whales at Kaikoura.

  18. Effects of viscoelasticity on drop impact and spreading on a solid surface

    NASA Astrophysics Data System (ADS)

    Izbassarov, Daulet; Muradoglu, Metin

    2016-06-01

    The effects of viscoelasticity on drop impact and spreading on a flat solid surface are studied computationally using a finite-difference-front-tracking method. The finitely extensible nonlinear elastic-Chilcott-Rallison model is used to account for the fluid viscoelasticity. It is found that viscoelasticity favors advancement of contact line during the spreading phase, leading to a slight increase in the maximum spreading, in agreement with experimental observations [Huh, Jung, Seo, and Lee, Microfluid. Nanofluid. 18, 1221 (2015), 10.1007/s10404-014-1518-4]. However, in contrast with the well-known antirebound effects of polymeric additives, the viscoelasticity is found to enhance the tendency of the drop rebound in the receding phase. These results suggest that the antirebound effects are mainly due to the polymer-induced modification of wetting properties of the substrate rather than the change in the material properties of the drop fluid. A model is proposed to test this hypothesis. It is found that the model results in good qualitative agreement with the experimental observations and the antirebound behavior can be captured by the modification of surface wetting properties in the receding phase.

  19. Nematic order on the surface of a three-dimensional topological insulator

    NASA Astrophysics Data System (ADS)

    Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph

    2017-12-01

    We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.

  20. Phase Behavior of Binary Blends of AB+AC Block Copolymers with compatible B and C blocks

    NASA Astrophysics Data System (ADS)

    Pryamitsyn, Victor; Ganesan, Venkat

    2012-02-01

    Recently the experimental studies of phase behavior of binary blends of PS-b-P2VP and PS-b-PHS demonstrated an interesting effect: blends of symmetric PS-b-P2VP and shorter symmetric (PS-b-PHS) formed cylindrical HEX and spherical BCC phases, while each pure component formed lamellas. The miscibility of P2VP and PHS is caused by the hydrogen bonding between P2VP and PHS,which can be described as a negative Flory ?-parameter between P2VP and PHS. We developed a theory of the microphase segregation of AB+AC blends of diblock copolymers based on strong stretching theory. The main result of our theory is that in the copolymer brush-like layer formed by longer B chain and shorter C chains, the attraction between B and shorter C chains causes relative stretching of short C chains and compression of longer B chains. The latter manifests in an excessive bending force towards the grafting surface (BC|AA interface). Such bending force causes a transition from a symmetric lamella phase to a HEX cylinder or BCC spherical phases with the BC phase being a ``matrix'' component. In a blend of asymmetric BCC sphere forming copolymers (where B and C segments are the minor components), such bending force may unfold BCC spherical phase to a HEX cylinder phase, or even highly uneven lamella phases.

  1. Effect of ceramic thickness, grinding, and aging on the mechanical behavior of a polycrystalline zirconia.

    PubMed

    Prado, Rodrigo Diniz; Pereira, Gabriel Kalil Rocha; Bottino, Marco Antonio; Melo, Renata Marques de; Valandro, Luiz Felipe

    2017-11-06

    Monolithic restorations of Y-TZP have been recommended as a restorative alternative on prosthetic dentistry as it allows a substantial reduction of ceramic thickness, which means a greater preservation of tooth structure. However, the influence of grinding and aging when using a thinner layer of the material is unclear. This investigation aimed to evaluate and compare the effects of ceramic thickness (0.5 mm and 1.0 mm), grinding and aging (low-temperature degradation) on the mechanical behavior and surface characteristics of a full-contour Y-TZP ceramic. Y-TZP disc-shaped specimens (15 mm diameter) were manufactured with both thicknesses and randomly assigned into 4 groups considering the factors 'grinding with diamond bur' and 'aging in autoclave'. Surface topography (roughness, 3D profilometry and SEM), phase transformation, flexural strength and structural reliability (Weibull) analyses were executed. Grinding affected the surface topography, while aging did not promote any effect. An increase in m-phase content was observed after grinding and aging, although different susceptibilities were observed. Regardless of zirconia's thickness, no deleterious effect of grinding or aging on the mechanical properties was observed. Thus, in our testing assembly, reducing the thickness of the Y-TZP ceramic did not alter its response to grinding and low temperature degradation and did not impair its mechanical performance.

  2. Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing

    2015-02-01

    An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.

  3. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    PubMed

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  4. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shan, Qingsong; Li, Kuiying; Xue, Zhenjie; Lin, Yingying; Yin, Hua; Zhu, Ruiping

    2016-02-01

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core-shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core-shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core-shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10-8 to 2 × 10-3 s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space-charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  5. Influence of electrochemical potential on the displacement of aqueous electrolyte from a copper surface by oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendig, M.W.; Fadner, T.A.

    1985-02-01

    The forces responsible for the meniscus formed during the dynamic displacement of a 0.1 M H/sub 3/BO/sub 3/ + 0.5 M NaClO/sub 4/ solution by oil from a copper surface depend on the electrochemical potential of the copper and on an active component in the oil. For a nonpolar mineral oil containing oleic acid, a negative potential applied to copper produces hydrophilic behavior of the copper surface in the aqueous phase. This result is attribute largely to electrochemical destabilization of metallic soaps and possibly to electroosmotic transport.

  6. High-Cycle, Push-Pull Fatigue Fracture Behavior of High-C, Si-Al-Rich Nanostructured Bainite Steel.

    PubMed

    Zhao, Jing; Ji, Honghong; Wang, Tiansheng

    2017-12-29

    The high-cycle, push-pull fatigue fracture behavior of high-C, Si-Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push-pull fatigue limits at 10⁷ cycles were estimated as 710-889 MPa, for the samples isothermally transformed at the temperature range of 220-260 °C through data extrapolation, measured under the maximum cycle number of 10⁵. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.

  7. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    PubMed Central

    Zhao, Jing; Ji, Honghong

    2017-01-01

    The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite. PMID:29286325

  8. Abnormal viscoelastic behavior of side-chain liquid-crystal polymers

    NASA Astrophysics Data System (ADS)

    Gallani, J. L.; Hilliou, L.; Martinoty, P.; Keller, P.

    1994-03-01

    We show that, contrary to what is commonly believed, the isotropic phase of side-chain liquid-crystal polymers has viscoelastic properties which are totally different from those of ordinary flexible melt polymers. The results can be explained by the existence of a transient network created by the dynamic association of mesogenic groups belonging to different chains. The extremely high sensitivity of the compound to the state of the surfaces with which it is in contact offers us an unexpected method of studying surface states.

  9. Fluorescence-correlation spectroscopy study of molecular transport within reversed-phase chromatographic particles compared to planar model surfaces.

    PubMed

    Cooper, Justin; Harris, Joel M

    2014-12-02

    Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.

  10. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation

    NASA Astrophysics Data System (ADS)

    Brill-Karniely, Yifat; Jin, Fan; Wong, Gerard C. L.; Frenkel, Daan; Dobnikar, Jure

    2017-04-01

    Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion.

  11. Phase behavior of model ABC triblock copolymers

    NASA Astrophysics Data System (ADS)

    Chatterjee, Joon

    The phase behavior of poly(isoprene-b-styrene- b-ethylene oxide) (ISO), a model ABC triblock copolymer has been studied. This class of materials exhibit self-assembly, forming a large array of ordered morphologies at length scales of 5-100 nm. The formation of stable three-dimensionally continuous network morphologies is of special interest in this study. Since these nanostructures considerably impact the material properties, fundamental knowledge for designing ABC systems have high technological importance for realizing applications in the areas of nanofabrication, nanoporous media, separation membranes, drug delivery and high surface area catalysts. A comprehensive framework was developed to describe the phase behavior of the ISO triblock copolymers at weak to intermediate segregation strengths spanning a wide range of composition. Phases were characterized through a combination of characterization techniques, including small angle x-ray scattering, dynamic mechanical spectroscopy, transmission electron microscopy, and birefringence measurements. Combined with previous investigations on ISO, six different stable ordered state symmetries have been identified: lamellae (LAM), Fddd orthorhombic network (O70), double gyroid (Q230), alternating gyroid (Q214), hexagonal (HEX), and body-centered cubic (BCC). The phase map was found to be somewhat asymmetric around the fI = fO isopleth. This work provides a guide for theoretical studies and gives insight into the intricate effects of various parameters on the self-assembly of ABC triblock copolymers. Experimental SAXS data evaluated with a simple scattering intensity model show that local mixing varies continuously across the phase map between states of two- and three-domain segregation. Strategies of blending homopolymers with ISO triblock copolymer were employed for studying the swelling properties of a lamellar state. Results demonstrate that lamellar domains swell or shrink depending upon the type of homopolymer that was mixed. The results provide insight into the chain conformation of ABC triblock copolymers, where the B blocks are completely bridged across the adjacent A and C domains. In the final part of the thesis, the swelling properties were used to study the directed assembly of ABC triblock copolymers on chemically nanopatterned surfaces.

  12. Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence

    NASA Astrophysics Data System (ADS)

    da Silveira, Isabel Porto; Pezzi, Luciano Ponzi

    2014-03-01

    Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8-12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.

  13. Photochemical modeling of the Antarctic stratosphere: Observational constraints from the airborne Antarctic ozone experiment and implications for ozone behavior

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose M.; Sze, Nien-Dak; Ko, Malcolm K. W.

    1988-01-01

    The rapid decrease in O3 column densities observed during Antarctic spring has been attributed to several chemical mechanisms involving nitrogen, bromine, or chlorine species, to dynamical mechanisms, or to a combination of the above. Chlorine-related theories, in particular, predict greatly elevated concentrations of ClO and OClO and suppressed abundances of NO2 below 22 km. The heterogeneous reactions and phase transitions proposed by these theories could also impact the concentrations of HCl, ClNO3 and HNO3 in this region. Observations of the above species have been carried out from the ground by the National Ozone Expedition (NOZE-I, 1986, and NOZE-II, 1987), and from aircrafts by the Airborne Antarctic Ozone Experiment (AAOE) during the austral spring of 1987. Observations of aerosol concentrations, size distribution and backscattering ratio from AAOE, and of aerosol extinction coefficients from the SAM-II satellite can also be used to deduce the altitude and temporal behavior of surfaces which catalyze heterogeneous mechanisms. All these observations provide important constraints on the photochemical processes suggested for the spring Antarctic stratosphere. Results are presented for the concentrations and time development of key trace gases in the Antarctic stratosphere, utilizing the AER photochemical model. This model includes complete gas-phase photochemistry, as well as heterogeneous reactions. Heterogeneous chemistry is parameterized in terms of surface concentrations of aerosols, collision frequencies between gas molecules and aerosol surfaces, concentrations of HCl/H2O in the frozen particles, and probability of reaction per collision (gamma). Values of gamma are taken from the latest laboratory measurements. The heterogeneous chemistry and phase transitions are assumed to occur between 12 and 22 km. The behavior of trace species at higher altitudes is calculated by the AER 2-D model without heterogeneous chemistry. Calculations are performed for solar illumination conditions typical of 60, 70, and 80 S, from July 15 to October 31.

  14. Active matter model of Myxococcus xanthus aggregation

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Bahar, Fatmagul; Liu, Guannan; Thutupalli, Shashi; Welch, Roy; Yllanes, David; Shaevitz, Joshua; Marchetti, M. Cristina

    Myxococcus xanthus is a soil-dwelling bacterium that exhibits several fascinating collective behaviors including streaming, swarming, and generation of fruiting bodies. A striking feature of M. xanthus is that it periodically reverses its motility direction. The first stage of fruiting body formation is characterized by the aggregation of cells on a surface into round mesoscopic structures. Experiments have shown that this aggregation relies heavily on regulation of the reversal rate and local mechanical interactions, suggesting motility-induced phase separation may play an important role. We have adapted self-propelled particle models to include cell reversal and motility suppression resulting from sporulation observed in aggregates. Using 2D molecular dynamics simulations, we map the phase behavior in the space of Péclet number and local density and examine the kinetics of aggregation for comparison to experiments.

  15. Surface, corrosion and biocompatibility aspects of Nitinol as an implant material.

    PubMed

    Shabalovskaya, Svetlana A

    2002-01-01

    The present review surveys studies on physical-chemical properties and biological response of living tissues to NiTi (Nitinol) carried out recently, aiming at an understanding of the place of this material among the implant alloys in use. Advantages of shape memory and superelasticity are analyzed in respect to functionality of implants in the body. Various approaches to surface treatment, sterilization procedures, and resulting surface conditions are analyzed. A review of corrosion studies conducted both on wrought and as-cast alloys using potentiodynamic and potentiostatic techniques in various corrosive media and in actual body fluids is also given. The parameters of localized and galvanic corrosion are presented. The corrosion behavior is analyzed with respect to alloy composition, phase state, surface treatment, and strain and compared to that of conventional implant alloys. Biocompatibility of porous Nitinol, Ni release and its effect on living cells are analyzed based on understanding of the surface conditions and corrosion behavior. Additionally, the paper offers a brief overview of the comparative toxicity of metals, components of commonly used medical alloys, indicating that the biocompatibility profile of Nitinol is conducive to present in vivo applications.

  16. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging.

    PubMed

    Pereira, G K R; Silvestri, T; Camargo, R; Rippe, M P; Amaral, M; Kleverlaan, C J; Valandro, L F

    2016-06-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped specimens (Zirlux FC, Ivoclar Vivadent) were manufactured according to ISO 6872 (2008) and divided in accordance with two factors: "grinding - 3 levels" and "LTD - 2 levels". Grinding was performed using a contra-angle handpiece under constant water-cooling with different grit-sizes (extra-fine and coarse diamond burs). LTD was simulated in an autoclave at 134°C, under a pressure of 2 bar, over a period of 20h. Surface topography analysis showed an increase in roughness based on surface treatment grit-size (Coarse>Xfine>Ctrl), LTD did not influence roughness values. Both grinding and LTD promoted an increase in the amount of m-phase, although different susceptibilities to degradation were observed. According to existing literature the increase of m-phase content is a direct indicative of Y-TZP degradation. Weibull analysis showed an increase in characteristic strength after grinding (Coarse=Xfine>Ctrl), while for LTD, distinct effects were observed (Ctrl

  17. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  18. Phase field modeling of crack propagations in fluid-saturated porous media with anisotropic surface energy

    NASA Astrophysics Data System (ADS)

    Na, S.; Sun, W.; Yoon, H.; Choo, J.

    2016-12-01

    Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Mechanisms of devitrification of grain boundary glassy phases in Si3N4 materials

    NASA Technical Reports Server (NTRS)

    Hench, L. L.

    1982-01-01

    Changes in the grain boundary (g.b.) phases of Si3N4 are analyzed, the effects of composition and thermal history on devitrification of the g.b. phases are determined, devitrification of the g.b. phases of Si3N are related to mechanical behavior and oxidation sensitivity of the material. The phase relationships that occur within the grain boundaries of Si3N4 containing various densification aids are reviewed. Comparisons of the effects of MgO, Y2O3, CeO2, and Y2O3 + AL2O3 are made in terms of the phase equilibria of the Si3N4 + SiO2 + additive compositional system. Two new equilibrium phase diagrams for the Si3N4-SiO2 and Y2O3 and Si3N4-SiO2-Ce2O3 systems are preented. The effects of Y2O3 vs CeO2 densification aids on the fracture surfaces of Si3N4 are compared. Auger electron spectroscopy shows that both oxides are concentrated within the fracture surface. Scanning electron microscopy shows evidence that Si3N4 with CeO2 formed an intergranular structure of fine grained oxynitride reaction products, as predicted by phase quilibria, whereas the Y2O3 containing sample shows evidence of an intergranular glassy phase.

  20. On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface

    NASA Astrophysics Data System (ADS)

    Schmitt, Regina; Kuhn, Charlotte; Müller, Ralf

    2017-07-01

    A continuum phase field model for martensitic transformations is introduced, including crystal plasticity with different slip systems for the different phases. In a 2D setting, the transformation-induced eigenstrain is taken into account for two martensitic orientation variants. With aid of the model, the phase transition and its dependence on the volume change, crystal plastic material behavior, and the inheritance of plastic deformations from austenite to martensite are studied in detail. The numerical setup is motivated by the process of cryogenic turning. The resulting microstructure qualitatively coincides with an experimentally obtained martensite structure. For the numerical calculations, finite elements together with global and local implicit time integration scheme are employed.

  1. The investigation of contact line effect on nanosized droplet wetting behavior with solid temperature condition

    NASA Astrophysics Data System (ADS)

    Haegon, Lee; Joonsang, Lee

    2017-11-01

    In many multi-phase fluidic systems, there are essentially contact interfaces including liquid-vapor, liquid-solid, and solid-vapor phase. There is also a contact line where these three interfaces meet. The existence of these interfaces and contact lines has a considerable impact on the nanoscale droplet wetting behavior. However, recent studies have shown that Young's equation does not accurately represent this behavior at the nanoscale. It also emphasized the importance of the contact line effect.Therefore, We performed molecular dynamics simulation to imitate the behavior of nanoscale droplets with solid temperature condition. And we find the effect of solid temperature on the contact line motion. Furthermore, We figure out the effect of contact line force on the wetting behavior of droplet according to the different solid temperature condition. With solid temperature condition variation, the magnitude of contact line friction decreases significantly. We also divide contact line force by effect of bulk liquid, interfacial tension, and solid surface. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  2. Predicting surface scatter using a linear systems formulation of non-paraxial scalar diffraction

    NASA Astrophysics Data System (ADS)

    Krywonos, Andrey

    Scattering effects from rough surfaces are non-paraxial diffraction phenomena resulting from random phase variations in the reflected wavefront. The ability to predict these effects is important in a variety of applications including x-ray and EUV imaging, the design of stray light rejection systems, and reflection modeling for rendering realistic scenes and animations of physical objects in computer graphics. Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff approximation) theories are commonly used to predict surface scatter effects. In addition, Harvey and Shack developed a linear systems formulation of surface scatter phenomena in which the scattering behavior is characterized by a surface transfer function. This treatment provided insight and understanding not readily gleaned from the two previous theories, and has been incorporated into a variety of computer software packages (ASAP, Zemax, Tracepro). However, smooth surface and paraxial approximations have severely limited the range of applicability of each of the above theoretical treatments. In this dissertation, a linear systems formulation of non-paraxial scalar diffraction theory is first developed and then applied to sinusoidal phase gratings, resulting in diffraction efficiency predictions far more accurate than those provided by classical scalar theories. The application of the theory to these gratings was motivated by the fact that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of different amplitudes, periods, and orientations. The application of the non-paraxial scalar diffraction theory to surface scatter phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, then a generalized Harvey-Shack theory, both of which produce accurate results for rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering angles than the classical Beckmann-Kirchhoff theory. These new developments enable the analysis and simplify the understanding of wide-angle scattering behavior from rough surfaces illuminated at large incident angles. In addition, they provide an improved BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the smooth surface inverse scattering problem of determining surface power spectral density (PSD) curves from BRDF measurements.

  3. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  4. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells

    PubMed Central

    2011-01-01

    Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells. PMID:21284861

  5. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.

    PubMed

    Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B

    2011-02-01

    The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  6. Spreading of dispersions of lipid nanoparticles on hydrophobic and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kumaraswamy, Guruswamy; Kumar, Manoj; Kulkarni, Mayuresh; Narendiran, Cg; Orpe, Ashish; Banpurkar, Arun

    Glycerol monooleate is a hydrophobic lipid that exhibits a rich phase behavior. At high water concentrations, it organizes to form a bicontinuous phase with Pn3m symmetry that is stable with excess water. It is therefore possible to obtain stable aqueous dispersions of polymer stabilized, lipid nanoparticles with internal Pn3m symmetry. Such particles, termed cubosomes, can carry payloads of both hydrophobic as well as hydrophilic molecules and hold promise for delivery of pharmaceuticals, agrochemicals, etc. We describe the behaviour of aqueous drops of cubosome dispersions as they impinge on hydrophobic and superhydrophobic surfaces. On impingement, the spreading of these drop is similar to that of water drops. However, while water drops retract and rebound from the surface, cubosome dispersions do not retract. We demonstrate that this can be attributed to rapid adsorption of cubosomes on the surface and their reorganization to form a thin, approximately 3 nm layer on the substrate. Remarkably, we show that while drops of water roll off inclined superhydrophobic lotus leaf surfaces, drops of cubosome dispersions do not. These results have implications for the delivery of agrochemicals to plant surfaces. Funding from DST, India is acknowledged.

  7. Partitioning phase preference for secondary organic aerosol in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Chang, Wayne Li-Wen

    Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter (PM). The impact of PM on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state-of-the-art 3-D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the distribution of fAQ values is inversely proportional to the total SOA loading. Further analysis accounting for various meteorological parameters indicates that large fAQ values are the results of aqueous-phase SOA insensitivity to the ambient conditions; while organic-phase SOA concentrations are dramatically reduced under unfavorable SOA formation conditions, aqueous-phase SOA level remains relatively unchanged, thus increasing fAQ at low SOA loading. Diurnal variations of fAQ near the surface are also observed: it tends to be larger during daytime hours than nighttime hours. When examining the vertical gradient of fAQ, largest values are found at heights above the surface layer. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.

  8. The role of surfaces, chemical interfaces, and disorder on plutonium incorporation in pyrochlores

    DOE PAGES

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2016-07-27

    Pyrochlores, a class of complex oxides with formula A 2B 2O 7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu 3+ and Pu 4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound.more » We also find that pyrochlore/pyrochlore bicrystals A 2B 2O 7/A 2'B 2'O 7 can be used to immobilize Pu 3+ and Pu 4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu 4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu 3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less

  9. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    PubMed

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.

  10. Determination of microstickies in recycled whitewater by headspace gas chromatography.

    PubMed

    Chai, X-S; Samp, J C; Yang, Q F; Song, H N; Zhang, D C; Zhu, J Y

    2006-03-03

    This study proposed a novel headspace gas chromatographic (HS-GC) method for determination of adhesive contaminants (microstickies) in recycled whitewater, a fiber containing process stream, in the paper mill. It is based on the adsorption behavior of toluene (as a tracer) on the hydrophobic surface of microstickies, which affects the apparent vapor-liquid equilibration partitioning of toluene. It was found that the equilibrium concentration of toluene in the vapor phase is inversely proportional to the apparent effective surface area of microstickies that remain in the corresponding solution. Thus, the amount of microsticky materials in the recycled whitewater can be quantified by HS-GC via indirect measurement of the toluene content in the vapor phase of the sample without any pretreatment. The presented method is simple, rapid and automated.

  11. Repair behavior of He+-irradiated W-Y2O3 composites after different temperature-isochronal annealing experiments

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Tan, Xiao-Yue; Luo, Lai-Ma; Zan, Xiang; Liu, Jia-Qin; Xu, Qiu; Zhu, Xifao-Yong; Wu, Yu-Cheng

    2018-01-01

    W-2%Y2O3 composites were prepared by wet chemical and powder metallurgy. Commercial roll tungsten was selected as a comparative sample in the He+ irradiation experiment. The experiment was conducted under He+ beam energy of 50 eV, irradiation dose of approximately 9.9 × 1024 ions/m2, and temperature of 1503-1553 K. The samples were annealed at 1173, 1373, and 1573 K for 1 h. The irradiation surface was observed in situ. The W-2%Y2O3 composites and pure tungsten displayed different grain orientation damage morphologies. In addition, the fuzzy structure was more likely to converge densely at the phase interface. Annealing repairs material surface irradiation damage, whereas the phase interface acts as a He+ migration channel.

  12. An ultra-fast optical shutter exploiting total light absorption in a phase change material

    NASA Astrophysics Data System (ADS)

    Jafari, Mohsen; Guo, L. Jay; Rais-Zadeh, Mina

    2017-02-01

    In this paper, we present an ultra-fast and high-contrast optical shutter with applications in atomic clock assemblies, integrated photonic systems, communication hardware, etc. The shutter design exploits the total light absorption phenomenon in a thin phase change (PC) material placed over a metal layer. The shutter switches between ON and OFF states by changing PC material phase and thus its refractive index. The PC material used in this work is Germanium Telluride (GeTe), a group IV-VI chalcogenide compound, which exhibits good optical contrast when switching from amorphous to crystalline state and vice versa. The stable phase changing behavior and reliability of GeTe and GeSbTe (GST) have been verified in optical memories and RF switches. Here, GeTe is used as it has a lower extinction coefficient in near-IR regions compared to GST. GeTe can be thermally transitioned between two phases by applying electrical pulses to an integrated heater. The memory behavior of GeTe results in zero static power consumption which is useful in applications requiring long time periods between switching activities. We previously demonstrated a meta-surface employing GeTe in sub-wavelength slits with >14 dB isolation at 1.5 μm by exciting the surface plasmon polariton and localized slit resonances. In this work, strong interference effects in a thin layer of GeTe over a gold mirror result in near total light absorption of up to 40 dB (21 dB measured) in the amorphous phase of the shutter at 780 nm with much less fabrication complexity. The optical loss at the shutter ON state is less than 1.5 dB. A nickel chrome (NiCr) heater provides the Joule heating energy required to achieve the crystallographic phase change. The measured switching speed is 2 μs.

  13. Spin-Driven Emergent Antiferromagnetism and Metal-Insulator Transition in Nanoscale p-Si

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    The entanglement of the charge, spin and orbital degrees of freedom can give rise to emergent behavior especially in thin films, surfaces and interfaces. Often, materials that exhibit those properties require large spin orbit coupling. We hypothesize that the emergent behavior can also occur due to spin, electron and phonon interactions in widely studied simple materials such as Si. That is, large intrinsic spin-orbit coupling is not an essential requirement for emergent behavior. The central hypothesis is that when one of the specimen dimensions is of the same order (or smaller) as the spin diffusion length, then non-equilibrium spin accumulation due to spin injection or spin-Hall effect (SHE) will lead to emergent phase transformations in the non-ferromagnetic semiconductors. In this experimental work, we report spin mediated emergent antiferromagnetism and metal insulator transition in a Pd (1 nm)/Ni81Fe19 (25 nm)/MgO (1 nm)/p-Si (~400 nm) thin film specimen. The spin-Hall effect in p-Si, observed through Rashba spin-orbit coupling mediated spin-Hall magnetoresistance behavior, is proposed to cause the spin accumulation and resulting emergent behavior. The phase transition is discovered from the diverging behavior in longitudinal third harmonic voltage, which is related to the thermal conductivity and heat capacity.

  14. Paleotemperatures at the lunar surfaces from open system behavior of cosmogenic 38Ar and radiogenic 40Ar

    DOE PAGES

    Shuster, David L.; Cassata, William S.

    2015-02-10

    The simultaneous diffusion of both cosmogenic 38Ar and radiogenic 40Ar from solid phases is controlled by the thermal conditions of rocks while residing near planetary surfaces. Combined observations of 38Ar/ 37Ar and 40Ar/ 39Ar ratios during stepwise degassing analyses of neutron-irradiated Apollo samples can distinguish between diffusive loss of Ar due to solar heating of the rocks and that associated with elevated temperatures during or following impact events; the data provide quantitative constraints on the durations and temperatures of each process. From sequentially degassed 38Ar/ 37Ar ratios can be calculated a spectrum of apparent 38Ar exposure ages versus the cumulativemore » release fraction of 37Ar, which is particularly sensitive to conditions at the lunar surface typically over ~106–108 year timescales. Due to variable proportions of K- and Ca-bearing glass, plagioclase and pyroxene, with variability in the grain sizes of these phases, each sample will have distinct sensitivity to, and therefore different resolving power on, past near-surface thermal conditions. Furthermore, we present the underlying assumptions, and the analytical and numerical methods used to quantify the Ar diffusion kinetics in multi-phase whole-rock analyses that provide these constraints.« less

  15. High Pressure Cosmochemistry of Major Planetary Interiors: Laboratory Studies of the Water-rich Region of the System Ammonia-water

    NASA Technical Reports Server (NTRS)

    Nicol, M.; Johnson, M.; Koumvakalis, A. S.

    1985-01-01

    The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.

  16. Science of Water Leaks: Validated Theory for Moisture Flow in Microchannels and Nanochannels.

    PubMed

    Lei, Wenwen; Fong, Nicole; Yin, Yongbai; Svehla, Martin; McKenzie, David R

    2015-10-27

    Water is ubiquitous; the science of its transport in micro- and nanochannels has applications in electronics, medicine, filtration, packaging, and earth and planetary science. Validated theory for water vapor and two-phase water flows is a "missing link"; completing it enables us to define and quantify flow in a set of four standard leak configurations with dimensions from the nanoscale to the microscale. Here we report the first measurements of water vapor flow rates through four silica microchannels as a function of humidity, including under conditions when air is present as a background gas. An important finding is that the tangential momentum accommodation coefficient (TMAC) is strongly modified by surface layers of adsorbed water molecules, in agreement with previous work on the TMAC for nitrogen molecules impacting a silica surface in the presence of moisture. We measure enhanced flow rates for two-phase flows in silica microchannels driven by capillary filling. For the measurement of flows in nanochannels we use heavy water mass spectrometry. We construct the theory for the flow rates of the dominant modes of water transport through each of the four standard configurations and benchmark it against our new measurements in silica and against previously reported measurements for nanochannels in carbon nanotubes, carbon nanopipes, and porous alumina. The findings show that all behavior can be described by the four standard leak configurations and that measurements of leak behavior made using other molecules, such as helium, are not reliable. Single-phase water vapor flow is overestimated by a helium measurement, while two-phase flows are greatly underestimated for channels larger than 100 nm or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid-phase flows.

  17. Corrosion and wear behaviors of boronized AISI 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Kayali, Yusuf; Büyüksaǧiş, Aysel; Yalçin, Yılmaz

    2013-09-01

    In this study, the effects of a boronizing treatment on the corrosion and wear behaviors of AISI 316L austenitic stainless steel (AISI 316L) were examined. The corrosion behavior of the boronized samples was studied via electrochemical methods in a simulation body fluid (SBF) and the wear behavior was examined using the ball-on-disk wear method. It was observed that the boride layer that formed on the AISI 316L surface had a flat and smooth morphology. Furthermore, X-ray diffraction analyses show that the boride layer contained FeB, Fe2B, CrB, Cr2B, NiB, and Ni2B phases. Boride layer thickness increased with an increasing boronizing temperature and time. The boronizing treatment also increased the surface hardness of the AISI 316L. Although there was no positive effect of the coating on the corrosion resistance in the SBF medium. Furthermore, a decrease in the friction coefficient was recorded for the boronized AISI 316L. As the boronizing temperature increased, the wear rate decreased in both dry and wet mediums. As a result, the boronizing treatment contributed positively to the wear resistance by increasing the surface hardness and by decreasing the friction coefficient of the AISI 316L.

  18. Behavior of atypical amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Ko, John

    1997-08-01

    The physical behavior of several atypical amphiphilic molecules was studied in various environments including micelles, model bilayer membranes, and emulsions. The molecules under investigation were nor-chenodeoxycholic acid (nor-CDCA), ursodeoxycholic acid (UDCA), sphingosine (Sp), sphingosine hydrochloride (SpċHCl), and tetrahydrolipstatin (THL). The bile acids, nor-CDCA and UDCA, were studied using 13C-Nuclear Magnetic Resonance ([13C) -NMR) in micelles of taurocholate and in bilayers of phosphatidylcholine. The pK a values of the bile acids in each environment were determined by [13C) -NMR and are as follows: 6.08 ±.03 for nor-CDCA and 6.27 ±.01 for UDCA in micelles, and 7.04 ± 12 for nor-CDCA and 6.89 ±.05 for UDCA in vesicles. Using line shape analysis, the transbilayer movement rate at 36oC for nor-CDCA and UDCA was calculated to be 580 sec--1 and 409 sec-1, respectively. [13C) -NMR titration of Sp gave pK a values of 9.09 ±.02 in micelles and 9.69 ±.21 in bilayers. Differential scanning calorimetry (DSC) and X-ray diffraction were used to establish the Spċwater and SpċHClċwater phase diagrams. Anhydrous and hydrated samples ranging from 5- 90% water were analyzed. The DSC thermograms traced out the transition temperatures of each molecule while the X- ray diffraction patterns revealed their chain and crystalline lattice packing structures. In general, sphingosine exists as a hydrated crystal with β packing phase below 43oC and melts into an Lα phase. Sphingosine hydrochloride, however, exists as a gel phase (L_beta or /beta/sp') below 42oC that swells to 61% hydration. At low water concentrations (0-64%), a lamellar liquid crystal phase (L_alpha) is formed above the chain melting transition of 42oC. At medium concentration (65%), a Hexagonal I phase is present, and at high water concentrations (66-90%), a micellar phase is present. THL, a specific inhibitor of lipases, was analyzed with [ 13C) -NMR to study its behavior in various environments, ranging from carbon tetrachloride to water to pure triolein. THL was also incorporated into phosphatidylcholine bilayers and into microemulsions of triolein and phosphatidylcholine. [ 13C) -NMR analysis revealed that THL gets incorporated into the surface of vesicles, and into both the surface and core of microemulsion particles.

  19. Molecular Modeling of Three Phase Contact for Static and Dynamic Contact Angle Phenomena

    NASA Astrophysics Data System (ADS)

    Malani, Ateeque; Amat, Miguel; Raghavanpillai, Anilkumar; Wysong, Ernest; Rutledge, Gregory

    2012-02-01

    Interfacial phenomena arise in a number of industrially important situations, such as repellency of liquids on surfaces, condensation, etc. In designing materials for such applications, the key component is their wetting behavior, which is characterized by three-phase static and dynamic contact angle phenomena. Molecular modeling has the potential to provide basic insight into the detailed picture of the three-phase contact line resolved on the sub-nanometer scale which is essential for the success of these materials. We have proposed a computational strategy to study three-phase contact phenomena, where buoyancy of a solid rod or particle is studied in a planar liquid film. The contact angle is readily evaluated by measuring the position of solid and liquid interfaces. As proof of concept, the methodology has been validated extensively using a simple Lennard-Jones (LJ) fluid in contact with an LJ surface. In the dynamic contact angle analysis, the evolution of contact angle as a function of force applied to the rod or particle is characterized by the pinning and slipping of the three phase contact line. Ultimately, complete wetting or de-wetting is observed, allowing molecular level characterization of the contact angle hysteresis.

  20. Engineered metal based nanomaterials in aqueous environments: Interactions, transformations and implications

    NASA Astrophysics Data System (ADS)

    Mudunkotuwa, Imali Ama

    Nanoscience and nanotechnology offer potential routes towards addressing critical issues such as clean and sustainable energy, environmental protection and human health. Specifically, metal and metal oxide nanomaterials are found in a wide range of applications and therefore hold a greater potential of possible release into the environment or for the human to be exposed. Understanding the aqueous phase behavior of metal and metal oxide nanomaterials is a key factor in the safe design of these materials because their interactions with living systems are always mediated through the aqueous phase. Broadly the transformations in the aqueous phase can be classified as dissolution, aggregation and adsorption which are dependent and linked processes to one another. The complexity of these processes at the liquid-solid interface has therefore been one of the grand challenges that has persisted since the beginning of nanotechnology. Although classical models provide guidance for understanding dissolution and aggregation of nanoparticles in water, there are many uncertainties associated with the recent findings. This is often due to a lack of fundamental knowledge of the surface structure and surface energetics for very small particles. Therefore currently the environmental health and safety studies related to nanomaterials are more focused on understanding the surface chemistry that governs the overall processes in the liquid-solid interfacial region at the molecular level. The metal based nanomaterials focused on in this dissertation include TiO2, ZnO, Cu and CuO. These are among the most heavily used in a number of applications ranging from uses in the construction industry to cosmetic formulation. Therefore they are produced in large scale and have been detected in the environment. There is debate within the scientific community related to their safety as a result of the lack of understanding on the surface interactions that arise from the detailed nature of the surfaces. Specifically, the interactions of these metal and metal oxide nanoparticles with environmental and biological ligands in the solutions have demonstrated dramatic alterations in their aqueous phase behavior in terms of dissolution and aggregation. Dissolution and aggregation are among the determining factors of nanoparticle uptake and toxicity. Furthermore, solution conditions such as ionic strength and pH can act as controlling parameters for surface ligand adsorption while adsorbed ligands themselves undergo surface induced structural and conformational changes. Because, nanomaterials in both the environment and in biological systems are subjected to a wide range of matrix conditions they are in fact dynamic and not static entities. Thus monitoring and tracking these nanomaterials in real systems can be extremely challenging which requires a thorough understanding of the surface chemistry governing their transformations. The work presented in this dissertation attempts to bridge the gap between the dynamic processing of these nanomaterials, the details of the molecular level processes that occur at the liquid-solid interfacial region and potential environmental and biological interactions. Extensive nanomaterial characterization is an integral part of these investigations and all the materials presented here are thoroughly analyzed for particle size, shape, surface area, bulk and surface compositions. Detailed spectroscopic analysis was used to acquire molecular information of the processes in the liquid-solid interfacial region and the outcomes are linked with the macroscopic analysis with the aid of dynamic and static light scattering techniques. Furthermore, emphasis is given to the size dependent behavior and theoretical modeling is adapted giving careful consideration to the details of the physicochemical characterization and molecular information unique to the nanomaterials.

  1. In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds.

    PubMed

    Péter, A; Hegyi, A; Finni, T; Cronin, N J

    2017-12-01

    Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have examined FHL function during walking. Here, we investigated FHL fascicle behavior at different walking speeds. Ten healthy males walked overground at three different speeds while FHL fascicle length changes were recorded with ultrasound and muscle activity was recorded with surface electromyography (EMG). Fascicle length at heel strike at toe off and at peak EMG activity did not change with speed. Range of FHL fascicle length change (3.5-4.5 and 1.9-2.9 mm on average in stance and push-off phase, respectively), as well as minimum (53.5-54.9 and 53.8-55.7 mm) and maximum (58-58.4 and 56.8-57.7 mm) fascicle length did not change with speed in the stance or push-off phase. Mean fascicle velocity did not change in the stance phase, but increased significantly in the push-off phase between slow and fast walking speeds (P=.021). EMG activity increased significantly in both phases from slow to preferred and preferred to fast speed (P<.02 in all cases). FHL muscle fascicles worked near-isometrically during the whole stance phase (at least during slow walking) and operated at approximately the same length at different walking speeds. FHL and medial gastrocnemius (MG) have similar fiber length to muscle belly length ratios and, according to our results, also exhibit similar fascicle behavior at different walking speeds. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers.

    PubMed Central

    Lipp, M M; Lee, K Y; Waring, A; Zasadzinski, J A

    1997-01-01

    Fluorescence, polarized fluorescence, and Brewster angle microscopy reveal that human lung surfactant protein SP-B and its amino terminus (SP-B[1-25]) alter the phase behavior of palmitic acid monolayers by inhibiting the formation of condensed phases and creating a new fluid protein-rich phase. This fluid phase forms a network that separates condensed phase domains at coexistence and persists to high surface pressures. The network changes the monolayer collapse mechanism from heterogeneous nucleation/growth and fracturing processes to a more homogeneous process through isolating individual condensed phase domains. This results in higher surface pressures at collapse, and monolayers easier to respread on expansion, factors essential to the in vivo function of lung surfactant. The network is stabilized by a low-line tension between the coexisting phases, as confirmed by the observation of extended linear domains, or "stripe" phases, and a Gouy-Chapman analysis of protein-containing monolayers. Comparison of isotherm data and observed morphologies of monolayers containing SP-B(1-25) with those containing the full SP-B sequence show that the shortened peptide retains most of the native activity of the full-length protein, which may lead to cheaper and more effective synthetic replacement formulations. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 PMID:9168053

  3. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    NASA Astrophysics Data System (ADS)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  4. High-Temperature Oxidation Behavior of Iridium-Rhenium Alloys

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1995-01-01

    The life-limiting mechanism for radiation-cooled rockets made from iridium-coated rhenium (Ir/Re) is the diffusion of Re into the Ir layer and the subsequent oxidation of the resulting Ir-Re alloy from the inner surface. In a previous study, a life model for Ir/Re rockets was developed. It incorporated Ir-Re diffusion and oxidation data to predict chamber lifetimes as a function of temperature and oxygen partial pressure. Oxidation testing at 1540 deg C suggested that a 20-wt percent Re concentration at the inner wall surface should be established as the failure criterion. The present study was performed to better define Ir-oxidation behavior as a function of Re concentration and to supplement the data base for the life model. Samples ranging from pure Ir to Ir-40 wt percent Re (Ir-40Re) were tested at 1500 deg C, in two different oxygen environments. There were indications that the oxidation rate of the Ir-Re alloy increased significantly when it went from a single-phase solid solution to a two-phase mixture, as was suggested in previous work. However, because of testing anomalies in this study, there were not enough dependable oxidation data to definitively raise the Ir/Re rocket failure criterion from 20-wt percent Re to a Re concentration corresponding to entry into the two-phase region.

  5. Evidence of Near Surface Layer Stabilization by Liquid Multilayer Adsorbed Films

    NASA Astrophysics Data System (ADS)

    Strange, Nicholas; Larese, J. Z.

    Molecular adsorption on surfaces is fundamentally important in a variety of scientific and technological processes. Surface adsorption plays a key role in catalysis/catalytic supports, optoelectronic devices, lubrication and adhesion, wetting phenomena, and separations. We present the results of a comprehensive investigation of the first ten members of the homologous series of n-alkanes (methane-decane) adsorbed on the basal plane of hexagonal boron nitride using high-resolution, volumetric adsorption isotherm measurements (more than 30 separate temperatures per molecule). The experimentally determined heats of adsorption vs. carbon chain length follow the well-known ``odd-even'' behavior of the n-alkanes. While this may not be surprising we will illustrate additional potential surface configurations that can lead to an increase in entropy. Potential phase transitions are identified using changes in the 2D-compressibility. In addition, we describe the results of companion molecular dynamics modeling to provide microscopic insight to the wetting behavior as a function of alkane chain length and film thickness. A comparison with the behavior of the same n-alkane set on MgO and graphite will also be included. These studies can serve as the basis for developing accurate, robust models of the potential energy surfaces and can be used for future investigations of the microscopic structure and dynamics of these adsorbed films using neutron/xray diffraction and neutron spectroscopy.

  6. A finite difference model for free surface gravity drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couri, F.R.; Ramey, H.J. Jr.

    1993-09-01

    The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells inmore » the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.« less

  7. Superhydrophobic alumina surface based on stearic acid modification

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Zhang, Hongxia; Mao, Pengzhi; Wang, Yanping; Ge, Yang

    2011-02-01

    A novel superhydrophobic alumina surface is fabricated by grafting stearic acid layer onto the porous and roughened aluminum film. The chemical and phase structure, morphology, and the chemical state of the atoms at the superhydrophobic surface were investigated by techniques as FTIR, XRD, FE-SEM, and XPS, respectively. Results show that a super water-repellent surface with a contact angle of 154.2° is generated. The superhydrophobic alumina surface takes on an uneven flowerlike structure with many nanometer-scale hollows distribute in the nipple-shaped protrusions, and which is composed of boehmite crystal and γ-Al2O3. Furthermore, the roughened and porous alumina surface is coated with a layer of hydrophobic alkyl chains which come from stearic acid molecules. Therefore, both the roughened structure and the hydrophobic layer endue the alumina surface with the superhydrophobic behavior.

  8. Localized surface plasmon behavior of Ag-Cu alloy nanoparticles stabilized by rice-starch and gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Manish Kumar; Mandal, R. K., E-mail: rkmandal.met@itbhu.ac.in; Manda, Premkumar

    The purpose of this communication was to understand localized surface plasmon behavior of a series of Ag-Cu alloy nanoparticles capped by rice-starch and gelatin. The structures of dried powders were investigated with the help of X-ray diffraction. The analysis revealed Ag-rich and Cu-rich phases with maximum solid solubility of Cu ∼9 atom per cent; 8 atom per cent and Ag ∼ 16 atom per cent; 14 atom per cent in rice-starch and gelatin capped samples respectively. Transmission electron microscope was used for knowing the particle size as well as to supplement FCC phase formations of Ag-rich and Cu-rich solid phasesmore » arrived at based on X-ray diffraction studies. The UV-Vis spectra of sols were examined for the formation and stability of alloy nanoparticles. The temporal evolution of LSPR curves gave us to assert that the sol is stable for more than two months. Small angle X-ray scattering in the sol state was extensively utilized to understand nature of suspensions in terms of fractals. Such a study is important for having a correlation between LSPR behaviors with those of nanoparticle dispersion in aqueous media. It is believed that this work will be a contribution to the emerging field of plasmonics that include applications in the area of photophysical processes and photochemical reactions.« less

  9. Critical behavior of the order-disorder phase transition in β -brass investigated by x-ray scattering

    NASA Astrophysics Data System (ADS)

    Madsen, A.; Als-Nielsen, J.; Hallmann, J.; Roth, T.; Lu, W.

    2016-07-01

    β -brass exhibits an archetypical example of an order-disorder transition with a critical behavior that was previously investigated by neutron scattering. The data were well described by the three-dimensional (3d) Ising model but the relatively crude experimental resolution prevented an in-depth examination of the single-length scaling hypothesis, a cornerstone in the theory of critical phenomena. With the development of synchrotron x-ray experiments, high-resolution data could be recorded and surprisingly it was found that the single-length scaling did not hold in most critical systems, possibly due to strain originating from surface defects and/or impurities. In this paper we demonstrate single-length critical behavior using high-resolution x-ray scattering in β -brass. The investigations confirm that β -brass behaves like a 3d Ising system over a wide range of length scales comprising correlated clusters of millions of atoms. To vary the surface sensitivity, experiments have been performed both in Bragg reflection and Laue transmission geometries but without any substantial differences observed in the scaling and critical behavior.

  10. Fluorescence quenching near small metal nanoparticles.

    PubMed

    Pustovit, V N; Shahbazyan, T V

    2012-05-28

    We develop a microscopic model for fluorescence of a molecule (or semiconductor quantum dot) near a small metal nanoparticle. When a molecule is situated close to metal surface, its fluorescence is quenched due to energy transfer to the metal. We perform quantum-mechanical calculations of energy transfer rates for nanometer-sized Au nanoparticles and find that nonlocal and quantum-size effects significantly enhance dissipation in metal as compared to those predicted by semiclassical electromagnetic models. However, the dependence of transfer rates on molecule's distance to metal nanoparticle surface, d, is significantly weaker than the d(-4) behavior for flat metal surface with a sharp boundary predicted by previous calculations within random phase approximation.

  11. Martian airfall dust on smooth, inclined surfaces as observed on the Phoenix Mars Lander telltale mirror

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Ha, Taesung; Lemmon, Mark T.; Gunnlaugsson, Haraldur Páll

    2015-10-01

    The telltale mirror, a smooth inclined surface raised over 1 m above the deck of the Phoenix Mars Lander, was observed by the Surface Stereo Imager (SSI) several times per sol during the Phoenix Mars Lander mission. These observations were combined with a radiative transfer model to determine the thickness of dust on the wind telltale mirror as a function of time. 239 telltale sequences were analyzed and dustiness was determined on a diurnal and seasonal basis. The thickness of accumulated dust did not follow any particular diurnal or seasonal trend. The dust thickness on the mirror over the mission was 0.82±0.39 μm, which suggests a similar thickness to the modal scattering particle diameter. This suggests that inclining a surface beyond the angle of repose and polishing it to remove surface imperfections is an effective way to mitigate the accumulation of dust to less than a micron over a wide range of meteorological conditions and could be beneficial for surfaces which can tolerate some dust but not thick accumulations, such as solar panels. However, such a surface will not remain completely dust free through this action alone and mechanical or electrical clearing must be employed to remove adhered dust if a pristine surface is required. The single-scattering phase function of the dust on the mirror was consistent with the single-scattering phase function of martian aerosol dust at 450 nm, suggesting that this result is inconsistent with models of the atmosphere which require vertically or horizontally separated components or broad size distributions to explain the scattering behavior of these aerosols in the blue. The single-scattering behavior of the dust on the mirror is also consistent with Hapke modeling of spherical particles. The presence of a monolayer of particles would tend to support the spherical conclusion: such particles would be most strongly adhered electrostatically.

  12. Study of the mechanical behavior of the hydride blister/rim structure in Zircaloy-4 using in-situ synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.

    2016-04-01

    High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c delta hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the alpha-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 degrees C. The f.c.c delta was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region andmore » region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 degrees C.« less

  13. Manipulating the Ordered Nanostructure of Self-Assembled Monoolein and Phytantriol Nanoparticles with Unsaturated Fatty Acids.

    PubMed

    Tran, Nhiem; Mulet, Xavier; Hawley, Adrian M; Fong, Celesta; Zhai, Jiali; Le, Tu C; Ratcliffe, Julian; Drummond, Calum J

    2018-02-27

    Mesophase structures of self-assembled lyotropic liquid crystalline nanoparticles are important factors that directly influence their ability to encapsulate and release drugs and their biological activities. However, it is difficult to predict and precisely control the mesophase behavior of these materials, especially in complex systems with several components. In this study, we report the controlled manipulation of mesophase structures of monoolein (MO) and phytantriol (PHYT) nanoparticles by adding unsaturated fatty acids (FAs). By using high throughput formulation and small-angle X-ray scattering characterization methods, the effects of FAs chain length, cis-trans isomerism, double bond location, and level of chain unsaturation on self-assembled systems are determined. Additionally, the influence of temperature on the phase behavior of these nanoparticles is analyzed. We found that in general, the addition of unsaturated FAs to MO and PHYT induces the formation of mesophases with higher Gaussian surface curvatures. As a result, a rich variety of lipid polymorphs are found to correspond with the increasing amounts of FAs. These phases include inverse bicontinuous cubic, inverse hexagonal, and discrete micellar cubic phases and microemulsion. However, there are substantial differences between the phase behavior of nanoparticles with trans FA, cis FAs with one double bond, and cis FAs with multiple double bonds. Therefore, the material library produced in this study will assist the selection and development of nanoparticle-based drug delivery systems with desired mesophase.

  14. Na(+) and Ca(2+) effect on the hydration and orientation of the phosphate group of DPPC at air-water and air-hydrated silica interfaces.

    PubMed

    Casillas-Ituarte, Nadia N; Chen, Xiangke; Castada, Hardy; Allen, Heather C

    2010-07-29

    Hydration and orientation of the phosphate group of dipalmitoylphosphatidylcholine (DPPC) monolayers in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase in the presence of sodium ions and calcium ions was investigated with vibrational sum frequency generation (SFG) spectroscopy at the air-aqueous interface in conjunction with surface pressure measurements. In the LE phase, both sodium and calcium affect the phosphate group hydration. In the LC phase, however, sodium ions affect the phosphate hydration subtly, while calcium ions cause a marked dehydration. Silica-supported DPPC monolayers prepared by the Langmuir-Blodgett method reveal similar hydration behavior relative to that observed in the corresponding aqueous subphase for the case of water and in the presence of sodium ions. However, in the presence of calcium ions the phosphate group dehydration is greater than that from the corresponding purely aqueous CaCl(2) subphase. The average tilt angles from the surface normal of the PO(2)(-) group of DPPC monolayers on the water surface and on the silica substrate calculated from SFG data are found to be 59 degrees +/- 3 degrees and 72 degrees +/- 5 degrees , respectively. Orientation of the phosphate group is additionally affected by the presence of ions. These findings show that extrapolation of results obtained from model membranes from liquid surfaces to solid supports may not be warranted since there are differences in headgroup organization on the two subphases.

  15. The phase diagram of hydrogen in ultra thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; Ruckman, M.W.; Reisfeld, G.

    This paper, we discuss changes in the phase diagram of hydrogen in both bilayer (i.e. 200-2000 {Angstrom} Nb/100 {Angstrom} Pd on glass) and multilayer configurations. Comparison of x-ray diffraction, electrical resistivity and volumetric measurements of the films before and after hydrogen charging indicate that the phase equilibria between a correlated (high concentration) and a dilute phase of hydrogen in Nb is not sensitive to the number of layers in the films. On the other hand, the experimental methods show different behavior for 200 {Angstrom} thick Nb films and thicker (>400 {Angstrom}) Nb layers. The diffraction results also show that, whilemore » charging with hydrogen, the Nb layers mainly expand along the surface normal of the films, while the Pd layers expand in all directions equally, and transform to the bulk {alpha} phase.« less

  16. Preparation of Paraffin@Poly(styrene-co-acrylic acid) Phase Change Nanocapsules via Combined Miniemulsion/Emulsion Polymerization.

    PubMed

    Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao

    2018-06-01

    The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.

  17. Nanoscale Control over the Mixing Behavior of Surface-Confined Bicomponent Supramolecular Networks Using an Oriented External Electric Field

    PubMed Central

    2017-01-01

    Strong electric fields are known to influence the properties of molecules as well as materials. Here we show that by changing the orientation of an externally applied electric field, one can locally control the mixing behavior of two molecules physisorbed on a solid surface. Whether the starting two-component network evolves into an ordered two-dimensional (2D) cocrystal, yields an amorphous network where the two components phase separate, or shows preferential adsorption of only one component depends on the solution stoichiometry. The experiments are carried out by changing the orientation of the strong electric field that exists between the tip of a scanning tunneling microscope and a solid substrate. The structure of the two-component network typically changes from open porous at negative substrate bias to relatively compact when the polarity of the applied bias is reversed. The electric-field-induced mixing behavior is reversible, and the supramolecular system exhibits excellent stability and good response efficiency. When molecular guests are adsorbed in the porous networks, the field-induced switching behavior was found to be completely different. Plausible reasons behind the field-induced mixing behavior are discussed. PMID:29112378

  18. Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.

    PubMed

    Li, Nan K; Roberts, Stefan; Quiroz, Felipe Garcia; Chilkoti, Ashutosh; Yingling, Yaroslava G

    2018-04-30

    Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( T t ). However, poly(VPGVG) resolubilizes upon cooling below its T t , whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the T t . The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above T t , where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).

  19. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    NASA Astrophysics Data System (ADS)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  20. A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.

    1996-01-01

    In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient sigma(sup 0) is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.

  1. Effects of rotational symmetry breaking in polymer-coated nanopores

    NASA Astrophysics Data System (ADS)

    Osmanović, D.; Kerr-Winter, M.; Eccleston, R. C.; Hoogenboom, B. W.; Ford, I. J.

    2015-01-01

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  2. Effects of rotational symmetry breaking in polymer-coated nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmanović, D.; Hoogenboom, B. W.; Ford, I. J.

    2015-01-21

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetricmore » case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.« less

  3. Ultrahigh-density sub-10 nm nanowire array formation via surface-controlled phase separation.

    PubMed

    Tian, Yuan; Mukherjee, Pinaki; Jayaraman, Tanjore V; Xu, Zhanping; Yu, Yongsheng; Tan, Li; Sellmyer, David J; Shield, Jeffrey E

    2014-08-13

    We present simple, self-assembled, and robust fabrication of ultrahigh density cobalt nanowire arrays. The binary Co-Al and Co-Si systems phase-separate during physical vapor deposition, resulting in Co nanowire arrays with average diameter as small as 4.9 nm and nanowire density on the order of 10(16)/m(2). The nanowire diameters were controlled by moderating the surface diffusivity, which affected the lateral diffusion lengths. High resolution transmission electron microscopy reveals that the Co nanowires formed in the face-centered cubic structure. Elemental mapping showed that in both systems the nanowires consisted of Co with undetectable Al or Si and that the matrix consisted of Al with no distinguishable Co in the Co-Al system and a mixture of Si and Co in the Co-Si system. Magnetic measurements clearly indicate anisotropic behavior consistent with shape anisotropy. The dynamics of nanowire growth, simulated using an Ising model, is consistent with the experimental phase and geometry of the nanowires.

  4. Phase diagram of Ag-Pd bimetallic nanoclusters by molecular dynamics simulations: solid-to-liquid transition and size-dependent behavior.

    PubMed

    Kim, Da Hye; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo

    2009-07-07

    This report on the solid-to-liquid transition region of an Ag-Pd bimetallic nanocluster is based on a constant energy microcanonical ensemble molecular dynamics simulation combined with a collision method. By varying the size and composition of an Ag-Pd bimetallic cluster, we obtained a complete solid-solution type of binary phase diagram of the Ag-Pd system. Irrespective of the size and composition of the cluster, the melting temperature of Ag-Pd bimetallic clusters is lower than that of the bulk state and rises as the cluster size and the Pd composition increase. Additionally, the slope of the phase boundaries (even though not exactly linear) is lowered when the cluster size is reduced on account of the complex relations of the surface tension, the bulk melting temperature, and the heat of fusion. The melting of the cluster initially starts at the surface layer. The initiation and propagation of a five-fold icosahedron symmetry is related to the sequential melting of the cluster.

  5. Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces

    DOE PAGES

    Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish; ...

    2018-02-09

    Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less

  6. Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish

    Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less

  7. Peculiarities of steel and alloy electrochemical and corrosion behavior after laser processing

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Tat'yana G.; Kosyrev, Feliks K.; Rodin, Anatoly V.; Sayapin, V. P.

    1997-04-01

    Different types of laser processing can significantly increase the corrosion resistance of constructive materials, secure higher levels of metal properties in comparison with standard protection from corrosion and can be successfully used for industrial application. The research carried out in TRINITI during the last 10 years allowed us to create a data base about corrosion behavior in different chemical media of various metals, alloys and steels after welding, melting, surface alloying, etc. on technological continuous-wave carbon-dioxide-laser with average power up to 5 kilowatt. The investigated materials were subdivided into two groups: (1) without changes of phases composition after laser processing (pure metals, stainless steels); and (2) exposed to structural and phase changes under laser-matter interaction (carbon steels with different carbon content). It has allowed us to investigate the peculiarities of corrosion process mechanism depending on matter surface structure and phase composition both on laser irradiation regimes. Our research was based on the high sensitive electrochemical analysis combined with other corrosion and physical methods. The essential principles of electrochemical analysis are next. There are two main processes on metal under the interaction with electrolyte solution: anodic reaction -- which means the metal oxidation or transition of metal kations into solution; cathodic reaction -- the reoxidation of the ions or molecular of the solution. They are characterizing by the values of current densities and the rates of these reactions are dependent upon the potential arising on the metal-solution frontier. The electrochemical reactions kinetic investigations gives a unique possibility for the research of metal structure and corrosion behavior even in the case of small thickness of laser processed layers.

  8. The behavior of osmium and other siderophile elements during impacts: Insights from the Ries impact structure and central European tektites

    NASA Astrophysics Data System (ADS)

    Ackerman, Lukáš; Magna, Tomáš; Žák, Karel; Skála, Roman; Jonášová, Šárka; Mizera, Jiří; Řanda, Zdeněk

    2017-08-01

    Impact processes are natural phenomena that contribute to a variety of physico-chemical mechanisms over an extreme range of shock pressures and temperatures, otherwise seldomly achieved in the Earth's crust through other processes. Under these extreme conditions with transient temperatures and pressures ≥3000 K and ≥100 GPa, followed by their rapid decrease, the behavior of elements has remained poorly understood. Distal glassy ejecta (tektites) were produced in early phases of contact between the Earth's surface and an impacting body. Here we provide evidence for a complex behavior of Os and other highly siderophile elements (HSE; Ir, Ru, Pt, Pd, and Re) during tektite production related to a hyper-velocity impact that formed the Ries structure in Germany. Instead of simple mixing between the surface materials, which are thought to form the major source of central European tektites (moldavites), and impactor matter, the patterns of HSE contents and 187Re/188Os - 187Os/188Os ratios in moldavites, target sediments and impact-related breccias (suevites) can be explained by several sequential and/or contemporary processes. These involve (i) evaporative loss of partially oxidized HSE from the overheated tektite melt, (ii) mixing of target-derived and impactor-derived HSE vapor (plasma) phases, and (iii) early (high-temperature) condensation of a part of the mixed vapor phase back to silicate melt droplets. An almost complete loss of terrestrial Os from the tektite melt and its replacement with extra-terrestrial Os are indicated by low 187Os/188Os ratios in tektites (<0.163) relative to precursor materials (>0.69). This is paralleled by a co-variation between Os and Ni contents in tektites but not in suevites formed later in the impact process.

  9. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the current state of CRYOCHEM in representing the SVE and SLV of chemical systems at temperatures and pressures relevant to Titan's tropopause and Pluto and the upper crusts of these objects.

  10. Effect of the barometric phase transition of a DMPA bilayer on the lipid/water interface. An atomistic description by molecular dynamics simulation.

    PubMed

    Casares, J J Giner; Camacho, L; Romero, M T Martín; Cascales, J J López

    2007-12-13

    Understanding the structure and dynamics of phospholipid bilayers is of fundamental relevance in biophysics, biochemistry, and chemical physics. Lipid Langmuir monolayers are used as a model of lipid bilayers, because they are much more easily studied experimentally, although some authors question the validity of this model. With the aim of throwing light on this debate, we used molecular dynamics simulations to obtain an atomistic description of a membrane of dimyristoylphosphatidic acid under different surface pressures. Our results show that at low surface pressure the interdigitation between opposite lipids (that is, back-to-back interactions) controls the system structure. In this setting and due to the absence of this effect in the Langmuir monolayers, the behavior between these two systems differs considerably. However, when the surface pressure increases the lipid interdigitation diminishes and so monolayer and bilayer behavior converges. In this work, four computer simulations were carried out, subjecting the phospholipids to lateral pressures ranging from 0.17 to 40 mN/m. The phospholipids were studied in their charged state because this approach is closer to the experimental situation. Special attention was paid to validating our simulation results by comparison with available experimental data, therebeing in general excellent agreement between experimental and simulation data. In addition, the properties of the lipid/solution interface associated with the lipid barometric phase transition were studied.

  11. Nicotine as a Marker for Environmental Tobacco Smoke: Implications of Sorption on Indoor Surface Materials.

    PubMed

    Van Loy, Michael D; Nazaroff, William W; Daisey, Joan M

    1998-10-01

    Recently developed models and data describing the interactions of gas-phase semi-volatile organic compounds with indoor surfaces are employed to examine the effects of sorption on nicotine's suitability as an environmental tobacco smoke (ETS) marker. Using parameters from our studies of nicotine sorption on carpet, painted wallboard, and stainless steel and previously published data on ETS particle deposition, the dynamic behavior of nicotine was modeled in two different indoor environments: a house and a stainless steel chamber. The results show that apparently contradictory observations of nicotine's behavior in indoor air can be understood by considering the effects of sorption under different experimental conditions. In indoor environments in which smoking has occurred regularly for an extended period, the sorbed mass of nicotine is very large relative to the mass emitted by a single cigarette. The importance of nicotine adsorption relative to ventilation as a gas-phase removal mechanism is reduced. Where smoking occurs less regularly or the indoor surfaces are cleaned prior to smoking (as in a laboratory chamber), nicotine deposition is more significant. Nicotine concentrations closely track the levels of other ETS constituents in environments with habitual smoking if the data are averaged over a period significantly longer than the period between cigarette combustion episodes. However, nicotine is not a suitable tracer for predicting ETS exposures at fine time scales or in settings where smoking occurs infrequently and irregularly.

  12. Linking Findings in Microfluidics to Membrane Emulsification Process Design: The Importance of Wettability and Component Interactions with Interfaces

    PubMed Central

    Schroën, Karin; Ferrando, Montse; de Lamo-Castellví, Silvia; Sahin, Sami; Güell, Carme

    2016-01-01

    In microfluidics and other microstructured devices, wettability changes, as a result of component interactions with the solid wall, can have dramatic effects. In emulsion separation and emulsification applications, the desired behavior can even be completely lost. Wettability changes also occur in one phase systems, but the effect is much more far-reaching when using two-phase systems. For microfluidic emulsification devices, this can be elegantly demonstrated and quantified for EDGE (Edge-base Droplet GEneration) devices that have a specific behavior that allows us to distinguish between surfactant and liquid interactions with the solid surface. Based on these findings, design rules can be defined for emulsification with any micro-structured emulsification device, such as direct and premix membrane emulsification. In general, it can be concluded that mostly surface interactions increase the contact angle toward 90°, either through the surfactant, or the oil that is used. This leads to poor process stability, and very limited pressure ranges at which small droplets can be made in microfluidic systems, and cross-flow membrane emulsification. In a limited number of cases, surface interactions can also lead to lower contact angles, thereby increasing the operational stability. This paper concludes with a guideline that can be used to come to the appropriate combination of membrane construction material (or any micro-structured device), surfactants and liquids, in combination with process conditions. PMID:27187484

  13. Phase transition of a DPPC bilayer induced by an external surface pressure: from bilayer to monolayer behavior. a molecular dynamics simulation study.

    PubMed

    López Cascales, J J; Otero, T F; Fernandez Romero, A J; Camacho, L

    2006-06-20

    Understanding the lipid phase transition of lipid bilayers is of great interest from biophysical, physicochemical, and technological points of view. With the aim of elucidating the structural changes that take place in a DPPC phospholipid bilayer induced by an external isotropic surface pressure, five computer simulations were carried out in a range from 0.1 to 40 mN/m. Molecular dynamics simulations provided insight into the structural changes that took place in the lipid structure. It was seen that low pressures ranging from 0.1 to 1 mN/m had hardly any effect on the structure, electrical properties, or hydration of the lipid bilayer. However, for pressures above 40 mN/m, there was a sharp change in the lipid-lipid interactions, hydrocarbon lipid fluidity, and electrostatic potential, corresponding to the mesomorphic transition from a liquid crystalline state (L(alpha)) to its gel state (P'(beta)). The head lipid orientation remained almost unaltered, parallel to the lipid layer, as the surface pressure was increased, although a noticeable change in its angular distribution function was evident with the phase transition.

  14. Phase-field modeling of chemical control of polarization stability and switching dynamics in ferroelectric thin films

    DOE PAGES

    Cao, Ye; Kalinin, Sergei V.

    2016-12-15

    Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb(Zr 0.2Ti 0.8)O 3 ultrathin film consisting of (001) oriented single tetragonal domain ( Pz) asmore » a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Finally, our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.« less

  15. Phase-field modeling of chemical control of polarization stability and switching dynamics in ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ye; Kalinin, Sergei V.

    Phase-field simulation (PFS) has revolutionized the understanding of domain structure and switching behavior in ferroelectric thin films and ceramics. Generally, PFS is based on the solution of (a set of) Landau-Ginzburg-Devonshire equations for a defined order parameter field(s) under physical boundary conditions (BCs) of fixed potential or charge. While well matched to the interfaces in bulk materials and devices, these BCs are generally not applicable to free ferroelectric surfaces. Here, we developed a self-consistent phase-field model with BCs based on electrochemical equilibria. We chose Pb(Zr 0.2Ti 0.8)O 3 ultrathin film consisting of (001) oriented single tetragonal domain ( Pz) asmore » a model system and systematically studied the effects of oxygen partial pressure, temperature, and surface ions on the ferroelectric state and compared it with the case of complete screening. We have further explored the polarization switching induced by the oxygen partial pressure and observed pronounced size effect induced by chemical screening. Finally, our paper thus helps to understand the emergent phenomena in ferroelectric thin films brought about by the electrochemical ionic surface compensations.« less

  16. Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-kai; Lu, Shu-chao; Song, Xi-bin; Zhang, Haifeng; Yang, Wan-shi; Zhou, Hong

    2015-03-01

    To improve the fatigue wear resistance of gray cast iron (GCI), GCI samples were modified by a laser to imitate the unique structure of some soil animals alternating between soft and hard phases; the hard phase resists the deformation and the soft phase releases the deformation. Using the self-controlled fatigue wear test method, the fatigue wear behaviors of treated and untreated samples were investigated and compared experimentally. The results show that the bionic non-smooth surface obtains a beneficial effect on improving the fatigue wear resistance of a sample, and the fatigue wear resistance of the bionic sample assembled with reticulate units (60°+0°), whose mass loss was reduced by 62%, was superior to the others. Meanwhile, a finite element (FE) was used to simulate the compression and the distributions of strain and stress on the non-smooth surface was inferred. From these results, we understood that the functions of the bionic unit such as reducing strain and stress, and also obstructing the closure and propagation of cracks were the main reasons for improving the fatigue wear property of GCI.

  17. Interferometric characterization of tear film dynamics

    NASA Astrophysics Data System (ADS)

    Primeau, Brian Christopher

    The anterior refracting surface of the eye is the thin tear film that forms on the surface of the cornea. When a contact lens is on worn, the tear film covers the contact lens as it would a bare cornea, and is affected by the contact lens material properties. Tear film irregularity can cause both discomfort and vision quality degradation. Under normal conditions, the tear film is less than 10 microns thick and the thickness and topography change in the time between blinks. In order to both better understand the tear film, and to characterize how contact lenses affect tear film behavior, two interferometers were designed and built to separately measure tear film behavior in vitro and in vivo. An in vitro method of characterizing dynamic fluid layers applied to contact lenses mounted on mechanical substrates has been developed using a phase-shifting Twyman-Green interferometer. This interferometer continuously measures light reflected from the surface of the fluid layer, allowing precision analysis of the dynamic fluid layer. Movies showing this fluid layer behavior can be generated. The fluid behavior on the contact lens surface is measured, allowing quantitative analysis beyond what typical contact angle or visual inspection methods provide. The in vivo interferometer is a similar system, with additional modules included to provide capability for human testing. This tear film measurement allows analysis beyond capabilities of typical fluorescein visual inspection or videokeratometry and provides better sensitivity and resolution than shearing interferometry methods.

  18. Uncoupled surface spin induced exchange bias in α-MnO2 nanowires

    PubMed Central

    Li, Wenxian; Zeng, Rong; Sun, Ziqi; Tian, Dongliang; Dou, Shixue

    2014-01-01

    We have studied the microstructure, surface states, valence fluctuations, magnetic properties, and exchange bias effect in MnO2 nanowires. High purity α-MnO2 rectangular nanowires were synthesized by a facile hydrothermal method with microwave-assisted procedures. The microstructure analysis indicates that the nanowires grow in the [0 0 1] direction with the (2 1 0) plane as the surface. Mn3+ and Mn2+ ions are not found in the system by X-ray photoelectron spectroscopy. The effective magnetic moment of the manganese ions fits in with the theoretical and experimental values of Mn4+ very well. The uncoupled spins in 3d3 orbitals of the Mn4+ ions in MnO6 octahedra on the rough surface are responsible for the net magnetic moment. Spin glass behavior is observed through magnetic measurements. Furthermore, the exchange bias effect is observed for the first time in pure α-MnO2 phase due to the coupling of the surface spin glass with the antiferromagnetic α-MnO2 matrix. These α-MnO2 nanowires, with a spin-glass-like behavior and with an exchange bias effect excited by the uncoupled surface spins, should therefore inspire further study concerning the origin, theory, and applicability of surface structure induced magnetism in nanostructures. PMID:25319531

  19. Ultrasonic bubbles in medicine: influence of the shell.

    PubMed

    Postema, Michiel; Schmitz, Georg

    2007-04-01

    Ultrasound contrast agents consist of microscopically small bubbles encapsulated by an elastic shell. These microbubbles oscillate upon ultrasound insonification, and demonstrate highly nonlinear behavior, ameliorating their detectability. (Potential) medical applications involving the ultrasonic disruption of contrast agent microbubble shells include release-burst imaging, localized drug delivery, and noninvasive blood pressure measurement. To develop and enhance these techniques, predicting the cracking behavior of ultrasound-insonified encapsulated microbubbles has been of importance. In this paper, we explore microbubble behavior in an ultrasound field, with special attention to the influence of the bubble shell. A bubble in a sound field can be considered a forced damped harmonic oscillator. For encapsulated microbubbles, the presence of a shell has to be taken into account. In models, an extra damping parameter and a shell stiffness parameter have been included, assuming that Hooke's Law holds for the bubble shell. At high acoustic amplitudes, disruptive phenomena have been observed, such as microbubble fragmentation and ultrasonic cracking. We analyzed the occurrence of ultrasound contrast agent fragmentation, by simulating the oscillating behavior of encapsulated microbubbles with various sizes in a harmonic acoustic field. Fragmentation occurs exclusively during the collapse phase and occurs if the kinetic energy of the collapsing microbubble is greater than the instantaneous bubble surface energy, provided that surface instabilities have grown big enough to allow for break-up. From our simulations it follows that the Blake critical radius is not a good approximation for a fragmentation threshold. We demonstrated how the phase angle differences between a damped radially oscillating bubble and an incident sound field depend on shell parameters.

  20. Simultaneous tuning of chemical composition and topography of copolymer surfaces: micelles as building blocks.

    PubMed

    Zhao, Ning; Zhang, Xiaoyan; Zhang, Xiaoli; Xu, Jian

    2007-05-14

    A simple method is described for controlling the surface chemical composition and topography of the diblock copolymer poly(styrene)-b-poly(dimethylsiloxane)(PS-b-PDMS) by casting the copolymer solutions from solvents with different selectivities. The surface morphology and chemical composition were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively, and the wetting behavior was studied by water contact angle (CA) and sliding angle (SA) and by CA hysteresis. Chemical composition and morphology of the surface depend on solvent properties, humidity of the air, solution concentration, and block lengths. If the copolymer is cast from a common solvent, the resultant surface is hydrophobic, with a flat morphology, and dominated by PDMS on the air side. From a PDMS-selective solvent, the surface topography depends on the morphology of the micelles. Starlike micelles give rise to a featureless surface nearly completely covered by PDMS, while crew-cut-like micelles lead to a rough surface with a hierarchical structure that consists partly of PDMS. From a PS-selective solvent, however, surface segregation of PDMS was restricted, and the surface morphology can be controlled by vapor-induced phase separation. On the basis of the tunable surface roughness and PDMS concentration on the air side, water repellency of the copolymer surface could be tailored from hydrophobic to superhydrophobic. In addition, reversible switching behavior between hydrophobic and superhydrophobic can be achieved by exposing the surface to solvents with different selectivities.

  1. Control and measurement of the phase behavior of aqueous solutions using microfluidics

    PubMed Central

    Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth

    2008-01-01

    A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868

  2. Peculiarities of the crystal structure of modified banana-shaped mesogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zharova, M. A.; Usol'tseva, N. V., E-mail: nadezhda_usoltseva@yahoo.com; Ungar, G.

    The structure and phase behavior of an achiral banana-shaped compound-bis-{l_brace}3,4,5-tri[4-(4-n-nonyloxybenzoyloxy)] benzoylamino{r_brace}-1,3-phenylene (I)-have been investigated. This compound exhibits an enantiotropic high-temperature chiral mesophase; upon cooling it successively passes to the crystalline (Cr) phases: Cr{alpha} (281.0-176.0 deg. C), Cr{beta} (175.0-72.0 deg. C), and Cr{gamma} (71.0-40.0 deg. C) (their temperature ranges of existence are indicated). The surface topology and results of linear measurements along the cross sections of certain portions of thin films of compound I in the Cr {gamma} phase clearly prove the effect of the preserved chirality of the previous liquid-crystal phase in the crystalline state.

  3. Worldwide photometry and lightcurve observations of 16 Psyche during the 1975-1976 apparition

    NASA Technical Reports Server (NTRS)

    Tedesco, E. F.; Taylor, R. C.; Drummond, J.; Harwood, D.; Nickoloff, I.; Scaltriti, F.; Zappala, V.

    1983-01-01

    Twenty-six lightcurves of Psyche are presented together with UBV photometry and phase functions from 1975 and 1976. Combining photometric data from this opposition with those from previous apparitions resulted in a mean phase coefficient in V of 0.026 + or - 0.002 mag/deg. No significant phase-dependent variation in the U-B color could be determined from the data; the B-V color, however, displayed a reddening with phase of 0.0010 + or - 0.0004 mag/deg. It is concluded that compositional variations over Psyche's surface are minor, and that Psyche's opposition effect is typical of that for other well-observed asteroids. Psyche's behavior is accounted for if, to the first order, its shape is that of a triaxial ellipsoid with axial ratios near 5:4:3.

  4. Microstructure analysis and wear behavior of titanium cermet femoral head with hard TiC layer.

    PubMed

    Luo, Yong; Ge, Shirong; Liu, Hongtao; Jin, Zhongmin

    2009-12-11

    Titanium cermet was successfully synthesized and formed a thin gradient titanium carbide coating on the surface of Ti6Al4V alloy by using a novel sequential carburization under high temperature, while the titanium cermet femoral head was produced. The titanium cermet phase and surface topography were characterized with X-ray diffraction (XRD) and backscattered electron imaging (BSE). And then the wear behavior of titanium cermet femoral head was investigated by using CUMT II artificial joint hip simulator. The surface characterization indicates that carbon effectively diffused into the titanium alloys and formed a hard TiC layer on the Ti6Al4V alloys surface with a micro-porous structure. The artificial hip joint experimental results show that titanium cermet femoral head could not only improve the wear resistance of artificial femoral head, but also decrease the wear of UHMWPE joint cup. In addition, the carburized titanium alloy femoral head could effectively control the UHMWPE debris distribution, and increase the size of UHMWPE debris. All of the results suggest that titanium cermet is a prospective femoral head material in artificial joint.

  5. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.

    PubMed

    Kim, Byung-Joo; Park, Soo-Jin

    2007-07-15

    The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.

  6. Engineering plasmonic nanostructured surfaces by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Ghidelli, Matteo; Mascaretti, Luca; Bricchi, Beatrice Roberta; Zapelli, Andrea; Russo, Valeria; Casari, Carlo Spartaco; Li Bassi, Andrea

    2018-03-01

    The synthesis and the optical response of gold nanoparticles (NPs) and thin nanostructured films grown by pulsed laser deposition (PLD) are here studied. Different PLD process parameters - including background gas pressure and the number of laser shots as well as post-deposition annealing treatments - have been varied to control the growth of Au NPs and films, thus tuning the surface plasmon characteristics. The mechanisms of NPs and film growth have been explored performing a morphological characterization by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), and the correlation with the optical behavior is investigated. We show that the size distribution and the morphology of the as deposited Au NPs depend on growth mechanisms which are controlled by tuning the deposition process, while the optical behavior is strongly affected by the average size and surface density of NPs or by the length of percolated Au domains. Furthermore, nucleation in gas phase has been reported at high (1000 Pa Ar) background pressures, enabling independent control of NP size and coverage, contrary to surface driven NP growth by diffusion and aggregation on substrate.

  7. Effect of black clay soil moisture on the electrochemical behavior of API X70 pipeline steel

    NASA Astrophysics Data System (ADS)

    Hendi, R.; Saifi, H.; Belmokre, K.; Ouadah, M.; Smili, B.; Talhi, B.

    2018-03-01

    The effect of moisture content variation (20–100 wt.%) on the electrochemical behavior of API X70 pipeline steel buried in the soil of Skikda (East of Algeria) was studied using electrochemical techniques, scanning electron microscopy (SEM), X ray diffraction analysis (XRD) and weight loss measurement. The electrochemical measurements showed that the corrosion current Icorr is directly proportional to the moisture content up to 50 wt.%, beyond this content, this value becomes almost constant. The result were confirmed by electrochemical impedance spectroscopy; the capacitance of the double layer formed on the surface is the highest at 50 wt.%. A single time constant was detected by plotting the Bode diagrams. The steel surface degradation has been appreciated using the scanning electron microscopy observations. A few pitting corrosion at 20 wt.% moisture, followed by more degradation at 50 wt.% have been revealed. However, when the moisture amount exceeded 50 wt.%, the surface became entirely covered by a corrosion product. XRD analysis revealed the dominance of FeOOH and Fe3O4 phases on steel surface for a moisture content of 50 wt.%.

  8. Stable and Metastable InGaAs/GaAs Island Shapes and Surfactant-like Suppression of the Wetting Transformation

    NASA Technical Reports Server (NTRS)

    Leon, R.; Lobo, C.; Zou, J.; Romeo, T.; Cockayne, D. J. H.

    1998-01-01

    Diverging behaviors are observed in the InGaAs/GaAs Stranski-Krastanow (S-K) island formation during vapor phase epitaxy: varying group V partial pressures gives different critical thicknesses for the onset of the S-K transformation, island surface coverages, ratios between coherent and incoherent islands, and dissimilar morphologies upon annealing.

  9. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study.

    PubMed

    Maćkowiak, Sz; Heyes, D M; Dini, D; Brańka, A C

    2016-10-28

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (∼0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential between the wall atoms, but increases when the attractive part of the potential between wall atoms and confined molecules is made larger.

  10. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  11. Investigations of surface structural, dynamical, and magnetic properties of systems exhibiting multiferroicity, and topological phases by helium scattering spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Batanouny, Maged

    2015-08-03

    We propose to investigate the surface structural, dynamics and magnetic properties of the novel class of topological insulator crystals, as well as crystals that exhibit multiferroicity, magnetoelectricity and thermoelectricity. Topological insulators (TIs) are a new class of insulators in which a bulk gap for electronic excitations is generated because of the strong spin-orbit coupling inherent to these systems. These materials are distinguished from ordinary insulators by the presence of gapless metallic surface states, resembling chiral edge modes in quantum Hall systems, but with unconventional spin textures. These exotic metallic states are formed by topological conditions that also render the electrons travelling on such surfaces insensitive to scattering by impurities. The electronic quasi-particles populating the topological surface state are Dirac fermions; they have a linear dispersion and thus are massless just like photons. We propose to investigate the interaction of these massless Dirac fermions with the massive lattice in the newly discovered crystals, Bi2Se3, Bi2Te3 and Sb2Te3. We shall use inelastic helium beam scattering from surfaces to search for related signatures in surface phonon dispersions mappings that cover the entire surface Brillouin zone of these materials. Our recent investigations of the (001) surface of the multiferroic crystals (Li/Na)Cu2O2 revealed an anomalous surface structural behavior where surface Cumore » $$^{2+}$$ row rise above the surface plane as the crystal was cooled. Subsequent worming revealed the onset of a thermally activated incommensurate surface phase, driven by the elevated rows. We are currently investigating the structure of the magnetic phases in these quasi-one-dimensional magnetic rows. Multiferroics are excellent candidates for large magnetoelectric response. We propose to extend this investigation to the class of delafossites which are also multiferroics and have been investigated as good candidates for thermoelectric power devices. They are also typical triangular lattice antiferromagnets with geometric magnetic frustration that leads to helimagnetic structures.« less

  12. Spin-resolved band structure of a densely packed Pb monolayer on Si(111)

    NASA Astrophysics Data System (ADS)

    Brand, C.; Muff, S.; Fanciulli, M.; Pfnür, H.; Tringides, M. C.; Dil, J. H.; Tegenkamp, C.

    2017-07-01

    Monolayer structures of Pb on Si(111) attracted recently considerable interest as superconductivity was found in these truly two-dimensional (2D) structures. In this study, we analyzed the electronic surface band structure of the so-called striped incommensurate Pb phase with 4/3 ML coverage by means of spin-resolved photoemission spectroscopy. Our results fully agree with density functional theory calculations done by Ren et al. [Phys. Rev. B 94, 075436 (2016), 10.1103/PhysRevB.94.075436]. We observe a local Zeeman-type splitting of a fully occupied and spin-polarized surface band at the K¯√{3} points. The growth of this densely packed Pb structure results in the formation of imbalanced rotational domains, which triggered the detection of C3 v symmetry forbidden spin components for surface states around the Fermi energy. Moreover, the Fermi surface of the metallic surface state of this phase is Rashba spin split and revealed a pronounced warping. However, the 2D nesting vectors are incommensurate with the atomic structure, thus keeping this system rather immune against charge density wave formation and possibly enabling a superconducting behavior.

  13. Effect of Ultrasonic Surface Treatment on the Transparency and Orientation of Fresnoite Surface Crystallization

    NASA Astrophysics Data System (ADS)

    Endo, A.; Sakida, S.; Benino, Y.; Nanba, T.

    2011-10-01

    Surface crystallized glass ceramics with fresnoite (Ba2TiSi2O8) phase were prepared by conventional heat treatment of 30BaO-20TiO2-50SiO2 glass together with ultrasonic surface treatment (UST) technique. The precursor glass was fully crystallized in a bulk form without any cracks, and the optical transparency and crystallographic orientation of the crystalline layers were evaluated by UV-Vis spectroscopy and XRD diffraction analyses, respectively. These properties were both enhanced significantly by applying UST using fresnoite/water suspension before the crystallization process, which is advantage for nonlinear optical applications of bulk glass ceramics. The effects of UST on the crystallization behavior were investigated by applying UST with various conditions.

  14. Surface tension and density of Si-Ge melts

    NASA Astrophysics Data System (ADS)

    Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz

    2014-06-01

    In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

  15. Fracture surface analysis of a quenched (α+β)-metastable titanium alloy

    NASA Astrophysics Data System (ADS)

    Illarionov, A. G.; Stepanov, S. I.; Demakov, S. L.

    2017-12-01

    Fracture surface analysis is conducted by means of SEM for VT16 titanium alloy specimens solution-treated at temperatures ranging from 700 to 875 °C, water-quenched and subjected to tensile testing. A cup and cone shape failure and dimple microstructure of the fracture surface indicates the ductile behavior of the alloy. Dimple dimensions correlated with the β-grain size of the alloy in quenched condition. The fracture area (namely, the size; the cup and cone shape) depends on the volume fraction of the primary α-phase in the quenched sample. However, the fracture surface changes considerably when the strain-induced β-αʺ-transformation takes place during tensile testing, resulting in the increase of alloy ductility.

  16. Reverse Micelle Mediated synthesis of Calcium Phosphate Nanocarriers for Controlled Release of Bovine Serum Albumin (BSA)

    PubMed Central

    Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita

    2010-01-01

    Calcium phosphate (CaP) nanoparticle with calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse micro emulsion. Ca(NO3)2.4H2O and H3PO4 were used as aqueous phase, cyclohexane as organic phase, and poly(oxyethylene)12 nonylphenol ether (NP-12) as surfactant. Depending on calcination temperature between 600 and 800 °C, CaP nanoparticle showed different phases calcium deficient hydroxyapatite (CDHA) and β-tricalcium phosphate (β-TCP), particle size between 48 and 69 nm, the BET specific average surface area between 73 m2/g and 57 m2/g. Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. Adsorptive property of BSA was investigated with the change in BET surface area of these nanoparticle and the pH of the suspension. At pH 7.5, maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time dependent increase at pH 4.0 and 6.0 buffer solutions. However, the amount of released protein was significantly smaller at pH 7.2. BSA release rate also varied depending on the presence of different phases of CaPs in the system, β-TCP or CDHA. These results suggest that BSA protein release rate can be controlled by changing particle size, surface area and phase composition of CaP nanocarriers. PMID:19435617

  17. Preparation of hydrophilic interaction/ion-exchange mixed-mode chromatographic stationary phase with adjustable selectivity by controlling different ratios of the co-monomers.

    PubMed

    Bo, Chunmiao; Wang, Xiaomeng; Wang, Chaozhan; Wei, Yinmao

    2017-03-03

    Development of mixed-mode chromatography (MMC) stationary phase with adjustable selectivity is beneficial to meet the needs of complex samples. In this work, surface-initiated atom transfer radical polymerization (SI-ATRP) using the mixture of two functional monomers was proposed as a new preparation strategy for MMC stationary phase with adjustable selectivity. The mixture of sodium 4-styrenesulfonate (NASS) and dimethylaminoethyl methacrylate (DMAEMA) underwent SI-ATRP to bond poly(NASS-co-DMAEMA) on the surface of silica to prepare hydrophilic interaction/ion-exchange mixed-mode stationary phase. Various analytes (neutral, acidic, basic analytes and strong polar nucleosides) were employed to investigate the retention behaviors. The influences of water content and pH of the mobile phase on the retention validated the mixed-mode retention mechanisms of HILIC and ion-exchange. The charge and polarity of stationary phase as well as the separation selectivity were conveniently manipulated by the ratio of NASS to DMAEMA monomer, and the use of DMAEMA in the mixture additionally endowed the column with the temperature-responsive characteristics. Moreover, the application of the developed column was demonstrated by the successful separation of nucleosides, β-agonists and safflower injection. In a word, the proposed strategy can be potentially applied in the controllable preparation of MMC stationary phase with adjustable selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Liquid crystalline polymers in good nematic solvents: Free chains, mushrooms, and brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D.R.M.; Halperin, A.

    1993-08-02

    The swelling of main chain liquid crystalline polymers (LCPs) in good nematic solvents is theoretically studied, focusing on brushes of terminally anchored, grafted LCPs. The analysis is concerned with long LCPs, of length L, with n[sub 0] >> 1 hairpin defects. The extension behavior of the major axis, R[parallel], of these ellipsoidal objects gives rise to an Ising elasticity with a free energy penalty of F[sub el](R[parallel])/kT [approx] n[sub 0] [minus] n[sub 0](1 [minus] R[parallel][sup 2]/L[sup 2])[sup 1/2]. The theory of the extension behavior enables the formulation of a Flory type theory of swelling of isolated LCPs yielding R[parallel] [approx]more » exp(2U[sub h]/5kT)N[sup 3/5] and R [perpendicular] [approx] exp([minus]U[sub h]/10kT)N[sup 3/5], with N the degree of polymerization and U[sub h] the hairpin energy. It also allows the generalization of the Alexander model for polymer brushes to the case of grafted LCPs. The behavior of LCP brushes depends on the alignment imposed by the grafting surface and the liquid crystalline solvent. A tilting phase transition is predicted as the grafting density is increased for a surface imposing homogeneous, parallel anchoring. A related transition is expected upon compression of a brush subject to homeotropic, perpendicular alignment. The effect of magnetic or electric fields on these phase transitions is also studied. The critical magnetic/electric field for the Frederiks transition can be lowered to arbitrarily small values by using surfaces coated by brushes of appropriate density.« less

  19. Condensation and Vaporization Studies of CH3OH and NH3 Ices: Major Implications for Astrochemistry

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing H20, CO, CO2, SO2, H2S, and H2, We present measurements of the physical and infrared spectral properties of ices containing CH30H and NH3.The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed 87 of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.

  20. Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing H2O, CO, CO2, SO2, H2S, and H2, we present measurements of the physical and infrared spectral properties of ices containing CH3OH and NH3. The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed depletion of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.

  1. Thermal behavior and catalytic activity in naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium

    NASA Astrophysics Data System (ADS)

    Vasilyeva, Marina S.; Rudnev, Vladimir S.; Wiedenmann, Florian; Wybornov, Svetlana; Yarovaya, Tatyana P.; Jiang, Xin

    2011-11-01

    The present paper is devoted to studies of the composition and surface structure, including those after annealing at high temperatures, and catalytic activity in the reaction of naphthalene destruction of Ce-, Zr- and Mn-containing oxide layers on titanium obtained by means of the plasma electrolytic oxidation (PEO) method. The composition and structure of the obtained systems were investigated using the methods of X-ray phase and energy dispersive analysis and scanning electron microscopy (SEM). It was demonstrated that Ce- and Zr- containing structures had relatively high thermal stability: their element and phase compositions and surface structure underwent virtually no changes after annealing in the temperature range 600-800 °C. Annealing of Ce- and Zr-containing coatings in the temperature range 850-900 °C resulted in substantial changes of their surface composition and structure: a relatively homogeneous and porous surface becomes coated by large pole-like crystals. The catalytic studies showed rather high activity of Ce- and Zr-containing coatings in the reaction of naphthalene destruction at temperatures up to 850 °C. Mn-containing structures of the type MnOx + SiO2 + TiO2/Ti have a well-developed surface coated by “nano-whiskers”. The phase composition and surface structure of manganese-containing layers changes dramatically in the course of thermal treatment. After annealing above 600 °C nano-whiskers vanish with formation of molten structures on the surface. The Mn-containing oxide systems demonstrated lower conversion degrees than the Ce- and Zr-containing coatings, which can be attributed to substantial surface modification and formation of molten manganese silicates at high temperatures.

  2. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  3. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-28

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  4. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    PubMed

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  5. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  6. Predictive modeling of low solubility semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Rodriguez, Garrett V.; Millunchick, Joanna M.

    2016-09-01

    GaAsBi is of great interest for applications in high efficiency optoelectronic devices due to its highly tunable bandgap. However, the experimental growth of high Bi content films has proven difficult. Here, we model GaAsBi film growth using a kinetic Monte Carlo simulation that explicitly takes cation and anion reactions into account. The unique behavior of Bi droplets is explored, and a sharp decrease in Bi content upon Bi droplet formation is demonstrated. The high mobility of simulated Bi droplets on GaAsBi surfaces is shown to produce phase separated Ga-Bi droplets as well as depressions on the film surface. A phase diagram for a range of growth rates that predicts both Bi content and droplet formation is presented to guide the experimental growth of high Bi content GaAsBi films.

  7. Nanoscale Packing Differences in Sphingomyelin and Phosphatidylcholine Revealed by BODIPY Fluorescence in Monolayers: Physiological Implications

    PubMed Central

    2015-01-01

    Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force–area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force–area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match. PMID:24564829

  8. Metachronal Motion of Artificial Magnetic Cilia

    NASA Astrophysics Data System (ADS)

    Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2017-11-01

    Most microorganisms use asymmetrically oscillating hair like cilia on their surface to achieve fluid transport. These cilia are often seen to beat in a metachronal fashion with a constant phase difference with the neighbors which generates a travelling wave. Although the origin of metachronal waves in such cilia is not well understood, mimicking such behavior in synthetic systems could prove useful in achieving similar advantages. In this work, we demonstrate metachronal waves in synthetic magnetic ciliary systems. The soft magnetic cilia are forced by a uniform rotating magnetic field. The cilia bend as the field rotates and tend to align along the direction of field to minimize the potential energy. Longer cilia bend to a larger degree, while the shorter cilia show less bending. This difference in the bending of cilia based on their length leads to a phase difference in their oscillation cycle. We exploit this phase differences to metachronally oscillate the synthetic cilia. We fabricate an array consisting of cilia with increasing lengths, in which the cilia beat with a constant phase difference with the neighboring cilia, producing a travelling wave. Such behavior could potentially be useful in enhanced fluid and particle transport as seen in natural systems. USDA.

  9. Divergent surface and total soil moisture projections under global warming

    USGS Publications Warehouse

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  10. In Vitro Cell Proliferation and Mechanical Behaviors Observed in Porous Zirconia Ceramics

    PubMed Central

    Li, Jing; Wang, Xiaobei; Lin, Yuanhua; Deng, Xuliang; Li, Ming; Nan, Cewen

    2016-01-01

    Zirconia ceramics with porous structure have been prepared by solid-state reaction using yttria-stabilized zirconia and stearic acid powders. Analysis of its microstructure and phase composition revealed that a pure zirconia phase can be obtained. Our results indicated that its porosity and pore size as well as the mechanical characteristics can be tuned by changing the content of stearic acid powder. The optimal porosity and pore size of zirconia ceramic samples can be effective for the increase of surface roughness, which results in higher cell proliferation values without destroying the mechanical properties. PMID:28773341

  11. Tailoring the Microstructure of Sol–Gel Derived Hydroxyapatite/Zirconia Nanocrystalline Composites

    PubMed Central

    2011-01-01

    In this study, we tailor the microstructure of hydroxyapatite/zirconia nanocrystalline composites by optimizing processing parameters, namely, introducing an atmosphere of water vapor during sintering in order to control the thermal stability of hydroxyapatite, and a modified sol–gel process that yields to an excellent intergranular distribution of zirconia phase dispersed intergranularly within the hydroxyapatite matrix. In terms of mechanical behavior, SEM images of fissure deflection and the presence of monoclinic ZrO2 content on cracked surface indicate that both toughening mechanisms, stress-induced tetragonal to monoclinic phase transformation and deflection, are active for toughness enhancement. PMID:24764458

  12. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    PubMed

    Singh, Ajay V; Gollner, Michael J

    2016-06-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.

  13. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames

    PubMed Central

    Singh, Ajay V.; Gollner, Michael J.

    2016-01-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827

  14. Preparation of hydrophilic polymer-grafted polystyrene beads for hydrophilic interaction chromatography via surface-initiated atom transfer radical polymerization.

    PubMed

    Dai, Xiaojun; He, Yuan; Wei, Yinmao; Gong, Bolin

    2011-11-01

    A one-step procedure based on surface-initiated atom transfer radical polymerization (SI-ATRP) to hydrophilize monodisperse poly(chloromethylstyrene-co-divinylbenzene) beads has been presented in this work, using 2-hydroxyl-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propyl 2-methylacrylate (HTMA) as a monomer. The chain length of the grafted poly(HTMA) was controlled via varying the ratio of HTMA to initiator on the surface of the beads. When using the grafted beads as a stationary phase in hydrophilic interaction chromatography (HILIC), good resolution for nucleobases/nucleosides was obtained with acetonitrile aqueous solution as an eluent; while for phenolic acids and glycosides, they could be eluted and separated in the presence of TFA. The retention time of the solutes increased with the amount of the grafted HTMA. The retention mechanisms of solutes were investigated by the effects of mobile phase composition and buffer pH on the retention of solutes. The results illustrated that the retention behaviors of the tested solutes were dominated by hydrogen bonding interaction and electrostatic interaction. From the chemical structure of the ligands, the modified beads could not only be used as a stationary phase in HILIC, but also act as a useful building block to develop new stationary phases for other chromatographic modes such as affinity media. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model

    PubMed Central

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2013-01-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  16. Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings.

    PubMed

    Yu, L-G; Khor, K A; Li, H; Cheang, P

    2003-07-01

    The crystalline phases and degree of crystallinity in plasma sprayed calcium phosphate coatings on Ti substrates are crucial factors that influence the biological interactions of the materials in vivo. In this study, plasma sprayed hydroxyapatite (HA) coatings underwent post-spray treatment by the spark plasma sintering (SPS) technique at 500 degrees C, 600 degrees C, and 700 degrees C for duration of 5 and 30 min. The activity of the HA coatings before and after SPS are evaluated in vitro in a simulated body fluid. The surface microstructure, crystallinity, and phase composition of each coating is characterized by scanning electron microscopy and X-ray diffractometry before, and after in vitro incubation. Results show that the plasma sprayed coatings treated for 5 min in SPS demonstrated increased proportion of beta-TCP phase with a preferred-orientation in the (214) plane, and the content of beta-TCP phase corresponded to SPS temperature, up to 700 degrees C. SPS treatment at 700 degrees C for 30 min enhanced the HA content in the plasma spray coating as well. The HA coatings treated in SPS for 5 min revealed rapid surface morphological changes during in vitro incubation (up to 12 days), indicating that the surface activity is enhanced by the SPS treatment. The thickest apatite layer was found in the coating treated by SPS at 700 degrees C for 5 min.

  17. The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deendarlianto; Forschungszentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden; Ousaka, Akiharu

    2010-10-15

    The purpose of the present study is to investigate the effects of surface tension on flooding phenomena in counter-current two-phase flow in an inclined tube. Previous studies by other researchers have shown that surface tension has a stabilizing effect on the falling liquid film under certain conditions and a destabilizing or unclear trend under other conditions. Experimental results are reported herein for air-water systems in which a surfactant has been added to vary the liquid surface tension without altering other liquid properties. The flooding section is a tube of 16 mm in inner diameter and 1.1 m length, inclined atmore » 30-60 from horizontal. The flooding mechanisms were observed by using two high-speed video cameras and by measuring the time variation of liquid hold-up along the test tube. The results show that effects of surface tension are significant. The gas velocity needed to induce flooding is lower for a lower surface tension. There was no upward motion of the air-water interfacial waves upon flooding occurrence, even for lower a surface tension. Observations on the liquid film behavior after flooding occurred suggest that the entrainment of liquid droplets plays an important role in the upward transport of liquid. Finally, an empirical correlation for flooding velocities is proposed that includes functional dependencies on surface tension and tube inclination. (author)« less

  18. Tribological Behavior of Plasma-Sprayed Al2O3-20 wt.%TiO2 Coating

    NASA Astrophysics Data System (ADS)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Zhang, Zhigang; Xu, Yi; Ren, Beilei

    2017-05-01

    Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate ( 4.5 × 10-6 mm3 N-1 m-1), which was <2% of that of the matrix ( 283.3 × 10-6 mm3 N-1 m-1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.

  19. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  20. The effect of Fe-coverage on the structure, morphology and magnetic properties of α-FeSi2 nanoislands.

    PubMed

    Tripathi, J K; Garbrecht, M; Kaplan, W D; Markovich, G; Goldfarb, I

    2012-12-14

    Self-assembled α-FeSi(2) nanoislands were formed using solid-phase epitaxy of low (~1.2 ML) and high (~21 ML) Fe coverages onto vicinal Si(111) surfaces followed by thermal annealing. At a resulting low Fe-covered Si(111) surface, we observed in situ, by real-time scanning tunneling microscopy and surface electron diffraction, the entire sequence of Fe-silicide formation and transformation from the initially two-dimensional (2 × 2)-reconstructed layer at 300 °C into (2 × 2)-reconstructed nanoislands decorating the vicinal step-bunch edges in a self-ordered fashion at higher temperatures. In contrast, the silicide nanoislands at a high Fe-covered surface were noticeably larger, more three-dimensional, and randomly distributed all over the surface. Ex situ x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy indicated the formation of an α-FeSi(2) island phase, in an α-FeSi(2){112} // Si{111} orientation. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, with ~1.9 μ(B)/Fe atom at 4 K for the low Fe-coverage, indicating stronger ferromagnetic coupling of individual magnetic moments, as compared to high Fe-coverage, where the calculated moments were only ~0.8 μ(B)/Fe atom. Such anomalous magnetic behavior, particularly for the low Fe-coverage case, is radically different from the non-magnetic bulk α-FeSi(2) phase, and may open new pathways to high-density magnetic memory storage devices.

  1. Effect of grinding and aging on subcritical crack growth of a Y-TZP ceramic.

    PubMed

    Amaral, Marina; Weitzel, Isabela Sandim Souza Leite; Silvestri, Tais; Guilardi, Luis Felipe; Pereira, Gabriel Kalil Rocha; Valandro, Luiz Felipe

    2018-01-01

    This study aimed to investigate slow crack growth (SCG) behavior of a zirconia ceramic after grinding and simulated aging with low-temperature degradation (LTD). Complementary analysis of hardness, surface topography, crystalline phase transformation, and roughness were also measured. Disc-shaped specimens (15 mm Ø × 1.2 mm thick, n = 42) of a full-contour Y-TZP ceramic (Zirlux FC, Amherst) were manufactured according to ISO:6872-2008, and then divided into: Ctrl - as-sintered condition; Ctrl LTD - as-sintered after aging in autoclave (134°C, 2 bar, 20 h); G - ground with coarse diamond bur (grit size 181 μm); G LTD - ground and aged. The SCG parameters were measured by a dynamic biaxial flexural test, which determines the tensile stress versus stress rate under four different rates: 100, 10, 1 and 0.1 MPa/s. LTD led to m-phase content increase, as well as grinding (m-phase content: Ctrl - 0%; G - 12.3%; G LTD - 59.9%; Ctrl LTD - 81%). Surface topography and roughness analyses showed that grinding created an irregular surface (increased roughness) and aging did not promote any relevant surface change. There was no statistical difference on surface hardness among different conditions. The control group presented the lowest strength values in all tested rates. Regarding SCG, ground conditions were less susceptible to SCG, delaying its occurrence. Aging (LTD) caused an increase in SCG susceptibility for the as-sintered condition (i.e. G < G LTD < Ctrl < Ctrl LTD).

  2. Internal phase transition induced by external forces in Finsler geometric model for membranes

    NASA Astrophysics Data System (ADS)

    Koibuchi, Hiroshi; Shobukhov, Andrey

    2016-10-01

    In this paper, we numerically study an anisotropic shape transformation of membranes under external forces for two-dimensional triangulated surfaces on the basis of Finsler geometry. The Finsler metric is defined by using a vector field, which is the tangential component of a three-dimensional unit vector σ corresponding to the tilt or some external macromolecules on the surface of disk topology. The sigma model Hamiltonian is assumed for the tangential component of σ with the interaction coefficient λ. For large (small) λ, the surface becomes oblong (collapsed) at relatively small bending rigidity. For the intermediate λ, the surface becomes planar. Conversely, fixing the surface with the boundary of area A or with the two-point boundaries of distance L, we find that the variable σ changes from random to aligned state with increasing of A or L for the intermediate region of λ. This implies that an internal phase transition for σ is triggered not only by the thermal fluctuations, but also by external mechanical forces. We also find that the frame (string) tension shows the expected scaling behavior with respect to A/N (L/N) at the intermediate region of A (L) where the σ configuration changes between the disordered and ordered phases. Moreover, we find that the string tension γ at sufficiently large λ is considerably smaller than that at small λ. This phenomenon resembles the so-called soft-elasticity in the liquid crystal elastomer, which is deformed by small external tensile forces.

  3. Alteration of interleaflet coupling due to compounds displaying rapid translocation in lipid membranes

    PubMed Central

    Reigada, Ramon

    2016-01-01

    The spatial coincidence of lipid domains at both layers of the cell membrane is expected to play an important role in many cellular functions. Competition between the surface interleaflet tension and a line hydrophobic mismatch penalty are conjectured to determine the transversal behavior of laterally heterogeneous lipid membranes. Here, by a combination of molecular dynamics simulations, a continuum field theory and kinetic equations, I demonstrate that the presence of small, rapidly translocating molecules residing in the lipid bilayer may alter its transversal behavior by favoring the spatial coincidence of similar lipid phases. PMID:27596355

  4. Assessment of morphology, topography and chemical composition of water-repellent films based on polystyrene/titanium dioxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Bolvardi, Beleta; Seyfi, Javad; Hejazi, Iman; Otadi, Maryam; Khonakdar, Hossein Ali; Drechsler, Astrid; Holzschuh, Matthias

    2017-02-01

    In this study, polystyrene (PS)/titanium dioxide (TiO2) films were fabricated through simple solution casting technique via a modified phase separation process. The presented approach resulted in a remarkable reduction in the required amount of nanoparticles for achieving superhydrophobicity. Scanning electron microscopy (SEM) and 3D confocal microscopy were utilized to characterize surface morphology and topography of samples, respectively. An attempt was made to give an in-depth analysis on the surface rough structure using 3D roughness profiles. It was found that high inclusions of non-solvent and nanoparticles resulted in a stable self-cleaning behavior due to the strong presence of hydrophobic TiO2 nanoparticles on the surface. Quite unexpectedly, low inclusions of nanoparticles and non-solvent also resulted in superhydrophobic property mainly due to the proper level of induced surface roughness. XPS analysis was also utilized to determine the chemical composition of the films' surfaces. The results of falling drop experiments showed that the sample containing a higher level of nanoparticles had a much lower mechanical resistance against the induced harsh conditions. All in all, the presented method has shown promising potential in fabrication of superhydrophobic surfaces with self-cleaning behavior using the lowest content of nanoparticles.

  5. Numerical study of droplet impact and rebound on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  6. Thermal Characterization of Fe3O4 Nanoparticles Formed from Poorly Crystalline Siderite

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.

    2005-01-01

    Increasing interest in environmental geochemistry has led to the recognition that crystals with sizes in the nanometer range (e.g., colloids and nanoscale precipitates) and poorly crystalline compounds (e.g., ferrihydrites) may comprise the majority of reactive mineral surface area near the Earth s surface. When the diameters of individual particles are in the range of 100 nm or less, the surface energy contribution to the free energy modifies phase stability. This results in stabilization of polymorphs not normally encountered in the macrocrystal domain. These phases potentially have very different surface-site geometries, adsorptive properties, and growth mechanisms, and exhibit size-dependent kinetic behavior. Thus nanophases dramatically modify the physical and chemical properties of soils and sediments. In a more general sense, the characteristics of nanocrystals are of intense technological interest because small particle size confers novel chemical, optical, and electronic properties. Thus, nanocrystalline materials are finding applications as catalytic substrates, gas phase separation materials, and even more importantly in the field of medicine. This is an opportune time for mineral physicists working on nanocrystalline materials to develop collaborative efforts with materials scientists, chemists, and others working on nanophase materials of technological interest (e.g., for magnetic memories). Our objective in this study was to synthesize submicron (<200 nm) magnetite and to study their thermal and particle size properties.

  7. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.

    PubMed

    Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J

    2010-11-15

    The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.

  8. Structural investigation of Langmuir and Langmuir-Blodgett monolayers of semifluorinated alkanes.

    PubMed

    Dynarowicz Łatka, Patrycja; Pérez-Morales, Marta; Muñoz, Eulogia; Broniatowski, Marcin; Martín-Romero, María T; Camacho, Luis

    2006-03-30

    The behavior of a semi-fluorinated alkane (C(10)F(21)C(19)H(39)) has been studied at the air-water interface by using surface pressure and surface potential-area isotherms as well as infrared spectroscopy for the Langmuir-Blodgett films. In addition, based on the quantum chemical PM3 semiempirical approach, the dimer structure was investigated, and the double helix was found to be the most stable conformation of the dimer. The obtained results allow us to imply that the phase transition observed in the course of the surface pressure/area isotherm is due to a conformational change originating from the double helix to a vertical, single helix configuration.

  9. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments is based upon a novel approach that relies on the global momentum conservation of the closed fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. A numerical example illustrates the method's application to prediction of bulk fluid behavior during a spacecraft ullage settling maneuver.

  10. Modeling of UV laser-induced patterning of ultrathin Co films on bulk SiO2: verification of short- and long-range ordering mechanisms

    NASA Astrophysics Data System (ADS)

    Trice, Justin; Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, R.

    2006-03-01

    Irradiating ultrathin Co films (1 to 10 nm) by a short-pulsed UV laser leads to pattern formation with both short- and long-range order (SRO, LRO). Single beam irradiation produces SRO, while two-beam interference irradiation produces a quasi-2D arrangement of nanoparticles with LRO and SRO. The pattern formation primarily occurs in the molten phase. An estimate of the thermal behavior of the film/substrate composite following a laser pulse is presented. The thermal behavior includes the lifetime of the liquid phase and the thermal gradient during interference heating. Based on this evidence, the SRO is attributed to spinodal dewetting of the film while surface tension gradients induced by the laser interference pattern appear to influence LRO [1]. [1] C.Favazza, J.Trice, H.Krishna, R.Sureshkumar, and R.Kalyanaraman, unpublished.

  11. Elucidation of high sensitivity of δ-HMX: New insight from first principles simulations

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija M.; Tsyshevsky, Roman V.; Sharia, Onise

    2017-01-01

    Understanding of a significant difference in sensitivities of β and δ phases of cyclotetramethylene-tetranitramine (HMX) has been long one of the challenges in the field of high energy density materials. Despite many experimental and theoretical efforts to explain the high sensitivity of the δ phase, convincing reasons behind the HMX behavior remained unclear. We established that the presence of a polar surface in δ-HMX has fundamental implications for stability and overall chemical behavior of the material. A comparative quantum-chemical analysis of decomposition mechanisms in polar δ-HMX and nonpolar β-HMX discovered a considerable difference in dominating dissociation reactions, activation barriers, and reaction rates. The polarization-induced charge transfer offered a logical explanation for different sensitivity of β-HMX and δ-HMX polymorphs to detonation initiation. Our conclusions also removed long-standing contradictions and explained a large range of experimental data on thermal decomposition of HMX.

  12. Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires

    NASA Astrophysics Data System (ADS)

    Shevyrtalov, S.; Zhukov, A.; Medvedeva, S.; Lyatun, I.; Zhukova, V.; Rodionova, V.

    2018-05-01

    In this manuscript, radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires with high excess Ni as a result of high-temperature annealing was observed. Partial manganese evaporation from the outer part of the metallic nucleus and glass melting results in the formation of manganese oxide at the surface. The lack of manganese due to its evaporation induces Ni3Ga formation in the intermediate part, while in the middle part of the metallic nucleus, the residual L21 phase with an average chemical composition of Ni60Mn9Ga31 remains. The layered structure exhibits soft ferromagnetic behavior below 270 K. The results were discussed taking into account the chemical composition, arising internal stresses, recrystallization, and atomic ordering.

  13. Magnetic phase diagram and critical behavior of electron-doped LaxCa1-xMnO3(0⩽x⩽0.25) nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Fan, Hong Jin

    2011-06-01

    A comparative study of electron-doped perovskite manganites LaxCa1-xMnO3 (0 ⩽ x ⩽ 0.25) in nanoparticle and bulk form is reported. The bulks and nanoparticles exhibit different magnetic evolutions. Overall with increasing x, the bulks have a phase-separated ground state with ferromagnetic (FM) clusters and antiferromagnetic (AFM) matrix coexisting. The FM clusters gradually grow, and the magnetization M peaks at x= 0.1. Subsequently, charge-ordering (CO) or local CO occurs, which suppresses the increase in FM clusters but favors the development of antiferromagnetism so M starts to decrease. Finally the system becomes a homogeneous AFM state at x > 0.18. For the nanoparticles in the range of 0 ⩽ x ⩽ 0.1, the ground state is similar to that of the bulks, but M is slightly increased because of a surface ferromagnetism. Nevertheless because of the structure distortion induced by surface pressure and the size effect, CO does not occur in the nanoparticles. Consequently, the ferromagnetism still gradually develops at x > 0.1 and thus M monotonously rises. M reaches a maximum at x= 0.18, after which the competition between ferromagnetism and antiferromagnetism induces a cluster-glass (CG) state. On the basis of these observations the phase diagrams for both bulks and nanoparticles are established. For the nanoparticles that display enhanced ferromagnetism the critical behavior analysis indicates that they fall into a three-dimensional (3D) Heisenberg ferromagnet class.

  14. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    NASA Astrophysics Data System (ADS)

    de Almeida, Valmor F.

    2017-07-01

    A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.

  15. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance.

    PubMed

    Zhang, Kunyu; Nagarajan, Vidhya; Misra, Manjusri; Mohanty, Amar K

    2014-08-13

    Multiphase blends of poly(lactic acid) (PLA), ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer, and a series of renewable poly(ether-b-amide) elastomeric copolymer (PEBA) were fabricated through reactive melt blending in an effort to improve the toughness of the PLA. Supertoughened PLA blend showing impact strength of ∼500 J/m with partial break impact behavior was achieved at an optimized blending ratio of 70 wt % PLA, 20 wt % EMA-GMA, and 10 wt % PEBA. Miscibility and thermal behavior of the binary blends PLA/PEBA and PLA/EMA-GMA, and the multiphase blends were also investigated through differential scanning calorimetric (DSC) and dynamic mechanical analysis (DMA). Phase morphology and fracture surface morphology of the blends were studied through scanning electron microscopy (SEM) and atomic force microscopy (AFM) to understand the strong corelation between the morphology and its significant effect on imparting tremendous improvement in toughness. A unique "multiple stacked structure" with partial encapsulation of EMA-GMA and PEBA minor phases was observed for the PLA/EMA-GMA/PEBA (70/20/10) revealing the importance of particular blend composition in enhancing the toughness. Toughening mechanism behind the supertoughened PLA blends have been established by studying the impact fractured surface morphology at different zones of fracture. Synergistic effect of good interfacial adhesion and interfacial cavitations followed by massive shear yielding of the matrix was believed to contribute to the enormous toughening effect observed in these multiphase blends.

  16. Undercooling and solidification behavior in the InSb-Sb system. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Graves, J. A.

    1985-01-01

    Use of the droplet emulsion technique has been successful in studying the undercooling and crystallization behavior of Sb, InSb, and an InSb-Sb eutectic alloy. Both droplet size and imposed cooling rate were influential in controlling the extent of liquid undercooling. The droplet surface coating was of significant importance in determining the resultant solidification product structure through its effect on nucleation kinetics. The maximum undercooling for pure Sb was extended from 0.08 to 0.23 T sub m. While simple crushing techniques provided a dramatic increase in droplet undercooling over the bulk material, emulsification treatments both enhanced this undercooling and allowed successful formation of a metastable simple cubic Sb phase. This phase was stable to temperatures approaching the melting point. The simple cubic phase was detected in droplet samples processed using DTA, air and water quenching, and drop tube processing under a helium gas atmosphere. A deviation in the InSb parent ingot composition limited interpretation of the line compound results, however, emulsification techniques extended the undercooling of this material to 0.17 T sub L and provided a stable, protective surface coating for the droplets. Emulsification of the eutectic alloy was effective at producing various levels of undercooling from 0.1 to 0.2 T sub E. Microstructural examination revealed a normal-type eutectic structure in the undercooled droplets indicating that solidification occurred within the coupled zone and that this zone is somewhat symmetric about the eutectic composition.

  17. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  18. Influence of palmitic acid and hexadecanol on the phase transition temperature and molecular packing of dipalmitoylphosphatidyl-choline monolayers at the air-water interface

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.; Gopal, Ajaykumar; von Nahmen, Anja; Zasadzinski, Joseph A.; Majewski, Jaroslaw; Smith, Gregory S.; Howes, Paul B.; Kjaer, Kristian

    2002-01-01

    Palmitic acid (PA) and 1-hexadecanol (HD) strongly affect the phase transition temperature and molecular packing of dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. The phase behavior and morphology of mixed DPPC/PA as well as DPPC/HD monolayers were determined by pressure-area-isotherms and fluorescence microscopy. The molecular organization was probed by synchrotron grazing incidence x-ray diffraction using a liquid surface diffractometer. Addition of PA or HD to DPPC monolayers increases the temperature of the liquid-expanded to condensed phase transition. X-ray diffraction shows that DPPC forms mixed crystals both with PA and HD over a wide range of mixing ratios. At a surface pressure (π) of 40 mN/m, increasing the amount of the single chain surfactant leads to a reduction in tilt angle of the aliphatic chains from nearly 30° for pure DPPC to almost 0° in a 1:1 molar ratio of DPPC and PA or HD. At this composition we also find closest packing of the aliphatic chains. Further increase of the amount of PA or HD does not change the lattice or the tilt.

  19. Cassini/VIMS observation of an Io post-eclipse brightening event

    USGS Publications Warehouse

    Bellucci, G.; D'Aversa, E.; Formisano, V.; Cruikshank, D.; Nelson, R.M.; Clark, R.N.; Baines, K.H.; Matson, D.; Brown, R.H.; McCord, T.B.; Buratti, B.J.; Nicholson, P.D.

    2004-01-01

    During the Cassini-Jupiter flyby, VIMS observed Io at different phase angles, both in full sunlight and in eclipse. By using the sunlight measurements, we were able to produce phase curves in the visual through all the near infrared wavelengths covered by the VIMS instrument (0.85-5.1 ??m). The phase angle spanned from ???2?? to ???120??. The measurements, done just after Io emerged from Jupiter's shadow, show an increase of about 15% in Io's reflectance with respect to what would be predicted by the phase curve. This behavior is observed at wavelengths >1.2 ??m. Moreover, just after emergence from eclipse an increase of about 25% is observed in the depth of SO2 frost bands at 4.07 and 4.35 ??m. At 0.879

  20. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.

    PubMed

    Metya, Atanu K; Singh, Jayant K; Müller-Plathe, Florian

    2016-09-29

    In this work, we address the nucleation behavior of a supercooled monatomic cylindrical water droplet on nanoscale textured surfaces using molecular dynamics simulations. The ice nucleation rate at 203 K on graphite based textured surfaces with nanoscale roughness is evaluated using the mean fast-passage time method. The simulation results show that the nucleation rate depends on the surface fraction as well as the wetting states. The nucleation rate enhances with increasing surface fraction for water in the Cassie-Baxter state, while contrary behavior is observed for the case of Wenzel state. Based on the spatial histogram distribution of ice formation, we observed two pathways for ice nucleation. Heterogeneous nucleation is observed at a high surface fraction. However, the probability of homogeneous ice nucleation events increases with decreasing surface fraction. We further investigate the role of the nanopillar height in ice nucleation. The nucleation rate is enhanced with increasing nanopillar height. This is attributed to the enhanced contact area with increasing nanopillar height and the shift in nucleation events towards the three-phase contact line associated with the nanotextured surface. The ice-surface work of adhesion for the Wenzel state is found to be 1-2 times higher than that in the Cassie-Baxter state. Furthermore, the work of adhesion of ice in the Wenzel state is found to be linearly dependent on the contour length of the droplet, which is in line with that reported for liquid droplets.

  1. Low-Volatility Model Demonstrates Humidity Affects Environmental Toxin Deposition on Plastics at a Molecular Level.

    PubMed

    Hankett, Jeanne M; Collin, William R; Yang, Pei; Chen, Zhan; Duhaime, Melissa

    2016-02-02

    Despite the ever-increasing prevalence of plastic debris and endocrine disrupting toxins in aquatic ecosystems, few studies describe their interactions in freshwater environments. We present a model system to investigate the deposition/desorption behaviors of low-volatility lake ecosystem toxins on microplastics in situ and in real time. Molecular interactions of gas-phase nonylphenols (NPs) with the surfaces of two common plastics, poly(styrene) and poly(ethylene terephthalate), were studied using quartz crystal microbalance and sum frequency generation vibrational spectroscopy. NP point sources were generated under two model environments: plastic on land and plastic on a freshwater surface. We found the headspace above calm water provides an excellent environment for NP deposition and demonstrate significant NP deposition on plastic within minutes at relevant concentrations. Further, NP deposits and orders differently on both plastics under humid versus dry environments. We attributed the unique deposition behaviors to surface energy changes from increased water content during the humid deposition. Lastly, nanograms of NP remained on microplastic surfaces hours after initial NP introduction and agitating conditions, illustrating feasibility for plastic-bound NPs to interact with biota and surrounding matter. Our model studies reveal important interactions between low-volatility environmental toxins and microplastics and hold potential to correlate the environmental fate of endocrine disrupting toxins in the Great Lakes with molecular behaviors.

  2. Effect of Hydroxyapatite on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y Alloy

    PubMed Central

    Chiu, Chun; Lu, Chih-Te; Chen, Shih-Hsun; Ou, Keng-Liang

    2017-01-01

    Mg-Zn-Y alloys with a long period stacking ordered (LPSO) phase are potential candidates for biodegradable implants; however, an unfavorable degradation rate has limited their applications. Hydroxyapatite (HA) has been shown to enhance the corrosion resistance of Mg alloys. In this study, Mg97Zn1Y2-0.5 wt% HA composite was synthesized and solution treated at 500 °C for 10 h. The corrosion behavior of the composite was studied by electrochemical and immersion tests, while the mechanical properties were investigated by a tensile test. Addition of HA particles improves the corrosion resistance of Mg97Zn1Y2 alloy without sacrificing tensile strength. The improved corrosion resistance is due to the formation of a compact Ca-P surface layer and a decrease of the volume fraction of the LPSO phase, both resulting from the addition of HA. After solution-treatment, the corrosion resistance of the composite decreases. This is due to the formation of a more extended LPSO phase, which weakens its role as a corrosion barrier in protecting the Mg matrix. PMID:28773216

  3. Thermal phase transition behavior of lipid layers on a single human corneocyte cell.

    PubMed

    Imai, Tomohiro; Nakazawa, Hiromitsu; Kato, Satoru

    2013-09-01

    We have improved the selected area electron diffraction method to analyze the dynamic structural change in a single corneocyte cell non-invasively stripped off from human skin surface. The improved method made it possible to obtain reliable diffraction images to trace the structural change in the intercellular lipid layers on a single corneocyte cell during heating from 24°C to 100°C. Comparison of the results with those of synchrotron X-ray diffraction experiments on human stratum corneum sheets revealed that the intercellular lipid layers on a corneocyte cell exhibit essentially the same thermal phase transitions as those in a stratum corneum sheet. These results suggest that the structural features of the lipid layers are well preserved after the mechanical stripping of the corneocyte cell. Moreover, electron diffraction analyses of the thermal phase transition behaviors of the corneocyte cells that had the lipid layers with different distributions of orthorhombic and hexagonal domains at 24°C suggested that small orthorhombic domains interconnected with surrounding hexagonal domains transforms in a continuous manner into new hexagonal domains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer.

    PubMed

    Banerjee, Shubhadeep; Pal, Tapan K; Guha, Sujoy K

    2012-03-01

    To understand and maximize the therapeutic potential of poly(styrene-co-maleic acid) (SMA), a synthetic, pharmacologically-active co-polymer, its effect on conformation, phase behavior and stability of lipid matrix models of cell membranes were investigated. The modes of interaction between SMA and lipid molecules were also studied. While, attenuated total reflection-Fourier-transform infrared (ATR-FTIR) and static (31)P nuclear magnetic resonance (NMR) experiments detected SMA-induced conformational changes in the headgroup region, differential scanning calorimetry (DSC) studies revealed thermotropic phase behavior changes of the membranes. (1)H NMR results indicated weak immobilization of SMA within the bilayers. Molecular interpretation of the results indicated the role of hydrogen-bond formation and hydrophobic forces between SMA and zwitterionic phospholipid bilayers. The extent of membrane fluidization and generation of isotropic phases were affected by the surface charge of the liposomes, and hence suggested the role of electrostatic interactions between SMA and charged lipid headgroups. SMA was thus found to directly affect the structural integrity of model membranes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Comparison of molecular orientation and phase transition behaviors in the two kinds of ordered ultrathin films of reversed duckweed polymer ES-3 studied by infrared grazing reflection-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Xu, Weiqing; Zhao, Bing

    2003-03-01

    A multilayer LB film and a casting film of reversed duckweed polymer ES-3 on Au-evaporated glass slides were investigated by Fourier Transform infrared grazing reflection-absorption spectroscopy. It is found that the two kinds of ordered ultrathin films have different orientation of alkyl chains, nearly perpendicular to the substrate surface for the LB film while rather tilted for the casting film. The studies on their thermal transition behaviors indicate that both of the films have three phase transition processes, respectively, occurring near 65, 105 and 140 °C for the former while near 80, 105 and 140 °C for the latter, but show different transition behavior in the each corresponding transition process. It is referred that at room temperature there are island-like domain structures formed in the LB film, but no ones in the casting film; however, the latter can form the domain structures between the first two transition points due to the desorption of solvents. The formation of domain structure seems to play two important roles, one of which is to make alkyl chains more perpendicular to the substrate surface, and the other to make alkyl chains more packed closely. Thermal cyclic experiments reveal that neither of the films could return to its original state after thermal cyclic treatment up to the temperature, which is above the third transition point, although its alkyl chain becomes highly ordered again.

  6. Study on bubbly flow behavior in natural circulation reactor by thermal-hydraulic simulation tests with SF6-Gas and ethanol liquid

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro

    2009-02-01

    An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.

  7. Semiconductor Clathrates: In Situ Studies of Their High Pressure, Variable Temperature and Synthesis Behavior

    NASA Astrophysics Data System (ADS)

    Machon, D.; McMillan, P. F.; San-Miguel, A.; Barnes, P.; Hutchins, P. T.

    In situ studies have provided valuable new information on the synthesis mechanisms, low temperature properties and high pressure behavior of semiconductor clathrates. Here we review work using synchrotron and laboratory X-ray diffraction and Raman scattering used to study mainly Si-based clathrates under a variety of conditions. During synthesis of the Type I clathrate Na8Si46 by metastable thermal decomposition from NaSi in vacuum, we observe an unusual quasi-epitaxial process where the clathrate structure appears to nucleate and grow directly from the Na-deficient Zintl phase surface. Low temperature X-ray studies of the guest-free Type II clathrate framework Si136 reveal a region of negative thermal expansion behavior as predicted theoretically and analogous to that observed for diamond-structured Si. High pressure studies of Si136 lead to metastable production of the β-Sn structured Si-II phase as well as perhaps other metastable crystalline materials. High pressure investigations of Type I clathrates show evidence for a new class of apparently isostructural densification transformations followed by amorphization in certain cases.

  8. Chemometric of the retention mechanism on butyl column: effect and relation of pH and pKa.

    PubMed

    Kouskoura, Maria G; Mitan, Constantina V; Markopoulou, Catherine K

    2015-12-01

    Reversed phase chromatographic separations are optimized for analytes containing ionizable groups by adjustment of pH of mobile phases. As it seems the pK(a). values of compounds affect their retention because of the variety in their solvation. However, it is of stressful need to predict their behavior taking into account also a series of other parameters. This work focuses on the development of ten different models, using partial least squares regression, which will identify and quantify the impact of several factors in the chromatographic behavior of 104 analytes. The combined effect of their numerous characteristics is obvious since along with pH (at 2.3 and 6.2), factors such as lipophilicity, molecular volume, polar surface area and the presence of specific moieties in their structures are not diminished. On the contrary, they work increasing or counterbalancing several effects on the retention time. The models compiled can be applied to predict with reliability (R2 > 0.865 and Q2 > 0.777) the behavior of unknown drugs.

  9. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    PubMed

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3 , whereas on a water surface, the HNO 3 -mediated stepwise hydration of anti-CH 3 CHOO is dominantly observed. The high surface/volume ratio of interfacial water molecules at the aerosol water surface can significantly lower the energy barriers for the proton transfer reactions in the atmosphere. Such catalysis by the aerosol water surface is shown to cause the barrier-less formation of ammonium bisulfate from hydrated NH 3 and SO 3 molecules rather than from the reaction of H 2 SO 4 with NH 3 . Finally, an aerosol water droplet is a polar solvent, which would favorably interact with high polarity substrates. This can accelerate interconversion of different conformers (e.g., anti and syn) of atmospheric species, such as glyoxal, depending on their polarity. The results discussed here enable an improved understanding of atmospheric processes on the aerosol water surface.

  10. Lipid and Lipid-Polymer Mixtures at an Interface

    NASA Astrophysics Data System (ADS)

    Kim, Joon Heon; Kim, Mahn Won

    2000-03-01

    The surface pressure (Π) and surface area/molecule (A) isotherms of a mixture of DMPC (DL-α-phosphatidylcholine,Dimyristoyl) and PEG-DMPE (1,2-Diacyl-sn-Glycero-3-Phosphoethanolamine-N-[Poly(ethylene glycol)5000]) system were measured at various compositions by the Langmuir surface balance technique at an air/water interface. In the range where the surface pressure is less than about 8 dynes/cm, a PEG polymer chain of PEG-DMPE molecules remains on the surface and the isotherm can be explained by the 2-D power law behavior of chains in a good solvent. In the range above 8 dynes/cm, a part of the PEG polymer segment is dissolved into the water phase, and the surface pressure can be explained as the sum of the 2-D component and 3-D component. Furthermore, the mixing energy is negative, which indicates an attractive interaction between DMPC and PEG-DMPE.

  11. Lipid and lipid-polymer mixtures at an interface

    NASA Astrophysics Data System (ADS)

    Kim, Joon Heon; Kim, Mahn Won

    2000-06-01

    The surface pressure (Π) and surface area/molecule (A) isotherms of a mixture of DMPC (DL-α-phosphatidylcholine, Dimyristoyl) and PEG-DMPE (1,2-Diacyl-sn-Glycero-3-Phosphoethanolamine-N-[Poly(ethylene glycol)5000]) system were measured at various compositions by the Langmuir surface balance technique at an air/water interface. In the range where the surface pressure is less than about 8 dynes/cm, a PEG polymer chain of PEG-DMPE molecules remains on the surface and the isotherm can be explained by the 2-D power law behavior of chains in a good solvent. In the range above 8 dynes/cm, a part of the PEG polymer segment is dissolved into the water phase, and the surface pressure can be explained as the sum of the 2-D component and 3-D component. Furthermore, the mixing energy is negative, which indicates an attractive interaction between DMPC and PEG-DMPE. .

  12. Controlling the width of self-assembled dysprosium silicide nanowires on the Si(001) surface.

    PubMed

    Cui, Y; Chung, J; Nogami, J

    2012-02-01

    We present STM data that show that it is possible to use a metal induced 2 × 7 reconstruction of Si(001) to narrow the width distribution of Dy silicide nanowires. This behavior is distinct from the effect of the 7 × 7 reconstruction on the Si(111) surface, where the 7 × 7 serves as a static template and the deposited metal avoids the unit cell boundaries on the substrate. In this case, the 2 × 7 is a dynamic template, and the nanowires nucleate at anti-phase boundaries between 2 × 7 reconstruction domains.

  13. Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Ciarniello, M.; Capaccioni, F.; Filacchione, G.; Raponi, A.; Tosi, F.; De Sanctis, M. C.; Capria, M. T.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.; Arnold, G.; Barucci, A.; Beck, P.; Bellucci, G.; Fornasier, S.; Longobardo, A.; Mottola, S.; Palomba, E.; Quirico, E.; Schmitt, B.

    2015-11-01

    Aims: We investigate the nucleus photometric properties of the comet 67P/Churyumov-Gerasimenko as observed by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) onboard the Rosetta spacecraft. Both full-disk and disk-resolved images of the comet have been analyzed, deriving light and phase curves as well as a photometric reduction of the radiance factor (I/F) to single scattering albedo (SSA) in the 0.4-3.5 μm range. Methods: Hyperspectral cubes from VIRTIS were calibrated and corrected for instrumental artifacts. We computed integrated fluxes from full-disk acquisitions to derive nucleus light curves and phase curves at low phase angles (1.2°<α < 14.9°). Disk-resolved observations in the phase angle range 27.2°<α< 111.5° were reduced to SSA by means of a simplified Hapke model, deriving average spectrophotometric properties of the surface and producing SSA maps at different wavelengths. Spectral phase reddening in the visible (VIS) and infrared (IR) ranges was measured. Finally, full-disk and disk-resolved data were used together to derive a phase curve of the nucleus in the 1.2°<α < 111.5° range. Results: We measure an asymmetric double-peaked light curve that is due to the elongated shape of the nucleus. The average SSA albedo shows a reddish spectrum with a strong absorption feature centered at 3.2 μm, while the surface exhibits a backscattering behavior. The derived geometric albedo is Ageo = 0.062 ± 0.002 at 0.55 μm, indicating a very dark surface. Phase reddening is significant both in the VIS and IR ranges, and we report spectral slopes of 0.20/kÅ and 0.033/kÅ, respectively, after applying photometric reduction. SSA maps indicate that Hapi and Imothep regions are the brightest in the VIS, with the former showing a bluer spectrum with respect to the rest of the surface. The phase curve of the nucleus shows a strong opposition effect, with β = 0.077 ± 0.002 for α < 15°.

  14. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.

    2018-03-01

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).

  15. Control Surface Interaction Effects of the Active Aeroelastic Wing Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    2006-01-01

    This paper presents results from testing the Active Aeroelastic Wing wind tunnel model in NASA Langley s Transonic Dynamics Tunnel. The wind tunnel test provided an opportunity to study aeroelastic system behavior under combined control surface deflections, testing for control surface interaction effects. Control surface interactions were observed in both static control surface actuation testing and dynamic control surface oscillation testing. The primary method of evaluating interactions was examination of the goodness of the linear superposition assumptions. Responses produced by independently actuating single control surfaces were combined and compared with those produced by simultaneously actuating and oscillating multiple control surfaces. Adjustments to the data were required to isolate the control surface influences. Using dynamic data, the task increases, as both the amplitude and phase have to be considered in the data corrections. The goodness of static linear superposition was examined and analysis of variance was used to evaluate significant factors influencing that goodness. The dynamic data showed interaction effects in both the aerodynamic measurements and the structural measurements.

  16. Pattern Formation in Langmuir Monolayers Due to Long-Range Electrostatic Interactions

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas M.; Lösche, Mathias

    A distinctive characteristic of Langmuir monolayers that bears important consequences for the physics of structure formation within membranes is the uniaxial orientation of the constituent dipolar molecules, brought about by the symmetry break which is induced by the surface of the aqueous substrate. The association of oriented molecular dipoles with the interface leads to the formation of image dipoles within the polarizeable medium - the subphase - such that the effective dipole orientation of every of the individual molecules is strictly normal to the surface, even within molecularly disordered phases. As a result, dipole-dipole repulsions play an eminently important role for the molecular interactions within the system - independent of the state of phase (while the dipole area density does of course depend on the state of phase) - and control the morphogenesis of the phase boundaries in their interplay with the one-dimensional (1D) line tension between coexisting phases. The physics of these phenomena is only now being explored and is particularly exciting for systems within a three-phase coexistence region where complete or partial wetting, as well as dewetting between the coexisting phases may be experimentally observed by applying fluorescence microscopy to the monolayer films. It is revealed that the wetting behavior depends sensitively on the details of the electrostatic interactions, in that the apparent contact angles observed at three-phase contact points depends on the sizes of the coexisting phases. This is in sharp contrast to the physics of wetting in conventional 3D systems where the contact angle is a materials property, independent of the local details. In 3D systems, this leads to Youngs equation - which has been established more than two centuries ago. We report recent progress in the understanding of this unusual and rather unexpected behavior of a quasi-2D system by reviewing recent experimental results from optical microscopy on equilibrium phase shapes, non-equilibrium phenomena - such as relaxation of the shapes after distortions inferred by Laser tweezers or local impulse heating - and rheological properties of the system. The theoretical analysis of the underlying molecular interactions leads to a comprehension of the observed phenomena and reveals microscopic properties of the system in quantitative terms. In view of the recently proposed lipid raft hypothesis, a particularly fascinating implication of our results is the possibility that biochemical reactions which depend on complex interactions between membrane-bound proteins might be controlled by the non-conventional physics of the 2D system: As an electrogenic event - such as ion transfer across the membrane - changes the electrostatic properties of the membrane surface it might concurrently infer wetting between 2D phases and thus lead to the conjunction of membrane areas that were originally separated within the plane. If two reactants (e.g., membrane-bound enzymes) are dissolved in distinct phases, such a colloidal reorganization might rearrange the micro-evironment to bring them into close vicinity - and thus trigger the biochemical reaction.

  17. Paramagnetic behavior of Co doped TiO{sub 2} nanocrystals controlled by self-purification mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anitha, B.; Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com; Banerjee, Alok

    Doping in nanocrystals is a challenging process because of the self- purification mechanism which tends to segregate out the dopants resulting in a greater dopant concentration near the surface than at the interior of nanocrystals. In the present work nanocrystals of TiO{sub 2} doped with different atom % of Co were synthesized by peroxide gel method. XRD analysis confirmed the tetragonal anatase structure and HRTEM images showed the rod-like morphology of the samples. Raman modes of anatase phase of TiO{sub 2} along with weak intensity peaks of Co{sub 3}O{sub 4} for higher Co dopant concentrations were observed for the samples.more » EPR measurements revealed the presence of cobalt in +2 oxidation state in the TiO{sub 2} matrix. SQUID measurements indicated paramagnetic behavior of the Co doped TiO{sub 2} nanocrystals. The paramagnetic behavior is attributed to an increased concentration of Co{sup 2+} ions and an increased presence of Co{sub 3}O{sub 4} phase near the surface of the TiO{sub 2} nanocrystals due to self-purification mechanism. - Graphical abstract: Variation of the intensity ratios of XRD peaks as a function of atomic ratio of Co. Inset: variation of structure factor for (101) reflection as a function of atomic ratio of Co. Display Omitted - Highlights: • Co doped TiO{sub 2} nanocrystals were synthesized by peroxide gel method. • HRTEM images showed Co doped TiO{sub 2} nanocrystals to be rod-like. • EPR spectra showed +2 oxidation states for Co in the samples. • Co doped TiO{sub 2} nanocrystals showed paramagnetic behavior.« less

  18. Photometric diversity of terrains on Triton

    NASA Technical Reports Server (NTRS)

    Hillier, J.; Veverka, J.; Helfenstein, P.; Lee, P.

    1994-01-01

    Voyager disk-resolved images of Triton in the violet (0.41 micrometers) and green (0.56 micrometer wavelengths have been analyzed to derive the photometric characteristics of terrains on Triton. Similar conclusions are found using two distinct but related definitions of photometric units, one based on color ratio and albedo properties (A. S. McEwen, 1990), the other on albedo and brightness ratios at different phase angles (P. Lee et al., 1992). A significant diversity of photometric behavior, much broader than that discovered so far on any other icy satellite, occurs among Triton's terrains. Remarkably, differences in photometric behavior do not correlate well with geologic terrain boundaries defined on the basis of surface morphology. This suggests that in most cases photometric properties on Triton are controlled by thin deposits superposed on underlying geologic units. Single scattering albedos are 0.98 or higher and asymmetry factors range from -0.35 to -0.45 for most units. The most distinct scattering behavior is exhibited by the reddish northern units already identified as the Anomalously Scattering Region (ASR), which scatters light almost isotropically with g = -0.04. In part due to the effects of Triton's clouds and haze, it is difficult to constrain the value of bar-theta, Hapke's macroscopic roughness parameter, precisely for Triton or to map differences in bar-theta among the different photometric terrains. However, our study shows that Triton must be relatively smooth, with bar-theta less than 15-20 degs and suggests that a value of 14 degs is appropriate. The differences in photometric characteristics lead to significantly different phase angle behavior for the various terrains. For example, a terrain (e.g., the ASR) that appears dark relative to another at low phase angles will reverse its contrast (become relatively brighter) at larger phase angles. The photometric parameters have been used to calculate hemispherical albedos for the units and to infer likely surface temperatures. Based on these results, we determine that all but the most southerly regions (i.e., mostly south of the equator) of the reddish northern terrains are likely to have been covered with deposits of nitrogen frost at the time of the Voyager flyby, in agreement with the suggestion from the photometry that these units are overlain by a thin veneer of material.

  19. Influence of processing parameters on microstructure and biocompatibility of surface laser sintered hydroxyapatite-SiO2 composites.

    PubMed

    Kivitz, E; Görke, R; Schilling, A F; Zhang, J; Heinrich, J G

    2013-05-01

    Silica-doped hydroxyapatite (HA) is a promising material concerning biocompatibility to natural bone, bioactivity and osteoconductive characteristics. HA exhibits phase transformations during sintering which are attendant to the change in volume and thermal strain. To avoid cracks during sintering, the exact knowledge of the phase transition temperatures is necessary. The sintering behavior of HA can be improved by adding amorphous silica with a low coefficient of thermal expansion. Therefore, the phase transformations in the system HA-SiO2 were analyzed by using differential scanning calorimetry followed by quantitative phase analysis by X-ray diffraction with the Riedveld method. The maximum sintering temperature without reversible phase transformation was defined as 1265°C. In laser surface sintered (LSS) samples, amorphous SiO2 , HA, and Si-α-TCP (or α-TCP) were detected. By comparison, only crystalline phases, such as cristobalite, HA, β-TCP, and Si-α-TCP (or α-TCP), were determined after furnace sintering. Scanning electron microscopy micrographs of furnace sintered and LSS samples show the differences in the resulting microstructures. Biocompatibility was determined by measuring cell activity of osteoblasts cultivated on four laser-sintered materials in the HA-SiO2 system in comparison to normal cell culture plastic. Cell proliferation was similar on all surfaces. The level of the cell activity on day 8 varied depending on the composition of the material and increased linearly as the amorphous SiO2 content rose. Taken together a laser-based method to develop novel biocompatible HA-SiO2 ceramics with adjustable properties and possible applications as orthopedic bioceramics are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  20. Preparation and chromatographic evaluation of zwitterionic stationary phases with controllable ratio of positively and negatively charged groups.

    PubMed

    Cheng, Xiao-Dong; Hao, Yan-Hong; Peng, Xi-Tian; Yuan, Bi-Feng; Shi, Zhi-Guo; Feng, Yu-Qi

    2015-08-15

    The present study described the preparation and application of zwitterionic stationary phases (ACS) with controllable ratio of positively charged tertiary amine groups and negatively charged carboxyl groups. Various parameters, including water content, pH values and ionic strength of the mobile phase, were investigated to study the chromatographic characteristics of ACS columns. The prepared ACS columns demonstrated a mix-mode retention mechanism composed of surface adsorption, partitioning and electrostatic interactions. The elemental analysis of different batches of the ACS phases demonstrated good reproducibility of the preparation strategy. Additionally, various categories of compounds, including nucleosides, water-soluble vitamins, benzoic acid derivatives and basic compounds were successively employed to evaluate the separation selectivity of the prepared ACS stationary phases. These ACS phases exhibited entirely different selectivity and retention behavior from each other for various polar analytes, demonstrating the excellent application potential in the analysis of polar compounds in HILIC. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Geometry-induced phase transition in fluids: Capillary prewetting

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  2. Effects of Phase Transformations and Dynamic Material Strength on Hydrodynamic Instability Evolution in Metals

    NASA Astrophysics Data System (ADS)

    Opie, Saul

    Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.

  3. Reverse micelle-mediated synthesis of calcium phosphate nanocarriers for controlled release of bovine serum albumin.

    PubMed

    Dasgupta, Sudip; Bandyopadhyay, Amit; Bose, Susmita

    2009-10-01

    Calcium phosphate (CaP) nanoparticles with a calcium to phosphorus (Ca:P) molar ratio of 1.5:1 were synthesized using reverse microemulsion. Ca(NO(3))(2).4H(2)O and H(3)PO(4) were used as the aqueous phase, cyclohexane as the organic phase and poly(oxyethylene)(12) nonylphenol ether (NP-12) as the surfactant. Depending on the calcination temperature between 600 and 800 degrees C, CaP nanoparticle showed different phases of calcium-deficient hydroxyapatite (CDHA) and beta-tricalcium phosphate (beta-TCP), particle size between 48 and 69 nm, and a BET specific average surface area between 73 and 57 m(2)g(-1). Bovine serum albumin (BSA) was used as a model protein to study loading and release behavior. The adsorptive property of BSA was investigated by the change in BET surface area of these nanoparticles and the pH of the suspension. At pH 7.5, the maximum amount of BSA was adsorbed onto CaP nanoparticle. The release kinetics of BSA showed a gradual time-dependent increase in pH 4.0 and 6.0 buffer solutions. However, the amount of protein released was significantly smaller at pH 7.2. The BSA release rate also varied depending on the presence of different phases of CaPs in the system, beta-TCP or CDHA. These results suggest that the BSA protein release rate can be controlled by changing the particle size, surface area and phase composition of the CaP nanocarriers.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    Pyrochlores, a class of complex oxides with formula A 2B 2O 7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu 3+ and Pu 4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound.more » We also find that pyrochlore/pyrochlore bicrystals A 2B 2O 7/A 2'B 2'O 7 can be used to immobilize Pu 3+ and Pu 4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu 4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu 3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less

  5. Miscibility, chain packing, and hydration of 1-palmitoyl-2-oleoyl phosphatidylcholine and other lipids in surface phases.

    PubMed

    Smaby, J M; Brockman, H L

    1985-11-01

    The miscibility of 1-palmitoyl-2-oleoyl phosphatidylcholine with triolein, 1,2-diolein, 1,3-diolein, 1(3)-monoolein, oleyl alcohol, methyl oleate, oleic acid, and oleyl cyanide (18:1 lipids) was studied at the argon-water interface. The isothermal phase diagrams for the mixtures at 24 degrees were characterized by two compositional regions. At the limit of miscibility with lower mol fractions of 18:1 lipid, the surface pressure was composition-independent, but above a mixture-specific stoichiometry, surface pressure at the limit of miscibility was composition-dependent. From the two-dimensional phase rule, it was determined that at low mol fractions of 18:1 lipids, the surface consisted of phospholipid and a preferred packing array or complex of phospholipid and 18:1 lipid, whereas, above the stoichiometry of the complex, the surface phase consisted of complex and excess 18:1 lipids. In both regions of the phase diagram, mixing along the phase boundary was apparently ideal allowing application of an equation of state described earlier (J. M. Smaby and H. L. Brockman, 1984, Biochemistry, 23:3312-3316). From such analysis, apparent partial molecular areas and hydrations for phospholipid, complex, and 18:1 lipid were obtained. Comparison of these calculated parameters for the complexed and uncomplexed states shows that the aliphatic moieties behave independently of polar head group. The transition of each 18:1 chain to the complexed state involves the loss of about one interfacial water molecule and its corresponding area. For 18:1 lipids with more than one chain another two water molecules per additional chain are present in both states but contribute little to molecular area. In contrast to 18:1 lipids, the phospholipid area and hydration change little upon complexation. The uniformity of chain packing and hydration behavior among 18:1 lipid species contrasts with complex stoichiometries that vary from 0.04 to 0.65. This suggests that the stoichiometry of the preferred packing array is determined by interactions involving the more polar moieties of the 18:1 lipids and the phospholipid.

  6. The role of upper mantle mineral phase transitions on the current structure of large-scale Earth's mantle convection.

    NASA Astrophysics Data System (ADS)

    Thoraval, C.

    2017-12-01

    Describing the large-scale structures of mantle convection and quantifying the mass transfer between upper and lower mantle request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth mantle from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of mantle flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower mantle are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.

  7. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    PubMed Central

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  8. A scale-bridging modeling approach for anisotropic organic molecules at patterned semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Kleppmann, Nicola; Klapp, Sabine H. L.

    2015-02-01

    Hybrid systems consisting of organic molecules at inorganic semiconductor surfaces are gaining increasing importance as thin film devices for optoelectronics. The efficiency of such devices strongly depends on the collective behavior of the adsorbed molecules. In the present paper, we propose a novel, coarse-grained model addressing the condensed phases of a representative hybrid system, that is, para-sexiphenyl (6P) at zinc-oxide (ZnO). Within our model, intermolecular interactions are represented via a Gay-Berne potential (describing steric and van-der-Waals interactions) combined with the electrostatic potential between two linear quadrupoles. Similarly, the molecule-substrate interactions include a coupling between a linear molecular quadrupole to the electric field generated by the line charges characterizing ZnO(10-10). To validate our approach, we perform equilibrium Monte Carlo simulations, where the lateral positions are fixed to a 2D lattice, while the rotational degrees of freedom are continuous. We use these simulations to investigate orientational ordering in the condensed state. We reproduce various experimentally observed features such as the alignment of individual molecules with the line charges on the surface, the formation of a standing uniaxial phase with a herringbone structure, as well as the formation of a lying nematic phase.

  9. Control of Oscillatory Thermocapillary Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Skarda, Ray

    1998-01-01

    This project focused on the generation and suppression of oscillatory thermocapillary convection in a thin liquid layer. The bulk of the research was experimental in nature, some theoretical work was also done. ne first phase of this research generated, for the first time, the hydrothermal-wave instability predicted by Smith and Davis in 1983. In addition, the behavior of the fluid layer under a number of conditions was investigated and catalogued. A transition map for the instability of buoyancy-thermocapillary convection was prepared which presented results in terms of apparatus-dependent and apparatus-independent parameters, for ease of comparison with theoretical results. The second phase of this research demonstrated the suppression of these hydrothermal waves through an active, feed-forward control strategy employing a CO2 laser to selectively heat lines of negative disturbance temperature on the free surface of the liquid layer. An initial attempt at this control was only partially successful, employing a thermocouple inserted slightly below the free surface of the liquid to generate the control scheme. Subsequent efforts, however, were completely successful in suppressing oscillations in a portion of the layer by utilizing data from an infrared image of the free surface to compute hydrothermal-wave phase speeds and, using these, to tailor the control scheme to each passing wave.

  10. Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Pan, Qiyong; Yang, Li; Li, Ruifeng; Dai, Jun

    2017-12-01

    The tribological behavior of laser manufactured IN718 superalloy coating are investigated with different applied loads, sliding speeds and lubricating mediums. The wear resistance of laser manufactured IN718 coating is increased by heat treatment due to higher microhardness and homogeneous brittle phase distribution. The principal factors for the wear rate are applied load and lubricating medium. The worn surface of laser manufactured IN718 coating consists of the grooves, crack, wear debris and material delamination generated by the fatigue wear associated with adhesive wear and abrasive wear. The friction coefficients are influenced by the tribological noise decrescence by the tribo-oxidant and the liquid lubricant. The real contact temperature between coating sample and frictional counterpart is higher than the solid-solution temperature of IN718 superalloy, and the effect of surface contact temperature on the orientational microstructure and wear resistance for dry friction and wet friction process is indistinct.

  11. Role of uncrosslinked chains in droplets dynamics on silicone elastomers.

    PubMed

    Hourlier-Fargette, Aurélie; Antkowiak, Arnaud; Chateauminois, Antoine; Neukirch, Sébastien

    2017-05-21

    We report an unexpected behavior in wetting dynamics on soft silicone substrates: the dynamics of aqueous droplets deposited on vertical plates of such elastomers exhibits two successive speed regimes. This macroscopic observation is found to be closely related to microscopic phenomena occurring at the scale of the polymer network: we show that uncrosslinked chains found in most widely used commercial silicone elastomers are responsible for this surprising behavior. A direct visualization of the uncrosslinked oligomers collected by water droplets is performed, evidencing that a capillarity-induced phase separation occurs: uncrosslinked oligomers are extracted from the silicone elastomer network by the water-glycerol mixture droplet. The sharp speed change is shown to coincide with an abrupt transition in surface tension of the droplets, when a critical surface concentration in uncrosslinked oligomer chains is reached. We infer that a droplet shifts to a second regime with a faster speed when it is completely covered with a homogeneous oil film.

  12. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA

    USGS Publications Warehouse

    Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2011-01-01

    The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.

  13. A trough for improved SFG spectroscopy of lipid monolayers.

    PubMed

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias

    2017-05-01

    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  14. A trough for improved SFG spectroscopy of lipid monolayers

    NASA Astrophysics Data System (ADS)

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias

    2017-05-01

    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  15. Stochastic characterization of phase detection algorithms in phase-shifting interferometry

    DOE PAGES

    Munteanu, Florin

    2016-11-01

    Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here,more » we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. As a result, the usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations.« less

  16. Phase structure within a fracture network beneath a surface pond: Field experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GLASS JR.,ROBERT J.; NICHOLL,M.J.

    2000-05-09

    The authors performed a simple experiment to elucidate phase structure within a pervasively fractured welded tuff. Dyed water was infiltrated from a surface pond over a 36 minute period while a geophysical array monitored the wetted region within vertical planes directly beneath. They then excavated the rock mass to a depth of {approximately}5 m and mapped the fracture network and extent of dye staining in a series of horizontal pavements. Near the pond the network was fully stained. Below, the phase structure immediately expanded and with depth, the structure became fragmented and complicated exhibiting evidence of preferential flow, fingers, irregularmore » wetting patterns, and varied behavior at fracture intersections. Limited transient geophysical data suggested that strong vertical pathways form first followed by increased horizontal expansion and connection within the network. These rapid pathways are also the first to drain. Estimates also suggest that the excavation captured from {approximately}10% to 1% or less of the volume of rock interrogated by the infiltration slug and thus the penetration depth could have been quite large.« less

  17. Self-organization of a wedge-shaped surfactant in monolayers and multilayers.

    PubMed

    Cain, Nicholas; Van Bogaert, Josh; Gin, Douglas L; Hammond, Scott R; Schwartz, Daniel K

    2007-01-16

    The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.

  18. Stability of M 3S 3 complexes on fcc M(111) surfaces: M = Au, Ag, Cu, and Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Lee, Jiyoung; Windus, Theresa L.

    Density Functional Theory is utilized to assess the stability of metal (M)-sulfur (S) complexes adsorbed on fcc M(111) surfaces, specifically considering S-decorated planar M trimers, M 3S 3. Scanning Tunneling Microscopy studies have identified structures proposed to be Ni 3S 3 on Ni(111), and Au 3S 3 on Au(111). In addition, Cu 3S 3 on Cu(111) has been suggested to facilitate enhanced Cu surface mass transport. Our analysis considers M 3S 3 complexes for M = Au, Ag, Cu, and Ni, assessing key measures of stability on surfaces, and also comparing behavior with trends in gas-phase stability. These surface andmore » gas-phase analyses are systematically related within the framework of Hess’s law, which allows elucidation of various contributions to the overall energetics. In all cases, the adsorbed complex is stable relative to its separated constituents adsorbed on the terrace. However, only for Ag does one find a negative energy of formation from excess S on terraces and M extracted from kink sites along step edges, implying spontaneous complex formation for this pathway. We interpret various experimental observations in the context of our results for energetics.« less

  19. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  20. Stability of M 3S 3 complexes on fcc M(111) surfaces: M = Au, Ag, Cu, and Ni

    DOE PAGES

    Liu, Da-Jiang; Lee, Jiyoung; Windus, Theresa L.; ...

    2018-02-08

    Density Functional Theory is utilized to assess the stability of metal (M)-sulfur (S) complexes adsorbed on fcc M(111) surfaces, specifically considering S-decorated planar M trimers, M 3S 3. Scanning Tunneling Microscopy studies have identified structures proposed to be Ni 3S 3 on Ni(111), and Au 3S 3 on Au(111). In addition, Cu 3S 3 on Cu(111) has been suggested to facilitate enhanced Cu surface mass transport. Our analysis considers M 3S 3 complexes for M = Au, Ag, Cu, and Ni, assessing key measures of stability on surfaces, and also comparing behavior with trends in gas-phase stability. These surface andmore » gas-phase analyses are systematically related within the framework of Hess’s law, which allows elucidation of various contributions to the overall energetics. In all cases, the adsorbed complex is stable relative to its separated constituents adsorbed on the terrace. However, only for Ag does one find a negative energy of formation from excess S on terraces and M extracted from kink sites along step edges, implying spontaneous complex formation for this pathway. We interpret various experimental observations in the context of our results for energetics.« less

  1. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  2. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    NASA Astrophysics Data System (ADS)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  3. From crystal chemistry to colloid stability

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Burrows, N.; Penn, R. L.

    2008-12-01

    Aqueous suspensions of ferrihydrite nanoparticles form a colloid with properties that can be understood using classical theories but which additionally exhibit the distinctive phenomenon of nanocluster formation. While use of in situ light and x-ray scattering methods permit the quantitative determination of colloid stability, interparticle interactions, and cluster or aggregate geometry, there are currently few approaches to predict the colloidal behavior of mineral nanoparticles. A longstanding goal of aqueous geochemistry is the rationalization and prediction of the chemical properties of hydrated mineral interfaces from knowledge of interface structure at the molecular scale. Because interfacial acid-base reactions typically lead to the formation of a net electrostatic charge at the surfaces of oxide, hydroxide, and oxyhydroxide mineral surfaces, quantitative descriptions of this behavior have the potential to permit the prediction of long-range interactions between mineral particles. We will evaluate the feasibility of this effort by constructing a model for surface charge formation for ferrihydrite that combines recent insights into the crystal structure of this phase and proposed methods for estimating the pKa of acidic surface groups. We will test the ability of this model to predict the colloidal stability of ferrihydrite suspensions as a function of solution chemistry.

  4. Flocculation of deformable emulsion droplets. 2: Interaction energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petsev, D.N.; Denkov, N.D.; Kralchevsky, P.A.

    1995-12-01

    The effect of different factors (drop radius, interfacial tension, Hamaker constant, electrolyte, micellar concentrations, etc.) on the interaction energy of emulsion droplets is studied theoretically. It is demonstrated that the deformation of the colliding droplets considerably affects the interaction energy. The contributions of the electrostatic, van der Waals, depletion, steric, and oscillatory surface forces, as well as for the surface stretching and bending energies, are estimated and discussed. The calculations show that the droplets interact as nondeformed spheres when the attractive interactions are weak. At stronger attractions an equilibrium plane parallel film is formed between the droplets, corresponding to minimummore » interaction energy of the system. For droplets in concentrated micellar surfactant solutions the oscillatory surface forces become operative and one can observe several minima of the energy surface,each corresponding to a metastable state with a different number of micellar layers inside the film formed between the droplets. The present theoretical analysis can find applications in predicting the behavior and stability of miniemulsions (containing micrometer and submicrometer droplets), as well as in interpretation of data obtained by light scattering, phase behavior, rheological and osmotic pressure measurements, etc.« less

  5. Optical Thin Film Modeling: Using FTG's FilmStar Software

    NASA Technical Reports Server (NTRS)

    Freese, Scott

    2009-01-01

    Every material has basic optical properties that define its interaction with light: The index of refraction (n) and extinction coefficient (k) vary for the material as a function of the wavelength of the incident light. Also significant are the phase velocity and polarization of the incident light These inherent properties allow for the accurate modeling of light s behavior upon contact with a surface: Reflectance, Transmittance, Absorptance.

  6. A surface tow net for collection of parasitic-phase sea lampreys

    USGS Publications Warehouse

    Dahl, Frederick H.

    1968-01-01

    A STUDY OF MIGRATORY BEHAVIOR of parasitic sea lampreys (Petromyzon marinus) in the Great Lakes required a means of capturing lampreys for tagging and releasing in St. Marys River, Lake Huron. Smith and Elliott (1953) fished specially made gill and trap nets for sea lampreys, but stationary nets could not be used in the St. Marys River because of boat traffic, interference with sport fishermen, and fast currents.

  7. Using Clickers to Increase On-Task Behaviors of Middle School Students with Behavior Problems

    ERIC Educational Resources Information Center

    Xin, Joy F.; Johnson, Mary L.

    2015-01-01

    This study examined the effect of using a remote device, a Clicker, on the on-task behavior of middle school students with behavior problems. Five students with behavior problems participated in the study. A single-subject research design with ABAB (phase A: baseline 1, phase B: intervention 1, phase A: baseline 2, phase B: intervention 2) phases…

  8. Transition Analysis for the HIFiRE-1 Flight Experiment

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Kimmel, Roger; Adamczak, David; Smith, Mark S.

    2011-01-01

    The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of incidence. This paper reports the initial findings from the ongoing computational analysis pertaining to the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The first mode instabilities were found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear PSE N-factor of approximately 14.

  9. Powder Metallurgy Fabrication of Porous 51(at.%)Ni-Ti Shape Memory Alloys for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.

    2018-05-01

    The effect of time and temperature on the microwave sintering of 51(at.%)Ni-Ti shape memory alloys (SMAs) was investigated in the current research. Furthermore, the microstructure, mechanical properties, and bio-corrosion properties were analyzed based on the sintering conditions. The results revealed that the sintering condition of 700 °C for 15 min produced a part with coherent surface survey that does not exhibit gross defects. Increasing the sintering time and temperature created defects on the outer surface, while reducing the temperature to 550 °C severely affected the mechanical properties. The microstructure of these samples showed two regions of Ni-rich region and Ti-rich region between them Ti2Ni, NiTi, and Ni3Ti phases. The differential scanning calorimeter (DSC) curves of Ni-Ti samples exhibited a multi-step phase transformation B19'-R-B2 during heating and cooling. An increase in the sintering temperature from 550 to 700 °C was found to increase the fracture strength significantly and decreased the fracture strain slightly. Reducing the sintering temperature from 700 to 550 °C severely affected the corrosion behaviors of 51%Ni-Ti SMAs. This research aims to select the optimum parameters to produce Ni-Ti alloys with desired microstructure, mechanical properties, and corrosion behaviors for biomedical applications.

  10. Influence of hydrogen on the corrosion behavior of stainless steels in lithium

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2008-02-01

    Corrosion behavior of several stainless steels in lithium and lithium with 0.05%H has been examined. Corrosion tests were performed under static conditions at 600 and 700 °C in the austenitic stainless steel of the type AISI 304 containers. Intensive formation of σ-phase of the composition Fe 50Cr 43Mo 3Ni 4 on the surface of austenitic stainless steels of the type AISI 316 at 700 °C for 1000 h was established as a result of isothermal mass transfer. Addition of 0.05%H in the form of LiH to lithium resulted in an increase in the quantity of the σ-phase. After corrosion tests of ferritic/martensitic steel in lithium at 700 °C for 1000 h the formation of the γ-phase was observed. In Li + 0.05%H besides the γ-phase was also formed the σ-phase. The features of decarburization of investigated stainless steels were examined using the direct method of activation autoradiography on carbon. Addition of 0.05%H in lithium significantly decreased the carbon content in the decarburization zone of austenitic stainless steel Fe-18Cr-15Ni-0.15C-0.23B without a noticeable change in the thickness of the decarburization zone. Decarburization of ferritic/martensitic stainless steel was less than of austenitic stainless steel using the same corrosion tests.

  11. Effect of different alloyed layers on the high temperature oxidation behavior of newly developed Ti 2AlNb-based alloys

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Zhang, Pingze; Zhao, Haofeng; Wang, Ling; Xie, Aigen

    2011-01-01

    The application of titanium aluminide orthorhombic alloys (O-phase alloys) as potential materials in aircraft and jet engines was limited by their poor oxidation resistance at high temperature. The Ti 2AlNb-based alloys were chromised (Cr), chromium-tungstened (Cr-W) and nickel-chromised (Ni-Cr) by the double glow plasma surface alloying process to improve their high temperature oxidation resistance. The discontinuous oxidative behavior of Cr, Cr-W and Ni-Cr alloyed layers on Ti 2AlNb-based alloy at 1093 K was explored in this study. After exposing at 1093 K, the TiO 2 layer was formed on the bare alloy and accompanied by the occurrence of crack, which promoted oxidation rate. The oxidation behavior of Ti 2AlNb-based alloys was improved by surface alloying due to the formation of protective Al 2O 3 scale or continuous and dense NiCr 2O 4 film. The Ni-Cr alloyed layer presented the best high-temperature oxidation resistance among three alloyed layers.

  12. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    NASA Astrophysics Data System (ADS)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions are analyzed and confirmed by morphological study. The developed high-performance polymer-stabilized fringe-field-switching (PS-FFS) could open new types of device applications.

  13. Development and characterization of amorphous acrylate networks for use as switchable adhesives inspired from shapememory behavior

    NASA Astrophysics Data System (ADS)

    Lakhera, Nishant

    Several types of insects and animals such as spiders and geckos are inherently able to climb along vertical walls and ceilings. This remarkable switchable adhesive behavior has been attributed to the fibrillar structures on their feet, with size ranging from few nanometers to a few micrometers depending on the species. Several studies have attempted to create synthetic micro-patterned surfaces trying to imitate this adhesive behavior seen in nature. The experimental procedures are scattered, with sole purpose of trying to increase adhesion, thereby making direct comparison between studies very difficult. There is a lack of fundamental understanding on adhesion of patterned surfaces. The influence of critical parameters like material modulus, glass transition temperature, viscoelastic effects, temperature and water absorption on adhesion is not fully explored and characterized. These parameters are expected to have a decisive influence on adhesion behavior of the polymer. Previous studies have utilized conventional "off-the-shelf" materials like epoxy, polyurethanes etc. It is however, impossible to change the material modulus, glass transition temperature etc. of these polymer systems without changing the base constituents itself, thereby explaining the gaps in the current research landscape. The purpose of this study was to use acrylate shape-memory polymers (SMPs) for their ability to be tailored to specific mechanical properties by control of polymer chemistry, without changing the base constituents. Polymer networks with tailorable glass transition, material modulus, water absorption etc. were developed and adhesion studies were performed to investigate the influence of temperature, viscoelastic effects, material modulus on the adhesion behavior of flat acrylate polymer surfaces. The knowledge base gained from these studies was utilized to better understand the fundamental mechanisms associated with adhesion behavior of patterned acrylate surfaces. Thermally induced switchable adhesion and water induced switchable adhesion of patterned acrylate surfaces was investigated. The viscoelastic energy dissipation occurring during the detachment phase was shown to dramatically increase adhesion under both thermally induced and water induced conditions. This effect was most pre-dominant at the glass transition temperature of the material. Increase in pre-load force and unloading velocity were also shown to increase the adhesive capability of the patterned acrylate SMPs.

  14. Effect of inflammatory conditions and H2O2 on bare and coated Ti-6Al-4V surfaces: Corrosion behavior, metal ion release and Ca-P formation under long-term immersion in DMEM

    NASA Astrophysics Data System (ADS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-12-01

    The surface oxide film and calcium-phosphate (Ca-P) formation on Ti-6Al-4V during long-term immersion in biological environments play a decisive role for the biocompatibility of the implant. Hence, the aim of the study was to evaluate the corrosion resistance, metal ion release and Ca-P formation in DMEM under physiological conditions at pH values of 7.4 and in comparison under simulated inflammatory conditions with pH 5 and in presence of H2O2. Furthermore, the influence of the immersion conditions was investigated on different surface treatments: on bare Ti-6Al-4V, after anodization, and for TiO2 nanoparticle (NP) and hydroxyapatite (HA)-incorporated TiO2-NP coatings. In the absence of H2O2, the impedance response indicated a stable thin oxide film and Ca-P formation after 28 days or 56 days depending on the coating, while under inflammatory conditions the Ca-P formation on the surface is time-delayed and dissolution of the anodized oxide layer as well as selective etching of the β-phase and phase boundaries in case of the bare alloy occur. Electrochemical impedance spectroscopy (EIS), however, indicates a good general corrosion behavior in all cases. The quantities of Ti, Al and V released from the bare and coated Ti-6Al-4V alloy markedly increased with decreasing pH (pH ≤ 5). Although the rapid increase of metal release was observed for all samples at pH 5, the quantities were significantly higher for the bare and anodized alloy than after coating with TiO2-NP or HA.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moraes, Paulo E.L., E-mail: pauloeduardo.leitedemoraes@gmail.com; Contieri, Rodrigo J., E-mail: contieri@fem.unicamp.br; Lopes, Eder S.N., E-mail: ederlopes@fem.unicamp.br

    Ti and Ti alloys are widely used in restorative surgery because of their good biocompatibility, enhanced mechanical behavior and high corrosion resistance in physiological media. The corrosion resistance of Ti-based materials is due to the spontaneous formation of the TiO{sub 2} oxide film on their surface, which exhibits elevated stability in biological fluids. Ti–Nb alloys, depending on the composition and the processing routes to which the alloys are subjected, have high mechanical strength combined with low elastic modulus. The addition of Sn to Ti–Nb alloys allows the phase transformations to be controlled, particularly the precipitation of ω phase. The aimmore » of this study is to discuss the microstructure, mechanical properties and corrosion behavior of cast Ti–Nb alloys to which Sn has been added. Samples were centrifugally cast in a copper mold, and the microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffractometry. Mechanical behavior evaluation was performed using Berkovich nanoindentation, Vickers hardness and compression tests. The corrosion behavior was evaluated in Ringer's solution at room temperature using electrochemical techniques. The results obtained suggested that the physical, mechanical and chemical behaviors of the Ti–Nb–Sn alloys are directly dependent on the Sn content. - Graphical abstract: Effects of Sn addition to the Ti–30Nb alloy on the elastic modulus. - Highlights: • Sn addition causes reduction of the ω phase precipitation. • Minimum Vickers hardness and elastic modulus occurred for 6 wt.% Sn content. • Addition of 6 wt.% Sn resulted in maximum ductility and minimum compression strength. • All Ti–30Nb–XSn (X = 0, 2, 4, 6, 8 and 10%) alloys are passive in Ringer's solution. • Highest corrosion resistance was observed for 6 wt.% Sn content.« less

  16. Interaction of SO2 with the Surface of a Water Nanodroplet.

    PubMed

    Zhong, Jie; Zhu, Chongqin; Li, Lei; Richmond, Geraldine L; Francisco, Joseph S; Zeng, Xiao Cheng

    2017-11-29

    We present a comprehensive computational study of interaction of a SO 2 with water molecules in the gas phase and with the surface of various sized water nanodroplets to investigate the solvation behavior of SO 2 in different atmospheric environments. Born-Oppenheimer molecular dynamics (BOMD) simulation shows that, in the gas phase and at a temperature of 300 K, the dominant interaction between SO 2 and H 2 O is (SO 2 ) S···O (H 2 O) , consistent with previous density-functional theory (DFT) computation at 0 K. However, at the surface of a water nanodroplet, BOMD simulation shows that the hydrogen-bonding interaction of (SO 2 ) O···H (H 2 O) becomes increasingly important with the increase of droplet size, reflecting a marked effect of the water surface on the SO 2 solvation. This conclusion is in good accordance with spectroscopy evidence obtained previously (J. Am. Chem. Soc. 2005, 127, 16806; J. Am. Chem. Soc. 2006, 128, 3256). The prevailing interaction (SO 2 ) O···H (H 2 O) on a large droplet is mainly due to favorable exposure of H atoms of H 2 O at the air-water interface. Indeed, the conversion of the dominant interaction in the gas phase (SO 2 ) S···O (H 2 O) to the dominant interaction on the water nanodroplet (SO 2 ) O···H (H 2 O) may incur effects on the SO 2 chemistry in atmospheric aerosols because the solvation of SO 2 at the water surface can affect the reactive sites and electrophilicity of SO 2 . Hence, the solvation of SO 2 on the aerosol surface may have new implications when studying SO 2 chemistry in the aerosol-containing troposphere.

  17. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic.

    PubMed

    Ramírez-Aldaba, Hugo; Valles, O Paola; Vazquez-Arenas, Jorge; Rojas-Contreras, J Antonio; Valdez-Pérez, Donato; Ruiz-Baca, Estela; Meraz-Rodríguez, Mónica; Sosa-Rodríguez, Fabiola S; Rodríguez, Ángel G; Lara, René H

    2016-10-01

    Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS2)-like, orpiment (As2S3)-like and elementary sulfur and polysulfide (Sn(2-)/S(0)) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including Sn(2-)/S(0), pyrite-like and orpiment-like phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Theoretical and Simulations-Based Modeling of Micellization in Linear and Branched Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jonathan D.

    Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc's and other micellization properties for a variety of linear and branched surfactant chemical architectures which are commonly encountered in practice. Single-component surfactant solutions are investigated, in order to clarify the specific contributions of the surfactant head and tail to the free energy of micellization, a quantity which determines the cmc and all other aspects of micellization. First, a molecular-thermodynamic (MT) theory is presented which makes use of bulk-phase thermodynamics and a phenomenological thought process to describe the energetics related to the formation of a micelle from its constituent surfactant monomers. Second, a combined computer-simulation/molecular-thermodynamic (CSMT) framework is discussed which provides a more detailed quantification of the hydrophobic effect using molecular dynamics simulations. A novel computational strategy to identify surfactant head and tail using an iterative dividing surface approach, along with simulated micelle results, is proposed. Force-field development for novel surfactant structures is also discussed. Third, a statistical-thermodynamic, single-chain, mean-field theory for linear and branched tail packing is formulated, which enables quantification of the specific energetic penalties related to confinement and constraint of surfactant tails within micelles. Finally, these theoretical and simulations-based strategies are used to predict the micellization behavior of 55 linear surfactants and 28 branched surfactants. Critical micelle concentration and optimal micelle properties are reported and compared with experiment, demonstrating good agreement across a range of surfactant head and tail types. In particular, the CSMT framework is found to provide improved agreement with experimental cmc's for the branched surfactants considered. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  19. In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.

    2018-05-01

    Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.

  20. In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.

    2018-07-01

    Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.

  1. Revisiting a Hydrological Analysis Framework with International Satellite Land Surface Climatology Project Initiative 2 Rainfall, Net Radiation, and Runoff Fields

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Fekete, Balazs M.; Huffman, George J.; Stackhouse, Paul W.

    2006-01-01

    The International Satellite Land Surface Climatology Project Initiative 2 (ISLSCP-2) data set provides the data needed to characterize the surface water budget across much of the globe in terms of energy availability (net radiation) and water availability (precipitation) controls. The data, on average, are shown to be consistent with Budyko s decades-old framework, thereby demonstrating the continuing relevance of Budyko s semiempirical relationships. This consistency, however, appears only when a small subset of the data with hydrologically suspicious behavior is removed from the analysis. In general, the precipitation, net radiation, and runoff data also appear consistent in their interannual variability and in the phasing of their seasonal cycles.

  2. The effect of metal surface passivation on the Au-InP interaction

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1989-01-01

    The effect of SiO2 encapsulation on reaction rates in the Au-InP system was studied. Scanning electron microscopy and x-ray photoelectron spectroscopy were used to investigate surface and/or interface morphologies and in-depth compositional profiles. It was found that the rate of dissolution of InP into Au and subsequent phase transformations are largely dependent on the condition of the free surface of the metalization. SiO2 capping of Au is reported for the first time to suppress the Au-InP reaction rate. The Au-InP interaction is shown to be quite similar to the Au-GaAs interaction despite differences in behavior of the group-V elements.

  3. Protonation enthalpies of metal oxides from high temperature electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Santiago, V; Fedkin, Mark V.; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) zeta potentials and isoelectric points for metal oxides, including SiO2, SnO2, ZrO2, TiO2, and Fe3O4, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one is based on thermodynamic description of the 1-pKa modelmore » for surface protonation, and another one on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.« less

  4. Protonation enthalpies of metal oxides from high temperature electrophoresis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Santiago, V; Fedkin, Mark V; Lvov, Serguei N.

    2012-01-01

    Surface protonation reactions play an important role in the behavior of mineral and colloidal systems, specifically in hydrothermal aqueous environments. However, studies addressing the reactions at the solid/liquid interface at temperatures above 100 C are scarce. In this study, newly and previously obtained high temperature electrophoresis data (up to 260 C) - zeta potentials and isoelectric points - for metal oxides, including SiO{sub 2}, SnO{sub 2}, ZrO{sub 2}, TiO{sub 2}, and Fe{sub 3}O{sub 4}, were used in thermodynamic analysis to derive the standard enthalpies of their surface protonation. Two different approaches were used for calculating the protonation enthalpy: one ismore » based on thermodynamic description of the 1-pKa model for surface protonation, and another one - on a combination of crystal chemistry and solvation theories which link the relative permittivity of the solid phase and the ratio of the Pauling bond strength and bond length to standard protonation enthalpy. From this analysis, two expressions relating the protonation enthalpy to the relative permittivity of the solid phase were obtained.« less

  5. Electrodeposited polyaniline as a fiber coating for solid-phase microextraction of organochlorine pesticides from water.

    PubMed

    Li, Xiang; Zhong, Ming; Chen, Jianmin

    2008-08-01

    The study on the performance of polyaniline as a fiber coating for solid-phase microextraction (SPME) purposes has been reported. Polyaniline coatings were directly electrodeposited on the surface of a stainless steel wire and applied for the extraction of some organochlorine pesticides (OCPs) from water samples. Analyses were performed using GC-electron capture detection (GC-ECD). The results obtained show that polyaniline fiber coating is suitable for the successful extraction of organochlorine compounds. This behavior is most probably due to the porous surface structure of polyaniline film, which provides large surface areas and allowed for high extraction efficiency. Experimental parameters such as adsorption and desorption conditions were studied and optimized. The optimized method has an acceptable linearity, with a concentration range of 1-5000 ng/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 12 and 17%, respectively. High environmental resistance and lower cost are among the advantages of polyaniline fibers over commercially available SPME fibers. The developed method was applied to the analysis of real water samples from Yangtse River and Tianmu Lake.

  6. Solvent coarsening around colloids driven by temperature gradients

    NASA Astrophysics Data System (ADS)

    Roy, Sutapa; Dietrich, Siegfried; Maciolek, Anna

    2018-04-01

    Using mesoscopic numerical simulations and analytical theory, we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, the phase next to its surface alternates as a function of time. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature Tc of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.

  7. Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel

    NASA Astrophysics Data System (ADS)

    Zhu, X. X.; Yang, H. G.; Yuan, X. M.; Zhao, W. W.; Zhan, Q.

    2014-12-01

    The iron aluminide coating on China Low Activation Martensitic (CLAM) steel was prepared by pack cementation and subsequent heat treatment. A surface Fe2Al5 layer was formed on CLAM substrate by pack cementation process with Fe2Al5 donor powder and NH4Cl activator. Diffusion heat treatment was performed in order to allow the phase transformation from Fe2Al5 to a phase with lower aluminum content. Morphology and composition of the coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). There is a need to study the interdiffusion behaviors in these Al containing systems, as a basis for controlling the formation and subsequent degradation of the coating. In this paper, a predictive model was developed to describe the phase transformation of Fe2Al5 as a function of processing parameters. The Wagner's equation was used to calculate the interdiffusion coefficients based on the analysis of the Al concentration profiles. The results showed that the interdiffusion coefficients in the FeAl and α-Fe(Al) phase strongly depends on Al content and showed a maximum at about 28 at.% Al.

  8. Effect of microstructure on the breakage of tin bronze machining chips during pulverization via jet milling

    NASA Astrophysics Data System (ADS)

    Afshari, Elham; Ghambari, Mohammad; Farhangi, Hasan

    2016-11-01

    In this study, jet milling was used to recycle tin bronze machining chips into powder. The main purpose of this study was to assess the effect of the microstructure of tin bronze machining chips on their breakage behavior. An experimental target jet mill was used to pulverize machining chips of three different tin bronze alloys containing 7wt%, 10wt%, and 12wt% of tin. Optical and electron microscopy, as well as sieve analysis, were used to follow the trend of pulverization. Each alloy exhibited a distinct rate of size reduction, particle size distribution, and fracture surface appearance. The results showed that the degree of pulverization substantially increased with increasing tin content. This behavior was attributed to the higher number of machining cracks as well as the increased volume fraction of brittle δ phase in the alloys with higher tin contents. The δ phase was observed to strongly influence the creation of machining cracks as well as the nucleation and propagation of cracks during jet milling. In addition, a direct relationship was observed between the mean δ-phase spacing and the mean size of the jet-milled product; i.e., a decrease in the δ-phase spacing resulted in smaller particles.

  9. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation state for plutonium in solution under highly oxidizing conditions. Furthermore, the Raman spectroscopy monitoring of the sample surface oxidation states did not point to any significant effect from the high Pu content of the aggregates (10-15%) and therefore did not indicate a better aggregate stability under radiolysis compared to the mainly UO2 matrix. This is because acidic pH conditions do not favor the development of oxidized layers on a fuel surface, with the exception of secondary phases.

  10. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE PAGES

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...

    2015-08-08

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  11. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  12. Dielectric dispersion of porous media as a fractal phenomenon

    NASA Astrophysics Data System (ADS)

    Thevanayagam, S.

    1997-09-01

    It is postulated that porous media is made up of fractal solid skeleton structure and fractal pore surface. The model thus developed satisfies measured anomalous dielectric behavior of three distinctly different porous media: kaolin, montmorillonite, and shaly sand rock. It is shown that the underlying mechanism behind dielectric dispersion in the kHz range to high MHz range is indeed Maxwell-Wagner mechanism but modified to take into account the multiphase nature of the porous media as opposed to the traditional two-phase Maxwell-Wagner charge accumulation effect. The conductivity of the surface water associated with the solid surface and charge accumulation across the surface irregularities, asperity, and bridging between particles at the micro-scale-level pores are shown to contribute to this modified Maxwell-Wagner mechanism. The latter is dominant at low frequencies. The surface water thickness is calculated to be about 2-6 nm for a variety of porous media.

  13. Long-range interactions, wobbles, and phase defects in chains of model cilia

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas R.; Bruot, Nicolas; Kotar, Jurij; Goldstein, Raymond E.; Cicuta, Pietro; Polin, Marco

    2016-12-01

    Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.

  14. Mixed C18 and C1 modification on an optical fiber for chromatographic sensing.

    PubMed

    Zhou, Leiji; Wang, Kemin; Zuo, Xinbing; Choi, Martin M F; Chen, Yunqing; Huang, Shasheng

    2003-09-01

    An optical fiber-chromatographic sensor, aiming at simultaneous and selective response to multiple components following a chromatographic separation, is described. We report an improved approach for immobilization of octadecyl (C(18)) and methyl (C(1)) moieties as stationary phase on an optical fiber suitable as a sensing phase for organic solutes. By this approach, the stability and lifetime of the sensing layer as well as the detectability and retention behavior of the chromatographic sensor could be improved. Infrared spectroscopy was employed to confirm the presence of C(18) and C(1) moieties on the modified surface of the optical fiber. The chromatographic sensor was applied, with good sensitivity and chemical selectivity, to the simultaneous separation and detection of bromobenzene and toluene, using water as the mobile phase.

  15. Diffuse phase ferroelectric vs. Polomska transition in (1-x) BiFeO3-(x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) solid solutions

    NASA Astrophysics Data System (ADS)

    Jha, Pardeep K.; Jha, Priyanka A.; Singh, Vikash; Kumar, Pawan; Asokan, K.; Dwivedi, R. K.

    2015-01-01

    Investigations on the solid solutions (1-x) BiFeO3 - (x) Ba Zr0.025Ti0.975O3 (0.1 ≤ x ≤ 0.3) in the temperature range 300-750 K show colossal permittivity behavior and the occurrence of diffuse phase ferroelectric transition along with frequency dependent anomaly which disappears at temperature ˜450 K. For x = 0.3, these anomalies have been verified through differential scanning calorimetry and dielectric/impedance/conductivity measurements. The occurrence of peak in pyrocurrent (dPs/dT) vs. T plots also supports phase transition. With the increasing x, transition temperature decreases and diffusivity increases. This anomaly is absent at high frequencies (>100 kHz) in conductivity plots, indicating Polomska like surface phase transition, which is supported by modulus study.

  16. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition.

    PubMed

    Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong

    2013-01-01

    Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.

  17. Determination of the magnetization scaling exponent for single-crystal La0.8Sr0.2MnO3 by broadband microwave surface impedance measurements

    NASA Astrophysics Data System (ADS)

    Schwartz, Andrew; Scheffler, Marc; Anlage, Steven M.

    2000-01-01

    Employing a broadband microwave reflection configuration, we have measured the complex surface impedance, ZS(ω,T), of single-crystal La0.8Sr0.2MnO3, as a function of frequency (0.045-45 GHz) and temperature (250-325 K). Through the dependence of the microwave surface impedance on the magnetic permeability, μ⁁(ω,T), we have studied the local magnetic behavior of this material, and have extracted the spontaneous magnetization, M0(T), in zero applied field. The broadband nature of these measurements and the fact that no external field is applied to the material provide a unique opportunity to analyze the critical behavior of the spontaneous magnetization at temperatures very close to the ferromagnetic phase transition. We find a Curie temperature TC=305.5+/-0.5 K and scaling exponent β=0.45+/-0.05, in agreement with the prediction of mean-field theory. We also discuss other recent determinations of the magnetization critical exponent in this and similar materials and show why our results are more definitive.

  18. A model of motor performance during surface penetration: from physics to voluntary control.

    PubMed

    Klatzky, Roberta L; Gershon, Pnina; Shivaprabhu, Vikas; Lee, Randy; Wu, Bing; Stetten, George; Swendsen, Robert H

    2013-10-01

    The act of puncturing a surface with a hand-held tool is a ubiquitous but complex motor behavior that requires precise force control to avoid potentially severe consequences. We present a detailed model of puncture over a time course of approximately 1,000 ms, which is fit to kinematic data from individual punctures, obtained via a simulation with high-fidelity force feedback. The model describes puncture as proceeding from purely physically determined interactions between the surface and tool, through decline of force due to biomechanical viscosity, to cortically mediated voluntary control. When fit to the data, it yields parameters for the inertial mass of the tool/person coupling, time characteristic of force decline, onset of active braking, stopping time and distance, and late oscillatory behavior, all of which the analysis relates to physical variables manipulated in the simulation. While the present data characterize distinct phases of motor performance in a group of healthy young adults, the approach could potentially be extended to quantify the performance of individuals from other populations, e.g., with sensory-motor impairments. Applications to surgical force control devices are also considered.

  19. Study on the mechanism of liquid phase sintering (M-12)

    NASA Technical Reports Server (NTRS)

    Kohara, S.

    1993-01-01

    The objectives were to (1) obtain the data representing the growth rate of solid particles in a liquid matrix without the effect of gravity; and (2) reveal the growth behavior of solid particles during liquid phase sintering using the data obtained. Nickel and tungsten are used as the constituent materials in liquid phase sintering. The properties of the constituent metals are given. When a compact of the mixture of tungsten and nickel powders is heated and kept at 1550 C, nickel melts down but tungsten stays solid. As the density of tungsten is much greater than that of nickel, the sedimentation of tungsten particles occurs in the experiment on Earth. The difference between the experiments on Earth and in space is illustrated. The tungsten particles sink to the bottom and are brought into contact with each other. The resulting pressure at the contact point causes the accelerated dissolution of tungsten. Consequently, flat surfaces are formed at the contact sites. As a result of dissolution and reprecipitation of tungsten, the shape of particles changes to a polygon. This phenomenon is called 'flattening.' An example of flattening of tungsten particles is shown. Thus, the data obtained by the experiment on Earth may not represent the exact growth behavior of the solid particles in a liquid matrix. If the experiments were done in a microgravity environment, the data corresponding to the theoretical growth behavior of solid particles could be achieved.

  20. Visible photoassisted room-temperature oxidizing gas-sensing behavior of Sn2S3 semiconductor sheets through facile thermal annealing.

    PubMed

    Liang, Yuan-Chang; Lung, Tsai-Wen; Wang, Chein-Chung

    2016-12-01

    Well-crystallized Sn 2 S 3 semiconductor thin films with a highly (111)-crystallographic orientation were grown using RF sputtering. The surface morphology of the Sn 2 S 3 thin films exhibited a sheet-like feature. The Sn 2 S 3 crystallites with a sheet-like surface had a sharp periphery with a thickness in a nanoscale size, and the crystallite size ranged from approximately 150 to 300 nm. Postannealing the as-synthesized Sn 2 S 3 thin films further in ambient air at 400 °C engendered roughened and oxidized surfaces on the Sn 2 S 3 thin films. Transmission electron microscopy analysis revealed that the surfaces of the Sn 2 S 3 thin films transformed into a SnO 2 phase, and well-layered Sn 2 S 3 -SnO 2 heterostructure thin films were thus formed. The Sn 2 S 3 -SnO 2 heterostructure thin film exhibited a visible photoassisted room-temperature gas-sensing behavior toward low concentrations of NO 2 gases (0.2-2.5 ppm). By contrast, the pure Sn 2 S 3 thin film exhibited an unapparent room-temperature NO 2 gas-sensing behavior under illumination. The suitable band alignment at the interface of the Sn 2 S 3 -SnO 2 heterostructure thin film and rough surface features might explain the visible photoassisted room-temperature NO 2 gas-sensing responses of the heterostructure thin film on exposure to NO 2 gas at low concentrations in this work.

  1. Highly Reducing Partitioning Experiments Relevant to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury's surface by MESSENGER (K, Na, Fe, Ti, Cl, Al, Cr, Mn, U, Th) and other geochemically relevant elements (P, F, H, N, C, Co, Ni, Mo, Ce, Nd, Sm, Eu, Gd, Dy, Yb) are added to the starting composition at trace abundances (approximately 500 ppm) so that they are close enough to infinite dilution to follow Henry's law of trace elements, and their partitioning behavior can be measured between the metal, silicate, and sulfide phases. The results of these experiments will allow us to assess the thermal and magmatic evolution of the planet Mercury from a geochemical standpoint.

  2. DFT study of adsorption of picric acid molecule on the surface of single-walled ZnO nanotube; as potential new chemical sensor

    NASA Astrophysics Data System (ADS)

    Farmanzadeh, Davood; Tabari, Leila

    2015-01-01

    Using density functional theory (DFT), we have investigated the adsorption of picric acid (PA) molecule on the surface of (8,0) single-walled ZnO nanotube (ZnONT). The results show that the PA molecule can be chemisorbed on the surface of ZnONT with adsorption energies of -82.01 and -75.26 kJ/mol in gas and aqueous phase, respectively. Frontier molecular orbital analysis show that HOMO/LUMO gap of ZnONT reduces from 1.66 and 1.75 eV in the pristine nanotube to 0.83 and 0.72 eV in PA-adsorbed form in gas and aqueous phase, respectively. It suggests that the process can affect the electronic properties of the studied nanotube which would lead to its conductance change upon the adsorption of PA molecule. The modifying effect on the electrical conductance of ZnONT underlies the working mechanism of gas sensors for detecting the PA molecules. Analyses of the adsorption behavior of the electrically charged ZnONT toward PA molecule in the gas phase show that the PA molecule can be strongly adsorbed on the negatively charged ZnONT surface with significant adsorption energy (-135.1 kJ/mol). However, from the HOMO/LUMO gap changes, it can be concluded that the positive ZnONT might sensitively detect the PA molecule in comparison to the negative tube. These results can provide helpful information for experimental investigation to develop novel nanotube-based sensors.

  3. Deformation and Failure Mechanisms of Shape Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Samantha Hayes

    2015-04-15

    The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape memory and superelasticity. These phase transformations occur across multiple length scales (one example being the martensite-austenite twinning that underlies macroscopic strain localization) and result in a large hysteresis. In order to optimize the use of this hysteretic behavior in energy storage and damping applications, we must first have a quantitative understanding of this transformation behavior. Prior resultsmore » on shape memory alloys have been largely qualitative (i.e., mapping phase transformations through cracked oxide coatings or surface morphology). The PI developed and utilized new approaches to provide a quantitative, full-field characterization of phase transformation, conducting a comprehensive suite of experiments across multiple length scales and tying these results to theoretical and computational analysis. The research funded by this award utilized new combinations of scanning electron microscopy, diffraction, digital image correlation, and custom testing equipment and procedures to study phase transformation processes at a wide range of length scales, with a focus at small length scales with spatial resolution on the order of 1 nanometer. These experiments probe the basic connections between length scales during phase transformation. In addition to the insights gained on the fundamental mechanisms driving transformations in shape memory alloys, the unique experimental methodologies developed under this award are applicable to a wide range of solid-to-solid phase transformations and other strain localization mechanisms.« less

  4. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    NASA Astrophysics Data System (ADS)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.

    2005-03-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  5. Wetting phenomenon in the liquid-vapor phase coexistence of a partially miscible Lennard-Jones binary mixture

    NASA Astrophysics Data System (ADS)

    Ramírez-Santiago, Guillermo; Díaz-Herrera, Enrique; Moreno Razo, José A.

    2004-03-01

    We have carried out extensive equilibrium MD simulations to study wetting phenomena in the liquid-vapor phase coexistence of a partially miscible binary LJ mixture. We find that in the temperature range 0.60 ≤ T^* < 0.80, the system separates forming a liquid A-liquid B interface in coexistence with the vapor phase. At higher temperatures, 0.80 ≤ T^* < 1.25 the liquid phases are wet by the vapor phase. By studying the behavior of the surface tension as a function of temperature we estimate the wetting transition temperature (WTT) to be T^*_w≃ 0.80. The adsorption of molecules at the liquid-liquid interface shows a discontinuity at about T^*≃ 0.79 suggesting that the wetting transition is a first order phase transition. These results are in agreement with some experiments carried out in fluid binary mixtures. In addition, we estimated the consolute temperature to be T^* _cons≃ 1.25. The calculated phase diagram of the mixture suggest the existence of a tricritical point.

  6. Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive

    NASA Astrophysics Data System (ADS)

    Ziyaei, E.; Atapour, M.; Edris, H.; Hakimizad, A.

    2017-07-01

    The PEO coating started on magnesium AZ31 using a unipolar DC power source. The coating was generated in the electrolyte based on Na3PO4·12H2O and KOH with calcium acetate as additive. The x-ray diffraction method showed some phases containing calcium and phosphate, which was created in the presence of additive. Also, the EDS tests of the sample's surfaces proved the existence of calcium on the surface. Based on the electrochemical tests results, the most corrosion resistance belongs to the sample with calcium acetate additive. In fact, the results of the EIS tests showed the coating with calcium acetate has the highest resistance but the lowest capacitance. However, this state belongs to the surface morphology, the lower porosity, and surface chemical composition.

  7. A study of surface tension driven segregation in monotectic alloy systems

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Andrews, Rosalia N.; Gowens, Terrell F.

    1988-01-01

    The compatibilities of various monotectic alloy systems with several different crucible materials were evaluated. The study was carried out using small candidate alloy samples of compositions that produced fifty volume percent of each liquid phase at the monotectic temperature. Compatibility was based on the evaluation of the wetting tendency of the two immiscible phases with the crucible material in a one-g solidified sample. Three types of wetting phenomena were observed during the evaluation. Type 1 indicates an alloy-crucible combination where the L2 phase preferentially wets the crucible material. Since L2 is usually the minority phase in desirable alloys, this material combination would be difficult to process and is therefore considered incompatible. Type 2 behavior indicates an alloy-crucible combination where the L1 phase preferentially wets the crucible material. This type of combination is considered compatible since surface tension effects should aid in processing the alloy to a useful form. Type 3 indicates any combination that leads to major reactions between the alloy and crucible material, gas entrapment, or separation of the metal from the crucible wall. Additional compatibility evaluations would have to be carried out on combinations of this category. The five alloy systems studied included aluminum-bismuth, copper-lead, aluminum-indium, aluminum-lead and cadmium-gallium. The systems were combined with crucibles of alumina, boron nitride, mullite, quartz, silicon carbide and zirconia.

  8. Phase diagrams of nonionic foam films: construction by means of disjoining pressure versus thickness curves.

    PubMed

    Stubenrauch, Cosima; Kashchiev, Dimo; Strey, Reinhard

    2004-12-01

    The thickness h of foam films can be measured as a function of the disjoining pressure Pi using a thin film pressure balance. Experimental Pi-h curves of foam films stabilized with nonionic surfactants measured at various concentrations resemble the p-V(m) isotherms of real gases measured at various temperatures (p is the pressure and V(m) is the molar volume of the gas). This observation led us to adopt the van der Waals approach for describing real gases to thin foam films, where the thickness h takes the role of V(m) and the disjoining pressure Pi replaces the ordinary pressure p. Our analysis results in a phase diagram for a thin foam film with spinodal, binodal as well as a critical point. The thicker common black film corresponds to the gas phase and the compact Newton black film for which the two surfaces are in direct contact corresponds to the dense liquid. We show that the tuning parameter for the phase behavior of the film is the surface charge density, which means that Pi-h curves should not be referred to as isotherms. In addition to the equilibrium properties the driving force for the phase transition from a common black film to a Newton black film or vice versa is calculated. We discuss how this transition can be controlled experimentally.

  9. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F.

    In this work, a phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equationmore » and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.« less

  10. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    PubMed Central

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  11. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  12. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.

    PubMed

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  13. Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    NASA Astrophysics Data System (ADS)

    Ye, Xinyu; Cai, Shu; Dou, Ying; Xu, Guohua; Huang, Kai; Ren, Mengguo; Wang, Xuexin

    2012-10-01

    In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na2Ca2Si3O9, with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (Ecorr) form -1.60 V to -1.48 V, and a reduction of corrosion current density (icorr) from 4.48 μA cm-2 to 0.16 μA cm-2, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  14. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    DOE PAGES

    de Almeida, Valmor F.

    2017-04-19

    In this work, a phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equationmore » and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.« less

  15. Molecular dynamics (MD) studies on phase transformation and deformation behaviors in FCC metals and alloys

    NASA Astrophysics Data System (ADS)

    Qi, Yue

    This thesis focused on the phase transformation and deformation behaviors in face center cubic (FCC) metals and alloys. These studies used the new quantum modified Sutton-Chen (QMSC) many-body potentials for Cu, Ni, Ag, and Au and for their alloys through simple combination rules. Various systems and processes are simulated by standard equilibrium molecular dynamics (MD), quasi-static equilibrium MD and non-equilibrium MD (NEMD), cooperated with different periodic boundary conditions. The main topics include: (1) Melting, glass formation, and crystallization processes in bulk alloys. In our simulation CuNi and pure Cu always form an FCC crystal, while Cu4Ag6 always forms glass (with Tg decreasing as the quench rate increases) due to the large atomic size difference. (2) Size effects in melting and crystallization in Ni nano clusters. There is a transition from cluster or molecular regime (where the icosahedral is the stable structure) below ˜500 atoms to a mesoscale regime (with well-defined bulk and surface properties and surface melting processes, which leads to Tm,N = Tm,B - alpha N-1/3) above ˜750 atoms. (3) The deformation behavior of metallic nanowires of pure Ni, NiCu and NiAu alloys, under high rates of uniaxial tensile strain, ranging from 5*108/s to 5*1010/s. We find that deformation proceeds through twinning and coherent slipping at low strain rate and amorphization at high strain rate. This research provides a new method, fast straining, to induce amorphization except fast cooling and disordering. (4) The calculation of the ½ <110> screw dislocation in nickel (Ni). We calculated the core energy of screw dislocation after dissociation is 0.5 eV/b, the annihilation process of opposite signed dislocations depends dramatically on the configurations of dissociation planes and the cross-slip energy barrier is 0.1eV/b. (5) Friction anisotropy on clean Ni(100)/(100) interface. We found that static friction coefficient on flat and incommensurate interface is close to zero (as analytical theory predicted), however, the calculation show the same anisotropic behavior as experiments on rough surface, thus explained the difference between theory and experiments.

  16. Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: Physical versus chemical nonequilibrium model

    USGS Publications Warehouse

    Greskowiak, J.; Hay, M.B.; Prommer, H.; Liu, C.; Post, V.E.A.; Ma, R.; Davis, J.A.; Zheng, C.; Zachara, J.M.

    2011-01-01

    Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals. Copyright 2011 by the American Geophysical Union.

  17. Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid

    PubMed Central

    Nakahara, Hiromichi; Lee, Sannamu; Shibata, Osamu

    2009-01-01

    Interfacial behavior was studied in pulmonary surfactant model systems containing an amphiphilic α-helical peptide (Hel 13-5), which consists of 13 hydrophobic and five hydrophilic amino acid residues. Fully saturated phospholipids of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) were utilized to understand specific interactions between anionic DPPG and cationic Hel 13-5 for pulmonary functions. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of DPPG/Hel 13-5 and DPPC/DPPG (4:1, mol/mol)/Hel 13-5 preparations were measured to obtain basic information on the phase behavior under compression and expansion processes. The interaction leads to a variation in squeeze-out surface pressures against a mole fraction of Hel 13-5, where Hel 13-5 is eliminated from the surface on compression. The phase behavior was visualized by means of Brewster angle microscopy, fluorescence microscopy, and atomic force microscopy. At low surface pressures, the formation of differently ordered domains in size and shape is induced by electrostatic interactions. The domains independently grow upon compression to high surface pressures, especially in the DPPG/Hel 13-5 system. Under the further compression process, protrusion masses are formed in AFM images in the vicinity of squeeze-out pressures. The protrusion masses, which are attributed to the squeezed-out Hel 13-5, grow larger in lateral size with increasing DPPG content in phospholipid compositions. During subsequent expansion up to 35 mN m−1, the protrusions retain their height and lateral diameter for the DPPG/Hel 13-5 system, whereas the protrusions become smaller for the DPPC/Hel 13-5 and DPPC/DPPG/Hel 13-5 systems due to a reentrance of the ejected Hel 13-5 into the surface. In this work we detected for the first time, to our knowledge, a remarkably large hysteresis loop for cyclic ΔV-A isotherms of the binary DPPG/Hel 13-5 preparation. This exciting phenomenon suggests that the specific interaction triggers two completely independent processes for Hel 13-5 during repeated compression and expansion: 1), squeezing-out into the subsolution; and 2), and close packing as a monolayer with DPPG at the interface. These characteristic processes are also strongly supported by atomic force microscopy observations. The data presented here provide complementary information on the mechanism and importance of the specific interaction between the phosphatidylglycerol headgroup and the polarized moiety of native surfactant protein B for biophysical functions of pulmonary surfactants. PMID:19217859

  18. The nanophase iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Gehring, A. U.

    1992-01-01

    Iron-enriched smectites have been suggested as important mineral compounds of the Martian soil. They were shown to comply with the chemical analysis of the Martian soil, to simulate many of the findings of the Viking Labeled Release Experiments on Mars, to have spectral reflectance in the VIS-NIR strongly resembling the bright regions on Mars. The analogy with Mars soil is based, in a number of aspects, on the nature and behavior of the iron oxides and oxyhydroxides deposited on the surface of the clay particles. A summary of the properties of these iron phases and some recent findings are presented. Their potential relevance to Mars surface processes is discussed.

  19. Substrate-Independent Epitaxial Growth of the Metal-Organic Framework MOF-508a.

    PubMed

    Wilson, M; Barrientos-Palomo, S N; Stevens, P C; Mitchell, N L; Oswald, G; Nagaraja, C M; Badyal, J P S

    2018-01-31

    Plasmachemical deposition is a substrate-independent method for the conformal surface functionalization of solid substrates. Structurally well-defined pulsed plasma deposited poly(1-allylimidazole) layers provide surface imidazole linker groups for the directed liquid-phase epitaxial (layer-by-layer) growth of metal-organic frameworks (MOFs) at room temperature. For the case of microporous [Zn (benzene-1,4-dicarboxylate)-(4,4'-bipyridine) 0.5 ] (MOF-508), the MOF-508a polymorph containing two interpenetrating crystal lattice frameworks undergoes orientated Volmer-Weber growth and displays CO 2 gas capture behavior at atmospheric concentrations in proportion to the number of epitaxially grown MOF-508 layers.

  20. Numerical analysis of deposition frequency for successive droplets coalescence dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoding; Zhu, Yunlong; Zhang, Lei; Zhang, Dingyi; Ku, Tao

    2018-04-01

    A pseudopotential based multi-relaxation-time lattice Boltzmann model is employed to investigate the dynamic behaviors of successive droplets' impact and coalescence on a solid surface. The effects of deposition frequency on the morphology of the formed line are investigated with a zero receding contact angle by analyzing the droplet-to-droplet coalescence dynamics. Two collision modes (in-phase mode and out-of-phase mode) between the pre-deposited bead and the subsequent droplet are identified depending on the deposition frequency. A uniform line can be obtained at the optimal droplet spacing in the in-phase mode (Δt* < 1.875). However, a scalloped line pattern is formed in the out-of-phase mode (Δt* > 1.875). It is found that decreasing the droplet spacing or advancing contact angle can improve the smoothness of line in the out-of-phase mode. Furthermore, the effects of deposition frequency on the morphology of the formed lines are validated to be applicable to cases with a finite receding contact angle.

Top