Three-phase bone scan in osteomyelitis and other musculoskeletal disorders.
Sutter, C W; Shelton, D K
1996-10-01
The three-phase bone scan is very sensitive and is the study of choice in the evaluation of patients with suspected osteomyelitis and normal radiographs. If the underlying bone pathology, such as a healing fracture or degenerative disease, is detected on radiographs of the bone, the indium-111-labeled autologous leukocyte scan is the most cost-effective second study. When fracture of the long bones is clinically suspected but radiographs are normal and a delay in definitive diagnosis is acceptable, it is practical and economical to take follow-up films in 10 to 14 days. In cases requiring prompt diagnosis or when follow-up radiographic films are not diagnostic, the three-phase bone scan is the most cost-effective study. The three-phase bone scan is also used in the evaluation of occupational and sports injuries, including shin splints, stress and occult fractures, enthesiopathies and reflex sympathetic dystrophy.
Ewing sarcoma of the rib with normal blood flow and blood pool imagings on a 3-phase bone scan.
Alfeeli, Mahmoud A; Naddaf, Sleiman Y; Syed, Ghulam M S
2005-09-01
Ewing sarcoma is the second most common pediatric malignant bone tumor. It usually presents as a hot spot on a 3-phase bone scan as a result of increased vascularity of the tumor and new bone formation. However, aggressive Ewing sarcoma can also appear as a cold lesion. We present the features of a Ewing sarcoma of the rib on a 3-phase bone scan in a child who was being investigated for rib fracture after trauma.
... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...
Technical errors in planar bone scanning.
Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M
2004-09-01
Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.
Assessment of imaging quality in magnified phase CT of human bone tissue at the nanoscale
NASA Astrophysics Data System (ADS)
Yu, Boliang; Langer, Max; Pacureanu, Alexandra; Gauthier, Remy; Follet, Helene; Mitton, David; Olivier, Cecile; Cloetens, Peter; Peyrin, Francoise
2017-10-01
Bone properties at all length scales have a major impact on the fracture risk in disease such as osteoporosis. However, quantitative 3D data on bone tissue at the cellular scale are still rare. Here we propose to use magnified X-ray phase nano-CT to quantify bone ultra-structure in human bone, on the new setup developed on the beamline ID16A at the ESRF, Grenoble. Obtaining 3D images requires the application of phase retrieval prior to tomographic reconstruction. Phase retrieval is an ill-posed problem for which various approaches have been developed. Since image quality has a strong impact on the further quantification of bone tissue, our aim here is to evaluate different phase retrieval methods for imaging bone samples at the cellular scale. Samples from femurs of female donors were scanned using magnified phase nano-CT at voxel sizes of 120 and 30 nm with an energy of 33 keV. Four CT scans at varying sample-to-detector distances were acquired for each sample. We evaluated three phase retrieval methods adapted to these conditions: Paganin's method at single distance, Paganin's method extended to multiple distances, and the contrast transfer function (CTF) approach for pure phase objects. These methods were used as initialization to an iterative refinement step. Our results based on visual and quantitative assessment show that the use of several distances (as opposed to single one) clearly improves image quality and the two multi-distance phase retrieval methods give similar results. First results on the segmentation of osteocyte lacunae and canaliculi from such images are presented.
Bone scan as a screening test for missed fractures in severely injured patients.
Lee, K-J; Jung, K; Kim, J; Kwon, J
2014-12-01
In many cases, patients with severe blunt trauma have multiple fractures throughout the body. These fractures are not often detectable by history or physical examination, and their diagnosis can be delayed or even missed. Thus, screening test fractures of the whole body is required after initial management. We performed this study to evaluate the reliability of bone scans for detecting missed fractures in patients with multiple severe traumas and we analyzed the causes of missed fractures by using bone scan. A bone scan is useful as a screening test for fractures of the entire body of severe trauma patients who are passed the acute phase. We reviewed the electronic medical records of severe trauma patients who underwent a bone scan from September 2009 to December 2010. Demographic and medical data were compared and statistically analyzed to determine whether missed fractures were detected after bone scan in the two groups. A total of 382 patients who had an injury severity score [ISS] greater than 16 points with multiple traumas visited the emergency room. One hundred and thirty-one patients underwent bone scan and 81 patients were identified with missed fractures by bone scan. The most frequent location for missed fractures was the rib area (55 cases, 41.98%), followed by the extremities (42 cases, 32.06%). The missed fractures that required surgery or splint were most common in extremities (11 cases). In univariate analysis, higher ISS scores and mechanism of injury were related with the probability that missed fractures would be found with a bone scan. The ISS score was statistically significant in multivariate analysis. Bone scan is an effective method of detecting missed fractures among patients with multiple severe traumas. Level IV, retrospective study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Atlas of computerized blood flow analysis in bone disease.
Gandsman, E J; Deutsch, S D; Tyson, I B
1983-11-01
The role of computerized blood flow analysis in routine bone scanning is reviewed. Cases illustrating the technique include proven diagnoses of toxic synovitis, Legg-Perthes disease, arthritis, avascular necrosis of the hip, fractures, benign and malignant tumors, Paget's disease, cellulitis, osteomyelitis, and shin splints. Several examples also show the use of the technique in monitoring treatment. The use of quantitative data from the blood flow, bone uptake phase, and static images suggests specific diagnostic patterns for each of the diseases presented in this atlas. Thus, this technique enables increased accuracy in the interpretation of the radionuclide bone scan.
Bernardoni, Brittney; Scerpella, Tamara A.; Rosenbaum, Paula F.; Kanaley, Jill A.; Raab, Lindsay N.; Li, Quefeng; Wang, Sijian; Dowthwaite, Jodi N.
2015-01-01
We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semi-annual records of anthropometry, maturity and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year pre-menarche [predictor] and ~5 years post-menarche [dependent variable]). Regression analysis evaluated total adolescent inter-scan PA and PA over 3 maturity sub-phases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry and strength indices at non-dominant distal radius and femoral neck; 2) sub-head BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or post-menarche), baseline bone status, adult body size and inter-scan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p<0.07). Pre-menarcheal bone traits were strong predictors of most adult outcomes (semi-partial r2 = 0.21-0.59, p≤0.001). Adult 1/3 radius and sub-head BMC were predicted by both total PA and PA 1-3 years post-menarche (p<0.03). PA 3-5 years post-menarche predicted femoral narrow neck width, endosteal diameter and buckling ratio (p<0.05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females. PMID:25386845
Giannini, C.; Siliqi, D.; Bunk, O.; Beraudi, A.; Ladisa, M.; Altamura, D.; Stea, S.; Baruffaldi, F.
2012-01-01
Scanning small and wide angle X-ray scattering (scanning SWAXS) experiments were performed on healthy and pathologic human bone sections. Via crystallographic tools the data were transformed into quantitative images and as such compared with circularly polarized light (CPL) microscopy images. SWAXS and CPL images allowed extracting information of the mineral nanocrystalline phase embedded, with and without preferred orientation, in the collagen fibrils, mapping local changes at sub-osteon resolution. This favorable combination has been applied for the first time to biopsies of dwarfism syndrome and Paget's disease to shed light onto the cortical structure of natural bone in healthy and pathologic sections. PMID:22666538
Triple-phase bone image abnormalities in Lyme arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.J.; Dadparvar, S.; Slizofski, W.J.
1989-10-01
Arthritis is a frequent manifestation of Lyme disease. Limited triple-phase Tc-99m MDP bone imaging of the wrists and hands with delayed whole-body images was performed in a patient with Lyme arthritis. This demonstrated abnormal joint uptake in the wrists and hands in all three phases, with increased activity seen in other affected joints on delayed whole-body images. These findings are nonspecific and have been previously described in a variety of rheumatologic conditions, but not in Lyme disease. Lyme disease should be considered in the differential diagnosis of articular and periarticular bone scan abnormalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, S.G.; Van Nostrand, D.; Savory, C.G.
1990-03-01
Although few studies address the use of three-phase bone scanning (TPBS) and indium-111-labeled white blood cell scintigraphy ({sup 111}In-WBC) in hip arthroplasty utilizing a porous-coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen with the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous-coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and {sup 111I}n-WBC at approximately 7 days, and 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the acetabulum. All 25 prostheses (144 of 144 scans)more » demonstrated increased uptake on the bone-phase images. Although this activity decreased with time, 76% had persistent uptake at 24 mo. Twenty-three of 25 prostheses (126 of 140 scans) showed increased uptake on {sup 111}In-WBC scintigraphy, invariably decreasing with time, but with 37% having significant uptake at 24 mo. Scintigraphic patterns in the uncomplicated porous-coated hip arthroplasty patient appear to differ from patterns described in cemented prostheses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, S.G.; Van Nostrand, D.; Savory, C.G.
1989-08-01
Although few reports address the use of three-phase bone scanning (TPBS) and {sup 111}In-labeled white blood cell (In-WBC) scintigraphy in hip arthroplasty utilizing a porous coated prosthesis, the literature suggests that scintigraphic patterns in the uncomplicated patient may differ from that seen in the cemented prosthesis. In an attempt to determine the scintigraphic natural history, 25 uncomplicated porous coated hip arthroplasties in 21 patients were prospectively studied with serial TPBS and In-WBC at approximately 7 days, and at 3, 6, 12, 18, and 24 mo postoperatively. This report deals with findings related to the prosthetic tip. Only one of 136more » flow studies were abnormal and only two of 136 blood-pool images demonstrated focally increased activity. All 25 prostheses (120 of 143 scans) demonstrated increased uptake on the bone phase images. The area about the tip was divided into three segments; increased uptake at 24 mo was noted in the medial, distal, and lateral segments in 16%, 72%, and 56% of prostheses, respectively. Twenty of 25 prostheses (82 of 142 scans) showed uptake on In-WBC scintigraphy, being noted in 48% of prostheses at 24 mo. We conclude that scintigraphic patterns in the uncomplicated patient with a porous coated prosthesis appear to differ from patterns described in cemented prostheses.« less
Granados, U; Fuster, D; Soriano, A; García, S; Bori, G; Martínez, J C; Mayoral, M; Perlaza, P; Tomás, X; Pons, F
2015-01-01
To evaluate the impact of the angioscintigrapy of the three phase bone scan as screening method to rule out infection of the hip and knee prosthesis prior to performing the (99m)Tc-HMPAO leukocyte scintigraphy. A total of 120 (70 women, 50 men; mean age 71±11years) with clinical suspicion of hip (n=63) or knee (n=57) infection of the prosthesis and clinical suspicion of infection were evaluated prospectively. All patients underwent three-phase bone scan (angioscintigraphy, vascular and bone phase) and (99m)Tc-HMPAO-labelled white blood cell scintigraphy. Final diagnosis of infection was made by microbiological documentation or clinical follow-up for at least 12months. Eighteen out of 120 patients were diagnosed of infection of hip prosthesis (n=10) or knee prosthesis (n=8). The angioscintigraphy was positive in 15/18 infected cases and in 21/102 of the non-infected cases with a sensitivity of 83%, specificity of 79% and negative predictive value of 97%. Sensitivity and specificity of (99m)Tc-HMPAO leukocyte scintigraphy were 72% and 95%, respectively. If the leukocyte labeled scintigraphies had been used exclusively for patients with positive angioscintigraphy, this would have saved up to 70% of the (99m)Tc-HMPAO leukocyte scintigraphies performed. There were no cases of infection with positive labeled leukocyte scintigraphy and negative angioscintigraphy. Angioscintigraphy (blood flow phase of bone scan) is a useful technique for screening for hip and knee joint prosthesis infection, significantly reducing the need for (99m)Tc-HMPAO leukocyte scintigraphy without affecting the sensitivity of the technique. Copyright © 2014 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Synchrotron-based XRD from rat bone of different age groups.
Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T
2017-05-01
Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca 10 (PO 4 ) 6 (OH) 2 ] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A 0 ). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6 3 /m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution. Copyright © 2017 Elsevier B.V. All rights reserved.
X-ray micro-beam techniques and phase contrast tomography applied to biomaterials
NASA Astrophysics Data System (ADS)
Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia
2015-12-01
A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.
Magnetic resonance imaging in stress fractures and shin splints.
Aoki, Yoshimitsu; Yasuda, Kazunori; Tohyama, Harukazu; Ito, Hirokazu; Minami, Akio
2004-04-01
The purpose of the current study was to determine whether stress fractures and shin splints could be discriminated with MRI in the early phase. Twenty-two athletes, who had pain in the middle or distal part of their leg during or after sports activity, were evaluated with radiographs and MRI scans. Stress fractures were diagnosed when consecutive radiographs showed local periosteal reaction or a fracture line, and shin splints were diagnosed in all the other cases. In all eight patients with stress fractures, an abnormally wide high signal in the localized bone marrow was the most detectable in the coronal fat-suppressed MRI scan. In 11 patients with shin splints, the coronal fat-suppressed MRI scans showed a linear abnormally high signal along the medial posterior surface of the tibia, and in seven patients with shin splints, the MRI scans showed a linear abnormally high signal along the medial bone marrow. No MRI scans of shin splints showed an abnormally wide high signal in the bone marrow as observed on MRI scans of stress fractures. This study showed that fat-suppressed MRI is useful for discrimination between stress fracture and shin splints before radiographs show a detectable periosteal reaction in the tibia.
Toelly, Andrea; Bardach, Constanze; Weber, Michael; Gong, Rui; Lai, Yanbo; Wang, Pei; Guo, Yulin; Kirschke, Jan; Baum, Thomas; Gruber, Michael
2017-06-01
Aim To evaluate the differences in phantom-less bone mineral density (BMD) measurements in contrast-enhanced routine MDCT scans at different contrast phases, and to develop an algorithm for calculating a reliable BMD value. Materials and Methods 112 postmenopausal women from the age of 40 to 77 years (mean age: 57.31 years; SD 9.61) who underwent a clinically indicated MDCT scan, consisting of an unenhanced, an arterial, and a venous phase, were included. A retrospective analysis of the BMD values of the Th12 to L4 vertebrae in each phase was performed using a commercially available phantom-less measurement tool. Results The mean BMD value in the unenhanced MDCT scans was 79.76 mg/cm³ (SD 31.20), in the arterial phase it was 85.09 mg/cm³ (SD 31.61), and in the venous phase it was 86.18 mg/cm³ (SD 31.30). A significant difference (p < 0.001) was found between BMD values on unenhanced and contrast-enhanced MDCT scans. There was no significant difference between BMD values in the arterial and venous phases (p = 0.228). The following conversion formulas were calculated using linear regression: unenhanced BMD = -2.287 + 0.964 * [arterial BMD value] and -4.517 + 0.978 * [venous BMD value]. The intrarater agreement of BMD measurements was calculated with an intraclass correlation (ICC) of 0.984 and the interobserver reliability was calculated with an ICC of 0.991. Conclusion Phantom-less BMD measurements in contrast-enhanced MDCT scans result in increased mean BMD values, but, with the formulas applied in our study, a reliable BMD value can be calculated. However, the mean BMD values did not differ significantly between the arterial and venous phases. Key points · BMD can be assessed on routine CT scans using a phantom-less tool.. · i. v. contrast agent significantly elevates BMD values measured on routine CT scans.. · BMD values measured in the arterial and venous phase did not differ significantly.. · Conversion formulas were defined for the calculation of a reliable BMD.. · The phantom-less tool showed good reliability and is a promising method.. Citation Format · Toelly A, Bardach C, Weber M et al. Influence of Contrast Media on Bone Mineral Density (BMD) Measurements from Routine Contrast-Enhanced MDCT Datasets using a Phantom-less BMD Measurement Tool. Fortschr Röntgenstr 2017; 189: 537 - 543. © Georg Thieme Verlag KG Stuttgart · New York.
Bone scintigraphy in the investigation of occult lameness in the dog.
Schwarz, T; Johnson, V S; Voute, L; Sullivan, M
2004-05-01
99mTechnetium methylene diphosphonate (99mTc-MDP) scintigraphy was performed in 14 dogs of different breeds after clinical lameness examination, radiography and synovial fluid analysis failed to localise lameness to a specific area of pain. The scintigraphic protocol included an intravenous injection of 17 MBq 99mTc-MDP/kg bodyweight and vascular, soft tissue and bone phase scans in standardised positions with a low-energy all-purpose collimator. Confirmation of diagnosis was achieved in nine dogs by arthroscopy, repeated lesion-orientated radiography, computed tomography and response to treatment. In seven cases, bone phase scans showed single elbow uptakes, in two cases unilateral limb uptake, and in one case each a single shoulder and tibia uptake; in three cases there was no increased uptake. Vascular and soft tissue phase images did not reveal additional information. Diagnosis of humeral condyle fissures, a fragmented medial coronoid process, panosteitis and arthropathy was possible in nine cases. Skeletal pathology was ruled out in three normal scintigrams. In two dogs with unilateral uptake of multiple joints, no diagnostic benefit was gained from scintigraphy. The highly sensitive and relatively specific uptake allowed localisation and characterisation or exclusion of skeletal lesions in most dogs.
Heterotopic ossification revisited.
Mavrogenis, Andreas F; Soucacos, Panayotis N; Papagelopoulos, Panayiotis J
2011-03-11
Heterotopic ossification is the abnormal formation of mature lamellar bone within extraskeletal soft tissues where bone does not exist. Heterotopic ossification has been classified into posttraumatic, nontraumatic or neurogenic, and myositis ossificans progressiva or fibrodysplasia ossificans progressive. The pathophysiology is unknown. Anatomically, heterotopic ossification occurs outside the joint capsule without disrupting it. The new bone can be contiguous with the skeleton but generally does not involve the periosteum. Three-phase technetium-99m (99mTc) methylene diphosphonate bone scan is the most sensitive imaging modality for early detection and assessing the maturity of heterotopic ossification. Nonsurgical treatment with indomethacin and radiation therapy is appropriate for prophylaxis or early treatment of heterotopic ossification. Although bisphosphonates are effective prophylaxis if initiated shortly after the trauma, mineralization of the bone matrix resumes after drug discontinuation. During the acute inflammatory stage, the patient should rest the involved joint in a functional position; once acute inflammatory signs subside, passive range of motion exercises and continued mobilization are indicated. Surgical indications for excision of heterotopic ossification include improvement of function, standing posture, sitting or ambulation, independent dressing, feeding and hygiene, and repeated pressure sores from underlying bone mass. The optimal timing of surgery has been suggested to be a delay of 12 to 18 months until radiographic evidence of heterotopic ossification maturation and maximal recovery after neurological injury. The ideal candidate for surgical treatment before 18 months should have no joint pain or swelling, a normal alkaline phosphatase level, and 3-phase bone scan indicating mature heterotopic ossification. Copyright 2011, SLACK Incorporated.
First experience with early dynamic (18)F-NaF-PET/CT in patients with chronic osteomyelitis.
Freesmeyer, Martin; Stecker, Franz F; Schierz, Jan-Henning; Hofmann, Gunther O; Winkens, Thomas
2014-05-01
This study investigates whether early dynamic positron emission tomography/computed tomography (edPET/CT) using (18)F-sodium fluoride-((18)F-NaF) is feasible in depicting early phases of radiotracer distribution in patients with chronic osteomyelitis (COM). A total of 12 ed(18)F-NaF-PET/CT examinations were performed on 11 consecutive patients (2 female, 9 male; age 53 ± 12 years) in list mode over 5 min starting with radiopharmaceutical injection before standard late (18)F-NaF-PET/CT. Eight consecutive time intervals (frames) were reconstructed for each patient: four 15 s, then four 60 s. Several volumes of interest (VOI) were selected, representing the affected area as well as different reference areas within the bone and soft tissue. Maximum and mean ed standardized uptake values (edSUVmax, edSUVmean, respectively) were calculated in each VOI during each frame to measure early fluoride influx and accumulation. Results were compared between affected and non-affected (contralateral) bones. Starting in the 31-45 s frame, the affected bone area showed significantly higher edSUVmax and edSUVmean compared to the healthy contralateral region. The affected bone areas also significantly differed from non-affected contralateral regions in conventional late (18)F-NaF-PET/CT. This pilot study suggests that, in patients with COM, ed(18)F-NaF -PET offers additional information about early radiotracer distribution to standard (18)F-NaF -PET/CT, similar to a three-phase bone scan. The results should be validated in larger trials which directly compare ed(18)F-NaF-PET to a three-phase bone scan.
Differentiating Stress Fracture From Periostitis.
Martire, J R
1994-10-01
In brief Even in the age of high-technology MRI and CT, the triple-phase bone scan (TPBS) remains an exceptionally useful and accurate tool in evaluating athletic injuries. This is perhaps best seen in active people with overuse injuries of the tibia, femur, or humerus when plain films are negative but bone pain persists. Differentiating periostitis from stress fracture requires analyzing distinctive TPBS appearances and patterns.
Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma
2012-01-01
Background Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. Methods We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. Results The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately). In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053) represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.003, univariately) and overall survival (P = 0.037, univariately). In multivariate comparison, absence of preoperative bone scan was independently associated with inferior bone recurrence-free survival (P = 0.009, odds ratio: 5.832) and overall survival (P = 0.029, odds ratio: 1.603). Conclusions Absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival, suggesting that whole-body bone scan should be performed before esophagectomy in patients with esophageal squamous cell carcinoma, especially in patients with advanced stages. PMID:22853826
Bone Densitometry (Bone Density Scan)
... News Physician Resources Professions Site Index A-Z Bone Densitometry (DEXA) Bone densitometry, also called dual-energy ... limitations of DEXA Bone Densitometry? What is a Bone Density Scan (DEXA)? Bone density scanning, also called ...
Sklaroff, R B; Sklaroff, D M
1976-07-01
Sixty-four women with Stage II breast cancer who had Sr85 bone scans at the time of radical mastectomy were followed for 8 years in a prospective study. Those women with positive scans had a slight, but statistically significant, increased incidence of metastic disease, particularly for metastases to bone.However, 40% of those women with positive bone scans and negative roentgenograms survived 8 years without evidence of any metastatic disease. Therefore, it has not been shown at this time that bone scans should be obtained in order to exclude bone metastasis before regional therapy for breast cancer is instituted. Also, a significant percentage of women with negative bone scans developed both bone and soft tissue metastases. As many as 30% of asymptomatic women with a history of breast cancer and positive bone scans and negative bone roentgenograms may still harbor disease in bone after 8 years.
Boyde, A; Vesely, P; Gray, C; Jones, S J
1994-01-01
Chick and rat bone-derived cells were mounted in sealed coverslip-covered chambers; individual osteoclasts (but also osteoblasts) were selected and studied at 37 degrees C using three different types of high-speed scanning confocal microscopes: (1) A Noran Tandem Scanning Microscope (TSM) was used with a low light level, cooled CCD camera for image transfer to a Noran TN8502 frame store-based image analysing computer to make time lapse movie sequences using 0.1 s exposure periods, thus losing some of the advantage of the high frame rate of the TSM. Rapid focus adjustment using computer controlled piezo drivers permitted two or more focus planes to be imaged sequentially: thus (with additional light-source shuttering) the reflection confocal image could be alternated with the phase contrast image at a different focus. Individual cells were followed for up to 5 days, suggesting no significant irradiation problem. (2) Exceptional temporal and spatial resolution is available in video rate laser confocal scanning microscopes (VRCSLMs). We used the Noran Odyssey unitary beam VRCSLM with an argon ion laser at 488 nm and acousto-optic deflection (AOD) on the line axis: this instrument is truly and adjustably confocal in the reflection mode. (3) We also used the Lasertec 1LM11 line scan instrument, with an He-Ne laser at 633 nm, and AOD for the frame scan. We discuss the technical problems and merits of the different approaches. The VRCSLMs documented rapid, real-time oscillatory motion: all the methods used show rapid net movement of organelles within bone cells. The interference reflection mode gives particularly strong contrasts in confocal instruments. Phase contrast and other interference methods used in the microscopy of living cells can be used simultaneously in the TSM.
Gasparetto, Emerson L; Souza, Carolina A; Tazoniero, Priscilla; Davaus, Taisa; Escuissato, Dante L; Marchiori, Edson
2007-02-01
The aim of this study was to present the clinical and high-resolution CT scan findings of angioinvasive pulmonary aspergillosis (APA) in 12 patients who underwent allogeneic bone marrow transplantation (BMT). The CT scans were reviewed by three chest radiologists who assessed the pattern and distribution of findings by consent. There were 7 (58%) female and 5 (42%) male patients, with aging between 5 and 50 years (average of 26 years). All patients were submitted to BMT for the treatment of hematological conditions. The diagnosis of APA was defined between 5 and 373 days after BMT, with average of 111 days. Three cases (25%) were diagnosed in the neutropenic phase after the BMT, five (42%) in the early phase and four patients in the late phase post-BMT. Regarding high-resolution CT (HRCT) scan findings, nodules were found in 75% of the cases (9/12), most of the cases with more than 10 lesions (7/9) and of centrilobular localization (6/9). Consolidations were identified in seven patients (58%), being single in six, and commonly presenting ill defined borders (n=3) and subsegmental localization (n=5). Ground glass attenuation was found in six patients (50%). The halo sign was observed in nine cases (75%). Cavitations were seen in two air-space consolidations and one large nodule (2.5 cm). Patients submitted to BMT presenting respiratory symptoms and nodules or consolidations with halo sign at HRCT scan need to have the diagnosis of angioinvasive pulmonary aspergillosis included in all the post BMT phases.
Gauguet, Jean-Marc; Pace-Emerson, Tamara; Grant, Frederick D; Shusterman, Suzanne; DuBois, Steven G; Frazier, A Lindsay; Voss, Stephan D
2017-11-01
Accurate staging of neuroblastoma requires multiple imaging examinations. The purpose of this study was to determine the relative contribution of 99m Tc-methylene diphosphonate (MDP) bone scintigraphy (bone scan) versus metaiodobenzylguanidine scintigraphy (MIBG scan) for accurate staging of neuroblastoma. A medical record search by the identified patients with neuroblastoma from 1993 to 2012 who underwent both MIBG and bone scan for disease staging. Cross-sectional imaging was used to corroborate the scintigraphy results. Clinical records were used to correlate imaging findings with clinical staging and patient management. One hundred thirty-two patients underwent both MIBG and bone scan for diagnosis. All stage 1 (n = 12), 2 (n = 8), and 4S (n = 4) patients had a normal bone scan with no skeletal MIBG uptake. Six of 30 stage 3 patients had false (+) bone scans. In the 78 stage 4 patients, 58/78 (74%) were both skeletal MIBG(+)/bone scan (+). In 56 of the 58 cases, skeletal involvement detected with MIBG was equal to or greater than that detected by bone scan. Only 3/78 had (-) skeletal MIBG uptake and (+) bone scans; all 3 had other sites of metastatic disease. Five of 78 had (+) skeletal MIBG with a (-) bone scan, while 12/78 had no skeletal involvement by either MIBG or bone scan. In no case did a positive bone scan alone determine a stage 4 designation. In the staging of neuroblastoma, 99m Tc-MDP bone scintigraphy does not identify unique sites of disease that affect disease stage or clinical management, and in the majority of cases bone scans can be omitted from the routine neuroblastoma staging algorithm. © 2017 Wiley Periodicals, Inc.
Sponer, P; Urban, K; Urbanová, E
2006-06-01
The aim of the study was to demonstrate, by three-phase bone scintigraphy, radionuclide uptake at the site of defects in long bones filled with the non-resorbable bioactive glass-ceramic material BAS-0 at a long follow-up. Twenty patients, 14 men and 6 women, operated on between 1990 and 2000 for benign bone tumors or tumor-like lesions localized in the femur, tibia or humerus were comprised in the study. Their average age at the time of operation was 14 years (range, 8 to 24). The diagnoses based on histological examination included juvenile bone cysts in 11, aneurysmal bone cyst in five, non-ossifying fibroma in two, and fibrous dysplasia in two patients. The lesions were localized in the femur, humerus and tibia in 11, five and four patients, respectively. The metaphysis was affected in eight and the diaphysis in 12 patients. Clinical, radiological and scintigraphic examinations were carried out at 2 to 12 years (7 years on average) after surgery. The clinical evaluation included subjective complaints and objective findings. Radiographs were made in standard projections and the osteo-integration of glass-ceramic material was investigated. Three-phase bone scans were made and the healthy and the affected limbs in each patient were compared by means of an index. Radionuclide uptake was considered normal when the index value was equal to 1.0, mildly increased at an index value of 1.2, moderately increased at 1.2-1.5 and markedly increased at an index value higher than 1.5. The clinical evaluation showed that, in the patients with glass-ceramic filling of metaphyses, six had no subjective complaints and two reported transient pain. In the patients with implants in diaphyses, subjective complaints were recorded in nine and no complaints in three patients. No inflammatory changes in soft tissues were found. No restriction in weightbearing of the limb treated was reported by any of the patients. On radiography, 18 patients were free from any disease residue or recurrence. Two patients had a residual defect. The bioactive glass-ceramic material BAS-0 was completely incorporated in all patients. On three-phase bone scans, radionuclide distribution on the flow phase and soft tissue phase was symmetrical in both limbs of all patients. For the metaphyseal location of implants, the delayed images demonstrated physiological radionuclide distribution in one patient, mildly increased distribution (index up to 1.2) in four, increased uptake (index up to 1.5) in two patients, and highly increased uptake (index above 1.5) in one patient. For the diaphyseal location of implants, the delayed scans demonstrated slightly increased radionuclide distribution in two, markedly increased in two and highly increased uptake in eight patients. The tissue during incorporation of a non-resorbable synthetic material is influenced by stress-shielding. This changes local mechanical signals, which has a negative effect on the adjacent bone tissue. Stress accumulating at the interface of a rigid implant and bone tissue may result in pain, and is detected by scintigraphy as an increased nucleotide uptake, particularly in diaphyseal grafts. This paper presents problems associated with implantation of the non-resorbable bioactive glass-ceramic material BAS-0 in the treatment of diaphyseal defects of long bones. The results show that, for filling of the defects described herein, non-resorbable glass-ceramic materials are not suitable.
Blood-pool SPECT in addition to bone SPECT in the viability assessment in mandibular reconstruction.
Aydogan, F; Akbay, E; Cevik, C; Kalender, E
2014-01-01
The assessment of the postoperative viability of vascularized and non-vascularized grafts used in the reconstruction of mandibular defects due to trauma and surgical reasons is a major problem in maxillofacial surgery. In the present study, we evaluated the feasibility and image quality of blood-pool SPECT, which is used for the first time in the literature here in the assessment of mandibular reconstruction, in addition to non-invasive bone scintigraphy and bone SPECT. We also evaluated whether it would be useful in clinical prediction. Micro-vascularized and non-vascularized bone grafts were used in 12 Syrian men with maxillofacial trauma. Between days 5-7 after surgery, three-phase bone scintigraphy, blood-pool SPECT and delayed bone SPECT scans were performed. After month 6, the patients were assessed by control CT scans. Of the non-vascularized grafts, one graft was reported as non-viable at week one. At month 6, graft resorption was demonstrated on the CT images. The remaining non-vascularized grafts and all of the micro-vascularized grafts were considered to be viable according to delayed bone SPECT and blood-pool SPECT images. However, only the anterior and posterior ends could be clearly assessed on delayed SPECT images, while blood-pool SPECT images allowed the clear assessment of the entire graft. The combined use of blood-pool and delayed SPECT scans could allow for better assessment of graft viability in the early period, and can provide more detailed information to clinicians about prognosis in the follow-up of patients undergoing mandibular graft reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falchook, Aaron D.; Salloum, Ramzi G.; Hendrix, Laura H.
Purpose: For patients with a high likelihood of having metastatic disease (high-risk prostate cancer), bone scan is the standard, guideline-recommended test to look for bony metastasis. We quantified the use of bone scans and downstream procedures, along with associated costs, in patients with high-risk prostate cancer, and their use in low- and intermediate-risk patients for whom these tests are not recommended. Methods and Materials: Patients in the Surveillance, Epidemiology, and End Results (SEER)-Medicare database diagnosed with prostate cancer from 2004 to 2007 were included. Prostate specific antigen (PSA), Gleason score, and clinical T stage were used to define D'Amico riskmore » categories. We report use of bone scans from the date of diagnosis to the earlier of treatment or 6 months. In patients who underwent bone scans, we report use of bone-specific x-ray, computed tomography (CT), and magnetic resonance imaging (MRI) scans, and bone biopsy within 3 months after bone scan. Costs were estimated using 2012 Medicare reimbursement rates. Results: In all, 31% and 48% of patients with apparent low- and intermediate-risk prostate cancer underwent a bone scan; of these patients, 21% underwent subsequent x-rays, 7% CT, and 3% MRI scans. Bone biopsies were uncommon. Overall, <1% of low- and intermediate-risk patients were found to have metastatic disease. The annual estimated Medicare cost for bone scans and downstream procedures was $11,300,000 for low- and intermediate-risk patients. For patients with apparent high-risk disease, only 62% received a bone scan, of whom 14% were found to have metastasis. Conclusions: There is overuse of bone scans in patients with low- and intermediate-risk prostate cancers, which is unlikely to yield clinically actionable information and results in a potential Medicare waste. However, there is underuse of bone scans in high-risk patients for whom metastasis is likely.« less
Stoyanova, Detelina; Algee-Hewitt, Bridget F B; Slice, Dennis E
2015-11-01
The pubic symphysis is frequently used to estimate age-at-death from the adult skeleton. Assessment methods require the visual comparison of the bone morphology against age-informative characteristics that represent a series of phases. Age-at-death is then estimated from the age-range previously associated with the chosen phase. While easily executed, the "morphoscopic" process of feature-scoring and bone-to-phase-matching is known to be subjective. Studies of method and practitioner error demonstrate a need for alternative tools to quantify age-progressive change in the pubic symphysis. This article proposes a more objective, quantitative method that analyzes three-dimensional (3D) surface scans of the pubic symphysis using a thin plate spline algorithm (TPS). This algorithm models the bending of a flat plane to approximately match the surface of the bone and minimizes the bending energy required for this transformation. Known age-at-death and bending energy were used to construct a linear model to predict age from observed bending energy. This approach is tested with scans from 44 documented white male skeletons and 12 casts. The results of the surface analysis show a significant association (regression p-value = 0.0002 and coefficient of determination = 0.2270) between the minimum bending energy and age-at-death, with a root mean square error of ≈19 years. This TPS method yields estimates comparable to established methods but offers a fully integrated, objective and quantitative framework of analysis and has potential for use in archaeological and forensic casework. © 2015 Wiley Periodicals, Inc.
Togni Filho, Paulo Henrique; Casagrande, João Luiz Marin; Lederman, Henrique Manoel
2017-01-01
Objective To evaluate the utility of the inspiratory phase in high-resolution computed tomography (HRCT) of the chest for the diagnosis of post-bone marrow transplantation bronchiolitis obliterans. Materials and Methods This was a retrospective, observational, cross-sectional study. We selected patients of either gender who underwent bone marrow transplantation and chest HRCT between March 1, 2002 and December 12, 2014. Ages ranged from 3 months to 20.7 years. We included all examinations in which the HRCT was performed appropriately. The examinations were read by two radiologists, one with extensive experience in pediatric radiology and another in the third year of residency, who determined the presence or absence of the following imaging features: air trapping, bronchiectasis, alveolar opacities, nodules, and atelectasis. Results A total of 222 examinations were evaluated (mean, 5.4 ± 4.5 examinations per patient). The expiratory phase findings were comparable to those obtained in the inspiratory phase, except in one patient, in whom a small uncharacteristic nodule was identified only in the inspiratory phase. Air trapping was identified in a larger number of scans in the expiratory phase than in the inspiratory phase, as was atelectasis, although the difference was statistically significant only for air trapping. Conclusion In children being evaluated for post-bone marrow transplantation bronchiolitis obliterans, the inspiratory phase can be excluded from the chest HRCT protocol, thus reducing by half the radiation exposure in this population. PMID:28428651
Radionuclide bone scanning of osteosarcoma: falsely extended uptake patterns.
Chew, F S; Hudson, T M
1982-07-01
The pathologic specimens of 18 osteosarcomas of long bones were examined to correlate histologic abnormalities with abnormalities seen on preoperative 99mTc pyrophosphate or methylene diphosphonate bone scans. Seven scans accurately represented the extent of the tumor. Eleven scans disclosed increased activity extending beyond the radiographic abnormalities. In eight of these, there was no occult tumor extension and in the other three, the scan activity did not accurately portray the skip metastases that were present. Therefore, these 11 scans demonstrated the falsely extended pattern of uptake beyond the true limits of the tumors. Pathologic slides were available for 10 of the 11 areas of bone that exhibited extended uptake. In two instances, there was no pathologic abnormality. In the other eight cases we found marrow hyperemia, medullary reactive bone, or periosteal new bone. This is the first description of these histologic abnormalities of medullary bone in areas of extended uptake on radionuclide bone scans.
Bone scan in metabolic bone diseases. Review.
Abdelrazek, Saeid; Szumowski, Piotr; Rogowski, Franciszek; Kociura-Sawicka, Agnieszka; Mojsak, Małgorzata; Szorc, Małgorzata
2012-08-25
Metabolic bone disease encompasses a number of disorders that tend to present a generalized involvement of the whole skeleton. The disorders are mostly related to increased bone turnover and increased uptake of radiolabelled diphosphonate. Skeletal uptake of 99mTc-labelled diphosphonate depends primarily upon osteoblastic activity, and to a lesser extent, skeletal vascularity. A bone scan image therefore presents a functional display of total skeletal metabolism and has valuable role to play in the assessment of patients with metabolic bone disorders. However, the bone scan appearances in metabolic bone disease are often non-specific, and their recognition depends on increased tracer uptake throughout the whole skeleton. It is the presence of local lesions, as in metastatic disease, that makes a bone scan appearance obviously abnormal. In the early stages, there will be difficulty in evaluating the bone scans from many patients with metabolic bone disease. However, in the more severe cases scan appearances can be quite striking and virtually diagnostic.
NASA Astrophysics Data System (ADS)
Karlita, Tita; Yuniarno, Eko Mulyanto; Purnama, I. Ketut Eddy; Purnomo, Mauridhi Hery
2017-06-01
Analyzing ultrasound (US) images to get the shapes and structures of particular anatomical regions is an interesting field of study since US imaging is a non-invasive method to capture internal structures of a human body. However, bone segmentation of US images is still challenging because it is strongly influenced by speckle noises and it has poor image quality. This paper proposes a combination of local phase symmetry and quadratic polynomial fitting methods to extract bone outer contour (BOC) from two dimensional (2D) B-modes US image as initial steps of three-dimensional (3D) bone surface reconstruction. By using local phase symmetry, the bone is initially extracted from US images. BOC is then extracted by scanning one pixel on the bone boundary in each column of the US images using first phase features searching method. Quadratic polynomial fitting is utilized to refine and estimate the pixel location that fails to be detected during the extraction process. Hole filling method is then applied by utilize the polynomial coefficients to fill the gaps with new pixel. The proposed method is able to estimate the new pixel position and ensures smoothness and continuity of the contour path. Evaluations are done using cow and goat bones by comparing the resulted BOCs with the contours produced by manual segmentation and contours produced by canny edge detection. The evaluation shows that our proposed methods produces an excellent result with average MSE before and after hole filling at the value of 0.65.
Bridges, Robert L; Wiley, Chris R; Christian, John C; Strohm, Adam P
2007-06-01
Na(18)F, an early bone scintigraphy agent, is poised to reenter mainstream clinical imaging with the present generations of stand-alone PET and PET/CT hybrid scanners. (18)F PET scans promise improved imaging quality for both benign and malignant bone disease, with significantly improved sensitivity and specificity over conventional planar and SPECT bone scans. In this article, basic acquisition information will be presented along with examples of studies related to oncology, sports medicine, and general orthopedics. The use of image fusion of PET bone scans with CT and MRI will be demonstrated. The objectives of this article are to provide the reader with an understanding of the history of early bone scintigraphy in relation to Na(18)F scanning, a familiarity with basic imaging techniques for PET bone scanning, an appreciation of the extent of disease processes that can be imaged with PET bone scanning, an appreciation for the added value of multimodality image fusion with bone disease, and a recognition of the potential role PET bone scanning may play in clinical imaging.
An evaluation of bone scans as screening procedures for occult metastases in primary breast cancer.
Baker, R R; Holmes, E R; Alderson, P O; Khouri, N F; Wagner, H N
1977-01-01
Preoperative bone scans were obtained in 104 patients with operable breast cancer. Areas of increased radioactivity detected by the bone scan were correlated with appropriate radiographs. One of 64 patients (1.5%) with clinical Stage I and Stage II breast cancer had a metastatic lesion detected by the preoperative bone scan. In contrast, 10 of 41 patients (24%) with Stage III breast cancer had occult metastatic lesions detected by the preoperative bone scan. The majority of patients with abnormal bone scans and no radiographic evidence of a benign lesion to explain the cause of the increased radioactivity proved to have metastatic breast cancer on follow-examination. Even though 20% of patients with operable breast cancer will eventually develop bone metastases, our results indicate that preoperative bone scans are not an effective means of predicting which patients with Stage I and Stage II disease will develop metastatic breast cancer. Because of the considerably increased frequency of detection of occult metastases in patients with Stage III breast cancer, bone scans should be obtained routinely in the preoperative assessment of these patients. Images Figs. 1a and b. Figs. 2a and b. Figs. 3a-d. PMID:889378
Novitskaya, Ekaterina; Chen, Po-Yu; Lee, Steve; Castro-Ceseña, Ana; Hirata, Gustavo; Lubarda, Vlado A; McKittrick, Joanna
2011-08-01
The mechanical properties of fully demineralized, fully deproteinized and untreated cortical bovine femur bone were investigated by compression testing in three anatomical directions (longitudinal, radial and transverse). The weighted sum of the stress-strain curves of the treated bones was far lower than that of the untreated bone, indicating a strong molecular and/or mechanical interaction between the collagen matrix and the mineral phase. Demineralization and deproteinization of the bone demonstrated that contiguous, stand-alone structures result, showing that bone can be considered an interpenetrating composite material. Structural features of the samples from all groups were studied by optical and scanning electron microscopy. Anisotropic mechanical properties were observed: the radial direction was found to be the strongest for untreated bone, while the longitudinal one was found to be the strongest for deproteinized and demineralized bones. A possible explanation for this phenomenon is the difference in bone microstructure in the radial and longitudinal directions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Foot and Ankle Stress Fractures in Athletes.
Greaser, Michael C
2016-10-01
The incidence of stress fractures in the general athletic population is less than 1%, but may be as high as 15% in runners. Stress fractures of the foot and ankle account for almost half of bone stress injuries in athletes. These injuries occur because of repetitive submaximal stresses on the bone resulting in microfractures, which may coalesce to form complete fractures. Advanced imaging such as MRI and triple-phase bone scans is used to evaluate patients with suspected stress fracture. Low-risk stress fractures are typically treated with rest and protected weight bearing. High-stress fractures more often require surgical treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Segmentation of knee MRI using structure enhanced local phase filtering
NASA Astrophysics Data System (ADS)
Lim, Mikhiel; Hacihaliloglu, Ilker
2016-03-01
The segmentation of bone surfaces from magnetic resonance imaging (MRI) data has applications in the quanti- tative measurement of knee osteoarthritis, surgery planning for patient specific total knee arthroplasty and its subsequent fabrication of artificial implants. However, due to the problems associated with MRI imaging such as low contrast between bone and surrounding tissues, noise, bias fields, and the partial volume effect, segmentation of bone surfaces continues to be a challenging operation. In this paper, a new framework is presented for the enhancement of knee MRI scans prior to segmentation in order to obtain high contrast bone images. During the first stage, a new contrast enhanced relative total variation (RTV) regularization method is used in order to remove textural noise from the bone structures and surrounding soft tissue interface. This salient bone edge information is further enhanced using a sparse gradient counting method based on L0 gradient minimization, which globally controls how many non-zero gradients are resulted in order to approximate prominent bone structures in a structure-sparsity-management manner. The last stage of the framework involves incorporation of local phase bone boundary information in order to provide an intensity invariant enhancement of contrast between the bone and surrounding soft tissue. The enhanced images are segmented using a fast random walker algorithm. Validation against expert segmentation was performed on 10 clinical knee MRI images, and achieved a mean dice similarity coefficient (DSC) of 0.975.
Skeletal scintigraphy and quantitative tracer studies in metabolic bone disease
NASA Astrophysics Data System (ADS)
Fogelman, Ignac
Bone scan imaging with the current bone seeking radiopharmaceuticals, the technetium-99m labelled diphosphonates, has dramatically improved our ability to evaluate skeletal pathology. In this thesis, chapter 1 presents a review of the history of bone scanning, summarises present concepts as to the mechanism of uptake of bone seeking agents and briefly illustrates the role of bone scanning in clinical practice. In chapter 2 the applications of bone scan imaging and quantitative tracer techniques derived from the bone scan in the detection of metabolic bone disease are discussed. Since skeletal uptake of Tc-99m diphosphonate depends upon skeletal metabolism one might expect that the bone scan would be of considerable value in the assessment of metabolic bone disease. However in these disorders the whole skeleton is often diffusely involved by the metabolic process and simple visual inspection of the scan image may not reveal the uniformly increased uptake of tracer. Certain patterns of bone scan abnormality have, however, been reported in patients with primary hyperparathyroidism and renal osteo-dystrophy; the present studies extend these observations and introduce the concept of "metabolic features" which are often recognisable in conditions with generalised increased bone turnover. As an aid to systematic recognition of these features on a given bone scan image a semi-quantitative scoring system, the metabolic index, was introduced. The metabolic index allowed differentiation between various groups of patients with metabolic disorders and a control population. In addition, in a bone scan study of patients with acromegaly, it was found that the metabolic index correlated well with disease activity as measured by serum growth hormone levels. The metabolic index was, however, found to be a relatively insensitive means of identifying disease in individual patients. Patients with increased bone turnover will have an absolute increase in skeletal uptake of tracer. As a means of quantitating this uptake the use of bone to soft-tissue ratios derived from the bone scan image by computer was critically evaluated. The technique was shown to be observer dependent and again found to be of limited value due to the large overlap of patient results with those from control subjects. In chapter 3 the use of bone scan imaging in metabolic bone disease has been compared with radiology. Despite the difficulties mentioned above the metabolic index was employed, and the bone scan found to be the more sensitive investigation in primary hyperparathyroidism, renal osteodystrophy and osteomalacia. In osteoporosis, however, the bone scan was often unable to identify disease and radiology remains the investigation of choice. In a further study comparing bone scanning and radiology in Paget's disease, the bone scan was found to be clearly the more sensitive investigation. As a result of the work described in chapter 2 it became apparent that a sensitive means of quantitating absolute bone uptake of tracer could be of diagnostic value. In chapter 4 a promising new quantitative technique is described in which the 24-hour whole-body retention of Tc-99m diphosphonate (WBR) is measured using a shadow-shield whole-body monitor. At 24 hours after injection, diphosphonate has reached a stable equilibrium in bone reflecting skeletal metabolic activity, while tracer in the soft-tissues of the body has been largely excreted via the urinary tract. It was found that this technique provided a sensitive means of detecting patients with primary hyperparathyroidism, osteomalacia, renal osteodystrophy and Paget's disease and that in these conditions all the results from individual patients lay outside the control range. In further studies the WBR technique was shown to be highly reproducible and not subject to any significant technical errors.
Whole-Body Bone Scan Findings after High-Intensity Focused Ultrasound (HIFU) Treatment.
Seo, Ye Young; O, Joo Hyun; Sohn, Hyung Sun; Choi, Eun Kyoung; Yoo, Ik Dong; Oh, Jin Kyoung; Han, Eun Ji; Jung, Seung Eun; Kim, Sung Hoon
2011-12-01
This study aims to examine the findings of (99m)Tc-diphosphonate bone scans in cancer patients with a history of HIFU treatment. Bone scan images of patients with a history of HIFU treatment for primary or metastatic cancer from January 2006 to July 2010 were retrospectively reviewed. Cases of primary bone tumor or HIFU treatment reaching only the superficial soft tissue layer were excluded. Bone scan images of 62 patients (26 female, 36 male; mean age 57 ± 9 years) were studied. HIFU treatment was performed in the liver (n = 40), pancreas (n = 16), and breast (n = 6). Mean interval time between HIFU treatment and bone scan was 106 ± 105 days (range: 1-572 days). Of 62 scans, 43 showed diffusely decreased uptake of bone within the path of HIFU treatment: antero-axillary and/or posterior arcs of right 5th to 11th ribs in 34 cases after treatment of hepatic lesions; anterior arcs of 2nd to 5th ribs in 5 cases after treatment for breast tumors; and posterior arcs of left 9th to 11th ribs or thoraco-lumbar vertebrae in 4 cases after treatment for pancreas tumor. Of 20 patients who had bone scans more than twice, five showed recovered uptake of the radiotracer in the involved ribs in the follow-up bone scan. Of 62 bone scans in patients with a history of HIFU treatment for primary or metastatic cancer, 69% presented diffusely decreased uptake in the bone in the path of HIFU treatment.
Klatte, T; Klatte, D; Böhm, M; Allhoff, E P
2006-10-01
The indication for a radionuclide bone scan in patients with newly diagnosed, untreated prostate cancer remains controversial. In this retrospective study we examined 406 patients who had received a staging bone scan irrespective of their PSA serum level and histology. We evaluated different guidelines and recommendations with respect to their usefulness. The costs were calculated according to EBM and GOA. We evaluated the classification systems of bone metastases according to Soloway, Crawford, and Rigaud. The bone scan was positive in 41 (10%) of 406 patients. The EAU guidelines turned out to be useful with respect to both clinical value and cost efficiency. The Rigaud classification of bone metastases predicted outcome better than the Soloway or Crawford classification. The EAU guidelines from 2005 are a useful tool to decide whether to perform a bone scan in patients with newly diagnosed, untreated prostate cancer. A bone scan should be performed if PSA levels exceed 20 ng/ml in patients with a G1/G2 histology, and in patients with G3 histology and locally advanced disease irrespective of PSA level. Bone scan metastases should be classified according to Rigaud.
The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs.
Mikhailovich Irianov, Iurii; Vladimirovna Diuriagina, Olga; Iurevna Karaseva, Tatiana; Anatolevich Karasev, Evgenii
2014-02-01
The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of mesh titanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalysis were used. The mesh implant of titanium nickelide has been established to possess biocompatibility, osteoconductive and osteoinductive properties, the zone of osteogenesis and angiogenesis is created around it, bone cover is formed. Osteointegration of the implant occurs early, by 7 days after surgery, and by 30 days after surgery organotypical re-modelling of the regenerated bone takes place, as well as the defect is filled with lamellar bone tissue by the type of bone wound primary adhesion. By 30 days after surgery mineral content of the regenerated bone tissue approximates to the composition of intact cortex mineral phase.
Bone scans after total knee arthroplasty in asymptomatic patients. Cemented versus cementless
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, A.A.; Wyatt, R.W.; Daniels, A.U.
1990-02-01
The natural history of bone scans after total knee arthroplasty (TKA) was studied in 26 patients with 28 cemented TKAs and 29 patients with 31 cementless TKAs. The bone scans were examined at specified postoperative intervals. Radionuclide activity of the femoral, tibial, and patellar regions was measured. Six patients who developed pain postoperatively were excluded. Bone scans immediately postoperative and at three months demonstrated increased uptake, which gradually decreased to baseline levels at ten to 12 months. Radioisotope uptake was comparable in the cemented and cementless groups, but was highly variable in individual patients and in each of the follow-upmore » periods. A single postoperative bone scan cannot differentiate component loosening from early bone remodeling. Sequential bone scans, as a supplement to the clinical examination and conventional radiography, may prove useful in the diagnosis of TKA failure.« less
Kaisidis, A; Megas, P; Apostolopoulos, D; Spiridonidis, T; Koumoundourou, D; Zouboulis, P; Lambiris, E; Vassilakos, P
2005-05-01
Diagnosis of septic loosening of hip endoprosthesis with antigranulocyte scintigraphy (AGS) was analysed. Twenty-one hip prostheses were studied using laboratory tests and, in cases of elevated values, three-phase bone scan (BS) and AGS. Elective SPECT/CT scans were performed. Histologic and microbiologic exams verified the diagnosis. The AGS analysis revealed sensitivity, specificity and accuracy of value 1, while positive and negative predictive values were also 1. BS showed sensitivity of 1 and specificity of 0.33. In three cases, SPECT/CT scans corroborated the AGS interpretation. This diagnostic algorithm proved effective in the detection of septic loosening of hip prostheses. AGS can be avoided without risk of infection being overlooked.
Investigation into mechanical properties of bone and its main constituents
NASA Astrophysics Data System (ADS)
Evdokimenko, Ekaterina
Bone is a hierarchically structured natural composite material, consisting of organic phase (type-I collagen), inorganic phase (hydroxyapatite), and water. Studies of the two main bone constituents, utilizing controlled demineralization and deproteinization, can shed light on mineral-collagen interaction which makes bone such a unique biological material. This knowledge is necessary for computational analysis of bone structure to identify preferential sites in the collagen matrix and mineral network that degrade more easily. The main goal of this work is to develop a comprehensive picture of mechanical properties of bone and its main constituents. Following the Introduction, Chapter 2 presents an investigation of microstructure and compressive mechanical properties of bovine femur cortical bone carried out on completely demineralized, completely deproteinized, and untreated bone samples in three anatomical directions. Anisotropic nature of bone was clearly identified in all cases. Extra levels of porosity along with microstructural differences for the three directions were found to be the main sources of the anisotropy. In Chapter 3, a new theoretical model of cortical and trabecular bone as composite materials with hierarchical structure spanning from nanometer (collagen-mineral) level to millimeter (bone) level was developed. Compression testing was performed on untreated, demineralized, and deproteinized cortical and trabecular bovine femur bone samples to verify the model. The experimental data were compared with theoretical predictions; excellent agreement was found between the theory and experiments for all bone phases. Optical microscopy, scanning electron microscopy, and micro-computed tomography techniques were applied to characterize the structure of the samples at multiple length scales and provide further inputs for the modeling. Chapter 4 presents a comparative study of mechanical properties, microstructure, and porosity of mature and young bovine femur cortical bone. It was found that the amount of porosity decreases, while the microhardness increases with maturation. Osteoporotic degradation of trabecular bone elasticity, described in Chapter 5, was modeled using a cellular mechanics approach. Evolution equations for elastic modulus of bone in terms of those of mineral and protein trabeculae and in terms of demineralized and deproteinized bones were formulated and verified by the analysis of compressive properties of bovine femur trabecular bone.
Bernardoni, Brittney; Scerpella, Tamara A; Rosenbaum, Paula F; Kanaley, Jill A; Raab, Lindsay N; Li, Quefeng; Wang, Sijian; Dowthwaite, Jodi N
2015-05-01
We prospectively evaluated adolescent organized physical activity (PA) as a factor in adult female bone traits. Annual DXA scans accompanied semiannual records of anthropometry, maturity, and PA for 42 participants in this preliminary analysis (criteria: appropriately timed DXA scans at ~1 year premenarche [predictor] and ~5 years postmenarche [dependent variable]). Regression analysis evaluated total adolescent interscan PA and PA over 3 maturity subphases as predictors of young adult bone outcomes: 1) bone mineral content (BMC), geometry, and strength indices at nondominant distal radius and femoral neck; 2) subhead BMC; 3) lumbar spine BMC. Analyses accounted for baseline gynecological age (years pre- or postmenarche), baseline bone status, adult body size and interscan body size change. Gymnastics training was evaluated as a potentially independent predictor, but did not improve models for any outcomes (p > .07). Premenarcheal bone traits were strong predictors of most adult outcomes (semipartial r2 = .21-0.59, p ≤ .001). Adult 1/3 radius and subhead BMC were predicted by both total PA and PA 1-3 years postmenarche (p < .03). PA 3-5 years postmenarche predicted femoral narrow neck width, endosteal diameter, and buckling ratio (p < .05). Thus, participation in organized physical activity programs throughout middle and high school may reduce lifetime fracture risk in females.
Bone scanning in lymphoma. [/sup 99m/Tc tracer technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schechter, J.P.; Jones, S.E.; Woolfenden, J.M.
1976-09-01
The results of bone scanning with the newer technetium-99m complexes were correlated with clinical, laboratory, and radiographic findings in 26 patients with malignant lymphoma (10 with Hodgkin's disease and 16 with non-Hodgkin's lymphomas). Abnormalities on bone scan compatible with lymphomatous involvement of the skeleton appeared to occur more commonly in patients with diffuse lymphomas than in patients with nodular lymphomas and were generally observed in the setting of advanced disease (15 of 23 patients). Twenty-seven (73 percent) of the 37 scans obtained were abnormal. Although abnormal scans were observed with the greatest frequency in patients with bone pain (11 ofmore » 11), bone marrow involvement (11 of 12), abnormal skeletal radiographs (11 of 11), and elevated serum alkaline phosphatase levels (5 of 6), bone scanning also detected lymphomatous involvement in patients free of pain or with normal laboratory tests. Moreover, conventional radiography was entirely normal in six (35 percent) of 17 patients with abnormal scans and revealed only nonspecific osteopenia in another two patients (12 percent). Serial bone scans in nine patients reflected their response to chemotherapy. Of the 37 scans, only one was judged falsely positive and one falsely negative. Bone scanning with /sup 99m/Tc complexes is a safe, simple, and sensitive screening procedure for detecting both extensive and focal lymphomatous involvement of the skeletal system and is a useful means of following such involvement in response to treatment.« less
Bone scanning in severe external otitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, W.J.; Shary, J.H. 3d.; Nichols, L.T.
1986-11-01
Technetium99 Methylene Diphosphate bone scanning has been considered an early valuable tool to diagnose necrotizing progressive malignant external otitis. However, to our knowledge, no formal studies have actually compared bone scans of otherwise young, healthy patients with severe external otitis to scans of patients with clinical presentation of malignant external otitis. Twelve patients with only severe external otitis were studied with Technetium99 Diphosphate and were compared to known cases of malignant otitis. All scans were evaluated by two neuroradiologists with no prior knowledge of the clinical status of the patients. Nine of the 12 patients had positive bone scans withmore » many scans resembling those reported with malignant external otitis. Interestingly, there was no consistent correlation between the severity of clinical presentation and the amount of Technetium uptake. These findings suggest that a positive bone scan alone should not be interpreted as indicative of malignant external otitis.« less
Preparation of hydroxyapatite from animal bones.
Sobczak, Agnieszka; Kowalski, Zygmunt; Wzorek, Zbigniew
2009-01-01
This paper presents the method of obtaining hydroxyapatite from animal bones. Bone sludge and calcined products were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Calcium concentration was determined with titration, and phosphorus--spectrophotometrically. Making use of the AAS and ICP methods the content of microelements was determined. In all the products, hydroxyapatite was the only crystalline phase indicated. The FT-IR spectra confirmed that calcination removed the total of organic substances. Calcium and phosphorus contents were 38% and 18%, respectively, which corresponded to the Ca/P molar ratio of nonstoichiometric hydroxyapatite. The specific surfaces of products were measured by BET method. The volume of micro- and mesopores was determined.
Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi
2016-10-01
The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.
Yap, B K; Choo, R; Deboer, G; Klotz, L; Danjoux, C; Morton, G
2003-05-01
To assess the predictive value of serial bone scans as a surveillance tool for bone metastasis in men with clinically localized prostate cancer and managed with watchful observation. A prospective single-arm study was conducted to assess the feasibility of a watchful observation protocol with selective delayed intervention for patients with clinically localized prostate cancer, i.e. T1b-T2bN0M0, a Gleason score of
Bone scanning in the detection of occult fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batillas, J.; Vasilas, A.; Pizzi, W.F.
1981-07-01
The potential role of bone scanning in the early detection of occult fractures following acute trauma was investigated. Technetium 99m pyrophosphate bone scans were obtained in patients with major clinical findings and negative or equivocal roentgenograms following trauma. Bone scanning facilitated the prompt diagnosis of occult fractures in the hip, knee, wrist, ribs and costochondral junctions, sternum, vertebrae, sacrum, and coccyx. Several illustrative cases are presented. Roentgenographic confirmation occurred following a delay of days to weeks and, in some instances, the roentgenographic findings were subtle and could be easily overlooked. This study demonstrates bone scanning to be invaluable and definitivemore » in the prompt detection of occult fractures.« less
In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions.
Morais, S; Dias, N; Sousa, J P; Fernandes, M H; Carvalho, G S
1999-02-01
For periods up to 21 days human bone marrow was cultured in control conditions that favor the proliferation and differentiation of osteoblastic cells. The effect of AISI 316L corrosion products and the corresponding major separate metal ions (Fe, Cr, and Ni) were studied in three different phases of the culture period in order to investigate the effects of metal ions in cell populations representative of osteoblastic cells in different stages of differentiation. Toxicity consequences of the presence of metal ions in bone marrow cultures were evaluated by biochemical parameters (enzymatic reduction of MTT, alkaline phosphatase activity, and total protein content), histochemical assays (identification of ALP-positive cells and Ca and phosphates deposits), and observation of the cultures by light and scanning electron microscopy. Culture media were analyzed for total and ionized Ca and P and also for metal ions (Fe, Cr, and Ni). The presence of AISI 316L corrosion products and Ni salt in bone marrow cultures during the first and second weeks of culture significantly disturbs the normal behavior of these cultures, interfering in the lag phase and exponential phase of cell growth and ALP expression. However, the presence of these species during the third week of culture, when expression of osteoblastic functions occurs (mineralization process), did not result in any detectable effect. Fe salt also disturbs the behavior of bone marrow cell cultures when present during the lag phase and proliferation phase, and a somewhat compromised response between the normal pattern (control cultures) and intense inhibition (AISI 316L corrosion products and Ni salt-added cultures) was observed. Fe did not affect the progression of the mineralization phase. Osteogenic cultures exposed to Cr salt (Cr3+) presented a pattern similar to the controls, indicating that this element does not interfere, in the concentration studied, in the osteoblastic differentiation of bone marrow cells. Quantification of metal ions in the culture media showed that Cr (originated from AISI 316L corrosion products but from not Cr3+ salt) and Ni (originated from AISI 316L corrosion products and Ni salt) appear to be retained by the bone marrow cultures. Copyright 1999 John Wiley & Sons, Inc.
Sacco, Sandra M; Saint, Caitlin; Longo, Amanda B; Wakefield, Charles B; Salmon, Phil L; LeBlanc, Paul J; Ward, Wendy E
2017-01-01
Long-term effects of repeated i n vivo micro-computed tomography (μCT) scanning at key stages of growth and bone development (ages 2, 4 and 6 months) on trabecular and cortical bone structure, as well as developmental patterns, have not been studied. We determined the effect of repetitive μCT scanning at age 2, 4 and 6 months on tibia bone structure of male and female CD-1 mice and characterized developmental changes. At 2, 4 and 6 months of age, right tibias were scanned using in vivo μCT (Skyscan 1176) at one of three doses of radiation per scan: 222, 261 or 460 mGy. Left tibias of the same mice were scanned only at 6 months to serve as non-irradiated controls to determine whether recurrent radiation exposure alters trabecular and cortical bone structure at the proximal tibia. In males, eccentricity was lower ( P <0.05) in irradiated compared with non-irradiated tibias (222 mGy group). Within each sex, all other structural outcomes were similar between irradiated and non-irradiated tibias regardless of dose. Trabecular bone loss occurred in all mice due to age while cortical development continued to age 6 months. In conclusion, repetitive μCT scans at various radiation doses did not damage trabecular or cortical bone structure of proximal tibia in male and female CD-1 mice. Moreover, scanning at 2, 4 and 6 months of age highlight the different developmental time course between trabecular and cortical bone. These scanning protocols can be used to investigate longitudinal responses of bone structures to an intervention.
NASA Astrophysics Data System (ADS)
Albab, Muh Fadhil; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska
2017-02-01
In the current study, hydroxyapatite (HA)/chitosan-based bone scaffold has been fabricated using Thermally Induced Phase Separation (TIPS) method under freezing temperature variation of -20, -30, -40 and -80 °C. The samples with weight percent ratio of 70% HA and 30% chitosan were homogeneously mixed and subsequently dissolved in 2% acetic acid. The synthesized samples were further characterized using Fourier transform infrared (FTIR), compressive test and scanning electron microscope (SEM). The investigation results showed that low freezing temperature reduced the pore size and increased the compressive strength of the scaffold. In the freezing temperature of -20 °C, the pore size was 133.93 µm with the compressive strength of 5.9 KPa, while for -80 °C, the pore size declined to 60.55 µm with the compressive strength 29.8 KPa. Considering the obtained characteristics, HA/chitosan obtained in this work has potential to be applied as a bone scaffold.
The osteoplastic effectiveness of the implants made of mesh titanium nickelide constructs
Irianov, Iurii Mikhailovich; Diuriagina, Olga Vladimirovna; Karaseva, Tatiana Iurevna; Karasev, Evgenii Anatolevich
2014-01-01
The purpose of the work was to study the features of reparative osteogenesis for filling the defect of tubular bone under implantation of mesh titanium nickelide constructs. Tibial fenestrated defect was modeled experimentally in 30 Wistar pubertal rats, followed by implant intramedullary insertion. The techniques of radiography, scanning electron microscopy and X-ray electron probe microanalysis were used. The mesh implant of titanium nickelide has been established to possess biocompatibility, osteoconductive and osteoinductive properties, the zone of osteogenesis and angiogenesis is created around it, bone cover is formed. Osteointegration of the implant occurs early, by 7 days after surgery, and by 30 days after surgery organotypical re-modelling of the regenerated bone takes place, as well as the defect is filled with lamellar bone tissue by the type of bone wound primary adhesion. By 30 days after surgery mineral content of the regenerated bone tissue approximates to the composition of intact cortex mineral phase. PMID:24579962
Radioisotope bone scanning in a case of sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinti, D.C.; Hawkins, H.B.; Slavin, J.D. Jr.
1985-03-01
The application of radioisotope scanning to osseous involvement from systemic sarcoidosis has been infrequently described in the scientific literature. Most commonly, the small bones of the hands and feet are affected if sarcoidosis involves the skeleton. Nonetheless, there are also occasional manifestations of sarcoid in the skull, long bones, and vertebral bodies. This paper describes a case of sarcoid involving the lung parenchyma with multiple lesions in the skull and ribs demonstrated by bone scanning with Tc-99m MDP. Following treatment with steroids, the bone scan showed complete resolution of the rib lesions and almost complete resolution of the lesions inmore » the calvarium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urman, M.; O'Sullivan, R.A.; Nugent, R.A.
This case concerns a patient with intracranial extramedullary hematopoiesis (EH) suspected on a CT scan and subsequently confirmed with In-111 chloride and Tc-99m SC bone marrow scans. The bone marrow scans also provided additional information by demonstrating other sites of EH in the paravertebral tissues and bone marrow expansion into the distal extremities.
Jain, Anuj; Jain, Suruchi; Agarwal, Anil; Gambhir, Sanjay; Shamshery, Chetna; Agarwal, Amita
2015-12-01
Conventional radiologic modalities provide details only about the anatomic aspect of the various structures of the spine. Frequently the structures that show abnormal morphology may not be the cause of low back pain (LBP). Functional imaging in the form of bone scan along with single photon emission computerized tomography (SPECT/CT) may be helpful in identifying structures causing pain, whether morphologically normal or not. The objective of this study is to evaluate the role of bone scan with SPECT/CT in management of patients with LBP. This is randomized double-blinded controlled study performed on 80 patients with LBP aged 20 to 80 years, ASA physical status I to III. Patients were randomized into bone scan and control groups consisting of 40 patients each. On the basis of the clinical features and radiologic findings a clinical diagnosis was made. After making a clinical diagnosis, the patients in bone scan group were subjected to bone scan with SPECT/CT. On the basis of the finding of the bone scan and SPECT/CT, a new working diagnosis was made and intervention was performed according to the new working diagnosis. Diagnostic blocks in the control group were given based on clinical diagnosis. Controlled comparative diagnostic blocks were performed with local anesthetic. The pain score just after the diagnostic block and at the time of discharge (approximately 4 h later) was recorded; the pain relief was recorded in percentage. In both the groups, sacroilitis was the most common diagnosis followed by facet joint arthropathy. The number of patients obtaining pain relief of >50% was significantly higher in the bone scan-positive group as compared with the control group. Three new clinical conditions were identified in the bone scan group. These conditions were multiple myeloma, avascular necrosis of the femoral head, and ankylosing spondylitis. Bone scan with SPECT/CT was found to complement the clinical workup of patients with LBP. Inclusion of bone scan with SPECT/CT in LBP management protocol can help in making a correct diagnosis. At times it might bring out some new information that may be vital for further management of the patients with LBP.
Multispectral photoacoustic method for the early detection and diagnosis of osteoporosis
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Eyal, Avishay; Gannot, Israel
2013-03-01
Osteoporosis is a major health problem worldwide, with healthcare costs of billions of dollars annually. The risk of fracture depends on the bone mineral density (measured in clinical practice) as well as on the bone microstructure and functional status. Since pure ultrasonic methods can measure bone strength and spectroscopic optical methods can provide valuable functional information, a hybrid multispectral photoacoustic technique can be of great value. We have developed such a system based on a tunable Ti:Sapph laser at 750 - 950 nm, followed by an acousto-optic modulator to generate photoacoustic signals with frequencies of 0.5 - 2.5 MHz. Another system was based on two directly modulated 830nm laser diodes. The systems were used to photoacoustically excite the proximal end of a rat tibia. Spectrum analyzer with tracking generator was used for measuring both the amplitude and the phase at the distal end. Scanning along both the optical wavelength as well as the acoustic frequency enables full mapping of the bone transfer function. Analyzing this function along the wavelength axis allows deducing the gross biochemical composition related to the bone functional and pathological state. Analyzing the amplitude and phase along the acoustic frequency axis yields the speed of sound dispersion and the broadband ultrasonic attenuation - both have shown clinical relevance.
Radioisotope scanning in osseous sarcoidosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohatgi, P.K.
1980-01-01
Technetium-99m (/sup 99m/Tc)-labeled pyrophosphate or diphosphonate compounds and gallium-67 citrate (/sup 67/Ga) are two radionuclide scanning agents that are in widespread use in clinical practice. Technetium-99m pyrophosphate is used extensively for bone scanning to detect metastatic bone disease, benign bone tumors, osteomyelitis, benign hypertrophic osteoarthropathy, and Paget's disease. Only two reports describe abnormal /sup 99m/Tc/ pyrophosphate bone scans in four patients with osseous sarcoidosis. Gallium-67 scans are used primarily to localize neoplastic or inflammatory lesions anywhere in the body. In recent years /sup 67/Ga scans have also been used to detect the presence of both pulmonary and extrapulmonary sarcoidosis, butmore » there are no reports describing abnormal uptake of gallium in patients with osseous sarcoidosis. This report describes experience with radioisotope scanning in two patients with osseous sarcoidosis.« less
Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason
2012-01-01
Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care. Copyright © 2012 Elsevier Inc. All rights reserved.
Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.
Bone, T Michael; Mowry, Sarah E
2016-09-01
Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged <1.8). These results suggest that these models would be sufficient adjuncts to cadaver temporal bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.
Zheng, Weili; Kim, Joshua P; Kadbi, Mo; Movsas, Benjamin; Chetty, Indrin J; Glide-Hurst, Carri K
2015-11-01
To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone-air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.
Establishing a method to measure bone structure using spectral CT
NASA Astrophysics Data System (ADS)
Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.
2017-03-01
Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.
The uptake by the canine tibia of the bone-scanning agent 99mTc-MDP before and after an osteotomy.
Hughes, S; Khan, R; Davies, R; Lavender, P
1978-11-01
The residue and extraction of technetium-labelled methylene diphosphonate (99mTc-MDP), a substance used in bone scanning, was examined in the canine tibia and found to be low. Examination of washout curves suggested that there were four compartments in cortical bone, a vascular, a perivascular, a bone fluid and a bone compartment. After an osteotomy in the canine tibia the residue of 99mTc-MDP increased. This was believed to be due to an increase in the blood supply to the bone and to an associated increase in new bone available for exchange. Bone scanning in a fracture is therefore a reflection of the vascular status of the bone being examined and of the uptake by bone. This is dependent on there being an adequate blood supply to the bone and an increased number of mineral-binding sites.
Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco
2015-11-01
In vivo micro-computed tomography (µCT) scanning is an important tool for longitudinal monitoring of the bone adaptation process in animal models. However, the errors associated with the usage of in vivo µCT measurements for the evaluation of bone adaptations remain unclear. The aim of this study was to evaluate the measurement errors using the bone surface distance approach. The right tibiae of eight 14-week-old C57BL/6 J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size (10.4 µm) and the tibiae were repositioned between each scan. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration and a region of interest was selected in the proximal tibia metaphysis for analysis. The bone surface distances between the repeated and the baseline scan datasets were evaluated. It was found that the average (±standard deviation) median and 95th percentile bone surface distances were 3.10 ± 0.76 µm and 9.58 ± 1.70 µm, respectively. This study indicated that there were inevitable errors associated with the in vivo µCT measurements of bone microarchitecture and these errors should be taken into account for a better interpretation of bone adaptations measured with in vivo µCT. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Characterization of powdered fish heads for bone graft biomaterial applications.
Oteyaka, Mustafa Ozgür; Unal, Hasan Hüseyin; Bilici, Namık; Taşçı, Eda
2013-01-01
The aim of this study was to define the chemical composition, morphology and crystallography of powdered fish heads of the species Argyrosomus regius for bone graft biomaterial applications. Two sizes of powder were prepared by different grinding methods; Powder A (coarse, d50=68.5 µm) and Powder B (fine, d50=19.1 µm). Samples were analyzed using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), thermogravimetry (TG), and energy dispersive X-ray spectroscopy (EDS). The powder was mainly composed of aragonite (CaCO3) and calcite (CaCO3). The XRD pattern of Powder A and B matched standard aragonite and calcite patterns. In addition, the calcium oxide (CaO) phase was found after the calcination of Powder A. Thermogravimetry analysis confirmed total mass losses of 43.6% and 47.3% in Powders A and B, respectively. The microstructure of Powder A was mainly composed of different sizes and tubular shape, whereas Powder B showed agglomerated particles. The high quantity of CaO and other oxides resemble the chemical composition of bone. In general, the powder can be considered as bone graft after transformation to hydroxyapatite phase.
Making the invisible body visible. Bone scans, osteoporosis and women's bodily experiences.
Reventlow, Susanne Dalsgaard; Hvas, Lotte; Malterud, Kirsti
2006-06-01
The imaging technology of bone scans allows visualization of the bone structure, and determination of a numerical value. Both these are subjected to professional interpretation according to medical (epidemiological) evidence to estimate the individual's risk of fractures. But when bodily experience is challenged by a visual diagnosis, what effect does this have on an individual? The aim of this study was to explore women's bodily experiences after a bone scan and to analyse how the scan affects women's self-awareness, sense of bodily identity and integrity. We interviewed 16 Danish women (aged 61-63) who had had a bone scan for osteoporosis. The analysis was based on Merleau-Ponty's perspective of perception as an embodied experience in which bodily experience is understood to be the existential ground of culture and self. Women appeared to take the scan literally and planned their lives accordingly. They appeared to believe that the 'pictures' revealed some truth in themselves. The information supplied by the scan fostered a new body image. The women interpreted the scan result (a mark on a curve) to mean bodily fragility which they incorporated into their bodily perception. The embodiment of this new body image produced new symptom interpretations and preventive actions, including caution. The result of the bone scan and its cultural interpretation triggered a reconstruction of the body self as weak with reduced capacity. Women's interpretation of the bone scan reorganized their lived space and time, and their relations with others and themselves. Technological information about osteoporosis appeared to leave most affected women more uncertain and restricted rather than empowered. The findings raise some fundamental questions concerning the use of medical technology for the prevention of asymptomatic disorders.
Utility of bone scanning in detecting occult skeletal metastases from cervical carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, R.D.; Alderson, P.O.; Rosenshein, N.B.
1979-11-01
Bone scans were obtained in 100 patients with carcinoma of the cervix in order to search for occult skeletal metastases. Scans revealed metastases in 4 patients with advanced stages of disease, but the scans in 79 patients with Stage 0, I, or II disease were negative. The scans in 14 patients showed renal asymmetry; 11 of these had obstructive uropathy due to tumor invasion or radiation therapy. Bone scanning does not seem warranted as a screening test in asymptomatic patients with Stage 0, I, or II carcinoma. If the test is done, renal symmetry should be carefully evaluated.
Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundberg, S.B.; Savage, J.P.; Foster, B.K.
1989-09-01
The technetium phosphate bone scans of 106 children with suspected septic arthritis were reviewed to determine whether the bone scan can accurately differentiate septic from nonseptic arthropathy. Only 13% of children with proved septic arthritis had correct blind scan interpretation. The clinically adjusted interpretation did not identify septic arthritis in 30%. Septic arthritis was incorrectly identified in 32% of children with no evidence of septic arthritis. No statistically significant differences were noted between the scan findings in the septic and nonseptic groups and no scan findings correlated specifically with the presence or absence of joint sepsis.
Gauthier, O; Bouler, J M; Weiss, P; Bosco, J; Daculsi, G; Aguado, E
1999-10-01
This study investigated the in vivo performance of two composite injectable bone substitutes (IBS), each with different calcium-phosphate particles granulometries [40-80 (IBS 40-80) and 200-500 microm (IBS 200-500)]. These biomaterials were obtained by associating a biphasic calcium-phosphate (BCP) ceramic mineral phase with a 3% aqueous solution of a cellulosic polymer (hydroxy-propyl-methyl-cellulose). Both materials were injected for periods of 2, 3, 8, or 12 weeks into bone defects at the distal end of rabbit femurs. Quantitative results on new bone formation, BCP resorption, and staining for tartrate-resistant acid phosphatase (TRAP) activity were studied for statistical purposes. Measurements with scanning electron microscopy and image analysis showed that the final rates of newly formed bone were similar for both tested IBS after 12 weeks of implantation. Bone colonization occurred more extensively during early implantation times for IBS 40-80 than for IBS 200-500. For the latter, BCP degradation occurred regularly throughout the implantation period, whereas it was very intensive during the first 2 weeks for IBS 40-80. Positive TRAP-stained degradation cells were significantly more numerous for IBS 40-80 than for IBS 200-500 regardless of implantation time. With the granulometry of either mineral phase, both tested IBS supported extensive bone colonization, which was greater than that previously reported for an equivalent block of macroporous BCP. The resorption-bone substitution process seemed to occur earlier and faster for IBS 40-80 than for IBS 200-500. Both tested IBS expressed similar biological efficiency, with conserved in vivo bioactivity and bone-filling ability. Copyright 1999 John Wiley & Sons, Inc.
2011-01-01
Purpose This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). Materials and Methods This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. Results The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. Conclusion CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement. PMID:21977476
Yunus, Barunawaty
2011-06-01
This study was performed to evaluate the changes of jaw bone density around the dental implant after placement using computed tomography scan (CT-Scan). This retrospective study consisted of 30 patients who had lost 1 posterior tooth in maxilla or mandible and installed dental implant. The patients took CT-Scan before and after implant placement. Hounsfield Unit (HU) was measured around the implants and evaluated the difference of HU before and after implant installation. The mean HU of jaw bone was 542.436 HU and 764.9 HU before and after implant placement, respectively (p<0.05). The means HUs for male were 632.3 HU and 932.2 HU and those for female 478.2 HU and 645.5 HU before and after implant placement, respectively (p<0.05). Also, the jaw bone with lower density needed longer period for implant procedure and the increased change of HU of jaw bone was less in the cases which needed longer period for osseointegration. CT-Scan could be used to assess the change of bone density around dental implants. Bone density around dental implant was increased after placement. The increased rate of bone density could be determined by the quality of jaw bone before implant placement.
The Complimentary Role of Methoxy-Isobutyl-Isonitrile and Hand-Held Gamma Probe in Adamantinoma
Maharaj, Masha; Korowlay, Nisaar; Ellmann, Prof
2016-01-01
Adamantinoma is a rare locally aggressive osteolytic tumor that is found 90% of the time in the diaphysis of the tibia with the remaining lesions found in the fibula and long tubular bones. A case of adamantinoma of the tibia is presented. The added value of nuclear medicine investigations in the workup of this patient is described. A three-phase whole body 99mTc-methylene diphosphonate bone and a whole body 99mTc-methoxy-isobutyl-isonitrile scans were complimentary in the demarcation of viable bone tumor and the assessment of the remainder of the bone and soft tissue to exclude other sites. Intra-operative assistance with a hand-held gamma probe, guided the biopsy of the most metabolically active tumor tissue. Histology revealed a biphasic tumor composed of epithelial and fibrous components, in keeping with an adamantinoma. PMID:26912979
Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.
2017-01-01
Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412
Jeong, Chang Bu; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki
2011-06-01
Whole-body bone scan is one of the most frequent diagnostic procedures in nuclear medicine. Especially, it plays a significant role in important procedures such as the diagnosis of osseous metastasis and evaluation of osseous tumor response to chemotherapy and radiation therapy. It can also be used to monitor the possibility of any recurrence of the tumor. However, it is a very time-consuming effort for radiologists to quantify subtle interval changes between successive whole-body bone scans because of many variations such as intensity, geometry, and morphology. In this paper, we present the most effective method of image enhancement based on histograms, which may assist radiologists in interpreting successive whole-body bone scans effectively. Forty-eight successive whole-body bone scans from 10 patients were obtained and evaluated using six methods of image enhancement based on histograms: histogram equalization, brightness-preserving bi-histogram equalization, contrast-limited adaptive histogram equalization, end-in search, histogram matching, and exact histogram matching (EHM). Comparison of the results of the different methods was made using three similarity measures peak signal-to-noise ratio, histogram intersection, and structural similarity. Image enhancement of successive bone scans using EHM showed the best results out of the six methods measured for all similarity measures. EHM is the best method of image enhancement based on histograms for diagnosing successive whole-body bone scans. The method for successive whole-body bone scans has the potential to greatly assist radiologists quantify interval changes more accurately and quickly by compensating for the variable nature of intensity information. Consequently, it can improve radiologists' diagnostic accuracy as well as reduce reading time for detecting interval changes.
Thai, Van Viet
2010-01-01
In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539
Evaluation of calcination temperature and phase composition ratio for new hyroxyapatite
NASA Astrophysics Data System (ADS)
Salimi, M. N. Ahmad; Chin, H. S.
2017-10-01
The demand of production of hydroxyapatite (HA) has been increasing for the purpose of medical and dental application. HA possesses the excellent properties leads to the priority choice for ceramic bone replacement. Synthesis route by wet chemical precipitation is commonly practised in industrial scale. Calcium hydroxide and Orthophosphoric acid are the precursors for production scale. The synthesis of HA is conducted by varying the synthetic condition: stirring rate, calcium-phosphate and calcination temperature. This paper is focused on the properties of HA produced by regulating the synthetic condition so that the qualities of HA can be well performed. Characterization studies were also carried out by Fourier Transform Infrared Spectroscopy (FT-IR) for functional group identification, Scanning Electron Microscope (SEM) for surface morphology analysis and X-Ray Diffraction (XRD) for phase composition and crystallinity respectively. Narrow particle size distribution contributed to better quality of hydroxyapatite for bone replacement. Both calcium-phosphate ratio and calcination temperature would affect the phase composition of calcium phosphate.
Practical use of bone scan in patients with an osteoporotic vertebral compression fracture.
Jun, Deuk Soo; An, Byoung Keun; Yu, Chang Hun; Hwang, Kyung Hoon; Paik, Je Won
2015-02-01
Rib fractures are one of main causes of chest or flank pain when related to an osteoporotic vertebral compression fracture (OVCF). The authors investigated the incidence and risk factors of rib fracture in 284 patients with OVCF using bone scans and evaluated the feasibility as to whether bone scans could be utilized as a useful screening tool. Hot uptake lesions on ribs were found in 122 cases (43.0%). The factors analyzed were age, sex, number and locations of fractured vertebrae, BMD, and compression rates as determined using initial radiography. However, no statistical significances were found. In 16 cases (5.6%), there were concurrent multiple fractures of both the thoracic and lumbar spines not detected by single site MRI. Sixty cases (21.1%) of OVCF with the a compression rate of less than 15% could not be identified definitely by initial plain radiography, but were confirmed by bone scans. It is concluded that a bone scan has outstanding ability for the screening of rib fractures associated with OVCF. Non-adjacent multiple fractures in both thoracic and lumbar spines and fractures not identified definitely by plain radiography were detected on bone scans, which provided a means for determining management strategies and predicting prognosis.
Hassan, Aamna; Khalid, Madeeha; Khawar, Saquib
2016-01-01
Melorheostosis is a benign, noninheritable bone dysplasia characterized by its classic radiographic features of dense, flowing hyperostosis. It frequently affects one limb, usually the lower extremity and rarely the axial skeleton. A 26-year-old lady with obesity, polycystic ovarian syndrome and scalp dandruff presented with a long standing history of upper extremity pain and inability to adduct the arm completely. A Tc-99m MDP whole body and SPECT/CT scan performed for suspected fibrous dysplasia showed increased radiotracer uptake in densely sclerotic humeral and radial melorheostosis. This case highlighted the role of SPECT/CT imaging in this rare condition.
Fan, Xiaoxia; Ren, Haohao; Chen, Shutian; Wang, Guangni; Deng, Tianyu; Chen, Xingtao; Yan, Yonggang
2014-04-01
The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00 +/- 7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73 +/- 0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.
Sran, Meena M; Khan, Karim M; Keiver, Kathy; Chew, Jason B; McKay, Heather A; Oxland, Thomas R
2005-12-01
Biomechanical studies of the thoracic spine often scan cadaveric segments by dual energy X-ray absorptiometry (DXA) to obtain measures of bone mass. Only one study has reported the accuracy of lateral scans of thoracic vertebral bodies. The accuracy of DXA scans of thoracic spine segments and of anterior-posterior (AP) thoracic scans has not been investigated. We have examined the accuracy of AP and lateral thoracic DXA scans by comparison with ash weight, the gold-standard for measuring bone mineral content (BMC). We have also compared three methods of estimating volumetric bone mineral density (vBMD) with a novel standard-ash weight (g)/bone volume (cm3) as measured by computed tomography (CT). Twelve T5-T8 spine segments were scanned with DXA (AP and lateral) and CT. The T6 vertebrae were excised, the posterior elements removed and then the vertebral bodies were ashed in a muffle furnace. We proposed a new method of estimating vBMD and compared it with two previously published methods. BMC values from lateral DXA scans displayed the strongest correlation with ash weight (r=0.99) and were on average 12.8% higher (p<0.001). As expected, BMC (AP or lateral) was more strongly correlated with ash weight than areal bone mineral density (aBMD; AP: r=0.54, or lateral: r=0.71) or estimated vBMD. Estimates of vBMD with either of the three methods were strongly and similarly correlated with volumetric BMD calculated by dividing ash weight by CT-derived volume. These data suggest that readily available DXA scanning is an appropriate surrogate measure for thoracic spine bone mineral and that the lateral scan might be the scan method of choice.
NASA Astrophysics Data System (ADS)
Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Marsac, L.; Tanter, M.; Fink, M.
2009-05-01
A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.
Use of various diagnostic methods in a patient with Gaucher disease type I.
Farahati, J; Trenn, G; John-Mikolajewski, V; Zander, C; Pastores, G M; Sciuk, J; Reiners, C
1996-08-01
A series of plain radiographs, bone scans, bone marrow scans, and MRIs is reported in a patient with Gaucher disease type I, in whom two episodes of acute bone crisis developed during a 6-year period of follow-up. Acute bone crisis and global indolent bone marrow displacement could both be assessed by bone marrow scintigraphy, whereas MRI could better clarify the corti-comedullary alteration after bone infarction. Thus, MRI and bone marrow scintigraphy could be used as complementary imaging methods in the management of patients with Gaucher disease.
Pitfalls and Limitations of Radionuclide Planar and Hybrid Bone Imaging.
Agrawal, Kanhaiyalal; Marafi, Fahad; Gnanasegaran, Gopinath; Van der Wall, Hans; Fogelman, Ignac
2015-09-01
The radionuclide (99m)Tc-MDP bone scan is one of the most commonly performed nuclear medicine studies and helps in the diagnosis of different pathologies relating to the musculoskeletal system. With its increasing utility in clinical practice, it becomes more important to be aware of various limitations of this imaging modality to avoid false interpretation. It is necessary to be able to recognize various technical, radiopharmaceutical, and patient-related artifacts that can occur while carrying out a bone scan. Furthermore, several normal variations of tracer uptake may mimic pathology and should be interpreted cautiously. There is an important limitation of a bone scan in metastatic disease evaluation as the inherent mechanism of tracer uptake is not specific for tumor but primarily relies on an osteoblastic response. Thus, it is crucial to keep in mind uptake in benign lesions, which can resemble malignant pathologies. The utility of a planar bone scan in benign orthopedic diseases, especially at sites with complex anatomy, is limited owing to lack of precise anatomical information. SPECT/CT has been significantly helpful in these cases. With wider use of PET/CT and reintroduction of the (18)F-fluoride bone scan, increasing knowledge of potential pitfalls on an (18)F-fluoride bone scan and (18)F-FDG-PET/CT will help in improving the accuracy of clinical reports. Copyright © 2015 Elsevier Inc. All rights reserved.
Jiang, Yumin; Ou, Jun; Zhang, Zhanhe; Qin, Qing-Hua
2011-03-01
In this paper, a calcium zinc iron silicon oxide composite (CZIS) was prepared using the sol-gel method. X-ray diffraction (XRD) was then employed to test the CZIS composite. The results from the test showed that the CZIS had three prominent crystalline phases: Ca(2)Fe(1.7)Zn(0.15)Si(0.15)O(5), Ca(2)SiO(4), and ZnFe(2)O(4). Calorimetric measurements were then performed using a magnetic induction furnace. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis were conducted to confirm the growth of a precipitated hydroxyapatite phase after immersion in simulated body fluid (SBF). Cell culture experiments were also carried out, showing that the CZIS composite more visibly promoted osteoblast proliferation than ZnFe(2)O(4) glass ceramic and HA, and osteoblasts adhered and spread well on the surfaces of composite samples.
How Is Testicular Cancer Diagnosed?
... patients with non-seminoma. Many centers have special machines that can do both a PET and CT scan at the same time (PET/CT scan). This lets the doctor compare areas of higher radioactivity on the PET with the more detailed images of the CT. Bone scan A bone scan can help show if a ... Information, ...
Murr, L E; Gaytan, S M; Medina, F; Lopez, H; Martinez, E; Machado, B I; Hernandez, D H; Martinez, L; Lopez, M I; Wicker, R B; Bracke, J
2010-04-28
In this paper, we examine prospects for the manufacture of patient-specific biomedical implants replacing hard tissues (bone), particularly knee and hip stems and large bone (femoral) intramedullary rods, using additive manufacturing (AM) by electron beam melting (EBM). Of particular interest is the fabrication of complex functional (biocompatible) mesh arrays. Mesh elements or unit cells can be divided into different regions in order to use different cell designs in different areas of the component to produce various or continually varying (functionally graded) mesh densities. Numerous design elements have been used to fabricate prototypes by AM using EBM of Ti-6Al-4V powders, where the densities have been compared with the elastic (Young) moduli determined by resonant frequency and damping analysis. Density optimization at the bone-implant interface can allow for bone ingrowth and cementless implant components. Computerized tomography (CT) scans of metal (aluminium alloy) foam have also allowed for the building of Ti-6Al-4V foams by embedding the digital-layered scans in computer-aided design or software models for EBM. Variations in mesh complexity and especially strut (or truss) dimensions alter the cooling and solidification rate, which alters the alpha-phase (hexagonal close-packed) microstructure by creating mixtures of alpha/alpha' (martensite) observed by optical and electron metallography. Microindentation hardness measurements are characteristic of these microstructures and microstructure mixtures (alpha/alpha') and sizes.
Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Kozieł, Marcin; Nowakowska, Maria
2015-02-10
Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.
NASA Astrophysics Data System (ADS)
Ye, Shigong; Wu, Junru
2000-05-01
Shear wave propagation properties including phase velocity and attenuation coefficient are indispensable information in materials characterization and nondestructive evaluation. A computer controlled scanning shear-wave ultrasonic imaging system has been developed. It consists of a pair of focusing broadband pvdf transducers of central frequency of 50 MHz immersed in distilled water. Shear waves in a solid specimen are generated by mode-conversion. When ultrasonic waves generated by one of the pvdf transducers impinge upon a solid specimen from water with angle of incidence of θ that is greater than θcr, the critical angle of the longitudinal wave in the solid, only shear waves can propagate in the solid and longitudinal waves become evanescent waves. The shear waves pass through the specimen and received by the other pvdf transducer. Meanwhile, the specimen was scanned by a stepped motor of a step of 10 μm. The system was used to generated shear waves amplitude and phase velocity images of bone specimen of 1280 μm and they are compared with their longitudinal wave counterparts. The results have shown shear wave images can provide additional shear modulus and shear viscous information that longitudinal waves can't provide. The lateral resolution of 60 μm was achieved using shear wave imaging technique applied in bone sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Weili; Kim, Joshua P.; Kadbi, Mo
2015-11-01
Purpose: To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Methods and Materials: Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessedmore » by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. Results: On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone–air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. Conclusions: A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain.« less
An investigation of the mineral in ductile and brittle cortical mouse bone.
Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J
2015-05-01
Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size, composition, and structure are correlated with reduced mechanical integrity of bone. © 2014 American Society for Bone and Mineral Research.
Strontium-85 Scanning of Suspected Bone Disease
Parsons, Victor; Williams, Margery; Hill, David; Frost, Pamela; Lapham, Avril
1969-01-01
Strontium-85 scanning of suspected bone lesions in 81 patients has added to the criteria for the diagnosis of malignant and other lesions of bone. Of 46 patients with a previous history of malignant disease and skeletal symptoms negative radiological findings were recorded in 19, but nine of these had positive scans, eight of which when followed up over periods of up to four years proved to be metastatic. A similar prevalence of positive scans occurred in patients without a previous history of malignancy. Because of the anatomical localization of lesions made possible by this technique a tissue diagnosis was made in six patients, while fields of radiotherapy were altered in another seven. This technique can improve the management of patients with suspected bone disease. PMID:5761888
Hassan, Aamna; Khalid, Madeeha; Khawar, Saquib
2016-01-01
Summary Melorheostosis is a benign, noninheritable bone dysplasia characterized by its classic radiographic features of dense, flowing hyperostosis. It frequently affects one limb, usually the lower extremity and rarely the axial skeleton. A 26-year-old lady with obesity, polycystic ovarian syndrome and scalp dandruff presented with a long standing history of upper extremity pain and inability to adduct the arm completely. A Tc-99m MDP whole body and SPECT/CT scan performed for suspected fibrous dysplasia showed increased radiotracer uptake in densely sclerotic humeral and radial melorheostosis. This case highlighted the role of SPECT/CT imaging in this rare condition. PMID:27252746
Trapezium Bone Density-A Comparison of Measurements by DXA and CT.
Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken
2018-01-18
Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basinger, G.T.; McCullough, D.L.; McLaughlin, A.P.
Eleven patients with urologic cancer had an abnormal /sup 99m/Tc (technetium-99m) bone scan as the sole evidence of metastatic disease. Potentially curative therapy should not be withheld on the basis of a ''positive'' bone scan if such an area is accessible to selected bone biopsy and proves to be negative for tumor histologically.
Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac; Blake, Glen M
2014-03-01
The aim of the study was to examine whether (18)F-fluoride PET ((18)F-PET) static scan measurements of bone plasma clearance (Ki) can be corrected for tracer efflux from bone from the time of injection. The efflux of tracer from bone mineral to plasma was described by a first-order rate constant kloss. A modified Patlak analysis was applied to 60-min dynamic (18)F-PET scans of the spine and hip acquired during trials on the bone anabolic agent teriparatide to find the best-fit values of kloss at the lumbar spine, total hip and femoral shaft. The resulting values of kloss were used to extrapolate the modified Patlak plots to 120 min after injection and derive a sequence of static scan estimates of Ki at 4-min intervals that were compared with the Patlak Ki values from the 60-min dynamic scans. A comparison was made with the results of the standard static scan analysis, which assumes kloss=0. The best-fit values of kloss for the spine and hip regions of interest averaged 0.006/min and did not change when patients were treated with teriparatide. Static scan values of Ki calculated using the modified analysis with kloss=0.006/min were independent of time between 10 and 120 min after injection and were in close agreement with findings from the dynamic scans. In contrast, by 2 h after injection the static scan Ki values calculated using the standard analysis underestimated the dynamic scan results by 20%. Using a modified analysis that corrects for F efflux from bone, estimates of Ki from static PET scans can be corrected for time up to 2 h after injection. This simplified approach may obviate the need to perform dynamic scans and hence shorten the scanning procedure for the patient and reduce the cost of studies. It also enables reliable estimates of Ki to be obtained from multiple skeletal sites with a single injection of tracer.
NASA Astrophysics Data System (ADS)
Zhao, Zuomin; Moilanen, Petro; Karppinen, Pasi; Määttä, Mikko; Karppinen, Timo; Hæggström, Edward; Timonen, Jussi; Myllylä, Risto
2012-12-01
Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft coating. The coating was made of an aqueous gelatin-intralipid suspension that optically and acoustically mimicked real soft tissue. An even coating thickness was ensured by using a specific mold. The optical wave length of the source (1250 nm) was tuned to maximize the amplitude of FFGW excitation at 50 kHz frequency. The experimentally determined FFGW phase velocity in the uncoated samples was consistent with that of the fundamental antisymmetric Lamb mode (A0). Using appropriate signal processing, FFGW was also identified in the coated bone samples, this time with a phase velocity consistent with that theoretically predicted for the first mode of a fluid-solid bilayer waveguide (BL1). Our results suggest that photo-acoustic quantitative ultrasound enables assessment of the thickness-sensitive FFGW in bone through a layer of soft tissue. Photo-acoustic characterization of the cortical bone thickness may thus become possible.
Bahk, Yong-Whee; Jeon, Ho-Seung; Kim, Jang Min; Park, Jung Mee; Chung, Yong-An; Kim, E Edmund; Kim, Sung-Hoon; Chung, Soo-Kyo
2010-08-01
The aim of this study was to introduce gamma correction pinhole bone scan (GCPBS) to depict specific signs of knee occult fractures (OF) on (99m)Tc-hydroxydiphosphonate (HDP) scan. Thirty-six cases of six different types of knee OF in 27 consecutive patients (male = 20, female = 7, and age = 18-86 years) were enrolled. The diagnosis was made on the basis of a history of acute or subacute knee trauma, local pain, tenderness, cutaneous injury, negative conventional radiography, and positive magnetic resonance imaging (MRI). Because of the impracticability of histological verification of individual OF, MRI was utilized as a gold standard of diagnosis and classification. All patients had (99m)Tc-HDP bone scanning and supplementary GCPBS. GCPBS signs were correlated and compared with those of MRI. The efficacy of gamma correction of ordinary parallel collimator and pinhole collimator scans were collated. Gamma correction pinhole bone scan depicted the signs characteristic of six different types of OF. They were well defined stuffed globular tracer uptake in geographic I fractures (n = 9), block-like uptake in geographic II fractures (n = 7), simple or branching linear uptake in linear cancellous fractures (n = 4), compression in impacted fractures (n = 2), stippled-serpentine uptake in reticular fractures (n = 11), and irregular subcortical uptake in osteochondral fractures (n = 3). All fractures were equally well or more distinctly depicted on GCPBS than on MRI except geographic II fracture, the details of which were not appreciated on GCPBS. Parallel collimator scan also yielded to gamma correction, but the results were inferior to those of the pinhole scan. Gamma correction pinhole bone scan can depict the specific diagnostic signs in six different types of knee occult fractures. The specific diagnostic capability along with the lower cost and wider global availability of bone scanning would make GCPBS an effective alternative.
... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...
Schrof, Susanne; Varga, Peter; Hesse, Bernhard; Schöne, Martin; Schütz, Roman; Masic, Admir; Raum, Kay
2016-10-15
The mechanical competence of bone is crucially determined by its material composition and structural design. To investigate the interaction of the complex hierarchical architecture, the chemical composition and the resulting elastic properties of healthy femoral bone at the level of single bone lamellae and entire structural units, we combined polarized Raman spectroscopy (PRS), scanning acoustic microscopy (SAM) and synchrotron X-ray phase contrast nano tomography (SR-nanoCT). In line with earlier studies, mutual correlation analysis strongly suggested that the characteristic elastic modulations of bone lamellae within single units are the result of the twisting fibrillar orientation, rather than compositional variations, modulations of the mineral particle maturity, or mass density deviations. Furthermore, we show that predominant fibril orientations in entire tissue units can be rapidly assessed from Raman parameter maps. Coexisting twisted and oscillating fibril patterns were observed in all investigated tissue domains. Ultimately, our findings demonstrate in particular the potential of combined PRS and SAM measurements in providing multi-scalar analysis of correlated fundamental tissue properties. In future studies, the presented approach can be applied for non-destructive investigation of small pathologic samples from bone biopsies and a broad range of biological materials and tissues. Bone is a complex structured composite material consisting of collagen fibrils and mineral particles. Various studies have shown that not only composition, maturation, and packing of its components, but also their structural arrangement determine the mechanical performance of the tissue. However, prominent methodologies are usually not able to concurrently describe these factors on the micron scale and complementary tissue characterization remains challenging. In this study we combine X-ray nanoCT, polarized Raman imaging and scanning acoustic microscopy and propose a protocol for fast and easy assessment of predominant fibril orientations in bone. Based on our site-matched analysis of cortical bone, we conclude that the elastic modulations of bone lamellae are mainly determined by the fibril arrangement. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bone scan features in spontaneous knee pain.
Vattimo, A; Merlo, F; Bertelli, P; Burroni, L
1992-01-01
In 21 patients with "spontaneous" knee pain, 99mTc-MDP bone scan was found to be more sensitive than clinical and radiographic examination in detecting alterations of the joint components. These alterations were shown by increased radionuclide uptake in the compartments where pain was present, which was most commonly the medial femorotibial compartment, although the femoropatellar compartment was also frequently affected. The authors conclude that bone scan should be the first imaging study performed on the knee in order to establish if further tests are necessary.
Bone scanning in the adductor insertion avulsion syndrome.
Mahajan, Madhuri Shimpi
2013-05-01
A thigh splint (adductor insertion avulsion syndrome) is a relatively uncommon diagnosis analogous to shin splints. This article reports a 19-year-old female patient NOT a regular athlete who presented with groin pain. Physical examination was non-specific; magnetic resonance imaging pelvis did not reveal any abnormality. Patient referred for whole body bone scan, especially to locate any abnormality in the spine. This study highlights the role of whole body bone scan in the evaluation of groin pain and importance of evaluation of whole lower extremity.
Radionuclide Imaging of Musculoskeletal Injuries in Athletes with Negative Radiographs.
Nagle, C E; Freitas, J E
1987-06-01
In brief: Radionuclide bone scans can be useful in the diagnostic evaluation of musculoskeletal injuries in athletes. Bone scans can detect shinsplints, stress fractures, and muscle injuries before they are detectable on radiographs. Prognosis can be accurately assessed, allowing appropriate treatment to proceed without delay. The authors discuss the use of bone scans and identify musculoskeletal injuries that are associated with specific sports, such as stress fracture of the femur (soccer), tibia (running), scapula (gymnastics), and pars interarticularis (football or lacrosse).
Erturan, Serdar; Yaman, Mustafa; Aydin, Günay; Uzel, Isil; Müsellim, Benan; Kaynak, Kamil
2005-02-01
Correct detection of bone metastases in patients with non-small cell lung cancer (NSCLC) is crucial for prognosis and selection of an appropriate treatment regimen. The aim of this study was to investigate the role of whole-body bone scanning (WBBS) and clinical factors in detecting bone metastases in NSCLC. One hundred twenty-five patients with a diagnosis made between 1998 and 2002 were recruited (squamous cell carcinoma, 54.4%; adenocarcinoma, 32.8%; non-small cell carcinoma, 8.8%; large cell carcinoma, 4%). Clinical factors suggesting bone metastasis (skeletal pain, elevated alkaline phosphatase, hypercalcemia) were evaluated. WBBS was performed in all patients, and additional MRI was ordered in 10 patients because of discordance between clinical factors and WBBS findings. Bone metastases were detected in 53% (n = 21) of 39 clinical factor-positive patients, 5.8% (n = 5) of 86 clinical factor-negative patients, and 20.8% of total patients. The existence of bone-specific clinical factors as indicators of metastasis presented 53.8% positive predictive value (PPV), 94.2% negative predictive value (NPV), and 81.6% accuracy. However, the findings of WBBS showed 73.5% PPV, 97.8% NPV, and 91.2% accuracy. Adenocarcinoma was the most common cell type found in patients with bone metastasis (39%). The routine bone scanning prevented two futile thoracotomies (8%) in 25 patients with apparently operable lung cancer. In spite of the high NPV of the bone-specific clinical factors and the high value obtained in the false-positive findings in the bone scan, the present study indicates that in patients for whom surgical therapy is an option, preoperative staging using WBBS can be helpful to avoid misstaging due to asymptomatic bone metastases.
The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system.
Curran, Judith M; Fawcett, Sandra; Hamilton, Lloyd; Rhodes, Nicholas P; Rahman, Cheryl V; Alexander, Morgan; Shakesheff, Kevin; Hunt, John A
2013-12-01
The enrichment of substrates/surfaces with selected functional groups, methyl (-CH3), allyl amine (-NH2), allyl alcohol (-OH) and acrylic acid (-COOH), can be used to trigger mesenchymal stem (MSC) cell differentiation into specified lineages, minimising the need for exogenous biological supplementation. We present the successful translation of this research phenomenon to an injectable two phase injectable PLGA system, utilising plasma techniques, for the repair of bone defects. Modified microspheres were characterised using water contact angel (WCA), X-ray Photon Spectroscopy (XPS) and scanning electron microscopy (SEM). When cultured in contact with MSCs in vitro, the ability of the modified particles, within the 2 phase system, to induce differentiation was characterised using quantitative assays for cell viability and histological analysis for key markers of differentiation throughout the entirety of the three dimensional scaffold. Biological analysis proved that selected modified microspheres have the ability to induce MSC osteogenic (-NH2 modified scaffolds) and chondrogenic (-OH modified scaffolds) differentiation throughout the entirety of the formed scaffold. Therefore optimised plasma modification of microspheres is an effective tool for the production of injectable systems for the repair of bone and cartilage defects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Improving the mechanical properties of nano-hydroxyapatite
NASA Astrophysics Data System (ADS)
Khanal, Suraj Prasad
Hydroxyapatite (HAp) is an ideal bioactive material that is used in orthopedics. Chemical composition and crystal structure properties of HAp are similar to the natural bone hence it promotes bone growth. However, its mechanical properties of synthetic HAp are not sufficient for major load-bearing bone replacement. The potential of improving the mechanical properties of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNT) and polymerized epsilon-caprolactam (nylon) is studied. The fracture toughness, tensile strength, Young's modulus, stiffness and fracture energy were studied for a series of HAp samples with CfSWCNT concentrations varying from 0 to 1.5 wt. % without, and with nylon addition. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) were used to characterize the samples. The fracture toughness and tensile test was performed under the standard protocol of ASTM D5045 and ASTM D638-02a respectively. Reproducible maximum values of (3.60 +/- 0.3) MPa.m1/2 for fracture toughness and 65.38 MPa for tensile strength were measured for samples containing 1 wt. % CfSWCNT and nylon. The Young's modulus, stiffness and fracture energy of the samples are 10.65 GPa, 1482.12 N/mm, and 644 J/m2 respectively. These values are comparable to those of the cortical bone. Further increase of the CfSWCNT content results to a decreased fracture toughness and tensile strength and formation of a secondary phase.
Niu, Qiang; Chi, Xiaoyi; Leu, Ming C; Ochoa, Jorge
2008-01-01
This paper describes image processing, geometric modeling and data management techniques for the development of a virtual bone surgery system. Image segmentation is used to divide CT scan data into different segments representing various regions of the bone. A region-growing algorithm is used to extract cortical bone and trabecular bone structures systematically and efficiently. Volume modeling is then used to represent the bone geometry based on the CT scan data. Material removal simulation is achieved by continuously performing Boolean subtraction of the surgical tool model from the bone model. A quadtree-based adaptive subdivision technique is developed to handle the large set of data in order to achieve the real-time simulation and visualization required for virtual bone surgery. A Marching Cubes algorithm is used to generate polygonal faces from the volumetric data. Rendering of the generated polygons is performed with the publicly available VTK (Visualization Tool Kit) software. Implementation of the developed techniques consists of developing a virtual bone-drilling software program, which allows the user to manipulate a virtual drill to make holes with the use of a PHANToM device on a bone model derived from real CT scan data.
Ribbing disease: Uncommon cause of a common symptom
Damle, Nishikant Avinash; Patnecha, Manish; Kumar, Praveen; Gadodia, Ankur; Subbarao, Kiran; Bal, Chandrasekhar
2011-01-01
Ribbing disease is a rare form of sclerosing dysplasia characterized by benign endosteal and periosteal bone growth confined to the diaphyses of the long bones, usually the tibiae and femora. It occurs after puberty and is more commonly seen in women. The most common presenting symptom is pain that is usually self-limited; however, progression is known. The etiology and optimal treatment for the disease are as yet undefined. We present here the case of a 31-year-old woman with clinical, radiological and bone scan manifestations of Ribbing disease corroborated by bone biopsy. Radiographs demonstrated cortical thickening of the diaphyses of both tibiae. 99mTc-methylene diphosphonate bone scan revealed intense irregular uptake in diaphyseal region of both tibiae. Magnetic resonance imaging showed cortical thickening with bone marrow edema in bilateral tibial diaphysis with minimal adjacent soft tissue edema. Bone biopsy revealed predominantly dense lamellar bone with irregular sized and spaced haversian systems. Serum and urine markers of bone metabolism were within normal limits. The patient was treated with analgesics, and had partial relief from pain. Medullary rimming is the next treatment option in case pain progresses. This report emphasizes the role of bone scan in the diagnosis of this rare condition. PMID:21969779
Health Information in Hindi (हिन्दी)
... हिन्दी (Hindi) Bilingual PDF Health Information Translations Power Outages - English PDF Power Outages - हिन्दी (Hindi) Bilingual PDF Health Information ... हिन्दी (Hindi) Bilingual PDF Health Information Translations Nuclear Scans Bone Scan - English PDF Bone Scan - हि ...
AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE
Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.
2015-01-01
Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This indicates that alterations from normal crystal size, composition, and structure will reduce the mechanical integrity of bone. PMID:25418329
[Scanning electron microscopy of heat-damaged bone tissue].
Harsanyl, L
1977-02-01
Parts of diaphyses of bones were exposed to high temperature of 200-1300 degrees C. Damage to the bone tissue caused by the heat was investigated. The scanning electron microscopic picture seems to be characteristic of the temperature applied. When the bones heated to the high temperature of 700 degrees C characteristic changes appear on the periostal surface, higher temperatura on the other hand causes damage to the compact bone tissue and can be observed on the fracture-surface. Author stresses the importance of this technique in the legal medicine and anthropology.
Nuzzo, F; Gallo, C; Lastoria, S; Di Maio, M; Piccirillo, M C; Gravina, A; Landi, G; Rossi, E; Pacilio, C; Labonia, V; Di Rella, F; Bartiromo, A; Buonfanti, G; De Feo, G; Esposito, G; D'Aniello, R; Maiolino, P; Signoriello, S; De Maio, E; Tinessa, V; Colantuoni, G; De Laurentiis, M; D'Aiuto, M; Di Bonito, M; Botti, G; Giordano, P; Daniele, G; Morabito, A; Normanno, N; de Matteis, A; Perrone, F
2012-08-01
To measure bone mineral density (BMD) reduction produced by letrozole as compared with tamoxifen and the benefit of the addition of zoledronic acid. A phase 3 trial comparing tamoxifen, letrozole or letrozole+zoledronic acid in patients with hormone receptor-positive early breast cancer was conducted; triptorelin was given to premenopausal patients. Two comparisons were planned: letrozole versus tamoxifen and letrozole+zoledronic acid versus letrozole. Primary end point was the difference in 1-year change of T-score at lumbar spine (LTS) measured by dual energy X-ray absorptiometry scan. Out of 483 patients enrolled, 459 were available for primary analyses. Median age was 50 (range 28-80). The estimated mean difference (95% confidence interval [CI]) in 1-year change of LTS was equal to -0.30 (95% CI -0.44 to -0.17) in the letrozole versus tamoxifen comparison (P<0.0001) and to +0.60 (95% CI +0.46 to +0.77) in the letrozole+zoledronic acid versus letrozole comparison (P<0.0001). Bone damage by letrozole decreased with increasing baseline body mass index in premenopausal, but not postmenopausal, patients (interaction test P=0.004 and 0.47, respectively). In the HOBOE (HOrmonal BOne Effects) trial, the positive effect of zoledronic acid on BMD largely counteracts damage produced by letrozole as compared with tamoxifen. Letrozole effect is lower among overweight/obese premenopausal patients.
Failure of technetium bone scanning to detect pseudarthroses in spinal fusion for scoliosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannon, K.M.; Wetta, W.J.
1977-01-01
A prospective study of 11 patients suggests that present techniques of technetium bone scanning do not assist in recognizing the presence of well-established pseudarthrosis in spinal fusions for scoliosis.
Bone Scanning in the Adductor Insertion Avulsion Syndrome
Mahajan, Madhuri Shimpi
2013-01-01
A thigh splint (adductor insertion avulsion syndrome) is a relatively uncommon diagnosis analogous to shin splints. This article reports a 19-year-old female patient NOT a regular athlete who presented with groin pain. Physical examination was non-specific; magnetic resonance imaging pelvis did not reveal any abnormality. Patient referred for whole body bone scan, especially to locate any abnormality in the spine. This study highlights the role of whole body bone scan in the evaluation of groin pain and importance of evaluation of whole lower extremity. PMID:25126001
Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.
2015-01-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349
Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K
2015-08-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.
de Almeida, Marcio Rodrigues; Futagami, Cristina; Conti, Ana Cláudia de Castro Ferreira; Oltramari-Navarro, Paula Vanessa Pedron; Navarro, Ricardo de Lima
2015-01-01
OBJECTIVE: The aim of the present study was to compare dentoalveolar changes in mandibular arch, regarding transversal measures and buccal bone thickness, in patients undergoing the initial phase of orthodontic treatment with self-ligating or conventional bracket systems. METHODS: A sample of 25 patients requiring orthodontic treatment was assessed based on the bracket type. Group 1 comprised 13 patients bonded with 0.022-in self-ligating brackets (SLB). Group 2 included 12 patients bonded with 0.022-in conventional brackets (CLB). Cone-beam computed tomography (CBCT) scans and a 3D program (Dolphin) assessed changes in transversal width of buccal bone (TWBB) and buccal bone thickness (BBT) before (T1) and 7 months after treatment onset (T2). Measurements on dental casts were performed using a digital caliper. Differences between and within groups were analyzed by Student's t-test; Pearson correlation coefficient was also calculated. RESULTS: Significant mandibular expansion was observed for both groups; however, no significant differences were found between groups. There was significant decrease in mandibular buccal bone thickness and transversal width of buccal bone in both groups. There was no significant correlation between buccal bone thickness and dental arch expansion. CONCLUSIONS: There were no significant differences between self-ligating brackets and conventional brackets systems regarding mandibular arch expansion and changes in buccal bone thickness or transversal width of buccal bone. PMID:26154456
Jing, Wensen; Zhang, Minghua; Jin, Lei; Zhao, Jian; Gao, Qing; Ren, Min; Fan, Qingyu
2015-12-01
Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface. Copyright © 2015. Published by Elsevier Ltd.
Determination of Small Animal Long Bone Properties Using Densitometry
NASA Technical Reports Server (NTRS)
Breit, Gregory A.; Goldberg, BethAnn K.; Whalen, Robert T.; Hargens, Alan R. (Technical Monitor)
1996-01-01
Assessment of bone structural property changes due to loading regimens or pharmacological treatment typically requires destructive mechanical testing and sectioning. Our group has accurately and non-destructively estimated three dimensional cross-sectional areal properties (principal moments of inertia, Imax and Imin, and principal angle, Theta) of human cadaver long bones from pixel-by-pixel analysis of three non-coplanar densitometry scans. Because the scanner beam width is on the order of typical small animal diapbyseal diameters, applying this technique to high-resolution scans of rat long bones necessitates additional processing to minimize errors induced by beam smearing, such as dependence on sample orientation and overestimation of Imax and Imin. We hypothesized that these errors are correctable by digital image processing of the raw scan data. In all cases, four scans, using only the low energy data (Hologic QDR-1000W, small animal mode), are averaged to increase image signal-to-noise ratio. Raw scans are additionally processed by interpolation, deconvolution by a filter derived from scanner beam characteristics, and masking using a variable threshold based on image dynamic range. To assess accuracy, we scanned an aluminum step phantom at 12 orientations over a range of 180 deg about the longitudinal axis, in 15 deg increments. The phantom dimensions (2.5, 3.1, 3.8 mm x 4.4 mm; Imin/Imax: 0.33-0.74) were comparable to the dimensions of a rat femur which was also scanned. Cross-sectional properties were determined at 0.25 mm increments along the length of the phantom and femur. The table shows average error (+/- SD) from theory of Imax, Imin, and Theta) over the 12 orientations, calculated from raw and fully processed phantom images, as well as standard deviations about the mean for the femur scans. Processing of phantom scans increased agreement with theory, indicating improved accuracy. Smaller standard deviations with processing indicate increased precision and repeatability. Standard deviations for the femur are consistent with those of the phantom. We conclude that in conjunction with digital image enhancement, densitometry scans are suitable for non-destructive determination of areal properties of small animal bones of comparable size to our phantom, allowing prediction of Imax and Imin within 2.5% and Theta within a fraction of a degree. This method represents a considerable extension of current methods of analyzing bone tissue distribution in small animal bones.
Bai, Rong-jie; Cong, De-gang; Shen, Bao-zhong; Han, Ming-jun; Wu, Zhen-hua
2006-08-05
Hyperparathyroidism (HPT) occurs at an early age and has a high disability rate. Unfortunately, confirmed diagnosis in most patients is done at a very late stage, when the patients have shown typical symptoms and signs, and when treatment does not produce any desirable effect. It has become urgent to find a method that would detect early bone diseases in HPT to obtain time for the ideal treatment. This study evaluated the accuracy of high field magnetic resonance imaging (MRI) combined with spiral computed tomography (SCT) scan in detecting early bone diseases in HPT, through imaging techniques and histopathological examinations on an animal model of HPT. Eighty adult rabbits were randomly divided into two groups with forty in each. The control group was fed normal diet (Ca:P = 1:0.7); the experimental group was fed high phosphate diet (Ca:P = 1:7) for 3, 4, 5, or 6-month intervals to establish the animal model of HPT. The staging and imaging findings of the early bone diseases in HPT were determined by high field MRI and SCT scan at the 3rd, 4th, 5th and 6th month. Each rabbit was sacrificed after high field MRI and SCT scan, and the parathyroid and bones were removed for pathological examination to evaluate the accuracy of imaging diagnosis. Parathyroid histopathological studies revealed hyperplasia, osteoporosis and early cortical bone resorption. The bone diseases in HPT displayed different levels of low signal intensity on T(1)WI and low to intermediate signal intensity on T(2)WI in bone of stage 0, I, II or III, but showed correspondingly absent, probable, osteoporotic and subperiosteal cortical resorption on SCT scan. High field MRI combined with SCT scan not only detects early bone diseases in HPT, but also indicates staging, and might be a reliable method of studying early bone diseases in HPT.
Wilson, J D; Castillo, M
1995-01-01
Cat-scratch disease (CSD) is a benign, self-limited cause of lymphadenitis occurring mainly in children and young adults. Its etiology is a delicate, small gram-negative pleomorphic bacillus. Less common manifestations of CSD are seen in 5% of patients and include Parinaud's oculoglandular syndrome (with enlargement of the preauricular nodes), parotid gland enlargement, encephalitis, radiculopathy, pneumonitis, erythema nodosum, thrombocytopenia, and lytic bone lesions. We describe a patient in whom magnetic resonance imaging initially detected subtle vertebral bone marrow abnormalities that correlated with the site of abnormality on a subsequent radionuclide bone scan.
Nuclear scanning in necrotizing progressive ''malignant'' external otitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parisier, S.C.; Lucente, F.E.; Som, P.M.
1982-09-01
The usefulness of radionuclear scanning in the treatment of 18 patients with necrotizing progressive ''malignant'' external otitis is discussed. A Tc 99-m bone scan, a valuable test since results are positive in early cases of osteomyelitis of the temporal bone and base of skull, showed increased uptake in all 18 patients. In 6 patients, Ga-67 citrate scans were obtained at the start of therapy and at 5-6 week intervals thereafter. The serial gallium scans were useful in evaluating the effectiveness of therapy since the uptake decrease with control of infection.
Numerical Investigation of Shock Wave Propagation in Bone-Like Tissue
NASA Astrophysics Data System (ADS)
Nelms, Matt; Rajendran, Arunachalam
In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The penetration resistant fish scale was modeled by simulating a plate impact test configuration using ABAQUS®finite element (FE) software. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile bone. The geometry and variation of elastic modulus were determined from high-resolution scanning electron microscopy and dynamic nanoindentation experimentation to develop an idealized computational model for RVE-based FE simulations. The numerical analysis shows the effects of different functional material property variations on the stress histories and energy dissipation generated by wave propagation. Given the constitutive behaviors of the two layers are distinctly different, a brittle tensile damage model was employed to describe the ganoine and Drucker-Prager plasticity was used for the nonlinear response of the bone.
NASA Technical Reports Server (NTRS)
Whalen, Robert T.; Napel, Sandy; Yan, Chye H.
1996-01-01
Progress in development of the methods required to study bone remodeling as a function of time is reported. The following topics are presented: 'A New Methodology for Registration Accuracy Evaluation', 'Registration of Serial Skeletal Images for Accurately Measuring Changes in Bone Density', and 'Precise and Accurate Gold Standard for Multimodality and Serial Registration Method Evaluations.'
Magnetic resonance imaging and computerized tomography in malignant external otitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gherini, S.G.; Brackmann, D.E.; Bradley, W.G.
1986-05-01
In malignant external otitis (MEO), determining the anatomic extent of disease and evaluating the physiologic response to therapy remain a problem. Magnetic resonance imaging (MRI) has recently become available in limited clinical settings. Four patients with MEO were evaluated using MRI, computerized tomography (CT), technetium-99 (Tc-99) bone scanning, and gallium-67 citrate (Ga-67 citrate) scanning. MRI is superior to CT, Tc-99 bone scanning, and Ga-67 citrate scanning in evaluating the anatomic extent of soft tissue changes in MEO. MRI alone cannot be relied upon to determine the physiologic response to therapy. MRI can, however, serve as a valuable guide to themore » interpretation of Tc-99 bone and Ga-67 citrate scans, and in this respect, MRI is extremely useful in the treatment of MEO.« less
Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound
NASA Astrophysics Data System (ADS)
Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph
2013-11-01
Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.
Trabecular Bone Mechanical Properties and Fractal Dimension
NASA Technical Reports Server (NTRS)
Hogan, Harry A.
1996-01-01
Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again and also scanned using dual-energy X-ray absorptiometry (DEXA). Cube specimens are then cut from the slabs and tested mechanically in compression. Correlations between mechanical properties and fractal dimension will then be examined to assess and quantify the predictive capability of the fractal calculations.
Bone and gallium scanning in the pre-op evaluation of the infected dysvascular foot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, C.; Sakimura, I.; Dillon, A.
1984-01-01
The purpose of this study is to determine the value of bone and gallium scans in predicting healing levels in the dysvascular foot with an infection requiring amputation. Healing requires amputation at a level both free of infection and with adequate blood flow. Forty-one such patients had bone and gallium scans and Doppler studies prior to amputation at a level selected by the surgeon. Eight patients required multiple surgeries before healing was obtained. Bone and soft tissue infections were determined from scans and healing levels predicted (SPHL) as the most distal amputation level free from infection: toectomy, Reye's, transmetatarsal, calcanectomy,more » Syme's, below knee. Doppler healing levels (DPHL) were predicted using a standard ischemic index. Doppler alone predicted the final healing level (FHL) in 41% with 59% needing more proximal amputation. Scans alone predicted FHL in 64% with 26% needing more proximal amputation. Ten percent were distal to the SPHL and all healed. These scans showed infection at transition sites between amputation levels, and the more proximal level had been predicted. Using the more proximal of the DPHL and SPHL the FHL was predicted in 78% with another 12% having more proximal amputation for nursing reasons. In 10% amputation was performed between DPHL and SPHL or at the more distal level. In no case was successful surgery performed distal to the more distal SPHL or DPHL. Bone and gallium scans used with Doppler studies are useful in optimizing the choice of amputation level in the infected, dysvascular foot.« less
Lampi, Tiina; Dekker, Hannah; Ten Bruggenkate, Chris M; Schulten, Engelbert A J M; Mikkonen, Jopi J W; Koistinen, Arto; Kullaa, Arja M
2018-01-01
The aim of this study was to define the acid-etching technique for bone samples embedded in polymethyl metacrylate (PMMA) in order to visualize the osteocyte lacuno-canalicular network (LCN) for scanning electron microscopy (SEM). Human jaw bone tissue samples (N = 18) were collected from the study population consisting of patients having received dental implant surgery. After collection, the bone samples were fixed in 70% ethanol and non-decalcified samples embedded routinely into polymethyl metacrylate (PMMA). The PMMA embedded specimens were acid-etched in either 9 or 37% phosphoric acid (PA) and prepared for SEM for further analysis. PMMA embedded bone specimens acid-etched by 9% PA concentration accomplishes the most informative and favorable visualization of the LCN to be observed by SEM. Etching of PMMA embedded specimens is recommendable to start with 30 s or 40 s etching duration in order to find the proper etching duration for the samples examined. Visualizing osteocytes and LCN provides a tool to study bone structure that reflects changes in bone metabolism and diseases related to bone tissue. By proper etching protocol of non-decalcified and using scanning electron microscope it is possible to visualize the morphology of osteocytes and the network supporting vitality of bone tissue.
Is intrasound vibration useful in the diagnosis of occult scaphoid fractures?
Roolker, L; Tiel-van Buul, M M; Broekhuizen, T H
1998-03-01
This study was designed to confirm the results of Finkenberg et al. (J Hand Surg 1993;18A: 4-7), who found a high sensitivity (100%) and specificity (95%) of the intrasound vibration method in diagnosing occult scaphoid fractures. These occult scaphoid fractures are not visible on x-ray films, but clinically the patients are suspected of having a scaphoid fracture. A vibratory apparatus is placed over the anatomical snuff-box and a vibration of 100 mW is emitted; a painful sensation is produced if the scaphoid is fractured. Thirty-seven consecutive patients with a clinically suspected scaphoid fracture were evaluated. In 6 patients, a scaphoid fracture was radiographically identified; in the remaining 31 patients, a 3-phase bone scan was obtained. Eleven wrists showed increased uptake over the scaphoid and were considered to have an occult scaphoid fracture. In this group, bone scintigraphy was used as the reference standard. The vibration test was painful in 1 of 6 patients with a proven scaphoid fracture and in 3 of the 11 patients with a positive bone scan. In contrast to the results of Finkenberg et al, the intrasound vibration method shows a sensitivity of 24%, a specificity of 85%, a positive predictive value of 40%, and a negative predictive value of 65%. We conclude that the accuracy of intrasound vibration is low and that it is not useful in the diagnosis of scaphoid fractures.
Prasad, Kameshwar; Mohanty, Sujata; Bhatia, Rohit; Srivastava, M.V.P.; Garg, Ajay; Srivastava, Achal; Goyal, Vinay; Tripathi, Manjari; Kumar, Amit; Bal, Chandrashekar; Vij, Aarti; Mishra, Nalini Kant
2012-01-01
Background & objectives: Bone marrow mononuclear cell therapy has emerged as one of the option for the treatment of Stroke. Several preclinical studies have shown that the treatment with mononuclear cell (MNCs) can reduce the infarct size and improve the functional outcome. We evaluated the feasibility, safety and clinical outcome of administering bone marrow mononuclear cell (MNCs) intravenously to patients with subacute ischaemic stroke. Methods: In a non-randomized phase-I clinical study, 11 consecutive, eligible and consenting patients, aged 30-70 yr with ischaemic stroke involving anterior circulation within 7 to 30 days of onset of stroke were included. Bone marrow was aspirated from iliac crest and the harvested mononuclear cells were infused into antecubital vein. Outcomes measured for safety included immediate reactions after cell infusion and evidence of tumour formation at one year in whole body PET scan. Patients were followed at week 1, 4-6, 24 and 52 to determine clinical progress using National Institute of Health Stroke Scale (NIHSS), Barthel Index (BI), modified Rankin Scale (mRS), MRI, EEG and PET. Feasibility outcomes included target-dose feasibility. Favourable clinical outcome was defined as mRS score of 2 or less or BI score of 75 to 100 at six months after stem cell therapy. Results: Between September 2006 and April 2007, 11 patients were infused with bone-marrow mononuclear cells (mean 80 million with CD-34+ mean 0.92 million). Protocol was target-dose feasible in 9 patients (82%). FDG-PET scan at 24 and 52 wk in nine patients did not reveal evidence of tumour formation. Seven patients had favourable clinical outcome. Interpretation & conclusions: Intravenous bone marrow mononuclear cell therapy appears feasible and safe in patients with subacute ischaemic stroke. Further, a randomized controlled trial to examine its efficacy is being conducted. PMID:22960888
Tella, E; Aldahlawi, S; Eldeeb, A; El Gazaerly, H
2014-07-01
Aminoguanidine (guanylhydrazinehydrochloride) is a drug that prevents many of the classical systemic complications of diabetes including diabetic osteopenia through its inhibitory activity on the accumulation of advanced glycation end -products (AGEs). The aim of the present study was to evaluate the effectiveness of aminoguanidine versus doxycycline in reducing alveolar bone resorption following mucoperiosteal flap in diabetic rats, using the conventional histopathology and scanning electron microscope (SEM). Twenty-seven male albino rats were used in this study. Periodontal defects were induced experimentally on lower anterior teeth. All rats were subjected to induction of diabetes, by IV injection of the pancreatic B-cells toxin alloxan monohydrate. After eight weeks following the establishment of periodontal defects in all rats, the ligation was removed and 3 rats were scarified as negative control (group 1). The remaining animals were divided into three group based on treatment applied following mucoperiosteal flap surgery. Group 2 received saline treatment only, group 3 received doxycycline periostat (1.5 mg/kg/day) for 3 weeks, and group 4 received aminoguanidine (7.3 mmol/kg) for 3 weeks. The fasting glucose level was measured weekly post operatively. After 21 days all rats were sacrificed. Three anterior parts of the mandible of each group was prepared for histopathological examination and two parts were prepared for SEM. Aminoguanidine treated group (group 4) showed statistically significant increased new bone formation, higher number of osteoblasts and decrease osteoclasts number, resorptive lacunae and existing inflammatory cell infiltration as compared to positive control group (group 2) (P<0.05). Doxycycline was also effective in reducing bone loss as documental by histopathological study. The present study showed that aminoguanidine was significantly effective in reducing alveolar bone loss and can modify the detrimental effects of diabetes in alveolar bone resorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidtlein, CR; Hwang, S; Veeraraghavan, H
Purpose: This study demonstrates a methodology for tracking changes in metastatic bone disease using trajectories in material basis space in serial dual energy computed tomography (DECT) studies. Methods: This study includes patients with bone metastases from breast cancer that had clinical surveillance CT scans using a General Electric CT750HD in dual energy mode. A radiologist defined regions-of-interested (ROI) for bone metastasis, normal bone, and marrow across the serial DECT scans. Our approach employs a Radon transform to forward-projection the basis images, namely, water and iodine, into sinogram space. This data is then repartitioned into fat/bone and effective density/Z image pairsmore » using assumed energy spectrums for the x-ray energies. This approach both helps remove negative material densities and avoids adding spectrum-hardening artifacts. These new basis data sets were then reconstructed via filtered back-projection to create new material basis pair images. The trajectories of these pairs were then plotted in the new basis space providing a means to both visualize and quantitatively measure changes in the material properties of the tumors. Results: ROI containing radiologist defined metastatic bone disease showed well-defined trajectories in both fat/bone and effective density/Z space. ROI that contained radiologist defined normal bone and marrow did not exhibit any discernible trajectories and were stable from scan to scan. Conclusions: The preliminary results show that changes in material composition and effective density/Z image pairs were seen primarily in metastasis and not in normal tissue. This study indicates that by using routine clinical DECT it may be possible to monitor therapy response of bone metastases because healing or worsening bone metastases change material composition of bone. Additional studies are needed to further validate these results and to test for their correlation with outcome.« less
Virtual dissection of Thoropa miliaris tadpole using phase-contrast synchrotron microtomography
NASA Astrophysics Data System (ADS)
Fidalgo, G.; Colaço, M. V.; Nogueira, L. P.; Braz, D.; Silva, H. R.; Colaço, G.; Barroso, R. C.
2018-05-01
In this work, in-line phase-contrast synchrotron microtomography was used in order to study the external and internal morphology of Thoropa miliaris tadpoles. Whole-specimens of T. miliaris in larval stages of development 28, 37 and 42, collected in the municipality of Mangaratiba (Rio de Janeiro, Brazil) were used for the study. The samples were scanned in microtomography beamline (IMX) at the Brazilian Synchrotron Light Laboratory (LNLS). The phase-contrast technique allowed us to obtain high quality images which made possible the structures segmentation on the rendered volume by the Avizo graphic image editing software. The combination of high quality images and segmentation process provides adequate visualization of different organs and soft (liver, notochord, brain, crystalline, cartilages) and hard (elements of the bone skeleton) tissues.
Intraoperative /sup 99m/Tc bone imaging in the treatment of benign osteoblastic tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sty, J.; Simons, G.
1982-05-01
Benign bone tumors can be successfully treated by local resection with the use of intraoperative bone imaging. Intraoperative bone imaging provided accurate localization of an osteoid osteoma in a patella of a 16-year-old girl when standard radiographs failed to demonstrate the lesion. In a case of osteoblastoma of the sacrum in a 12-year old girl, intraoperative scanning was used repeatedly to guide completeness of resection. In these cases in which routine intraoperative radiographs would have failed, intraoperative scanning proved to be essential for success.
Back-scattered electron imaging of skeletal tissues.
Boyde, A; Jones, S J
The use of solid-state back-scattered electron (BSE) detectors in the scanning electron microscopic study of skeletal tissues has been investigated. To minimize the topographic element in the image, flat samples and a ring detector configuration with the sample at normal incidence to the beam and the detector are used. Very flat samples are prepared by diamond micromilling or diamond polishing plastic-embedded tissue. Density discrimination in the image is so good that different density phases within mineralized bone can be imaged. For unembedded spongy bone, cut surfaces can be discriminated from natural surfaces by a topographic contrast mechanism. BSE imaging also presents advantages for unembedded samples with rough topography, such as anorganic preparations of the mineralization zone in cartilage, which give rise to severe charging problems with conventional secondary electron imaging.
Disorders of bone and bone mineral metabolism.
Komoroski, Monica; Azad, Nasrin; Camacho, Pauline
2014-01-01
Metabolic bone disorders are very common in the general population and untreated, they can cause a variety of neurologic symptoms. These diseases include osteoporosis, vitamin D deficiency, Paget's disease, and alterations in calcium, phosphorus, and magnesium metabolism. Diagnosis is made through analysis of metabolic bone blood chemistries as well as radiologic studies such as dual energy X-ray absorptiometry (DXA) scans, bone scans, and X-rays. Treatment options have advanced significantly in the past decade for osteoporosis and Paget's disease and mainly include antiresorptive therapy. New recommendations for treatment of primary hyperparathyroidism are discussed as well as therapy for calcium, phosphorus, and mineral disorders. © 2014 Elsevier B.V. All rights reserved.
Whitney, Colette A; Howard, Lauren E; Amling, Christopher L; Aronson, William J; Cooperberg, Matthew R; Kane, Christopher J; Terris, Martha K; Freedland, Stephen J
2016-12-15
Although race is associated with prostate cancer progression in early stage disease, once men have advanced disease, it is unclear whether race continues to predict a poor outcome. The authors hypothesized that, in an equal-access setting among patients with castration-resistant prostate cancer (CRPC) and no known metastases (M0/Mx), black men would receive imaging tests at similar rates as nonblack men (ie, there would be an equal opportunity to detect metastases) but would have a higher risk of metastatic disease. In total, 837 men who were diagnosed with M0/Mx CRPC during 2000 through 2014 from 5 Veterans Affairs hospitals in the SEARCH (Shared Equal Access Regional Cancer Hospital) database were analyzed. Data on all imaging tests after CRPC diagnosis were collected, including date, type, and outcome. Multivariable Cox models were used to test associations between race and the time to first metastasis, first bone metastasis, first bone scan, second bone scan among men who had a negative first bone scan, and overall survival. Black men (n = 306) were equally as likely as nonblack men (n = 531) to receive a first and second bone scan after a diagnosis of CRPC. There were no significant differences in the risk of developing any metastases, bone metastases, time to bone scans, or overall survival between black men and nonblack men (all P > .2). The lack of racial differences in the development of metastases and scanning practices observed in this study suggests that, once men have a diagnosis of M0/Mx CRPC, race may not be a prognostic factor. Efforts to understand prostate cancer racial disparities may derive greater benefit by focusing on the risk of developing prostate cancer and on the outcomes of men who have early stage disease. Cancer 2016;122:3848-3855. © 2016 American Cancer Society. © 2016 American Cancer Society.
Krammer, Julia; Engel, Dorothee; Schnitzer, Andreas; Kaiser, Clemens G; Dinter, Dietmar J; Brade, Joachim; Schoenberg, Stefan O; Wasser, Klaus
2013-06-01
By analyzing bone scans we aimed to determine whether the assessment of the central skeleton is sufficient for osseous staging in breast cancer patients. This might be of interest for future staging modalities, especially positron emission tomography/computed tomography, usually sparing the peripheral extremities, as well as the skull. In this retrospective study, a total of 837 bone scans for initial staging or restaging of breast cancer were included. A total of 291 bone scans in 172 patients were positive for bone metastases. The localization and distribution of the metastases were re-evaluated by two readers in consensus. The extent of the central skeleton involvement was correlated to the incidence of peripheral metastases. In all 172 patients bone metastases were seen in the central skeleton (including the proximal third of humerus and femur). In 34 patients (19.8 %) peripheral metastases of the extremities (distally of the proximal third of humerus and femur) could be detected. Sixty-four patients (37.2 %) showed metastases of the skull. Summarizing the metastases of the distal extremities and skull, 79 patients (45.9 %) had peripheral metastases. None of the patients showed peripheral metastases without any affliction of the central skeleton. The incidence of peripheral metastases significantly correlated with the extent of central skeleton involvement (p<0.001). Regarding bone scans, an isolated metastatic spread to the peripheral skeleton without any manifestation in the central skeleton seems to be the exception. Thus, the assessment of the central skeleton should be sufficient in osseous breast cancer staging and restaging. However, in case of central metastases, additional imaging of the periphery should be considered for staging and restaging.
Radiographic and scintigraphic evaluation of total knee arthroplasty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, R.; Soudry, M.
1986-04-01
Various radiographic and scintigraphic methods are used to supplement clinical findings in the evaluation of total knee arthroplasty and its complications. Serial roentgenograms offer reliable information for diagnosing mechanical loosening. Wide and extensive radiolucency at the cement-bone interface and shift in position and alignment of prosthetic components can be seen in almost all cases by the time revision is necessary. Radiographic abnormalities are usually not present in acute infection, but are often present in chronic infection. Bone scanning has a high sensitivity for diagnosis of infection or loosening, but is nonspecific because increased uptake is often present around asymptomatic totalmore » knee arthroplasties with normal radiographs. Differential bone and Gallium scanning and scanning with Indium 111-labeled leukocytes have a greater specificity for diagnosis of infection than does bone or Gallium scanning alone. Routine radiographic and scintigraphic studies have shown a high incidence of deep vein thrombosis in the calf after total knee arthroplasty. Clinically significant pulmonary embolization is infrequent.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asmi, Dwi, E-mail: dwiasmi82@yahoo.com, E-mail: dwi.asmi@fmipa.unila.ac.id; Sulaiman, Ahmad, E-mail: ahmadsulaiman@yahoo.co.id; Oktavia, Irene Lucky, E-mail: ireneluckyo@gmail.com
Effect of 10 wt% amorphous SiO{sub 2} from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO{sub 2} powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations,more » functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO{sub 2} composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO{sub 2}. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.« less
NASA Astrophysics Data System (ADS)
Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne
2016-04-01
Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.
NASA Astrophysics Data System (ADS)
Hamidi, A. A.; Salimi, M. N.; Yusoff, A. H. M.
2017-04-01
The focus of bone graft properties has developed through generations, from the ability to withstand mechanical stress to the ability to integrate with the biological structure. In recent years, the use of hydroxyapatite (HA) as bone graft material in orthopedic and dental applications has been increasing. HA is a natural occuring mineral with excellent bioactivity but relatively poor mechanical properties. It constitutes 96% portion of enamel in teeth and 67% portion of bone. HA can be extracted from animal bones or fabricated from synthetic or biologic sources. In this study, eggshells were used as raw material to synthesize eggshell-derived HA (EHA) via mechanochemical method. The synthesis of EHA involved CaO, which was obtained from the calcination of eggshells, and reaction with dicalcium hydrogen phosphate dihydrous (DCPD) or phosphoric acid (H3PO4). The effects of rotational speed and heat treatment temperature on EHA's characteristics were investigated. The characterization studies were carried out by using the Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM). HA powder was successfully synthesized with crystallite and particle sizes in the range of 8-47 nm and 250-550 nm respectively. It was observed from this study that the increase of milling rotational speed had increased the phase purity of EHA samples. Furthermore, the higher heating temperature of HA samples resulted in higher degree of crystallinity of HA and the appearance of β-tricalcium phosphate (β-TCP) as secondary phase.
Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT.
Kroker, Andres; Zhu, Ying; Manske, Sarah L; Barber, Rhamona; Mohtadi, Nicholas; Boyd, Steven K
2017-04-01
High-resolution peripheral quantitative computed tomography (HR-pQCT) is a novel imaging modality capable of visualizing bone microarchitecture in vivo at human peripheral sites such as the distal radius and distal tibia. This research has extended the technology to provide a non-invasive assessment of bone microarchitecture at the human knee by establishing new hardware, imaging protocols and data analysis. A custom leg holder was developed to stabilize a human knee centrally within a second generation HR-pQCT field of view. Five participants with anterior cruciate ligament reconstructions had their knee joint imaged in a continuous scan of 6cm axially. The nominal isotropic voxel size was 60.7μm. Bone mineral density and microarchitecture were assessed within the weight-bearing regions of medial and lateral compartments of the knee at three depths from the weight-bearing articular bone surface, including both the cortical and trabecular bone regions. Scan duration was approximately 18min per knee and produced 5GB of projection data and 10GB of reconstructed image data (2304×2304 image matrix, 1008 slices). Motion during the scan was minimized by the leg holder and was similar in magnitude as a scan of the distal tibia. Bone mineral density and microarchitectural parameters were assessed for 16 volumes of interest in the tibiofemoral joint. This is a new non-invasive in vivo assessment tool for bone microarchitecture in the human knee that provides an opportunity to gain insight into normal, injured and surgically reconstructed human knee bone architecture in cross-sectional or longitudinal studies. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco
2016-07-05
In vivo micro-computed tomography (µCT) scanning of small rodents is a powerful method for longitudinal monitoring of bone adaptation. However, the life-time bone growth in small rodents makes it a challenge to quantify local bone adaptation. Therefore, the aim of this study was to develop a protocol, which can take into account large bone growth, to quantify local bone adaptations over space and time. The entire right tibiae of eight 14-week-old C57BL/6J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size of 10.4µm. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration. 80% of tibia length (starting from the endpoint of the proximal growth plate) was selected as the volume of interest and partitioned into 40 regions along the tibial long axis (10 divisions) and in the cross-section (4 sectors). The bone mineral content (BMC) was used to quantify bone adaptation and was calculated in each region. All local BMCs have precision errors (PE%CV) of less than 3.5% (24 out of 40 regions have PE%CV of less than 2%), least significant changes (LSCs) of less than 3.8%, and 38 out of 40 regions have intraclass correlation coefficients (ICCs) of over 0.8. The proposed protocol allows to quantify local bone adaptations over an entire tibia in longitudinal studies, with a high reproducibility, an essential requirement to reduce the number of animals to achieve the necessary statistical power. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hirakuri, Ayaka; Numasawa, Kanako; Takeishi, Hideki; Satomura, Minato; Takeda, Hiromitsu; Harada, Kuniaki; Asanuma, Osamu; Sakata, Motomichi
2012-01-01
The exposure of the eye lens caused by multi-detector row computed tomography (MDCT) of the temporal bone is a serious problem. Our aim was to evaluate the radiation dose to the eye lens by different scan baselines (orbitomeatal line; OML, acanthiomeatal line; AML) and examine the difference of the depiction of the temporal bone structures. Measurement of the exposure to the eye lens was performed by means of MDCT of the temporal bone with a radio-photoluminescence glass dosimeter using a rand phantom. Moreover, we studied only one volunteer (58-year-old male) who had no symptom and was not suspected of having any ear abnormalities with a two scan baseline. Visualization of the major anatomical structures of the temporal bone (the tympanic portion of the facial nerve canal, the body of the incus, stapes superstructures, vestibule etc.) was performed on the volunteer. The average absorbed dose was 6.42 mGy by the OML and 1.59 mGy by the AML, respectively. With regard to visualization of the temporal bone structures, all structures were of equal quality with the two scan baseline. With the AML line, the radiation dose to the eye lens was reduced to 75%. Therefore, the authors recommended an AML for use for MDCT of the temporal bone. In clinical practice, the optimization of scanning factor (kVp, mAs etc.) and the use of the radio-protection should be implemented for radiation dose reduction of the eye lens by MDCT of the temporal bone.
An Intraoperative Site-specific Bone Density Device: A Pilot Test Case.
Arosio, Paolo; Moschioni, Monica; Banfi, Luca Maria; Di Stefano, Anilo Alessio
2015-08-01
This paper reports a case of all-on-four rehabilitation where bone density at implant sites was assessed both through preoperative computed tomographic (CT) scans and using a micromotor working as an intraoperative bone density measurement device. Implant-supported rehabilitation is a predictable treatment option for tooth replacement whose success depends on the clinician's experience, the implant characteristics and location and patient-related factors. Among the latter, bone density is a determinant for the achievement of primary implant stability and, eventually, for implant success. The ability to measure bone density at the placement site before implant insertion could be important in the clinical setting. A patient complaining of masticatory impairment was presented with a plan calling for extraction of all her compromised teeth, followed by implant rehabilitation. A week before surgery, she underwent CT examination, and the bone density on the CT scans was measured. When the implant osteotomies were created, the bone density was again measured with a micromotor endowed with an instantaneous torque-measuring system. The implant placement protocols were adapted for each implant, according to the intraoperative measurements, and the patient was rehabilitated following an all-on-four immediate loading protocol. The bone density device provided valuable information beyond that obtained from CT scans, allowing for site-specific, intraoperative assessment of bone density immediately before implant placement and an estimation of primary stability just after implant insertion. Measuring jaw-bone density could help clinicians to select implant-placement protocols and loading strategies based on site-specific bone features.
Accuracy of CT-based attenuation correction in PET/CT bone imaging
NASA Astrophysics Data System (ADS)
Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.
2012-05-01
We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.
Visualization of postoperative anterior cruciate ligament reconstruction bone tunnels
2011-01-01
Background and purpose Non-anatomic bone tunnel placement is the most common cause of a failed ACL reconstruction. Accurate and reproducible methods to visualize and document bone tunnel placement are therefore important. We evaluated the reliability of standard radiographs, CT scans, and a 3-dimensional (3D) virtual reality (VR) approach in visualizing and measuring ACL reconstruction bone tunnel placement. Methods 50 consecutive patients who underwent single-bundle ACL reconstructions were evaluated postoperatively by standard radiographs, CT scans, and 3D VR images. Tibial and femoral tunnel positions were measured by 2 observers using the traditional methods of Amis, Aglietti, Hoser, Stäubli, and the method of Benereau for the VR approach. Results The tunnel was visualized in 50–82% of the standard radiographs and in 100% of the CT scans and 3D VR images. Using the intraclass correlation coefficient (ICC), the inter- and intraobserver agreement was between 0.39 and 0.83 for the standard femoral and tibial radiographs. CT scans showed an ICC range of 0.49–0.76 for the inter- and intraobserver agreement. The agreement in 3D VR was almost perfect, with an ICC of 0.83 for the femur and 0.95 for the tibia. Interpretation CT scans and 3D VR images are more reliable in assessing postoperative bone tunnel placement following ACL reconstruction than standard radiographs. PMID:21999625
NASA Astrophysics Data System (ADS)
Ip, Flora S.
Magnetic Resonance (MR) imaging is one of the most powerful tools in diagnostic medicine for soft tissue imaging. Image acquisition techniques and hardware receivers are very important in achieving high contrast and high resolution MR images. An aim of this dissertation is to design single and multi-element room and cryogenic temperature arrays and make assessments of their signal-to-noise ratio (SNR) and SNR gain. In this dissertation, four sets of MR receiver coils are built. They are the receiver-only cryo-coils that are not commercially available. A tuning and matching circuit is attached to each coil. The tuning and matching circuits are simple; however, each device component has to operate at a high magnetic field and cryogenic temperature environment. Remote DC bias of the varactor controls the tuning and matching outside the scanner room. Active detuning of the resonator is done by two p-i-n junction (PIN) diodes. Cooling of the receiver is done by a customized liquid nitrogen cryostat. The first application is to build a 3-Tesla 2x1 horseshoe counter-rotating current (CRC) cryogenic array to image the tibia in a human body. With significant increase in SNR, the surface coil should deliver high contrast and resolution images that can show the trabecular bone and bone marrow structure. This structural image will be used to model the mechanical strength of the bone as well as bone density and chance of fracture. The planar CRC is a unique design of this surface array. The second application is to modify the coil design to 7-Tesla to study the growth of infant rhesus monkey eyes. Fast scan MR images of the infant monkey heads are taken for monitoring shapes of their eyeballs. The monkeys are induced with shortsightedness by eye lenses, and they are scanned periodically to get images of their eyeballs. The field-of-view (FOV) of these images is about five centimeters and the area of interest is two centimeters deep from the surface. Because of these reasons, the MR counter-rotating current coil is sufficient and demonstrated its simplicity over a phased array in this application.
Reconstruction of radial bone defect in rat by calcium silicate biomaterials.
Oryan, Ahmad; Alidadi, Soodeh
2018-05-15
Despite many attempts, an appropriate therapeutic method has not yet been found to enhance bone formation, mechanical strength and structural and functional performances of large bone defects. In the present study, the bone regenerative potential of calcium silicate (CS) biomaterials combined with chitosan (CH) as calcium silicate/chitosan (CSC) scaffold was investigated in a critical radial bone defect in a rat model. The bioimplants were bilaterally implanted in the defects of 20 adult Sprague-Dawley rats. The rats were euthanized and the bone specimens were harvested at the 56th postoperative day. The healed radial bones were evaluated by three-dimensional CT, radiology, histomorphometric analysis, biomechanics, and scanning electron microscopy. The XRD analysis of the CS biomaterial showed its similarity to wollastonite (β-SiCO 3 ). The degradation rate of the CSC scaffold was much higher and it induced milder inflammatory reaction when compared to the CH alone. More bone formation and higher biomechanical performance were observed in the CSC treated group in comparison with the CH treated ones in histological, CT scan and biomechanical examinations. Scanning electron microscopic observation demonstrated the formation of more hydroxyapatite crystals in the defects treated with CSC. This study showed that the CSC biomaterials could be used as proper biodegradable materials in the field of bone reconstruction and tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.
Georgitzikis, Athanasios; Siopi, Dimitra; Doumas, Argyrios; Mitka, Ekaterini; Antoniadis, Antonios
2010-01-01
We report the unusual case of a 29 -year old woman with emotional instability who presented with acute onset chest pain after severe chronic cough. The chest X-ray and the serological tests were normal but the CT scanning, and the bone scanning revealed multiple bilateral rib stress fractures, caused by severe coughing and physical activity and worsened by the patient's emotional instability.
Skrzat, Janusz; Spulber, Alexandru; Walocha, Jerzy
This paper presents the effects of building mesh models of the human skull and the cranial bones from a series of CT-scans. With the aid of computer so ware, 3D reconstructions of the whole skull and segmented cranial bones were performed and visualized by surface rendering techniques. The article briefly discusses clinical and educational applications of 3D cranial models created using stereolitographic reproduction.
Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il; National Research Tomsk Polytechnic University, Tomsk, 634050
The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were dividedmore » in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, Mariana G. de, E-mail: marianagm@fem.unicamp.br; Salvador, Camilo F., E-mail: csalvador@fem.unicamp.br; Cremasco, Alessandra, E-mail: alessandra@fem.unicamp.br
Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) onmore » α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system. - Highlights: • Sn addition to Ti alloys decreases elastic modulus by suppressing ω phase precipitation. • Sn addition decreases the temperature of martensite decomposition. • Sn addition decreases the temperature of α phase precipitation and β transus. • Mechanical strength decreases with increasing Sn content.« less
Preparation and Characterization of Hydroxyapatite-Silica Composite Nanopowders
NASA Astrophysics Data System (ADS)
Latifi, S. M.; Fathi, M. H.; Golozar, M. A.
One of the most important objectives in the field of biomaterials science and engineering is development of new materials as bone substitutes. Silica (SiO2) has an important role in the biomineralization and biological responses. The aim of this research was to prepare and characterize hydroxyapatite-silica (HA-SiO2) composite nanopowder with different content of silica. Hydroxyapatite-silica composite nanopowders with 20 and 40 wt% silica were prepared using a sol-gel method at 600°C with phosphoric pentoxide and calcium nitrate tetrahydrate as a source of hydroxyapatite; also, tetraethylorthosilicate and methyltriethoxisilane as a source of silica. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used for characterization and evaluation of the products. The results indicated the presence of nanocrystalline hydroxyapatite phase beside amorphous silica phase in prepared composite nanopowders. Moreover, by increasing the content of silica in composite nanopowders, the crystallinity will be decreased,and the ability of the product as a bone substitute material might be controlled by changing the content of the ingredients and subsequently its structure.
Structure and bioactivity studies of new polysiloxane-derived materials for orthopedic applications
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Gumuła, Teresa; Podporska, Joanna; Błażewicz, Marta
2006-07-01
The aim of this work was to examine the structure of new calcium silicate bioactive ceramic implant material for bone surgery applications. The bioceramic material was obtained by thermal treatment of active fillers-containing organosilicon polymer precursor. Different ceramic active fillers, namely Ca(OH) 2, CaCO 3, Na 2HPO 4 and SiO 2 powders were used. The phase composition of ceramic samples obtained by thermal transformation of active fillers containing polysiloxane was investigated. Morphology and structure of ceramic phases were characterized by means of scanning electron microscopy (SEM) with EDS point analysis, FTIR spectroscopy and XRD analysis. It was found that thermal treatment of active fillers-containing organosilicon precursor lead to the formation of wollastonite-containing ceramic material. This ceramic material showed bioactivity in 'in vitro' conditions studied by immersing the samples in simulated body fluid (SBF). The surface of wollastonite-containing ceramic before and after immersion in SBF was analysed. It can be concluded that this kind of ceramic material may be useful as bone substitute. FTIR spectroscopy is an adequate device for the determination of such derived materials structure.
NASA Astrophysics Data System (ADS)
Faksawat, K.; Kaewwiset, W.; Limsuwan, P.; Naemchanthara, K.
2017-09-01
The aim of this work was to compare characteristics of hydroxyapatite synthesized by precipitation and ball milling techniques. The cuttlefish bone powder was a precursor in calcium source and the di ammonium hydrogen orthophosphate powders was a precursor in phosphate source. The hydroxyapatite was synthesized by the both techniques such as precipitation and ball milling techniques. The phase formation, chemical structure and morphology of the both hydroxyapatite powders have been examined by X-ray diffractometer (XRD), Fourier transform infrared spectroscope (FTIR) and field emission scanning electron microscope (FESEM), respectively. The results show that the hydroxyapatite synthesized by precipitation technique formed hydroxyapatite phase slower than the hydroxyapatite synthesized by ball milling technique. The FTIR results show the chemical structures of sample in both techniques are similar. The morphology of the hydroxyapatite from the both techniques were sphere like shapes and particle size was about in nano scale. The average particle size of the hydroxyapatite by ball milling technique was less than those synthesized by precipitation technique. This experiment indicated that the ball milling technique take time less than the precipitation technique in hydroxyapatite synthesis.
Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method
NASA Astrophysics Data System (ADS)
Kanchana, P.; Sekar, C.
2010-03-01
Hydroxyapatite (HA) is a good candidate for bone substitutes due to its chemical and structural similarity to bone mineral. Hydroxyapatite has been grown by the gel method using sodium fluoride (NaF) as additive. The growth was carried out at room temperature under the physiological pH of 7.4. The addition of NaF has significantly reduced growth rate and the yield was much less when compared to pure system. The samples of pure and fluoride doped HA were sintered at 600, 900 and 1200 °C in ambient atmosphere. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR) were adopted to investigate the influence of NaF on the morphology, crystallinity, stability and phase purity of HA. EDAX and FTIR studies confirm that the fluoride is doped into the hydroxyapatite. Powder XRD and TGA results suggested that the incorporation of fluorine into the HA matrix improves the phase formation and crystallinity. SEM studies show that the microstructural morphology of HA changes from the fibers for pure to granular structure for the fluoride doped.
Aneurysmal bone cyst does not hinder the success of kidney transplantation. A case report.
Giordano, Mario; Caloro, Giorgia; Gaeta, Alberto; Vergori, Antonio; Santangelo, Luisa; Giordano, Paolo; Ruggieri, Pietro
2015-03-01
Uremic osteodystrophy is an expected complication in subjects with chronic renal insufficiency. It develops gradually and progressively already during the conservative treatment and then during the dialysis treatment. It can present a wide histopathological spectrum including typical alterations (from osteitis fibrosa to osteomalacia and/or mixed lesions) or, more rarely, isolated bone lesions indicative of a brown tumor of the bone. These conditions must be clearly identified in the pretransplant phase, especially if a bone lesion indicative of a pathological condition possibly evolving into a neoplasm is detected fortuitously. We report the case of a 19-yr-old boy with renal insufficiency and candidate for a pre-emptive renal transplantation from a living donor, in whom the diagnosis of ABC of the pubic symphysis - asymptomatic and fortuitously detected while performing instrumental investigations - was suspected through the imaging studies (CT scan, MRI) and was confirmed by the histological examination. This made it possible to perform the renal transplant. The immunosuppressive treatment, which was subsequently administered, was based on steroids, calcineurin inhibitors (tacrolimus), and mycophenolate and did not determine any modification in the radiological aspect of the bone lesion, even after more than one yr from the transplant. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cozza, Natascia; Monte, Felipe; Bonani, Walter; Aswath, Pranesh; Motta, Antonella; Migliaresi, Claudio
2018-02-01
In this study, bioactive hydroxyapatite (HAP)-based bioceramics starting from cuttlefish bone powders have been prepared and characterized. In particular, fragmented cuttlefish bone was co-sintered with 30 wt% of Bioglass ® -45S5 to synthesize HAP-based powders with enhanced mechanical properties and bioactivity. Commercial synthetic HAP was treated following the same procedure and used as a reference. The structure and composition of the bioceramics formulations were characterized using Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. After the thermal treatment of cuttlefish bone powder added with 30 wt% Bioglass, new phases with compositions of sodium calcium phosphate [Na 3 Ca 6 (PO 4 ) 5 ], β-tricalcium phosphate [Ca 3 (PO 4 )] and amorphous silica were detected. In vitro cell culture studies were performed by evaluating proliferation, metabolic activity and differentiation of human osteoblast-like cells (MG63). Scaffolds made with cuttlefish bone powder exhibited increased apatite deposition, alkaline phosphatase activity and cell proliferation compared with commercial synthetic HAP. In addition, the ceramic compositions obtained after the combination with Bioglass ® further enhanced the metabolic activity of MG63 cell and promoted the formation of a well-developed apatite layer after 7 days of incubation in Dulbecco's modified Eagle's medium. Copyright © 2017 John Wiley & Sons, Ltd.
Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models.
Rose, Austin S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Rawal, Rounak B; Iseli, Claire E
2015-05-01
As the process of additive manufacturing, or three-dimensional (3D) printing, has become more practical and affordable, a number of applications for the technology in the field of pediatric otolaryngology have been considered. One area of promise is temporal bone surgical simulation. Having previously developed a model for temporal bone surgical training using 3D printing, we sought to produce a patient-specific model for pre-operative simulation in pediatric otologic surgery. Our hypothesis was that the creation and pre-operative dissection of such a model was possible, and would demonstrate potential benefits in cases of abnormal temporal bone anatomy. In the case presented, an 11-year-old boy underwent a planned canal-wall-down (CWD) tympano-mastoidectomy for recurrent cholesteatoma preceded by a pre-operative surgical simulation using 3D-printed models of the temporal bone. The models were based on the child's pre-operative clinical CT scan and printed using multiple materials to simulate both bone and soft tissue structures. To help confirm the models as accurate representations of the child's anatomy, distances between various anatomic landmarks were measured and compared to the temporal bone CT scan and the 3D model. The simulation allowed the surgical team to appreciate the child's unusual temporal bone anatomy as well as any challenges that might arise in the safety of the temporal bone laboratory, prior to actual surgery in the operating room (OR). There was minimal variability, in terms of absolute distance (mm) and relative distance (%), in measurements between anatomic landmarks obtained from the patient intra-operatively, the pre-operative CT scan and the 3D-printed models. Accurate 3D temporal bone models can be rapidly produced based on clinical CT scans for pre-operative simulation of specific challenging otologic cases in children, potentially reducing medical errors and improving patient safety. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Al Kaissi, Ali; Chehida, Farid Ben; Ganger, Rudolf; Grill, Franz
2014-01-01
We report on a female fetus noted to have severe malformative type of skeletal dysplasia on ultrasonography done at 35 weeks gestation. The girl died shortly after birth. Clinical examination showed a fetus with severe dwarfism, extensive long and short bones, and bone deficiencies associated with multiple dislocations. Computed tomography (CT) scan-based phenotype showed a complex constellation of malformations consistent with the diagnosis of Grebe syndrome. Parents being first cousins (consanguineous marriage) strongly suggests autosomal recessive pattern of inheritance. To our knowledge, this is the first report of neonatal death dwarfism of Grebe syndrome analyzed by CT scan-based phenotype.
The Effect of Changing Scan Mode on Trabecular Bone Score Using Lunar Prodigy.
Chen, Weiwen; Slattery, Anthony; Center, Jacqueline; Pocock, Nicholas
2016-10-01
Trabecular bone score (TBS) is a measure of gray scale homogeneity that correlates with trabecular microarchitecture and is an independent predictor of fracture risk. TBS is being increasingly used in the assessment of patients at risk of osteoporosis and has recently been incorporated into FRAX ® . GE Lunar machines acquire spine scans using 1 of 3 acquisition modes depending on abdominal tissue thickness (thin, standard, and thick). From a database review, 30 patients (mean body mass index: 30.8, range 26.2-34.1) were identified who had undergone lumbar spine DXA scans (GE Lunar Prodigy, software 14.10; Lunar Radiation Corporation, Madison, WI) in both standard mode and thick mode, on the same day with no repositioning. Lumbar spine bone mineral density (L1-L4) and TBS were derived from the 30 paired spine scans. There was no significant difference in lumbar spine bone mineral density between the 2 scanning modes. There were, however, significant higher TBS values from the spine scans acquired in thick mode compared to the TBS values derived from spine acquisitions in standard mode (mean TBS difference: 0.24 [20%], standard deviation ±0.10). In conclusion, these preliminary data suggest that TBS values acquired in the GE Lunar Prodigy are dependent on the scanning mode used. Further evaluation is required to confirm the cause and develop appropriate protocols. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Oliveira-Santos, Thiago; Klaeser, Bernd; Weitzel, Thilo; Krause, Thomas; Nolte, Lutz-Peter; Peterhans, Matthias; Weber, Stefan
2011-01-01
Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.
Hydroxyapatite formation from cuttlefish bones: kinetics.
Ivankovic, H; Tkalcec, E; Orlic, S; Ferrer, G Gallego; Schauperl, Z
2010-10-01
Highly porous hydroxyapatite (Ca(10)(PO(4))(6)·(OH)(2), HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (Sepia officinalis L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson-Mehl-Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the a-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO(3) (2-) groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200-300 nm and an average length of about 8-10 μm.
A combined chitosan/nano-size hydroxyapatite system for the controlled release of icariin.
Fan, Junjun; Bi, Long; Wu, Tao; Cao, Liangguo; Wang, Dexin; Nan, Kaihui; Chen, Jingdi; Jin, Dan; Jiang, Shan; Pei, Guoxian
2012-02-01
Icariin, a plant-derived flavonol glycoside, has been proved as an osteoinductive agent for bone regeneration. For this reason, we developed an icariin-loaded chitosan/nano-sized hydroxyapatite (IC-CS/HA) system which controls the release kinetics of icariin to enhance bone repairing. First, by Fourier transform infrared spectroscopy, we found that icariin was stable in the system developed without undergoing any chemical changes. On the other hand, X-ray diffraction, scanning electron microscopy and mechanical test revealed that the introduction of icariin did not remarkably change the phase, morphology, porosity and mechanical strength of the CS/HA composite. Then the hydrolytic degradation and drug release kinetics in vitro were investigated by incubation in phosphate buffered saline solution. The results indicated that the icariin was released in a temporally controlled manner and the release kinetics could be governed by degradation of both chitosan and hydroxyapatite matrix. Finally the in vitro bioactivity assay revealed that the loaded icariin was biologically active as evidenced by stimulation of bone marrow derived stroma cell alkaline phosphatase activity and formation of mineralized nodules. This successful IC-CS/HA system offers a new delivery method of osteoinductive agents and a useful scaffold design for bone regeneration.
NASA Astrophysics Data System (ADS)
Knoop, Tom H.; Derikx, Loes C.; Verdonschot, Nico; Slump, Cornelis H.
2015-03-01
In the progressive stages of cancer, metastatic lesions in often develop in the femur. The accompanying pain and risk of fracture dramatically affect the quality of life of the patient. Radiotherapy is often administered as palliative treatment to relieve pain and restore the bone around the lesion. It is thought to affect the bone mineralization of the treated region, but the quantitative relation between radiation dose and femur remineralization remains unclear. A new framework for the longitudinal analysis of CT-scans of patients receiving radiotherapy is presented to investigate this relationship. The implemented framework is capable of automatic calibration of Hounsfield Units to calcium equivalent values and the estimation of a prediction interval per scan. Other features of the framework are temporal registration of femurs using elastix, transformation of arbitrary Regions Of Interests (ROI), and extraction of metrics for analysis. Build in Matlab, the modular approach aids easy adaptation to the pertinent questions in the explorative phase of the research. For validation purposes, an in-vitro model consisting of a human cadaver femur with a milled hole in the intertrochanteric region was used, representing a femur with a metastatic lesion. The hole was incrementally stacked with plates of PMMA bone cement with variable radiopaqueness. Using a Kolmogorov-Smirnov (KS) test, changes in density distribution due to an increase of the calcium concentration could be discriminated. In a 21 cm3 ROI, changes in 8% of the volume from 888 ± 57mg • ml-1 to 1000 ± 80mg • ml-1 could be statistically proven using the proposed framework. In conclusion, the newly developed framework proved to be a useful and flexible tool for the analysis of longitudinal CT data.
Partial growth plate closure: apex view on bone scan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howman-Giles, R.; Trochei, M.; Yeates, K.
1985-01-01
A new technique of using /sup 99m/Tc bone scan to assess partial closure of the growth plate is described. The site and degree of osseous fusion can be obtained by using the apex view. The technique has the potential of assessing serially the growth of a plate before and after surgery.
Bone scan findings in hypervitaminosis D: case report. [/sup 99m/Tc tracer technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogelman, I.; McKillop, J.H.; Cowden, E.A.
1977-12-01
Bone scans in three patients showed generalized symmetrical increased uptake of radiopharmaceutical by the skeleton and absent or faint kidney images. It is thought that these appearances may be attributable to excess vitamin D, and other possible contributing factors, including the presence of renal osteodystrophy, are discussed.
Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound
Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph
2012-01-01
Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803
Pritchard, N Stewart; Smoliga, James M; Nguyen, Anh-Dung; Branscomb, Micah C; Sinacore, David R; Taylor, Jeffrey B; Ford, Kevin R
2017-01-01
Metatarsal fractures, especially of the fifth metatarsal, are common injuries of the foot in a young athletic population, but the risk factors for this injury are not well understood. Dual-energy x-ray absorptiometry (DXA) provides reliable measures of regional bone mineral density to predict fracture risk in the hip and lumbar spine. Recently, sub-regional metatarsal reliability was established in fresh cadaveric specimens and associated with ultimate fracture force. The purpose of this study was to assess the reliability of DXA bone mineral density measurements of sub-regions of the second and fifth metatarsals in a young, active population. Thirty two recreationally active individuals participated in the study, and the bone density of the second (2MT) and fifth (5MT) metatarsals of each subject was measured using a Hologic QDR x-ray bone densitometer. Scans were analyzed separately by two raters, and regional bone mineral density, bone mineral content, and area measurements were calculated for the proximal, shaft, and distal regions of the bone. Intra-rater, inter-rater, and scan-rescan reliability were then determined for each region. Proximal and shaft bone mineral density measurements of the second and fifth metatarsal were reliable. ICC's were variable across regions and metatarsals, with the distal region being the poorest. Bone mineral density measurements of the metatarsals may be a better indicator of fracture risk of the metatarsals than whole body measurements. A reliable method for measuring the regional bone mineral densities of the metatarsals was found. However, inter-rater reliability and scan-rescan reliability for the distal regions were poor. Future research should examine the relationship between DXA bone mineral density measurements and fracture risk at the metatarsals.
Menicucci, G; Mussano, F; Schierano, G; Rizzati, A; Aimetti, M; Gassino, G; Traini, T; Carossa, S
2013-03-01
The present prospective, randomized, double-blind study evaluated the bone-forming process around implants inserted simultaneously with anorganic bovine bone (ABB) in sinus grafting. A total of 18 threaded mini-implants with Osseotite (O) and Nanotite (N) surfaces were placed in seven patients (nine sites). After 12 months, the implants were retrieved and processed for histological analysis. A total of 18 cutting and grinding sections were investigated with bright-field light microscopy, circularly polarized light microscopy (CPLM), confocal scanning laser microscope (CSLM), and scanning electron microscope (SEM) with energy dispersive spectrometer (EDS). The bone-to-implant contact rate in native crestal bone was 62.6 ± 0.4% for N implants and 54.3 ± 0.5% for the O implants (p = 0.001). The collagen fibre density, as assessed by CPLM, was 79.8 ± 6.0 nm for the N group and 74.6 ± 4.6 nm for the O group (p < 0.05). Line scan EDS starting from ABB to newly formed bone showed a decrease in calcium content and an increase of carbon while phosphorus content was constant. While the N surface improved the peri-implant endosseous healing properties in the native bone, when compared to the O surface, it did not improve the healing properties in the bone-graft area. © 2013 Australian Dental Association.
Delage Royle, Audrey; Balg, Frédéric; Bouliane, Martin J; Canet-Silvestri, Fanny; Garant-Saine, Laurianne; Sheps, David M; Lapner, Peter; Rouleau, Dominique M
2017-10-01
Quantifying glenohumeral bone loss is key in preoperative surgical planning for a successful Bankart repair. Simple radiographs can accurately measure bone defects in cases of recurrent shoulder instability. Cohort study (diagnosis); Level of evidence, 2. A true anteroposterior (AP) view, alone and in combination with an axillary view, was used to evaluate the diagnostic properties of radiographs compared with computed tomography (CT) scan, the current gold standard, to predict significant bone defects in 70 patients. Sensitivity, specificity, and positive and negative predictive values were evaluated and compared. Detection of glenoid bone loss on plain film radiographs, with and without axillary view, had a sensitivity of 86% for both views and a specificity of 73% and 64% with and without the axillary view, respectively. For detection of humeral bone loss, the sensitivity was 8% and 17% and the specificity was 98% and 91% with and without the axillary view, respectively. Regular radiographs would have missed 1 instance of significant bone loss on the glenoid side and 20 on the humeral side. Interobserver reliabilities were moderate for glenoid detection (κ = 0.473-0.503) and poor for the humeral side (κ = 0.278-0.336). Regular radiographs showed suboptimal sensitivity, specificity, and reliability. Therefore, CT scan should be considered in the treatment algorithm for accurate quantification of bone loss to prevent high rates of recurrent instability.
Khoo, Benjamin C C; Beck, Thomas J; Qiao, Qi-Hong; Parakh, Pallav; Semanick, Lisa; Prince, Richard L; Singer, Kevin P; Price, Roger I
2005-07-01
Hip structural analysis (HSA) is a technique for extracting strength-related structural dimensions of bone cross-sections from two-dimensional hip scan images acquired by dual energy X-ray absorptiometry (DXA) scanners. Heretofore the precision of the method has not been thoroughly tested in the clinical setting. Using paired scans from two large clinical trials involving a range of different DXA machines, this study reports the first precision analysis of HSA variables, in comparison with that of conventional bone mineral density (BMD) on the same scans. A key HSA variable, section modulus (Z), biomechanically indicative of bone strength during bending, had a short-term precision percentage coefficient of variation (CV%) in the femoral neck of 3.4-10.1%, depending on the manufacturer or model of the DXA equipment. Cross-sectional area (CSA), a determinant of bone strength during axial loading and closely aligned with conventional DXA bone mineral content, had a range of CV% from 2.8% to 7.9%. Poorer precision was associated with inadequate inclusion of the femoral shaft or femoral head in the DXA-scanned hip region. Precision of HSA-derived BMD varied between 2.4% and 6.4%. Precision of DXA manufacturer-derived BMD varied between 1.9% and 3.4%, arising from the larger analysis region of interest (ROI). The precision of HSA variables was not generally dependent on magnitude, subject height, weight, or conventional femoral neck densitometric variables. The generally poorer precision of key HSA variables in comparison with conventional DXA-derived BMD highlights the critical roles played by correct limb repositioning and choice of an adequate and appropriately positioned ROI.
Seo, Minjung; Ko, Byung Kyun; Tae, Soon Young; Koh, Su-Jin; Noh, Young Ju; Choi, Hye-Jeong; Bae, Kyungkyg; Bang, Minseo; Jun, Sungmin; Park, Seol Hoon
2016-12-01
Although rib uptake is frequently detected in follow-up bone scans of breast cancer patients, few studies have assessed its clinical significance. Among 1208 breast cancer patients who underwent a bone scan between 2011 and 2014, 157 patients presented with newly detected rib uptake at follow-up. Patients who had underlying bone metastases (n=8) or had simultaneous new uptake in sites other than the rib (n=13) were excluded. The patients enrolled finally were those who had purely rib uptakes. The location, intensity, and final diagnosis of the uptake were evaluated by nuclear medicine physicians. A total of 275 new instances of rib uptake were detected in follow-up bone scans of 136 patients. These were more frequently located on the ipsilateral side of the breast cancer (61.1%) and the anterior arc (65.1%), and they presented as moderate to intense (93.1%) uptakes. Among these, 265 lesions in 130 patients turned out to be benign fractures (96.4%), whereas only 10 lesions in six patients were metastases. The proportion of metastases was significantly higher if the uptake was linear or if the patient had recurrence. It was marginally higher if the uptake was located in the posterior arc. The proportion of metastases within the radiation field was significantly lower in patients with a history of irradiation. Newly detected purely rib uptake on a follow-up bone scan in patients who have been treated for breast cancer is mostly because of fractures and rarely signals metastasis. However, if the patient has disease recurrence, metastasis should strongly be suspected, particularly when uptake is linear or located in the posterior arc.
McLoughlin, L C; Inder, S; Moran, D; O'Rourke, C; Manecksha, R P; Lynch, T H
2018-02-01
The diagnostic evaluation of a PSA recurrence after RP in the Irish hospital setting involves multimodality imaging with MRI, CT, and bone scanning, despite the low diagnostic yield from imaging at low PSA levels. We aim to investigate the value of multimodality imaging in PC patients after RP with a PSA recurrence. Forty-eight patients with a PSA recurrence after RP who underwent multimodality imaging were evaluated. Demographic data, postoperative PSA levels, and imaging studies performed at those levels were evaluated. Eight (21%) MRIs, 6 (33%) CTs, and 4 (9%) bone scans had PCa-specific findings. Three (12%) patients had a positive MRI with a PSA <1.0 ng/ml, while 5 (56%) were positive at PSA ≥1.1 ng/ml (p = 0.05). Zero patient had a positive CT TAP at a PSA level <1.0 ng/ml, while 5 (56%) were positive at levels ≥1.1 ng/ml (p = 0.03). Zero patient had a positive bone at PSA levels <1.0 ng/ml, while 4 (27%) were positive at levels ≥1.1 ng/ml (p = 0.01). The diagnostic yield from multimodality imaging, and isotope bone scanning in particular, in PSA levels <1.0 ng/ml, is low. There is a statistically significant increase in the frequency of positive findings on CT and bone scanning at PSA levels ≥1.1 ng/ml. MRI alone is of investigative value at PSA <1.0 ng/ml. The indication for CT, MRI, or isotope bone scanning should be carefully correlated with the clinical question and how it will affect further management.
TC99m MDP bone scan in evaluation of painful scoliosis
Nilegaonkar, Sujit; Sonar, Sameer; Ranade, Ashish; Khadilkar, Madhav
2010-01-01
A 18-year-old male presented with low back ache. The patient was investigated and was diagnosed to have painful scoliosis. X-ray and other examinations could not reveal any diagnosis. The patient was referred to undergo bone scan on clinical suspicion of osteoid osteoma and to rule out stress fracture if any. Planar bone scan was performed, which showed a lesion in L3 vertebra and was further evaluated with SPECT (Single photon emission computed tomography) study to characterize the lesion. On SPECT examination, the classical features of osteoid osteoma, the double density sign (11), was noted in the pars interarticularis region. These findings were confirmed by a CT scan, which showed a sclerotic lesion in pars interarticularis of L3 vertebra. The patient was posted for operation and was relieved of symptoms in the postoperative follow-up. PMID:21188068
NASA Astrophysics Data System (ADS)
Fadlilah, D. R.; Fajar, M. N.; Aini, A. N.; Haqqiqi, R. I.; Wirawan, P. R.; Endarko
2018-04-01
The synthesized carbon from bones of chicken, cow, and fish with the calcination temperature at 450 and 600°C have been successfully fabricated for counter electrode in the Super Low-Cost Solar Cell (SLC-LC) based the structure of Dye-Sensitized Solar Cells (DSSC). The main proposed study was to fabricate SLC-SC and investigate the influence of the synthesized carbon from animal’s bone for counter electrode towards to photovoltaic performance of SLC-SC. X-Ray Diffraction and UV-Vis was used to characterize the phase and the optical properties of TiO2 as photoanode in SLC-SC. Meanwhile, the morphology and particle size distribution of the synthesized carbon in counter electrodes were investigated by Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). The results showed that the TiO2 has anatase phase with the absorption wavelength of 300 to 550 nm. The calcination temperature for synthesizing of carbon could affect morphology and particle size distribution. The increasing temperature gave the effect more dense in morphology and increased the particle size of carbon in the counter electrode. Changes in morphology and particle size of carbon give effect to the performance of the SLC-SC where the increased morphology’s compact and particle size make decreased in the performance of the SLC-SC.
NASA Astrophysics Data System (ADS)
Ma, Xiaoyu; Liu, Yongjia; Zhu, Bangshang
2018-02-01
Strontium shows an increasing interest on bone formation and bone resorption prevention. Here, pure apatite strontium (Ap-SrOH) [Sr5(PO4)3(OH), strontium hydroxyapatite] particles were prepared by the precipitation method using Sr(NO3)2 · 6H2O and (NH4)2HPO4 as reagents. Scanning electron microscope, transmission electron microscope combined with electron diffraction, X-ray diffraction, Fourier transform infrared spectra (FTIR), variable temperature FTIR and thermo gravimetric analysis were employed to evaluate the crystalline structure, chemical composition, and thermal stability of the Ap-SrOH particles. The results show that phase pure Ap-SrOH particles were prepared by wet precipitation. The obtained Ap-SrOH particles are single crystal in phase structure, they have hexagonal fusiform shape, and their size is about 30-180 nm in diameter, and 0.4-2.5 μm in length. The cell MTT assay evaluations indicate that Ap-SrOH particles have very low cytotoxicity. Furthermore, nanoporous Ap-SrOH scaffolds were synthesized by anhydrous dextrose template method. After mixed 5-10 wt% of anhydrous dextrose with Ap-SrOH particles, pressed into discs, and sintered in microwave muffle furnace at 600 °C, the scaffolds with both nanoporous and nanotopography were formed. Cell culture of MC3T3-E1 osteoblasts in vitro show cells grow well on nanoporous Ap-SrOH scaffold. Therefore, Ap-SrOH particles and their nanoporous scaffolds are promising biomaterials for bone repairing and bone disease (e.g. osteoporosis) healing.
Short-term implantation effects of a DCPD-based calcium phosphate cement.
Frayssinet, P; Gineste, L; Conte, P; Fages, J; Rouquet, N
1998-06-01
Calcium phosphate cements can be handled in paste form and set in a wet medium after precipitation of calcium phosphate crystals in the implantation site. Depending on the products entering into the chemical reaction leading to the precipitation of calcium phosphates, different phases can be obtained with different mechanical properties, setting times and injectability. We tested a cement composed of a powder, containing beta-tricalcium phosphate (beta-TCP) and sodium pyrophosphate mixed with a solution of phosphoric and sulphuric acids. The cement set under a dicalcium phosphate dihydrate (DCPD)-based matrix containing beta-TCP particles. This was injected with a syringe into a defect drilled in rabbit condyles, the control being an identical defect left empty in the opposite condyle. The condyles were analysed histologically 2, 6 and 18 weeks after implantation. After injection into the bone defect the cement set and formed a porous calcium phosphate structure. Two different calcium phosphate phases with different solubility rates could be identified by scanning electron microscopy (SEM) observation. The less-soluble fragments could be degraded by cell phagocytosis in cell compartments of low pH or integrated in the newly formed bone matrix. The degradation rate of the material was relatively high but compatible with the ingrowth of bone trabeculae within the resorbing material. The ossification process was different from the creeping substitution occurring at the ceramic contact. Bone did not form directly at the cement surface following the differentiation of osteoblasts at the material surface. The trabeculae came to the material surface from the edges of the implantation site. Bone formation in the implantation site was significantly higher than in the control region during the first week of implantation. In conclusion, this material set in situ was well tolerated, inducing a mild foreign-body reaction, which did not impair its replacement by newly formed bone within a few weeks.
The ''hot patella'' sign: is it of any clinical significance. Concise communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogelman, I.; McKillop, J.H.; Gray, H.W.
1983-04-01
The presence of the ''hot patella'' sign was evaluated in a prospective study of 200 consecutive bone scans, and in a review of scans from 148 patients with various metabolic bone disorders and 61 patients with lung carcinoma. The incidence was found to be 31%, 26% and 31% respectively. This sign is an extremely common scan finding and may be seen in association with a wide variety of disorders. It is concluded that this sign cannot be considered to be of diagnostic value.
Multi-signal FIB/SEM tomography
NASA Astrophysics Data System (ADS)
Giannuzzi, Lucille A.
2012-06-01
Focused ion beam (FIB) milling coupled with scanning electron microscopy (SEM) on the same platform enables 3D microstructural analysis of structures using FIB for serial sectioning and SEM for imaging. Since FIB milling is a destructive technique, the acquisition of multiple signals from each slice is desirable. The feasibility of collecting both an inlens backscattered electron (BSE) signal and an inlens secondary electron (SE) simultaneously from a single scan of the electron beam from each FIB slice is demonstrated. The simultaneous acquisition of two different SE signals from two different detectors (inlens vs. Everhart-Thornley (ET) detector) is also possible. Obtaining multiple signals from each FIB slice with one scan increases the acquisition throughput. In addition, optimization of microstructural and morphological information from the target is achieved using multi-signals. Examples of multi-signal FIB/SEM tomography from a dental implant will be provided where both material contrast from the bone/ceramic coating/Ti substrate phases and porosity in the ceramic coating will be characterized.
[Regional blood flow and bone uptake of methylene-diphosphonate-technetium-99m].
Vattimo, A; Martini, G; Pisani, M
1983-05-30
Sudeck's atrophy of the foot is an acute, patchy osteoporosis that, on bone scan, shows an increase in both bone blood flow and local bone uptake of bone-seeking radionuclides. The purpose of this study was to evaluate the relationship between bone uptake of 99mTc-MDP and local bone blood flow. In some patients with Sudeck's atrophy of one foot we measured local bone blood flow and bone uptake of 99mTc-MDP. External counting of radioactivity, with a count-rate of 1 second was performed for 60 minutes after i.v. injection of a known dose of 99mTc-MDP in some patients with Sudeck's atrophy of the foot. The regions of interest (ROI) were selected on the basis of a bone scan performed 24 hours earlier. We assumed that the data recorded during the first seconds (7-10) reflect local blood flow and the data at 60 minutes reflect the bone uptake. The ratio between the local blood flow in the involved and healthy foot was higher than the local bone uptake ratio. The ratio between bone uptake and local bone blood flow was higher in the normal foot than in the affected one. These results suggest that the bone avidity for bone-seeking radionuclides is lower in Sudeck's atrophy than in normal bone.
Assessing stapes piston position using computed tomography: a cadaveric study.
Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary
2009-02-01
Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.
NASA Astrophysics Data System (ADS)
Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.
2015-03-01
CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.
Licata, Angelo A; Binkley, Neil; Petak, Steven M; Camacho, Pauline M
2018-02-01
High-quality dual-energy X-ray absorptiometry (DXA) scans are necessary for accurate diagnosis of osteoporosis and monitoring of therapy; however, DXA scan reports may contain errors that cause confusion about diagnosis and treatment. This American Association of Clinical Endocrinologists/American College of Endocrinology consensus statement was generated to draw attention to many common technical problems affecting DXA report conclusions and provide guidance on how to address them to ensure that patients receive appropriate osteoporosis care. The DXA Writing Committee developed a consensus based on discussion and evaluation of available literature related to osteoporosis and osteodensitometry. Technical errors may include errors in scan acquisition and/or analysis, leading to incorrect diagnosis and reporting of change over time. Although the International Society for Clinical Densitometry advocates training for technologists and medical interpreters to help eliminate these problems, many lack skill in this technology. Suspicion that reports are wrong arises when clinical history is not compatible with scan interpretation (e.g., dramatic increase/decrease in a short period of time; declines in previously stable bone density after years of treatment), when different scanners are used, or when inconsistent anatomic sites are used for monitoring the response to therapy. Understanding the concept of least significant change will minimize erroneous conclusions about changes in bone density. Clinicians must develop the skills to differentiate technical problems, which confound reports, from real biological changes. We recommend that clinicians review actual scan images and data, instead of relying solely on the impression of the report, to pinpoint errors and accurately interpret DXA scan images. AACE = American Association of Clinical Endocrinologists; BMC = bone mineral content; BMD = bone mineral density; DXA = dual-energy X-ray absorptiometry; ISCD = International Society for Clinical Densitometry; LSC = least significant change; TBS = trabecular bone score; WHO = World Health Organization.
Porous polymethylmethacrylate as bone substitute in the craniofacial area.
Bruens, Marco L; Pieterman, Herman; de Wijn, Joost R; Vaandrager, J Michael
2003-01-01
In craniofacial surgery, alloplastic materials are used for correcting bony defects. Porous polymethylmethacrylate (PMMA) is a biocompatible and nondegradable bone cement. Porous PMMA is formed by the classic bone cement formulation of methylmethacrylate liquid and PMMA powder in which an aqueous biodegradable carboxymethylcellulose gel is dispersed to create pores in the cement when cured. Pores give bone the opportunity to grow in, resulting in a better fixation of the prostheses. We evaluated the long-term results (n = 14), up to 20 years, of augmentations and defect fillings in the craniofacial area, with special interest in possible side effects and bone ingrowth. The evaluation consisted of a questionnaire, a physical examination, and a computed tomography (CT) scan. There were no side effects that could be ascribed to the porous PMMA. Twelve CT scans showed bone ingrowth into the prostheses, proving the validity behind the concept of porous PMMA.
NASA Astrophysics Data System (ADS)
Pålsgård, Eva; Johansson, Carina; Li, Gang; Grime, Geoff W.; Triffitt, J. T.
1997-07-01
To respond to varying environmental demands the bone tissue in the body is under continual reconstruction throughout life. It is known that metallic elements are important for maintaining normal bone structure, but their roles are not well understood. More information about the effects of metal excess or deficiency is needed to help in the development of metallic bone implants and to improve the treatment of bone fractures and defects. The Oxford Scanning Proton Microprobe (SPM) is being applied in two studies involving metal ions in bone: (1) bone regrowth and bonding to titanium bone implants may be influenced by diffusion of Ti ions into the bone. We are using microPIXE to determine the metal ion content of bone developing in contact with implants of pure Nb, Ti and Ti alloys. (2) Bone lengthening as a surgical procedure is induced by fracturing the bone and allowing it to heal with a small gap between the fractured ends created by the use of external fixators. The gap can be slowly increased during the healing process to stimulate the production of new bone. The enzymes and other constituents of the developing bone need certain metals for their function. Using experimental animals we have studied the concentrations of the metals and whether a deficiency of trace metals limits the optimum rate of bone lengthening.
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.
Larson, David L; Gilstrap, Jarom; Simonelic, Kevin; Carrera, Guillermo F
2011-02-01
Despite advances in managing pressure ulcers, there is still no definitive way to diagnose bone infection (osteomyelitis) short of open biopsy. An effective, less invasive diagnostic method might result in cost savings and improved care; however, needle aspiration, computed tomography scan, magnetic resonance imaging, ultrasound, and bone scans have proven unsatisfactory in predicting osteomyelitis. The authors reviewed preoperative radiologic studies of stage IV pressure ulcer patients and their bone biopsy results to determine which radiologic studies are most diagnostic for osteomyelitis. Patients (n = 44) having surgical débridement of stage IV ulcers with open bone biopsy after prior radiographic imaging (plain films, ultrasound, computed tomography, magnetic resonance imaging, and/or nuclear bone scans) were included. Studies were interpreted by a single musculoskeletal radiologist blinded to information from the medical record and following standard radiologic criteria for the diagnosis of osteomyelitis. The percentage of patients with biopsy-proven osteomyelitis identified with imaging was 50 percent using a computed tomography scan and 88 percent using a plain film of the bony area of involvement. The overall sensitivity of either radiologic study was 61 percent. The percentage of patients without osteomyelitis identified as not having the condition by imaging was 85 percent for the computed tomography scan and 32 percent for the plain film. Overall specificity of both studies was 69 percent. Preoperative radiologic studies for osteomyelitis in a pressure ulcer are far from definitive; however, if a radiologic study is used to make that diagnosis in a stage IV pressure ulcer, it would appear that a plain film would suffice.
Rérolle, Camille; Saint-Martin, Pauline; Dedouit, Fabrice; Rousseau, Hervé; Telmon, Norbert
2013-09-10
The first step in the identification process of bone remains is to determine whether they are of human or nonhuman origin. This issue may arise when only a fragment of bone is available, as the species of origin is usually easily determined on a complete bone. The present study aims to assess the validity of a morphometric method used by French forensic anthropologists to determine the species of origin: the corticomedullary index (CMI), defined by the ratio of the diameter of the medullary cavity to the total diameter of the bone. We studied the constancy of the CMI from measurements made on computed tomography images (CT scans) of different human bones, and compared our measurements with reference values selected in the literature. The measurements obtained on CT scans at three different sites of 30 human femurs, 24 tibias, and 24 fibulas were compared between themselves and with the CMI reference values for humans, pigs, dogs and sheep. Our results differed significantly from these reference values, with three exceptions: the proximal quarter of the femur and mid-fibular measurements for the human CMI, and the proximal quarter of the tibia for the sheep CMI. Mid-tibial, mid-femoral, and mid-fibular measurements also differed significantly between themselves. Only 22.6% of CT scans of human bones were correctly identified as human. We concluded that the CMI is not an effective method for determining the human origin of bone remains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?
Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V
2012-02-01
The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from -0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population.
... cross-sectional pictures of your body. Doctors use CT scans to look for Broken bones Cancers Blood clots Signs of heart disease Internal bleeding During a CT scan, you lie still on a table. The table ...
Assessment of bone health in children with disabilities.
Kecskemethy, Heidi H; Harcke, H Theodore
2014-01-01
Evaluating the bone health of children with disabilities is challenging and requires consideration of many factors in clinical decision-making. Feeding problems and growth deficits, immobility/inability to bear weight, effect of medications, and the nature of his or her disease can all directly affect a child's overall picture of bone health. Familiarity with the tools available to assess bone health is important for practitioners. The most commonly used method to assess bone density, dual energy x-ray absorptiometry, can be performed effectively when one appreciates the techniques that make scanning patients with disabilities possible. There are specific techniques that are especially useful for measuring bone density in children with disabilities; standard body sites are not always obtainable. Consideration of clinical condition and treatment must be considered when interpreting dual energy x-ray absorptiometry scans. Serial measurements have been shown to be effective in monitoring change in bone content and in providing information on which to base decisions regarding medical treatment.
Liang, Yongqiang; Li, Haoyan; Xu, Jiang; Li, Xin; Qi, Mengchun; Hu, Min
2014-01-01
Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials. PMID:24901526
NASA Astrophysics Data System (ADS)
Joughehdoust, Sedigheh; Manafi, Sahebali
2011-12-01
Hydroxyapatite [HA, Ca10(PO4)6(OH)2] is chemically similar to the mineral component of bones and hard tissues. HA can support bone ingrowth and osseointegration when used in orthopaedic, dental and maxillofacial applications. In this research, HA nanostructure was synthesized by mechanical alloying method. Phase development, particle size and morphology of HA were investigated by X-ray diffraction (XRD) pattern, zetasizer instrument, scanning electron microscopy (SEM), respectively. XRD pattern has been used to determination of the microstructural parameters (crystallite size, lattice parameters and crystallinity percent) by Williamson-Hall equation, Nelson-Riley method and calculating the areas under the peaks, respectively. The crystallite size and particle size of HA powders were in nanometric scales. SEM images showed that some parts of HA particles have agglomerates. The ratio of lattice parameters of synthetic hydroxyapatite (c/a = 0.73) was determined in this study is the same as natural hydroxyapatite structure.
Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT.
Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; van der Stelt, Paul; Wismeijer, Daniel
2015-01-01
The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the accuracy of cone beam computed tomography (CBCT) in evaluating trabecular bone density and microstructure using MSCT and micro-CT, respectively, as reference gold standards. Twenty partially edentulous human mandibular cadavers were scanned by three types of CT modalities: MSCT (Philips, Best, the Netherlands), CBCT (3D Accuitomo 170, J Morita, Kyoto, Japan), and micro-CT (SkyScan 1173, Kontich, Belgium). Image analysis was performed using Amira (v4.1, Visage Imaging Inc., Carlsbad, CA, USA), 3Diagnosis (v5.3.1, 3diemme, Cantu, Italy), Geomagic (studio(®) 2012, Morrisville, NC, USA), and CTAn (v1.11, SkyScan). MSCT, CBCT, and micro-CT scans of each mandible were matched to select the exact region of interest (ROI). MSCT HU, micro-CT BV/TV, and CBCT gray value and bone volume fraction of each ROI were derived. Statistical analysis was performed to assess the correlations between corresponding measurement parameters. Strong correlations were observed between CBCT and MSCT density (r = 0.89) and between CBCT and micro-CT BV/TV measurements (r = 0.82). Excellent correlation was observed between MSCT HU and micro-CT BV/TV (r = 0.91). However, significant differences were found between all comparisons pairs (P < 0.001) except for mean measurement between CBCT BV/TV and micro-CT BV/TV (P = 0.147). An excellent correlation exists between bone volume fraction and bone density as assessed on micro-CT and MSCT, respectively. This suggests that bone density measurements could be used to estimate bone microstructural parameters. A strong correlation also was found between CBCT gray values and BV/TV and their gold standards, suggesting the potential of this modality in bone quality assessment at implant site. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evangelista, Laura; Bertoldo, Francesco; Boccardo, Francesco; Conti, Giario; Menchi, Ilario; Mungai, Francesco; Ricardi, Umberto; Bombardieri, Emilio
2016-07-01
Different therapeutic options for the management of prostate cancer (PC) have been developed, and some are successful in providing crucial improvement in both survival and quality of life, especially in patients with metastatic castration-resistant PC. In this scenario, diverse combinations of radiopharmaceuticals (for targeting bone, cancer cells and receptors) and nuclear medicine modalities (e.g. bone scan, SPECT, SPECT/CT, PET and PET/CT) are now available for imaging bone metastases. Some radiopharmaceuticals are approved, currently available and used in the routine clinical setting, while others are not registered and are still under evaluation, and should therefore be considered experimental. On the other hand, radiologists have other tools, in addition to CT, that can better visualize bone localization and medullary involvement, such as multimodal MRI. In this review, the authors provide an overview of current management of advanced PC and discuss the choice of diagnostic modality for the detection of metastatic skeletal lesions in different phases of the disease. In addition to detection of bone metastases, the evaluation of response to therapy is another critical issue, since it remains one of the most important open questions that a multidisciplinary team faces when optimizing the management of PC. The authors emphasize the role of nuclear modalities that can presently be used in clinical practice, and also look at future perspectives based on relevant clinical data with novel radiopharmaceuticals.
Confocal laser scanning microscopy in study of bone calcification
NASA Astrophysics Data System (ADS)
Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio
2012-12-01
Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.
McQueen, Fiona M; Doyle, Anthony; Reeves, Quentin; Gao, Angela; Tsai, Amy; Gamble, Greg D; Curteis, Barbara; Williams, Megan; Dalbeth, Nicola
2014-01-01
Bone erosion has been linked with tophus deposition in gout but the roles of osteitis (MRI bone oedema) and synovitis remain uncertain. Our aims in this prospective 3 T MRI study were to investigate the frequency of these features in gout and determine their relation to one another. 3 T MRI scans of the wrist were obtained in 40 gout patients. Scans were scored independently by two radiologists for bone oedema, erosions, tophi and synovitis. Dual-energy CT (DECT) scans were scored for tophi in a subgroup of 10 patients. Interreader reliability was high for erosions and tophi [intraclass correlation coefficients (ICCs) 0.77 (95% CI 0.71, 0.87) and 0.71 (95% CI 0.52, 0.83)] and moderate for bone oedema [ICC = 0.60 (95% CI 0.36, 0.77)]. Compared with DECT, MRI had a specificity of 0.98 (95% CI 0.93, 0.99) and sensitivity of 0.63 (95% CI 0.48, 0.76) for tophi. Erosions were detected in 63% of patients and were strongly associated with tophi [odds ratio (OR) = 13.0 (95% CI 1.5, 113)]. In contrast, no association was found between erosions and bone oedema. Using concordant data, bone oedema was scored at 6/548 (1%) sites in 5/40 patients (12.5%) and was very mild (median carpal score = 1, maximum = 45). In logistic regression analysis across all joints nested within individuals, tophus, but not synovitis, was independently associated with erosion [OR = 156.5 (21.2, >999.9), P < 0.0001]. Erosions were strongly associated with tophi but not bone oedema or synovitis. MRI bone oedema was relatively uncommon and low grade. These findings highlight the unique nature of the osteopathology of gout.
Mirković, Sinisa; Budak, Igor; Puskar, Tatjana; Tadić, Ana; Sokac, Mario; Santosi, Zeljko; Djurdjević-Mirković, Tatjana
2015-12-01
An autologous bone (bone derived from the patient himself) is considered to be a "golden standard" in the treatment of bone defects and partial atrophic alveolar ridge. However, large defects and bone losses are difficult to restore in this manner, because extraction of large amounts of autologous tissue can cause donor-site problems. Alternatively, data from computed tomographic (CT) scan can be used to shape a precise 3D homologous bone block using a computer-aided design-computer-aided manufacturing (CAD-CAM) system. A 63-year old male patient referred to the Clinic of Dentistry of Vojvodina in Novi Sad, because of teeth loss in the right lateral region of the lower jaw. Clinical examination revealed a pronounced resorption of the residual ridge of the lower jaw in the aforementioned region, both horizontal and vertical. After clinical examination, the patient was referred for 3D cone beam (CB)CT scan that enables visualization of bony structures and accurate measurement of dimensions of the residual alveolar ridge. Considering the large extent of bone resorption, the required ridge augmentation was more than 3 mm in height and 2 mm in width along the length of some 2 cm, thus the use of granular material was excluded. After consulting prosthodontists and engineers from the Faculty of Technical Sciences in Novi Sad we decided to fabricate an individual (custom) bovine-derived bone graft designed according to the obtained-3D CBCT scan. Application of 3D CBCT images, computer-aided systems and software in manufacturing custom bone grafts represents the most recent method of guided bone regeneration. This method substantially reduces time of recovery and carries minimum risk of postoperative complications, yet the results fully satisfy the requirements of both the patient and the therapist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G.; Enríquez-Jiménez, Juana
Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this researchmore » is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.« less
Jokanović, Vukoman; Čolović, Božana; Marković, Dejan; Petrović, Milan; Soldatović, Ivan; Antonijević, Djordje; Milosavljević, Petar; Sjerobabin, Nikola; Sopta, Jelena
2017-05-24
This study examined the potential of a new porous calcium hydroxyapatite scaffold covered with poly (lactide-co-glycolide) (PLGA) as a bone substitute, identifying its advantages over Geistlich Bio-Oss®, considered the gold standard, in in vivo biofunctionality investigations. Structural and morphological properties of the new scaffold were analyzed by scanning electron and atomic force microscopy. The biofunctionality assays were performed on New Zealand white rabbits using new scaffold for filling full-thickness defects of critical size. The evaluated parameters were: the presence of macrophages, giant cells, monoocytes, plasma cells, granulocytes, neoangiogenesis, fibroplasia, and the percentage of mineralization. Parallel biofunctionality assays were performed using Geistlich Bio-Oss®. The appearance of bone defects 12 weeks after the new scaffold implantation showed the presence of a small number of typical immune response cells. Furthermore, significantly reduced number of capillary buds, low intensity of fibroplasia and high degree of mineralization in a lamellar pattern indicated that the inflammation process has been almost completely overcome and that the new bone formed was in the final phase of remodeling. All biofunctionality assays proved the new scaffold's suitability as a bone substitute for applications in maxillofacial surgery. It showed numerous biological advantages over Geistlich Bio-Oss® which was reflected mainly as a lower number of giant cells surrounding implanted material and higher degree of mineralization in new formed bone.
Visualizing the root-PDL-bone interface using high-resolution microtomography
NASA Astrophysics Data System (ADS)
Dalstra, Michel; Cattaneo, Paolo M.; Herzen, Julia; Beckmann, Felix
2008-08-01
The root/periodontal ligament/bone (RPB) interface is important for a correct understanding of the load transfer mechanism of masticatory forces and orthodontic loads. It is the aim of this study to assess the three-dimensional structure of the RPB interface using high-resolution microtomography. A human posterior jaw segment, obtained at autopsy from a 22-year old male donor was first scanned using a tomograph at the HASYLAB/DESY synchrotron facility (Hamburg, Germany) at 31μm resolution. Afterwards the first molar and its surrounding bone were removed with a 10mm hollow core drill. From this cylindrical sample smaller samples were drilled out in the buccolingual direction with a 1.5mm hollow core drill. These samples were scanned at 4μm resolution. The scans of the entire segment showed alveolar bone with a thin lamina dura, supported by an intricate trabecular network. Although featuring numerous openings between the PDL and the bone marrow on the other side to allow blood vessels to transverse, the lamina dura seems smooth at this resolution. First at high resolution, however, it becomes evident that it is irregular with bony spiculae and pitted surfaces. Therefore the stresses in the bone during physiological or orthodontic loading are much higher than expected from a smooth continuous alveolus.
The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density
Jin, A.; Cobb, J.; Hansen, U.; Bhattacharya, R.; Reinhard, C.; Vo, N.; Atwood, R.; Li, J.; Karunaratne, A.; Wiles, C.
2017-01-01
Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2 vs 6.55/cm2 vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1. PMID:29066534
Complex regional pain syndrome type 1: Analysis of 108 patients.
Pendón, Gisela; Salas, Adrian; García, Mercedes; Pereira, Dora
Complex regional pain syndrome (CRPS) type 1 is characterized by the presence of pain, edema, functional impotence, impaired mobility, trophic changes, vasomotor instability and bone demineralization. We carried out a retrospective and prospective, descriptive, observational study of 108 patients over 18 years of age with suspected CRPS who met Doury's criteria. We recorded demographic data, clinical characteristics, comorbidities, previous predisposing conditions and triggering factors, such as injury or fracture. We evaluated laboratory data, serial plain X-rays, 3-phase bone scintigraphy with technetium 99 and bone density scan, as well as drug treatment, rehabilitation and disease course. In all, 89% of the 108 patients were women with an average age of 54.8±12.4 years. The time between the onset of the symptoms and the first visit to a physician was 3.1 months. The most common triggering factor was injury (91.7%). The most frequent psychological factor was anxiety (42.6%). All the patients reported pain and 99.07% had impaired mobility. The most frequently affected part of the body was the hand (75%; 81/108 patients) followed by the shoulder, in the shoulder-hand syndrome. All the patients had serial X-rays and changes were observed in 93.5%. Three-phase bone scintigraphy revealed evidence of disease in all 32 of the patients who underwent this study. Bone density scanning was performed in 54 patients (50%). All the patients were treated with nonsteroidal anti-inflammatory drugs, mainly diclofenac (60%). Calcium therapy was initiated in 106 patients (98.2%) and vitamin D3 therapy in 97.2%. All the patients received bisphosphonates, primarily alendronate and ibandronate (67.6% and 27.8%, respectively). Thirty-six patients (33.3%) received corticosteroids. All of the evaluated patients underwent rehabilitation involving occupational therapy. The average time to recovery was 6.31 months (range, 4-24). The outcome was favorable in 88.9% of the patients. This paper describes the clinical characteristics, therapeutic features and outcome of CRPS type 1 in 108 patients. This syndrome is known to be heterogeneous, and does not always present with the well-known symptoms. We recommend establishing a differential diagnosis including other infectious and inflammatory conditions, and point out the importance of early referral, which enables early treatment. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Healing of rabbit calvarial critical-sized defects using autogenous bone grafts and fibrin glue.
Lappalainen, Olli-Pekka; Korpi, Riikka; Haapea, Marianne; Korpi, Jarkko; Ylikontiola, Leena P; Kallio-Pulkkinen, Soili; Serlo, Willy S; Lehenkari, Petri; Sándor, George K
2015-04-01
This study aimed to evaluate ossification of cranial bone defects comparing the healing of a single piece of autogenous calvarial bone representing a bone flap as in cranioplasty compared to particulated bone slurry with and without fibrin glue to represent bone collected during cranioplasty. These defect-filling materials were then compared to empty control cranial defects. Ten White New Zealand adult male rabbits had bilateral critical-sized calvarial defects which were left either unfilled as control defects or filled with a single full-thickness piece of autogenous bone, particulated bone, or particulated bone combined with fibrin glue. The defects were left to heal for 6 weeks postoperatively before termination. CT scans of the calvarial specimens were performed. Histomorphometric assessment of hematoxylin-eosin- and Masson trichrome-stained specimens was used to analyze the proportion of new bone and fibrous tissue in the calvarial defects. There was a statistically significant difference in both bone and soft tissue present in all the autogenous bone-grafted defect sites compared to the empty negative control defects. These findings were supported by CT scan findings. While fibrin glue combined with the particulated bone seemed to delay ossification, the healing was more complete compared to empty control non-grafted defects. Autogenous bone grafts in various forms such as solid bone flaps or particulated bone treated with fibrin glue were associated with bone healing which was superior to the empty control defects.
Korhonen, Tommi K; Salokorpi, Niina; Niinimäki, Jaakko; Serlo, Willy; Lehenkari, Petri; Tetri, Sami
2018-02-23
OBJECTIVE Autologous bone cranioplasty after decompressive craniectomy entails a notable burden of difficult postoperative complications, such as infection and bone flap resorption (BFR), leading to mechanical failure. The prevalence and significance of asymptomatic BFR is currently unclear. The aim of this study was to radiologically monitor the long-term bone flap survival and bone quality change in patients undergoing autologous cranioplasty. METHODS The authors identified all 45 patients who underwent autologous cranioplasty at Oulu University Hospital, Finland, between January 2004 and December 2014. Using perioperative and follow-up CT scans, the volumes and radiodensities of the intact bone flap prior to surgery and at follow-up were calculated. Relative changes in bone flap volume and radiodensity were then determined to assess cranioplasty survival. Sufficient CT scans were obtainable from 41 (91.1%) of the 45 patients. RESULTS The 41 patients were followed up for a median duration of 3.79 years (25th and 75th percentiles = 1.55 and 6.66). Thirty-seven (90.2%) of the 41 patients had some degree of BFR and 13 (31.7%) had a remaining bone flap volume of less than 80%. Patients younger than 30 years of age had a mean decrease of 15.8% in bone flap volume compared with the rest of the cohort. Bone flap volume was not found to decrease linearly with the passing of time, however. The effects of lifestyle factors and comorbidities on BFR were nonsignificant. CONCLUSIONS In this study BFR was a very common phenomenon, occurring at least to some degree in 90% of the patients. Decreases in bone volume were especially prominent in patients younger than 30 years of age. Because the progression of resorption during follow-up was nonlinear, routine follow-up CT scans appear unnecessary in monitoring the progression of BFR; instead, clinical follow-up with mechanical stability assessment is advised. Partial resorption is most likely a normal physiological phenomenon during the bone revitalization process.
1977-09-30
90F ork Unit No. 76/24 (FY76, 0) An Investination of the Effect of Supplemental Oxygen on Chemically Induced Fat Embolization ...accepted as criteria for determination of the presence of fat embolism syndrome. In this study laboratory parameters and lung scans are obtained for a 5...91 Work Unit No. 76/31 (FY76, 0) Early Detection of Fatiaue Fracture by Bone Scannina with Tc-99 Bone Scan Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kipper, M.S.; Alazraki, N.P.; Feiglin, D.H.
1982-01-01
Increased patellar uptake on bone scans is seen quite commonly but the possible or probable etiologies of this finding have not been previously well described. A review of 100 consecutive bone scans showed that the incidence of bilateral ''hot'' patellae is 15%. Identified etiologies include osteoarthritic degenerative disease (35%), fracture, possible metastatic disease, bursitis, Paget's disease, and osteomyelitis. The value of careful history, physical examination, and radiographs is stressed.
Effect of foot shape on the three-dimensional position of foot bones.
Ledoux, William R; Rohr, Eric S; Ching, Randal P; Sangeorzan, Bruce J
2006-12-01
To eliminate some of the ambiguity in describing foot shape, we developed three-dimensional (3D), objective measures of foot type based on computerized tomography (CT) scans. Feet were classified via clinical examination as pes cavus (high arch), neutrally aligned (normal arch), asymptomatic pes planus (flat arch with no pain), or symptomatic pes planus (flat arch with pain). We enrolled 10 subjects of each foot type; if both feet were of the same foot type, then each foot was scanned (n=65 total). Partial weightbearing (20% body weight) CT scans were performed. We generated embedded coordinate systems for each foot bone by assuming uniform density and calculating the inertial matrix. Cardan angles were used to describe five bone-to-bone relationships, resulting in 15 angular measurements. Significant differences were found among foot types for 12 of the angles. The angles were also used to develop a classification tree analysis, which determined the correct foot type for 64 of the 65 feet. Our measure provides insight into how foot bone architecture differs between foot types. The classification tree analysis demonstrated that objective measures can be used to discriminate between feet with high, normal, and low arches. Copyright (c) 2006 Orthopaedic Research Society.
Proximal tibial stress fracture associated with mild osteoarthritis of the knee: case report.
Curković, Marko; Kovac, Kristina; Curković, Bozidar; Babić-Naglić, Durda; Potocki, Kristina
2011-03-01
Stress fractures are considered as multifactorial overuse injuries occurring in 0.3%-0.8% of patients suffering from rheumatic diseases, with rheumatoid arthritis being the most common underlying condition. Stress fractures can be classified according to the condition of the bone affected as: 1) fatigue stress fractures occurring when normal bone is exposed to repeated abnormal stresses; and 2) insufficiency stress fractures that occur when normal stress is applied to bone weakened by an underlying condition. Stress fractures are rarely associated with severe forms of knee osteoarthritis, accompanied with malalignment and obesity. We present a patient with a proximal tibial stress fracture associated with mild knee osteoarthritis without associated malalignment or obesity. Stress fracture should be considered when a patient with osteoarthritis presents with sudden deterioration, severe localized tenderness to palpation and localized swelling or periosteal thickening at the pain site and elevated local temperature. The diagnosis of stress fractures in patients with rheumatic diseases may often be delayed because plain film radiographs may not reveal a stress fracture soon after the symptom onset; moreover, evidence of a fracture may never appear on plain radiographs. Triple phase nuclear bone scans and magnetic resonance imaging are more sensitive in the early clinical course than plain films for initial diagnosis.
Piccirillo, C; Silva, M F; Pullar, R C; Braga da Cruz, I; Jorge, R; Pintado, M M E; Castro, P M L
2013-01-01
Apatite- and tricalcium phosphate-based materials were produced from codfish bones, thus converting a waste by-product from the food industry into high added-valued compounds. The bones were annealed at temperatures between 900 and 1200 °C, giving a biphasic material of hydroxyapatite and tricalcium phosphate (Ca10(PO4)6(OH)2 and β-Ca(PO4)3) with a molar proportion of 75:25, a material widely used in biomedical implants. The treatment of the bones in solution prior to their annealing changed the composition of the material. Single phase hydroxyapatite, chlorapatite (Ca10(PO4)6Cl2) and fluorapatite (Ca10(PO4)6F2) were obtained using CaCl2 and NaF solutions, respectively. The samples were analysed by several techniques (X-ray diffraction, infrared spectroscopy, scanning electron microscopy and differential thermal/thermogravimetric analysis) and by elemental analyses, to have a more complete understanding of the conversion process. Such compositional modifications have never been performed before for these materials of natural origin to tailor the relative concentrations of elements. This paper shows the great potential for the conversion of this by-product into highly valuable compounds for biomedical applications, using a simple and effective valorisation process. Copyright © 2012 Elsevier B.V. All rights reserved.
Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning
NASA Technical Reports Server (NTRS)
Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)
2007-01-01
Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.
Hassani, Hakim; Slama, Jérôme; Hayem, Gilles; Ben Ali, Khadija; Sarda-Mantel, Laure; Burg, Samuel; Le Guludec, Dominique
2012-01-01
Melorheostosis is a rare benign bone pathology which can be responsible for incapacitating pain and bone deformations. Its imaging abnormalities are often typical. We describe here the case of a patient with melorheostosis involving the lower limbs, associated with a peripheral form of inflammatory spondyloarthropathy, who underwent 18FNa positron emission tomography coupled to a computed tomography scan. Our objective is to present this new image, to show the value of this new modality and emphasize its advantages compared to the 99mTechnetium bone scan. PMID:27790007
Localization of m-lodo(/sup 131/I)benzylguanidine in neuroblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattner, R.S.; Huberty, J.P.; Engelstad, B.L.
1984-08-01
Patient survival and the therapeutic strategy for treatment of neuroblastoma are highly dependent on the stage of the tumor at presentation. For routine staging, the Children's Cancer Study group currently recommends a chest radiograph, abdominal CT scan, radionuclide bone scan, bone marrow biopsy, catecholamine metabolite estimations, and surgical determination of tumor extent. A noninvasive method for detectiton of neuroblastoma that avoids surgery and bone marrow biopsy would be a most welcome addition to the armamentarium of the pediatric oncologist. A case of neuroblastoma demonstrated with m-iodo(/sup 131/I)benzylguanidine (MIBG) scintigraphy is reported.
Trump, Donald L
2013-11-01
Cabozantinib (XL184) is an orally bioavailable tyrosine kinase inhibitor with activity against MET and vascular endothelial growth factor receptor 2. We evaluated the activity of cabozantinib in patients with castration-resistant prostate cancer (CRPC) in a phase II randomized discontinuation trial with an expansion cohort. Patients received 100mg of cabozantinib daily. Those with stable disease per RECIST at 12 weeks were randomly assigned to cabozantinib or placebo. Primary end points were objective response rate at 12 weeks and progression-free survival (PFS) after random assignment. One hundred seventy-one men with CRPC were enrolled. Random assignment was halted early based on the observed activity of cabozantinib. Seventy-two percent of patients had regression in soft tissue lesions, whereas 68% of evaluable patients had improvement on bone scan, including complete resolution in 12%. The objective response rate at 12 weeks was 5%, with stable disease in 75% of patients. Thirty-one patients with stable disease at week 12 were randomly assigned. Median PFS was 23.9 weeks (95% CI, 10.7 to 62.4 weeks) with cabozantinib and 5.9 weeks (95% CI, 5.4 to 6.6 weeks) with placebo (hazard ratio, 0.12; P<.001). Serum total alkaline phosphatase and plasma cross-linked C-terminal telopeptide of type I collagen were reduced by ≥ 50% in 57% of evaluable patients. On retrospective review, bone pain improved in 67% of evaluable patients, with a decrease in narcotic use in 56%. The most common grade 3 adverse events were fatigue (16%), hypertension (12%), and hand-foot syndrome (8%). Cabozantinib has clinical activity in men with CRPC, including reduction of soft tissue lesions, improvement in PFS, resolution of bone scans, and reductions in bone turnover markers, pain, and narcotic use. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdez, V.A.; Jacobstein, J.G.
Bone scans were performed with Tc-99m stannous polyphosphate on four patients with thalassemia major. Three of the scans show generalized decrease in skeletal uptake of the radiopharmaceutical, associated with renal enlargement and markedly increased renal radioactivity. The skeletal findings are consistent with the known bone abnormalities in thalassemia major, which are secondary to the extensive marrow hyperplasia and include loss of trabeculae and cortical thinning with consequent loss of bone mass. The increased renal uptake is probably due in part to the increased renal excretion (secondary to the poor bone uptake) and in part to the tubular dilatation and renalmore » enlargement associated with thalassemia major. In addition, the presence of excessive amounts of iron in these patients may play a role in both the skeletal and renal findings.« less
NASA Technical Reports Server (NTRS)
Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.
1993-01-01
This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an anti-resorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE2/kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE2 treatment and began treatment with 1 or 5 micro-g/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the proximal tibial metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE2 treatment was stopped, the PGE2-induced cancellous bone disappeared. In contrast, 5 micro-g of Risedronate inhibited the bone loss and maintained it at the PGE2 treatment level. The key dynamic histomorphometry value for the restore (R) and maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 micro-g Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5 micro-g Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE2 after discontinuing PGE2 by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.
NASA Technical Reports Server (NTRS)
Jee, W. S. S.; Tang, L.; Ke, H. Z.; Setterberg, R. B.; Kimmel, D. B.
1993-01-01
This experiment contains the crucial data for the Lose, Restore and Maintain (LRM) concept, a practical approach for reversing existing osteoporosis. The LRM concept uses ovariectomy (ox) to lose bone, an anabolic agent to restore bone mass and then switches to an antiresorptive agent to maintain bone mass. We ox'd or sham-ox'd rats for 150 days (Loss Phase), treated them with 6 mg PGE(sub 2)kg/d for 75 days to restore lost cancellous bone mass (Restore Phase) and then stopped PGE(sub 2) treatment and began treatment with 1 or 5 micrograms/kg Risedronate, a bisphosphonate twice a week for 60 days (Maintain Phase). During the Loss Phase, cancellous bone volumes of the Proximal Tibial Metaphysis (PTM) in the ox'd rat fell to 19% of initial controls. During the Restore Phase, the PTM bone volume in ox'd rats doubled. However, when PGE(sub 2) treatment was stopped, the PGE(sub 2)-induced cancellous bone disappeared. In contrast, 5 miligrams of Risedronate inhibited the bone loss and maintained it at the PGE(sub 2) treatment level. The key dynamic histomorphometry value for the Restore (R) and Maintenance (M) phases was the ratio of bone formation to resorption rates. The ratio was elevated to 5.8 in the R phase and depressed to 0.4 for no and 1 miligram Risedronate treated M phase and to a ratio of near unity of 1.1 for the 5miligrams Risedronate treatment. These findings indicate that we were successful in maintaining the new PTM bone induced by PGE(sub 2) after discontinuing PGE(sub 2) by administering enough Risedronate, a resorption inhibitor. We concluded that the LRM concept is correct and such an approach should be considered when employing anabolic agents or growth factors in the treatment of osteoporosis. Continued use of an anabolic agent may not be appropriate because of cost, potential adverse side effects and a loss of efficacy.
Tomlin, J L; Lawes, T J; Blunn, G W; Goodship, A E; Muir, P
2000-09-01
The greyhound is a fatigue fracture model of a short distance running athlete. Greyhounds have a high incidence of central (navicular) tarsal bone (CTB) fractures, which are not associated with overt trauma. We wished to determine whether these fractures occur because of accumulation of fatigue microdamage. We hypothesized that bone from racing dogs would show site-specific microdamage accumulation, causing predisposition to structural failure. We performed a fractographic examination of failure surfaces from fractured bones using scanning electron microscopy and assessed microcracking observed at the failure surface using a visual analog scale. Branching arrays of microcracks were seen in failure surfaces of CTB and adjacent tarsal bones, suggestive of compressive fatigue failure. Branching arrays of microcracks were particularly prevalent in remodeled trabecular bone that had become compact. CTB fractures showed increased microdamage when compared with other in vivo fractures (adjacent tarsal bone and long bone fractures), and ex vivo tarsal fractures induced by monotonic loading (P < 0.02). It was concluded that greyhound racing and training often results in CTB structural failure, because of accumulation and coalescence of branching arrays of fatigue microcracks, the formation of which appears to be predisposed to adapted bone.
Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-01-01
Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344
Ferrari, Robert
2015-03-01
Current Canadian osteoporosis guidelines recommend routine bone density screening of men at age 65. The purpose of this study is to determine the prevalence of osteoporosis in men aged 65-75 in after application of screening guidelines. All males aged 65-75 years who attended a large primary care clinic were advised of the 2010 Canadian osteoporosis guidelines and advised to obtain a bone density scan at or after their 65th birthday. Those who did not have a bone density scan since their 65th birthday were advised to obtain a scan, unless there was obvious reason not to do so (i.e. known osteoporosis). A record of the results for each patient were kept and tallied to determine the prevalence of osteoporosis. Osteoporosis was defined as a T-score of ≤ -2.5 in either the hip or lumbar spine. Of 574 male subjects in this clinic, between the ages of 65-75, 557 had a bone density scan, either already having done so at the time of being informed of the guidelines or obtaining a scan in the subsequent year after being informed of the guidelines. The prevalence of osteoporosis was 1.6% (9/557, 95% confidence interval 0.8-3.1%) in this sample. The average age of subjects with osteoporosis was 70.5 ± 1.4 years (range 68-75). None of the subjects under 68 years of age were found to have osteoporosis. The prevalence of osteoporosis in unselected male cohorts aged 65 may be too low to justify the routine bone density screening recommended in the 2010 Canadian osteoporosis guidelines.
Pacheco-Salazar, O F; Wakayama, Shuichi; Sakai, Takenobu; Cauich-Rodríguez, J V; Ríos-Soberanis, C R; Cervantes-Uc, J M
2015-06-01
In this work, the effect of the incorporation of core-shell particles on the fracture mechanisms of the acrylic bone cements by using acoustic emission (AE) technique during the quasi-static compression mechanical test was investigated. Core-shell particles were composed of a poly(butyl acrylate) (PBA) rubbery core and a methyl methacrylate/styrene copolymer (P(MMA-co-St)) outer glassy shell. Nanoparticles were prepared with different core-shell ratio (20/80, 30/70, 40/60 and 50/50) and were incorporated into the solid phase of bone cement at several percentages (5, 10 and 15 wt%). It was observed that the particles exhibited a spherical morphology averaging ca. 125 nm in diameter, and the dynamic mechanical analysis (DMA) thermograms revealed the desired structuring pattern of phases associated with core-shell structures. A fracture mechanism was proposed taking into account the detected AE signals and the scanning electron microscopy (SEM) micrographs. In this regard, core-shell nanoparticles can act as both additional nucleation sites for microcracks (and crazes) and to hinder the microcrack propagation acting as a barrier to its growth; this behavior was presented by all formulations. Cement samples containing 15 wt% of core-shell nanoparticles, either 40/60 or 50/50, were fractured at 40% deformation. This fact seems related to the coalescence of microcracks after they surround the agglomerates of core-shell nanoparticles to continue growing up. This work also demonstrated the potential of the AE technique to be used as an accurate and reliable detection tool for quasi-static compression test in acrylic bone cements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pourmollaabbassi, Babak; Karbasi, Saeed; Hashemibeni, Batool
2016-01-01
Background: The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. Materials and Methods: In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900°C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. Results: The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio2) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. Conclusions: It is likely that the relation between HA and TiO2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface. PMID:27761431
Pourmollaabbassi, Babak; Karbasi, Saeed; Hashemibeni, Batool
2016-01-01
The generation of bioartificial bone tissues may help to overcome the problems related to donor site morbidity and size limitations. In this paper, hydroxyapatite (HA) powder was made out of bovine bone by thermal analysis at 900°C and first, and then, porous HA (50 weight percentage) was produced by polyurethane sponge replication method. In order to improve the scaffold mechanical properties, they have been coated with poly hydroxybutyrate. In terms of phase studies, morphology, and specifying agent groups, the specific characterization devices such as X-ray diffraction and Fourier transform infrared, were employed. To compare the behavior of cellular scaffolds, they were divided into four groups of scaffolds. The osteoblast cells were cultured. To perform phase studies, analysis of Methylthiazole tetrazolium (MTT) and Trypan blue were carried out for the viability and attachment on the surface of the scaffold, and the specification of Scanning electron microscopy was employed for the morphology of the cells. The results of MTT analysis performed on four groups of scaffolds have shown that Titanium oxide (Tio 2 ) had no effect on cell growth alone and HA was the main factor of growth and cell osteoblast adhesion on the scaffold. Moreover, the results showed that the use of coating with poly-3-hydroxybutyrate saved the factors and placed the osteoblasts within the pore. Since the main part of bone consists of HA, the TiO 2 accelerates the formation of apatite crystals at the scaffold surface which is the evidence for bone tissue regeneration. It is likely that the relation between HA and TiO 2 leads to an increase in osteoblast adhesion and growth of cells on the scaffold surface.
Velasquez, Pablo; Luklinska, Zofia B; Meseguer-Olmo, Luis; Mate-Sanchez de Val, Jose E; Delgado-Ruiz, Rafael A; Calvo-Guirado, Jose L; Ramirez-Fernandez, Ma P; de Aza, Piedad N
2013-07-01
This study reports on the in vitro and in vivo behavior of α-tricalcium phosphate (αTCP) and also αTCP doped with either 1.5 or 3.0 wt % of dicalcium silicate (C2 S). The ceramics were successfully prepared by powder metallurgy method combined with homogenization and heat treatment procedures. All materials were composed of a single-phase, αTCP in the case of a pure material, or solid solution of C2 S in αTCP for the doped αTCP, which were stable at room temperature. The ceramics were tested for bioactivity in simulated body fluid, cell culture medium containing adult mesenchymal stem cells of human origin, and in animals. Analytical scanning electron microscopy combined with chemical elemental analysis was used and Fourier transform infrared and conventional histology methods. The in vivo behavior of the ceramics matched the in vitro results, independently of the C2 S content in αTCP. Carbonated hydroxyapatite (CHA) layer was formed on the surface and within the inner parts of the specimens in all cases. A fully mineralized new bone growing in direct contact with the implants was found under the in vivo conditions. The bioactivity and biocompatibility of the implants increased with the C2 S content in αTCP. The C2 S doped ceramics also favoured a phase transformation of αTCP into CHA, important for full implant integration during the natural bone healing processes. αTCP ceramic doped with 3.0 wt % C2 S showed the best bioactive in vitro and in vivo properties of all the compositions and hence could be of interest in specific applications for bone restorative purposes. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, Jia-Yann; Kao, Pan-Fu; Chen, Yung-Sheng
2007-06-01
Adjustment of brightness and contrast in nuclear medicine whole body bone scan images may confuse nuclear medicine physicians when identifying small bone lesions as well as making the identification of subtle bone lesion changes in sequential studies difficult. In this study, we developed a computer-aided diagnosis system, based on the fuzzy sets histogram thresholding method and anatomical knowledge-based image segmentation method that was able to analyze and quantify raw image data and identify the possible location of a lesion. To locate anatomical reference points, the fuzzy sets histogram thresholding method was adopted as a first processing stage to suppress the soft tissue in the bone images. Anatomical knowledge-based image segmentation method was then applied to segment the skeletal frame into different regions of homogeneous bones. For the different segmented bone regions, the lesion thresholds were set at different cut-offs. To obtain lesion thresholds in different segmented regions, the ranges and standard deviations of the image's gray-level distribution were obtained from 100 normal patients' whole body bone images and then, another 62 patients' images were used for testing. The two groups of images were independent. The sensitivity and the mean number of false lesions detected were used as performance indices to evaluate the proposed system. The overall sensitivity of the system is 92.1% (222 of 241) and 7.58 false detections per patient scan image. With a high sensitivity and an acceptable false lesions detection rate, this computer-aided automatic lesion detection system is demonstrated as useful and will probably in the future be able to help nuclear medicine physicians to identify possible bone lesions.
Ergun, Celaletdin; Liu, Huinan; Webster, Thomas J
2009-06-01
Lanthanum phosphate (LaPO(4), LP) was combined with either hydroxyapatite (HA) or tricalcium phosphate (TCP) to form novel composites for orthopedic applications. In this study, these composites were prepared by wet chemistry synthesis and subsequent powder mixing. These HA/LP and TCP/LP composites were characterized in terms of phase stability and microstructure evolution during sintering using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their machinability was evaluated using a direct drilling test. For HA/LP composites, LP reacted with HA during sintering and formed a new phase, Ca(8)La(2)(PO(4))(6)O(2), as a reaction by-product. However, TCP/LP composites showed phase stability and the formation of a weak interface between TCP and LP machinability when sintered at 1100 degrees C, which is crucial for achieving desirable properties. Thus, these novel TCP/LP composites fulfilled the requirements for machinability, a key consideration for manufacturing orthopedic implants. Moreover, the biocompatibility of these novel LP composites was studied, for the first time, in this paper. In vitro cell culture tests demonstrated that the LP and its composites supported osteoblast (bone-forming cell) adhesion similar to natural bioceramics (such as HA and TCP). In conclusion, these novel LP composites should be further studied and developed for more effectively treating bone related diseases or injuries. 2008 Wiley Periodicals, Inc.
Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike
2016-01-01
Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Knowles, Scott M.; Tavare, Richard; Zettlitz, Kirstin A.; ...
2014-10-17
Here, prostate stem cell antigen (PSCA) is highly expressed in local prostate cancers and prostate cancer bone metastases and its expression correlates with androgen receptor activation and a poor prognosis. Here in this study, we investigate the potential clinical applications of immunoPET with the anti-PSCA A11 minibody, an antibody fragment optimized for use as an imaging agent. We compare A11 minibody immunoPET to 18F-Fluoride PET bone scans for detecting prostate cancer bone tumors and evaluate the ability of the A11 minibody to image tumor response to androgen deprivation. Osteoblastic, PSCA expressing, LAPC-9 intratibial xenografts were imaged with serial 124I-anti-PSCA A11more » minibody immunoPET and 18F-Fluoride bone scans. Mice bearing LAPC-9 subcutaneous xenografts were treated with either vehicle or MDV-3100 and imaged with A11 minibody immunoPET/CT scans pre- and post-treatment. Ex vivo flow cytometry measured the change in PSCA expression in response to androgen deprivation. A11 minibody demonstrated improved sensitivity and specificity over 18F-Fluoride bone scans for detecting LAPC-9 intratibial xenografts at all time points. Finally, LAPC-9 subcutaneous xenografts showed downregulation of PSCA when treated with MDV-3100 which A11 minibody immunoPET was able to detect in vivo.« less
Three Dimensional Cross-Sectional Properties From Bone Densitometry
NASA Technical Reports Server (NTRS)
Cleek, Tammy M.; Whalen, Robert T.; Dalton, Bonnie P. (Technical Monitor)
2001-01-01
Bone densitometry has previously been used to obtain cross-sectional properties of bone in a single scan plane. Using three non-coplanar scans, we have extended the method to obtain the principal area Moments of inertia and orientations of the principal axes at each cross-section along the length of the scan. Various 5 aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of mass distribution. Factors considered included X-ray photon energy, initial scan orientation, the included angle of the 3 scans, and Imin/Imax ratios. Principal moments of inertia were accurate to within 3.1% and principal angles were within 1 deg. of the expected value for phantoms scanned with included angles of 60 deg. and 90 deg. at the higher X-ray photon energy. Low standard deviations in error also 10 indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 deg. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (Imin/Imax) values when various included angles are used make this technique viable for future in vivo studies.
Matsumoto, Takeshi; Goto, Daichi; Sato, Syota
2013-09-01
Quantitative three-dimensional (3D) imaging of angiogenesis during bone repair remains an experimental challenge. We developed a novel contrast agent containing 0.07- to 0.1-μm particles of zirconium dioxide (ZrCA) and established subtraction μCT using synchrotron radiation (sSRCT) for quantitative imaging of angiogenesis and bone repair. This method was applied to a rat model of tibial bone repair 3 days (DAY3; n = 2), 5 days (DAY5; n = 8), or 10 days (DAY10; n = 8) after drill-hole injury. Using the same drill-hole defect model, its potential use was illustrated by comparison of bone repair between hindlimbs subjected to mechanical unloading (n = 6) and normal weight bearing (n = 6) for 10 days. Following vascular casting with ZrCA, the defect site was scanned with 17.9- and 18.1-keV X-rays. In the latter, image contrast between ZrCA-filled vasculature and bone was enhanced owing to the sharp absorption jump of zirconium dioxide at 18.0 keV (k-edge). The two scan data sets were reconstructed with 2.74-μm voxel resolution, registered by mutual information, and digitally subtracted to extract the contrast-enhanced vascular image. K2HPO4 phantom solutions were scanned at 17.9 keV for quantitative evaluation of bone mineral. Angiogenesis had already started, but new bone formation was not found on DAY3. New bone emerged near the defect boundary on DAY5 and took the form of trabecular-like structure invaded by microvessels on DAY10. Vascular and bone volume fractions, blood vessel and bone thicknesses, and mineralization were higher on DAY10 than on DAY5. All these parameters were found to be decreased after 10 days of hindlimb unloading, indicating the possible involvement of angiogenesis in bone repair impairment caused by reduced mechanical stimuli. In conclusion, the combined technique of sSRCT and ZrCA vascular casting is suitable for quantitative 3D imaging of angiogenesis and its surrounding bone regeneration. This method will be useful for better understanding the linkage between angiogenesis and bone repair.
Unicameral bone cyst in the spinous process of a thoracic vertebra.
Tsirikos, Athanasios I; Bowen, J Richard
2002-10-01
Unicameral bone cysts affecting the spine are extremely rare and tend to be misdiagnosed. We report on a 17-year-old female patient who presented with a 2-year history of persistent low back pain. The radiographic evaluation and bone scan failed to reveal a pathologic process. Magnetic resonance of the painful area and subsequent computed tomography scan showed a well-circumscribed osteolytic lesion originating from the spinous process and extending into both laminae of T9 vertebra. Aneurysmal bone cyst or osteoblastoma was considered to be the most probable diagnosis. The patient underwent excisional biopsy of the tumor. The intraoperative findings were suggestive of solitary bone cyst, a diagnosis that was confirmed histologically. Because the tumor had not invaded the articular facets, no posterolateral spine fusion was required. The patient had an unremarkable postoperative clinical course. Her symptoms resolved and she returned to her previous level of physical activities. Unicameral bone cysts, although uncommon, should be included in the differential diagnosis of an osteolytic lesion involving the spine.
Aging and loading rate effects on the mechanical behavior of equine bone
NASA Astrophysics Data System (ADS)
Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.
2008-06-01
Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.
Scanning electron microscopy of bone.
Boyde, Alan
2012-01-01
This chapter described methods for Scanning Electron Microscopical imaging of bone and bone cells. Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. This chapter considers preparing and imaging samples of unembedded bone having 3D detail in a 3D surface, topography-free, polished or micromilled, resin-embedded block surfaces, and resin casts of space in bone matrix. The chapter considers methods for fixation, drying, looking at undersides of bone cells, and coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralised matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples and recommendations for the types of resin embedding of bone for BSE imaging are given. Correlated confocal and SEM imaging of PMMA-embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualising fluorescent mineralising front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Environmental SEM (ESEM, controlled vacuum mode) is valuable in eliminating -"charging" problems which are common with complex, cancellous bone samples.
Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph
2014-04-01
Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.
Nurse exposure doses resulted from bone scintigraphy patient
NASA Astrophysics Data System (ADS)
Tunçman, Duygu; Kovan, Bilal; Poyraz, Leyla; ćapali, Veli; Demir, Bayram; Türkmen, Cüneyt
2016-03-01
Bone scintigraphy is used for displaying the radiologic undiagnosed bone lesions in nuclear medicine. It's general indications are researching bone metastases, detection of radiographically occult fractures, staging and follow-up in primary bone tumors, diagnosis of paget's disease, investigation of loosening and infection in orthopedic implants. It is applied with using 99mTc labeled radiopharmaceuticals (e.g 99m Tc MDP,99mTc HEDP and 99mTc HMDP). 20 -25 mCi IV radiotracer was injected into vein and radiotracer emits gamma radiation. Patient waits in isolated room for about 3 hours then a gamma camera scans radiation area and creates an image. When some patient's situation is not good, patients are hospitalized until the scanning because of patients' close contact care need. In this study, measurements were taken from ten patients using Geiger Muller counter. After these measurements, we calculated nurse's exposure radiations from patient's routine treatment, examination and emergency station.
NASA Astrophysics Data System (ADS)
Favus, Murray J.
2008-09-01
Hypercalciuria plays an important causal role in many patients with calcium oxalate (CaOx) stones. The source of the hypercalciuria includes increased intestinal Ca absorption and decreased renal tubule Ca reabsorption. In CaOx stone formers with idiopathic hypercalciuria (IH), Ca metabolic balance studies have revealed negative Ca balance and persistent hypercalciuria in the fasting state and during low dietary Ca intake. Bone resorption may also contribute to the high urine Ca excretion and increase the risk of bone loss. Indeed, low bone mass by DEXA scanning has been discovered in many IH patients. Thiazide diuretic agents reduce urine Ca excretion and may increase bone mineral density (BMD), thereby reducing fracture risk. Dietary Ca restriction that has been used unsuccessfully in the treatment of CaOx nephrolithiasis in the past may enhance negative Ca balance and accelerate bone loss. DEXA scans may demonstrate low BMD at the spine, hip, or forearm, with no predictable pattern. The unique pattern of bone histologic changes in IH differs from other causes of low DEXA bone density including postmenopausal osteoporosis, male hypogonadal osteoporosis, and glucocorticoid-induced osteoporosis. Hypercalciuria appears to play an important pathologic role in the development of low bone mass, and therefore correction of urine Ca losses should be a primary target for treatment of the bone disease accompanying IH.
NASA Astrophysics Data System (ADS)
Martel-Estrada, S. A.; Santos-Rodríguez, E.; Olivas-Armendáriz, I.; Cruz-Zaragoza, E.; Martínez-Pérez, C. A.
2014-07-01
The purpose of this study is to examine the effect of gamma radiation and UV radiation on the microstructure, chemical structure and thermal stability of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites scaffolds produced by thermally induced phase separation. The composites were irradiated and observed to undergo radiation-induced degradation through chain scission. Morphology, thermal properties and effects on chemical and semi-crystalline structures were obtained by scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR analysis and X-ray Diffraction. A relationship between radiation type and the thermal stability of the composites, were also established. This relationship allows a more accurate and precise control of the life span of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites through the use of radiation in materials for use in tissue engineering.
Wakamoto, H; Miyazaki, H; Hayashi, T; Shimamoto, Y; Ishiyama, N
1998-02-01
We report a case of a 17-year-old male who had hit the front of his head in a traffic accident. CT scan revealed contusional hemorrhage and pneumocephalus of the left frontal lobe 10 hours after the accident. A month later he complained of rhinorrhea and CT scan revealed intracerebral pneumocephalus. One day he complained of headache and began to vomit after he sneezed. CT scan revealed that the pneumocephalus had become worse and air had spread throughout the subarachnoid space. Bone CT scan revealed the air communicated from the frontal sinus to the intracerebral air cavity. 3D-CT scan revealed bone defect in the roof of the ethmoid sinus. The intraoperative findings revealed that the intracerebral air cavity communicated with the frontal sinus and ethmoid sinus. Though the brain which dropped into the paranasal sinus, adhered to the dura mater around the bone defect, a part of the brain had come off from the dura mater around the frontal sinus. We suspected that the intracerebral air cavity communicated with the frontal sinus initially. When the air cavity communicated with the ethmoid sinus secondarily, intracranial pressure abated and air came into the subarachnoid space from the frontal sinus.
... to restore the height of the vertebrae) Spinal fusion (bones of your spine are joined together so ... osteoporosis Patient Instructions Hip fracture - discharge Preventing falls Images Compression fracture Bone density scan Osteoporosis Osteoporosis Hip ...
Huang, Guofeng; Liu, Guojun; Zhang, Feng; Gao, Jianting; Wang, Jiangze; Chen, Qi; Wu, Benwen; Ding, Zhenqi; Cai, Taoyi
2017-01-01
Under physiological conditions bone defects often occur at mechanical load bearing sites and bone substitutes used for regeneration should be similarly subjected to mechanical loading stress. In this study, we investigated whether a novel heel-strike like mechanical loading method can be used as a complementary therapy to promote bone regeneration following bone substitute grafting. To test this, three groups of rabbits with segmental bone defects in the tibia were implanted with bovine deproteinized cancellous bone scaffold (DCBS), with one group also receiving heel-strike like mechanical loading generated by a rap stress stimulator. From weeks 4-12 post-operation X-ray and micro-CT scanning showed that rabbits receiving combination therapy had significantly more callus at the bone defect. Moreover, bone defects in the combination group were completely replaced with new bone at week 12, while the DCBS implantation alone group healed only partially and rabbits receiving neither DCBS nor mechanical loading developed only small calluses throughout the observation period. Analysis of micro-CT scanning results demonstrated that new bone density in the combination group was significantly higher than the DCBS only group at weeks 4 and 12 ( p <0.05). H&E staining results also indicated a significantly higher percentage of new bone in the bone defect area and a lower percentage of residual scaffold in the combination group compared to the DCBS only group ( p <0.05). Thus, this heel-strike like mechanical loading method appears to accelerate bone regeneration following substitute implantation by restoring a local mechanical loading environment in segmental bone defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehler, E; Sterling, D; Higgins, P
Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of severalmore » composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.« less
Phase field approaches of bone remodeling based on TIP
NASA Astrophysics Data System (ADS)
Ganghoffer, Jean-François; Rahouadj, Rachid; Boisse, Julien; Forest, Samuel
2016-01-01
The process of bone remodeling includes a cycle of repair, renewal, and optimization. This adaptation process, in response to variations in external loads and chemical driving factors, involves three main types of bone cells: osteoclasts, which remove the old pre-existing bone; osteoblasts, which form the new bone in a second phase; osteocytes, which are sensing cells embedded into the bone matrix, trigger the aforementioned sequence of events. The remodeling process involves mineralization of the bone in the diffuse interface separating the marrow, which contains all specialized cells, from the newly formed bone. The main objective advocated in this contribution is the setting up of a modeling and simulation framework relying on the phase field method to capture the evolution of the diffuse interface between the new bone and the marrow at the scale of individual trabeculae. The phase field describes the degree of mineralization of this diffuse interface; it varies continuously between the lower value (no mineral) and unity (fully mineralized phase, e.g. new bone), allowing the consideration of a diffuse moving interface. The modeling framework is the theory of continuous media, for which field equations for the mechanical, chemical, and interfacial phenomena are written, based on the thermodynamics of irreversible processes. Additional models for the cellular activity are formulated to describe the coupling of the cell activity responsible for bone production/resorption to the kinetics of the internal variables. Kinetic equations for the internal variables are obtained from a pseudo-potential of dissipation. The combination of the balance equations for the microforce associated to the phase field and the kinetic equations lead to the Ginzburg-Landau equation satisfied by the phase field with a source term accounting for the dissipative microforce. Simulations illustrating the proposed framework are performed in a one-dimensional situation showing the evolution of the diffuse interface separating new bone from marrow.
A single scan skeletonization algorithm: application to medical imaging of trabecular bone
NASA Astrophysics Data System (ADS)
Arlicot, Aurore; Amouriq, Yves; Evenou, Pierre; Normand, Nicolas; Guédon, Jean-Pierre
2010-03-01
Shape description is an important step in image analysis. The skeleton is used as a simple, compact representation of a shape. A skeleton represents the line centered in the shape and must be homotopic and one point wide. Current skeletonization algorithms compute the skeleton over several image scans, using either thinning algorithms or distance transforms. The principle of thinning is to delete points as one goes along, preserving the topology of the shape. On the other hand, the maxima of the local distance transform identifies the skeleton and is an equivalent way to calculate the medial axis. However, with this method, the skeleton obtained is disconnected so it is required to connect all the points of the medial axis to produce the skeleton. In this study we introduce a translated distance transform and adapt an existing distance driven homotopic algorithm to perform skeletonization with a single scan and thus allow the processing of unbounded images. This method is applied, in our study, on micro scanner images of trabecular bones. We wish to characterize the bone micro architecture in order to quantify bone integrity.
Rowe, Steven P; Deville, Curtiland; Paller, Channing; Cho, Steve Y; Fishman, Elliot K; Pomper, Martin G; Ross, Ashley E; Gorin, Michael A
2015-12-01
Prostate-specific membrane antigen (PSMA)-targeted PET imaging is an emerging technique for evaluating patients with prostate cancer (PCa) in a variety of clinical contexts. As with any new imaging modality, there are interpretive pitfalls that are beginning to be recognized. In this image report, we describe the findings in a 63-year-old male with biochemically recurrent PCa after radical prostatectomy who was imaged with 18 F-DCFPyL, a small molecule inhibitor of PSMA. Diffuse radiotracer uptake was noted throughout the sacrum, corresponding to imaging findings on contrast-enhanced CT, bone scan, and pelvic MRI consistent with Paget's disease of bone. The uptake of 18 F-DCFPyL in Paget's disease is most likely due to hyperemia and increased radiotracer delivery. In light of the overlap in patients affected by PCa and Paget's, it is important for nuclear medicine physicians and radiologists interpreting PSMA PET/CT scans to be aware of the potential for this diagnostic pitfall. Correlation to findings on conventional imaging such as diagnostic CT and bone scan can help confirm the diagnosis.
Osteomesopyknosis: report of a new case with bone histology.
Hardouin, P; Flautre, B; Sutter, B; Leclet, H; Grardel, B; Fauquert, P
1994-01-01
A new case of osteomesopyknosis, a rare autosomal dominant axial osteosclerosis is reported, with 4 affected members of the same family. Biochemical investigations, bone mineral content (BMC) measurement, 99mTc HMDP bone scan and microscopy of iliac crest bone and femoral head have been performed on 1 subject. A marked increase of BMC was found, without abnormality of biochemical data. Microscopy of bone showed an increase of trabecular thickness, and a low rate of bone turnover. No abnormality of mineralization was found on microradiographs.
Chaplais, Elodie; Greene, David; Hood, Anita; Telfer, Scott; du Toit, Verona; Singh-Grewal, Davinder; Burns, Joshua; Rome, Keith; Schiferl, Daniel J; Hendry, Gordon J
2014-07-19
Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec(-1). The reference line was positioned at the most distal portion of the 2(nd) metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI - mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI - mid shaft (ICC 0.99; CV% 3.2). The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2(nd) metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures.
2014-01-01
Background Peripheral quantitative computed tomography (pQCT) is an established technology that allows for the measurement of the material properties of bone. Alterations to bone architecture are associated with an increased risk of fracture. Further pQCT research is necessary to identify regions of interest that are prone to fracture risk in people with chronic diseases. The second metatarsal is a common site for the development of insufficiency fractures, and as such the aim of this study was to assess the reproducibility of a novel scanning protocol of the second metatarsal using pQCT. Methods Eleven embalmed cadaveric leg specimens were scanned six times; three times with and without repositioning. Each foot was positioned on a custom-designed acrylic foot plate to permit unimpeded scans of the region of interest. Sixty-six scans were obtained at 15% (distal) and 50% (mid shaft) of the second metatarsal. Voxel size and scan speed were reduced to 0.40 mm and 25 mm.sec-1. The reference line was positioned at the most distal portion of the 2nd metatarsal. Repeated measurements of six key variables related to bone properties were subject to reproducibility testing. Data were log transformed and reproducibility of scans were assessed using intraclass correlation coefficients (ICC) and coefficients of variation (CV%). Results Reproducibility of the measurements without repositioning were estimated as: trabecular area (ICC 0.95; CV% 2.4), trabecular density (ICC 0.98; CV% 3.0), Strength Strain Index (SSI) - distal (ICC 0.99; CV% 5.6), cortical area (ICC 1.0; CV% 1.5), cortical density (ICC 0.99; CV% 0.1), SSI – mid shaft (ICC 1.0; CV% 2.4). Reproducibility of the measurements after repositioning were estimated as: trabecular area (ICC 0.96; CV% 2.4), trabecular density (ICC 0.98; CV% 2.8), SSI - distal (ICC 1.0; CV% 3.5), cortical area (ICC 0.99; CV%2.4), cortical density (ICC 0.98; CV% 0.8), SSI – mid shaft (ICC 0.99; CV% 3.2). Conclusions The scanning protocol generated excellent reproducibility for key bone properties measured at the distal and mid-shaft regions of the 2nd metatarsal. This protocol extends the capabilities of pQCT to evaluate bone quality in people who may be at an increased risk of metatarsal insufficiency fractures. PMID:25037451
Mena, E; Martín-Miramon, J C; Bernà, L; Veintemillas, M; Marín, A; Valls, R; Melloni, P
2009-01-01
We report 3 cases of an unusual tumor, that is, the giant cell tumor of the tendon sheath. The patients consulted due to the appearance of a well-defined, painless, soft tissue mass with mild-to-moderate inflammation located in the thumbs or toes. These clinical data, together with the bone scan findings, oriented the diagnostic suspicion that was confirmed by a pathology study of the tumor after resection. This work has aimed to review the characteristics of the bone scan (BS) image of this tumor and its correlation with the conventional X-ray imaging and magnetic resonance imaging (MRI).
Gregson, Celia L; Hardcastle, Sarah A; Cooper, Cyrus; Tobias, Jonathan H
2013-06-01
A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders.
Hardcastle, Sarah A.; Cooper, Cyrus; Tobias, Jonathan H.
2013-01-01
A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders. PMID:23445662
77 FR 47852 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... Beneficiaries Receiving NaF-18 Positron Emission Tomography (PET) to Identify Bone Metastasis in Cancer; Use: In... NaF-18 PET scan to identify bone metastasis in cancer is reasonable and necessary only when the... strategy by the identification, location and quantification of bone [[Page 47853
75 FR 63484 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Bone Metastasis in Cancer; Use: In Decision Memorandum CAG-00065R, issued on February 26, 2010, the... that for Medicare beneficiaries receiving NaF-18 PET scan to identify bone metastasis in cancer is... or to guide subsequent treatment strategy by the identification, location and quantification of bone...
Lattice relations and solidification of the complex regular eutectic (Cr,Fe)-(Cr,Fe)23C6
NASA Astrophysics Data System (ADS)
Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite
2017-05-01
The eutectic (Cr,Fe)-(Cr,Fe)23C6 showed a triaxial fishbone structure and could be categorized as a "complex regular structure". In this study, the lattice relations of the fishbone (Cr,Fe)23C6 were examined and the solidification process was observed using a transmission electron microscope and a confocal laser scanning microscope. For one of the three fish bones in a eutectic cell, parallel (Cr,Fe)23C6 lamellas at one side of the spine had the same lattice direction, as did those in the (Cr,Fe) phase. The lattices of neighboring (Cr,Fe)23C6 and (Cr,Fe) phases were not coherent. Lamellar (Cr,Fe)23C6 on opposite sides of a spine had different lattice directions, and their lattice boundary was in the spine. By using the confocal laser scanning microscope, the solidification of lamellar eutectic structure could be observed. At the low cooling rate of 5 o C·min-1, parallel lamellas would grow thick blocks instead of thin plates. To obtain a thin lamellar eutectic structure, the cooling rate should be higher, like the rate in welding.
Dental implant imaging: TeraRecon's Dental 3D Cone Beam Computed Tomography System.
Garg, Arun K
2007-06-01
Early in the development of implant technology, conventional dental imaging techniques were limited for evaluating the patient for implant surgery. During the treatment-planning phase, the recipient bed is routinely assessed by visual examination and palpation, as well as by periapical and panoramic radiology. These two imaging modalities provide a two-dimensional image of the mesiodistal and occlusoapical dimensions of the edentulous regions where the implants might be placed. When adequate occlusoapical bone height is available for endosteal implants, the buccolingual width and angulation of the available bone are the most important criteria for implant selection and success. However, neither buccolingual width nor angulation can be visualized on most traditional radiographs. Although clinical examination and traditional radiographs may be adequate for patients with wide residual ridges that exhibit sufficient bone crestal to the mandibular nerve and maxillary sinus, these methods do not allow for the precise measurement of the buccolingual dimension of the bone or assessment of the location of unanticipated undercuts. Because of these concerns, it is necessary to view the recipient site in a plane through the arch of the maxilla or mandible in the region of the proposed implants. Implant surgeons soon recognized that, for the optimum placement of implants, cross-sectional views of the maxilla and mandible are the ideal means for providing necessary preoperative information. For complex cases where multiple implants are required or where anatomical measurements are crucial, but also increasingly for more routine cases, more and more clinicians are recommending CT scan imaging procedure such as that offered by TeraRecon's Dental CBCT system. Because of its ability to reconstruct a fully three-dimensional model of the maxilla and mandible, CBCT provides a highly sophisticated format for precisely defining the jaw structure and locating critical anatomic structures. CBCT scans, in conjunction with software that renders immediate treatment plans using the most real and accurate information, provide the most precise radiographic modality currently available for the evaluation of patients for oral implants.
NASA Astrophysics Data System (ADS)
Rusu, Laura-Cristina; Negrutiu, Meda Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Zaharia, Cristian; Ardelean, Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.
2014-01-01
The osteoconductive materials are important in bone regeneration procedures. Three dimensional (3D) reconstructions were obtained from the analysis. The aim of this study is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on two artificial matrixes inserted in previously artificially induced defects. For this study, under strict supervision 20 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were IngeniOss (for ten samples) and 4Bone(for the other ten samples). These materials were inserted into the induced defects. The femurs were investigated at 1 month, after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The scanning procedure is similar to that used in any CM, where the fast scanning is en-face (line rate) and the scanning in depth is much slower (at the frame rate). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The results showed open interfaces due to the insufficient healing process, as well as closed interfaces due to a new bone formation inside the defect. The conclusion of this study is that TD-OCT can act as a valuable tool in the investigation of the interface between the old bone and the one that has been newly created due to the osteoinductive process. The TD-OCT has proven a valuable tool for the non-invasive evaluation of the matrix bone interfaces.
da Cruz, Gabriela Alessandra; de Toledo, Sérgio; Sallum, Enilson Antonio; de Lima, Antonio Fernando Martorelli
2007-01-01
This study evaluated the morphological and chemical composition of the following bone substitutes: cancellous and cortical organic bovine bone with macro and microparticle size ranging from 1.0 to 2.0 mm and 0.25 to 1.0 mm, respectively; inorganic bovine bone with particle size ranging from 0.25 to 1.0 mm; hydroxyapatite with particle size ranging from 0.75 to 1.0 mm; and demineralized freeze-dried bone allograft with particle size ranging from 0.25 to 0.5 mm. The samples were sputter-coated with gold in an ion coater, the morphology was observed and particle size was measured under vacuum by scanning electron microscopy (SEM). The chemical composition was evaluated by spectroscopy of dispersion energy (EDS) microanalysis using samples without coating. SEM analysis provided visual evidence that all examined materials have irregular shape and particle sizes larger than those informed by the manufacturer. EDS microanalysis detected the presence of sodium, calcium and phosphorus that are usual elements of the bone tissue. However, mineral elements were detected in all analyzed particles of organic bovine bone except for macro cancellous organic bovine bone. These results suggest that the examined organic bovine bone cannot be considered as a pure organic material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahara, Takatoshi, E-mail: taka.t-may7@med.Tottori-u.ac.jp; Fujii, Shinya; Ogawa, Toshihide
Purpose: To determine whether fluorodeoxyglucose positron emission tomography (FDG-PET) before and after palliative radiation therapy (RT) can predict long-term pain control in patients with painful bone metastases. Methods and Materials: Thirty-one patients with bone metastases who received RT were prospectively included. Forty painful metastatic treatment fields were evaluated. All patients had undergone pre-RT and post-RT PET/CT scanning. We evaluated the relationships between the pre-RT, post-RT, and changes in maximum standardized uptake value (SUV{sub max}) and the pain response, and between SUV{sub max} and pain relapse of the bone metastases in the treatment field. In addition, we compared the SUV{sub max}more » according to the length of time from the completion of RT to pain relapse of the bone metastases. Results: Regarding the pain response at 4 weeks after the completion of RT, there were 36 lesions of 27 patients in the responder group and 4 lesions of 4 patients in the nonresponder group. Changes in the SUV{sub max} differed significantly between the responder and nonresponder groups in both the early and delayed phases (P=.0292 and P=.0139, respectively), but no relationship was observed between the pre-RT and post-RT SUV{sub max} relative to the pain response. The responder group was evaluated for the rate of relapse. Thirty-five lesions of 26 patients in the responder group were evaluated, because 1 patient died of acute renal failure at 2 months after RT. Twelve lesions (34%) showed pain relapse, and 23 lesions (66%) did not. There were significant differences between the relapse and nonrelapse patients in terms of the pre-RT (early/delayed phases: P<.0001/P<.0001), post-RT (P=.0199/P=.0261), and changes in SUV{sub max} (P=.0004/P=.004). Conclusions: FDG-PET may help predict the outcome of pain control in the treatment field after palliative RT for painful bone metastases.« less
Lundblad, Henrik; Karlsson-Thur, Charlotte; Maguire, Gerald Q; Jonsson, Cathrine; Noz, Marilyn E; Zeleznik, Michael P; Weidenhielm, Lars
2017-05-01
When a bone is broken for any reason, it is important for the orthopaedic surgeon to know how bone healing is progressing. There has been resurgence in the use of the fluoride ( 18 F - ) ion to evaluate various bone conditions. This has been made possible by availability of positron emission tomography (PET)/CT hybrid scanners together with cyclotrons. Absorbed on the bone surface from blood flow, 18 F - attaches to the osteoblasts in cancellous bone and acts as a pharmacokinetic agent, which reflects the local physiologic activity of bone. This is important because it shows bone formation indicating that the bone is healing or no bone formation indicating no healing. As 18 F - is extracted from blood in proportion to blood flow and bone formation, it thus enables determination of bone healing progress. The primary objective of this study was to determine whether videos showing the spatiotemporal uptake of 18 F - via PET bone scans could show problematic bone healing in patients with complex tibia conditions. A secondary objective was to determine if semiquantification of radionuclide uptake was consistent with bone healing. This study investigated measurements of tibia bone formation in patients with complex fractures, osteomyelitis, and osteotomies treated with a Taylor Spatial Frame TM (TSF) by comparing clinical healing progress with spatiotemporal fluoride ( 18 F - ) uptake and the semiquantitative standardized uptake value (SUV). This procedure included static and dynamic image acquisition. For intrapatient volumes acquired at different times, the CT and PET data were spatially registered to bring the ends of the bones that were supposed to heal into alignment. To qualitatively observe how and where bone formation was occurring, time-sequenced volumes were reconstructed and viewed as a video. To semiquantify the uptake, the mean and maximum SUVs (SUVmean, SUVmax) were calculated for the ends of the bones that were supposed to heal and for normal bone, using a spherical volume of interest drawn on the registered volumes. To make the semiquantitative data comparable for all patients with multiple examinations, the SUVmean and SUVmax difference per day (SUVmeanDPD and SUVmaxDPD) between the first PET/CT scan and each subsequent one was calculated. Indicators of poor healing progress were (1) uneven distribution of the radionuclide uptake between ends of the bones that were supposed to heal as seen in the video or, (2) low absolute magnitude of the SUV difference data. Twenty-four patients treated between October 2013 and April 2015 with a TSF gave informed consent to be examined with 18 F - PET/CT bone scans. Twenty-two patients successfully completed treatment, one of whom had only one PET/CT scan. Observation of 18 F - uptake was able to identify three patients whose healing progress was poor, indicated by uneven distribution of radionuclide uptake across the ends of the bones that were supposed to heal. An absolute magnitude of the SUVmaxDPD of 0.18 or greater indicated good bone formation progress. This was verified in 10 patients by the days between the operation to attach and to remove the TSF being less than 250 days, whereas other SUVmaxDPD values were ambiguous, with 11 patients achieving successful completion. Observation of the spatiotemporal uptake of 18 F - appears to be a promising method to enable the clinician to assess the progress of bone formation in different parts of the bone. Bone uptake which is uneven across the ends of bone that were supposed to heal or very low bone uptake might indicate impaired bone healing where early intervention may then be needed. However, semiquantification of 18 F - uptake (SUVmaxDPD), SUVmeanDPD) was ambiguous in showing consistency with the bone-healing progress. Level III, diagnostic study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schadewaldt, N; Schulz, H; Helle, M
2014-06-01
Purpose: To analyze the effect of computing radiation dose on automatically generated MR-based simulated CT images compared to true patient CTs. Methods: Six prostate cancer patients received a regular planning CT for RT planning as well as a conventional 3D fast-field dual-echo scan on a Philips 3.0T Achieva, adding approximately 2 min of scan time to the clinical protocol. Simulated CTs (simCT) where synthesized by assigning known average CT values to the tissue classes air, water, fat, cortical and cancellous bone. For this, Dixon reconstruction of the nearly out-of-phase (echo 1) and in-phase images (echo 2) allowed for water andmore » fat classification. Model based bone segmentation was performed on a combination of the DIXON images. A subsequent automatic threshold divides into cortical and cancellous bone. For validation, the simCT was registered to the true CT and clinical treatment plans were re-computed on the simCT in pinnacle{sup 3}. To differentiate effects related to the 5 tissue classes and changes in the patient anatomy not compensated by rigid registration, we also calculate the dose on a stratified CT, where HU values are sorted in to the same 5 tissue classes as the simCT. Results: Dose and volume parameters on PTV and risk organs as used for the clinical approval were compared. All deviations are below 1.1%, except the anal sphincter mean dose, which is at most 2.2%, but well below clinical acceptance threshold. Average deviations are below 0.4% for PTV and risk organs and 1.3% for the anal sphincter. The deviations of the stratifiedCT are in the same range as for the simCT. All plans would have passed clinical acceptance thresholds on the simulated CT images. Conclusion: This study demonstrated the clinical usability of MR based dose calculation with the presented Dixon acquisition and subsequent fully automatic image processing. N. Schadewaldt, H. Schulz, M. Helle and S. Renisch are employed by Phlips Technologie Innovative Techonologies, a subsidiary of Royal Philips NV.« less
Aromatase imaging with [N-methyl-C-11]vorozole PET in healthy men and women
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegon, Anat; Fowler, Joanna S.; Alexoff, David L.
Aromatase, the last and obligatory enzyme catalyzing estrogen biosynthesis from androgenic precursors, can be labeled in vivo with ¹¹C-vorozole. Aromatase inhibitors are widely used in breast cancer and other endocrine conditions. The present study aims to provide baseline information defining aromatase distribution in healthy men and women, against which its perturbation in pathological situations can be studied. Methods: ¹¹C-vorozole (111-296 MBq/subject) was injected I.V in 13 men and 20 women (age range 23 to 67). PET data were acquired over a 90 minute period. Each subject had 4 scans, 2/day separated by 2-6 weeks, including brain and torso or pelvismore » scans. Young women were scanned at 2 discrete phases of the menstrual cycle (midcycle and late luteal). Men and postmenopausal women were also scanned following pretreatment with a clinical dose of the aromatase inhibitor letrozole (“blocking” studies). Time activity curves were obtained and standard uptake values (SUV) calculated for major organs including brain, heart, lungs, liver, kidneys, spleen, muscle, bone and male and female reproductive organs (penis, testes, uterus, ovaries). Organ and whole body radiation exposures were calculated using Olinda software. Results: Liver uptake was higher than all other organs, but was not blocked by pretreatment with letrozole. Mean SUVs in men were higher than in women, and brain uptake was blocked by letrozole. Male brain SUVs were also higher than all other organs (ranging from 0.48±0.05 in lungs to 1.5±0.13 in kidneys). Mean ovarian SUVs (3.08±0.7) were comparable to brain levels and higher than all other organs. Furthermore, ovarian SUVs In young women around the time of ovulation (midcycle) were significantly higher than those measured in the late luteal phase, while aging and cigarette smoking reduced ¹¹C-vorozole uptake. Conclusions: PET with ¹¹C-vorozole is useful for assessing physiological changes in estrogen synthesis capacity in the human body. Baseline levels in breasts, lungs and bones are low, supporting further investigation of this tracer as a new tool for detection of aromatase-overexpressing primary tumors or metastases in these organs and optimization of treatment in cancer and other disorders in which aromatase inhibitors are useful.« less
Aromatase imaging with [N-methyl-C-11]vorozole PET in healthy men and women
Biegon, Anat; Fowler, Joanna S.; Alexoff, David L.; ...
2015-02-19
Aromatase, the last and obligatory enzyme catalyzing estrogen biosynthesis from androgenic precursors, can be labeled in vivo with ¹¹C-vorozole. Aromatase inhibitors are widely used in breast cancer and other endocrine conditions. The present study aims to provide baseline information defining aromatase distribution in healthy men and women, against which its perturbation in pathological situations can be studied. Methods: ¹¹C-vorozole (111-296 MBq/subject) was injected I.V in 13 men and 20 women (age range 23 to 67). PET data were acquired over a 90 minute period. Each subject had 4 scans, 2/day separated by 2-6 weeks, including brain and torso or pelvismore » scans. Young women were scanned at 2 discrete phases of the menstrual cycle (midcycle and late luteal). Men and postmenopausal women were also scanned following pretreatment with a clinical dose of the aromatase inhibitor letrozole (“blocking” studies). Time activity curves were obtained and standard uptake values (SUV) calculated for major organs including brain, heart, lungs, liver, kidneys, spleen, muscle, bone and male and female reproductive organs (penis, testes, uterus, ovaries). Organ and whole body radiation exposures were calculated using Olinda software. Results: Liver uptake was higher than all other organs, but was not blocked by pretreatment with letrozole. Mean SUVs in men were higher than in women, and brain uptake was blocked by letrozole. Male brain SUVs were also higher than all other organs (ranging from 0.48±0.05 in lungs to 1.5±0.13 in kidneys). Mean ovarian SUVs (3.08±0.7) were comparable to brain levels and higher than all other organs. Furthermore, ovarian SUVs In young women around the time of ovulation (midcycle) were significantly higher than those measured in the late luteal phase, while aging and cigarette smoking reduced ¹¹C-vorozole uptake. Conclusions: PET with ¹¹C-vorozole is useful for assessing physiological changes in estrogen synthesis capacity in the human body. Baseline levels in breasts, lungs and bones are low, supporting further investigation of this tracer as a new tool for detection of aromatase-overexpressing primary tumors or metastases in these organs and optimization of treatment in cancer and other disorders in which aromatase inhibitors are useful.« less
NASA Astrophysics Data System (ADS)
Nurhadi, M.; Kusumawardani, R.; Widiyowati, I. I.; Wirhanuddin; Nur, H.
2018-05-01
The performance of fish bone to adsorb Fe3+ ion in solution was studied. Powdered fish bone and carbonized fish bone were used as adsorbent. All absorbents were characterized by X-ray diffraction (XRD), IR spectroscopy, nitrogen adsorption, scanning electron microscopy (SEM) and TG analysis. Powdered fish bone and carbonized fish bone were effective as adsorbent for removing Fe3+ ion in solution. The metal adsorptions of Fe3+ ion were 94 and 98% for powdered fish bone and fish bone which carbonized at 400 and 500 °C.
NASA Technical Reports Server (NTRS)
Jergas, M.; Breitenseher, M.; Gluer, C. C.; Yu, W.; Genant, H. K.
1995-01-01
To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are unaffected by height and weight and are more strongly associated with vertebral fracture than standard PA BMD or BMC, or estimates of volumetric density that are solely based on PA DXA scans.
Hidaka, Dai; Koshizuka, Hiroaki; Hiyama, Junichiro; Nakatsubo, Seita; Ikeda, Koutarou; Hayashi, Akihiro; Fujii, Akiko; Sawamoto, Ryouko; Misumi, Yukihiro; Miyagawa, Yousuke
2009-03-01
A 57-year-old man complaining of right shoulder pain was admitted. Chest enhanced CT scanning showed a mass shadow in the right upper lobe with chest wall invasion. The laboratory data on admission showed marked leukocytosis. A CT-guided lung biopsy was performed, and a histological examination of the biopsy specimen showed a spindle cell type pleomorphic carcinoma. Immunohistochemistry staining using an anti-granulocyte colony-stimulating factor (G-CSF) monoclonal antibody demonstrated many tumor cells containing G-CSF as well as an increased level of serum G-CSF. The diagnosis was determined to be lung cancer producing G-CSF. FDG-PET scanning showed a significantly high uptake in the right upper field and the bones throughout the body. After chemoradiation therapy, the patient underwent a right upper lobectomy with a chest wall resection. Since then, the leukocytosis and the high level of serum G-CSF normalized and the high uptake in the bones disappeared in the FDG-PET scan.
Mastocytosis: magnetic resonance imaging patterns of marrow disease.
Avila, N A; Ling, A; Metcalfe, D D; Worobec, A S
1998-03-01
To report the bone marrow MRI findings of patients with mastocytosis and correlate them with clinical, pathologic, and radiographic features. Eighteen patients with mastocytosis had T1-weighted spin echo and short tau inversion recovery MRI of the pelvis at 0.5 T. In each patient the MR pattern of marrow disease was classified according to intensity and uniformity and was correlated with the clinical category of mastocytosis, bone marrow biopsy results, and radiographic findings. Two patients had normal MRI scans and normal bone marrow biopsies. One patient had a normal MRI scan and a marrow biopsy consistent with mastocytosis. Fifteen patients had abnormal MRI scans and abnormal marrow biopsies. There were several different MR patterns of marrow involvement; none was specifically associated with any given clinical category of mastocytosis. Fifteen of the 18 patients had radiographs of the pelvis; of those, 13 with abnormal MRI scans and abnormal marrow biopsies had the following radiographic findings: normal (nine); sclerosis (three); diffuse osteopenia (one). While radiographs are very insensitive for the detection of marrow abnormalities in mastocytosis, MRI is very sensitive and may display several different patterns of marrow involvement.
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Czechowska, Joanna; Ślósarczyk, Anna; Paszkiewicz, Zofia
2013-02-01
The aim of this study was to determine a setting reaction pathway in a novel, surgically handy implant material, based on calcium sulfate hemihydrate (CSH) and titanium doped hydroxyapatite (TiHA). The previous studies confirmed superior biological properties of TiHA in comparison to the undoped hydroxyapatite (HA) what makes it highly attractive for future medical applications. In this study the three types of titanium modified HA powders: untreated, calcined at 800 °C, sintered at 1250 °C and CSH were used to produce bone cements. The Fourier Transform-InfraRed (FT-IR) spectroscopy and Raman spectroscopy were applied to evaluate processes taking place during the setting of the studied materials. Our results undoubtedly confirmed that the reaction pathways and the phase compositions differed significantly for set cements and were dependent on the initial heat treatment of TiHA powder. Final materials were multiphase composites consisting of calcium sulfate dihydrate, bassanite, tricalcium phosphate, hydroxyapatite and calcium titanate (perovskite). The FT-IR and Scanning Electron Microscopy (SEM) measurements performed after the incubation of the cement samples in the simulated body fluid (SBF), indicate on high bioactive potential of the obtained bone cements.
Metastatic pulmonary calcification in a dialysis patient: case report and a review.
Eggert, Christoph H; Albright, Robert C
2006-10-01
A 19-year-old male presented with chest pain and dyspnea. He was anephric following nephrectomy for focal segmental glomerulosclerosis, had a subsequent failed transplant, and had been dialysis dependent for 3 years. Workup revealed hyperparathyroidism and an abnormal chest X-ray and computed tomography scan, significant for massive extra-skeletal pulmonary calcification. A markedly abnormal Technitium99 methylene diphosphonate (Tc99m-MDP) bone scan confirmed the clinical suspicion of metastatic pulmonary calcification. Metastatic pulmonary calcification (MPC) is common, occurring in 60% to 80% of dialysis patients on autopsy and bone scan series. It may lead to impaired oxygenation and restrictive lung disease. Typically, the calcium crystal is whitlockite rather than hydroxyapatite, which occurs in vascular calcification. Four major predisposing factors may contribute to MPC in dialysis patients. First, chronic acidosis leaches calcium from bone. Second, intermittent alkalosis favors deposition of calcium salts. Third, hyperparathyroidism tends to cause bone resorption and intracellular hypercalcemia. Finally, low glomerular filtration rate can cause hyperphosphatemia and an elevated calcium-phosphorus product. There may be other factors. Some authors suggest that the incidence of MPC in recent years may be lower due to improved dialysis techniques. The diagnosis is confirmed by biopsy, but can be suspected by typical findings on a Tc99m-MDP bone scan. Therapy is limited to ensuring adequate dialysis, correcting calcium-phosphorus product, and hyperparathyroidism; discontinuing vitamin D analogues may help. Conflicting reports show that transplantation may either improve or worsen the situation. MPC should be considered in dialysis patients who have characteristic abnormal chest radiography and/or pulmonary symptoms.
The effect of strontium ranelate on the healing of a fractured ulna with bone gap in rabbit.
Ibrahim, Mohd Rafiq Mohd; Singh, Simmrat; Merican, Azhar Mahmood; Raghavendran, Hanumantha Rao Balaji; Murali, Malliga Raman; Naveen, Sangeetha Vasudevaraj; Kamarul, Tunku
2016-06-16
Fracture healing in bone gap is one of the major challenges encountered in Orthopedic Surgery. At present, the treatment includes bone graft, employing either internal or external fixation which has a significant impact on the patient, family and even society. New drugs are emerging in the markets such as anabolic bone-forming agents including teriparatide and strontium ranelate to stimulate bone growth. Based on the mechanism of their actions, we embarked on a study on the healing of a fractured ulna with bone gap in a rabbit model. We segregated ten rabbits into two groups: five rabbits in the test group and five rabbits in the control group. We created a 5 mm bone gap in the ulna bone, removing the periosteum as well. Rabbits in the test group received 450 mg/kg of strontium ranelate via oral administration, daily, for six weeks. The x-rays, CT scans and blood tests were performed every two weeks. At the end of six weeks, the rabbits were sacrificed, and the radius and ulna bones harvested for histopathological examination. Based on the x-rays and CT scans, fracture healing or bone formation was observed to be faster in the control group. From the x-ray findings, 80 % of the fracture united and by CT scan, 60 % of the fracture united in the control group at the end of the six-week study. None of the fractures united in the test group. However, the histopathology report showed that a callus of different stages was being formed in both groups, consisting of 80 % of bone. The serum levels of osteocalcin and alkaline phosphatase initially remained similar up to three weeks and changed slightly at the end of six weeks. We conclude that the strontium effect begins slowly, and while it may not interfere with bone cell proliferation it may interfere in the mineralization and delay the acute stage of fracture healing. We recommend that a larger sample size and a longer duration of the study period be implemented to confirm our finding.
Kivitz, E; Görke, R; Schilling, A F; Zhang, J; Heinrich, J G
2013-05-01
Silica-doped hydroxyapatite (HA) is a promising material concerning biocompatibility to natural bone, bioactivity and osteoconductive characteristics. HA exhibits phase transformations during sintering which are attendant to the change in volume and thermal strain. To avoid cracks during sintering, the exact knowledge of the phase transition temperatures is necessary. The sintering behavior of HA can be improved by adding amorphous silica with a low coefficient of thermal expansion. Therefore, the phase transformations in the system HA-SiO2 were analyzed by using differential scanning calorimetry followed by quantitative phase analysis by X-ray diffraction with the Riedveld method. The maximum sintering temperature without reversible phase transformation was defined as 1265°C. In laser surface sintered (LSS) samples, amorphous SiO2 , HA, and Si-α-TCP (or α-TCP) were detected. By comparison, only crystalline phases, such as cristobalite, HA, β-TCP, and Si-α-TCP (or α-TCP), were determined after furnace sintering. Scanning electron microscopy micrographs of furnace sintered and LSS samples show the differences in the resulting microstructures. Biocompatibility was determined by measuring cell activity of osteoblasts cultivated on four laser-sintered materials in the HA-SiO2 system in comparison to normal cell culture plastic. Cell proliferation was similar on all surfaces. The level of the cell activity on day 8 varied depending on the composition of the material and increased linearly as the amorphous SiO2 content rose. Taken together a laser-based method to develop novel biocompatible HA-SiO2 ceramics with adjustable properties and possible applications as orthopedic bioceramics are discussed. Copyright © 2012 Wiley Periodicals, Inc.
Miscellaneous indications in bone scintigraphy: metabolic bone diseases and malignant bone tumors.
Cook, Gary J R; Gnanasegaran, Gopinath; Chua, Sue
2010-01-01
The diphosphonate bone scan is ideally suited to assess many global, focal or multifocal metabolic bone disorders and there remains a role for conventional bone scintigraphy in metabolic bone disorders at diagnosis, investigation of complications, and treatment response assessment. In contrast, the role of bone scintigraphy in the evaluation of primary malignant bone tumors has reduced with the improvement of morphologic imaging, such as computed tomography and magnetic resonance imaging. However, an increasing role for (18)F-fluorodeoxyglucose positron emission tomography and positron emission tomography/computed tomography is emerging as a functional assessment at diagnosis, staging, and neoadjuvant treatment response assessment.
NASA Astrophysics Data System (ADS)
Barcikowski, Stephan; Hahn, Anne; Guggenheim, Merlin; Reimers, Kerstin; Ostendorf, Andreas
2010-06-01
Nanoactuators made from nanoparticulate NiTi shape memory alloy show potential in the mechanical stimulation of bone tissue formation from stem cells. We demonstrate the fabrication of Ni, Ti, and NiTi shape memory alloy nanoparticles and their biocompatibility to human adipose-derived stem cells. The stoichiometry and phase transformation property of the bulk alloy is preserved during attrition by femtosecond laser ablation in liquid, giving access to colloidal nanoactuators. No adverse effect on cell growth and attachment is observed in proliferation assay and environmental electron scanning microscopy, making this material attractive for mechanical stimulation of stem cells.
Automated Reporting of DXA Studies Using a Custom-Built Computer Program.
England, Joseph R; Colletti, Patrick M
2018-06-01
Dual-energy x-ray absorptiometry (DXA) scans are a critical population health tool and relatively simple to interpret but can be time consuming to report, often requiring manual transfer of bone mineral density and associated statistics into commercially available dictation systems. We describe here a custom-built computer program for automated reporting of DXA scans using Pydicom, an open-source package built in the Python computer language, and regular expressions to mine DICOM tags for patient information and bone mineral density statistics. This program, easy to emulate by any novice computer programmer, has doubled our efficiency at reporting DXA scans and has eliminated dictation errors.
Li, Wenjun; Kezele, Irina; Collins, D Louis; Zijdenbos, Alex; Keyak, Joyce; Kornak, John; Koyama, Alain; Saeed, Isra; Leblanc, Adrian; Harris, Tamara; Lu, Ying; Lang, Thomas
2007-11-01
We have developed a general framework which employs quantitative computed tomography (QCT) imaging and inter-subject image registration to model the three-dimensional structure of the hip, with the goal of quantifying changes in the spatial distribution of bone as it is affected by aging, drug treatment or mechanical unloading. We have adapted rigid and non-rigid inter-subject registration techniques to transform groups of hip QCT scans into a common reference space and to construct composite proximal femoral models. We have applied this technique to a longitudinal study of 16 astronauts who on average, incurred high losses of hip bone density during spaceflights of 4-6 months on the International Space Station (ISS). We compared the pre-flight and post-flight composite hip models, and observed the gradients of the bone loss distribution. We performed paired t-tests, on a voxel by voxel basis, corrected for multiple comparisons using false discovery rate (FDR), and observed regions inside the proximal femur that showed the most significant bone loss. To validate our registration algorithm, we selected the 16 pre-flight scans and manually marked 4 landmarks for each scan. After registration, the average distance between the mapped landmarks and the corresponding landmarks in the target scan was 2.56 mm. The average error due to manual landmark identification was 1.70 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahowald, M.L.; Raskind, J.R.; Peterson, L.
1986-08-01
Numerous clinical studies have questioned the ability of radionuclide scans to differentiate septic from aseptic joint inflammation. A clinical study may not be able to document an underlying disease process or duration of infection and, thus, may make conclusions about the accuracy of scan interpretations open to debate. In this study, the Dumonde-Glynn model of antigen-induced arthritis in rabbits was used as the experimental model to study technetium and gallium scans in Staphylococcus aureus infection of arthritic and normal joints. Gallium scans were negative in normal rabbits, usually negative in antigen-induced arthritis, but positive in septic arthritis. The bone scanmore » was usually negative in early infection but positive in late septic arthritis, a finding reflecting greater penetration of bacteria into subchondral bone because of the underlying inflammatory process.« less
Barratt, Dean C; Chan, Carolyn S K; Edwards, Philip J; Penney, Graeme P; Slomczykowski, Mike; Carter, Timothy J; Hawkes, David J
2008-06-01
Statistical shape modelling potentially provides a powerful tool for generating patient-specific, 3D representations of bony anatomy for computer-aided orthopaedic surgery (CAOS) without the need for a preoperative CT scan. Furthermore, freehand 3D ultrasound (US) provides a non-invasive method for digitising bone surfaces in the operating theatre that enables a much greater region to be sampled compared with conventional direct-contact (i.e., pointer-based) digitisation techniques. In this paper, we describe how these approaches can be combined to simultaneously generate and register a patient-specific model of the femur and pelvis to the patient during surgery. In our implementation, a statistical deformation model (SDM) was constructed for the femur and pelvis by performing a principal component analysis on the B-spline control points that parameterise the freeform deformations required to non-rigidly register a training set of CT scans to a carefully segmented template CT scan. The segmented template bone surface, represented by a triangulated surface mesh, is instantiated and registered to a cloud of US-derived surface points using an iterative scheme in which the weights corresponding to the first five principal modes of variation of the SDM are optimised in addition to the rigid-body parameters. The accuracy of the method was evaluated using clinically realistic data obtained on three intact human cadavers (three whole pelves and six femurs). For each bone, a high-resolution CT scan and rigid-body registration transformation, calculated using bone-implanted fiducial markers, served as the gold standard bone geometry and registration transformation, respectively. After aligning the final instantiated model and CT-derived surfaces using the iterative closest point (ICP) algorithm, the average root-mean-square distance between the surfaces was 3.5mm over the whole bone and 3.7mm in the region of surgical interest. The corresponding distances after aligning the surfaces using the marker-based registration transformation were 4.6 and 4.5mm, respectively. We conclude that despite limitations on the regions of bone accessible using US imaging, this technique has potential as a cost-effective and non-invasive method to enable surgical navigation during CAOS procedures, without the additional radiation dose associated with performing a preoperative CT scan or intraoperative fluoroscopic imaging. However, further development is required to investigate errors using error measures relevant to specific surgical procedures.
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Smith, Scott A.; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; Evans, Harlan; King, Lisa
2014-01-01
Background: Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density and structure result in increased fracture incidence. NASA astronauts currently fly on 5-6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT), and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone microarchitecture from lumbar spine (LS). DXA scans are routinely performed pre- and post-flight on all ISS astronauts to follow BMD changes associated with space flight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from lumbar spine DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: LS (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4) were divided into 3 groups based on the exercise regimes performed while onboard the ISS. Pre-ARED (exercise using a load-limited resistive exercise device, <300lb), ARED (exercise with a high-load resistive exercise device, up to 600lb) and a Bisphos group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and postflight scans. LSC for the LS in our laboratory is 0.025 g/cm2. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. TBS precision was calculated from 16 comparable test subjects (0.0XX g/cm2). Data were preliminary analyzed using a paired, 2-tailed t-test for the difference between pre- and postflight means.
USDA-ARS?s Scientific Manuscript database
Relatively few studies have examined the effects of formula feeding relative to breast-feeding on bone in the neonate. Using peripheral quantitative CT scan and histomorphometric analysis, we demonstrated that neonatal piglets fed with soy-based formula (SF) and cow milk-based formula (MF) for 21 or...
Park, Hyun Jung; Lee, Ok Joo; Lee, Min Chae; Moon, Bo Mi; Ju, Hyung Woo; Lee, Jung min; Kim, Jung-Ho; Kim, Dong Wook; Park, Chan Hum
2015-01-01
Silk fibroin is a biomaterial being actively studied in the field of bone tissue engineering. In this study, we aimed to select the best strategy for bone reconstruction on scaffolds by changing various conditions. We compared the characteristics of each scaffold via structural analysis using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), the swelling ratio, water uptake, porosity, compressive strength, cell infiltration and cell viability (CCK-8). The scaffolds had high porosity with good inter pore connectivity and showed high compressive strength and modulus. In addition, to confirm bone reconstruction, animal studies were conducted in which samples were implanted in rat calvaria and investigated by micro-CT scans. In conclusion, the presented study indicates that using sucrose produces scaffolds showing better pore interconnectivity and cell infiltration than scaffolds made by using a salt process. In addition, in vivo experiments showed that hydroxyapatite accelerates bone reconstruction on implanted scaffolds. Accordingly, our scaffold will be expected to have a useful application in bone reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.
... your doctor might order additional imaging called single-photon emission computerized tomography (SPECT). This imaging can help ... radioactivity from the tracers is usually completely eliminated two days after the scan. Results A doctor who ...
Durgalakshmi, D; Balakumar, S
2015-01-14
Mimicking three dimensional microstructural scaffolds with their requisite mechanical properties in relation to human bone is highly needed for implant applications. Various biocompatible polymers and bioactive glasses were synthesized to achieve these properties. In the present study, we have fabricated highly porous and bioactive PMMA-Bioglass scaffolds by the phase separation method. Chloroform, acetone and an ethanol-water mixture were used as the different solvent phases in preparing the scaffolds. Large interconnecting pores of sizes ∼100 to 250 μm were observed in the scaffolds and a porosity percentage up to 54% was also achieved by this method. All samples showed a brittle fracture with the highest modulus of 91 MPa for the ethanol-water prepared scaffolds. The bioactivities of the scaffolds were further studied by immersing them in simulated body fluid for 28 days. Scanning electron microscopy, X-ray diffraction and Raman spectra confirmed the formation of bioactive hydroxyl calcium apatite on the surfaces of the scaffolds.
Site specific measurements of bone formation using [18F] sodium fluoride PET/CT
Puri, Tanuj; Siddique, Musib; Frost, Michelle L.; Moore, Amelia E. B.; Fogelman, Ignac
2018-01-01
Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([18F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [18F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [18F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [18F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer. PMID:29541623
Development and validation of technique for in-vivo 3D analysis of cranial bone graft survival
NASA Astrophysics Data System (ADS)
Bernstein, Mark P.; Caldwell, Curtis B.; Antonyshyn, Oleh M.; Ma, Karen; Cooper, Perry W.; Ehrlich, Lisa E.
1997-05-01
Bone autografts are routinely employed in the reconstruction of facial deformities resulting from trauma, tumor ablation or congenital malformations. The combined use of post- operative 3D CT and SPECT imaging provides a means for quantitative in vivo evaluation of bone graft volume and osteoblastic activity. The specific objectives of this study were: (1) Determine the reliability and accuracy of interactive computer-assisted analysis of bone graft volumes based on 3D CT scans; (2) Determine the error in CT/SPECT multimodality image registration; (3) Determine the error in SPECT/SPECT image registration; and (4) Determine the reliability and accuracy of CT-guided SPECT uptake measurements in cranial bone grafts. Five human cadaver heads served as anthropomorphic models for all experiments. Four cranial defects were created in each specimen with inlay and onlay split skull bone grafts and reconstructed to skull and malar recipient sites. To acquire all images, each specimen was CT scanned and coated with Technetium doped paint. For purposes of validation, skulls were landmarked with 1/16-inch ball-bearings and Indium. This study provides a new technique relating anatomy and physiology for the analysis of cranial bone graft survival.
Site specific measurements of bone formation using [18F] sodium fluoride PET/CT.
Blake, Glen M; Puri, Tanuj; Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac
2018-02-01
Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([ 18 F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [ 18 F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [ 18 F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [ 18 F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer.
Chiantella, Giovanni Carlo
2016-01-01
The present article describes the treatment given to a patient who underwent horizontal ridge augmentation surgery in the maxillary anterior area due to the premature loss of the maxillary central incisors. The complete dehiscence of the buccal plate was detected after elevation of mucoperiosteal flaps. The lesion was overfilled with deproteinized bovine xenograft particles combined with recombinant human platelet-derived growth factor BB (rhPDGF-BB) and covered with a porcine collagen barrier hydrated with the same growth factor. The soft tissues healed with no adverse complications. After 12 months, reentry surgery was carried out to place endosseous implants. Complete bone regeneration with the presence of bone-like tissue was observed. Cross-sectional computed tomography scan images confirmed integration of the bone graft and reconstruction of the lost hard tissue volume. The implants were inserted in an optimal three-dimensional position, thus facilitating esthetic restoration. Two years after insertion of final crowns, cone beam computed tomography scans displayed the stability of regenerated hard tissues around the implants. Controlled clinical studies are necessary to determine the benefit of hydrating bovine bone particles and collagen barriers with rhPDGF-BB for predictable bone regeneration of horizontal lesions.
Bartlett, Marissa L; Forsythe, Anna; Brady, Zoe; Mathews, John D
2018-05-01
We report data for all Australians aged 0-19 y who underwent publicly funded nuclear medicine studies between 1985 and 2005, inclusive. Radiation doses were estimated for individual patients for 95 different types of studies. There were 374 848 occasions of service for 277 511 patients with a collective effective dose of 1123 Sievert (Sv). Most services were either bone scans (45%) or renal scans (29%), with renal scans predominating at younger ages and bone scans at older ages. This pattern persisted despite a 4-fold increase in the annual number of procedures. Younger children were more likely to experience multiple scans, with the third quartile of scans per patient dropping from two to one with patient age. The median effective dose per patient ranged from 1.3 mSv (4-7 y old) to 2.8 mSv (13-16 y old). This large data set provides valuable information on nuclear medicine services for young Australians in the period 1985-2005.
Peterson, Lanell M; O'Sullivan, Janet; Wu, Qian Vicky; Novakova-Jiresova, Alena; Jenkins, Isaac; Lee, Jean H; Shields, Andrew; Montgomery, Susan; Linden, Hannah M; Gralow, Julie R; Gadi, Vijayakrishna K; Muzi, Mark; Kinahan, Paul E; Mankoff, David A; Specht, Jennifer M
2018-05-10
Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18 F-FDG PET was predictive of time to skeletal related events (tSRE) and time-to-progression (TTP). 18 F-NaF PET improves bone metastasis detection compared to bone scans. We prospectively tested 18 F-FDG PET and 18 F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (BD MBC). Methods: Patients with BD MBC were imaged with 18 F-FDG PET and 18 F-NaF PET prior to starting new therapy (scan1) and again at a range of times centered around approximately 4 months later (scan2). SUV max and SULpeak were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18 F-FDG PET and 18 F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) criteria were also applied. Survival curves for mPERCIST compared response categories of Complete Response+Partial Response+Stable Disease versus Progressive Disease (CR+PR+SD vs PD) for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher FDG SULpeak at scan2 predicted shorter time to tSRE ( P = <0.001) and TTP ( P = 0.044). Higher FDG SUV max at scan2 predicted a shorter time to tSRE ( P = <0.001). A multivariable model using FDG SUV max of the index lesion at scan1 plus the difference in SUV max of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18 F-FDG PET mPERCIST, tSRE and TTP were longer in responders (CR, PR, or stable) compared to non-responders (PD) ( P = 0.007, 0.028 respectively), with a trend toward improved survival ( P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18 F-NaF PET was associated with longer OS ( P = 0.027). Conclusion: Changes in 18 F-FDG PET parameters during therapy are predictive of tSRE and TTP, but not OS. mPERCIST evaluation in bone lesions may be useful in assessing response to therapy and is worthy of evaluation in multicenter, prospective trials. Serial 18 F-NaF PET was associated with OS, but was not useful for predicting TTP or tSRE in BD MBC. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Bredow, Jan; Boese, C K; Werner, C M L; Siewe, J; Löhrer, L; Zarghooni, K; Eysel, P; Scheyerer, M J
2016-08-01
Pedicle screw fixation is the standard technique for the stabilization of the spine, a clinically relevant complication of which is screw loosening. This retrospective study investigates whether preoperative CT scanning can offer a predictor of screw loosening. CT-scan attenuation in 365 patients was evaluated to determine the mean bone density of each vertebral body. Screw loosening or dislocation was determined in CT scans postoperatively using the standard radiological criteria. Forty-five of 365 patients (12.3 %; 24 male, 21 female) suffered postoperative screw loosening (62 of 2038 screws) over a mean follow-up time of 50.8 months. Revision surgeries were necessary in 23 patients (6.3 %). The correlation between decreasing mean CT attenuation in Hounsfield Units (HU) and increasing patient age was significant (p < 0.001). Mean bone density was 116.3 (SD 53.5) HU in cases with screw loosening and 132.7 (SD 41.3) HU in cases in which screws remained fixed. The difference was statistically significant (p = 0.003). The determination of bone density with preoperative CT scanning can predict the risk of screw loosening and inform the decision to use cement augmentation to reduce the incidence of screw loosening.
Control of surface topography in biomimetic calcium phosphate coatings.
Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S
2012-02-28
The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society
Zhang, Wenjie; Li, Zihui; Huang, Qingfeng; Xu, Ling; Li, Jinhua; Jin, Yuqin; Wang, Guifang; Liu, Xuanyong; Jiang, Xinquan
2013-01-01
Various methods have been used to modify titanium implant surfaces with the aim of achieving better osseointegration. In this study, we fabricated a clustered nanorod structure on an acid-etched, microstructured titanium plate surface using hydrogen peroxide. We also evaluated biofunctionalization of the hybrid micro/nanorod topography on rat bone marrow mesenchymal stem cells. Scanning electron microscopy and x-ray diffraction were used to investigate the surface topography and phase composition of the modified titanium plate. Rat bone marrow mesenchymal stem cells were cultured and seeded on the plate. The adhesion ability of the cells was then assayed by cell counting at one, 4, and 24 hours after cell seeding, and expression of adhesion-related protein integrin β1 was detected by immunofluorescence. In addition, a polymerase chain reaction assay, alkaline phosphatase and Alizarin Red S staining assays, and osteopontin and osteocalcin immunofluorescence analyses were used to evaluate the osteogenic differentiation behavior of the cells. The hybrid micro/nanoscale texture formed on the titanium surface enhanced the initial adhesion activity of the rat bone marrow mesenchymal stem cells. Importantly, the hierarchical structure promoted osteogenic differentiation of these cells. This study suggests that a hybrid micro/nanorod topography on a titanium surface fabricated by treatment with hydrogen peroxide followed by acid etching might facilitate osseointegration of a titanium implant in vivo.
Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S
NASA Astrophysics Data System (ADS)
Ibsen, Casper Jon Steenberg; Birkedal, Henrik
2010-11-01
The formation of nanocrystals in biomineralization such as in bone occurs under the influence of organic molecules. Prompted by this fact, the effect of alizarin red S, a dye used in in vivo bone labeling methods, on bone-like carbonated apatite nanocrystal formation was investigated as a function of alizarin red S additive concentration. The obtained nanoparticles were investigated by powder X-ray diffraction (XRD), FTIR as well thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) while the kinetics of nanoparticle formation was investigated by in situ pH and synchrotron XRD measurements. Increasing alizarin red S concentration lead to amorphous particles over a threshold concentration and to smaller crystallites in a dose-dependent fashion. Alizarin red S induced a macroscopic lattice strain that scaled linearly with the alizarin red S concentration; this effect is reminiscent of that seen in biogenic calcium carbonates. TGA showed that the amorphous particles contained significantly more water than the crystalline samples and the DSC data showed that crystallization occurs after loss of most of the included organic material. The in situ studies showed that the formation of apatite goes via the very rapid formation of an amorphous precursor that after a certain nucleation time crystallizes into apatite. This nucleation time increased exponentially with alizarin red S concentration showing that this additive strongly stabilizes the amorphous precursor phase.
Lombardi, Giovanni; Barbaro, Mosè; Locatelli, Massimo; Banfi, Giuseppe
2017-06-01
The endocrine function of bone is now a recognized feature of this tissue. Bone-derived hormones that modulate whole-body homeostasis, are being discovered as for the effects on bone of novel and classic hormones produced by other tissues become known. Often, however, the data regarding these last generation bone-derived or bone-targeting hormones do not give about a clear picture of their physiological roles or concentration ranges. A certain degree of uncertainty could stem from differences in the pre-analytical management of biological samples. The pre-analytical phase comprises a series of decisions and actions (i.e., choice of sample matrix, methods of collection, transportation, treatment and storage) preceding analysis. Errors arising in this phase will inevitably be carried over to the analytical phase where they can reduce the measurement accuracy, ultimately, leading discrepant results. While the pre-analytical phase is all important, in routine laboratory medicine, it is often not given due consideration in research and clinical trials. This is particularly true for novel molecules, such as the hormones regulating the endocrine function of bone. In this review we discuss the importance of the pre-analytical variables affecting the measurement of last generation bone-associated hormones and describe their, often debated and rarely clear physiological roles.
NASA Technical Reports Server (NTRS)
Cameron, J. R.; Mazess, R. B.; Wilson, C. R.
1973-01-01
A device has been constructed and tested which provides immediate readout of bone mineral content and bone width from absorptiometric scans with low energy radionuclides. The basis of this analog system is a logarithmic converter-integrator coupled with a precision linear ratemeter. The system provided accurate and reliable results on standards and ashed bone sections. Clinical measurements were made on about 100 patients with the direct readout system, and these were highly correlated with the results from digital scan data on the same patients. The direct readout system has been used successfully in field studies and surveys as well as for clinical observations.
Nurse exposure doses resulted from bone scintigraphy patient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tunçman, Duygu, E-mail: duygutuncman@gmail.com; Demir, Bayram; Kovan, Bilal
Bone scintigraphy is used for displaying the radiologic undiagnosed bone lesions in nuclear medicine. It’s general indications are researching bone metastases, detection of radiographically occult fractures, staging and follow-up in primary bone tumors, diagnosis of paget’s disease, investigation of loosening and infection in orthopedic implants. It is applied with using {sup 99m}Tc labeled radiopharmaceuticals (e.g {sup 99m} Tc MDP,{sup 99m}Tc HEDP and {sup 99m}Tc HMDP). 20 -25 mCi IV radiotracer was injected into vein and radiotracer emits gamma radiation. Patient waits in isolated room for about 3 hours then a gamma camera scans radiation area and creates an image. Whenmore » some patient’s situation is not good, patients are hospitalized until the scanning because of patients’ close contact care need. In this study, measurements were taken from ten patients using Geiger Muller counter. After these measurements, we calculated nurse’s exposure radiations from patient’s routine treatment, examination and emergency station.« less
Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad
2011-01-01
Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.
Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method
NASA Astrophysics Data System (ADS)
Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.
2018-01-01
Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.
Hisatomi, Toshio; Sonoda, Koh‐hei; Ishikawa, Fumihiko; Qiao, Hong; Nakamura, Takahiro; Fukata, Mitsuhiro; Nakazawa, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi‐Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W
2007-01-01
Aims To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Methods Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild‐type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. Results GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. Conclusion We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU. PMID:17035278
Early diagenesis and recrystallization of bone
NASA Astrophysics Data System (ADS)
Keenan, Sarah W.; Engel, Annette Summers
2017-01-01
One of the most challenging problems in paleobiology is determining how bone transforms from a living tissue into a fossil. The geologic record is replete with vertebrate fossils preserved from a range of depositional environments, including wetland systems. However, thermodynamic models suggest that bone (modeled as hydroxylapatite) is generally unstable in a range of varying geochemical conditions and should readily dissolve if it does not alter to a more thermodynamically stable phase, such as a fluorine-enriched apatite. Here, we assess diagenesis of alligator bone from fleshed, articulated skeletons buried in wetland soils and from de-fleshed bones in experimental mesocosms with and without microbial colonization. When microbial colonization of bone was inhibited, bioapatite recrystallization to a more stable apatite phase occurred after one month of burial. Ca-Fe-phosphate phases in bone developed after several months to years due to ion substitutions from the protonation of the hydroxyl ion. These rapid changes demonstrate a continuum of structural and bonding transformations to bone that have not been observed previously. When bones were directly in contact with sediment and microbial cells, rapid bioerosion and compositional alteration occurred after one week, but slowed after one month because biofilms reduced exposed surfaces and subsequent bioapatite lattice substitutions. Microbial contributions are likely essential in forming stable apatite phases during early diagenesis and for enabling bone preservation and fossilization.
NASA Technical Reports Server (NTRS)
Spector, E.; LeBlanc, A.; Shackelford, L.
1995-01-01
This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between PB scans and either of the EPB or EA scans. Differences were as large as 20%-25% for certain regional fat and BMD measurements. Additional work may be needed to examine the relative accuracy of the scan mode/software combinations and to identify reasons for the differences in soft tissue precision with the array whole-body scan mode.
T1-201 chloride scintigraphy for bone tumors and soft part sarcomas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terui, S.; Oyamada, H.; Nishikawa, K.
1984-01-01
The author investigated T1-201 chloride as a tumor scanning agent of both tumors and soft part sarcomas. Six bone tumors (2 with Ewing sarcoma, 3 with osteosarcoma and 1 with giant cell tumor) and 3 soft part sarcoma (1 with liposarcoma and 2 with malignant fibrous histiocytoma (MFH)) were examined. All but one MFH were untreated primary cases. The diagnosis was determined from biopsy specimen. One patient with Ewing sarcoma had bone metastases. All cases were subsequently received chemotherpeutic agents. Surgery or local irradiation were also used in treatment. T1-201 scintigraphy were performed with intravenous administration of 2 mCi ofmore » T1-201 chloride before initiation of therapy. In addition, follow-up examinations were done in 4 patients (2 with Ewing sarcoma and 2 with osteosarcoma) to study the effect of chemotherapy on T1-201 uptake by the tumor. Tc-99m bone scans were available for comparison in 6 tumor. Ga-67 citrate scans were also examined for the 3 soft part sarcomas. The untreated tumors even in the metastatic lesions of Ewing sarcoma were distinctly visualized with T1-201 in all cases. The distribution of T1-201 in the tumors was sometimes different from that of Tc-99m and similar to that of Ga-67. Of 3 out of the 4 follow-up patients, the post-therapy scan showed reduction in T1-201 uptake more markedly than Tc-99m uptake during effective chemotherapy. The other one patient had not responded to the treatment so that the scan showed no changes in T1-201 uptake. These findings indicate that the tumor imaging with T1-201 is useful in the diagnosis of these malignant tumors and may be of value in assessing the response of bone tumors to chemotherapy.« less
Farber, Joshua M; Totterman, Saara M S; Martinez-Torteya, Antonio; Tamez-Peña, Jose G
2016-02-01
Subchondral bone (SCB) undergoes changes in the shape of the articulating bone surfaces and is currently recognized as a key target in osteoarthritis (OA) treatment. The aim of this study was to present an automated system that determines the curvature of the SCB regions of the knee and to evaluate its cross-sectional and longitudinal scan-rescan precision Six subjects with OA and six control subjects were selected from the Osteoarthritis Initiative (OAI) pilot study database. As per OAI protocol, these subjects underwent 3T MRI at baseline and every twelve months thereafter, including a 3D DESS WE sequence. We analyzed the baseline and twenty-four month images. Each subject was scanned twice at these visits, thus generating scan-rescan information. Images were segmented with an automated multi-atlas framework platform and then 3D renderings of the bone structure were created from the segmentations. Curvature maps were extracted from the 3D renderings and morphed into a reference atlas to determine precision, to generate population statistics, and to visualize cross-sectional and longitudinal curvature changes. The baseline scan-rescan root mean square error values ranged from 0.006mm(-1) to 0.013mm(-1), and from 0.007mm(-1) to 0.018mm(-1) for the SCB of the femur and the tibia, respectively. The standardized response of the mean of the longitudinal changes in curvature in these regions ranged from -0.09 to 0.02 and from -0.016 to 0.015, respectively. The fully automated system produces accurate and precise curvature maps of femoral and tibial SCB, and will provide a valuable tool for the analysis of the curvature changes of articulating bone surfaces during the course of knee OA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ir'ianov, Iu M; Ir'ianova, T Iu
2012-01-01
In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.
What Are the Treatments for Other Symptoms of Menopause?
... vaginal dryness Treatment of sleep problems Treatment for Osteoporosis and Bone Loss Related to Menopause Because bone ... X-ray absorptiometry (DEXA) scan . If you have osteoporosis or are at risk for it, your health ...
Lancelot, Eric
2016-11-01
Gadolinium-based contrast agents (GBCAs) have been used for years for magnetic resonance imaging examinations. Because of their rapid blood clearance, they were considered as very safe products until some of them were shown to induce nephrogenic systemic fibrosis in patients with renal failure and hypersignals on T1-weighted unenhanced brain scans of patients with normal renal function. To date, these adverse effects have been related almost exclusively to the use of low-stability linear agents, which are more prone to release free gadolinium. The aim of the present meta-analysis was to ascertain the existence of a deep compartment for gadolinium storage in the body and to assess whether all the GBCAs present the same toxicokinetic profile. Applying a systematic literature search methodology, all clinical and preclinical studies reporting time-dependent plasma concentrations and renal excretion data of gadolinium were identified and analyzed. Since the individual data were not available, the analysis focused on the average values per groups of subjects or animals, which had received a given GBCA at a given dose. The rate constants of the distribution phase (α), rapid elimination phase (β), and residual excretion phase (γ) of gadolinium were determined in each group from the plasma concentration (Cp) time curves and the relative urinary excretion rate (rER) time curves, taking the 2-hour time point as a reference. Moreover, as bone may represent a reservoir for long-term gadolinium accumulation and slow release into the blood stream, the time curves of the relative concentration in the bone (rCB) of Gd-labeled GBCAs in mice or rats were analyzed taking day 1 concentrations as a reference. The ratio of gadolinium concentrations in the bone marrow (CBM) as compared with the bone (CB) was also calculated. The relative urinary excretion rate (rER) plots revealed a prolonged residual excretion phase of gadolinium in healthy volunteers, consistent with the existence of a deep compartment of distribution for the GBCAs. The rate constant γ of gadoterate meglumine (0.107 hour) is 5 times higher than that of the linear agents (0.020 ± 0.008 hour), indicating a much faster blood clearance for the macrocyclic GBCA. Similar results were obtained in the preclinical studies. A strong correlation was shown between the γ values of the different products and their respective thermodynamic stability constants (Ktherm). Greater clearance rates of Gd from murine bone were also found after gadoterate meglumine or gadoteridol injection (0.131-0.184 day) than after administration of the linear agents (0.004-0.067 day). The concentrations of Gd in the bone marrow (CBM) from animals exposed to either gadoterate meglumine or gadodiamide are higher than those in the bone (CB) for at least 24 hours. Moreover, the ratio of concentrations (CBM/CB) at 4 hours is significantly lower with the former agent than the latter (1.9 vs 6.5, respectively). Using a nonconventional pharmacokinetic approach, we showed that gadoterate meglumine undergoes a much faster residual excretion from the body than the linear GBCAs, a process that seems related to the thermodynamic stability of the different chelates. Gadolinium dissociation occurs in vivo for some linear chelates, a mechanism that may explain their long-term retention and slow release from bone. Potential consequences in terms of bone toxicity warrant further investigations.
An alternative approach to account for patient organ doses from imaging guidance procedures.
Nelson, Alan P; Ding, George X
2014-07-01
To investigate the feasibility of an alternative method of accounting for additional organ doses resulting from image guidance procedures during patient treatment planning through tabulated values based on scan protocol and scan site. Patient-specific imaging dose to 30 patients resulting from Varian OBI kV-CBCT scans using the Standard Head (17 patients), Low-dose Thorax (8 patients), and Pelvic (5 patients) scan protocols were retrospectively calculated using Monte Carlo methods. Dose dependence on scan location and patient geometry was explored. Patient organ doses were analyzed by using dose-volume histograms and expressed by the mean, minimum dose delivered to 50% of the organ volume, D50. The reported doses are dose-to-medium instead of dose-to-water. The organ doses from all patient-specific calculations show predictable and limited ranges across patients. For brain isocenters using Standard Head Scans: Bone: 0.7-1.1 cGy, Brain: 0.2-0.3 cGy, Brainstem: 0.2-0.3 cGy, Skin: 0.3-0.4 cGy, Eye: 0.03-0.3 cGy. For head and neck patients using the Standard Head Scan: Bone: 0.3-0.6 cGy, Parotids: 0.3-0.4 cGy, Spinal Cord: 0.15-0.25 cGy, Thyroid: 0.1-0.25 cGy, Skin: 0.2-0.3 cGy, Trachea-Esophagus: 0.1-0.2 cGy. For chest using Thorax Scans: Bone: 1.1-1.8 cGy, Soft tissue organs (Bowel, Lung, Heart, Kidney, Esophagus, and Spinal Cord): 0.3-0.6 cGy. For abdominal site using Pelvic Scans: Bone: 3.2-4.2 cGy. Soft tissue organs (Bladder, Bowel, Rectum, Prostate, and Skin) D50s fell between 1.2 and 2.2 cGy. Femoral Heads: 2.5-3.4 cGy. It is adequate to estimate and account for organ dose by using tabulated values based on scan procedure and site because organ doses from imaging procedures are only modestly dependent upon scan location and body size. Considering the dose variation and magnitude of dose from each scan protocol in comparison to therapeutic doses, this approach provides a simple alternative to account for additional imaging guidance doses during patient treatment planning. Clinicians can use these tabulated values to make informed decisions in selecting the appropriate imaging procedures and imaging frequency during radiotherapy treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Axillary lymph node uptake of technetium-99m-MDP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ongseng, F.; Goldfarb, C.R.; Finestone, H.
We sought to determine the frequency and significance of axillary lymph node visualization on bone scans performed with diphosphonates. Consecutive {sup 99m}Tc-methylene diphosphonate ({sup 99m}Tc-MDP) bone scans (2435) were inspected for axillary soft-tissue uptake. In positive cases, the results of physical examination, correlative imaging studies and serial bone scans were recorded, as was the site of venipuncture. Forty-eight studies (2%) showed axillary uptake ipsilateral to the injection site. Extravasation of tracer, documented by focal activity near the injection site, was present in every case. There was no association with axillary adenopathy, mass, induration of radiographically visible calcification. On some images,more » foci adjacent to the axilla were superimposed on the rib, scapula, or humerus. The bone-to-background ratio was frequently reduced; repeat imaging after 1-2 hr usually improved osseous detail. Ipsilateral axillary lymph node visualization due to extravasation of {sup 99m}Tc-MDP is frequently associated with additional foci superimposed on osseous structures simulating pathology. Delayed skeletal uptake is common in such cases and necessitates a greater time interval between injection and imaging. 7 refs., 3 figs.« less
Friedlander, A H; Chang, T I; Aghazadehsanai, N; Berenji, G R; Harada, N D; Garrett, N R
2013-01-01
Femoral neck fractures in older females resulting from decreased bone mineral density (BMD; osteopenia) are associated with increased morbidity and mortality. Bone mineralization inhibition is probably controlled by proteins which also foster vascular calcification. Therefore, we evaluated the relationship between calcified carotid artery plaque (CCAP) on panoramic images and BMD on dual energy X-ray absorptiometry (DXA) bone scans. Images and hospital records identified by dentists defined two study groups (20 white females and 24 black females) having CCAP and an incidentally obtained bone scan. Ethnically matched (age±7 years, body mass index ±3 units) control groups with panoramic images devoid of CCAP and accompanying DXA scan were likewise constituted. A physician determined the BMD on the DXA. Females with CCAP had significantly (p = 0.03) poorer BMD at the femoral neck than those without CCAP. Although mean femoral neck BMD was significantly lower (p = 0.009) for white than for black females, there was no significant interaction between race and CCAP (p = 0.80). We observed a significant inverse association between the CCAP on panoramic images and femoral neck BMD in post-menopausal white females.
2004-08-10
ISS009-E-17439 (10 August 2004) --- Astronaut Edward M. (Mike) Fincke (foreground), Expedition 9 NASA ISS science officer and flight engineer, performs an ultrasound bone scan on cosmonaut Gennady I. Padalka, commander representing Russia's Federal Space Agency. The two are using the Advanced Diagnostic Ultrasound in Micro-G (ADUM) in the Destiny laboratory of the International Space Station (ISS). The ADUM keyboard, flat screen display and front control panel are visible at right.
Assessment of alveolar bone marrow fat content using 15 T MRI.
Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L
2018-03-01
Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.
Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiebzak, G.M.; Smith, R.; Howe, J.C.
1988-06-01
The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the corticalmore » area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia.« less
Haptic computer-assisted patient-specific preoperative planning for orthopedic fractures surgery.
Kovler, I; Joskowicz, L; Weil, Y A; Khoury, A; Kronman, A; Mosheiff, R; Liebergall, M; Salavarrieta, J
2015-10-01
The aim of orthopedic trauma surgery is to restore the anatomy and function of displaced bone fragments to support osteosynthesis. For complex cases, including pelvic bone and multi-fragment femoral neck and distal radius fractures, preoperative planning with a CT scan is indicated. The planning consists of (1) fracture reduction-determining the locations and anatomical sites of origin of the fractured bone fragments and (2) fracture fixation-selecting and placing fixation screws and plates. The current bone fragment manipulation, hardware selection, and positioning processes based on 2D slices and a computer mouse are time-consuming and require a technician. We present a novel 3D haptic-based system for patient-specific preoperative planning of orthopedic fracture surgery based on CT scans. The system provides the surgeon with an interactive, intuitive, and comprehensive, planning tool that supports fracture reduction and fixation. Its unique features include: (1) two-hand haptic manipulation of 3D bone fragments and fixation hardware models; (2) 3D stereoscopic visualization and multiple viewing modes; (3) ligaments and pivot motion constraints to facilitate fracture reduction; (4) semiautomatic and automatic fracture reduction modes; and (5) interactive custom fixation plate creation to fit the bone morphology. We evaluate our system with two experimental studies: (1) accuracy and repeatability of manual fracture reduction and (2) accuracy of our automatic virtual bone fracture reduction method. The surgeons achieved a mean accuracy of less than 1 mm for the manual reduction and 1.8 mm (std [Formula: see text] 1.1 mm) for the automatic reduction. 3D haptic-based patient-specific preoperative planning of orthopedic fracture surgery from CT scans is useful and accurate and may have significant advantages for evaluating and planning complex fractures surgery.
Bone Ablation at 2.94 mm Using the Free-Electron Laser and Er:YAG Laser
NASA Astrophysics Data System (ADS)
Ivanov, Borislav; Hakimian, Arman; Peavy, G. M.; Haglund, Richard
2002-03-01
Bone Ablation at 2.94 microns Using the Free-Electron Laser and Er:YAG Laser in Perfluorocarbon Compounds B. Ivanov^1, A. M. Hakimian^1, G. M. Peavy^2, R. F. Haglund, Jr.1 1Department of Physics and Astronomy, W. M. Keck Foundation Free-Electron Laser Center, Vanderbilt University, Nashville, TN 37235 2Beckman Laser Institute and Medical Clinic, College of Medicine, University of California, Irvine, CA 92612 We report studies on the efficiency of mid-IR laser ablation of cow cortical bone using the Vanderbilt free-electron laser (FEL), when irrigating the ablation zone with an inert and biocompatible perfluorocarbon compounds (PFC). At 2.94 microns, the bone matrix (mainly by water) absorbs the radiation while the PFCs transmit this wavelength, dissipate heat and acoustical stress, and prevent carbonization of the bone sample. The ablation rate, as a function of laser fluence, scanning speed and the type of PFC, was investigated. The laser fluence was estimated to be 5 J/cm^2 - 100 J/cm^2 with a laser focal spot diameter of 160 microns 500 microns and a scanning speed of 40 microns/s 2960 microns/s. The ablation rate was estimated from scanning electron microscopy to be 0.5 mm/s 2.4 mm/s. Comparisons of ablation rates with the FEL and a Er:YAG laser at 2.94 microns are being evaluated.
Influence of bone density on the cement fixation of femoral hip resurfacing components.
Bitsch, Rudi G; Jäger, Sebastian; Lürssen, Marcus; Loidolt, Travis; Schmalzried, Thomas P; Clarius, Michael
2010-08-01
In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well-established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty-one fresh frozen femora were prepared for resurfacing using the original instruments. ASR resurfacing prostheses were implanted after dual-energy X-ray densitometer scans. Real-time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 +/- 0.13 g/cm(2), t-score was -0.7 +/- 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 +/- 9.1 microm/Nm. The regression line between bone density and micro motion was equal to -56.7 x bone density + 63.8, R = 0.815 (p < 0.001). Bone density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Bagatell, Rochelle; Cohn, Susan L.; Pearson, Andrew D.; Villablanca, Judith G.; Berthold, Frank; Burchill, Susan; Boubaker, Ariane; McHugh, Kieran; Nuchtern, Jed G.; London, Wendy B.; Seibel, Nita L.; Lindwasser, O. Wolf; Maris, John M.; Brock, Penelope; Schleiermacher, Gudrun; Ladenstein, Ruth; Matthay, Katherine K.; Valteau-Couanet, Dominique
2017-01-01
Purpose More than two decades ago, an international working group established the International Neuroblastoma Response Criteria (INRC) to assess treatment response in children with neuroblastoma. However, this system requires modification to incorporate modern imaging techniques and new methods for quantifying bone marrow disease that were not previously widely available. The National Cancer Institute sponsored a clinical trials planning meeting in 2012 to update and refine response criteria for patients with neuroblastoma. Methods Multidisciplinary investigators from 13 countries reviewed data from published trials performed through cooperative groups, consortia, and single institutions. Data from both prospective and retrospective trials were used to refine the INRC. Monthly international conference calls were held from 2011 to 2015, and consensus was reached through review by working group leadership and the National Cancer Institute Clinical Trials Planning Meeting leadership council. Results Overall response in the revised INRC will integrate tumor response in the primary tumor, soft tissue and bone metastases, and bone marrow. Primary and metastatic soft tissue sites will be assessed using Response Evaluation Criteria in Solid Tumors (RECIST) and iodine-123 (123I) –metaiodobenzylguanidine (MIBG) scans or [18F]fluorodeoxyglucose–positron emission tomography scans if the tumor is MIBG nonavid. 123I-MIBG scans, or [18F]fluorodeoxyglucose–positron emission tomography scans for MIBG-nonavid disease, replace technetium-99m diphosphonate bone scintigraphy for osteomedullary metastasis assessment. Bone marrow will be assessed by histology or immunohistochemistry and cytology or immunocytology. Bone marrow with ≤ 5% tumor involvement will be classified as minimal disease. Urinary catecholamine levels will not be included in response assessment. Overall response will be defined as complete response, partial response, minor response, stable disease, or progressive disease. Conclusion These revised criteria will provide a uniform assessment of disease response, improve the interpretability of clinical trial results, and facilitate collaborative trial designs. PMID:28471719
Koczka, Charles Philip; Abramowitz, Meira; Goodman, Adam J
2012-07-01
Bone demineralization has been increasingly recognized as a disease process concurrent with inflammatory bowel disease (IBD). Racial variation in osteoporosis in IBD patients has been poorly described. We sought to identify the risk factors for demineralization in Afro-Caribbeans (AC) with IBD. A retrospective chart review was performed from a 10-year prospectively collected database of IBD patients seen at an urban medical center. Data on dual-energy X-ray absorptiometry (DXA) scanning, use of steroids, bisphosphonates, calcium, and vitamin D, as well as blood chemistries were collected. One hundred and fifteen charts of AC IBD patients were reviewed, of which 24 patients had undergone DXA scanning. Fourteen patients with a T-score of less than -1 were compared with 10 patients with DXA scores of more than -1. Two patients with T-scores of less than -1 had fractures, whereas none were observed in the comparison group (P=0.5). The mean BMI for those with T-scores of less than -1 was 23.9 kg/m compared with 31.5 kg/m in those with T-scores of more than -1 (P=0.0034). Screening for bone demineralization in ethnic populations with IBD is lacking as only 21% of AC IBD patients seen in our institution had undergone a DXA scan. Of those who were scanned, more than half of the patients had T-scores suggestive of bone demineralization. Although those who were obese did not have demineralization, our sample sizes were small and the results from this study should prompt further investigation to determine the prevalence and significance of bone demineralization in minority populations with IBD.
De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C
2016-07-01
Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Anthropometry of Arabian nose using computed tomography scanning.
Alharethy, Sami; Al-Quniabut, Ibrahim; Jang, Yong Ju
2017-01-01
The nose plays a critical role in determining the external appearance of an individual. We studied the craniofacial anthropometrics by CT scanning since previous studies in the field were conducted in Saudi populations using photometric analysis. Obtain objective and quantitative data that can help surgeons plan cosmetic procedures for the nose. A cross-sectional analytical study. Department of Otorhinolaryngology, Head and Neck Surgery, King Abdulaziz University Hospital, King Saud University, Riyadh, Saudi Arabia from February 2015 to December 2015. Facial CT scans were performed on native Saudis who underwent CT of the paranasal sinuses. Three anthropometric parameters: the nasofrontal angle, the pyramidal angle, and the linear distance between the nasion and the tip of the nasal bone. In 160 native Saudis (86 males and 74 females) who underwent CT, the mean nasofrontal angle was 125.3° in males and 135.6° in females. The mean linear distance between the nasion and the tip of the nasal bone was 23.0 mm for males and 20.9 mm for females. The mean nasal pyramidal angle was 110.8° in males and 111.9° for females at the level of the nasal root, 105.6° in males and 104.8° in females at the mid-level of the nasal bone, and 116.8° males and 107.9° in females at the level of the tip of the nasal bone. Nasal bone lengths and angles can be obtained accurately from CT scans. These angles differ in different ethnic groups. The sample represents native Saudis but not a cross section of the Saudi population. The relatively small sample size is a limitation of the study, but we consider these to be initial findings.
In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial.
Nandi, Samit K; Kundu, Biswanath; Mahato, Arnab; Thakur, Narsinh L; Joardar, Siddhartha N; Mandal, Biman B
2015-02-01
This investigation was carried out to identify and characterize marine sponges as potential bioscaffolds in bone tissue engineering. The marine sponge (Biemna fortis) samples were collected from the rocky intertidal region of Anjuna, Goa, India, freeze-dried and converted to pure cristobalite at low temperature. After thorough evaluation of sponge samples by DTA-TGA thermography, XRD, FTIR, SEM and cell cytotoxicity by MTT assay, bare sponge scaffolds were fabricated by firing at 1190 °C. These scaffolds were loaded with growth factors (IGF-1 and BMP-2), checked for quasi-dynamic in vitro release kinetics and finally implanted into femoral bone defects in rabbits for up to 90 days, by keeping an empty defect as a control. The in vivo bone healing process was evaluated and compared using chronological radiology, histology, SEM and fluorochrome labeling studies. SEM revealed that the sponge skeleton possesses a collagenous fibrous network consisting of highly internetworked porosity in the size range of 10-220 μm. XRD and FTIR analysis showed a cristobalite phase with acicular crystals of high aspect ratio, and crystallinity was found to increase from 725 to 1190 °C. MTT assay demonstrated the non-cytotoxicity of the samples. A combination of burst and sustained release profile was noticed for both the growth factors and about 74.3% and 83% total release at day 28. In the radiological, histological, scanning electron microscopy and fluorochrome labeling analysis, the IGF-1 impregnated converted sponge scaffold promoted excellent osseous tissue formation followed by the BMP-2 loaded and bare one. These observations suggest that the marine sponge alone and in combination with growth factors is a promising biomaterial for bone repair and bone augmentation.
Zhou, Wei; Zhao, Chun-Hui; Mei, Ling-Xuan
2010-06-01
To evaluate the effect of the osteoprotegerin (OPG) gene-modified autologous bone marrow stromal cells (BMSCs) on regeneration of periodontal defects, and to provide new experimental evidence to explore the gene therapy for periodontal disease. pSecTag2/B-opg was transduced into BMSCs by lipofectamine 2000. The expression of OPG protein in the BMSCs was detected by immunocytochemistry and Western blot. Inverted phase contrast microscope and scanning electron microscopy (SEM) were used to observe the morphology and proliferation of the BMSCs(OPG) on on the surface of the poly lactic-co-glycolic (PLGA). Horizontal alveolar bone defect (4 mmx4 mmx 3 mm) were surgically created in the buccal aspect of the mandibular premolar, and were randomly assigned to receive BMSCs(OPG)-PLGA (cells/material/OPG), BMSCs-PLGA (cells/material), PLGA (material), or root planning only (blank control). The animals were euthanized at 6 weeks post surgery for histological analysis. The height of new alveolar bone and cementum and the formation of new connective tissue were analyzed and compared. All data were statistically analyzed using the q test. The BMSCs transfected by human OPG gene can highly express OPG protein. SEM observations demonstrated that BMSCs(OPG) were able to proliferate and massively colonize on the scaffolds structure. After 6 weeks, the height of new alveolar bone and cementum and the formation of new connective tissue were significantly greater in the experimental group than in the control groups (P < 0.05). BMSCs(OPG)-PLGA can significantly promote the regeneration of dog's periodontal bone defects. Gene therapy utilizing OPG may offer the potential for periodontal tissue engineering applications.
Bone pulsating metastasis due to renal cell carcinoma.
Cınar, Murat; Derincek, Alihan; Karan, Belgin; Akpınar, Sercan; Tuncay, Cengiz
2010-11-01
Pulsation on the bone cortex surface is a rare condition. Pulsative palpation of the superficial-located bone tumors can be misperceived as an aneurysm. Fifty-eight-year-old man is presented with pulsating bone mass in his proximal tibia. During angiographic examination, hypervascular masses were diagnosed both at right kidney and at right proximal tibia. Renal cell carcinoma was diagnosed after abdominal CT scan. Proximal tibia biopsy was complicated with projectile bleeding.
Evaluation of bone formation in calcium phosphate scaffolds with μCT-method validation using SEM.
Lewin, S; Barba, A; Persson, C; Franch, J; Ginebra, M-P; Öhman-Mägi, C
2017-10-05
There is a plethora of calcium phosphate (CaP) scaffolds used as synthetic substitutes to bone grafts. The scaffold performance is often evaluated from the quantity of bone formed within or in direct contact with the scaffold. Micro-computed tomography (μCT) allows three-dimensional evaluation of bone formation inside scaffolds. However, the almost identical x-ray attenuation of CaP and bone obtrude the separation of these phases in μCT images. Commonly, segmentation of bone in μCT images is based on gray scale intensity, with manually determined global thresholds. However, image analysis methods, and methods for manual thresholding in particular, lack standardization and may consequently suffer from subjectivity. The aim of the present study was to provide a methodological framework for addressing these issues. Bone formation in two types of CaP scaffold architectures (foamed and robocast), obtained from a larger animal study (a 12 week canine animal model) was evaluated by μCT. In addition, cross-sectional scanning electron microscopy (SEM) images were acquired as references to determine thresholds and to validate the result. μCT datasets were registered to the corresponding SEM reference. Global thresholds were then determined by quantitatively correlating the different area fractions in the μCT image, towards the area fractions in the corresponding SEM image. For comparison, area fractions were also quantified using global thresholds determined manually by two different approaches. In the validation the manually determined thresholds resulted in large average errors in area fraction (up to 17%), whereas for the evaluation using SEM references, the errors were estimated to be less than 3%. Furthermore, it was found that basing the thresholds on one single SEM reference gave lower errors than determining them manually. This study provides an objective, robust and less error prone method to determine global thresholds for the evaluation of bone formation in CaP scaffolds.
Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding
NASA Astrophysics Data System (ADS)
Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang
2016-05-01
There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.
The health care provider will perform a physical exam. Tests include: Bone marrow biopsy Chest x-ray CT scan of the chest, abdomen, and pelvis Complete blood count (CBC) Examination of the spinal fluid Lymph node biopsy PET scan
Limited posterolateral surgical approach to the knee for excision of osteoid osteoma.
Minkoff, J; Jaffe, L; Menendez, L
1987-10-01
An 18-year-old man suffered four years of undiagnosed knee pain until a CAT scan revealed an epiphyseal osteoid osteoma of the tibia located subchondrally, just medial to the proximal tibiofibular joint. A nidus in this location is not easily accessible, and its proximity to the joint surface raised concerns about damage to the tibial plateau. To facilitate excision of the tumor, cadaveric dissections were performed to develop a limited posterior approach to the proximal, lateral portion of the tibia. The CAT scan was used to calculate the precise dimensions of the tumor and its relation to the posterior tibial cortex and the proximal tibiofibular joint. With the use of the exposure developed in the laboratory and the calculations derived from the CAT scan, the tumor could be excised by removing a single block of bone 15 mm3. Intraoperative radiographs confirmed the presence of the nidus within the excised block of bone. This case report reaffirms the frequent difficulties and tardiness in diagnosing osteoid osteomas and the need to include these tumors in the differential diagnosis of knee pain and epiphyseal lesions. Before CAT scans were used, the working diagnoses were torn meniscus, juvenile rheumatoid arthritis, and bone hemangiomatosis.
Malignant external otitis: early scintigraphic detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strashun, A.M.; Nejatheim, M.; Goldsmith, S.J.
1984-02-01
Pseudomonas otitis externa in elderly diabetics may extend aggressively to adjacent bone, cranial nerves, meninges, and vessels, leading to a clinical diagnosis of ''malignant'' external otitis. Early diagnosis is necessary for successful treatment. This study compares the findings of initial radiographs, thin-section tomography of temporal bone, CT scans of head and neck, technetium-99m methylene diphosphonate (MDP) and gallium-67 citrate scintigraphy, and single-photon emission computed tomography (SPECT) for detection of temporal bone osteomylitis in ten patients fulfilling the clinical diagnostic criteria of malignant external otitis. Skull radiographs were negative in all of the eight patients studied. Thin-section tomography was positive inmore » one of the seven patients studied using this modality. CT scanning suggested osteomyelitis in three of nine patients. Both Tc-99m and Ga-67 citrate scintigraphy were positive in 10 of 10 patients. These results suggest that technetium and gallium scintigraphy are more sensitive than radiographs and CT scans for early detection of malignant external otitis.« less
Stress reactions involving the pars interarticularis in young athletes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, D.W.; Wiltse, L.L.; Dingeman, R.D.
A stress reaction involving the pars interarticularis of the lumbar spine was confirmed in seven young athletes with a positive technetium pyrophosphate bone scan. No pars defects were detectable on their lumbosacral roentgenograms, which included oblique views. The return to normal levels of radioactive uptake on repeat bone scans correlated closely with their clinical course. If the bony reaction is recognized early, it may heal at a subroentgenographic level and prevent the development of lumbar spondylolysis. These early lesions usually show unilateral increased uptake at one lumbar level on the bone scan and, initially, the athlete localizes the pain tomore » the corresponding unilateral lumbar paraspinous area. The ''one-legged hyperextension test'' is positive on the ipsilateral side and aggravates the pain. Treatment consists of avoiding the aggravating activities and resting. The average time for return to pain-free competition was 7.3 months. These developing defects may be the source of considerable prolonged disability in the young athlete, particularly if undiagnosed and untreated.« less
Choukroun, Joseph; Simonpieri, Alain; Del Corso, Marco; Mazor, Ziv; Sammartino, Gilberto; Dohan Ehrenfest, David M
2008-09-01
Analysis of tomodensitometric controls following sinus grafts clearly demonstrates a quite systematic lack of homogeneity. Sinus contamination by anaerobic bacteria seems almost unavoidable during bone graft surgery, and this problem may jeopardize the healing process. The aim of this study was to characterize in a systematic way the nonhomogeneities observed at 1, 2, or 3 months postsurgery within allogenous sinus grafts, and to assess the possible influence of a 0.5% sterile solution of metronidazole incorporated in the sinus bone graft. This clinical study was conducted on 72 patients treated with single or bilateral sinus-lifts: 94 sinus elevations performed with freeze-dried bone allograft (Phoenix, TBF, Mions, France), with (test group) or without (control group) metronidazole. In the test group, each bone graft was hydrated with 2 mL of a 0.5% metronidazole solution, i.e., only 10 mg of metronidazole. All the patients went through a first presurgical computerized tomography (CT)-scan followed by a second scan performed at 1, 2, or 3 months postsurgery (which was used as the preimplant reference scan). For 11 patients, 2 postsurgical CT-scans were performed respectively at 10 days and 2 months. Using an arbitrary gray scale (Arbitrary Densitometric Unit) which functions according to the Hounsfield unit principle, the degree of radiographic homogeneity of the grafts was established. Density scattering provides some information on the homogeneity or nonhomogeneity of the bone graft. The 12 grafts performed without metronidazole show significant nonhomogeneities at 1, 2, or 3 months. Moreover, when a CT-scan is performed during the first postoperative days (at 10 days), the presence of air bubbles in the graft is confirmed. The tomodensitometric aspects of all grafts treated with metronidazole in this series are absolutely identical: they show a high degree of homogeneity. Sixty-three cases (76.8%) are homogeneous, and 19 cases (23.2%) are significantly homogeneous. The time at which the control scan is performed (10 days, 1, 2, or 3 months) does not seem to influence significantly the degree of homogeneity assessed. In the control group, some inflammatory events associated with facial oedema were observed in 25% of the cases. In the test group, no such event was recorded for the 82 sinus-lifts treated with metronidazole. A possible correlation may exist between the occurrence of non homogeneities within the bone grafts and the anaerobic bacterial contamination. The local use of a very small quantity of metronidazole (equivalent to only 1/20 of a common 200 mg oral tablet) could provide more security when performing sinus-lift procedures and an improved quality of the graft. This protocol should not be considered as an antibiotherapy, but only as way to limit the initial contamination of bone graft.
Bone-Inspired Spatially Specific Piezoelectricity Induces Bone Regeneration
Yu, Peng; Ning, Chengyun; Zhang, Yu; Tan, Guoxin; Lin, Zefeng; Liu, Shaoxiang; Wang, Xiaolan; Yang, Haoqi; Li, Kang; Yi, Xin; Zhu, Ye; Mao, Chuanbin
2017-01-01
The extracellular matrix of bone can be pictured as a material made of parallel interspersed domains of fibrous piezoelectric collagenous materials and non-piezoelectric non-collagenous materials. To mimic this feature for enhanced bone regeneration, a material made of two parallel interspersed domains, with higher and lower piezoelectricity, respectively, is constructed to form microscale piezoelectric zones (MPZs). The MPZs are produced using a versatile and effective laser-irradiation technique in which K0.5Na0.5NbO3 (KNN) ceramics are selectively irradiated to achieve microzone phase transitions. The phase structure of the laser-irradiated microzones is changed from a mixture of orthorhombic and tetragonal phases (with higher piezoelectricity) to a tetragonal dominant phase (with lower piezoelectricity). The microzoned piezoelectricity distribution results in spatially specific surface charge distribution, enabling the MPZs to bear bone-like microscale electric cues. Hence, the MPZs induce osteogenic differentiation of stem cells in vitro and bone regeneration in vivo even without being seeded with stem cells. The concept of mimicking the spatially specific piezoelectricity in bone will facilitate future research on the rational design of tissue regenerative materials. PMID:28900517
Bracanovic, Djurdja; Djonic, Danijela; Nikolic, Slobodan; Milovanovic, Petar; Rakocevic, Zoran; Zivkovic, Vladimir; Djuric, Marija
2016-11-01
Although seen frequently during dissections and autopsies, Hyperostosis frontalis interna (HFI) - a morphological pattern of the frontal bone thickening - is often ignored and its nature and development are not yet understood sufficiently. Current macroscopic classification defines four grades/stages of HFI based on the morphological appearance and size of the affected area; however, it is unclear if these stages also depict the successive phases in the HFI development. Here we assessed 3D-microarchitecture of the frontal bone in women with various degrees of HFI expression and in an age- and sex-matched control group, hypothesizing that the bone microarchitecture bears imprints of the pathogenesis of HFI and may clarify the phases of its development. Frontal bone samples were collected during routine autopsies from 20 women with HFI (age: 69.9 ± 11.1 years) and 14 women without HFI (age: 74.1 ± 9.7 years). We classified the HFI samples into four groups, each group demonstrating different macroscopic type or stage of HFI. All samples were scanned by micro-computed tomography to evaluate 3D bone microarchitecture in the following regions of interest: total sample, outer table, diploe and inner table. Our results revealed that, compared to the control group, the women with HFI showed a significantly increased bone volume fraction in the region of diploe, along with significantly thicker and more plate-like shaped trabeculae and reduced trabecular separation and connectivity density. Moreover, the inner table of the frontal bone in women with HFI displayed significantly increased total porosity and mean pore diameter compared to controls. Microstructural reorganization of the frontal bone in women with HFI was also reflected in significantly higher porosity and lower bone volume fraction in the inner vs. outer table due to an increased number of pores larger than 100 μm. The individual comparisons between the control group and different macroscopic stages of HFI revealed significant differences only between the control group and the morphologically most pronounced type of HFI. Our microarchitectural findings demonstrated clear differences between the HFI and the control group in the region of diploe and the inner table. Macroscopic grades of HFI could not be distinguished at the level of bone microarchitecture and their consecutive nature cannot be supported. Rather, our study suggests that only two different types of HFI (moderate and severe HFI) have microstructural justification and should be considered further. It is essential to record HFI systematically in human postmortem subjects to provide more data on the mechanisms of its development. © 2016 Anatomical Society.
Bahk, Yong-Whee; Hwang, Seok-Ha; Lee, U-Young; Chung, Yong-An; Jung, Joo-Young; Jeong, Hyeonseok S
2017-11-01
We prospectively performed gamma correction pinhole bone scan (GCPBS) and histopathologic verification study to make simultaneous morphobiochemical diagnosis of trabecular microfractures (TMF) occurred in the femoral head as a part of femoral neck fracture.Materials consisted of surgical specimens of the femoral head in 6 consecutive patients. The specimens were imaged using Tc-99m hydroxymethylene diphosphonate (HDP) pinhole scan and processed by the gamma correction. After cleansing with 10% formalin solution, injured specimen surface was observed using a surgical microscope to record TMF. Morphological findings shown in the photograph, naive pinhole bone scan, GCPBS, and hematoxylin-eosin (H&E) stain of the specimen were reciprocally correlated for histological verification and the usefulness of suppression and enhancement of Tc-99m HDP uptake was biochemically investigated in TMF and edema and hemorrhage using gamma correction.On the one hand, GCPBS was able to depict the calcifying calluses in TMF with enhanced Tc-99m HDP uptake. They were pinpointed, speckled, round, ovoid, rod-like, geographic, and crushed in shape. The smallest callus measured was 0.23 mm in this series. On the other hand, GCPBS biochemically was able to discern the calluses with enhanced high Tc-99m HDP uptake from the normal and edema dipped and hemorrhage irritated trabeculae with washed out uptake.Morphobiochemically, GCPBS can clearly depict microfractures in the femoral head produced by femoral neck fracture. It discerns the microcalluses with enhanced Tc-99m HDP uptake from the intact and edema dipped and hemorrhage irritated trabeculae with suppressed washed out Tc-99m HDP uptake. Both conventional pinhole bone scan and gamma correction are useful imaging means to specifically diagnose the microcalluses naturally formed in TMF.
Lo, Men-Tzung; Peng, C.K.; Novak, Vera; Schmidt, Eric A.; Kumar, Ajay; Czosnyka, Marek
2009-01-01
Abstract Reliable and noninvasive assessment of cerebral blood flow regulation is a major challenge in acute care monitoring. This study assessed dynamics of flow regulation and its relationship to asymmetry of initial computed tomography (CT) scan using multimodal pressure flow (MMPF) analysis. Data of 27 patients (38 ± 15 years old) with traumatic brain injury (TBI) were analyzed. Patients were selected from bigger cohort according to criteria of having midline shift on initial CT scan and intact skull (no craniotomy or bone flap). The MMPF analysis was used to extract the oscillations in cerebral perfusion pressure (CPP) and blood flow velocity (BFV) signals at frequency of artificial ventilation, and to calculate the instantaneous phase difference between CPP and BFV oscillations. Mean CPP-BFV phase difference was used to quantify pressure and flow relationship. The TBI subjects had smaller mean BP-BFV phase shifts (left, 8.7 ± 9.6; right 10.2 ± 8.3 MCAs, mean ± SD) than values previously obtained in healthy subjects (left, 37.3 ± 7.6 degrees; right, 38.0 ± 8.9 degrees; p < 0.0001), suggesting impaired blood flow regulation after TBI. The difference in phase shift between CPP and BFV in the left and right side was strongly correlated to the midline shift (R = 0.78; p < 0.0001). These findings indicate that the MMPF method allows reliable assessment of alterations in pressure and flow relationship after TBI. Moreover, mean pressure-flow phase shift is sensitive to the displacement of midline of the brain, and may potentially serve as a marker of asymmetry of cerebral autoregulation. PMID:19196074
Meacock, L.; Donaldson, Ana; Isaac, A.; Briody, A.; Ramnarine, R.; Edmonds, M. E.; Elias, D. A.
2017-01-01
There are no accepted methods to grade bone marrow oedema (BMO) and fracture on magnetic resonance imaging (MRI) scans in Charcot osteoarthropathy. The aim was to devise semiquantitative BMO and fracture scores on foot and ankle MRI scans in diabetic patients with active osteoarthropathy and to assess the agreement in using these scores. Three radiologists assessed 45 scans (Siemens Avanto 1.5T, dedicated foot and ankle coil) and scored independently twenty-two bones (proximal phalanges, medial and lateral sesamoids, metatarsals, tarsals, distal tibial plafond, and medial and lateral malleoli) for BMO (0—no oedema, 1—oedema < 50% of bone volume, and 2—oedema > 50% of bone volume) and fracture (0—no fracture, 1—fracture, and 2—collapse/fragmentation). Interobserver agreement and intraobserver agreement were measured using multilevel modelling and intraclass correlation (ICC). The interobserver agreement for the total BMO and fracture scores was very good (ICC = 0.83, 95% confidence intervals (CI) 0.76, 0.91) and good (ICC = 0.62; 95% CI 0.48, 0.76), respectively. The intraobserver agreement for the total BMO and fracture scores was good (ICC = 0.78, 95% CI 0.6, 0.95) and fair to moderate (ICC = 0.44; 95% CI 0.14, 0.74), respectively. The proposed BMO and fracture scores are reliable and can be used to grade the extent of bone damage in the active Charcot foot. PMID:29230422
What Happens to bone health during and after spaceflight?
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Evans, Harlan J.; Spector, Elisabeth R.; Maddocks, Mary J.; Smith, Scott A.; Shackelford, Linda C.; LeBlanc, Adrian D.
2006-01-01
Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balik, Salim; Weiss, Elisabeth; Jan, Nuzhat
2013-06-01
Purpose: To evaluate 2 deformable image registration (DIR) algorithms for the purpose of contour mapping to support image-guided adaptive radiation therapy with 4-dimensional cone-beam CT (4DCBCT). Methods and Materials: One planning 4D fan-beam CT (4DFBCT) and 7 weekly 4DCBCT scans were acquired for 10 locally advanced non-small cell lung cancer patients. The gross tumor volume was delineated by a physician in all 4D images. End-of-inspiration phase planning 4DFBCT was registered to the corresponding phase in weekly 4DCBCT images for day-to-day registrations. For phase-to-phase registration, the end-of-inspiration phase from each 4D image was registered to the end-of-expiration phase. Two DIR algorithms—smallmore » deformation inverse consistent linear elastic (SICLE) and Insight Toolkit diffeomorphic demons (DEMONS)—were evaluated. Physician-delineated contours were compared with the warped contours by using the Dice similarity coefficient (DSC), average symmetric distance, and false-positive and false-negative indices. The DIR results are compared with rigid registration of tumor. Results: For day-to-day registrations, the mean DSC was 0.75 ± 0.09 with SICLE, 0.70 ± 0.12 with DEMONS, 0.66 ± 0.12 with rigid-tumor registration, and 0.60 ± 0.14 with rigid-bone registration. Results were comparable to intraobserver variability calculated from phase-to-phase registrations as well as measured interobserver variation for 1 patient. SICLE and DEMONS, when compared with rigid-bone (4.1 mm) and rigid-tumor (3.6 mm) registration, respectively reduced the average symmetric distance to 2.6 and 3.3 mm. On average, SICLE and DEMONS increased the DSC to 0.80 and 0.79, respectively, compared with rigid-tumor (0.78) registrations for 4DCBCT phase-to-phase registrations. Conclusions: Deformable image registration achieved comparable accuracy to reported interobserver delineation variability and higher accuracy than rigid-tumor registration. Deformable image registration performance varied with the algorithm and the patient.« less
Hydrogel-beta-TCP scaffolds and stem cells for tissue engineering bone.
Weinand, Christian; Pomerantseva, Irina; Neville, Craig M; Gupta, Rajiv; Weinberg, Eli; Madisch, Ijad; Shapiro, Frederic; Abukawa, Harutsugi; Troulis, Maria J; Vacanti, Joseph P
2006-04-01
Trabecular bone is a material of choice for reconstruction after trauma and tumor resection and for correction of congenital defects. Autologous bone grafts are available in limited shapes and sizes; significant donor site morbidity is another major disadvantage to this approach. To overcome these limitations, we used a tissue engineering approach to create bone replacements in vitro, combining bone-marrow-derived differentiated mesenchymal stem cells (MSCs) suspended in hydrogels and 3-dimensionally printed (3DP) porous scaffolds made of beta-tricalcium-phosphate (beta-TCP). The scaffolds provided support for the formation of bone tissue in collagen I, fibrin, alginate, and pluronic F127 hydrogels during culturing in oscillating and rotating dynamic conditions. Histological evaluation including toluidine blue, alkaline phosphatase, and von Kossa staining was done at 1, 2, 4, and 6 weeks. Radiographic evaluation and high-resolution volumetric CT (VCT) scanning, expression of bone-specific genes and biomechanical compression testing were performed at 6 weeks. Both culture conditions resulted in similar bone tissue formation. Histologically collagen I and fibrin hydrogels specimens had superior bone tissue, although radiopacities were detected only in collagen I samples. VCT scan revealed density values in all but the Pluronic F127 samples, with Houndsfield unit values comparable to native bone in collagen I and fibrin glue samples. Expression of bone-specific genes was significantly higher in the collagen I samples. Pluronic F127 hydrogel did not support formation of bone tissue. All samples cultured in dynamic oscillating conditions had slightly higher mechanical strength than under rotating conditions. Bone tissue can be successfully formed in vitro using constructs comprised of collagen I hydrogel, MSCs, and porous beta-TCP scaffolds.
Oryan, Ahmad; Alidadi, Soodeh; Bigham-Sadegh, Amin; Moshiri, Ali
2016-10-01
Gelatin and chitosan are natural polymers that have extensively been used in tissue engineering applications. The present study aimed to evaluate the effectiveness of chitosan and gelatin or combination of the two biopolymers (chitosan-gelatin) as bone scaffold on bone regeneration process in an experimentally induced critical sized radial bone defect model in rats. Fifty radial bone defects were bilaterally created in 25 Wistar rats. The defects were randomly filled with chitosan, gelatin and chitosan-gelatin and autograft or left empty without any treatment (n = 10 in each group). The animals were examined by radiology and clinical evaluation before euthanasia. After 8 weeks, the rats were euthanized and their harvested healing bone samples were evaluated by radiology, CT-scan, biomechanical testing, gross pathology, histopathology, histomorphometry and scanning electron microscopy. Gelatin was biocompatible and biodegradable in vivo and showed superior biodegradation and biocompatibility when compared with chitosan and chitosan-gelatin scaffolds. Implantation of both the gelatin and chitosan-gelatin scaffolds in bone defects significantly increased new bone formation and mechanical properties compared with the untreated defects (P < 0.05). Combination of the gelatin and chitosan considerably increased structural and functional properties of the healing bones when compared to chitosan scaffold (P < 0.05). However, no significant differences were observed between the gelatin and gelatin-chitosan groups in these regards (P > 0.05). In conclusion, application of the gelatin alone or its combination with chitosan had beneficial effects on bone regeneration and could be considered as good options for bone tissue engineering strategies. However, chitosan alone was not able to promote considerable new bone formation in the experimentally induced critical-size radial bone defects.
Correlations of External Landmarks With Internal Structures of the Temporal Bone.
Piromchai, Patorn; Wijewickrema, Sudanthi; Smeds, Henrik; Kennedy, Gregor; O'Leary, Stephen
2015-09-01
The internal anatomy of a temporal bone could be inferred from external landmarks. Mastoid surgery is an important skill that ENT surgeons need to acquire. Surgeons commonly use CT scans as a guide to understanding anatomical variations before surgery. Conversely, in cases where CT scans are not available, or in the temporal bone laboratory where residents are usually not provided with CT scans, it would be beneficial if the internal anatomy of a temporal bone could be inferred from external landmarks. We explored correlations between internal anatomical variations and metrics established to quantify the position of external landmarks that are commonly exposed in the operating room, or the temporal bone laboratory, before commencement of drilling. Mathematical models were developed to predict internal anatomy based on external structures. From an operating room view, the distances between the following external landmarks were observed to have statistically significant correlations with the internal anatomy of a temporal bone: temporal line, external auditory canal, mastoid tip, occipitomastoid suture, and Henle's spine. These structures can be used to infer a low lying dura mater (p = 0.002), an anteriorly located sigmoid sinus (p = 0.006), and a more lateral course of the facial nerve (p < 0.001). In the temporal bone laboratory view, the mastoid tegmen and sigmoid sinus were also regarded as external landmarks. The distances between these two landmarks and the operating view external structures were able to further infer the laterality of the facial nerve (p < 0.001) and a sclerotic mastoid (p < 0.001). Two nonlinear models were developed that predicted the distances between the following internal structures with a high level of accuracy: the distance from the sigmoid sinus to the posterior external auditory canal (p < 0.001) and the diameter of the round window niche (p < 0.001). The prospect of encountering some of the more technically challenging anatomical variants encountered in temporal bone dissection can be inferred from the distance between external landmarks found on the temporal bone. These relationships could be used as a guideline to predict challenges during drilling and choosing appropriate temporal bones for dissection.
Poort, Lucas J; Postma, Alida A; Stadler, Annika A R; Böckmann, Roland A; Hoebers, Frank J; Kessler, Peter A W H
2017-05-01
Radiotherapy in the head and neck can induce several radiologically detectable changes in bone, osteoradionecrosis (ORN) among them. The purpose is to investigate radiological changes in mandibular bone after irradiation with various doses with and without surgery and to determine imaging characteristics of radiotherapy and ORN in an animal model. Sixteen Göttingen minipigs were divided into groups and were irradiated with two fractions with equivalent doses of 0, 25, 50 and 70 Gray. Thirteen weeks after irradiation, left mandibular teeth were removed and dental implants were placed. CT-scans and MR-imaging were made before irradiation and twenty-six weeks after. Alterations in the bony structures were recorded on CT-scan and MR-imaging and scored by two head-neck radiologists. Increased signal changes on MR-imaging were associated with higher radiation doses. Two animals developed ORN clinically. Radiologically mixed signal intensities on T2-SPIR were seen. On CT-scans cortical destruction was found in three animals. Based on imaging, three animals were diagnosed with ORN. Irradiation of minipig mandibles with various doses induced damages of the mandibular bone. Imaging with CT-scan and MR-imaging showed signal and structural changes that can be interpreted as prolonged and insufficient repair of radiation induced bone damages. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Han, Pei; Cheng, Pengfei; Zhang, Shaoxiang; Zhao, Changli; Ni, Jiahua; Zhang, Yuanzhuang; Zhong, Wanrun; Hou, Peng; Zhang, Xiaonong; Zheng, Yufeng; Chai, Yimin
2015-09-01
High-purity magnesium (HP Mg) takes advantage in no alloying toxic elements and slower degradation rate in lack of second phases and micro-galvanic corrosion. In this study, as rolled HP Mg was fabricated into screws and went through in vitro immersion tests, cytotoxicity test and bioactive analysis. The HP Mg screws performed uniform corrosion behavior in vitro, and its extraction promoted cell viability, bone alkaline phosphatase (ALP) activity, and mRNA expression of osteogenic differentiation related gene, i.e. ALP, osteopontin (OPN) and RUNX2 of human bone marrow mesenchymal stem cells (hBMSCs). Then HP Mg screws were implanted in vivo as load-bearing implant to fix bone fracture and subsequently gross observation, range of motion (ROM), X-ray scanning, qualitative micro-computed tomography (μCT) analysis, histological analysis, bending-force test and SEM morphology of retrieved screws were performed respectively at 4, 8, 16 and 24 weeks. As a result, the retrieved HP Mg screws in fixation of rabbit femoral intracondylar fracture showed uniform degradation morphology and enough bending force. However, part of PLLA screws was broken in bolt, although its screw thread was still intact. Good osseointegration was revealed surrounding HP Mg screws and increased bone volume and bone mineral density were detected at fracture gap, indicating the rigid fixation and enhanced fracture healing process provided by HP Mg screws. Consequently, the HP Mg showed great potential as internal fixation devices in intra-articular fracture operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reza, Mariana; Jones, Robert; Aspegren, John; Massard, Christophe; Mattila, Leena; Mustonen, Mika; Wollmer, Per; Trägårdh, Elin; Bondesson, Eva; Edenbrandt, Lars; Fizazi, Karim; Bjartell, Anders
2016-12-01
ODM-201, a new-generation androgen receptor inhibitor, has shown clinical efficacy in prostate cancer (PCa). Quantitative methods are needed to accurately assess changes in bone as a measurement of treatment response. The Bone Scan Index (BSI) reflects the percentage of skeletal mass a given tumour affects. To evaluate the predictive value of the BSI in metastatic castration-resistant PCa (mCRPC) patients undergoing treatment with ODM-201. From a total of 134 mCRPC patients who participated in the Activity and Safety of ODM-201 in Patients with Progressive Metastatic Castration-resistant Prostate Cancer clinical trial and received ODM-201, we retrospectively selected all those patients who had bone scan image data of sufficient quality to allow for both baseline and 12-wk follow-up BSI-assessments (n=47). We used the automated EXINI bone BSI software (EXINI Diagnostics AB, Lund, Sweden) to obtain BSI data. We used the Cox proportional hazards model and Kaplan-Meier estimates to investigate the association among BSI, traditional clinical parameters, disease progression, and radiographic progression-free survival (rPFS). In the BSI assessments, at follow-up, patients who had a decrease or at most a 20% increase from BSI baseline had a significantly longer time to progression in bone (median not reached vs 23 wk, hazard ratio [HR]: 0.20; 95% confidence interval [CI], 0.07-0.58; p=0.003) and rPFS (median: 50 wk vs 14 wk; HR: 0.35; 95% CI, 0.17-0.74; p=0.006) than those who had a BSI increase >20% during treatment. The on-treatment change in BSI was significantly associated with rPFS in mCRPC patients, and an increase >20% in BSI predicted reduced rPFS. BSI for quantification of bone metastases may be a valuable complementary method for evaluation of treatment response in mCRPC patients. An increase in Bone Scan Index (BSI) was associated with shorter time to disease progression in patients treated with ODM-201. BSI may be a valuable method of complementing treatment response evaluation in patients with advanced prostate cancer. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Rationale for Modernising Imaging in Advanced Prostate Cancer.
Padhani, Anwar R; Lecouvet, Frederic E; Tunariu, Nina; Koh, Dow-Mu; De Keyzer, Frederik; Collins, David J; Sala, Evis; Fanti, Stefano; Vargas, H Alberto; Petralia, Giuseppe; Schlemmer, Heinz Peter; Tombal, Bertrand; de Bono, Johann
2017-04-01
To effectively manage patients with advanced prostate cancer (APC), it is essential to have accurate, reproducible, and validated methods for detecting and quantifying the burden of bone and soft tissue metastases and for assessing their response to therapy. Current standard of care imaging with bone and computed tomography (CT) scans have significant limitations for the assessment of bone metastases in particular. We aimed to undertake a critical comparative review of imaging methods used for diagnosis and disease monitoring of metastatic APC from the perspective of their availability and ability to assess disease presence, extent, and response of bone and soft tissue disease. An expert panel of radiologists, nuclear medicine physicians, and medical physicists with the greatest experience of imaging in advanced prostate cancer prepared a review of the practicalities, performance, merits, and limitations of currently available imaging methods. Meta-analyses showed that positron emission tomography (PET)/CT with different radiotracers and whole-body magnetic resonance imaging (WB-MRI) are more accurate for bone lesion detection than CT and bone scans (BSs). At a patient level, the pooled sensitivities for bone disease by using choline (CH)-PET/CT, WB-MRI, and BS were 91% (95% confidence interval [CI], 83-96%), 97% (95% CI, 91-99%), and 79% (95% CI, 73-83%), respectively. The pooled specificities for bone metastases detection using CH-PET/CT, WB-MRI, and BS were 99% (95% CI, 93-100%), 95% (95% CI, 90-97%), and 82% (95% CI, 78-85%), respectively. The ability of PET/CT and WB-MRI to assess therapeutic benefits is promising but has not been comprehensively evaluated. There is variability in the cost, availability, and quality of PET/CT and WB-MRI. Standardisation of acquisition, interpretation, and reporting of WB-MRI and PET/CT scans is required to assess the performance of these techniques in clinical trials of treatment approaches in APC. PET/CT and whole-body MRI scans have the potential to improve detection and to assess response to treatment of all states of advanced prostate cancer. Consensus recommendations on quality standards, interpretation, and reporting are needed but will require validation in clinical trials of established and new treatment approaches. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Reddy, M V; Eachempati, Krishnakiran; Gurava Reddy, A V; Mugalur, Aakash
2018-01-01
Rapid prototyping (RP) is used widely in dental and faciomaxillary surgery with anecdotal uses in orthopedics. The purview of RP in orthopedics is vast. However, there is no error analysis reported in the literature on bone models generated using office-based RP. This study evaluates the accuracy of fused deposition modeling (FDM) using standard tessellation language (STL) files and errors generated during the fabrication of bone models. Nine dry bones were selected and were computed tomography (CT) scanned. STL files were procured from the CT scans and three-dimensional (3D) models of the bones were printed using our in-house FDM based 3D printer using Acrylonitrile Butadiene Styrene (ABS) filament. Measurements were made on the bone and 3D models according to data collection procedures for forensic skeletal material. Statistical analysis was performed to establish interobserver co-relation for measurements on dry bones and the 3D bone models. Statistical analysis was performed using SPSS version 13.0 software to analyze the collected data. The inter-observer reliability was established using intra-class coefficient for both the dry bones and the 3D models. The mean of absolute difference is 0.4 that is very minimal. The 3D models are comparable to the dry bones. STL file dependent FDM using ABS material produces near-anatomical 3D models. The high 3D accuracy hold a promise in the clinical scenario for preoperative planning, mock surgery, and choice of implants and prostheses, especially in complicated acetabular trauma and complex hip surgeries.
Wei, Xiaowei; Zhao, Dewei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming
2016-03-01
Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum-host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. © 2016 by the Society for Experimental Biology and Medicine.
Bae, Ji Cheol; Lee, Jin-Ju; Shim, Jin-Hyung; Park, Keun-Ho; Lee, Jeong-Seok; Bae, Eun-Bin; Choi, Jae-Won; Huh, Jung-Bo
2017-12-16
In this study, a new concept of a 3D-printed scaffold was introduced for the accurate placement of an implant and the application of a recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded bone graft. This preliminary study was conducted using two adult beagles to evaluate the 3D-printed polycaprolactone (PCL)/ β -tricalcium phosphate ( β -TCP)/bone decellularized extracellular matrix (bdECM) scaffold conjugated with rhBMP-2 for the simultaneous use as an implant surgical guide stent and bone graft material that promotes new bone growth. Teeth were extracted from the mandible of the beagle model and scanned by computed tomography (CT) to fabricate a customized scaffold that would fit the bone defect. After positioning the implant guide scaffold, the implant was placed and rhBMP-2 was injected into the scaffold of the experimental group. The two beagles were sacrificed after three months. The specimen block was obtained and scanned by micro-CT. Histological analysis showed that the control and experimental groups had similar new bone volume (NBV, %) but the experimental group with BMP exhibited a significantly higher bone-to-implant contact ratio (BIC, %). Within the limitations of this preliminary study, a 3D-printed scaffold conjugated with rhBMP-2 can be used simultaneously as an implant surgical guide and a bone graft in a large bone defect site. Further large-scale studies will be needed to confirm these results.
Wei, Xiaowei; Wang, Benjie; Wang, Wei; Kang, Kai; Xie, Hui; Liu, Baoyi; Zhang, Xiuzhi; Zhang, Jinsong; Yang, Zhenming
2016-01-01
Porous tantalum metal with low elastic modulus is similar to cancellous bone. Reticulated vitreous carbon (RVC) can provide three-dimensional pore structure and serves as the ideal scaffold of tantalum coating. In this study, the biocompatibility of domestic porous tantalum was first successfully tested with bone marrow stromal stem cells (BMSCs) in vitro and for bone tissue repair in vivo. We evaluated cytotoxicity of RVC scaffold and tantalum coating using BMSCs. The morphology, adhesion, and proliferation of BMSCs were observed via laser scanning confocal microscope and scanning electron microscopy. In addition, porous tantalum rods with or without autologous BMSCs were implanted on hind legs in dogs, respectively. The osteogenic potential was observed by hard tissue slice examination. At three weeks and six weeks following implantation, new osteoblasts and new bone were observed at the tantalum–host bone interface and pores. At 12 weeks postporous tantalum with autologous BMSCs implantation, regenerated trabecular equivalent to mature bone was found in the pore of tantalum rods. Our results suggested that domestic porous tantalum had excellent biocompatibility and could promote new bone formation in vivo. Meanwhile, the osteogenesis of porous tantalum associated with autologous BMSCs was more excellent than only tantalum implantation. Future clinical studies are warranted to verify the clinical efficacy of combined implantation of this domestic porous tantalum associated with autologous BMSCs implantation and compare their efficacy with conventional autologous bone grafting carrying blood vessel in patients needing bone repairing. PMID:26843518
Discrete tomography in an in vivo small animal bone study.
Van de Casteele, Elke; Perilli, Egon; Van Aarle, Wim; Reynolds, Karen J; Sijbers, Jan
2018-01-01
This study aimed at assessing the feasibility of a discrete algebraic reconstruction technique (DART) to be used in in vivo small animal bone studies. The advantage of discrete tomography is the possibility to reduce the amount of X-ray projection images, which makes scans faster and implies also a significant reduction of radiation dose, without compromising the reconstruction results. Bone studies are ideal for being performed with discrete tomography, due to the relatively small number of attenuation coefficients contained in the image [namely three: background (air), soft tissue and bone]. In this paper, a validation is made by comparing trabecular bone morphometric parameters calculated from images obtained by using DART and the commonly used standard filtered back-projection (FBP). Female rats were divided into an ovariectomized (OVX) and a sham-operated group. In vivo micro-CT scanning of the tibia was done at baseline and at 2, 4, 8 and 12 weeks after surgery. The cross-section images were reconstructed using first the full set of projection images and afterwards reducing them in number to a quarter and one-sixth (248, 62, 42 projection images, respectively). For both reconstruction methods, similar changes in morphometric parameters were observed over time: bone loss for OVX and bone growth for sham-operated rats, although for DART the actual values were systematically higher (bone volume fraction) or lower (structure model index) compared to FBP, depending on the morphometric parameter. The DART algorithm was, however, more robust when using fewer projection images, where the standard FBP reconstruction was more prone to noise, showing a significantly bigger deviation from the morphometric parameters obtained using all projection images. This study supports the use of DART as a potential alternative method to FBP in X-ray micro-CT animal studies, in particular, when the number of projections has to be drastically minimized, which directly reduces scanning time and dose.
Electromechanical Properties of Bone Tissue.
NASA Astrophysics Data System (ADS)
Regimbal, Raymond L.
Discrepancies between calculated and empirical properties of bone are thought to be due to a general lack of consideration for the extent and manner(s) with which bone components interact at the molecular level. For a bone component in physiological fluid or whenever two phases are in contact, there is a region between the bulk phases called the electrical double layer which is marked by a separation of electric charges. For the purpose of studying electrical double layer interactions, the method of particle microelectrophoresis was used to characterize bone and its major constituents on the basis of the net charge they bear when suspended in ionic media of physiological relevance. With the data presented as pH versus zeta (zeta ) potential, the figures reveal an isoelectric point (IEP) for bone mineral near pH 8.6, whereas intact and EDTA demineralized bone tissue both exhibit IEPs near pH 5.1. While these data demonstrate the potential for a significant degree of coulombic interaction between the bone mineral and organic constituent double layers, it was also observed that use of inorganic phosphate buffers, as a specific marker for bone mineral, resulted in (1) an immediate reversal, from positive to negative, of the bone mineral zeta potential (2) rendered the zeta potential of intact bone more negative in a manner linearly dependent on both time and temperature and (3) had no affect on demineralized bone (P < 0.01). In agreement with that shown in model protein-hydroxyapatite systems, it is suggested here that inorganic phosphate ions in solution compete with organic acid groups (e.g. carboxyl and phosphate of collagen, sialoprotein, ...) for positively charged sites on the bone mineral surface and effectively uncouple the bone mineral and organic phase double layers. Mechanically, this uncoupling is manifested as a loss of tissue rigidity when monitoring the midspan deflection of bone beams subject to constant load for a 3 day period. While it is thus demonstrated that the major inorganic and organic phases of bone are electromechanically coupled, a thermodynamic consideration of the data suggests that the nature of the bond is to preserve mineral and organic phase electroneutralities by participating in electrical double layer interactions. The results are discussed in terms of bone mechanical modeling, electrokinetic properties, aging, tissue-implant compatibility and the etiologies of bone pathologic conditions.
Hughes, S
1977-07-01
Technetium-labelled ethane hydroxydiphosphonate (99mTc-EHDP) is a commonly used bone-scanning agent. After injection it leaves the circulation to enter bone and to be cleared by the kidney. The transcapillary exchange of 99mTc-EHDP in bone was examined and found to be low. The capillary movement was compared with that of sucrose, a freely diffusible substance, and it was found that the permeability ratio of 99mTc-EHDP to 14C-sucrose was similar to the diffusion coefficient ratio, suggesting that 99mTc-EHDP passes through the capillaries by the process of passive diffusion. The renal clearance of 99mTc-EHDP was 24 ml/min and was unaffected by the action of parathyroid hormone. After a fracture the bone blood flow increases, although the transcapillary extraction of 99mTc-EHDP does not change. This is because there is an increase, from recruitment and dilatation of capillaries, in the surface area available for exchange. Therefore the increased isotopic activity seen on a bone scan after a fracture is primarily related to an increase in bone blood supply from capillary enhancement within the cortex.
Cross-sectional structural parameters from densitometry
NASA Technical Reports Server (NTRS)
Cleek, Tammy M.; Whalen, Robert T.
2002-01-01
Bone densitometry has previously been used to obtain cross-sectional properties of bone from a single X-ray projection across the bone width. Using three unique projections, we have extended the method to obtain the principal area moments of inertia and orientations of the principal axes at each scan cross-section along the length of the scan. Various aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of cross-sectional properties. Factors considered included X-ray photon energy, initial scan orientation, the angle spanned by the three scans (included angle), and I(min)/I(max) ratios. Principal moments of inertia were accurate to within +/-3.1% and principal angles were within +/-1 degrees of the expected value for phantoms scanned with included angles of 60 degrees and 90 degrees at the higher X-ray photon energy (140 kVp). Low standard deviations in the error (0.68-1.84%) also indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 degrees. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (I(min)/I(max)) values when various included angles are used make this technique viable for future in vivo studies.
Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold
Ge, Shaohua; Zhao, Ning; Wang, Lu; Yu, Meijiao; Liu, Hong; Song, Aimei; Huang, Jing; Wang, Guancong; Yang, Pishan
2012-01-01
Background A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs) and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS) in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo. Methods Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively. Results PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair. Conclusion This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration. PMID:23091383
NASA Astrophysics Data System (ADS)
Cattaneo, Paolo M.; Dalstra, Michel; Beckmann, Felix; Donath, Tilman; Melsen, Birte
2004-10-01
This study explores the application of conventional micro tomography (μCT) and synchrotron radiation (SR) based μCT to evaluate the bone around titanium dental implants. The SR experiment was performed at beamline W2 of HASYLAB at DESY using a monochromatic X-ray beam of 50 keV. The testing material consisted of undecalcified bone segments harvested from the upper jaw of a macaca fascicularis monkey each containing a titanium dental implant. The results from the two different techniques were qualitatively compared with conventional histological sections examined under light microscopy. The SR-based μCT produced images that, especially at the bone-implant interface, are less noisy and sharper than the ones obtained with conventional μCT. For the proper evaluation of the implant-bone interface, only the SR-based μCT technique is able to display the areas of bony contact and visualize the true 3D structure of bone around dental implants correctly. This investigation shows that both conventional and SR-based μCT scanning techniques are non-destructive methods, which provide detailed images of bone. However with SR-based μCT it is possible to obtain an improved image quality of the bone surrounding dental implants, which display a level of detail comparable to histological sections. Therefore, SR-based μCT scanning could represent a valid, unbiased three-dimensional alternative to evaluate osseointegration of dental implants
Malignant external otitis: the role of computed tomography and radionuclides in evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelson, D.S.; Som, P.M.; Mendelson, M.H.
1983-12-01
Nine patients with malignant external otitis (MEO) were evaluated with Tc-99m bone scans, Ga-67 citrate scans, pluridirectional tomography, and computed tomographic (CT) scans in order to assess the role of each in the diagnosis and management of MEO. The Tc-99m and Ga-67 citrate scans were the most accurate studies in the initial identification of disease activity, while the return to normal or improvement of the Ga-67 citrate scan has been shown to correlate best with clinical resolution of MEO. CT demonstrated soft-tissue disease and central skull base osteomyelitis better than pluridirectional tomography. CT is excellent for localizing and following themore » progression of bone disease; however, because reossification of the skull base is a very slow process, CT cannot be used to follow accurately regression or inactivity of MEO affecting this area. CT is the best modality for following soft-tissue extension of MEO.« less
NASA Astrophysics Data System (ADS)
Khodaei, Mohammad; Fathi, Mohammadhossein; Meratian, Mahmood; Savabi, Omid
2018-05-01
Reducing the elastic modulus and also improving biological fixation to the bone is possible by using porous scaffolds. In the present study, porous titanium scaffolds containing different porosities were fabricated using the space holder method. Pore distribution, formed phases and mechanical properties of titanium scaffolds were studied by Scanning Electron Microscope (SEM), x-ray diffraction (XRD) and cold compression test. Then the results of compression test were compared to the Gibson-Ashby model. Both experimentally measured and analytically calculated elastic modulus of porous titanium scaffolds decreased by porosity increment. The compliance between experimentally measured and analytically calculated elastic modulus of titanium scaffolds are also increased by porosity increment.
Yanke, Adam B; Shin, Jason J; Pearson, Ian; Bach, Bernard R; Romeo, Anthony A; Cole, Brian J; Verma, Nikhil N
2017-04-01
To assess the ability of 3-dimensional (3D) magnetic resonance imaging (MRI, 1.5 and 3 tesla [T]) to quantify glenoid bone loss in a cadaveric model compared with the current gold standard, 3D computed tomography (CT). Six cadaveric shoulders were used to create a bone loss model, leaving the surrounding soft tissues intact. The anteroposterior (AP) dimension of the glenoid was measured at the glenoid equator and after soft tissue layer closure the specimen underwent scanning (CT, 1.5-T MRI, and 3-T MRI) with the following methods (0%, 10%, and 25% defect by area). Raw axial data from the scans were segmented using manual mask manipulation for bone and reconstructed using Mimics software to obtain a 3D en face glenoid view. Using calibrated Digital Imaging and Communications in Medicine images, the diameter of the glenoid at the equator and the area of the glenoid defect was measured on all imaging modalities. In specimens with 10% or 25% defects, no difference was detected between imaging modalities when comparing the measured defect size (10% defect P = .27, 25% defect P = .73). All 3 modalities demonstrated a strong correlation with the actual defect size (CT, ρ = .97; 1.5-T MRI, ρ = .93; 3-T MRI, ρ = .92, P < .0001). When looking at the absolute difference between the actual and measured defect area, no significance was noted between imaging modalities (10% defect P = .34, 25% defect P = .47). The error of 3-T 3D MRI increased with increasing defect size (P = .02). Both 1.5- and 3-T-based 3D MRI reconstructions of glenoid bone loss correlate with measurements from 3D CT scan data and actual defect size in a cadaveric model. Regardless of imaging modality, the error in bone loss measurement tends to increase with increased defect size. Use of 3D MRI in the setting of shoulder instability could obviate the need for CT scans. The goal of our work was to develop a reproducible method of determining glenoid bone loss from 3D MRI data and hence eliminate the need for CT scans in this setting. This will lead to decreased cost of care as well as decreased radiation exposure to patients. The long-term goal is a fully automated system that is as approachable for clinicians as current 3D CT technology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Synthesis and evaluation of bioceramics for orthopedics and tissue culture applications
NASA Astrophysics Data System (ADS)
Demirkiran, Hande
Hydroxyapatite is the most well known phosphate in the biologically active phosphate ceramic family by virtue of its similarity to natural bone mineral. Among all bioglass compositions BioglassRTM45S5 is one of the most bioactive glasses. This study initially started by adding different amounts (1, 2.5, 5, 10, and 25 wt.%) of BioglassRTM45S5 to synthetic hydroxyapatite in order to improve the bioactivity of these bioceramics. The chemistries formed by sintering and their effect on different material properties including bioactivity were identified by using various techniques, such as powder and thin film x-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray absorption near edge spectroscopy, compression test, and nano indentation. All the results demonstrated that 10 and 25 wt.% BioglassRTM45S5 addition to hydroxyapatite and sintering at 1200°C for 4 hours yield new compositions with main Ca 5(PO4)2SiO4 and Na3Ca 6(PO4)5 crystalline phases dispersed in silicate glassy matrices, respectively. In addition, in vitro bioactivity tests such as bone like apatite formation in simulated body fluid and bone marrow stromal cell culture have shown that the crystalline and amorphous phases have an important role on improving bioactivity of these bioceramic compositions. Besides, compression test and nano indentation has given important information on compression strength and nano structure properties of these newly composed bioceramic materials and the bone like apatite layers formed on them, respectively. Finally, the effect of silicate addition on both formation and bioactivity of Na3Ca6(PO4)5 bioceramics were shown. These findings and different techniques used assisted to develop a phenomenological approach to demonstrate how the novel bioceramic compositions were composed and aid improving bioactivity of known bioceramic materials.
Leite, Yulla Klinger de Carvalho; de Carvalho, Camila Ernanda Sousa; Feitosa, Matheus Levi Tajra; Alves, Michel Muálem de Moraes; Carvalho, Fernando Aécio de Amorim; Neto, Bartolomeu Cruz Viana; Miglino, Maria Angélica
2018-01-01
Background Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. Methods Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. Results The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs’ bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. Conclusion The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering. PMID:29736332
Smith, Matthew; De Bono, Johann; Sternberg, Cora; Le Moulec, Sylvestre; Oudard, Stéphane; De Giorgi, Ugo; Krainer, Michael; Bergman, Andries; Hoelzer, Wolfgang; De Wit, Ronald; Bögemann, Martin; Saad, Fred; Cruciani, Giorgio; Thiery-Vuillemin, Antoine; Feyerabend, Susan; Miller, Kurt; Houédé, Nadine; Hussain, Syed; Lam, Elaine; Polikoff, Jonathan; Stenzl, Arnulf; Mainwaring, Paul; Ramies, David; Hessel, Colin; Weitzman, Aaron; Fizazi, Karim
2016-09-01
Cabozantinib is an inhibitor of kinases, including MET and vascular endothelial growth factor receptors, and has shown activity in men with previously treated metastatic castration-resistant prostate cancer (mCRPC). This blinded phase III trial compared cabozantinib with prednisone in patients with mCRPC. Men with progressive mCRPC after docetaxel and abiraterone and/or enzalutamide were randomly assigned at a two-to-one ratio to cabozantinib 60 mg once per day or prednisone 5 mg twice per day. The primary end point was overall survival (OS). Bone scan response (BSR) at week 12 as assessed by independent review committee was the secondary end point; radiographic progression-free survival (rPFS) and effects on circulating tumor cells (CTCs), bone biomarkers, serum prostate-specific antigen (PSA), and symptomatic skeletal events (SSEs) were exploratory assessments. A total of 1,028 patients were randomly assigned to cabozantinib (n = 682) or prednisone (n = 346). Median OS was 11.0 months with cabozantinib and 9.8 months with prednisone (hazard ratio, 0.90; 95% CI, 0.76 to 1.06; stratified log-rank P = .213). BSR at week 12 favored cabozantinib (42% v 3%; stratified Cochran-Mantel-Haenszel P < .001). rPFS was improved in the cabozantinib group (median, 5.6 v 2.8 months; hazard ratio, 0.48; 95% CI, 0.40 to 0.57; stratified log-rank P < .001). Cabozantinib was associated with improvements in CTC conversion, bone biomarkers, and post-random assignment incidence of SSEs but not PSA outcomes. Grade 3 to 4 adverse events and discontinuations because of adverse events were higher with cabozantinib than with prednisone (71% v 56% and 33% v 12%, respectively). Cabozantinib did not significantly improve OS compared with prednisone in heavily treated patients with mCRPC and progressive disease after docetaxel and abiraterone and/or enzalutamide. Cabozantinib had some activity in improving BSR, rPFS, SSEs, CTC conversions, and bone biomarkers but not PSA outcomes. © 2016 by American Society of Clinical Oncology.
Tămăşan, M; Ozyegin, L S; Oktar, F N; Simon, V
2013-07-01
The study reports the preparation and characterization of powders consisting of the different phases of calcium phosphates that were obtained from the naturally derived raw materials of sea-shell origins reacted with H3PO4. Species of sea origin, such as corals and nacres, attracted a special interest in bone tissue engineering area. Nacre shells are built up of calcium carbonate in aragonite form crystallized in an organic matrix. In this work two natural marine origin materials (shells of echinoderm Sputnik sea urchin - Phyllacanthus imperialis and Trochidae Infundibulum concavus mollusk) were involved in the developing powders of calcium phosphate based biomaterials (as raw materials for bone-scaffolds) by hotplate and ultrasound methods. Thermal analyses of the as-prepared materials were made for an assessment of the thermal behavior and heat treatment temperatures. Samples from both sea shells each of them prepared by the above mentioned methods were subjected to thermal treatments at 450 °C and 850 °C in order to evaluate the crystalline transformations of the calcium phosphate structures in the heating process. By X-ray diffraction analyses various calcium phosphate phases were identified. In Sputnik sea urchins originated samples were found predominantly brushite and calcite as a small secondary phase, while in Trochidae I. concavus samples mainly monetite and HA phases were identified. Thermal treatment at 850 °C resulted flat-plate whitlockite crystals - β-MgTCP [(Ca, Mg)3 (PO4)2] for both samples regardless the preparation method (ultrasound or hotplate) or the targeted Ca/P molar ratio according with XRD patterns. Scanning electron microscopy and Fourier transformed infrared spectroscopy were involved more in the characterization of these materials and the good correlations of the results of these methods were made. Copyright © 2013 Elsevier B.V. All rights reserved.
Alonso-Sierra, S; Velázquez-Castillo, R; Millán-Malo, B; Nava, R; Bucio, L; Manzano-Ramírez, A; Cid-Luna, H; Rivera-Muñoz, E M
2017-11-01
Hydroxyapatite-based materials have been used for dental and biomedical applications. They are commonly studied due to their favorable response presented when used for replacement of bone tissue. Those materials should be porous enough to allow cell penetration, internal tissue growth, vascular incursion and nutrient supply. Furthermore, their morphology should be designed to guide the growth of new bone tissue in anatomically applicable ways. In this work, the mechanical performance and 3D X-ray microtomography (X-ray μCT) study of a biomimetic, organic-inorganic composite material, based on hydroxyapatite, with physicochemical, structural, morphological and mechanical properties very similar to those of natural bone tissue is reported. Ceramic pieces in different shapes and several porous sizes were produced using a Modified Gel Casting Method. Pieces with a controlled and 3D hierarchical interconnected porous structure were molded by adding polymethylmethacrylate microspheres. Subsequently, they were subject to a thermal treatment to remove polymers and to promote a sinterization of the ceramic particles, obtaining a HAp scaffold with controlled porosity. Then, two different organic phases were used to generate an organic-inorganic composite material, so gelatin and collagen, which was extracted from bovine tail, were used. The biomimetic organic-inorganic composite material was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy and 3D X-ray microtomography techniques. Mechanical properties were characterized in compression tests, obtaining a dramatic and synergic increment in the mechanical properties due to the chemical and physical interactions between the two phases and to the open-cell cellular behavior of the final composite material; the maximum compressive strength obtained corresponds to about 3 times higher than that reported for natural cancellous bone. The pore size distribution obtained could be capable to allow cell penetration, internal tissue in-growth, vascular incursion and nutrient supply and this material has tremendous potential for use as a replacement of bone tissue or in the manufacture and molding of prosthesis with desired shapes. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of interference fit and bone damage of an uncemented femoral knee implant.
Berahmani, Sanaz; Hendriks, Maartje; de Jong, Joost J A; van den Bergh, Joop P W; Maal, Thomas; Janssen, Dennis; Verdonschot, Nico
2018-01-01
During implantation of an uncemented femoral knee implant, press-fit interference fit provides the primary stability. It is assumed that during implantation a combination of elastic and plastic deformation and abrasion of the bone will occur, but little is known about what happens at the bone-implant interface and how much press-fit interference fit is eventually achieved. Five cadaveric femora were prepared and implantation was performed by an experienced surgeon. Micro-CT- and conventional CT-scans were obtained pre- and post-implantation for geometrical measurements and to measure bone mineral density. Additionally, the position of the implant with respect to the bone was determined by optical scanning of the reconstructions. By measuring the differences in surface geometry, assessments were made of the cutting error, the actual interference fit, the amount of bone damage, and the effective interference fit. Our analysis showed an average cutting error of 0.67mm (SD 0.17mm), which pointed mostly towards bone under-resections. We found an average actual AP interference fit of 1.48mm (SD 0.27mm), which was close to the nominal value of 1.5mm. We observed combinations of bone damage and elastic deformation in all bone specimens, which showed a trend to be related with bone density. Higher bone density tended to lead to lower bone damage and higher elastic deformation. The results of the current study indicate different factors that interact while implanting an uncemented femoral knee component. This knowledge can be used to fine-tune design criteria of femoral components to achieve adequate primary stability for all patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shabestari, M; Vik, J; Reseland, J E; Eriksen, E F
2016-10-01
Bone marrow lesions (BML), previously denoted bone marrow edema, are detected as water signals by magnetic resonance imaging (MRI). Previous histologic studies were unable to demonstrate any edematous changes at the tissue level. Therefore, our aim was to investigate the underlying biological mechanisms of the water signal in MRI scans of bone affected by BML. Tetracycline labeling in addition to water sensitive MRI scans of 30 patients planned for total hip replacement surgery was undertaken. Twenty-one femoral heads revealed BML on MRI, while nine were negative and used as controls (CON). Guided by the MRI images cylindrical biopsies were extracted from areas with BML in the femoral heads. Tissue sections from the biopsies were subjected to histomorphometric image analyses of the cancellous bone envelope. Patients with BML exhibited an average 40- and 18-fold increase of bone formation rate and mineralizing surface, respectively. Additionally, samples with BML demonstrated 2-fold reduction of marrow fat and 28-fold increase of woven bone. Immunohistochemical analysis showed a 4-fold increase of angiogenesis markers CD31 and von Willebrand Factor (vWF) in the BML-group compared to CON. This study indicates that BML are characterized by increased bone turnover, vascularity and angiogenesis in keeping with it being a reparatory process. Thus, the water signal, which is the hallmark of BML on MRI, is most probably reflecting increased tissue vascularity accompanying increased remodeling activity. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei
2016-01-01
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690
Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei
2016-01-01
Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.
Costa, Francesco; Tomei, Massimo; Sassi, Marco; Cardia, Andrea; Ortolina, Alessandro; Servello, Domenico; Fornari, Maurizio
2012-02-01
The purpose of this study was to evaluate the efficacy of intra-operative computerized tomography (CT) scanning in the analysis of bone removal accuracy during anterior cervical corpectomy, in order to allow any necessary immediate correction in the event of inadequate bone removal. From September 2009 to December 2010 we performed an intra-operative (CT) scan using the O-Arm(™) Image system to assess the rate of central and lateral decompression in all patients treated for cervical spondylotic myelopathy by anterior cervical corpectomy and fusion. Out of a population of 187 patients admitted to our department, with a diagnosis of myelopathy due to spondylotic degenerative cervical stenosis, 15 patients underwent a surgical treatment with anterior cervical corpectomy and fusion. There were nine males (60%) and six females (40%); the mean age was 52.4 years, ranging from 41 to 57 years. The pre-operative radiologic investigations (MRI and CT scans) revealed in the nine patients (60%) the extent of the compression to one vertebral body (C4 one case, C5 four cases, C6 four cases), while in the six cases (40%) the compression regarded two vertebral body (C3 and C4 one case, C4 and C5 two cases, C5 and C6 three cases). During surgery, when the decompression was judged completely, a CT scan was performed: in 11 cases (73.3%) the decompression was considered adequate, while in four cases (26.7%) it was deemed insufficient and the surgical strategy was changed in order to optimize the bone removal. In these cases an additional scan was taken to prove the efficacy of decompression, achieved in all patients. Intra-operative CT scan performed during cervical corpectomy is a really useful tool in helping to ensure complete bone removal and the adequacy of surgery. The O-arm(™) Image system grants optimal image quality, allowing correctly assessing the rate of decompression and, in any case of doubt, allows an intra-operative evaluation of the final correct positioning of the graft.
NASA Technical Reports Server (NTRS)
Smith, Scott A.; Watts, Nelson; Hans, Didier; LeBlanc, Adrian; Spector, Elisabeth; King, Lisa; Sibonga, Jean
2014-01-01
Bone loss due to long-duration spaceflight has been characterized by both DXA and QCT serial scans. It is unclear if these spaceflight-induced changes in bone mineral density (BMD) and structure result in increased fracture incidence. NASA astronauts currently fly 5 to 6-month missions on the International Space Station (ISS) and at least one 12-month mission is planned. While NASA has measured areal BMD (by DXA) and volumetric BMD (by QCT) and has estimated hip strength (by finite element models of QCT data, no method has yet been used to examine bone micro-architecture from lumbar spine (LS). DXA scans are routinely performed pre- and postflight on all ISS astronauts to follow BMD changes associated with spaceflight. Trabecular Bone Score (TBS) is a relatively new method that measures grey-scale-level texture information extracted from LS DXA images and correlates with 3D parameters of bone micro-architecture. We evaluated the ability of LS TBS to discriminate changes in astronauts who have flown on ISS missions and to determine if TBS can provide additional information compared to DXA. Methods: Lumbar Spine (L1-4) DXA scans from 51 astronauts (mean age, 47 +/- 4 yrs) were divided into 3 groups based on the exercise regimens performed onboard the ISS. "Pre-ARED" (exercise using a load-limited resistive exercise device, <300 lb), "ARED" (exercise with a high-load resistive exercise device, up to 600 lb) and "Bisphos+ARED" group (ARED exercise and a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch). DXA scans were performed and analyzed on a Hologic Discovery W using the same technician for the pre- and post-flight scans. LSC for the LS in our laboratory is 0.025 g/sq. cm. TBS was performed at the Mercy Hospital, Cincinnati, Ohio on a similar Hologic computer. Data were analyzed using a paired, 2-tailed Student's t-test for the difference between pre- and postflight means. Percent change and % change per month are noted. Interpretation: Our data suggest that: TBS and DXA both detected significant decrements in the LS in these pre- ARED astronauts, not unexpected given the insufficient loads provided by this early exercise device. TBS did not detect significant changes in the ARED or Bisphos+ARED groups while DXA did detect significant changes in the ARED astronauts. These findings suggest that DXA and TBS are detecting independent effects of bone loss interventions tested in ISS astronauts in space, which may be due to distinct effects of interventions on mineral content of separate cortical vs. trabecular bone. Conclusion: TBS, in conjunction with DXA BMD, may provide additional insight into the nature of changes (or lack thereof) in the microstructure of trabecular bone and the areal BMD of vertebral bodies.
Validation of Long Bone Mechanical Properties from Densitometry
NASA Technical Reports Server (NTRS)
Whalen, R.; Katz, B.; Cleek, T.; Hargens, Alan R. (Technical Monitor)
1995-01-01
The objective of this study was to assess whether cross-sectional areal properties, calculated from densitometry, correlate to the true flexural properties. Right and left male embalmed tibiae were used in the study. Prior to scanning, the proximal end of each tibia was potted in a fixture with registration pins, flushed thoroughly with water under pressure to remove trapped air, and then placed in a constant thickness water bath attached to a precision indexer. Two sets of three scans of the entire tibia were taken with an Hologic QDR 1000/W densitometer at rotations of 0, 45, and 90 degrees about the tibia long axis. An aluminum step phantom and a bone step phantom, machined from bovine cortical bone, were also in the bath and scanned separately. Pixel attenuation data from the two sets of scans were averaged to reduce noise. Pixel data from the high energy beam were then converted to equivalent thicknesses using calibration equations. Cross-sectional areal properties (centroid, principal area moments and principal angle) along the length were computed from the three registered scans using methods developed in our laboratory. Flexural rigidities. Four strain gages were bonded around the circumference of each of 5 cross-sections encompassing the entire diaphysis. A known transverse load was then applied to the distal end and the bone was rotated 360 degrees in eight increments of 45 degrees each. Strains from the eight orientations were analyzed along with the known applied bending moments at each section to compute section centroids, curvatures, principal flexural rigidities and principal angle. Reference axes between the two methods were maintained within +/- 0.5 degrees using an electronic inclinometer. Principal angles (flexural - areal) differed by -2.0 +/- 4.0 degrees, and 1.0 +/- 2.5 degrees for the right and left tibia, respectively. Section principal flexural rigidities were highly correlated to principal areal moments (right: r(sup 2)= 0.997; left: r(sup 2)= 0.978) indicating a nearly constant effective flexural modulus. Right and left tibia exhibited a very high degree of symmetry when comparing either flexural or areal properties. To our knowledge this is the first study to validate the use of densitometry (DXA) to predict three dimensional structural properties of long bones. Our initial results support the conclusion that bone mineral and its distribution are the primary determinants of flexural modulus and rigidity.
Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.
Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A
2015-08-01
Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Brown, Matthew S; Kim, Grace Hyun J; Chu, Gregory H; Ramakrishna, Bharath; Allen-Auerbach, Martin; Fischer, Cheryce P; Levine, Benjamin; Gupta, Pawan K; Schiepers, Christiaan W; Goldin, Jonathan G
2018-01-01
A clinical validation of the bone scan lesion area (BSLA) as a quantitative imaging biomarker was performed in metastatic castration-resistant prostate cancer (mCRPC). BSLA was computed from whole-body bone scintigraphy at baseline and week 12 posttreatment in a cohort of 198 mCRPC subjects (127 treated and 71 placebo) from a clinical trial involving a different drug from the initial biomarker development. BSLA computation involved automated image normalization, lesion segmentation, and summation of the total area of segmented lesions on bone scan AP and PA views as a measure of tumor burden. As a predictive biomarker, treated subjects with baseline BSLA [Formula: see text] had longer survival than those with higher BSLA ([Formula: see text] and [Formula: see text]). As a surrogate outcome biomarker, subjects were categorized as progressive disease (PD) if the BSLA increased by a prespecified 30% or more from baseline to week 12 and non-PD otherwise. Overall survival rates between PD and non-PD groups were statistically different ([Formula: see text] and [Formula: see text]). Subjects without PD at week 12 had longer survival than subjects with PD: median 398 days versus 280 days. BSLA has now been demonstrated to be an early surrogate outcome for overall survival in different prostate cancer drug treatments.
Friedlander, AH; Chang, TI; Aghazadehsanai, N; Berenji, GR; Harada, ND; Garrett, NR
2013-01-01
Objectives: Femoral neck fractures in older females resulting from decreased bone mineral density (BMD; osteopenia) are associated with increased morbidity and mortality. Bone mineralization inhibition is probably controlled by proteins which also foster vascular calcification. Therefore, we evaluated the relationship between calcified carotid artery plaque (CCAP) on panoramic images and BMD on dual energy X-ray absorptiometry (DXA) bone scans. Methods: Images and hospital records identified by dentists defined two study groups (20 white females and 24 black females) having CCAP and an incidentally obtained bone scan. Ethnically matched (age±7 years, body mass index ±3 units) control groups with panoramic images devoid of CCAP and accompanying DXA scan were likewise constituted. A physician determined the BMD on the DXA. Results: Females with CCAP had significantly (p = 0.03) poorer BMD at the femoral neck than those without CCAP. Although mean femoral neck BMD was significantly lower (p = 0.009) for white than for black females, there was no significant interaction between race and CCAP (p = 0.80). Conclusion: We observed a significant inverse association between the CCAP on panoramic images and femoral neck BMD in post-menopausal white females. PMID:23571481
Bone remodelling of a proximal femur with the thrust plate prosthesis: an in vitro case.
Taylor, W R; Ploeg, H; Hertig, D; Warner, M D; Clift, S E
2004-06-01
The key to the development of a successful implant is an understanding of the effect of bone remodelling on its long-term fixation. In this study, clinically observed patterns of bone remodelling have been compared with computer-based predictions for one particular design of prosthesis, the Thrust Plate Prosthesis (Centerpulse Orthopedics, Winterthur, Switzerland). Three-dimensional finite-element models were created using geometrical and bone density data obtained from CT scanning. Results from the bone remodelling simulation indicated that varying the relative rate of bone deposition/resorption and the interfacial conditions between the bone and the implant could produce the trend towards the two clinically observed patterns of remodelling.
Mineral content changes in bone associated with damage induced by the electron beam.
Bloebaum, Roy D; Holmes, Jennifer L; Skedros, John G
2005-01-01
Energy-dispersive x-ray (EDX) spectroscopy and backscattered electron (BSE) imaging are finding increased use for determining mineral content in microscopic regions of bone. Electron beam bombardment, however, can damage the tissue, leading to erroneous interpretations of mineral content. We performed elemental (EDX) and mineral content (BSE) analyses on bone tissue in order to quantify observable deleterious effects in the context of (1) prolonged scanning time, (2) scan versus point (spot) mode, (3) low versus high magnification, and (4) embedding in poly-methylmethacrylate (PMMA). Undemineralized cortical bone specimens from adult human femora were examined in three groups: 200x embedded, 200x unembedded, and 1000x embedded. Coupled BSE/EDX analyses were conducted five consecutive times, with no location analyzed more than five times. Variation in the relative proportions of calcium (Ca), phosphorous (P), and carbon (C) were measured using EDX spectroscopy, and mineral content variations were inferred from changes in mean gray levels ("atomic number contrast") in BSE images captured at 20 keV. In point mode at 200x, the embedded specimens exhibited a significant increase in Ca by the second measurement (7.2%, p < 0.05); in scan mode, a small and statistically nonsignificant increase (1.0%) was seen by the second measurement. Changes in P were similar, although the increases were less. The apparent increases in Ca and P likely result from decreases in C: -3.2% (p < 0.05) in point mode and -0.3% in scan mode by the second measurement. Analysis of unembedded specimens showed similar results. In contrast to embedded specimens at 200x, 1000x data showed significantly larger variations in the proportions of Ca, P, and C by the second or third measurement in scan and point mode. At both magnifications, BSE image gray level values increased (suggesting increased mineral content) by the second measurement, with increases up to 23% in point mode. These results show that mineral content measurements can be reliable when using coupled BSE/EDX analyses in PMMA-embedded bone if lower magnifications are used in scan mode and if prolonged exposure to the electron beam is avoided. When point mode is used to analyze minute regions, adjustments in accelerating voltages and probe current may be required to minimize damage.
Coronal CT scan measurements and hearing evolution in enlarged vestibular aqueduct syndrome.
Saliba, Issam; Gingras-Charland, Marie-Eve; St-Cyr, Karine; Décarie, Jean-Claude
2012-04-01
To assess the correlation between the enlarged vestibular aqueduct (EVA) diameter and (1) the hearing loss level (mild, moderate, severe and profound and (2) the hearing evolution. The secondary objective was to obtain measurement limits on the coronal plane of the temporal bone CT scan for the diagnosis of EVA. Retrospective study in a tertiary pediatric center. Mastoid CT scans were reviewed to measure the VA diameter at its midpoint and operculum on axial and coronal planes in a pathologic and normal population. We used their serial audiograms to assess the evolution of hearing. 101 EVA was identified out of 1812 temporal bones CT scan from our radiologic database in 8 years. Bone conduction was stable after a mean follow-up of 40.9 ± 32.9 months. PTA has been the most affected in time by the EVA (p=0.006). No correlation was identified between impedancemetry and the diameter of the EVA. On the diagnostic audiogram, 61% of hearing loss were in the mild and moderate hearing levels; at the end of the follow-up 64% of hearing loss are still in the mild and moderate hearing levels. The cut-off values for the coronal midpoint and operculum planes on the CT scan to diagnose an EVA are 2.4 mm and 4.34 mm respectively. Conductive or mixed hearing loss might be the first manifestation of EVA. Coronal CT scan cuts can provide additional information to evaluate EVA especially when axial cuts are not conclusive. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium.
Sargeant, Timothy D; Guler, Mustafa O; Oppenheimer, Scott M; Mata, Alvaro; Satcher, Robert L; Dunand, David C; Stupp, Samuel I
2008-01-01
Over the past few decades there has been great interest in the use of orthopedic and dental implants that integrate into tissue by promoting bone ingrowth or bone adhesion, thereby eliminating the need for cement fixation. However, strategies to create bioactive implant surfaces to direct cellular activity and mineralization leading to osteointegration are lacking. We report here on a method to prepare a hybrid bone implant material consisting of a Ti-6Al-4V foam, whose 52% porosity is filled with a peptide amphiphile (PA) nanofiber matrix. These PA nanofibers can be highly bioactive by molecular design, and are used here as a strategy to transform an inert titanium foam into a potentially bioactive implant. Using scanning electron microscopy (SEM) and confocal microscopy, we show that PA molecules self-assemble into a nanofiber matrix within the pores of the metallic foam, fully occupying the foam's interconnected porosity. Furthermore, the method allows the encapsulation of cells within the bioactive matrix, and under appropriate conditions the nanofibers can nucleate mineralization of calcium phosphate phases with a Ca:P ratio that corresponds to that of hydroxyapatite. Cell encapsulation was quantified using a DNA measuring assay and qualitatively verified by SEM and confocal microscopy. An in vivo experiment was performed using a bone plug model in the diaphysis of the hind femurs of a Sprague Dawley rat and examined by histology to evaluate the performance of these hybrid systems after 4 weeks of implantation. Preliminary results demonstrate de novo bone formation around and inside the implant, vascularization around the implant, as well as the absence of a cytotoxic response. The PA-Ti hybrid strategy could be potentially tailored to initiate mineralization and direct a cellular response from the host tissue into porous implants to form new bone and thereby improve fixation, osteointegration, and long term stability of implants.
Dall'Ara, E; Barber, D; Viceconti, M
2014-09-22
The accurate measurement of local strain is necessary to study bone mechanics and to validate micro computed tomography (µCT) based finite element (FE) models at the tissue scale. Digital volume correlation (DVC) has been used to provide a volumetric estimation of local strain in trabecular bone sample with a reasonable accuracy. However, nothing has been reported so far for µCT based analysis of cortical bone. The goal of this study was to evaluate accuracy and precision of a deformable registration method for prediction of local zero-strains in bovine cortical and trabecular bone samples. The accuracy and precision were analyzed by comparing scans virtually displaced, repeated scans without any repositioning of the sample in the scanner and repeated scans with repositioning of the samples. The analysis showed that both precision and accuracy errors decrease with increasing the size of the region analyzed, by following power laws. The main source of error was found to be the intrinsic noise of the images compared to the others investigated. The results, once extrapolated for larger regions of interest that are typically used in the literature, were in most cases better than the ones previously reported. For a nodal spacing equal to 50 voxels (498 µm), the accuracy and precision ranges were 425-692 µε and 202-394 µε, respectively. In conclusion, it was shown that the proposed method can be used to study the local deformation of cortical and trabecular bone loaded beyond yield, if a sufficiently high nodal spacing is used. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.
2008-05-01
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.
2008-05-20
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV,more » a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.« less
Hopper, Richard A; Sandercoe, Gavin; Woo, Albert; Watts, Robyn; Kelley, Patrick; Ettinger, Russell E; Saltzman, Babette
2010-11-01
Le Fort III distraction requires generation of bone in the pterygomaxillary region. The authors performed retrospective digital analysis on temporal fine-cut computed tomographic images to quantify both radiographic evidence of pterygomaxillary region bone formation and relative maxillary stability. Fifteen patients with syndromic midface hypoplasia were included in the study. The average age of the patients was 8.7 years; 11 had either Crouzon or Apert syndrome. The average displacement of the maxilla during distraction was 16.2 mm (range, 7 to 31 mm). Digital analysis was performed on fine-cut computed tomographic scans before surgery, at device removal, and at annual follow-up. Seven patients also had mid-consolidation computed tomographic scans. Relative maxillary stability and density of radiographic bone in the pterygomaxillary region were calculated between each scan. There was no evidence of clinically significant maxillary relapse, rotation, or growth between the end of consolidation and 1-year follow-up, other than a relatively small 2-mm subnasal maxillary vertical growth. There was an average radiographic ossification of 0.5 mm/mm advancement at the time of device removal, with a 25th percentile value of 0.3 mm/mm. The time during consolidation that each patient reached the 25th percentile of pterygomaxillary region bone density observed in this series of clinically stable advancements ranged from 1.3 to 9.8 weeks (average, 3.7 weeks). There was high variability in the amount of bone formed in the pterygomaxillary region associated with clinical stability of the advanced Le Fort III segment. These data suggest that a subsection of patients generate the minimal amount of pterygomaxillary region bone formation associated with advancement stability as early as 4 weeks into consolidation.
Van Dessel, Jeroen; Nicolielo, Laura Ferreira Pinheiro; Huang, Yan; Coudyzer, Walter; Salmon, Benjamin; Lambrichts, Ivo; Jacobs, Reinhilde
The aim of this study was to assess whether cone beam computed tomography (CBCT) may be used for clinically reliable alveolar bone quality assessment in comparison to its clinical alternatives, multislice computed tomography and the gold standard (micro-CT). Six dentate mandibular bone samples were scanned with seven CBCT devices (ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170, Carestream 9300, Scanora 3D, I-CAT Next generation), one micro-CT scanner (SkyScan 1174) and one MSCT machine (Somatom Definition Flash) using two protocols (standard and high-resolution). MSCT and CBCT images were automatically spatially aligned on the micro-CT scan of the corresponding sample. A volume of interest was manually delineated on the micro-CT image and overlaid on the other scanning devices. Alveolar bone structures were automatically extracted using the adaptive thresholding algorithm. Based on the resulting binary images, an automatic 3D morphometric quantification was performed in a CT-Analyser (Bruker, Kontich, Belgium). The reliability and measurement errors were calculated for each modality compared to the gold standard micro-CT. Both MSCT and CBCT were associated with a clinically and statistically (P <0.05) significant measurement error. Bone quantity-related morphometric indices (bone volume fraction 8.41% min to 17.90% max, bone surface density -0.47 mm-1 min to 0.16 mm-1 max and trabecular thickness 0.15 mm min to 0.31 mm max) were significantly (P <0.05) overestimated, resulting in significantly (P <0.05) closer trabecular pores (total porosity percentage -8.41% min to -17.90% max and fractal dimension 0.08 min to 0.17 max) in all scanners compared to micro-CT. However, the structural pattern of the alveolar bone remained similar compared to that of the micro-CT for the ProMax 3D Max, NewTom GiANO, Cranex 3D, 3D Accuitomo 170 and Carestream 9300. On the other hand, the Scanora 3D, i-CAT Next Generation, standard and high-resolution MSCT displayed an overrated bone quantity and aberrant structural pattern compared to other scanning devices. The calculation of morphometric indices had an overall high reliability (intraclass correlation coefficient [ICC] 0.62 min to 0.99 max), except for the i-CAT Next Generation CBCT (ICC 0.26 min to 0.86 max) and standard resolution MSCT (ICC 0.10 min to 0.62 max). This study demonstrated that most CBCT machines may be able to quantitatively assess alveolar bone quality, with a level of accuracy and reliability that approaches micro-CT. One may therefore propose to extrapolate this to clinical CBCT imaging, certainly when there is a need for implant rehabilitation in dentate jaw bones. Conflict-of-interest statement: There is no conflict of interest to declare. Fellowship support was received from Research Foundation Flanders (FWO) from the Belgian government and from the Coordination for the Improvement of Higher Education Personnel (CAPES) programme, Science without Borders, from the Brazilian government.
Das Neves Borges, Patricia; Vincent, Tonia L; Marenzana, Massimo
2017-01-01
The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.
Vincent, Tonia L.; Marenzana, Massimo
2017-01-01
Objective The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. Methods OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Results Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Conclusion Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies. PMID:28334010
An NLRA Transducer for Dual Use Bone Conduction Audio and Haptic Communication. Summary Report
2016-12-30
VIBRANT COMPOSITES INC. 1 A16-019 Phase 1 Summary Report Vibrant Composites Inc. December 30, 2016 I. ABSTRACT A combined transducer capable of bone ...transducer core capable of both precise haptic communication and high fidelity bone conduction audio. The transducer design leverages Micro-Multilayer...head-mounted system. In this Phase I SBIR, Vibrant Composites has delivered functional dual-mode bone conduction and vibrotactile transducer prototypes
Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane
2017-01-01
The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18-80) years and 18-27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Good matched case-control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures.
Moon, Woo J.; Scheller, Erica L.; Suneja, Anupam; Livermore, Jacob A.; Malani, Anurag N.; Moudgal, Varsha; Kerr, Lisa E.; Ferguson, Eric; Vandenberg, David M.
2014-01-01
Background. Voriconazole is a triazole antifungal medication used for prophylaxis or to treat invasive fungal infections. Inflammation of the periosteum resulting in skeletal pain, known as periostitis, is a reported side effect of long-term voriconazole therapy. The trifluorinated molecular structure of voriconazole suggests a possible link between excess fluoride and periostitis, as elevated blood fluoride has been reported among patients with periostitis who received voriconazole. Methods. Two hundred sixty-four patients from Michigan were impacted by the multistate outbreak of fungal infections as a result of contaminated methylprednisolone injections. A retrospective study was conducted among 195 patients who received voriconazole therapy at St Joseph Mercy Hospital during this outbreak. Twenty-eight patients who received both bone scan and plasma fluoride measurements for skeletal pain were included in the statistical analyses. Increased tracer uptake on bone scan was considered positive for periostitis. The primary outcome measure was the correlation between plasma fluoride and bone scan results. Results. Blood fluoride (P < .001), alkaline phosphatase (P = .020), daily voriconazole dose (P < .001), and cumulative voriconazole dose (P = .027) were significantly elevated in patients who had periostitis compared with those who did not. Discontinuation or dose reduction of voriconazole resulted in improvement of pain in 89% of patients. Conclusions. High plasma fluoride levels coupled with skeletal pain among patients who are on long-term voriconazole therapy is highly suggestive of periostitis. Initial measurement of fluoride may be considered when bone scan is not readily available. Early detection should be sought, as discontinuation of voriconazole is effective at reversing the disease. PMID:24992954
Acute venous thrombosis as complication and clue to diagnose a SAPHO syndrome case. A case report.
Rosero, A; Ruano, R; Martin, M; Hidalgo, C; Garcia-Talavera, J
2013-01-01
This report concerns a male adult admitted for sternal and left arm pain, who was diagnosed and treated for acute deep venous thrombosis in the left subclavian and axillary veins. X-ray and a hybrid single photon emission tomography and computed tomography (SPECT-CT) scintigraphy scan revealed high intensity uptake in both sternoclavicular joints, which corresponded to hyperostosis, thereby suggesting a SAPHO syndrome. Upon reviewing the patient's medical history, we found dermatological pustulosis disease and an intermittent sternal chest pain untreated since 10 years ago. In the biochemical study we found erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) elevation, hyperglobulinemia, and mild anaemia. Initial treatment included nonsteroidal anti-inflammatory drugs (NSAIDs) with low response, which then changed to methotrexate, sulfasalazine, and prednisone. The patient's pain was controlled almost completely in 10 months. A control bone scan revealed a marked decrease in intensity of bone deposits according to clinical response. To our knowledge, there are only a few cases of SAPHO and thrombosis and none are followed up with a bone SPECT-CT scan.
NASA Astrophysics Data System (ADS)
Iurino, Dawid Adam; Sardella, Raffaele
2014-12-01
CT scanning analysis applied to vertebrate palaeontology is providing an increasing number of data of great interest. This method can be used in many branches of palaeontology such as the investigation of all the fossilized elements in a hard matrix and the hidden structures in the bones. A large number of pathologies are "hidden", completely or partially invisible on the external surface of the bones because their development took place within the bones. However, the study of these diseases and abnormalities plays a crucial role in our understanding of evolutionary and adaptive processes of extinct taxa. The analysis of a partial skeleton of the sabre-toothed felid Megantereon whitei from the Early Pleistocene karst filling deposits of Monte Argentario (Tuscany, Italy) has been carried out. The CT scanning analysis put in evidence the presence of supernumerary teeth (P2) and the absence of P3 in the mandible. The occurrence of P2 can be considered as an evidence of atavism. Such an archaic feature is recorded for the first time in Megantereon.
NASA Astrophysics Data System (ADS)
Duke, P. J.; Montufar-Solis, D.; Nguyen, H. C.; Cody, D. D.
2008-06-01
Using cartilage to replace/repair bone is advantageous as no scaffolding is required to form the implant which disappears as bone is formed during the endochondral process. Previously, we demonstrated that cartilage spheroids, grown in a rotating bioreactor, (Synthecon, Inc.) and implanted into a 2 mm skull defect, contributed to healing of the defect. In this report, skulls with or without implants were subjected to microCT scans, and sections from these scans were compared to histological sections of the defect region of demineralized skulls from the same experiment. The area of the defect staining for bone in histological sections of demineralized skulls was the same region shown as mineralized in CT sections. Defects without implants were shown in serial CT sections and histological sections, to be incompletely healed. This study demonstrates that microCT scans are an important corollary to histological studies evaluating the use of implants in healing of bony defects. Supported in part by NIH/NIDCR Training Grant T35 DE07252 and by Cancer Center Support Grant (CA-16672).
Bianchi, Maria Luisa; Colombo, Carla; Assael, Baroukh M; Dubini, Antonella; Lombardo, Mariangela; Quattrucci, Serena; Bella, Sergio; Collura, Mirella; Messore, Barbara; Raia, Valeria; Poli, Furio; Bini, Rita; Albanese, Carlina V; De Rose, Virginia; Costantini, Diana; Romano, Giovanna; Pustorino, Elena; Magazzù, Giuseppe; Bertasi, Serenella; Lucidi, Vincenzina; Traverso, Gabriella; Coruzzo, Anna; Grzejdziak, Amelia D
2013-07-01
Long-term complications of cystic fibrosis include osteoporosis and fragility fractures, but few data are available about effective treatment strategies, especially in young patients. We investigated treatment of low bone mineral density in children, adolescents, and young adults with cystic fibrosis. We did a multicentre trial in two phases. We enrolled patients aged 5-30 years with cystic fibrosis and low bone mineral density, from ten cystic fibrosis regional centres in Italy. The first phase was an open-label, 12-month observational study of the effect of adequate calcium intake plus calcifediol. The second phase was a 12-month, double-blind, randomised, placebo-controlled, parallel group study of the efficacy and safety of oral alendronate in patients whose bone mineral apparent density had not increased by 5% or more by the end of the observational phase. Patients were randomly assigned to either alendronate or placebo. Both patients and investigators were masked to treatment assignment. We used dual x-ray absorptiometry at baseline and every 6 months thereafter, corrected for body size, to assess lumbar spine bone mineral apparent density. We assessed bone turnover markers and other laboratory parameters every 3-6 months. The primary endpoint was mean increase of lumbar spine bone mineral apparent density, assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01812551. We screened 540 patients and enrolled 171 (mean age 13·8 years, SD 5·9, range 5-30). In the observational phase, treatment with calcium and calcifediol increased bone mineral apparent density by 5% or more in 43 patients (25%). 128 patients entered the randomised phase. Bone mineral apparent density increased by 16·3% in the alendronate group (n=65) versus 3·1% in the placebo group (n=63; p=0·0010). 19 of 57 young people (33·3%) receiving alendronate attained a normal-for-age bone mineral apparent density Z score. In the observational phase, five patients had moderate episodes of hypercalciuria, which resolved after short interruption of calcifediol treatment. During the randomised phase, one patient taking alendronate had mild fever versus none in the placebo group; treatment groups did not differ significantly for other adverse events. Correct calcium intake plus calcifediol can improve bone mineral density in some young patients with cystic fibrosis. In those who do not respond to calcium and calcifediol alone, alendronate can safely and effectively increase bone mineral density. Telethon Foundation (Italy). Copyright © 2013 Elsevier Ltd. All rights reserved.
[Microbiological surveillance in patients treated by bone marrow transplantation (author's transl)].
Haralambie, E; Linzenmeier, G; Nowrousian, M; Schäfer, R; Schmidt, C G
1980-01-01
Patients suffering from acute leukemia were treated by bone marrow transplantation under strict gnotobiotic conditions. The microbiological surveillance was performed during three phases: the admission phase, the phase of decontamination and reverse isolation and the reconventionalisation phase. During the second phase no infections of exogenous origine occurred. All clinically manifest infections in this phase were induced by unsuppressed endogenous bacteria. In our study the bacteria of oropharynx was the main source of infections therefore this biotop deserves special attention during the microbiological surveillance of the immune compromised host. In leukemia patients selective decontamination will be the method of choice, but considering the possibility of GvHR in patients with bone marrow transplantation a complete decontamination should be achieved.
Alexander, Benjamin; Daulton, Tyrone L.; Genin, Guy M.; Lipner, Justin; Pasteris, Jill D.; Wopenka, Brigitte; Thomopoulos, Stavros
2012-01-01
The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral (‘bioapatite’) is present predominantly inside collagen fibrils: in ‘gap channels’ between abutting collagen molecules, and in ‘intermolecular spaces’ between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues. PMID:22345156
Larsson Wexell, C.; Thomsen, P.; Aronsson, B.-O.; Tengvall, P.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. E.
2013-01-01
In a series of experimental studies, the bone formation around systematically modified titanium implants is analyzed. In the present study, three different surface modifications were prepared and evaluated. Glow-discharge cleaning and oxidizing resulted in a highly stoichiometric TiO2 surface, while a glow-discharge treatment in nitrogen gas resulted in implants with essentially a surface of titanium nitride, covered with a very thin titanium oxide. Finally, hydrogen peroxide treatment of implants resulted in an almost stoichiometric TiO2, rich in hydroxyl groups on the surface. Machined commercially pure titanium implants served as controls. Scanning Auger Electron Spectroscopy, Scanning Electron Microscopy, and Atomic Force Microscopy revealed no significant differences in oxide thickness or surface roughness parameters, but differences in the surface chemical composition and apparent topography were observed. After surface preparation, the implants were inserted in cortical bone of rabbits and evaluated after 1, 3, and 6 weeks. Light microscopic evaluation of the tissue response showed that all implants were in contact with bone and had a large proportion of newly formed bone within the threads after 6 weeks. There were no morphological differences between the four groups. Our study shows that a high degree of bone contact and bone formation can be achieved with titanium implants of different surface composition and topography. PMID:24174936
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamp, J; Karmanos Cancer Institute - International Imaging Center, Detroit, MI; Malyarenko, E
Purpose: To test the feasibility of developing a practical medium frequency ultrasound tomography method for small animal imaging. The ability to produce cross-sectional or full body images of a live small animal using a low-cost tabletop ultrasound scanner without any special license would be very beneficial to long term biological studies, where repeated scanning is often required over an extended period of time. Methods: The cross sectional images were produced by compounding multiple B-scans of a laboratory phantom or an animal acquired at different projection angles. Two imaging systems were used to test the concept. The first system included amore » programmable 64-channel phased array controller driving a 128-channel, 5–10 MHz linear probe to produce 143 B-Mode projections of the spinning object. The second system designed and manufactured in house, produced 64 or 128 B-Mode projections with a single unfocused 8 MHz transducer scanning with a 0.116 mm step size. Results: The phased array system provided good penetration through the phantoms/mice (with the exception of the lungs) and allowed to acquire data in a very short time. The cross-sectional images have enough resolution and dynamic range to detect both high- and low-contrast organs. The single transducer system takes longer to scan, and the data require more sophisticated processing. To date, our images allow seeing details as small as 1–2 mm in the phantoms and in small animals, with the contrast mostly due to highly reflecting bones and air inclusions. Conclusion: The work indicates that very detailed and anatomically correct images can be created by relatively simple and inexpensive means. With more advanced algorithms and improved system design, scan time can be reduced considerably, enabling high-resolution full 3D imaging. This will allow for quick and easy scans that can help monitor tumor growth and/or regression without contributing any dose to the animal. The authors would like to acknowledge the financial and engineering support from Tessonics.« less
30years of DXA technology innovations.
Glüer, Claus-C
2017-11-01
As the successor of Dual Photon Absorptiometry (DPA), Dual X-ray Absorptiometry (DXA) has seen 30years of continuous technological innovations. Implementation of measures for standardization and quality assurance made DXA a reliable and clinically useful approach. Its use in clinical multicenter drug studies in osteoporosis lead to general acceptance as the standard technique of bone densitometry. The limitations of DXA are well established. As a measure of areal bone mineral density (aBMD) it depends on bone size and is biased by overlaying soft tissue and calcified structures. To some extent these errors can be reduced by estimation of bone depth and/or lateral imaging. DXA based aBMD can be supplemented by additional information obtainable from DXA scans: geometric indices such as hip axis length or complex models like 2-D finite element analysis have been developed and tested. Given the drastic improvement in image quality current DXA scans can be used for Vertebral Fracture Analysis (VFA) or grading of Abdominal Aortic Calcifications. A textural measure, Trabecular Bone Score (TBS) provides independent information on fracture risk. DXA devices can also be used for assessments beyond bone density. Periprosthetic aBMD changes can be monitored to study the mechanical fitting of bone implants. Total body composition measurements are increasingly being used in studies on nutrition, obesity, and sarcopenia. 30years after its inception DXA is the undisputed standard imaging technique for the assessment of osteoporotic fracture risk with new applications beyond bone densitometry adding to its value. Copyright © 2017 Elsevier Inc. All rights reserved.
Hanyok, Brian T; Howard, Lauren E; Amling, Christopher L; Aronson, William J; Cooperberg, Matthew R; Kane, Christopher J; Terris, Martha K; Posadas, Edwin M; Freedland, Stephen J
2016-01-15
Metastatic lesions in prostate cancer beyond the bone have prognostic importance and affect clinical therapeutic decisions. Few data exist regarding the prevalence of soft-tissue metastases at the initial diagnosis of metastatic castration-resistant prostate cancer (mCRPC). This study analyzed 232 men with nonmetastatic (M0) castration-resistant prostate cancer (CRPC) who developed metastases detected by a bone scan or computed tomography (CT). All bone scans and CT scans within the 30 days before or after the mCRPC diagnosis were reviewed. The rate of soft-tissue metastases among those undergoing CT was determined. Then, predictors of soft-tissue metastases and visceral and lymph node metastases were identified. Compared with men undergoing CT (n = 118), men undergoing only bone scans (n = 114) were more likely to have received primary treatment (P = .048), were older (P = .013), and less recently developed metastases (P = .018). Among those undergoing CT, 52 (44%) had soft-tissue metastases, including 20 visceral metastases (17%) and 41 lymph node metastases (35%), whereas 30% had no bone involvement. In a univariable analysis, only prostate-specific antigen (PSA) predicted soft-tissue metastases (odds ratio [OR], 1.27; P = .047), and no statistically significant predictors of visceral metastases were found. A higher PSA level was associated with an increased risk of lymph node metastases (OR, 1.38; P = .014), whereas receiving primary treatment was associated with decreased risk (OR, 0.36; P = .015). The data suggest that there is a relatively high rate of soft-tissue metastasis (44%) among CRPC patients undergoing CT at the initial diagnosis of metastases, including some men with no bone involvement. Therefore, forgoing CT during a metastatic evaluation may lead to an underdiagnosis of soft-tissue metastases and an underdiagnosis of metastases in general. Cancer 2015. © 2015 American Cancer Society. Cancer 2016;122:222-229. © 2015 American Cancer Society. © 2015 American Cancer Society.
Abdelhamid, Alaa; Omran, Mostafa; Bakhshalian, Neema; Tarnow, Dennis; Zadeh, Homayoun H
2016-06-01
The aims of this study were (i) to evaluate the efficacy of ridge preservation and repair procedures involving the application of SocketKAP(™) and SocketKAGE(™) devices following tooth removal and (ii) to evaluate alveolar bone volumetric changes at 6 months post-extraction in intact sockets or those with facial wall dehiscence defects using 3-dimensional pre- and postoperative CBCT data. Thirty-six patients required 61 teeth extracted. Five cohorts were established: Group A: Intact Socket Negative Control Group B: Intact Socket + SocketKAP(™) Group C: Intact Socket Filled with Anorganic Bovine Bone Mineral (ABBM) + SocketKAP(™) Group D: Facial Dehiscence Socket Negative Control Group E: Facial Dehiscence Socket Filled with ABBM + SocketKAP(™) + SocketKAGE(™) . Preoperative CBCT scans were obtained followed by digital subtraction of the test teeth. At 6 months post-extraction, another CBCT scan was obtained. The pre- and postoperative scans were then superimposed, allowing highly accurate quantitative determination of the 3D volumetric alveolar bone volume changes from baseline through 6 months. Significant volumetric bone loss occurred in all sockets, localized mainly in the 0-3 mm zone apical to the ridge crest. For intact sockets, SocketKAP(™) + ABBM treatment led to a statistically significant greater percentage of remaining mineralized tissue volume when compared to negative control group. A significant difference favoring SocketKAP(™) + SocketKAGE(™) + ABBM treatment was observed for sockets with facial dehiscence defects compared to the negative control group. SocketKAP(™) , with ABBM, appears effective in limiting post-extraction volumetric bone loss in intact sockets, while SocketKAP(™) + SocketKAGE + ABBM appears effective in limiting post-extraction bone loss in sockets with dehiscence defects. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Physics of Physical Examinations.
ERIC Educational Resources Information Center
Patterson, James D.
1989-01-01
Discussed are several topics on medical imaging including x-rays and Computer Assisted Tomography (CAT) scans, magnetic resonance imaging, fiber optics endoscopy, nuclear medicine and bone scans, positron-emission tomography, and ultrasound. The concepts of radiation dosage, electrocardiograms, and laser therapy are included. (YP)
Effect of water on nanomechanics of bone is different between tension and compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel, Jitin; Park, Jun-Sang; Almer, Jonathan
Water, an important constituent in bone, resides in different compartments in bone matrix and may impose significant effects on its bulk mechanical properties. However, a clear understanding of the mechanistic role of water in toughening bone is yet to emerge. To address this issue, this study used a progressive loading protocol, coupled with measurements of in situ mineral and collagen fibril deformations using synchrotron X-ray diffraction techniques. Using this unique approach, the contribution of water to the ultrastructural behavior of bone was examined by testing bone specimens in different loading modes (tension and compression) and hydration states (wet and dehydrated).more » The results indicated that the effect of water on the mechanical behavior of mineral and collagen phases at the ultrastructural level was loading mode dependent and correlated with the bulk behavior of bone. Tensile loading elicited a transitional drop followed by an increase in load bearing by the mineral phase at the ultrastructural level, which was correlated with a strain hardening behavior of bone at the bulk level. Compression loading caused a continuous loss of load bearing by the mineral phase, which was reflected at the bulk level as a strain softening behavior. In addition, viscous strain relaxation and pre-strain reduction were observed in the mineral phase in the presence of water. Taken together, the results of this study suggest that water dictates the bulk behavior of bone by altering the interaction between mineral crystals and their surrounding matrix.« less
Slimani, Samy; Nezzar, Adlen; Makhloufi, Hachemi
2013-06-21
Melorheostosis is a very rare sclerosing bone disorder that involves frequently one limb. It may be asymptomatic, but pain and limb deformity may occur and can be very debilitating. Different reports have indicated efficacy of bisphosphonates (pamidronate and etidronate) on symptoms. We report an adult patient with a very painful melorheostosis, who improved after treatment with zoledronate, either on symptoms or on bone scans.
Bone chip-induced rhinosinusitis.
Reilly, Brian K; Conley, David B
2009-12-01
This case report describes both the pathophysiology and management of chronic rhinosinusitis (CRS). Specifically, we report a case of chronic maxillary rhinosinusitis with a free-floating maxillary sinus calcification (bone chip). After obtaining the computed tomography scan, the patient underwent endoscopic sinus surgery, with removal of the uncinate, enlargement of the diseased natural ostium of the maxillary sinus, and removal of the diseased bone chip. This eliminated the nidus for infection, ultimately restoring mucociliary flow.
Anné, Jennifer; Edwards, Nicholas P.; Wogelius, Roy A.; Tumarkin-Deratzian, Allison R.; Sellers, William I.; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M.; Manning, Phillip L.
2014-01-01
Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning–X-ray fluorescence (SRS–XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20–100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS–XRF combined with microfocus elemental mapping (2–20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue. PMID:24806709
Perdikouri, Christina; Tägil, Magnus; Isaksson, Hanna
2015-01-01
About 5-10% of all bone fractures suffer from delayed healing, which may lead to non-union. Bone morphogenetic proteins (BMPs) can be used to induce differentiation of osteoblasts and enhance the formation of the bony callus, and bisphosphonates help to retain the newly formed callus. The aim of this study was to investigate if scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) can identify differences in the mineral composition of the newly formed bone compared to cortical bone from a non-fractured control. Moreover, we investigate whether the use of BMPs and bisphosphonates-alone or combined-may have an effect on bone mineralization and composition. Twelve male Sprague-Dawley rats at 9 weeks of age were randomly divided into four groups and treated with (A) saline, (B) BMP-7, (C) bisphosphonates (Zoledronate), and (D) BMP-7 + Zoledronate. The rats were sacrificed after 6 weeks. All samples were imaged using SEM and chemically analyzed with EDS to quantify the amount of C, N, Ca, P, O, Na, and Mg. The Ca/P ratio was the primary outcome. In the fractured samples, two areas of interest were chosen for chemical analysis with EDS: the callus and the cortical bone. In the non-fractured samples, only the cortex was analyzed. Our results showed that the element composition varied to a small extent between the callus and the cortical bone in the fractured bones. However, the Ca/P ratio did not differ significantly, suggesting that the mineralization at all sites is similar 6 weeks post-fracture in this rat model.
Enevoldsen, Lotte Hahn; Heaf, James; Højgaard, Liselotte; Zerahn, Bo; Hasbak, Philip
2017-03-01
In bone scan patients with dialysis-treated chronic kidney disease (CKD) and hyperparathyroidism, soft tissue accumulation of technetium-99 m hydroxy/methylene diphosphonate (Tc-99 m-HDP/MDP) has been reported primarily in case reports and usually explained by hypercalcaemia and/or hyperphosphataemia. As human vascular smooth muscle cells produce hydroxyapatite during cell culture with increased phosphate levels and as Tc-99 m-HDP/MDP primarily binds to hydroxyapatite, we hypothesized that soft tissue accumulation would be found in patients with hyperphosphataemia. We identified 63 CKD patients diagnosed with secondary hyperparathyroidism admitted for Tc-99 m-HDP bone scan. Baseline characteristics and mean concentrations of biochemical markers (including P-calcium and P-phosphate) taken 0-3 months prior to the bone scans were collected. Soft tissue uptake was detected on bone scans in 37 of 63 (59%) patients. Primary locations were in the heart (27/37 = 73%), muscles (12/37 = 32%), lung (9/37 = 24%) and gastrointestinal tract (6/37 = 16%), and 13 of 37 (35%) patients had simultaneous uptake in more than one location. Regarding biochemical markers, patients with soft tissue uptake only differed from patients without in terms of plasma phosphate levels (1·95 ± 0·15 (n = 37) versus 1·27 ± 0·08 (n = 26), P = 0·0012). All patients with myocardial uptake (n = 27) had a coronary arteriography-verified history of coronary artery disease (CAD), whereas CAD was only present in six of the 36 patients without myocardial uptake. In conclusion, dialysis-treated CKD patients with secondary hyperparathyroidism have a high incidence of soft tissue uptake, and this finding is strongly correlated with elevated phosphate, but not calcium values. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia
2015-08-01
In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. Copyright © 2015 Elsevier B.V. All rights reserved.
Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering.
Nandakumar, Anandkumar; Barradas, Ana; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela
2013-01-01
Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering.
Mazzuca, Steven A; Brandt, Kenneth D; Lane, Kathleen A; Chakr, Rafael
2011-11-01
To explore whether the risk of incident tibiofemoral (TF) osteoarthritis (OA) in the radiographically normal contralateral knee of overweight/obese women with unilateral knee OA is mediated by malalignment and/or preceded by increased turnover of subchondral bone. We used data of post hoc analyses from a randomized controlled trial. Cross-sectional analyses evaluated the baseline association between frontal plane alignment and bone turnover in the medial TF compartment in 78 radiographically normal contralateral knees. Longitudinal analyses ascertained whether incident radiographic OA (TF osteophyte formation within 30 months) was associated with malalignment and/or increased bone turnover at baseline. Alignment subcategories (varus/neutral/valgus) were based on the anatomic axis angle. (99m)Tc-methylene diphosphonate uptake in a late-phase bone scan was quantified in regions of interest in the medial tibia (MT) and medial femur (MF) and adjusted for uptake in a reference segment of the ipsilateral tibial shaft (TS). MF and MT uptake in varus contralateral knees was 50-55% greater than in the TS. Adjusted MT uptake in varus contralateral knees was significantly greater than that in neutral and valgus contralateral knees (mean 1.55 versus 1.38 and 1.43, respectively; P < 0.05). Among 69 contralateral knees followed longitudinally, 22 (32%) developed TF OA. Varus angulation was associated with a marginally significant increase in the odds of incident OA (adjusted odds ratio 3.98, P = 0.067). While the small sample size limited our ability to detect statistically significant risk factors, these data suggest that the risk of developing bilateral TF OA in overweight/obese women may be mediated by varus malalignment. Copyright © 2011 by the American College of Rheumatology.
Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells.
Isaac, J; Nohra, J; Lao, J; Jallot, E; Nedelec, J M; Berdal, A; Sautier, J M
2011-02-08
There is accumulating evidence that strontium-containing biomaterials have positive effects on bone tissue repair. We investigated the in vitro effect of a new Sr-doped bioactive glass manufactured by the sol-gel method on osteoblast viability and differentiation. Osteoblasts isolated from foetal mouse calvaria were cultured in the presence of bioactive glass particles; particles were undoped (B75) or Sr-doped with 1 wt.% (B75-Sr1) and 5 wt.% (B75-Sr5). Morphological analysis was carried out by contrast-phase microscopy and scanning electron microscopy (SEM). Cell viability was evaluated by the MTS assay at 24 h, 48 h and 72 h. At 24 h, day 6 and day 12, osteoblast differentiation was evaluated by assaying alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion and gene expression of various bone markers, using Real-Time-PCR. Alizarin Red staining and ALP histoenzymatic localisation were performed on day 12. Microscopic observations and MTS showed an absence of cytotoxicity in the three investigated bioactive glasses. B75-Sr5 particles in cell cultures, in comparison with those of B75 and B75-Sr1, resulted in a significant up-regulation of Runx2, Osterix, Dlx5, collagen I, ALP, bone sialoprotein (BSP) and OC mRNA levels on day 12, which was associated with an increase of ALP activity on day 6 and OC secretion on day 12. In conclusion, osteoblast differentiation of foetal mouse calvarial cells was enhanced in the presence of bioactive glass particles containing 5 wt.% strontium. Thus, B75-Sr5 may represent a promising bone-grafting material for bone regeneration procedures.
Souza, C; Santos, T C; Murakami, A E; Iwaki, L C V; Mello, J F
2017-10-01
The aim of this study was to evaluate the effect of dietary supplementation of vitamin K (vit K) and Ca in the diets of laying hens on bone and blood parameters and performance during the growing phase and the effects on the laying phase up to 32 weeks. The study utilized 120 Hy-Line W-36 pullets in the growing phase (13-18 weeks), 80 laying hens in the production phase (20-32 weeks), distributed in a completely randomized design in a 2 × 5 factorial arrangement, two levels of Ca (0.8 and 1.4%) and five levels of vit K supplementation (0, 2, 8, 16 and 32 mg/kg) with four experimental units. An experimental diet was fed during the growing phase, and the commercial diet was fed during the production phase and were analysed for biochemistry and bone variables at 18 and 32 weeks. In pullets, a significant interaction of levels of vit K and Ca was observed for total serum calcium (mg/dl), Seedor index, Ca in the bones (%) and medullary bone (%). Pullets at 18 weeks of age, receiving diets with 1.4% Ca, displayed a quadratic effect of vit K with better results for these variables with 17.86, 14.59, 14.48 and 16.80 mg/kg of vit K, respectively. For level 0.8% Ca no effect of vit K was observed. The treatments during the growing phase had no effect on egg production, performance and biochemistry serum until 32 weeks. Medullary bone (%), there was a significant interaction for 1.4% Ca and a quadratic effect for vit K, with greater medullary bone areas observed with 6.09 mg/kg vit K in the diet. Supplementation with vit K in a diet with 1.4% Ca during the growing phase allowed for an increase in the area of medullary bone at 18 weeks, which was maintained until 32 weeks. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Fabrication and characterization of magnesium scaffold using different processing parameters
NASA Astrophysics Data System (ADS)
Toghyani, Saeid; Khodaei, Mohammad
2018-03-01
Structural and mechanical properties of scaffolds are important for hard tissue reconstruction. In this study, magnesium scaffolds were fabricated using space holder method for bone tissue reconstruction and the effect of cold compaction pressure and also volume percent of porosity on structural and mechanical properties of scaffolds were investigated using scanning electron microscopy (SEM) and uniaxial compression test. The carbamide spacer agent was also removed after pellet compaction, using NaOH solution and ethanol for the first time and their effect on phases present in scaffold after sintering was investigated using x-ray diffraction (XRD) analysis. Based on the results of mechanical and structural assessments, the optimum cold compaction pressure was selected 350 MPa for pellet compaction. The elastic modulus and strength of magnesium scaffolds including 67 vol.% porosity were in the range of 0.20–0.28 GPa and 4–4.25 MPa, respectively which is comparable to cancellous bone tissue. The mechanical properties of magnesium scaffolds decreased by increasing the porosity. The results also revealed that ethanol is a more suitable liquid for carbamide removal compared to NaOH solution.
Shock Wave Propagation in Functionally Graded Mineralized Tissue
NASA Astrophysics Data System (ADS)
Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.
2017-06-01
In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.
Asefnejad, Azadeh; Behnamghader, Aliasghar; Khorasani, Mohammad Taghi; Farsadzadeh, Babak
2011-01-01
In this study, new nano-fluor-hydroxyapatite (nFHA)/polyurethane composite scaffolds were fabricated for potential use in bone tissue engineering. Polyester urethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and 1,4-butanediol as chain extender. Nano fluor-hydroxyapatite (nFHA) was successfully synthesized by sol-gel method. The solid–liquid phase separation and solvent sublimation methods were used for preparation of the porous composites. Mechanical properties, chemical structure, and morphological characteristics of the samples were investigated by compressive test, Fourier transform infrared, and scanning electron microscopy (SEM) techniques, respectively. The effect of nFHA powder content on porosity and pore morphology was investigated. SEM images demonstrated that the scaffolds were constituted of interconnected and homogeneously distributed pores. The pore size of the scaffolds was in the range 50–250 μm. The result obtained in this research revealed that the porosity and pore average size decreased and compressive modulus increased with nFHA percentage. Considering morphological, physical, and mechanical properties, the scaffold with a higher ratio of nFHA has suitable potential use in tissue regeneration. PMID:21289986
Autoradiographic method for quantitation of deposition and distribution of radiocalcium in bone
Lawrence Riggs, B; Bassingthwaighte, James B.; Jowsey, Jenifer; Peter Pequegnat, E
2010-01-01
A method is described for quantitating autoradiographs of bone-seeking isotopes in microscopic sections of bone. Autoradiographs of bone sections containing 45Ca and internal calibration standards are automatically scanned with a microdensitometer. The digitized optical density output is stored on magnetic tape and is converted by computer to equivalent activity of 45Ca per gram of bone. The computer determines the total 45Ca uptake in the bone section and, on the basis of optical density and anatomic position, quantitatively divides the uptake into 4 components, each representing a separate physiologic process (bone formation, secondary mineralization, diffuse long-term exchange, and surface short-term exchange). The method is also applicable for quantitative analysis of microradiographs of bone sections for mineral content and density. PMID:5416906
Prado Wohlwend, S; Sánchez Vaño, R; Sopena Novales, P; Uruburu García, E; Aparisi Rodríguez, F; Martínez Carsí, C
The coexistence of different bone diseases in the same patient involves a complex differential diagnosis. A patient is presented who was studied due to a renal mass that showed many sclerotic lesions in spine and limbs in conventional radiology and CT. These lesions were evaluated with 99m TC-HDP bone scintigraphy and 18 F-FDG PET/CT, which helped to obtain the definitive pathological diagnosis of osteopoikilosis (OP) co-existing with gastric cancer bone metastases. Of the different imaging scans performed, bone scintigraphy was particularly relevant due to its ability to discriminate between benign and metastatic bone disease. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasslinger, Patricia; Vass, Viktoria; Dejaco, Alexander; Blanchard, Romane; Örlygsson, Gissur; Gargiulo, Paolo; Hellmich, Christian
2016-05-01
Due to its high resolution, micro-CT (Computed Tomograph) scanning is the key to assess bone quality of sham and OVX (ovariectomized) rats. Combination of basic X-ray physics, such as the energy- and chemistry-dependence of attenuation coefficients, with results from ashing tests on rat bones, delivers mineral, organic, and water volume fractions within the voxels. Additional use of a microelastic model for bone provides voxel-specific elastic properties. The new method delivers realistic bone mass densities, and reveals that OVX protocols may indeed induce some bone mass loss, while the average composition of the bone tissue remains largely unaltered.
NASA Astrophysics Data System (ADS)
Qiu, Yuchen; Wang, Xingwei; Chen, Xiaodong; Li, Yuhua; Liu, Hong; Li, Shibo; Zheng, Bin
2010-02-01
Visually searching for analyzable metaphase chromosome cells under microscopes is quite time-consuming and difficult. To improve detection efficiency, consistency, and diagnostic accuracy, an automated microscopic image scanning system was developed and tested to directly acquire digital images with sufficient spatial resolution for clinical diagnosis. A computer-aided detection (CAD) scheme was also developed and integrated into the image scanning system to search for and detect the regions of interest (ROI) that contain analyzable metaphase chromosome cells in the large volume of scanned images acquired from one specimen. Thus, the cytogeneticists only need to observe and interpret the limited number of ROIs. In this study, the high-resolution microscopic image scanning and CAD performance was investigated and evaluated using nine sets of images scanned from either bone marrow (three) or blood (six) specimens for diagnosis of leukemia. The automated CAD-selection results were compared with the visual selection. In the experiment, the cytogeneticists first visually searched for the analyzable metaphase chromosome cells from specimens under microscopes. The specimens were also automated scanned and followed by applying the CAD scheme to detect and save ROIs containing analyzable cells while deleting the others. The automated selected ROIs were then examined by a panel of three cytogeneticists. From the scanned images, CAD selected more analyzable cells than initially visual examinations of the cytogeneticists in both blood and bone marrow specimens. In general, CAD had higher performance in analyzing blood specimens. Even in three bone marrow specimens, CAD selected 50, 22, 9 ROIs, respectively. Except matching with the initially visual selection of 9, 7, and 5 analyzable cells in these three specimens, the cytogeneticists also selected 41, 15 and 4 new analyzable cells, which were missed in initially visual searching. This experiment showed the feasibility of applying this CAD-guided high-resolution microscopic image scanning system to prescreen and select ROIs that may contain analyzable metaphase chromosome cells. The success and the further improvement of this automated scanning system may have great impact on the future clinical practice in genetic laboratories to detect and diagnose diseases.
Prevalence of Poor Bone Quality in Women Undergoing Spinal Fusion Using Biomechanical-CT Analysis.
Burch, Shane; Feldstein, Michael; Hoffmann, Paul F; Keaveny, Tony M
2016-02-01
Retrospective, cross-sectional analysis of vertebral bone quality in spine-fusion patients at a single medical center. To characterize the prevalence of osteoporosis and fragile bone strength in a spine-fusion population of women with an age range of 50 years to 70 years. Fragile bone strength is defined as the level of vertebral strength below which a patient is at as high a risk of future vertebral fracture as a patient having bone density-defined osteoporosis. Poor bone quality--defined here as the presence of either osteoporosis or fragile bone strength--is a risk factor for spine-fusion patients that often goes undetected but can now be assessed preoperatively by additional postprocessing of computed tomography (CT) scans originally ordered for perioperative clinical assessment. Utilizing such perioperative CT scans for a cohort of 98 women (age range: 51-70 yr) about to undergo spine fusion, we retrospectively used a phantomless calibration technique and biomechanical-CT postprocessing analysis to measure vertebral trabecular bone mineral density (BMD) (in mg/cm³) and by nonlinear finite element analysis, vertebral compressive strength (in Newtons, N) in the L1 or L2 vertebra. Preestablished validated threshold values were used to define the presence of osteoporosis (trabecular BMD of 80 mg/cm³ or lower) and fragile bone strength (vertebral strength of 4500 N or lower). Fourteen percent of the women tested positive for osteoporosis, 27% tested positive for fragile bone strength, and 29% were classified as having poor bone quality (either osteoporosis or fragile bone strength). Over this narrow age range, neither BMD nor vertebral strength were significantly correlated with age, weight, height, or body mass index (P values 0.14-0.97 for BMD; 0.13-0.51 for strength). Poor bone quality appears to be common in women between ages 50 years and 70 years undergoing spinal fusion surgery. 3.
Genetic influences on bone loss in the San Antonio Family Osteoporosis Study
Shaffer, John R.; Kammerer, Candace M.; Bruder, Jan M.; Cole, Shelley A.; Dyer, Thomas D.; Almasy, Laura; MacCluer, Jean W.; Blangero, John; Bauer, Richard L.; Mitchell, Braxton D.
2009-01-01
Summary The genetic contribution to age-related bone loss is not well understood. We estimated that genes accounted for 25–45% of variation in 5-year change in bone mineral density in men and women. An autosome-wide linkage scan yielded no significant evidence for chromosal regions implicated in bone loss. Introduction The contribution of genetics to acquisition of peak bone mass is well documented, but little is know about the influence of genes on subsequent bone loss with age. We therefore measured 5-year change in bone mineral density (BMD) in 300 Mexican Americans (>45 years of age) from the San Antonio Family Osteoporosis Study to identify genetic factors influencing bone loss. Methods Annualized change in BMD was calculated from measurements taken 5.5 years apart. Heritability (h2) of BMD change was estimated using variance components methods and autosome-wide linkage analysis was carried out using 460 microsatellite markers at a mean 7.6 cM interval density. Results Rate of BMD change was heritable at the forearm (h2=0.31, p=0.021), hip (h2 =0.44, p=0.017), spine (h2=0.42, p=0.005), but not whole body (h2=0.18, p=0.123). Covariates associated with rapid bone loss (advanced age, baseline BMD, female sex, low baseline weight, postmenopausal status, and interim weight loss) accounted for 10% to 28% of trait variation. No significant evidence of linkage was observed at any skeletal site. Conclusions This is one of the first studies to report significant heritability of BMD change for weight-bearing and non-weight-bearing bones in an unselected population and the first linkage scan for change in BMD. PMID:18414963
Novotny, Vojtech; Nacu, Aliona; Kvistad, Christopher E; Fromm, Annette; Neckelmann, Gesche F; Khanevski, Andrej N; Tobro, Haakon; Waje-Andreassen, Ulrike; Naess, Halvor; Thomassen, Lars; Logallo, Nicola
2017-11-08
Contrast-enhanced sonothrombolysis (CEST) seems to be a safe and promising treatment in acute ischemic stroke. It remains unknown if temporal bone features may influence the efficacy of CEST. We investigated the association between different temporal bone features on admission computed tomography (CT) scan and the outcome in acute ischemic stroke patients included in the randomized Norwegian Sonothrombolysis in Acute Stroke Study (NOR-SASS). Patients diagnosed as stroke mimics and those with infratentorial stroke or with incorrect insonation were excluded. We retrospectively assessed temporal bone heterogeneity (presence of diploë), diploë ratio, thickness, and density on admission CT scans. National institute of Health Stroke Scale (NIHSS) at 24 h and modified Rankin Scale (mRS) at 3 months were correlated with CT findings both in CEST and sham CEST patients. A total of 99 patients were included of which 52 were assigned to CEST and 47 to sham CEST. Approximately 20% patients had a heterogeneous temporal bone in both the CEST and sham CEST group. All temporal bone CT features studied were associated with female sex. In the CEST group, temporal bone heterogeneity (p = 0.006) and higher temporal bone diploë ratio (p = 0.002) were associated with higher NIHSS at 24 h. There was no association between temporal bone features and mRS at 3 months. Approximately 20% of acute ischemic stroke patients have heterogeneous temporal bone and may be resistant to standard 2-MHz transcranial Doppler ultrasound treatment. Sonothrombolysis resistance may easily be predicted by admission CT for better selection.
Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas
2017-12-01
Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.
Campbell, Graeme M; Sophocleous, Antonia
2014-01-01
Micro-computed tomography (micro-CT) is a high-resolution imaging modality that is capable of analysing bone structure with a voxel size on the order of 10 μm. With the development of in vivo micro-CT, where disease progression and treatment can be monitored in a living animal over a period of time, this modality has become a standard tool for preclinical assessment of bone architecture during disease progression and treatment. For meaningful comparison between micro-CT studies, it is essential that the same parameters for data acquisition and analysis methods be used. This protocol outlines the common procedures that are currently used for sample preparation, scanning, reconstruction and analysis in micro-CT studies. Scan and analysis methods for trabecular and cortical bone are covered for the femur, tibia, vertebra and the full neonate body of small rodents. The analysis procedures using the software provided by ScancoMedical and Bruker are discussed, and the routinely used bone architectural parameters are outlined. This protocol also provides a section dedicated to in vivo scanning and analysis, which covers the topics of anaesthesia, radiation dose and image registration. Because of the expanding research using micro-CT to study other skeletal sites, as well as soft tissues, we also provide a review of current techniques to examine the skull and mandible, adipose tissue, vasculature, tumour severity and cartilage. Lists of recommended further reading and literature references are included to provide the reader with more detail on the methods described. PMID:25184037
Evidence for arrested bone formation during spaceflight
NASA Technical Reports Server (NTRS)
Turner, R. T.; Bobyn, J. D.; Duvall, P.; Morey, E. R.; Baylink, D. J.; Spector, M.
1982-01-01
Addressing the question of whether the bone formed in space is unusual, the morphology of bone made at the tibial diaphysis of rats before, during, and after spaceflight is studied. Evidence of arrest lines in the bone formed in space is reported suggesting that bone formation ceases along portions of the periosteum during spaceflight. Visualized by microradiography, the arrest lines are shown to be less mineralized than the surrounding bone matrix. When viewed by scanning electron microscopy, it is seen that bone fractures more readily at the site of an arrest line. These observations are seen as suggesting that arrest lines are a zone of weakness and that their formation may result in decreased bone strength in spite of normalization of bone formation after flight. The occurrence, location, and morphology of arrest lines are seen as suggesting that they are a visible result of the phenomenon of arrested bone formation.
NASA Technical Reports Server (NTRS)
1996-01-01
NASA studies for astronaut health in long-term space missions led to the development of the Mechanical Response Tissue Analyzer (MRTA), a research tool for astronaut disuse, osteoporosis and related bone disorders among the general population. Ames Research Center and Stanford University generated a workable device and with Gait Scan, Inc., refined and commercialized it. The MRTA is a portable dsinstrument that measures the bending stiffness of bones using electrically-induced vibration and detects and analyzes the frequencies of the resonating bone. Unlike some other methods, the MRTA uses no radiation and is fast, simple and relatively inexpensive.
Gil, Tae Young; Lee, Do Kyung; Lee, Jung Min; Yoo, Eun Sun; Ryu, Kyung-Ha
2014-06-01
To evaluate the potential utility of (123)I-metaiodobenzylguanine ((123)I-MIBG) scintigraphy and (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) for the detection of primary and metastatic lesions in pediatric neuroblastoma (NBL) patients, and to determine whether (18)F-FDG PET is as beneficial as (123)I-MIBG imaging. We selected 8 NBL patients with significant residual mass after operation and who had paired (123)I-MIBG and (18)F-FDG PET images that were obtained during the follow-up. We retrospectively reviewed the clinical charts and the findings of 45 paired scans. Both scans correlated relatively well with the disease status as determined by standard imaging modalities during follow-up; the overall concordance rates were 32/45 (71.1%) for primary tumor sites and 33/45 (73.3%) for bone-bone marrow (BM) metastatic sites. In detecting primary tumor sites, (123)I-MIBG might be superior to (18)F-FDG PET. The sensitivity of (123)I-MIBG and (18)F-FDG PET were 96.7% and 70.9%, respectively, and their specificity were 85.7% and 92.8%, respectively. (18)F-FDG PET failed to detect 9 true NBL lesions in 45 follow-up scans (false negative rate, 29%) with positive (123)I-MIBG. For bone-BM metastatic sites, the sensitivity of (123)I-MIBG and (18)F-FDG PET were 72.7% and 81.8%, respectively, and the specificity were 79.1% and 100%, respectively. (123)I-MIBG scan showed higher false positivity (20.8%) than (18)F-FDG PET (0%). (123)I-MIBG is superior for delineating primary tumor sites, and (18)F-FDG PET could aid in discriminating inconclusive findings on bony metastatic NBL. Both scans can be complementarily used to clearly determine discrepancies or inconclusive findings on primary or bone-BM metastatic NBL during follow-up.
Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H
1998-04-01
Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.
Duran, I; Martakis, K; Hamacher, S; Stark, C; Semler, O; Schoenau, E
2018-05-01
The aim was to describe the effect of age, gender, height, different stages of human life, and body fat on the functional muscle-bone unit. All these factors had a significant effect on the functional muscle-bone unit and should be addressed when assessing functional muscle-bone unit in children and adults. For the clinical evaluation of the functional muscle-bone unit, it was proposed to evaluate the adaptation of the bone to the acting forces. A frequently used parameter for this is the total body less head bone mineral content (TBLH-BMC) determined by dual-energy X-ray absorptiometry (DXA) in relation to the lean body mass (LBM by DXA). LBM correlates highly with muscle mass. Therefore, LBM is a surrogate parameter for the muscular forces acting in everyday life. The aim of the study was to describe the effect of age and gender on the TBLH-BMC for LBM and to evaluate the impact of other factors, such as height, different stages of human life, and of body fat. As part of the National Health and Nutrition Examination Survey (NHANES) study, between the years 1999-2006 whole-body DXA scans on randomly selected Americans from 8 years of age were carried out. From all eligible DXA scans (1999-2004), three major US ethnic groups were evaluated (non-Hispanic Whites, non-Hispanic Blacks, and Mexican Americans) for further statistical analysis. For the statistical analysis, the DXA scans of 8190 non-Hispanic White children and adults (3903 female), of 4931 non-Hispanic Black children and adults (2250 female) and 5421 of Mexican-American children and adults (2424 female) were eligible. Age, gender, body height, and especially body fat had a significant effect on the functional muscle-bone unit. When assessing TBLH-BMC for LBM in children and adults, the effects of age, gender, body fat, and body height should be addressed. These effects were analyzed for the first time in such a large cohort.
Hangartner, T N; Short, D F; Eldar-Geva, T; Hirsch, H J; Tiomkin, M; Zimran, A; Gross-Tsur, V
2016-12-01
Anthropometric adjustments of bone measurements are necessary in Prader-Willi syndrome patients to correctly assess the bone status of these patients. This enables physicians to get a more accurate diagnosis of normal versus abnormal bone, allow for early and effective intervention, and achieve better therapeutic results. Bone mineral density (BMD) is decreased in patients with Prader-Willi syndrome (PWS). Because of largely abnormal body height and weight, traditional BMD Z-scores may not provide accurate information in this patient group. The goal of the study was to assess a cohort of individuals with PWS and characterize the development of low bone density based on two adjustment models applied to a dataset of BMD and bone mineral content (BMC) from dual-energy X-ray absorptiometry (DXA) measurements. Fifty-four individuals, aged 5-20 years with genetically confirmed PWS, underwent DXA scans of spine and hip. Thirty-one of them also underwent total body scans. Standard Z-scores were calculated for BMD and BMC of spine and total hip based on race, sex, and age for all patients, as well as of whole body and whole-body less head for those patients with total-body scans. Additional Z-scores were generated based on anthropometric adjustments using weight, height, and percentage body fat and a second model using only weight and height in addition to race, sex, and age. As many PWS patients have abnormal anthropometrics, addition of explanatory variables weight, height, and fat resulted in different bone classifications for many patients. Thus, 25-70 % of overweight patients, previously diagnosed as normal, were subsequently diagnosed as below normal, and 40-60 % of patients with below-normal body height changed from below normal to normal depending on bone parameter. This is the first study to include anthropometric adjustments into the interpretation of BMD and BMC in children and adolescents with PWS. This enables physicians to get a more accurate diagnosis of normal versus abnormal BMD and BMC and allows for early and effective intervention.
Development and evaluation of an articulated registration algorithm for human skeleton registration
NASA Astrophysics Data System (ADS)
Yip, Stephen; Perk, Timothy; Jeraj, Robert
2014-03-01
Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the skeletons were deformed. Articulated registration is superior to rigid and deformable registrations by capturing global flexibility while preserving local rigidity inherent in skeleton registration. Therefore, articulated registration can be employed to accurately register the whole-body human skeletons, and it enables the treatment response assessment of various bone diseases.
Berg, Britt-Isabelle; Dagassan-Berndt, Dorothea; Goldblum, David; Kunz, Christoph
2015-04-01
The aim of this study was to investigate the feasibility and effectiveness of cone-beam computed tomography (CBCT) in the planning, assessment, and follow-up for osteo-odonto-keratoprosthesis (OOKP). Six OOKP patients received a CBCT scan. CBCT scans were performed before and/or between ∼5 and 504 months after the primary OOKP intervention. Preoperative and postoperative results of the CBCT were assessed, regarding the available teeth and to assess the loss of bone in 1 patient, respectively. Resorption of the osteo-odonto-lamina was measured and graded. Five different measurements (I-V) were performed in the coronal and transversal views of CBCT. Four CBCT scans were performed preoperatively and 4 postoperatively. The follow-up time of the patients is between ∼1 to 528 months. Visualization of the potential donor teeth resulted in accurate 3-dimensional visualization of the tooth-lamina-bone complex. CBCT was found to help in the preoperative decision-making process (diameter of optical implant) and in enabling accurate postoperative evaluation of the bone volume and resorption zones of the OOKP. Loss of bone could be measured in a precise range and showed in the completed cases an average loss of 20.2%. The use of CBCT simplifies the preoperative decision making and ordering process. It also helps in determining the postoperative structure and resorption of the prosthesis.
Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinerstein, S.L.; Kovarsky, J.
1984-08-01
A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvismore » were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.« less
ASR-9 processor augmentation card (9-PAC) phase II scan-scan correlator algorithms
DOT National Transportation Integrated Search
2001-04-26
The report documents the scan-scan correlator (tracker) algorithm developed for Phase II of the ASR-9 Processor Augmentation Card (9-PAC) project. The improved correlation and tracking algorithms in 9-PAC Phase II decrease the incidence of false-alar...
Jung, Joo-Young; Cheon, Gi Jeong; Lee, Yun-Sang; Ha, Seunggyun; Chae, Mi-Hye; Chung, Yong-An; Yoon, Do Kyun; Bahk, Yong-Whee
2016-09-01
Currently, traumatic bone diseases are diagnosed by assessing the micro (99m)Tc-hydroxymethylene diphosphonate (HDP) uptake in injured trabeculae with ongoing osteoneogenesis demonstrated by gamma correction pinhole scan (GCPS). However, the mathematic size quantification of micro-uptake is not yet available. We designed and performed this phantom-based study to set up an in-vitro model of the mathematical calculation of micro-uptake by the pixelized measurement. The micro (99m)Tc-HDP deposits used in this study were spontaneously formed both in a large standard flood and small house-made dish phantoms. The processing was as follows: first, phantoms were flooded with distilled water and (99m)Tc-HDP was therein injected to induce micro (99m)Tc-HDP deposition; second, the deposits were scanned using parallel-hole and pinhole collimator to generally survey (99m)Tc-HDP deposition pattern; and third, the scans underwent gamma correction (GC) to discern individual deposits for size measurement. In original naïve scans, tracer distribution was simply nebulous in appearance and, hence, could not be measured. Impressively, however, GCPS could discern individual micro deposits so that they were calculated by pixelized measurement. Phantoms naturally formed micro (99m)Tc-HDP deposits that are analogous to (99m)Tc-HDP uptake on in-vivo bone scan. The smallest one we measured was 0.414 mm. Flooded phantoms and therein injected (99m)Tc-HDP form nebulous micro (99m)Tc-HDP deposits that are rendered discernible by GCPB and precisely calculable using pixelized measurement. This method can be used for precise quantitative and qualitative diagnosis of bone and joint diseases at the trabecular level.
Utilization of nuclear medicine scintigraphy in Taiwan, 1997-2009.
Hung, Mao-Chin; Hsieh, Wanhua Annie; Chang, Peter Wushou; Hwang, Jeng-Jong
2011-12-01
To analyze the utilization of nuclear medicine scintigraphy in the Taiwanese population within the national health-care system between 1997 and 2009. Based on the Taiwan's National Health Insurance Research Database of 1997-2009, a retrospective population-based analysis was conducted. Descriptive statistics and regression analysis were employed to analyze the frequencies and longitudinal trends in the utilization of diagnostic nuclear medicine procedures during the period. In addition, correlation analysis was applied to determine the correlated factors in the utility of nuclear medicine scintigraphy. The annual total nuclear medicine scintigraphy was estimated to be 256,389 on average in 1997-2009 and 11.7 per 1,000 population over the period. The frequency had increased by 67% over the years, from 8.2 per 1,000 population in 1997 to 13.7 per 1,000 population in 2009. The most frequently performed procedures were whole-body bone scans (33.4% of total) and myocardial perfusion scans (29.4% of total), with 4,615 and 5,620 increments per year, respectively. Most patients were in the age group of 41-65 years old when taking examinations. In addition, male subjects were slightly more than female patients (51.5 vs. 48.5%). Furthermore, the frequencies of whole-body bone scans and PET scans were proportional to the incidences of cancers (correlation coefficients were 0.96 and 0.94, respectively). The utilization of nuclear medicine scintigraphy with the National Health Insurance system in Taiwan has been changed considerably in the past 13 years. Both whole-body bone scan and myocardial perfusion scan were performed most often with significantly increases. The trend of nuclear medicine scintigraphy may have potential impact on making health-care policy in Taiwan.
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite was prepared from catfish bones, called catfish hydroxyapatite (CFHA), by mechanical and chemical treatment methods and was characterized by x-ray diffraction (X-RD) and scanning electron microscope (SEM) techniques to confirm the presence of hydroxyapatite. The ability of CFHA to rem...
Trisi, Paolo; Rao, Walter; Rebaudi, Alberto; Fiore, Peter
2003-02-01
The effect of the pure-phase beta-tricalcium phosphate (beta-TCP) Cerasorb on bone regeneration was evaluated in hollow titanium cylinders implanted in the posterior jaws of five volunteers. Beta-TCP particles were inserted inside the cylinders and harvested 6 months after placement. The density of the newly formed bone inside the bone-growing chambers measured 27.84% +/- 24.67% in test and 17.90% +/- 4.28% in control subjects, without a statistically significant difference. Analysis of the histologic specimens revealed that the density of the regenerated bone was related to the density of the surrounding bone. The present study demonstrates the spontaneous healing of infrabony artificial defects, 2.5 mm diameter, in the jaw. The pure beta-TCP was resorbed simultaneously with new bone formation, without interference with the bone matrix formation.
The Skeletal Biology of Hibernating Woodchucks (Marmota monax)
NASA Astrophysics Data System (ADS)
Doherty, Alison H.
Long periods of inactivity in most mammals lead to significant bone loss that may not be completely recovered during an individual's lifetime regardless of future activity. Extended bouts of inactivity are the norm for hibernating mammals. It remains largely unknown, however, how these animals avoid adversely affecting bone, their quality, and ultimately survival given the challenges posed to their skeletons by inactivity and nutritional deprivation during hibernation. The primary goal of this project was to identify the physiological mechanisms regulating bone density, area and strength during extended periods of annual inactivity in hibernating woodchucks (Marmota monax). The overall hypothesis that bone integrity is unaffected by several months of inactivity during hibernation in woodchucks was tested across multiple levels of biological function. To gain a holistic assessment of seasonal bone integrity, the locomotor behavior and estimated stresses acting on woodchuck bones were investigated in conjunction with computed tomography scans and three-point bending tests to determine bone density, geometry, and mechanical properties of the long bones throughout the year. In addition, serum protein expression was examined to ascertain bone resorption and formation processes indicative of overall annual skeletal health. It was determined that woodchucks avoid significant changes in gait preference, but experience a decrease in bending stresses acting on distal limb bones following hibernation. Computed tomography scans indicated that bone mass, distribution, and trabecular structure are maintained in these animals throughout the year. Surprisingly, cortical density increased significantly posthibernation. Furthermore, three-point bending tests revealed that although less stiff, woodchuck femora were just as tough during the hibernation season, unlike brittle bones associated with osteoporosis. Finally, bone serum markers suggested a net maintenance of bone resorption and formation processes throughout the year. Taken together, these findings strongly suggest that woodchucks do not lose bone to the extent that would be expected from a non-hibernating animal during four months of inactivity. It is concluded that bone integrity is not adversely affected by hibernation in woodchucks. The results of this work have several broader implications toward skeletal biology research, the evolution of skeletal plasticity, and biomedical applications to osteoporosis prevention and treatment.
Imaging of upper extremity stress fractures in the athlete.
Anderson, Mark W
2006-07-01
Although it is much less common than injuries in the lower extremities, an upper extremity stress injury can have a significant impact on an athlete. If an accurate and timely diagnosis is to be made, the clinician must have a high index of suspicion of a stress fracture in any athlete who is involved in a throwing, weightlifting, or upper extremity weight-bearing sport and presents with chronic pain in the upper extremity. Imaging should play an integral role in the work-up of these patients; if initial radiographs are unrevealing, further cross-sectional imaging should be strongly considered. Although a three-phase bone scan is highly sensitive in this regard, MRI has become the study of choice at most centers.
Fabrication of oriented hydroxyapatite film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Hirata, Keishiro; Kubota, Takafumi; Koyama, Daisuke; Takayanagi, Shinji; Matsukawa, Mami
2017-08-01
Hydroxyapatite (HAp) is compatible with bone tissue and is used mainly as a bone prosthetic material, especially as the coating of implants. Oriented HAp film is expected to be a high-quality epitaxial scaffold of the neonatal bone. To fabricate highly oriented HAp thin films via the conventional plasma process, we deposited the HAp film on a Ti coated silica glass substrate using RF magnetron sputtering in low substrate temperature conditions. The X-ray diffraction pattern of the film sample consisted of an intense (002) peak, corresponding to the highly oriented HAp. The (002) peak in XRD diagrams can be attributed either to the monoclinic phase or the hexagonal phase. Pole figure analysis showed that the (002) plane grew parallel to the surface of the substrate, without inclination. Transmission Electron Microscope analysis also showed the fabrication of aligned HAp crystallites. The selected area diffraction patterns indicated the existence of monoclinic phase. The existence of hexagonal phase could not be judged. These results indicate the uniaxial films fabricated by this technique enable to be the epitaxial scaffold of the neonatal bone. This scaffold can be expected to promote connection with the surrounding bone tissue and recovery of the dynamic characteristics of the bone.
Macrodamage Accumulation Model for a Human Femur
2017-01-01
The objective of this study was to more fully understand the mechanical behavior of bone tissue that is important to find an alternative material to be used as an implant and to develop an accurate model to predict the fracture of the bone. Predicting and preventing bone failure is an important area in orthopaedics. In this paper, the macrodamage accumulation models in the bone tissue have been investigated. Phenomenological models for bone damage have been discussed in detail. In addition, 3D finite element model of the femur prepared from imaging data with both cortical and trabecular structures is delineated using MIMICS and ANSYS® and simulated as a composite structure. The damage accumulation occurring during cyclic loading was analyzed for fatigue scenario. We found that the damage accumulates sooner in the multiaxial than in the uniaxial loading condition for the same number of cycles, and the failure starts in the cortical bone. The damage accumulation behavior seems to follow a three-stage growth: a primary phase, a secondary phase of damage growth marked by linear damage growth, and a tertiary phase that leads to failure. Finally, the stiffness of the composite bone comprising the cortical and trabecular bone was significantly different as expected. PMID:28951659
Slimani, Samy; Nezzar, Adlen; Makhloufi, Hachemi
2013-01-01
Melorheostosis is a very rare sclerosing bone disorder that involves frequently one limb. It may be asymptomatic, but pain and limb deformity may occur and can be very debilitating. Different reports have indicated efficacy of bisphosphonates (pamidronate and etidronate) on symptoms. We report an adult patient with a very painful melorheostosis, who improved after treatment with zoledronate, either on symptoms or on bone scans. PMID:23813581
Pérez-Castrillón, José Luis; Pinacho, Florentino; De Luis, Daniel; Lopez-Menendez, María; Dueñas Laita, Antonio
2010-01-01
Osteoclasts are specialized cells that initiate the process of bone resorption, which has two phases, dissolution of the mineral component and degradation of the organic matrix, in which cathepsin K plays a key role. Cathepsin K inhibitors, which block the activity of cathepsin on bone resorption lacunae, may be a new therapeutic option in osteoporosis. Odanacatib is a nonpeptidic biaryl inhibitor of cathepsin K. Two studies have evaluated the efficacy and safety of odanacatib, a phase I study to determine the dose and a phase II study of safety and efficacy. Due to the long half-life of odanacatib and the similar effects of different doses on bone remodeling markers, a weekly dosage was chosen for the phase II trail, with the best results being obtained with a dose of 50 mg. At 36 months, increases in bone mineral density similar to those produced by other powerful antiresorptive drugs (zoledronate and denosumab) were observed but there were differences in the behaviour of bone remodeling markers. Data on fractures from the phase III trial currently in development are required to confirm these possible advantages. PMID:20948576
A structural approach in the study of bones: fossil and burnt bones at nanosize scale
NASA Astrophysics Data System (ADS)
Piga, Giampaolo; Baró, Maria Dolors; Escobal, Irati Golvano; Gonçalves, David; Makhoul, Calil; Amarante, Ana; Malgosa, Assumpció; Enzo, Stefano; Garroni, Sebastiano
2016-12-01
We review the different factors affecting significantly mineral structure and composition of bones. Particularly, it is assessed that micro-nanostructural and chemical properties of skeleton bones change drastically during burning; the micro- and nanostructural changes attending those phases manifest themselves, amongst others, in observable alterations to the bones colour, morphology, microstructure, mechanical strength and crystallinity. Intense changes involving the structure and chemical composition of bones also occur during the fossilization process. Bioapatite material is contaminated by an heavy fluorination process which, on a long-time scale reduces sensibly the volume of the original unit cell, mainly the a-axis of the hexagonal P63/m space group. Moreover, the bioapatite suffers to a varying degree of extent by phase contamination from the nearby environment, to the point that rarely a fluorapatite single phase may be found in fossil bones here examined. TEM images supply precise and localized information, on apatite crystal shape and dimension, and on different processes that occur during thermal processes or fossilization of ancient bone, complementary to that given by X-ray diffraction and Attenuated Total Reflection Infrared spectroscopy. We are presenting a synthesis of XRD, ATR-IR and TEM results on the nanostructure of various modern, burned and palaeontological bones.
Progesterone as a bone-trophic hormone.
Prior, J C
1990-05-01
Experimental, epidemiological, and clinical data indicate that progesterone is active in bone metabolism. Progesterone appears to act directly on bone by engaging an osteoblast receptor or indirectly through competition for a glucocorticoid osteoblast receptor. Progesterone seems to promote bone formation and/or increase bone turnover. It is possible, through estrogen-stimulated increased progesterone binding to the osteoblast receptor, that progesterone plays a role in the coupling of bone resorption with bone formation. A model of the interdependent actions of progesterone and estrogen on appropriately-"ready" cells in each bone multicellular unit can be tied into the integrated secretions of these hormones within the ovulatory cycle. Figure 5 is an illustration of this concept. It shows the phases of the bone remodeling cycle in parallel with temporal changes in gonadal steroids across a stylized ovulatory cycle. Increasing estrogen production before ovulation may reverse the resorption occurring in a "sensitive" bone multicellular unit while gonadal steroid levels are low at the time of menstrual flow. The bone remodeling unit would then be ready to begin a phase of formation as progesterone levels peaked in the midluteal phase. From this perspective, the normal ovulatory cycle looks like a natural bone-activating, coherence cycle. Critical analysis of the reviewed data indicate that progesterone meets the necessary criteria to play a causal role in mineral metabolism. This review provides the preliminary basis for further molecular, genetic, experimental, and clinical investigation of the role(s) of progesterone in bone remodeling. Much further data are needed about the interrelationships between gonadal steroids and the "life cycle" of bone. Feldman et al., however, may have been prophetic when he commented; "If this anti-glucocorticoid effect of progesterone also holds true in bone, then postmenopausal osteoporosis may be, in part, a progesterone deficiency disease."
Cost-Effectiveness of Diagnostic Strategies for Suspected Scaphoid Fractures.
Yin, Zhong-Gang; Zhang, Jian-Bing; Gong, Ke-Tong
2015-08-01
The aim of this study was to assess the cost effectiveness of multiple competing diagnostic strategies for suspected scaphoid fractures. With published data, the authors created a decision-tree model simulating the diagnosis of suspected scaphoid fractures. Clinical outcomes, costs, and cost effectiveness of immediate computed tomography (CT), day 3 magnetic resonance imaging (MRI), day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, week 2 radiographs-MRI, week 2 radiographs-bone scan, and immediate MRI were evaluated. The primary clinical outcome was the detection of scaphoid fractures. The authors adopted societal perspective, including both the costs of healthcare and the cost of lost productivity. The incremental cost-effectiveness ratio (ICER), which expresses the incremental cost per incremental scaphoid fracture detected using a strategy, was calculated to compare these diagnostic strategies. Base case analysis, 1-way sensitivity analyses, and "worst case scenario" and "best case scenario" sensitivity analyses were performed. In the base case, the average cost per scaphoid fracture detected with immediate CT was $2553. The ICER of immediate MRI and day 3 MRI compared with immediate CT was $7483 and $32,000 per scaphoid fracture detected, respectively. The ICER of week 2 radiographs-MRI was around $170,000. Day 3 bone scan, week 2 radiographs alone, week 2 radiographs-CT, and week 2 radiographs-bone scan strategy were dominated or extendedly dominated by MRI strategies. The results were generally robust in multiple sensitivity analyses. Immediate CT and MRI were the most cost-effective strategies for diagnosing suspected scaphoid fractures. Economic and Decision Analyses Level II. See Instructions for Authors for a complete description of levels of evidence.
Akoto, Ralph; Müller-Hübenthal, Jonas; Balke, Maurice; Albers, Malte; Bouillon, Bertil; Helm, Philip; Banerjee, Marc; Höher, Jürgen
2015-08-19
Bone tunnel enlargement is a phenomenon present in all anterior cruciate ligament (ACL)- reconstruction techniques. It was hypothesized that press-fit fixation using a free autograft bone plug reduces the overall tunnel size in the tibial tunnel. In a prospective cohort study twelve patients who underwent primary ACL reconstruction using an autologous quadriceps tendon graft and adding a free bone block for press-fit fixation (PF) in the tibial tunnel were matched to twelve patients who underwent ACL reconstruction with a hamstring graft and interference screw fixation (IF). The diameters of the bone tunnels were analysed by a multiplanar reconstruction technique (MPR) in a CT scan three months postoperatively. Manual and instrumental laxity (Lachman test, Pivot-shift test, Rolimeter) and functional outcome scores (International Knee Documentation Committee sore, Tegner activity level) were measured after one year follow up. In the PF group the mean bone tunnel diameter at the level of the joint entrance was not significantly enlarged. One and two centimeter distal to the bone tunnel diameter was reduced by 15% (p = .001). In the IF group the bone tunnel at the level of the joint entrance was enlarged by 14% (p = .001). One and two centimeter distal to the joint line the IF group showed a widening of the bone tunnel by 21% (p < .001) One and two centimeter below the joint line the bone tunnel was smaller in the PF group when compared to the IF group (p < .001). No significant difference for laxity test and functional outcome scores could be shown. This study demonstrates that press-fit fixation with free autologous bone plugs in the tibial tunnel results in significantly smaller diameter of the tibial tunnel compared to interference screw fixation.
Nogueira, Luísa; Quatrehomme, Gérald; Bertrand, Marie-France; Rallon, Christophe; Ceinos, Romain; du Jardin, Philippe; Adalian, Pascal; Alunni, Véronique
2017-03-01
This experimental study examined the lesions produced by a hatchet on human bones (tibiae). A total of 30 lesions were produced and examined macroscopically (naked eye) and by stereomicroscopy. 13 of them were also analyzed using scanning electron microscopy. The general shape of the lesion, both edges, both walls, the kerf floor and the extremities were described. The length and maximum width of the lesions were also recorded. The microscopic analysis of the lesions led to the description of a sharp-blunt mechanism. Specific criteria were identified (lateral pushing back, fragmentation of the upraising, fossa dug laterally to the edge and vertical striae) enabling the forensic expert to conclude that a hacking instrument was used. These criteria are easily identifiable using scanning electron microscopy, but can also be observed with stereomicroscopy. Overall, lateral pushing back and vertical striae visible using stereomicroscopy and scanning electron microscopy signal the use of a hacking tool.
NASA Astrophysics Data System (ADS)
Lee, Kang Il
2012-08-01
The present study aims to provide insight into the relationships of the phase velocity with the microarchitectural parameters in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 22 bovine femoral trabecular bone samples by using a pair of transducers with a diameter of 25.4 mm and a center frequency of 0.5 MHz. The phase velocity exhibited positive correlation coefficients of 0.48 and 0.32 with the ratio of bone volume to total volume and the trabecular thickness, respectively, but a negative correlation coefficient of -0.62 with the trabecular separation. The best univariate predictor of the phase velocity was the trabecular separation, yielding an adjusted squared correlation coefficient of 0.36. The multivariate regression models yielded adjusted squared correlation coefficients of 0.21-0.36. The theoretical phase velocity predicted by using a stratified model for wave propagation in periodically stratified media consisting of alternating parallel solid-fluid layers showed reasonable agreements with the experimental measurements.
Krishnan, Ullas Chandrika; Byanyima, Rosemary Kusaba; Faith, Ameda; Kamulegeya, Adriane
2017-01-01
Aim: The aim of this study was to investigate epidemiological features of maxillofacial fractures within trauma patients who had head and neck computed tomography (CT) scan at the Mulago National referral hospital. Methods: CT scan records of trauma patients who had head scans at the Department of Radiology over 1-year period were accessed. Data collected included sociodemographic factors, type and etiology of injury, and concomitant maxillofacial injuries. Results: A total of 1330 trauma patients underwent head and neck CT scan in the 1-year study period. Out of these, 130 were excluded due to incomplete or unclear records and no evidence of injury. Of the remaining 1200, 32% (387) had maxillofacial fractures. The median age of the patients with maxillofacial fractures was 28 (range = 18–80) years and 18–27 age group was most common at 47.5%. Road traffic accidents constituted 49.1% of fractures. The single most affected isolated bone was the frontal bone (23%). The number of maxillofacial bones fractured was predicted by age group (df = 3 F = 5.358, P = 0.001), association with other fractures (df = 1 F = 5.317, P = 0.03). Conclusions: Good matched case–control prospective studies are needed to enable us tease out the finer difference in the circumstances and pattern of injury if we are to design appropriate preventive measures. PMID:29291177
A fundamental study of cryoablation on normal bone: diagnostic imaging and histopathology.
Yoshimoto, Yuta; Azuma, Kazuo; Miya, Atsushi; Makino, Eiichi; Nakamoto, Hidekazu; Abe, Nobutaka; Kaburagi, Masashi; Ueda, Hisaki; Kuroda, Kohei; Tsuka, Takeshi; Sugiyama, Akihiko; Imagawa, Tomohiro; Murahata, Yusuke; Itoh, Norihiko; Osaki, Tomohiro; Shimizu, Tadashi; Okamoto, Yoshiharu
2014-10-01
Cryoablation is a minimally invasive cancer treatment. In this study, the effects of cryoablation on normal rabbit bone were evaluated using imaging and histopathological examinations. Cryoablation was performed using a Cryo-Hit (Galil Medical, Yokneam, Israel). Under anesthesia, one cryoablation needle was inserted at the center of the femur (day 0). To create an ice ball (2 x 3 cm), two 10-min freeze cycles were performed, separated by a 5-min thaw cycle. During cryoablation, changes in the bone and regional tissue were monitored using magnetic resonance imaging (MRI). MRI scans, computed tomography (CT) scans, and collections from the femur (for histopathological evaluation) were performed on days 7, 14, 28, and 56. In terms of the all rabbits' general conditions, we did not observe lameness, decreased appetite, or any other side effects during the experimental periods. Histopathological evaluations of the femur were performed using hematoxylin and eosin staining. MRI indicated inflammation around the ice ball on day 7. Subsequently, the area of inflammation gradually decreased from days 14 to 56. In the histopathological examination, necrosis of bone marrow cells and endosteum were observed from days 7 to 56. No regeneration of bone marrow cells was observed during the experimental period. On the other hand, cryoablation did not influence osteoblasts. Furthermore, there was no pathologic fracture during the experimental period. Our results suggest that cryoablation does not induce severe adverse effects on normal bone, and therefore has potential as a therapeutic option for bone tumors, including metastatic tumors to bone. Copyright © 2014 Elsevier Inc. All rights reserved.
Bieńko, Marek; Radzki, Radosław Piotr; Wolski, Dariusz
2017-09-21
This study evaluates the effects of three different doses of chromium sulphate on bone density and the tomographic parameters of skeletal tissue of rats. The experiment was performed on 40 male Wistar rats which received, by gavage, during 90 days, a chromium sulphate in either a daily dose of 400, 600 or 800 µg/kg BW. At the end of experiment, the rats were scanned using the densitometry method (DXA) to determine the bone mineral density, bone mineral content of total skeleton and vertebral column (L2-L4) and parameters of body composition (Lean Mass and Fat Mass). The isolated femora were scanned using peripheral a quantitative computed tomography method (pQCT) for a separate analysis of the trabecular and cortical bone tissue. The ultimate strength, work to ultimate and the Young modulus of femora was also investigated by the three-point bending test. The negative impact of chromium was observed in relation to bone tissue. All doses significantly decreased total skeleton density and mineral content, and also had impact upon the isolated femora and vertebral column. Trabecular volumetric bone mineral density and trabecular bone mineral content measured by pQCT in distal femur metaphysis were significantly lower in the experimental groups than in the control. Higher doses of chromium also significantly decreased values of ultimate strength and Young modulus in the investigated femora. The results of the experiment demonstrate that chromium sulphate is dose dependent, and exerts a disadvantageous effect on the skeleton, as it decreases bone density and resistance.
Barngkgei, Imad; Al Haffar, Iyad; Shaarani, Eyad; Khattab, Razan; Mashlah, Ammar
2016-11-01
To assess the trabecular bone structure of jawbones and the dens (the odontoid process of the second cervical vertebra) amongst osteoporotic and nonosteoporotic women using cone-beam computed tomography (CBCT). Analysis of the dens trabecular bone structure aimed to test the validity of CBCT in such analysis. Thirty-eight women who went under dual-energy X-ray absorptiometry (DXA) examination were scanned by CBCT. Cuboids from different areas of jawbones and the dens were extracted from each scan. Trabecular thickness (Tb.Th), trabecular separation (Tb.S), bone volume fraction (BV/TV), specific bone surface (BS/TV) and connectivity density were calculated. Student's t-test, Pearson correlation, and logistic regression analysis were used to explore differences in these measures between groups. Jawbone-derived measures showed insignificant differences (P > 0.05) between osteoporotic and non-osteoporotic groups, and weak correlations with femoral neck and lumbar vertebrae T-scores (r ≤ 0.4). Dens-derived measures, however, resulted in the opposite (r = 0.34-0.38 [P value = 0.02-0.036] and r = 0.48-0.61 [P value ≤ 0.003]) and the highest accuracy of osteoporosis prediction: 84.2% and 78.9% respectively. Trabecular bone structure of the mandible and maxilla is not affected in osteoporosis as assessed by CBCT. Dens trabecular bone analysis revealed the opposite, so some trabecular bone measures may be assessed by CBCT, which may aid in predicting osteoporosis. © 2015 Wiley Publishing Asia Pty Ltd.
Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics
NASA Astrophysics Data System (ADS)
Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai
2013-06-01
Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.
Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure
NASA Astrophysics Data System (ADS)
Mohd, S. M.; Abd, M. Z.; Abd, A. N.
2010-03-01
The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.
Growth, body composition, and bone density following pediatric liver transplantation.
Sheikh, Amin; Cundy, Tim; Evans, Helen Maria
2018-04-24
Patients transplanted for cholestatic liver disease are often significantly fat-soluble vitamin deficient and malnourished pretransplant, with significant corticosteroid exposure post-transplant, with increasing evidence of obesity and metabolic syndrome post-LT. Our study aimed to assess growth, body composition, and BMD in patients post-pediatric LT. Body composition and bone densitometry scans were performed on 21 patients. Pre- and post-transplant anthropometric data were analyzed. Bone health was assessed using serum ALP, calcium, phosphate, and procollagen-1-N-peptide levels. Median ages at transplant and at this assessment were 2.7 and 10.6 years, respectively. Physiological markers of bone health, median z-scores for total body, and lumbar spine aBMD were normal. Bone area was normal for height and BMAD at L3 was normal for age, indicating, respectively, normal cortical and trabecular bone accrual. Median z-scores for weight, height, and BMI were 0.6, -0.9, 1.8 and 0.6, 0.1, 0.8 pre- and post-transplant, respectively. Total body fat percentages measured on 21 body composition scans revealed 2 underweight, 7 normal, 6 overweight, and 6 obese. Bone mass is preserved following pediatric LT with good catch-up height. About 52% of patients were either overweight/obese post-transplant, potentially placing them at an increased risk of metabolic syndrome and its sequelae in later life. BMI alone is a poor indicator of nutritional status post-transplant. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Soft-tissue and phase-contrast imaging at the Swiss Light Source
NASA Astrophysics Data System (ADS)
Schneider, Philipp; Mohan, Nishant; Stampanoni, Marco; Muller, Ralph
2004-05-01
Recent results show that bone vasculature is a major contributor to local tissue porosity, and therefore can be directly linked to the mechanical properties of bone tissue. With the advent of third generation synchrotron radiation (SR) sources, micro-computed tomography (μCT) with resolutions in the order of 1 μm and better has become feasible. This technique has been employed frequently to analyze trabecular architecture and local bone tissue properties, i.e. the hard or mineralized bone tissue. Nevertheless, less is known about the soft tissues in bone, mainly due to inadequate imaging capabilities. Here, we discuss three different methods and applications to visualize soft tissues. The first approach is referred to as negative imaging. In this case the material around the soft tissue provides the absorption contrast necessary for X-ray based tomography. Bone vasculature from two different mouse strains was investigated and compared qualitatively. Differences were observed in terms of local vessel number and vessel orientation. The second technique represents corrosion casting, which is principally adapted for imaging of vascular systems. The technique of corrosion casting has already been applied successfully at the Swiss Light Source. Using the technology we were able to show that pathological features reminiscent of Alzheimer"s disease could be distinguished in the brain vasculature of APP transgenic mice. The third technique discussed here is phase contrast imaging exploiting the high degree of coherence of third generation synchrotron light sources, which provide the necessary physical conditions for phase contrast. The in-line approach followed here for phase contrast retrieval is a modification of the Gerchberg-Saxton-Fienup type. Several measurements and theoretical thoughts concerning phase contrast imaging are presented, including mathematical phase retrieval. Although up-to-now only phase images have been computed, the approach is now ready to retrieve the phase for a large number of angular positions of the specimen allowing application of holotomography, which is the three-dimensional reconstruction of phase images.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.
2006-01-01
Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months.
Ni, Jianlong; Li, Dichen; Mao, Mao; Dang, Xiaoqian; Wang, Kunzheng; He, Jiankang; Shi, Zhibin
2018-02-01
To explore a method of bone tunnel placement for anterior cruciate ligament (ACL) reconstruction based on 3-dimensional (3D) printing technology and to assess its accuracy. Twenty human cadaveric knees were scanned by thin-layer computed tomography (CT). To obtain data on bones used to establish a knee joint model by computer software, customized bone anchors were installed before CT. The reference point was determined at the femoral and tibial footprint areas of the ACL. The site and direction of the bone tunnels of the femur and tibia were designed and calibrated on the knee joint model according to the reference point. The resin template was designed and printed by 3D printing. Placement of the bone tunnels was accomplished by use of templates, and the cadaveric knees were scanned again to compare the concordance of the internal opening of the bone tunnels and reference points. The twenty 3D printing templates were designed and printed successfully. CT data analysis between the planned and actual drilled tunnel positions showed mean deviations of 0.57 mm (range, 0-1.5 mm; standard deviation, 0.42 mm) at the femur and 0.58 mm (range, 0-1.5 mm; standard deviation, 0.47 mm) at the tibia. The accuracy of bone tunnel placement for ACL reconstruction in cadaveric adult knees based on 3D printing technology is high. This method can improve the accuracy of bone tunnel placement for ACL reconstruction in clinical sports medicine. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Caglar, M; Kupik, O; Karabulut, E; Høilund-Carlsen, P F
2016-01-01
To examine the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for the detection of bone metastasis in breast cancer patients and assess whether whole body bone scan (BS) with (99m)Tc-methylene diphosphonate provides any additional information. Study group comprised 150 patients, mean age 52 years (range 27-85) with breast cancer, suspected of having bone metastases. All patients had undergone both FDG-PET/CT and BS with or without single photon emission tomography/computed tomography (SPECT/CT) within a period of 6 weeks. The final diagnosis of bone metastasis was established by histopathological findings, additional imaging, or clinical follow-up longer than 10 months. Cancer antigen 15-3 (CA15-3) and carcinoembryogenic antigen (CEA) were measured in all patients. Histologically 83%, 7% and 10% had infiltrating ductal, lobular and mixed carcinoma respectively. Confirmed bone metastases were present in 86 patients (57.3%) and absent in 64 (42.7%). Mean CA15-3 and CEA values in patients with bone metastases were 74.6ng/mL and 60.4U/mL respectively, compared to 21.3ng/mL and 3.2U/mL without metastases (p<0.001). The sensitivity of FDG-PET/CT for the detection of bone metastases was 97.6% compared to 89.5% with SPECT/CT. In 57 patients, FDG-PET/CT correctly identified additional pulmonary, hepatic, nodal and other soft tissue metastases, not detected by BS. Our findings suggest that FDG-PET/CT is superior to BS with or without SPECT/CT. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Chordekar, Shai; Kriksunov, Leonid; Kishon-Rabin, Liat; Adelman, Cahtia; Sohmer, Haim
2012-01-01
Auditory sensation can be elicited not only by air conducted (AC) sound or bone conducted (BC) sound, but also by stimulation of soft tissue (STC) sites on the head and neck relatively distant from deeply underlying bone. Tone stimulation by paired combinations of AC with BC (mastoid) and/or with soft tissue conduction produce the same pitch sensation, mutual masking and beats. The present study was designed to determine whether they can also cancel each other. The study was conducted on ten normal hearing subjects. Tones at 2 kHz were presented in paired combinations by AC (insert earphone), by BC (bone vibrator) at the mastoid, and by the same bone vibrator to several STC sites; e.g. the neck, the sterno-cleido-mastoid muscle, the eye, and under the chin, shifting the phases between the pairs. Subjects reported changes in loudness and cancellation. The phase for cancellation differed across subjects. Neck muscle manipulations (changes in head position) led to alterations in the phase at which cancellation was reported. Cancellation was also achieved between pairs of tones to two STC sites. The differing phases for cancellation across subjects and the change in phase accompanying different head positions may be due to the different acoustic impedances of the several tissues in the head and neck. A major component of auditory stimulation by STC may not induce actual skull bone vibrations and may not involve bulk fluid volume displacements. Copyright © 2011 Elsevier B.V. All rights reserved.
Surface Modification of Porous Titanium Granules for Improving Bioactivity.
Karaji, Zahra Gorgin; Houshmand, Behzad; Faghihi, Shahab
The highly porous titanium granules are currently being used as bone substitute material and for bone tissue augmentation. However, they suffer from weak bone bonding ability. The aim of this study was to create a nanostructured surface oxide layer on irregularly shaped titanium granules to improve their bioactivity. This could be achieved using optimized electrochemical anodic oxidation (anodizing) and heat treatment processes. The anodizing process was done in an ethylene glycol-based electrolyte at an optimized condition of 60 V for 3 hours. The anodized granules were subsequently annealed at 450°C for 1 hour. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) were used to characterize the surface structure and morphology of the granules. The in vitro bioactivity of the samples was evaluated by immersion of specimens in simulated body fluid (SBF) for 1, 2, and 3 weeks. The human osteoblastic sarcoma cell line, MG63, was used to evaluate cell viability on the samples using dimethylthiazol-diphenyl tetrazolium bromide (MTT) assay. The results demonstrated the formation of amorphous nanostructured titanium oxide after anodizing, which transformed to crystalline anatase and rutile phases upon heat treatment. After immersion in SBF, spherical aggregates of amorphous calcium phosphate were formed on the surface of the anodized sample, which turned into crystalline hydroxyapatite on the surface of the anodized annealed sample. No cytotoxicity was detected among the samples. It is suggested that anodic oxidation followed by heat treatment could be used as an effective surface treatment procedure to improve bioactivity of titanium granules implemented for bone tissue repair and augmentation.
Li, Xiaoran; Xie, Jingwei; Yuan, Xiaoyan; Xia, Younan
2008-12-16
Electrospinning was employed to fabricate fibrous scaffolds of poly(epsilon-caprolactone) in the form of nonwoven mats. The surfaces of the fibers were then coated with gelatin through layer-by-layer self-assembly, followed by functionalization with a uniform coating of bonelike calcium phosphate by mineralization in the 10 times concentrated simulated body fluid for 2 h. Transmission electron microscopy, water contact angle, and scanning electron microscopy measurements confirmed the presence of gelatin and calcium phosphate coating layers, and X-ray diffraction results suggested that the deposited mineral phase was a mixture of dicalcium phosphate dehydrate (a precursor to apatite) and apatite. It was also demonstrated that the incorporation of gelatin promoted nucleation and growth of calcium phosphate. The porous scaffolds could mimic the structure, composition, and biological function of bone extracellular matrix. It was found that the preosteoblastic MC3T3-E1 cells attached, spread, and proliferated well with a flat morphology on the mineralized scaffolds. The proliferation rate of the cells on the mineralized scaffolds was significantly higher (by 1.9-fold) than that on the pristine fibrous scaffolds after culture for 7 days. These results indicated that the hybrid system containing poly(epsilon-caprolactone), gelatin, and calcium phosphate could serve as a new class of biomimetic scaffolds for bone tissue engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sy, W.M.; Westring, D.W.; Weinberger, G.
1975-11-01
Photon-deficient foci or cold lesions were demonstrated on /sup 99m/Tc- polyphosphate bone imaging in eight individuals with various malignancies and one in sickle cell crisis. The bone radiographs of five of these persons failed to show corresponding bony changes at the time of the imaging. Most of the cold lesions observed on bone imaging were located in the denser and tubular bones. A postulate has been advanced regarding the factors that might influence the different gamma-imaging manifestations of radiographically demonstrable lytic lesions. The cases presented herein further emphasize the importance of recognizing the existence of cold areas in the imagesmore » of bones and the need to place these in proper perspective when interpreting scans. (auth)« less
Spaceflight-induced Bone Loss: Is there a Risk for Accelerated Osteoporosis after Return?
NASA Technical Reports Server (NTRS)
Sibonga, Jean
2008-01-01
The evidence-to to-date suggests that the rapid rate of site-specific bone loss in space, due to the unbalanced stimulation of bone resorption, may predispose crew members to irreversible changes in bone structure and microarchitecture. No analyses conducted in the postflight period to assess microarchitectural changes. There is no complete analysis of skeletal recovery in the postflight period to evaluate the structural changes that accompany increases in DXA aBMD. Postflight analyses based upon QCT scans performed on limited crew members indicate reductions in hip bone strength and incomplete recovery at 1 year. No recovery of trabecular vBMD after 1 year return (HRP IWG). Time course of bone loss in space unknown.
Gibelli, Daniele; Poppa, Pasquale; Cummaudo, Marco; Mattia, Mirko; Cappella, Annalisa; Mazzarelli, Debora; Zago, Matteo; Sforza, Chiarella; Cattaneo, Cristina
2017-11-01
Sexual dimorphism is a crucial characteristic of skeleton. In the last years, volumetric and surface 3D acquisition systems have enabled anthropologists to assess surfaces and volumes, whose potential still needs to be verified. This article aimed at assessing volume and linear parameters of the first metatarsal bone through 3D acquisition by laser scanning. Sixty-eight skeletons underwent 3D scan through laser scanner: Seven linear measurements and volume from each bone were assessed. A cutoff value of 13,370 mm 3 was found, with an accuracy of 80.8%. Linear measurements outperformed volume: metatarsal length and mediolateral width of base showed higher cross-validated accuracies (respectively, 82.1% and 79.1%, raising at 83.6% when both of them were included). Further studies are needed to verify the real advantage for sex assessment provided by volume measurements. © 2017 American Academy of Forensic Sciences.
TOMOGRAPHIC MORPHOLOGICAL STUDY OF THE CRANIUM AND ITS CORRELATION WITH CRANIAL HALO USE IN ADULTS
ALMEIDA, TIAGO FERREIRA DE; CHARAFEDDINE, HOMAR TOLEDO; ARAÚJO, FERNANDO FLORES DE; CRISTANTE, ALEXANDRE FOGAÇA; MARCON, RAPHAEL MARTUS; LETAIF, OLAVO BIRAGHI
2017-01-01
ABSTRACT Objective: To evaluate using tomographic study the thickness of the cranial board at the insertions points of the cranial halo pins in adults Methods: This is a retrospective, cross-sectional, descriptive analysis of Computed Tomography (CT) scans of adult patients' crania. The study included adults between 20 and 50 years without cranial abnormalities. We excluded any exam with cranial abnormalities Results: We analyzed 50 CT scans, including 27 men and 23 women, at the original insertion points and alternative points (1 and 2 cm above the frontal and parietal bones). The average values were 7.4333 mm in the frontal bone and 6.0290 mm in the parietal bone Conclusion: There was no statistically significant difference between the classical and alternative points, making room for alternative fixings and safer introduction of the pins, if necessary.Level of Evidence II, Retrospective Study. PMID:28642643
Tumoral calcinosis associated with sarcoidosis and positive bone and gallium imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolpe, F.M.; Khedkar, N.Y.; Gordon, D.
1987-07-01
A 63-year-old female with biopsy proven tumoral calcinosis presented with progressive and recurrent swelling and tenderness of the right hip, thigh, elbow, and wrist. Both gallium and bone imaging demonstrated intense, congruent uptake in these areas. This is the third case of tumoral calcinosis with sarcoidosis documented in the literature. However, these are the first published bone and gallium scans in a patient with a history of sarcoidosis and tumoral calcinosis.
Permeability study of cancellous bone and its idealised structures.
Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Harun, Muhamad Nor; Öchsner, Andreas
2015-01-01
Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.
2018-02-01
Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.
Ferraro, Vincenza; Gaillard-Martinie, Brigitte; Sayd, Thierry; Chambon, Christophe; Anton, Marc; Santé-Lhoutellier, Véronique
2017-04-01
Natural collagen is easily available from animal tissues such as bones. Main limitations reported in the use of natural collagen are heterogeneity and loss of integrity during recovery. However, its natural complexity, functionality and bioactivity still remain to be achieved through synthetic and recombinant ways. Variability of physicochemical properties of collagen extracted from bovine bone by acetic acid was then investigated taking into account endogenous and exogenous factors. Endogenous: bovine's bones age (4 and 7 years) and anatomy (femur and tibia); exogenous: thermal treatments (spray-drying and lyophilisation). Scanning electron microscopy, spectroscopy (EDS, FTIR, UV/Vis and CD), differential scanning calorimetry (DSC), centesimal composition, mass spectrometry, amino acids and zeta-potential analysis were used for the purpose. Age correlated negatively with yield of recovery and positively with minerals and proteoglycans content. Comparing the anatomy, higher yields were found for tibias, and higher stability of tibias collagen in solution was noticed. Whatever the age and the anatomy, collagens were able to renature and to self-assemble into tri-dimensional structures. Nonetheless thermal stability and kinetics of renaturation were different. Variability of natural collagen with bone age and anatomy, and drying methodology, may be a crucial advantage to conceive tailor-made applications in either the biological or technical sector. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrogen-rich saline prevents bone loss in diabetic rats induced by streptozotocin.
Guo, Jialiang; Dong, Weichong; Jin, Lin; Wang, Pengcheng; Hou, Zhiyong; Zhang, Yingze
2017-10-01
As an antioxidant molecule, hydrogen has been received much more attention and reported to be used as the treatment strategy for various diseases. In this study, we hypothesize that systemic delivery of hydrogen saline water may improve the reservation of bone tissue in the tibias and femurs of osteoporotic rats caused by diabetes mellitus (DM), which is characterized by increased levels of oxidative stress and overproducing reactive oxygen species (ROS). The animals were divided into three groups of 12 animals and lavaged with normal saline (normal control and DM), or hydrogen saline water (DM + HRS). General status, blood glucose level, tibial and femoral mechanical strength, and micro-CT scans of the proximal tibia were recorded and analyzed. After 12 weeks, the glucose level was significantly decreased in the DM + HRS group compared with that of the DM group. Micro-CT scans showed that bone volume/total volume, connectivity density, trabecular thickness, and trabecular number were significantly increased compared with the DM group. Mechanical results of energy, stiffness and elastic modulus in the DM + HRS group were significantly higher than in the other groups for the tibia and femur. The results indicate that the systemic delivery of hydrogen saline water, which is safe and well tolerated, preserves bone volume and decreases fracture risks in streptozotocin-induced diabetic status rats, whose bone structure or inherent material properties of bone tissues are changed.
Fatima, Farah; Fei, Ying; Ali, Abukar; Mohammad, Majd; Erlandsson, Malin C.; Bokarewa, Maria I.; Nawaz, Muhammad; Valadi, Hadi; Na, Manli
2017-01-01
Background Permanent joint dysfunction due to bone destruction occurs in up to 50% of patients with septic arthritis. Recently, imaging technologies such as micro computed tomography (μCT) scan have been widely used for preclinical models of autoimmune joint disorders. However, the radiological features of septic arthritis in mice are still largely unknown. Methods NMRI mice were intravenously or intra-articularly inoculated with S. aureus Newman or LS-1 strain. The radiological and clinical signs of septic arthritis were followed for 10 days using μCT. We assessed the correlations between joint radiological changes and clinical signs, histological changes, and serum levels of cytokines. Results On days 5–7 after intravenous infection, bone destruction verified by μCT became evident in most of the infected joints. Radiological signs of bone destruction were dependent on the bacterial dose. The site most commonly affected by septic arthritis was the distal femur in knees. The bone destruction detected by μCT was positively correlated with histological changes in both local and hematogenous septic arthritis. The serum levels of IL-6 were significantly correlated with the severity of joint destruction. Conclusion μCT is a sensitive method for monitoring disease progression and determining the severity of bone destruction in a mouse model of septic arthritis. IL-6 may be used as a biomarker for bone destruction in septic arthritis. PMID:28152087
Manhard, Mary Kate; Harkins, Kevin D; Gochberg, Daniel F; Nyman, Jeffry S; Does, Mark D
2017-03-01
MRI of cortical bone has the potential to offer new information about fracture risk. Current methods are typically performed with 3D acquisitions, which suffer from long scan times and are generally limited to extremities. This work proposes using 2D UTE with half pulses for quantitatively mapping bound and pore water in cortical bone. Half-pulse 2D UTE methods were implemented on a 3T Philips Achieva scanner using an optimized slice-select gradient waveform, with preparation pulses to selectively image bound or pore water. The 2D methods were quantitatively compared with previously implemented 3D methods in the tibia in five volunteers. The mean difference between bound and pore water concentration acquired from 3D and 2D sequences was 0.6 and 0.9 mol 1 H/L bone (3 and 12%, respectively). While 2D pore water methods tended to slightly overestimate concentrations relative to 3D methods, differences were less than scan-rescan uncertainty and expected differences between healthy and fracture-prone bones. Quantitative bound and pore water concentration mapping in cortical bone can be accelerated by 2 orders of magnitude using 2D protocols with optimized half-pulse excitation. Magn Reson Med 77:945-950, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Scheiner, Jonathan; Farid, Karen; Raden, Mark; Demisse, Seleshi
2017-03-01
Stage 4 pressure ulcers (PUs) start with tissue death at the level of the bone, also known as deep tissue injury (DTI). Studies have shown the appearance of DTI on the skin is delayed for several days after the original pressure-related injury to the deep soft tissues. Studies also suggest DTI can be seen using ultrasound (US) technology. A prospective, descriptive, correlational pilot study was conducted to evaluate the use of US technology to detect DTI in the soft tissues that are not visible on the skin upon hospital admission. Study participants included a convenience sample of 33 persons at risk for PUs (ie, Braden score <18) admitted through the emergency department. Each participant had US scans of 13 common PU body sites. All scans were documented in the radiologist report in the electronic medical record. Creatinine phosphokinase, calcium levels, and urine myoglobin levels also were assessed upon enrollment. Skin failure risk factors (SFRFs), including fever, hypotension, weight loss, coagulopathy, and acidosis/respiratory failure, also were documented. Patients were examined for skin PUs every day for 7 days after US scan. Twenty-three (23) patients completed the study. US scans identified pressure necrosis at 2 levels: bone (54 positive [US+]) and subcutaneous (SC); 79 US+, respectively). US+ bone sites resulted in 5 PUs appearing 6 to 7 days post-admission (sensitivity = 100%, specificity 84.7%, positive predictive value 10%, and negative predictive value 100%), indicating all DTI that later became purple skin DTI were detected by the US. US+ SC sites, located immediately under the skin, yielded 5 PUs appearing on day 2 after admission (sensitivity 100%, specificity 74.8%, positive predictive value 6.3%, and negative predictive value 100%). The participants with PU occurrence in both bone and SC groups had low Braden scores (bone group mean = 13.25, SC group mean = 11.2). Study patients who were positive for PU also had >4 SFRFs. Creatinine phosphokinase, calcium, and myoglobin levels were inconsistent and did not correlate with US+ scans. These observations warrant larger studies to confirm findings and optimize the validity of US screening for DTI in select populations, which may help improve protocols of care and PU admission documentation. The preliminary results suggest inclusion of the Braden Scale score and known PU risk factors may improve the positive predictive value of this test.
Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan
2016-10-01
Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.
Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry
2017-09-01
The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium phosphate (ACP) environments could also arise from a transient amorphous precursor phase of apatite. Here, we provide an NMR spectroscopy methodology to reveal the origin of these ACP environments in bone mineral or in biomimetic apatite. The 1 H magnetization exchange between protons arising from amorphous and crystalline domains shows unambiguously that an ACP layer coats the apatitic crystalline core of bone et biomimetic apatite platelets. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Abdalrahman, T; Scheiner, S; Hellmich, C
2015-01-21
It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas
2012-03-01
The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.
Validation of CBCT for the computation of textural biomarkers
NASA Astrophysics Data System (ADS)
Paniagua, Beatriz; Ruellas, Antonio C.; Benavides, Erika; Marron, Steve; Wolford, Larry; Cevidanes, Lucia
2015-03-01
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr- CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr- CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.
Pandey, Anil K; Bisht, Chandan S; Sharma, Param D; ArunRaj, Sreedharan Thankarajan; Taywade, Sameer; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-11-01
Tc-methylene diphosphonate (Tc-MDP) bone scintigraphy images have limited number of counts per pixel. A noise filtering method based on local statistics of the image produces better results than a linear filter. However, the mask size has a significant effect on image quality. In this study, we have identified the optimal mask size that yields a good smooth bone scan image. Forty four bone scan images were processed using mask sizes 3, 5, 7, 9, 11, 13, and 15 pixels. The input and processed images were reviewed in two steps. In the first step, the images were inspected and the mask sizes that produced images with significant loss of clinical details in comparison with the input image were excluded. In the second step, the image quality of the 40 sets of images (each set had input image, and its corresponding three processed images with 3, 5, and 7-pixel masks) was assessed by two nuclear medicine physicians. They selected one good smooth image from each set of images. The image quality was also assessed quantitatively with a line profile. Fisher's exact test was used to find statistically significant differences in image quality processed with 5 and 7-pixel mask at a 5% cut-off. A statistically significant difference was found between the image quality processed with 5 and 7-pixel mask at P=0.00528. The identified optimal mask size to produce a good smooth image was found to be 7 pixels. The best mask size for the John-Sen Lee filter was found to be 7×7 pixels, which yielded Tc-methylene diphosphonate bone scan images with the highest acceptable smoothness.
Validation of CBCT for the computation of textural biomarkers
Paniagua, Beatriz; Ruellas, Antonio Carlos; Benavides, Erika; Marron, Steve; Woldford, Larry; Cevidanes, Lucia
2015-01-01
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA. PMID:26085710
Validation of CBCT for the computation of textural biomarkers.
Paniagua, Beatriz; Ruellas, Antonio Carlos; Benavides, Erika; Marron, Steve; Woldford, Larry; Cevidanes, Lucia
2015-03-17
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr-CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr-CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.
Synthesis of β-tricalcium phosphate.
Chaair, H; Labjar, H; Britel, O
2017-09-01
Ceramics play a key role in several biomedical applications. One of them is bone grafting, which is used for treating bone defects caused by injuries or osteoporosis. Calcium-phosphate based ceramic are preferred as bone graft biomaterials in hard tissue surgery because their chemical composition is close to the composition of human bone. They also have a marked bioresorbability and bioactivity. In this work, we have developed methods for synthesis of β-tricalcium phosphate apatite (β-TCP). These products were characterized by different techniques such as X-ray diffraction, infrared spectroscopy, scanning electron microscopy and chemical analysis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
CCN3 Protein Participates in Bone Regeneration as an Inhibitory Factor*
Matsushita, Yuki; Sakamoto, Kei; Tamamura, Yoshihiro; Shibata, Yasuaki; Minamizato, Tokutaro; Kihara, Tasuku; Ito, Masako; Katsube, Ken-ichi; Hiraoka, Shuichi; Koseki, Haruhiko; Harada, Kiyoshi; Yamaguchi, Akira
2013-01-01
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy. PMID:23653360
Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans
NASA Astrophysics Data System (ADS)
Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj
2016-06-01
This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.
Wear, Keith A
2010-10-01
The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.
Osteoid osteoma of the foot: presentation following trauma.
Ambrosia, J M; Kernek, C B
1985-05-01
A 15 year old black boy presented with a seven-month history of apparent post traumatic foot pain. Radiologic workup including bone scan, tomograms, and CT scan showed osteoid osteoma, which was treated by surgical excision. This treatment resulted in complete pain relief and return to full activities.
[Biomimetic nanohydroxyapatite/gelatin composite material preparation and in vitro study].
Li, Siriguleng; Hu, Xiaowen
2014-09-01
To prepare nHA/gelatin porous scaffold and to evaluate its physical and chemical properties and biocompatibility. We used nano-powders of HA and gelatin to prepare 3D porous composite scaffold by freeze-drying technique, and used scanning electron microscope, fourier transform infrared spectroscopy and universal testing machine to characterize the composite material. Osteoblasts were primarily cultured, and the third-passage osteoblasts were co-cultured with the composite material. The cell adhesion and morphology were examined under scanning electron microscope. The cell viability analysis was performed by MTT assay, and the alkaline phosphatase activity was measured with alkaline phosphatase kit. Scanning electron microscope showed that the scaffold possessed a 3-dimensional interconnected homogenous porous structure with pore sizes ranging from 150 to 400 μm. Fourier transform infrared spectroscopy showed that the composite material had a strong chemical bond between the inorganic phase and organic phase. The scaffold presented the compressive strength of (3.28 ± 0.51) MPa and porosities of (80.6 ± 4.1)%. Composite materials showed features of had good biocompatibility. Mouse osteoblasts were well adhered and spread on the materials. The grade of the cell toxicity ranged from I to II. On the 5th and 7th day the proliferative rate of osteoblasts on scaffolds in the composite materials was significantly higher than that in the control group. The activity of alkaline phosphatase was obviously higher than that in the control group on Day 1 and 3. Nano-hydroxyapatite and gelatin in certain proportions and under certain conditions can be prepared into a composite biomimetic porous scaffolds with high porosity and three-dimensional structure using freeze-drying method. The scaffold shows good biocompatibility with mouse osteoblasts and may be a novel scaffolds for bone tissue engineering.
The dosimetric impact of including the patient table in CT dose estimates
NASA Astrophysics Data System (ADS)
Nowik, Patrik; Bujila, Robert; Kull, Love; Andersson, Jonas; Poludniowski, Gavin
2017-12-01
The purpose of this study was to evaluate the dosimetric impact of including the patient table in Monte Carlo CT dose estimates for both spiral scans and scan projection radiographs (SPR). CT scan acquisitions were simulated for a Siemens SOMATOM Force scanner (Siemens Healthineers, Forchheim, Germany) with and without a patient table present. An adult male, an adult female and a pediatric female voxelized phantom were simulated. The simulated scans included tube voltages of 80 and 120 kVp. Spiral scans simulated without a patient table resulted in effective doses that were overestimated by approximately 5% compared to the same simulations performed with the patient table present. Doses in selected individual organs (breast, colon, lung, red bone marrow and stomach) were overestimated by up to 8%. Effective doses from SPR acquired with the x-ray tube stationary at 6 o’clock (posterior-anterior) were overestimated by 14-23% when the patient table was not included, with individual organ dose discrepancies (breast, colon, lung red bone marrow and stomach) all exceeding 13%. The reference entrance skin dose to the back were in this situation overestimated by 6-15%. These results highlight the importance of including the patient table in patient dose estimates for such scan situations.
Ober, Ciprian; Pestean, Cosmin; Bel, Lucia; Taulescu, Marian; Milgram, Joshua; Todor, Adrian; Ungur, Rodica; Leșu, Mirela; Oana, Liviu
2018-05-10
Femoral head and neck ostectomy (FHNO) is a salvage surgical procedure intended to eliminate hip joint laxity associated pain in the immature dog, or pain due to secondary osteoarthritis in the mature dog. The outcome of the procedure is associated with the size of the dog but the cause of a generally poorer outcome in larger breeds has not been determined. The objective of this study was to assess the long-term results of FHNO associated with unsatisfactory functional outcome by means of clinical examination and computed tomography (CT) scanning. Four large mixed breed dogs underwent FHNO in different veterinary clinics. Clinical and CT scanning evaluations were carried out long time after the procedures had been done. Hip pain, muscle atrophy, decreased range of motion and chronic lameness were observed at clinical examination. Extensive remodelling, unacceptable bone-on-bone contact with bony proliferation involving the femoral neck and acetabulum, but also excessive removal with bone lysis were observed by CT scanning. Revision osteotomy was performed in one dog. Deep gluteal muscle interposition was used, but no improvements were observed postoperatively. This is the first report on the evaluation of three-dimensional CT reconstructions of the late bone remodelling associated with poor clinical outcome in large dogs. The study shows that FHNO could lead to severe functional deficits in large breed dogs. An extensive follow-study is necessary to more accurately determine the frequency of such complications.
Adiposity and TV viewing are related to less bone accrual in young children.
Wosje, Karen S; Khoury, Philip R; Claytor, Randal P; Copeland, Kristen A; Kalkwarf, Heidi J; Daniels, Stephen R
2009-01-01
To examine the relation between baseline fat mass and gain in bone area and bone mass in preschoolers studied prospectively for 4 years, with a focus on the role of physical activity and TV viewing. Children were part of a longitudinal study in which measures of fat, lean and bone mass, height, weight, activity, and diet were taken every 4 months from ages 3 to 7 years. Activity was measured by accelerometer and TV viewing by parent checklist. We included 214 children with total body dual energy x-ray absorptiometry (Hologic 4500A) scans at ages 3.5 and 7 years. Higher baseline fat mass was associated with smaller increases in bone area and bone mass over the next 3.5 years (P < .001). More TV viewing was related to smaller gains in bone area and bone mass accounting for race, sex, and height. Activity by accelerometer was not associated with bone gains. Adiposity and TV viewing are related to less bone accrual in preschoolers.
Vaccaro, Calogero; Busetto, Roberto; Bernardini, Daniele; Anselmi, Carlo; Zotti, Alessandro
2012-03-01
To evaluate the precision and accuracy of assessing bone mineral density (BMD) by use of mean gray value (MGV) on digitalized and digital images of conventional and digital radiographs, respectively, of ex vivo bovine and equine bone specimens in relation to the gold-standard technique of dual-energy x-ray absorptiometry (DEXA). Left and right metatarsal bones from 11 beef cattle and right femurs from 2 horses. Bovine specimens were imaged by use of conventional radiography, whereas equine specimens were imaged by use of computed radiography (digital radiography). Each specimen was subsequently scanned by use of the same DEXA equipment. The BMD values resulting from each DEXA scan were paired with the MGVs obtained by use of software on the corresponding digitalized or digital radiographic image. The MGV analysis of digitalized and digital x-ray images was a precise (coefficient of variation, 0.1 and 0.09, respectively) and highly accurate method for assessing BMD, compared with DEXA (correlation coefficient, 0.910 and 0.937 for conventional and digital radiography, respectively). The high correlation between MGV and BMD indicated that MGV analysis may be a reliable alternative to DEXA in assessing radiographic bone density. This may provide a new, inexpensive, and readily available estimate of BMD.
NASA Astrophysics Data System (ADS)
Lee, Kang Il
2013-01-01
The present study aims to investigate the influence of the pore fluid on the phase velocity in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 20 marrow-filled and water-filled bovine femoral trabecular bone samples. The mean phase velocities at frequencies between 0.6 and 1.2 MHz exhibited significant negative dispersions for both the marrow-filled and the water-filled samples. The magnitudes of the dispersions showed no significant differences between the marrow-filled and the water-filled samples. In contrast, replacement of marrow by water led to a mean increase in the phase velocity of 27 m/s at frequencies from 0.6 to 1.2 MHz. The theoretical phase velocities of the fast wave predicted by using the Biot model for elastic wave propagation in fluid-saturated porous media showed good agreements with the measurements.
Irons, R D
1981-01-01
A detailed description of flow cytofluorometric DNA cell cycle analysis is presented. A number of studies by the author and other investigators are reviewed in which a method is developed for the analysis of cell cycle phase in bone marrow of experimental animals. Bone marrow cell cycle analysis is a sensitive indicator of changes in bone marrow proliferative activity occurring early in chemically-induced myelotoxicity. Cell cycle analysis, used together with other hematologic methods, has revealed benzene-induced toxicity in proliferating bone marrow cells to be cycle specific, appearing to affect a population in late S phase which then accumulate in G2/M. PMID:7016521
WE-FG-202-05: Quantification of Bone Flare On [F-18] NaF PET/CT in Metastatic Prostate Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, A; Harmon, S; Perk, T
Purpose: Bone flare has been observed on Tc-99m bone scans during early assessment in metastatic Castration-Resistant Prostate Cancer (mCRPC) patients receiving select androgen-signaling pathway (AR) targeted treatments, including CYP17-inhibitor Abiraterone. This study investigates the appearance and potential clinical impact of bone flare in mCRPC patients receiving CYP17-inhibitors using {sup 18}F-NaF PET/CT. Methods: Twenty-three mCRPC patients being treated with CYP17-inhibitors received NaF PET/CT scans at baseline, week 6, and week 12 of treatment. Individual lesions were identified using a SUV>15 threshold within skeletal regions and articulated bone registration was used to track lesions between scans. Standard SUV metrics were extracted globallymore » for each patient (pSUV) and for each individual lesion (iSUV). Differences in metrics across time-points were compared using Wilcoxon signed-rank tests. Cox proportional hazard regression analyses were conducted between global metrics and progression-free survival (PFS). Results: Nineteen patients (83%) showed increasing NaF PET global metrics at week 6, with pSUV{sub total} reflecting consensus change across other global metrics with median increase +33% (range +2 to 205%). Of these patients, 14 showed subsequent decrease in pSUV{sub total}, with a median of −17% (range −76 to −1%), indicating flare phenomenon. Increasing pSUV{sub mean} at week 6 correlated with extended clinical PFS (HR = 0.58, p=0.02). New lesions did not account for the initial increase in global NaF metrics. Lesion-level analysis reveals 316 lesions in the 14 patients exhibiting global flare. On average, 75% (sd: 22%) of lesions follow global trends with iSUV{sub total} increasing at week 6 and 65% (sd: 17%) showing iSUV{sub total} decrease at week 12. Conclusion: Bone flare was detected on NaF PET/CT in the first 6 weeks of treatment for mCRPC patients receiving CYP17-inhibitors, subsiding by week 12. Characterization provided in this study suggests prolonged PFS in patients showing bone flare early in select AR-directed treatments. Prostate Cancer Foundation.« less
Li, Cheng; Jin, Dakai; Chen, Cheng; Letuchy, Elena M.; Janz, Kathleen F.; Burns, Trudy L.; Torner, James C; Levy, Steven M.; Saha, Punam K
2015-01-01
Purpose: Cortical bone supports and protects human skeletal functions and plays an important role in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio, presence of cortical pores, and structural complexity over the transition between trabecular and cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in vivo MD-CT imaging is presented and its performance and application are examined. Methods: The algorithm is completed in two major steps—(1) bone filling, alignment, and region-of-interest computation and (2) segmentation of cortical bone. After the first step, the following sequence of tasks is performed to accomplish cortical bone segmentation—(1) detection of marrow space and possible pores, (2) computation of cortical bone thickness, detection of recession points, and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation of cortical bone. Effective generalizations of several digital topologic and geometric techniques are introduced and a fully automated algorithm is presented for cortical bone segmentation. Results: An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to describe gender differences in cortical bone properties. This study involved 51 female and 46 male participants (age: 19–20 yr) from the Iowa Bone Development Study. Results from this pilot study suggest that, on average after adjustment for height and weight differences, males have thicker cortex (mean difference 0.33 mm and effect size 0.92 at the anterior region) with lower bone mineral density (mean difference −28.73 mg/cm3 and effect size 1.35 at the posterior region) as compared to females. Conclusions: The algorithm presented is suitable for fully automated segmentation of cortical bone in MD-CT imaging of the distal tibia with high accuracy and reproducibility. Analysis of data from a pilot study demonstrated that the cortical bone indices allow quantification of gender differences in cortical bone from MD-CT imaging. Application to larger population groups, including those with compromised bone, is needed. PMID:26233184
The Mechanics of Long Bone Fractures.
1981-01-31
r = .99) between wet density and ultimate bending strength for 37 specimens of human femoral bone. Evans (1973) studied embalmed human tibial...Work 2 2.2 Methods 6 2.2.1 Torsional Loading 6 2.2.2 The Effects of Combined Loading 10 2.2.3 Cancellous Bone Effects 11 2.3 Results 11 2.3.1...PROPERTIES 21 3.1 Previous Work 22 3.2 Methods 26 3.2.1 Cross Sectional Property Software 26 3.2.2 CT Scanning Procedure 28 3.2.3 Linear Dependency of