Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
Li, Hongze; Gao, Xiang; Luo, Yingwu
2016-04-07
Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device.
Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki
2017-01-01
The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.
NASA Astrophysics Data System (ADS)
Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris
2015-05-01
Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.
Nokami, Toshiki; Isoda, Yuta; Sasaki, Norihiko; Takaiso, Aki; Hayase, Shuichi; Itoh, Toshiyuki; Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-ichi
2015-03-20
The anomeric arylthio group and the hydroxyl-protecting groups of thioglycosides were optimized to construct carbohydrate building blocks for automated electrochemical solution-phase synthesis of oligoglucosamines having 1,4-β-glycosidic linkages. The optimization study included density functional theory calculations, measurements of the oxidation potentials, and the trial synthesis of the chitotriose trisaccharide. The automated synthesis of the protected potential N,N,N-trimethyl-d-glucosaminylchitotriomycin precursor was accomplished by using the optimized building block.
Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-ichi
2017-01-01
The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block. PMID:28684973
Development of volume deposition on cast iron by additive manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.
2016-11-10
ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition techniquemore » to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.« less
Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L
2018-06-07
Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.
Designing an activity-based costing model for a non-admitted prisoner healthcare setting.
Cai, Xiao; Moore, Elizabeth; McNamara, Martin
2013-09-01
To design and deliver an activity-based costing model within a non-admitted prisoner healthcare setting. Key phases from the NSW Health clinical redesign methodology were utilised: diagnostic, solution design and implementation. The diagnostic phase utilised a range of strategies to identify issues requiring attention in the development of the costing model. The solution design phase conceptualised distinct 'building blocks' of activity and cost based on the speciality of clinicians providing care. These building blocks enabled the classification of activity and comparisons of costs between similar facilities. The implementation phase validated the model. The project generated an activity-based costing model based on actual activity performed, gained acceptability among clinicians and managers, and provided the basis for ongoing efficiency and benchmarking efforts.
Hydration effects on the electronic properties of eumelanin building blocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assis Oliveira, Leonardo Bruno; Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO; Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO
2016-08-28
Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in themore » electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.« less
Hydration effects on the electronic properties of eumelanin building blocks.
Assis Oliveira, Leonardo Bruno; L Fonseca, Tertius; Costa Cabral, Benedito J; Coutinho, Kaline; Canuto, Sylvio
2016-08-28
Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.
Hydration effects on the electronic properties of eumelanin building blocks
NASA Astrophysics Data System (ADS)
Assis Oliveira, Leonardo Bruno; L. Fonseca, Tertius; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio
2016-08-01
Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.
Pyrrole-Imidazole Polyamides: Manual Solid-Phase Synthesis.
Pauff, Steven M; Fallows, Andrew J; Mackay, Simon P; Su, Wu; Cullis, Paul M; Burley, Glenn A
2015-12-01
Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days. Copyright © 2015 John Wiley & Sons, Inc.
Building blocks for subleading helicity operators
Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.
2016-05-24
On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks canmore » be assembled.« less
Numerical modelling of distributed vibration sensor based on phase-sensitive OTDR
NASA Astrophysics Data System (ADS)
Masoudi, A.; Newson, T. P.
2017-04-01
A Distributed Vibration Sensor Based on Phase-Sensitive OTDR is numerically modeled. The advantage of modeling the building blocks of the sensor individually and combining the blocks to analyse the behavior of the sensing system is discussed. It is shown that the numerical model can accurately imitate the response of the experimental setup to dynamic perturbations a signal processing procedure similar to that used to extract the phase information from sensing setup.
Movement planning reflects skill level and age changes in toddlers
Chen, Yu-ping; Keen, Rachel; Rosander, Kerstin; von Hofsten, Claes
2010-01-01
Kinematic measures of children’s reaching were found to reflect stable differences in skill level for planning for future actions. Thirty-five toddlers (18–21 months) were engaged in building block towers (precise task) and in placing blocks into an open container (imprecise task). Sixteen children were re-tested on the same tasks a year later. Longer deceleration as the hand approached the block for pickup was found in the tower task compared to the imprecise task, indicating planning for the second movement. More skillful toddlers who could build high towers had a longer deceleration phase when placing blocks on the tower than toddlers who built low towers. Kinematic differences between the groups remained a year later when all children could build high towers. PMID:21077868
Djumas, Lee; Molotnikov, Andrey; Simon, George P; Estrin, Yuri
2016-05-24
Structural composites inspired by nacre have emerged as prime exemplars for guiding materials design of fracture-resistant, rigid hybrid materials. The intricate microstructure of nacre, which combines a hard majority phase with a small fraction of a soft phase, achieves superior mechanical properties compared to its constituents and has generated much interest. However, replicating the hierarchical microstructure of nacre is very challenging, not to mention improving it. In this article, we propose to alter the geometry of the hard building blocks by introducing the concept of topological interlocking. This design principle has previously been shown to provide an inherently brittle material with a remarkable flexural compliance. We now demonstrate that by combining the basic architecture of nacre with topological interlocking of discrete hard building blocks, hybrid materials of a new type can be produced. By adding a soft phase at the interfaces between topologically interlocked blocks in a single-build additive manufacturing process, further improvement of mechanical properties is achieved. The design of these fabricated hybrid structures has been guided by computational work elucidating the effect of various geometries. To our knowledge, this is the first reported study that combines the advantages of nacre-inspired structures with the benefits of topological interlocking.
Insights into Inverse Materials Design from Phase Transitions in Shape Space
NASA Astrophysics Data System (ADS)
Cersonsky, Rose; van Anders, Greg; Dodd, Paul M.; Glotzer, Sharon C.
In designing new materials for synthesis, the inverse materials design approach posits that, given a structure, we can predict a building block optimized for self- assembly. How does that building block change as pressure is varied to maintain the same crystal structure? We address this question for entropically stabilized colloidal crystals by working in a generalized statistical thermodynamic ensemble where an alchemical potential variable is fixed and its conjugate variable, particle shape, is allowed to fluctuate. We show that there are multiple regions of shape behavior and phase transitions in shape space between these regions. Furthermore, while past literature has looked towards packing arguments for proposing shape-filling candidate building blocks for structure formation, we show that even at very high pressures, a structure will attain lowest free energy by modifying these space-filling shapes. U.S. Army Research Office under Grant Award No. W911NF-10-1-0518, Emerging Frontiers in Research and Innovation Award EFRI-1240264, National Science Foundation Grant Number ACI- 1053575, XSEDE award DMR 140129, Rackham Merit Fellowship Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, E.S.
The Salem Limestone and the Shelburne Marble are representative of limestones and marbles commonly used in buildings and monuments. Both stones are composed predominantly of calcite. The Salem Limestone is homogeneous in composition and mineralogic characteristics throughout the test block. The Shelburne Marble has compositionally homogeneous mineral phases, but the distribution of those phases within the test block is random. The mineralogy and physical characteristics of the Shelburne Marble and Salem Limestone test blocks described in the study provide a baseline for future studies of the weathering behavior of these stones. Because the Shelburne Marble and the Salem Limestone aremore » representative of typical commercial marbles and limestones, they are likely to be useful in a consortium study of the effects of acid precipitation on these two types of building stones.« less
Djumas, Lee; Molotnikov, Andrey; Simon, George P.; Estrin, Yuri
2016-01-01
Structural composites inspired by nacre have emerged as prime exemplars for guiding materials design of fracture-resistant, rigid hybrid materials. The intricate microstructure of nacre, which combines a hard majority phase with a small fraction of a soft phase, achieves superior mechanical properties compared to its constituents and has generated much interest. However, replicating the hierarchical microstructure of nacre is very challenging, not to mention improving it. In this article, we propose to alter the geometry of the hard building blocks by introducing the concept of topological interlocking. This design principle has previously been shown to provide an inherently brittle material with a remarkable flexural compliance. We now demonstrate that by combining the basic architecture of nacre with topological interlocking of discrete hard building blocks, hybrid materials of a new type can be produced. By adding a soft phase at the interfaces between topologically interlocked blocks in a single-build additive manufacturing process, further improvement of mechanical properties is achieved. The design of these fabricated hybrid structures has been guided by computational work elucidating the effect of various geometries. To our knowledge, this is the first reported study that combines the advantages of nacre-inspired structures with the benefits of topological interlocking. PMID:27216277
Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei
2017-03-13
A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.
Perspectives of the KM3NeT project
NASA Astrophysics Data System (ADS)
Margiotta, A.; KM3NeT Collaboration
2016-10-01
KM3NeT is a large distributed research infrastructure that comprises a network of deep-sea neutrino telescopes in the Mediterranean Sea with user ports for Earth and Sea sciences. The main objectives of KM3NeT are the discovery and subsequent observation of high-energy neutrino sources in the Universe (ARCA) and the determination of the mass hierarchy of neutrinos (ORCA). Technically, the network of telescopes will consist of building blocks of 115 vertical detection units anchored at the seabed and connected to shore via a deep sea electro-optical cable. Each detection unit carries 18 optical modules equipped with 31 3; photomultipliers. Two configurations for the building blocks are defined to optimally detect neutrinos in different ranges of energy. The modular technical design of the KM3NeT telescope allows for a progressive implementation and for data taking even with an incomplete detector. The first phase of implementation has started. The next phase foresees the installation of three building blocks: two building blocks, for a total instrumented volume of 1 km3 (ARCA), at the KM3NeT-It site, at a depth of 3500 m, about 100 km offshore Capo Passero, Sicily. The main scientific goals of the ARCA detector is the exploration of the neutrino sky with unprecedented resolution, searching for neutrinos coming from defined sources or sky regions, like the Galactic Plane. It will also look for diffuse high energy neutrino fluxes following the indication provided by the IceCube signal. The third building block, with a more compact distribution of the optical modules, will be deployed at the KM3NeT-Fr site, 40 km offshore Toulon at a depth of 2500 m (ORCA). The main objective of ORCA is studying the neutrino mass-hierarchy problem and exploring the low energy region of the spectrum. The status of the first phase of the KM3NeT implementation is described and a survey of the physics potentiality of the telescope is given in this contribution, with particular emphasis on the high energy studies.
Synthesis of Triamino Acid Building Blocks with Different Lipophilicities
Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger
2015-01-01
To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040
Letter of intent for KM3NeT 2.0
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belhorma, B.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherkaoui El Moursli, R.; Cherubini, S.; Chiarusi, T.; Circella, M.; Classen, L.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amico, A.; De Bonis, G.; De Rosa, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Díaz García, A. F.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Drury, L.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; El Khayati, N.; Elsaesser, D.; Enzenhöfer, A.; Fassi, F.; Favali, P.; Fermani, P.; Ferrara, G.; Filippidis, C.; Frascadore, G.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijer, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M. Lindsey; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Margiotta, A.; Marinelli, A.; Mariş, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Navas, S.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Papaikonomou, A.; Papaleo, R.; Păvălaş, G. E.; Peek, H.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rapidis, P.; Razis, P.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Siotis, I.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Tézier, D.; Theraube, S.; Thompson, L.; Timmer, P.; Tönnis, C.; Trasatti, L.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Voulgaris, G.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zornoza, J. D.; Zúñiga, J.
2016-08-01
The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.
Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).
Yu, Hongtao; Brock, Stephanie L
2008-08-01
We demonstrate the effect of differently shaped CdSe nanoscale building blocks (dots, rods, branched nanoparticles, and hyperbranched nanoparticles) on the morphologies, surface characteristics, and optical properties of resultant porous CdSe nanostructured aerogels. Monolithic CdSe aerogels were produced by controlled oxidative removal of surface thiolate ligands from differently shaped CdSe nanoparticles to yield a wet gel, followed by CO(2) supercritical drying. The X-ray diffraction data show that the resultant CdSe aerogels maintain the crystalline phase of the building blocks without significant grain growth. However, the transmission electron microscopy images indicate that the morphology of CdSe aerogels changes from a colloid-type morphology to a polymer-type morphology when the building block changes from dot to rod or the branched nanoparticle. The morphology of the CdSe aerogel assembled from hyperbranched nanoparticles appears to be intermediate between the colloid-type and the polymer-type. Nitrogen physisorption measurements suggest that the surface areas and porosity are a direct function of the shape of the primary building blocks, with aerogels formed from rods or branched particles exhibiting the greatest surface areas (>200 m(2)/g) and those prepared from hyperbranched nanoparticles exhibiting the least (<100 m(2)/g). Band gap measurements and photoluminescence studies show that the as-prepared CdSe aerogels retain to a large extent the intrinsic quantum confinement of the differently shaped building blocks, despite being connected into a 3D network.
Good Moments in Gestalt Therapy: A Descriptive Analysis of Two Perls Sessions.
ERIC Educational Resources Information Center
Boulet, Donald; And Others
1993-01-01
Analyzed two Gestalt therapy sessions conducted by Fritz Perls using category system for identifying in-session client behaviors valued by Gestalt therapists. Four judges independently rated 210 client statements. Found common pattern of therapeutic movement: initial phase dominated by building block good moments and second phase characterized by…
Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian
2015-01-01
Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527
Concise solid-phase synthesis of inverse poly(amidoamine) dendrons using AB2 building blocks.
Huang, Adela Ya-Ting; Tsai, Ching-Hua; Chen, Hsing-Yin; Chen, Hui-Ting; Lu, Chi-Yu; Lin, Yu-Ting; Kao, Chai-Lin
2013-06-28
A concise solid-phase synthesis of inverse poly(amidoamine) dendrons was developed. Upon introduction of AB2-type monomers, each dendron generation was constructed via one reaction. G2 to G5 dendrons were constructed in a peptide synthesizer in 93%, 89%, 82%, and 78% yields, respectively, within 5 days.
McCoy, Kimberly; Uchida, Masaki; Lee, Byeongdu; Douglas, Trevor
2018-04-24
Bottom-up construction of mesoscale materials using biologically derived nanoscale building blocks enables engineering of desired physical properties using green production methods. Virus-like particles (VLPs) are exceptional building blocks due to their monodispersed sizes, geometric shapes, production ease, proteinaceous composition, and our ability to independently functionalize the interior and exterior interfaces. Here a VLP, derived from bacteriophage P22, is used as a building block for the fabrication of a protein macromolecular framework (PMF), a tightly linked 3D network of functional protein cages that exhibit long-range order and catalytic activity. Assembly of PMFs was electrostatically templated, using amine-terminated dendrimers, then locked into place with a ditopic cementing protein that binds to P22. Long-range order is preserved on removal of the dendrimer, leaving a framework material composed completely of protein. Encapsulation of β-glucosidase enzymes inside of P22 VLPs results in formation of stable, condensed-phase materials with high local concentration of enzymes generating catalytically active PMFs.
Hybrid molecular-colloidal liquid crystals.
Mundoor, Haridas; Park, Sungoh; Senyuk, Bohdan; Wensink, Henricus H; Smalyukh, Ivan I
2018-05-18
Order and fluidity often coexist, with examples ranging from biological membranes to liquid crystals, but the symmetry of these soft-matter systems is typically higher than that of the constituent building blocks. We dispersed micrometer-long inorganic colloidal rods in a nematic liquid crystalline fluid of molecular rods. Both types of uniaxial building blocks, while freely diffusing, interact to form an orthorhombic nematic fluid, in which like-sized rods are roughly parallel to each other and the molecular ordering direction is orthogonal to that of colloidal rods. A coarse-grained model explains the experimental temperature-concentration phase diagram with one biaxial and two uniaxial nematic phases, as well as the orientational distributions of rods. Displaying properties of biaxial optical crystals, these hybrid molecular-colloidal fluids can be switched by electric and magnetic fields. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Xing, Pengyao; Tham, Huijun Phoebe; Li, Peizhou; Chen, Hongzhong; Xiang, Huijing
2017-01-01
Abstract Manipulating the property transfer in nanosystems is a challenging task since it requires switchable molecular packing such as separate aggregation (self‐sorting) or synergistic aggregation (coassembly). Herein, a unique manipulation of self‐sorting/coassembly aggregation and the observation of switchable stimulus‐responsiveness transfer in a two component self‐assembly system are reported. Two building blocks bearing the same cholesterol group give versatile topological structures in polar and nonpolar solvents. One building block (cholesterol conjugated cynanostilbene, CCS) consists of cholesterol conjugated with a cynanostilbene unit, and the other one (C10CN) is comprised of cholesterol connected with a naphthalimide group having a flexible long alkyl chain. Their assemblies including gel, crystalline plates, and vesicles are obtained. In gel and crystalline plate phases, the self‐sorting behavior dominates, while synergistic coassembly occurs in vesicle phase. Since CCS having the cyanostilbene group can respond to the light irradiation, it undergoes light‐induced chiral amplification. C10CN is thermally responsive, whereby its supramolecular chirality is inversed upon heating. In coassembled vesicles, it is interestingly observed that their responsiveness can be transferred by each other, i.e., the C10CN segment is sensitive to the light irradiation, while CCS is thermoresponsive. This unprecedented behavior of the property transfer may shine a light to the precise fabrication of smart materials. PMID:29375976
Salyer, Ival O.; Griffen, Charles W.
1986-01-01
A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.
GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen
2015-01-01
GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.
Cluster-assembled materials based on M12N12 (M = Al, Ga) fullerene-like clusters.
Yong, Yongliang; Song, Bin; He, Pimo
2011-09-28
We report the results of density functional theory calculations on cluster-assembled materials based on M(12)N(12) (M = Al, Ga) fullerene-like clusters. Our results show that the M(12)N(12) fullerene-like structure with six isolated four-membered rings (4NRs) and eight six-membered rings (6NRs) has a T(h) symmetry and a large HOMO-LUMO gap, indicating that the M(12)N(12) cluster would be ideal building blocks for the synthesis of cluster-assembled materials. Via the coalescence of M(12)N(12) building blocks, we find that the M(12)N(12) clusters can bind into stable assemblies by either 6NR or 4NR face coalescence, which enables the construction of rhombohedral or cubic nanoporous framework of varying porosity. The rhombohedral-MN phase is energetically more favorable than the cubic-MN phase. The M(12)N(12) fullerene-like structures in both phases are maintained and the M-N bond lengths between M(12)N(12) monomers are slightly larger than that in isolated M(12)N(12) clusters and the bulk wurtzite phases. The band analysis of both phases reveals that they are all wide-gap semiconductors. Because of the nanoporous character of these phases, they could be used for gas storage, heterogeneous catalysis, filtration and so on.
Microwave spectroscopy of biomolecular building blocks.
Alonso, José L; López, Juan C
2015-01-01
Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment.
Hooper, Paula; Knuiman, Matthew; Foster, Sarah; Giles-Corti, Billie
2015-11-01
Planning policy makers are requesting clearer guidance on the key design features required to build neighbourhoods that promote active living. Using a backwards stepwise elimination procedure (logistic regression with generalised estimating equations adjusting for demographic characteristics, self-selection factors, stage of construction and scale of development) this study identified specific design features (n=16) from an operational planning policy ("Liveable Neighbourhoods") that showed the strongest associations with walking behaviours (measured using the Neighbourhood Physical Activity Questionnaire). The interacting effects of design features on walking behaviours were also investigated. The urban design features identified were grouped into the "building blocks of a Liveable Neighbourhood", reflecting the scale, importance and sequencing of the design and implementation phases required to create walkable, pedestrian friendly developments. Copyright © 2015 Elsevier Ltd. All rights reserved.
In Situ Visualization of the Growth and Fluctuations of Nanoparticle Superlattice in Liquids
NASA Astrophysics Data System (ADS)
Ou, Zihao; Shen, Bonan; Chen, Qian
We use liquid phase transmission electron microscopy to image and understand the crystal growth front and interfacial fluctuation of a nanoparticle superlattice. With single particle resolution and hundreds of nanoscale building blocks in view, we are able to identify the interface between ordered lattice and disordered structure and visualize the kinetics of single building block attachment at the lattice growth front. The spatial interfacial fluctuation profiles support the capillary wave theory, from which we derive a surface stiffness value consistent with scaling analysis. Our experiments demonstrate the potential of extending model study on collective systems to nanoscale with single particle resolution and testing fundamental theories of condensed matter at a length scale linking atoms and micron-sized colloids.
A New Built-in Self Test Scheme for Phase-Locked Loops Using Internal Digital Signals
NASA Astrophysics Data System (ADS)
Kim, Youbean; Kim, Kicheol; Kim, Incheol; Kang, Sungho
Testing PLLs (phase-locked loops) is becoming an important issue that affects both time-to-market and production cost of electronic systems. Though a PLL is the most common mixed-signal building block, it is very difficult to test due to internal analog blocks and signals. In this paper, we propose a new PLL BIST (built-in self test) using the distorted frequency detector that uses only internal digital signals. The proposed BIST does not need to load any analog nodes of the PLL. Therefore, it provides an efficient defect-oriented structural test scheme, reduced area overhead, and improved test quality compared with previous approaches.
NASA Technical Reports Server (NTRS)
Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace
2012-01-01
The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.
Laser dynamics: The system dynamics and network theory of optoelectronic integrated circuit design
NASA Astrophysics Data System (ADS)
Tarng, Tom Shinming-T. K.
Laser dynamics is the system dynamics, communication and network theory for the design of opto-electronic integrated circuit (OEIC). Combining the optical network theory and optical communication theory, the system analysis and design for the OEIC fundamental building blocks is considered. These building blocks include the direct current modulation, inject light modulation, wideband filter, super-gain optical amplifier, E/O and O/O optical bistability and current-controlled optical oscillator. Based on the rate equations, the phase diagram and phase portrait analysis is applied to the theoretical studies and numerical simulation. The OEIC system design methodologies are developed for the OEIC design. Stimulating-field-dependent rate equations are used to model the line-width narrowing/broadening mechanism for the CW mode and frequency chirp of semiconductor lasers. The momentary spectra are carrier-density-dependent. Furthermore, the phase portrait analysis and the nonlinear refractive index is used to simulate the single mode frequency chirp. The average spectra of chaos, period doubling, period pulsing, multi-loops and analog modulation are generated and analyzed. The bifurcation-chirp design chart with modulation depth and modulation frequency as parameters is provided for design purpose.
SRA Real Math Building Blocks PreK. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"SRA Real Math Building Blocks PreK" (also referred to as "Building Blocks for Math") is a supplemental mathematics curriculum designed to develop preschool children's early mathematical knowledge through various individual and small- and large-group activities. It uses "Building Blocks for Math PreK" software,…
Stoichiometric control of DNA-grafted colloid self-assembly
Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat; ...
2015-04-06
In this study, there has been considerable interest in understanding the self-assembly of DNA-grafted nanoparticles into different crystal structures, e.g., CsCl, AlB₂, and Cr₃Si. Although there are important exceptions, a generally accepted view is that the right stoichiometry of the two building block colloids needs to be mixed to form the desired crystal structure. To incisively probe this issue, we combine experiments and theory on a series of DNA-grafted nanoparticles at varying stoichiometries, including noninteger values. We show that stoichiometry can couple with the geometries of the building blocks to tune the resulting equilibrium crystal morphology. As a concrete example,more » a stoichiometric ratio of 3:1 typically results in the Cr₃Si structure. However, AlB₂ can form when appropriate building blocks are used so that the AlB₂ standard-state free energy is low enough to overcome the entropic preference for Cr₃Si. These situations can also lead to an undesirable phase coexistence between crystal polymorphs. Thus, whereas stoichiometry can be a powerful handle for direct control of lattice formation, care must be taken in its design and selection to avoid polymorph coexistence.« less
Pearsall, Matthew J; Ellis, Aleksander P J; Bell, Bradford S
2010-01-01
The primary purpose of this study was to extend theory and research regarding the emergence of mental models and transactive memory in teams. Utilizing Kozlowski, Gully, Nason, and Smith's (1999) model of team compilation, we examined the effect of role identification behaviors and posited that such behaviors represent the initial building blocks of team cognition during the role compilation phase of team development. We then hypothesized that team mental models and transactive memory would convey the effects of these behaviors onto team performance in the team compilation phase of development. Results from 60 teams working on a command-and-control simulation supported our hypotheses. Copyright 2009 APA, all rights reserved.
Nanoporous Gold as a Platform for a Building Block Catalyst
Wittstock, Arne; Wichmann, Andre; Baeumer, Marcus
2012-09-25
The porous bulk materials are of great interest in catalysis because they can be employed in heterogeneous gas and liquid phase catalysis, electrocatalysis, and in electrocatalytic sensing. Nanoporous gold gained considerable attraction in this context because it is the prime example of a corrosion-derived nanoporous bulk metal. Moreover, the material was shown to be a very active and selective Au type catalyst for a variety of oxidation reactions. In leveraging the functionalization of the surface of the material with various additives, its catalytic applications can be extended and tuned. In this review, we will summarize recent developments in using nanoporousmore » gold as the platform for the development of high performance catalytic materials by adding metals, metal oxides, and molecular functionalities as building blocks.« less
An Advanced simulation Code for Modeling Inductive Output Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thuc Bui; R. Lawrence Ives
2012-04-27
During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing currentmore » density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ruixue; Chen, Kezheng, E-mail: dxb@sdu.edu.cn; Liao, Zhongmiao
Highlights: ► Hydroxyapatite hierarchical microstructures have been synthesized by a facile method. ► The morphology and size of the building units of 3D structures can be controlled. ► The hydroxyapatite with 3D structure is morphologically and structurally stable up to 800 °C. - Abstract: Hydroxyapatite (HAp) hierarchical microstructures with novel 3D morphology were prepared through a template- and surfactant-free hydrothermal homogeneous precipitation method. Field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) were used to characterize the morphology and composition of the synthesized products. Interestingly, the obtained HAp with 3D structure is composed ofmore » one-dimensional (1D) nanorods or two-dimensional (2D) nanoribbons, and the length and morphology of these building blocks can be controlled through controlling the pH of the reaction. The building blocks are single crystalline and have different preferential orientation growth under different pH conditions. At low pH values, octacalcium phosphate (OCP) phase formed first and then transformed into HAp phase due to the increased pH value caused by the decomposition of urea. The investigation on the thermal stability reveals that the prepared HAp hierarchical microstructures are morphologically and structurally stable up to 800 °C.« less
Electronically Tunable Differential Integrator: Linear Voltage Controlled Quadrature Oscillator.
Nandi, Rabindranath; Pattanayak, Sandhya; Venkateswaran, Palaniandavar; Das, Sagarika
2015-01-01
A new electronically tunable differential integrator (ETDI) and its extension to voltage controlled quadrature oscillator (VCQO) design with linear tuning law are proposed; the active building block is a composite current feedback amplifier with recent multiplication mode current conveyor (MMCC) element. Recently utilization of two different kinds of active devices to form a composite building block is being considered since it yields a superior functional element suitable for improved quality circuit design. The integrator time constant (τ) and the oscillation frequency (ω o ) are tunable by the control voltage (V) of the MMCC block. Analysis indicates negligible phase error (θ e ) for the integrator and low active ω o -sensitivity relative to the device parasitic capacitances. Satisfactory experimental verifications on electronic tunability of some wave shaping applications by the integrator and a double-integrator feedback loop (DIFL) based sinusoid oscillator with linear f o variation range of 60 KHz~1.8 MHz at low THD of 2.1% are verified by both simulation and hardware tests.
Digital Alchemy for Materials Design: Colloids and Beyond
NASA Astrophysics Data System (ADS)
van Anders, Greg; Klotsa, Daphne; Karas, Andrew; Dodd, Paul; Glotzer, Sharon
Starting with the early alchemists, a holy grail of science has been to make desired materials by manipulating basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that connecting building-block attributes to bulk structure is both necessary for rationally engineering materials and difficult because building block attributes can be altered in many ways. We show how to exploit the malleability of colloidal nanoparticle ``elements'' to quantitatively link building-block attributes to bulk structure through a statistical thermodynamic framework we term ``digital alchemy''. We use this framework to optimize building blocks for a given target structure and to determine which building-block attributes are most important to control for self-assembly, through a set of novel thermodynamic response functions. We thereby establish direct links between the attributes of colloidal building blocks and the bulk structures they form. Moreover, our results give concrete solutions to the more general conceptual challenge of optimizing emergent behaviors in nature and can be applied to other types of matter.
Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M
2011-10-01
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.
Vutukuri, Hanumantha Rao; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
Particle shape is a critical parameter that plays an important role in self-assembly, for example, in designing targeted complex structures with desired properties. Over the last decades, an unprecedented range of monodisperse nanoparticle systems with control over the shape of the particles have become available. In contrast, the choice of micrometer-sized colloidal building blocks of particles with flat facets, that is, particles with polygonal shapes, is significantly more limited. This can be attributed to the fact that in contrast to nanoparticles, the larger colloids are significantly harder to synthesize as single crystals. It is now shown that a very simple building block, such as a micrometer-sized polymeric spherical colloidal particle, is already enough to fabricate particles with regularly placed flat facets, including completely polygonal shapes with sharp edges. As an illustration that the yields are high enough for further self-assembly studies, the formation of three-dimensional rotator phases of fluorescently labelled, micrometer-sized, and charged rhombic dodecahedron particles was demonstrated. This method for fabricating polyhedral particles opens a new avenue for designing new materials. PMID:25366869
NASA Astrophysics Data System (ADS)
Lemler, Paul M.; Vaccaro, Patrick
2016-06-01
The non-resonant interaction of electromagnetic radiation with an isotropic ensemble of chiral molecules, which causes the incident state of linear polarization to undergo a signed rotation, long has served as a metric for gauging the enantiomeric purity of asymmetric syntheses. While the underlying phenomenon of circular birefringence (CB) typically is probed in the condensed phase, recent advances in ultrasensitive circular-differential detection schemes, as exemplified by the techniques of Cavity Ring-Down Polarimetry (CRDP), have permitted the first quantitative analyses of such processes to be performed in rarefied media. Efforts to extend vapor-phase investigations of CB to new families of chiral substrates will be discussed, with particular emphasis directed towards the elucidation of intrinsic (e.g., solvent-free) properties and their mediation by environmental perturbations (e.g., solvation). Specific species targeted by this work will include the stereoselective building blocks phenylpropylene oxide and α-methylbenzyl amine, both of which exhibit pronounced solvent-dependent changes in measured optical activity. The nature of chiroptical response in different environments will be highlighted, with quantum-chemical calculations serving to unravel the structural and electronic provenance of observed behavior.
Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications
Wang, Xiaoliang; Ahmad, Mashkoor
2017-01-01
Zinc oxide (ZnO) nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D) complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research. PMID:29137195
Investigation into the development of computer aided design software for space based sensors
NASA Technical Reports Server (NTRS)
Pender, C. W.; Clark, W. L.
1987-01-01
The described effort is phase one of the development of a Computer Aided Design (CAD) software to be used to perform radiometric sensor design. The software package will be referred to as SCAD and is directed toward the preliminary phase of the design of space based sensor system. The approach being followed is to develop a modern, graphic intensive, user friendly software package using existing software as building blocks. The emphasis will be directed toward the development of a shell containing menus, smart defaults, and interfaces, which can accommodate a wide variety of existing application software packages. The shell will offer expected utilities such as graphics, tailored menus, and a variety of drivers for I/O devices. Following the development of the shell, the development of SCAD is planned as chiefly selection and integration of appropriate building blocks. The phase one development activities have included: the selection of hardware which will be used with SCAD; the determination of the scope of SCAD; the preliminary evaluation of a number of software packages for applicability to SCAD; determination of a method for achieving required capabilities where voids exist; and then establishing a strategy for binding the software modules into an easy to use tool kit.
Phase Behavior of a Single Structured Ionomer Chain in Solution
Aryal, Dipak; Etampawala, Thusitha; Perahia, Dvora; ...
2014-08-14
Structured polymers offer a means to tailor transport pathways within mechanically stable manifolds. Here we examine the building block of such a membrane, namely a single large pentablock co-polymer that consist of a center block of a randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability,using molecular dynamics simulations. The polymer structure in a cyclohexane-heptane mixture, a technologically viable solvent, and in water, a poor solvent for all segments and a ubiquitous substance is extracted. In all solvents the pentablock collapsed into nearly spherical aggregates where the ionic block is segregated. Inmore » hydrophobic solvents, the ionic block resides in the center, surrounded by swollen intermix of flexible and end blocks. In water all blocks are collapsed with the sulfonated block residing on the surface. Our results demonstrate that solvents drive different local nano-segregation, providing a gateway to assemble membranes with controlled topology.« less
RoBlock: a prototype autonomous manufacturing cell
NASA Astrophysics Data System (ADS)
Baekdal, Lars K.; Balslev, Ivar; Eriksen, Rene D.; Jensen, Soren P.; Jorgensen, Bo N.; Kirstein, Brian; Kristensen, Bent B.; Olsen, Martin M.; Perram, John W.; Petersen, Henrik G.; Petersen, Morten L.; Ruhoff, Peter T.; Skjolstrup, Carl E.; Sorensen, Anders S.; Wagenaar, Jeroen M.
2000-10-01
RoBlock is the first phase of an internally financed project at the Institute aimed at building a system in which two industrial robots suspended from a gantry, as shown below, cooperate to perform a task specified by an external user, in this case, assembling an unstructured collection of colored wooden blocks into a specified 3D pattern. The blocks are identified and localized using computer vision and grasped with a suction cup mechanism. Future phases of the project will involve other processes such as grasping and lifting, as well as other types of robot such as autonomous vehicles or variable geometry trusses. Innovative features of the control software system include: The use of an advanced trajectory planning system which ensures collision avoidance based on a generalization of the method of artificial potential fields, the use of a generic model-based controller which learns the values of parameters, including static and kinetic friction, of a detailed mechanical model of itself by comparing actual with planned movements, the use of fast, flexible, and robust pattern recognition and 3D-interpretation strategies, integration of trajectory planning and control with the sensor systems in a distributed Java application running on a network of PC's attached to the individual physical components. In designing this first stage, the aim was to build in the minimum complexity necessary to make the system non-trivially autonomous and to minimize the technological risks. The aims of this project, which is planned to be operational during 2000, are as follows: To provide a platform for carrying out experimental research in multi-agent systems and autonomous manufacturing systems, to test the interdisciplinary cooperation architecture of the Maersk Institute, in which researchers in the fields of applied mathematics (modeling the physical world), software engineering (modeling the system) and sensor/actuator technology (relating the virtual and real worlds) could collaborate with systems integrators to construct intelligent, autonomous systems, and to provide a showpiece demonstrator in the entrance hall of the Institute's new building.
Pettigrew, Katherine A; Long, Jeffrey W; Carpenter, Everett E; Baker, Colin C; Lytle, Justin C; Chervin, Christopher N; Logan, Michael S; Stroud, Rhonda M; Rolison, Debra R
2008-04-01
Using two-step (air/argon) thermal processing, sol-gel-derived nickel-iron oxide aerogels are transformed into monodisperse, networked nanocrystalline magnetic oxides of NiFe(2)O(4) with particle diameters that can be ripened with increasing temperature under argon to 4.6, 6.4, and 8.8 nm. Processing in air alone yields poorly crystalline materials; heating in argon alone leads to single phase, but diversiform, polydisperse NiFe(2)O(4), which hampers interpretation of the magnetic properties of the nanoarchitectures. The two-step method yields an improved model system to study magnetic effects as a function of size on the nanoscale while maintaining the particles within the size regime of single domain magnets, as networked building blocks, not agglomerates, and without stabilizing ligands capping the surface.
Zhang, Qihang; Zhang, Yifei; Li, Junying; Soref, Richard; Gu, Tian; Hu, Juejun
2018-01-01
In this Letter, we propose a broadband, nonvolatile on-chip switch design in the telecommunication C-band with record low loss and crosstalk. The unprecedented device performance builds on: 1) a new optical phase change material (O-PCM) Ge 2 Sb 2 Se 4 Te 1 (GSST), which exhibits significantly reduced optical attenuation compared to traditional O-PCMs, and 2) a nonperturbative design that enables low-loss device operation beyond the classical figure-of-merit (FOM) limit. We further demonstrate that the 1-by-2 and 2-by-2 switches can serve as basic building blocks to construct nonblocking and nonvolatile on-chip switching fabric supporting arbitrary numbers of input and output ports.
2016-03-31
The SiGe receiver has two stages of programmable RF filtering and one stage of IF filtering. Each filter can be tuned in center frequency and...distribution unlimited. transmit, with an IF to RF upconversion chain that is split to programmable phase shifters and VGAs at each output port. Figure 2...These are optimized to run on medium grade Field Programmable Gate Arrays (FPGAs), such as the Altera Arria 10, and represent a few of the many
Evans, Lyn
2018-05-23
Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D, industrialization, construction, installation and commissioning.
Small X-Band Oscillator Antennas
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.
2009-01-01
A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.
Data Policy Construction Set - Building Blocks from Childhood Constructions
NASA Astrophysics Data System (ADS)
Fleischer, Dirk; Paul-Stueve, Thilo; Jobmann, Alexandra; Farrenkopf, Stefan
2016-04-01
A complete construction set of building blocks usually comes with instructions and these instruction include building stages. The products of these building stages usually build from very general parts become highly specialized building parts for very unique features of the whole construction model. This sounds very much like the construction or organization of an interdisciplinary research project, institution or association, doesn't it! The creation process of an overarching data policy for a project group or institution is exactly the combination of individual interests with the common goal of a collaborative data policy and can be compared with the building stages of a construction set of building blocks and the building instructions. Keeping this in mind we created the data policy construction set of textual building blocks. This construction set is subdivided into several building stages or parts each containing multiple building blocks as text blocks. By combining building blocks of all subdivisions it is supposed to create a cascading data policy document. Cascading from the top level as a construction set provider for all further down existing levels such as project, themes, work packages or Universities, faculties, institutes down to the working level of working groups. The working groups are picking from the remaining building blocks in the provided construction set the suitable blocks for its working procedures to create a very specific policy from the available construction set provided by the top level community. Nevertheless, if a working group realized that there are missing building blocks or worse that there are missing building parts, then they have the chance to add the missing pieces to the construction set of direct an future use. This cascading approach enables project or institution wide application of the encoded rules from the textual level on access to data storage infrastructure. This structured approach is flexible enough to allow for the fact that interdisciplinary research projects always bring together very diverse amount of working habits, methods and requirements. All these need to be considered for the creation of the general document on data sharing and research data management. This approach focused on the recommendation of the RDA practical policy working group to implement practical policies derived from the textual level. Therefore it aims to move the data policy creation procedure and implementation towards the consortium or institutional formation with all the benefits of an existing data policy construction set already during the proposal creation and proposal review. Picking up the metaphor of real building blocks in context of data policies provides also the insight that existing building blocks and building parts can be reused as they are, but also can be redesigned with very little changes or a full overhaul.
Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui
2018-01-01
Children's block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children's block building performance. Chinese preschoolers ( N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children's block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation.
Analog Building Blocks for Communications Modems.
1977-01-01
x*—*- A0-A039 82b ELECTRONIC COMMUNICATIONS INC ST PETERSBURG FLA F/6 9/5 ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS .(U) JAN 77 B BLACK...F33615-7<t-C-1120 UNCLASSIFIED AFAL-TR-76-29 NL ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS ELECTRONIC COMMUNICATIONS INC. A SUBSIDIARY OF...Idantltr Or Mac* numb*,; Avionics Building-Block modules Frequency Synthesize* Costas Demodulator Amplifier Modem Frequency Multiplier ’ -^ « TRACT
Role of step edges on the structure formation of α-6T on Ag(441)
NASA Astrophysics Data System (ADS)
Wagner, Thorsten; Fritz, Daniel Roman; Rudolfová, Zdena; Zeppenfeld, Peter
2018-01-01
Controlling the orientation of organic molecules on surfaces is important in order to tune the physical properties of the organic thin films and, thereby, increase the performance of organic thin film devices. Here, we present a scanning tunneling microscopy (STM) and photoelectron emission microscopy (PEEM) study of the deposition of the organic dye pigment α-sexithiophene (α-6T) on the vicinal Ag(441) surface. In the presence of the steps on the Ag(441) surface, the α-6T molecules exclusively align parallel to the step edges oriented along the [1 1 bar0]-direction of the substrate. The STM results further reveal that the adsorption of the α-6T molecules is accompanied by various restructuring of the substrate surface: Initially, the molecules prefer the Ag(551) building blocks of the Ag(441) surface. The Ag(551) termination of the terraces is then changed to a predominately Ag(331) one upon completion of the first α-6T monolayer. When closing the two layer thick wetting layer, the original ratio of Ag(331) and Ag(551) building blocks ( ≈ 1:1) is recovered, but a phase separation into microfacets, which are composed either of Ag(331) or of Ag(551) building blocks, is found.
Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao
2018-04-14
Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.
Fault-tolerant computer study. [logic designs for building block circuits
NASA Technical Reports Server (NTRS)
Rennels, D. A.; Avizienis, A. A.; Ercegovac, M. D.
1981-01-01
A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed.
ERIC Educational Resources Information Center
Casey, Beth M.; Pezaris, Elizabeth E.; Bassi, Julie
2012-01-01
Two studies were conducted on block building in adolescents, assessing middle school (Study 1) and high school students (Study 2). Students were asked to build something interesting with blocks. In both samples, the same pattern of gender differences were found; boys built taller structures than girls, and balanced a larger number of blocks on a…
NASA Astrophysics Data System (ADS)
Mola Ebrahimi, S.; Arefi, H.; Rasti Veis, H.
2017-09-01
Our paper aims to present a new approach to identify and extract building footprints using aerial images and LiDAR data. Employing an edge detector algorithm, our method first extracts the outer boundary of buildings, and then by taking advantage of Hough transform and extracting the boundary of connected buildings in a building block, it extracts building footprints located in each block. The proposed method first recognizes the predominant leading orientation of a building block using Hough transform, and then rotates the block according to the inverted complement of the dominant line's angle. Therefore the block poses horizontally. Afterwards, by use of another Hough transform, vertical lines, which might be the building boundaries of interest, are extracted and the final building footprints within a block are obtained. The proposed algorithm is implemented and tested on the urban area of Zeebruges, Belgium(IEEE Contest,2015). The areas of extracted footprints are compared to the corresponding areas in the reference data and mean error is equal to 7.43 m2. Besides, qualitative and quantitative evaluations suggest that the proposed algorithm leads to acceptable results in automated precise extraction of building footprints.
Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material
NASA Astrophysics Data System (ADS)
Halúzová, Dušana
2015-06-01
For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.
Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik
2013-12-18
Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.
Engineering the formation of secondary building blocks within hollow interiors.
Li, Xiaobo; Liu, Xiao; Ma, Yi; Li, Mingrun; Zhao, Jiao; Xin, Hongchuan; Zhang, Lei; Yang, Yan; Li, Can; Yang, Qihua
2012-03-15
Secondary building blocks within the cavities of primary silica-architecture building blocks are successfully engineered. The immobilized surfactant directs the selective dissolution and reassembly of dissolved silicate species for the formation of secondary building blocks (hollow nanospheres/nanorods; see figure). Supported TiO(2) on nanostructures with multilevel interiors is shown to exhibit significantly enhanced activity in photocatalytic H(2) production. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui
2018-01-01
Children’s block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children’s block building performance. Chinese preschoolers (N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children’s block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation. PMID:29441031
Manyazewal, Tsegahun
2017-01-01
Acknowledging the health system strengthening agenda, the World Health Organization (WHO) has formulated a health systems framework that describes health systems in terms of six building blocks. This study aimed to determine the current status of the six WHO health system building blocks in public healthcare facilities in Ethiopia. A quantitative, cross-sectional study was conducted in five public hospitals in central Ethiopia which were in a post-reform period. A self-administered, structured questionnaire which covered the WHO's six health system building blocks was used to collect data on healthcare professionals who consented. Data was analyzed using IBM SPSS version 20. The overall performance of the public hospitals was 60% when weighed against the WHO building blocks which, in this procedure, needed a minimum of 80% score. For each building block, performance scores were: information 53%, health workforce 55%, medical products and technologies 58%, leadership and governance 61%, healthcare financing 62%, and service delivery 69%. There existed a significant difference in performance among the hospitals ( p < .001). The study proved that the WHO's health system building blocks are useful for assessing the process of strengthening health systems in Ethiopia. The six blocks allow identifying different improvement opportunities in each one of the hospitals. There was no contradiction between the indicators of the WHO building blocks and the health sustainable development goal (SDG) objectives. However, such SDG objectives should not be a substitute for strategies to strengthen health systems.
NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig E. Barnes
2013-03-05
A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosingmore » the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).« less
Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans
NASA Astrophysics Data System (ADS)
Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.
2018-06-01
The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.
Shape-shifting colloids via stimulated dewetting
Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano
2016-01-01
The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418
Shape-shifting colloids via stimulated dewetting
NASA Astrophysics Data System (ADS)
Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano
2016-07-01
The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.
Ahmed, Marawan; Ganesan, Aravindhan; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C
2012-08-23
X-ray photoelectron spectra of the core and valence levels of the fundamental building blocks of β-lactam antibiotics have been investigated and compared with theoretical calculations. The spectra of the compounds 2-azetidinone and the 2- and 4-isomers of thiazolidine-carboxylic acid are interpreted in the light of theoretical calculations. The spectra of the two isomers of thiazolidine-carboxylic acid are rather similar, as expected, but show clear effects due to isomerization. Both isomers are analogues of proline, which is well-known to populate several low energy conformers in the gas phase. We have investigated the low energy conformers of thiazolidine-4-carboxylic acid theoretically in more detail and find some spectroscopic evidence that multiple conformers may be present. The measured valence levels are assigned for all three compounds, and the character of the frontier orbitals is identified and analyzed.
The Building Blocks of Geology.
ERIC Educational Resources Information Center
Gibson, Betty O.
2001-01-01
Discusses teaching techniques for teaching about rocks, minerals, and the differences between them. Presents a model-building activity that uses plastic building blocks to build crystal and rock models. (YDS)
Broadband achromatic optical metasurface devices.
Wang, Shuming; Wu, Pin Chieh; Su, Vin-Cent; Lai, Yi-Chieh; Hung Chu, Cheng; Chen, Jia-Wern; Lu, Shen-Hung; Chen, Ji; Xu, Beibei; Kuan, Chieh-Hsiung; Li, Tao; Zhu, Shining; Tsai, Din Ping
2017-08-04
Among various flat optical devices, metasurfaces have presented their great ability in efficient manipulation of light fields and have been proposed for variety of devices with specific functionalities. However, due to the high phase dispersion of their building blocks, metasurfaces significantly suffer from large chromatic aberration. Here we propose a design principle to realize achromatic metasurface devices which successfully eliminate the chromatic aberration over a continuous wavelength region from 1200 to 1680 nm for circularly-polarized incidences in a reflection scheme. For this proof-of-concept, we demonstrate broadband achromatic metalenses (with the efficiency on the order of ∼12%) which are capable of focusing light with arbitrary wavelength at the same focal plane. A broadband achromatic gradient metasurface is also implemented, which is able to deflect wide-band light by the same angle. Through this approach, various flat achromatic devices that were previously impossible can be realized, which will allow innovation in full-color detection and imaging.Metasurfaces suffer from large chromatic aberration due to the high phase dispersion of their building blocks, limiting their applications. Here, Wang et al. design achromatic metasurface devices which eliminate the chromatic aberration over a continuous region from 1200 to 1680 nm in a reflection schleme.
Cascaded Microinverter PV System for Reduced Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellus, Daniel R.; Ely, Jeffrey A.
2013-04-29
In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with anmore » embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.« less
Functionalized Helical Building Blocks for Nanoelectronics.
Khokhlov, Khrystofor; Schuster, Nathaniel J; Ng, Fay; Nuckolls, Colin
2018-04-06
Molecular building blocks are designed and created for the cis- and trans-dibrominated perylenediimides. The syntheses are simple and provide these useful materials on the gram scale. To demonstrate their synthetic versatility, these building blocks were used to create new dimeric perylenediimide helixes. Two of these helical dimers are twistacenes, and one is a helicene. Crucially, each possesses regiochemically defined functionality that allows the dimer helix to be elaborated into higher oligomers. It would be very difficult to prepare these helical PDI building blocks regioselectively without the methods described.
Feasibility Study for Low Drag Acoustic Liners Final Report
NASA Technical Reports Server (NTRS)
Riedel, Brian; Wu, Jackie
2017-01-01
This report documents the design and structural analysis as a final deliverable for the Phase 1 contract activity. Also included is a community noise test plan, which is a key deliverable for Phase 2. Finally, a high-level estimate (Phase 3 deliverable) is provided for the work statement of Phases 2-4, which covers the build of two inlet test articles, planning and execution of a flight test with the test inlets, as well as data analysis and final documentation. The two test inlets will be compared to the production baseline inlet configuration. There is also a plan to test one of the inlets "hardwalled" using speed tape or some other similar tape to block the acoustic perforations.
The 10 building blocks of high-performing primary care.
Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin
2014-01-01
Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements-engaged leadership, data-driven improvement, empanelment, and team-based care-that assist the implementation of the other 6 building blocks-patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement.
Two innovative solutions based on fibre concrete blocks designed for building substructure
NASA Astrophysics Data System (ADS)
Pazderka, J.; Hájek, P.
2017-09-01
Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.
Development of Test Article Building Block (TABB) for deployable platform systems
NASA Technical Reports Server (NTRS)
Greenberg, H. S.; Barbour, R. T.
1984-01-01
The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.
NASA Astrophysics Data System (ADS)
Nose, Kazuhito; Hatake, Shuhei
2016-06-01
Massive earthquake named "Tonankai Massive earthquake" is predicted to occur in the near future and is feared to cause severe damage in Kinki District . "Hanshin-Awaji Massive Earthquake" in 1995 destroyed most of the buildings constructed before 1981 and not complying with the latest earthquake resistance standards. Collapsed buildings blocked roads, obstructed evacuation, rescue and firefighting operations and inflicted further damages.To alleviate the damages, it is important to predict the points where collapsed buildings are likely block the roads and to take precautions in advance. But big cities have an expanse of urban areas with densely-distributed buildings, and it requires time and cost to check each and every building whether or not it will block the road. In order to reduce blocked roads when a disaster strikes, we made a study and confirmed that the risk of road blocking can be determined easily by means of the latest technologies of survey and geographical information.
Winkler, Dirk F H; Tian, Kerry
2015-04-01
Difficult peptides are a constant challenge in solid-phase peptide synthesis. In particular, hydroxyl amino acids such as serine can cause severe breakdowns in coupling yields even several amino acids after the insertion of the critical amino acid. This paper investigates several methods of improving synthesis yields of difficult peptides including the use of different resins, activators and the incorporation of a structure-breaking pseudoproline dipeptide building block both alone and in combination with each other.
NASA Technical Reports Server (NTRS)
Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt; Fill, Thomas
2018-01-01
NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. NASA is also currently designing the next evolution of SLS, the Block-1B. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm (of Space Shuttle heritage) for closed loop guidance. To accommodate vehicle capabilities and design for future evolutions of SLS, modifications were made to PEG for Block-1 to handle multi-phase burns, provide PEG updated propulsion information, and react to a core stage engine out. In addition, due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS) and EUS carrying out Lunar Vicinity and Earth Escape missions, certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions to account for long burn arcs and target translunar and hyperbolic orbits. This paper describes the design and implementation of modifications to the Block-1 PEG algorithm as compared to Space Shuttle. Furthermore, this paper illustrates challenges posed by the Block-1B vehicle and the required PEG enhancements. These improvements make PEG capable for use on the SLS Block-1B vehicle as part of the Guidance, Navigation, and Control (GN&C) System.
Jayaprakash, K N; Peng, Chang Geng; Butler, David; Varghese, Jos P; Maier, Martin A; Rajeev, Kallanthottathil G; Manoharan, Muthiah
2010-12-03
Novel non-nucleoside alkyne monomers compatible with oligonucleotide synthesis were designed, synthesized, and efficiently incorporated into RNA and RNA analogues during solid-phase synthesis. These modifications allowed site-specific conjugation of ligands to the RNA oligonucleotides through copper-assisted (CuAAC) and copper-free strain-promoted azide-alkyne cycloaddition (SPAAC) reactions. The SPAAC click reactions of cyclooctyne-oligonucleotides with various classes of azido-functionalized ligands in solution phase and on solid phase were efficient and quantitative and occurred under mild reaction conditions. The SPAAC reaction provides a method for the synthesis of oligonucleotide-ligand conjugates uncontaminated with copper ions.
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.
Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip
2012-05-09
Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.
The Development of Spatial Skills through Interventions Involving Block Building Activities
ERIC Educational Resources Information Center
Casey, Beth M.; Andrews, Nicole; Schindler, Holly; Kersh, Joanne E.; Samper, Alexandra; Copley, Juanita
2008-01-01
This study investigated the use of block-building interventions to develop spatial-reasoning skills in kindergartners. Two intervention conditions and a control condition were included to determine, first, whether the block building activities themselves benefited children's spatial skills, and secondly, whether a story context further improved…
Wu, S.-S.; Wang, L.; Qiu, X.
2008-01-01
This article presents a deterministic model for sub-block-level population estimation based on the total building volumes derived from geographic information system (GIS) building data and three census block-level housing statistics. To assess the model, we generated artificial blocks by aggregating census block areas and calculating the respective housing statistics. We then applied the model to estimate populations for sub-artificial-block areas and assessed the estimates with census populations of the areas. Our analyses indicate that the average percent error of population estimation for sub-artificial-block areas is comparable to those for sub-census-block areas of the same size relative to associated blocks. The smaller the sub-block-level areas, the higher the population estimation errors. For example, the average percent error for residential areas is approximately 0.11 percent for 100 percent block areas and 35 percent for 5 percent block areas.
Building Blocks: Enmeshing Technology and Creativity with Artistic Pedagogical Technologies
ERIC Educational Resources Information Center
Janzen, Katherine J.; Perry, Beth; Edwards, Margaret
2017-01-01
Using the analogy of children's building blocks, the reader is guided through the results of a research study that explored the use of three Artistic Pedagogical Technologies (APTs). "Building blocks" was the major theme that emerged from the data. Sub-themes included developing community, enhancing creativity, and risk taking. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werpy, Todd A.; Holladay, John E.; White, James F.
2004-11-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, themore » report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.« less
ERIC Educational Resources Information Center
Dillon, Randy K.
This paper explores behavior patterns that inhibit effective communication in everyday, educational, and business cross-cultural settings. Opportunities to change these inhibiting patterns, metaphorically referred to as "stumbling blocks," into building blocks or tools for successful intercultural understandings are discussed in the…
ERIC Educational Resources Information Center
Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.
2016-01-01
Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…
Phase behavior of a family of truncated hard cubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gantapara, Anjan P., E-mail: A.P.Gantapara@uu.nl; Dijkstra, Marjolein, E-mail: M.Dijkstra1@uu.nl; Graaf, Joost de
2015-02-07
In continuation of our work in Gantapara et al., [Phys. Rev. Lett. 111, 015501 (2013)], we investigate here the thermodynamic phase behavior of a family of truncated hard cubes, for which the shape evolves smoothly from a cube via a cuboctahedron to an octahedron. We used Monte Carlo simulations and free-energy calculations to establish the full phase diagram. This phase diagram exhibits a remarkable richness in crystal and mesophase structures, depending sensitively on the precise particle shape. In addition, we examined in detail the nature of the plastic crystal (rotator) phases that appear for intermediate densities and levels of truncation.more » Our results allow us to probe the relation between phase behavior and building-block shape and to further the understanding of rotator phases. Furthermore, the phase diagram presented here should prove instrumental for guiding future experimental studies on similarly shaped nanoparticles and the creation of new materials.« less
The Building Blocks of Life Move from Ground to Tree to Animal and Back to Ground
NASA Astrophysics Data System (ADS)
Davidson, E. A.
2015-12-01
I generally use combinations of big words to describe my science, such as biogeochemistry, ecosystem ecology, nutrient cycling, stoichiometry, tropical deforestation, land-use change, agricultural intensification, eutrophication, greenhouse gas emissions, and sustainable development. I didn't expect to use any of these words, but I was surprised that I couldn't use some others that seem simple enough to me, such as farm, plant, soil, and forest. I landed on "building blocks" as my metaphor for the forms of carbon, nitrogen, phosphorus, and other elements that I study as they cycle through and among ecosystems. I study what makes trees and other kinds of life grow. We all know that they need the sun and that they take up water from the ground, but what else do trees need from the ground? What do animals that eat leaves and wood get from the trees? Just as we need building blocks to grow our bodies, trees and animals also need building blocks for growing their bodies. Trees get part of their building blocks from the ground and animals get theirs from what they eat. When animals poop and when leaves fall, some of their building blocks return to the ground. When they die, their building blocks also go back to the ground. I also study what happens to the ground, the water, and the air when we cut down trees, kill or shoo away the animals, and make fields to grow our food. Can we grow enough food and still keep the ground, water, and air clean? I think the answer is yes, but it will take better understanding of how all of those building blocks fit together and move around, from ground to tree to animal and back to ground.
Building Curriculum during Block Play
ERIC Educational Resources Information Center
Andrews, Nicole
2015-01-01
Blocks are not just for play! In this article, Nicole Andrews describes observing the interactions of three young boys enthusiastically engaged in the kindergarten block center of their classroom, using blocks in a building project that displayed their ability to use critical thinking skills, physics exploration, and the development of language…
The 10 Building Blocks of High-Performing Primary Care
Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin
2014-01-01
Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements—engaged leadership, data-driven improvement, empanelment, and team-based care—that assist the implementation of the other 6 building blocks—patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement. PMID:24615313
PUS Services Software Building Block Automatic Generation for Space Missions
NASA Astrophysics Data System (ADS)
Candia, S.; Sgaramella, F.; Mele, G.
2008-08-01
The Packet Utilization Standard (PUS) has been specified by the European Committee for Space Standardization (ECSS) and issued as ECSS-E-70-41A to define the application-level interface between Ground Segments and Space Segments. The ECSS-E- 70-41A complements the ECSS-E-50 and the Consultative Committee for Space Data Systems (CCSDS) recommendations for packet telemetry and telecommand. The ECSS-E-70-41A characterizes the identified PUS Services from a functional point of view and the ECSS-E-70-31 standard specifies the rules for their mission-specific tailoring. The current on-board software design for a space mission implies the production of several PUS terminals, each providing a specific tailoring of the PUS services. The associated on-board software building blocks are developed independently, leading to very different design choices and implementations even when the mission tailoring requires very similar services (from the Ground operative perspective). In this scenario, the automatic production of the PUS services building blocks for a mission would be a way to optimize the overall mission economy and improve the robusteness and reliability of the on-board software and of the Ground-Space interactions. This paper presents the Space Software Italia (SSI) activities for the development of an integrated environment to support: the PUS services tailoring activity for a specific mission. the mission-specific PUS services configuration. the generation the UML model of the software building block implementing the mission-specific PUS services and the related source code, support documentation (software requirements, software architecture, test plans/procedures, operational manuals), and the TM/TC database. The paper deals with: (a) the project objectives, (b) the tailoring, configuration, and generation process, (c) the description of the environments supporting the process phases, (d) the characterization of the meta-model used for the generation, (e) the characterization of the reference avionics architecture and of the reference on- board software high-level architecture.
Resource quality of a symmetry-protected topologically ordered phase for quantum computation.
Miller, Jacob; Miyake, Akimasa
2015-03-27
We investigate entanglement naturally present in the 1D topologically ordered phase protected with the on-site symmetry group of an octahedron as a potential resource for teleportation-based quantum computation. We show that, as long as certain characteristic lengths are finite, all its ground states have the capability to implement any unit-fidelity one-qubit gate operation asymptotically as a key computational building block. This feature is intrinsic to the entire phase, in that perfect gate fidelity coincides with perfect string order parameters under a state-insensitive renormalization procedure. Our approach may pave the way toward a novel program to classify quantum many-body systems based on their operational use for quantum information processing.
Resource Quality of a Symmetry-Protected Topologically Ordered Phase for Quantum Computation
NASA Astrophysics Data System (ADS)
Miller, Jacob; Miyake, Akimasa
2015-03-01
We investigate entanglement naturally present in the 1D topologically ordered phase protected with the on-site symmetry group of an octahedron as a potential resource for teleportation-based quantum computation. We show that, as long as certain characteristic lengths are finite, all its ground states have the capability to implement any unit-fidelity one-qubit gate operation asymptotically as a key computational building block. This feature is intrinsic to the entire phase, in that perfect gate fidelity coincides with perfect string order parameters under a state-insensitive renormalization procedure. Our approach may pave the way toward a novel program to classify quantum many-body systems based on their operational use for quantum information processing.
Early human communication helps in understanding language evolution.
Lenti Boero, Daniela
2014-12-01
Building a theory on extant species, as Ackermann et al. do, is a useful contribution to the field of language evolution. Here, I add another living model that might be of interest: human language ontogeny in the first year of life. A better knowledge of this phase might help in understanding two more topics among the "several building blocks of a comprehensive theory of the evolution of spoken language" indicated in their conclusion by Ackermann et al., that is, the foundation of the co-evolution of linguistic motor skills with the auditory skills underlying speech perception, and the possible phylogenetic interactions of protospeech production with referential capabilities.
Local geology controlled the feasibility of vitrifying Iron Age buildings.
Wadsworth, Fabian B; Heap, Michael J; Damby, David E; Hess, Kai-Uwe; Najorka, Jens; Vasseur, Jérémie; Fahrner, Dominik; Dingwell, Donald B
2017-01-12
During European prehistory, hilltop enclosures made from polydisperse particle-and-block stone walling were exposed to temperatures sufficient to partially melt the constituent stonework, leading to the preservation of glassy walls called 'vitrified forts'. During vitrification, the granular wall rocks partially melt, sinter viscously and densify, reducing inter-particle porosity. This process is strongly dependent on the solidus temperature, the particle sizes, the temperature-dependence of the viscosity of the evolving liquid phase, as well as the distribution and longevity of heat. Examination of the sintering behaviour of 45 European examples reveals that it is the raw building material that governs the vitrification efficiency. As Iron Age forts were commonly constructed from local stone, we conclude that local geology directly influenced the degree to which buildings were vitrified in the Iron Age. Additionally, we find that vitrification is accompanied by a bulk material strengthening of the aggregates of small sizes, and a partial weakening of larger blocks. We discuss these findings in the context of the debate surrounding the motive of the wall-builders. We conclude that if wall stability by bulk strengthening was the desired effect, then vitrification represents an Iron Age technology that failed to be effective in regions of refractory local geology.
Demetzos, Costas
2015-06-01
Biophysics and thermodynamics are considered as the scientific milestones for investigating the properties of materials. The relationship between the changes of temperature with the biophysical variables of biomaterials is important in the process of the development of drug delivery systems. Biophysics is a challenge sector of physics and should be used complementary with the biochemistry in order to discover new and promising technological platforms (i.e., drug delivery systems) and to disclose the 'silence functionality' of bio-inspired biological and artificial membranes. Thermal analysis and biophysical approaches in pharmaceuticals present reliable and versatile tools for their characterization and for the successful development of pharmaceutical products. The metastable phases of self-assembled nanostructures such as liposomes should be taken into consideration because they represent the thermal events can affect the functionality of advanced drug delivery nano systems. In conclusion, biophysics and thermodynamics are characterized as the building blocks for design and development of bio-inspired drug delivery systems.
Nano-functionalization of protein microspheres
NASA Astrophysics Data System (ADS)
Yoon, Sungkwon; Nichols, William T.
2014-08-01
Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.
Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian
2015-01-01
Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues.
Anomalous acoustic dispersion in architected microlattice metamaterials
NASA Astrophysics Data System (ADS)
KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara
The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.
Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays
Hong, Yan; Reinhard, Björn M.
2014-10-27
Coherent scattering of gold and silver nanoparticles (NPs) in regular arrays can generate Surface Lattice Resonances (SLRs) with characteristically sharp spectral features. Herein, we investigate collective resonances in compositionally more complex arrays comprising NP clusters and NPs with different chemical compositions at pre-defined lattice sites. We first characterize the impact of NP clustering by exchanging individual gold NPs in the array through dimers of electromagnetically strongly coupled gold NPs. Then, we analyze hybrid arrays that contain both gold metal NP dimers and high refractive index dielectric NPs as building blocks. We demonstrate that the integration of gold NP clusters andmore » dielectric NPs into one array enhances E-field intensities not only in the vicinity of the NPs but also in the ambient medium of the entire array. In addition, this work shows that the ability to integrate multiple building blocks with different resonance conditions in one array provides new degrees of freedom for engineering optical fields in the array plane with variable amplitude and phase.« less
Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings
NASA Astrophysics Data System (ADS)
Venkrbec, Václav; Nováková, Iveta; Henková, Svatava
2017-10-01
Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.
2018-02-15
address the problem that probabilistic inference algorithms are diÿcult and tedious to implement, by expressing them in terms of a small number of...building blocks, which are automatic transformations on probabilistic programs. On one hand, our curation of these building blocks reflects the way human...reasoning with low-level computational optimization, so the speed and accuracy of the generated solvers are competitive with state-of-the-art systems. 15
1. John C. Garner, Jr., Photographer 1967 PRINCIPAL (NORTH) SIDE, ...
1. John C. Garner, Jr., Photographer 1967 PRINCIPAL (NORTH) SIDE, FROM NORTHWEST. THE RIGHT END OF THE BLOCK IS THE E.S. WOOD BUILDING; THE BUILDING WITH A FIRE ESCAPE IS THE ROSENFIELD BUILDING; THE T.W. HOUSE BUILDING IS TO THE LEFT OF THE PRECEDING BUILDING; JOHN BERLOCHER BUILDING IS AT THE LEFT END OF THE BLOCK. - Strand Historic District, Wood-Rosenfield-House-Berlocher Buildings, 2213-2223 Strand, Galveston, Galveston County, TX
NASA Technical Reports Server (NTRS)
Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.
2001-01-01
To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2004-08-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werpy, T.; Petersen, G.
2004-08-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.
JPRS Report, Science & Technology, Europe
1991-12-30
not yet found a market. Like the ingenious blood-clot filter designed to prevent embolization . Rec- tilinear in its low-temperature phase, enabling...them to turn carbon dioxide and water into the "building blocks of life:" carbohy- drates, fats , and nucleic acids. Natural systems are not only one...structure of the device developed by the MFKI is that it is completely smooth, there are no fractured surfaces at the border of the active zone. The
Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A
2008-10-01
One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.
Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.
2013-01-01
One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281
Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.
2014-01-01
The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233
COMPRESSOR BUILDING, TRA626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING ...
COMPRESSOR BUILDING, TRA-626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING HOUSED COMPRESSORS FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENTS. MTR-626-IDO-2S, 3/1952. INL INDEX NO. 531-0626-00-396-110535, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Zhang, Huabin; Lin, Ping; Chen, Erxia; Tan, Yanxi; Wen, Tian; Aldalbahi, Ali; Alshehri, Saad M; Yamauchi, Yusuke; Du, Shaowu; Zhang, Jian
2015-03-23
The first example of an inorganic-organic composite framework with an interpenetrated diamondoid inorganic building block, featuring unique {InNa}n helices and {In12 Na16 } nano-rings, has been constructed and structurally characterized. This framework also represents a unique example of encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
23. The Stroud Building beard the 'Temme Springs' advertisement. Westfacing ...
23. The Stroud Building beard the 'Temme Springs' advertisement. West-facing windows of the entire block are protected from the afternoon sun by awnings. The north-facing windows of the second-story restaurant were later blocked by an adjacent two-story building. Circa 1914. Credit PPL. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ
Polymer-based platform for microfluidic systems
Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA
2009-10-13
A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.
NASA Astrophysics Data System (ADS)
Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou
2018-02-01
We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.
NASA Astrophysics Data System (ADS)
Kikuchi, Kazuyoshi; Kiladis, George N.; Dias, Juliana; Nasuno, Tomoe
2018-06-01
This study examines the relationship between the MJO and convectively coupled equatorial waves (CCEWs) during the CINDY2011/DYNAMO field campaign using satellite-borne infrared radiation data, in order to better understand the interaction between convection and the large-scale circulation. The spatio-temporal wavelet transform (STWT) enables us to document the convective signals within the MJO envelope in terms of CCEWs in great detail, through localization of space-time spectra at any given location and time. Three MJO events that occurred in October, November, and December 2011 are examined. It is, in general, difficult to find universal relationships between the MJO and CCEWs, implying that MJOs are diverse in terms of the types of disturbances that make up its convective envelope. However, it is found in all MJO events that the major convective body of the MJO is made up mainly by slow convectively coupled Kelvin waves. These Kelvin waves have relatively fast phase speeds of 10-13 m s-1 outside of, and slow phase speeds of 8-9 m s-1 within the MJO. Sometimes even slower eastward propagating signals with 3-5 m s-1 phase speed show up within the MJO, which, as well as the slow Kelvin waves, appear to comprise major building blocks of the MJO. It is also suggested that these eastward propagating waves often occur coincident with n = 1 WIG waves, which is consistent with the schematic model from Nakazawa in 1988. Some practical aspects that facilitate use of the STWT are also elaborated upon and discussed.
The provenance and formation of reduced carbon phases on Mars from the study of Martian meteorites.
NASA Astrophysics Data System (ADS)
Steele, A.; McCubbin, F. M.; Fries, M.
2015-12-01
Organic carbon compounds are essential building blocks of terrestrial life, so the occurrence and origin (biotic or abiotic) of organic compounds on Mars is of great significance. Indeed, the question of Martian organic matter is among the highest priority targets for robotic spacecraft missions in the next decade includ- ing the Mars Science Laboratory and Mars 2020. Sev- eral Martian meteorites contain organic carbon (i.e., macromolecular reduced carbon-rich material, not nec- essarily related to biota), but there is little agreement on its origins. Initial hypotheses for the origin of this organic carbon included: terrestrial contamination; chondritic meteoritic input; thermal decomposition of Martian carbonate minerals; direct precipitation from cooling aqueous fluids; and the remains of ancient Martian biota. We report on results from the analysis of 14 martian meteorites and show the distribution of organic phases throughout the samples analyzed. We will present formation scearios for each of the types of organic matter discovered. These studies when combined show 4 possible pools of reduced carbon on Mars. 1) impact generated graphite in the Tissint meteorite, 2) secondary hydrothermal generated graphite in ALH 84001, 3) primary igneous reduced carbon in 12 Martian meteorites associated with spinel inclusions in olivine and pyroxene 4) and potentially primary hydrothermally formed organic carbon / nitrogen containing organic species in the maskelynite phases of the Tissint meteorite. These studies show that Mars has produced reduced carbon / organic carbon via several mechanisms and reveal that the building blocks of life, if not life itself, are present on Mars.
Building Blocks for Sustainable Communities: Assistance from Grantees
EPA awarded Building Blocks for Sustainable Communities grants to four nonprofit organizations with extensive expertise in community sustainability. These organizations deliver technical assistance to communities.
ERIC Educational Resources Information Center
Trawick-Smith, Jeffrey; Swaminathan, Sudha; Baton, Brooke; Danieluk, Courtney; Marsh, Samantha; Szarwacki, Monika
2017-01-01
Block play has been included in early childhood classrooms for over a century, yet few studies have examined its effects on learning. Several previous investigations indicate that the complexity of block building is associated with math ability, but these studies were often conducted in adult-guided, laboratory settings. In the present…
X-37 Flight Demonstrator: A Building Block in NASA's Future Access to Space
NASA Technical Reports Server (NTRS)
Jacobson, David
2004-01-01
X-37 is a fully automated winged vehicle designed to go into low-Earth orbit, maneuver, reenter Earth's atmosphere, and glide back to a landing site. This viewgraph presentation gives an overview of the X-37 flight demonstrator, including cut-away diagrams of its interior, the phased approach to its orbital flight demonstrations, and the experience the program will give aerospace engineers. The presentation also lists X-37 applications, partners, and milestones.
Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends
1999-01-01
interfacial tension between the PE and polystyrene phases. This was brought about by the chemical interaction between the acidic anhydride groups in the...multiple 2,2 dimethylol propionic acid (C5H10O4) chain extenders or repeat units. 11 Core HO \\ HO’ /■ J OH V *OH Pentaerythritol Chain Extender...O 2,2 - Dimethylol propionic acid Figure 11. HBP Building Blocks. These materials were supplied in small quantities with little technical data. The
Beta-lactams against methicillin-resistant Staphylococcus aureus.
Guignard, Bertrand; Entenza, José M; Moreillon, Philippe
2005-10-01
Methicillin-resistant Staphylococcus aureus (MRSA) have developed resistance to virtually all non-experimental antibiotics. They are intrinsically resistant to beta-lactams by virtue of newly acquired low-affinity penicillin-binding protein 2A (PBP2A). Because PBP2A can build the wall when other PBPs are blocked by beta-lactams, designing beta-lactams capable of blocking this additional target should help solve the issue. Older molecules including penicillin G, amoxicillin and ampicillin had relatively good PBP2A affinities, and successfully treated experimental endocarditis caused by MRSA, provided that the bacterial penicillinase could be inhibited. Newer anti-PBP2A beta-lactams with over 10-fold greater PBP2A affinities and low minimal inhibitory concentrations were developed, primarily in the cephem and carbapenem classes. They are also very resistant to penicillinase. Most have demonstrated anti-MRSA activity in animal models of infection, and two--the carbapenem CS-023 and the cephalosporin ceftopibrole medocaril--have proceeded to Phase II and Phase III clinical evaluation. Thus, clinically useful anti-MRSA beta-lactams are imminent.
DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes
Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.
2009-01-01
The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities. PMID:18341334
Big Questions: The Ultimate Building Blocks of Matter
Lincoln, Don
2018-01-16
The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.
Building Blocks for Personal Brands
ERIC Educational Resources Information Center
Thomas, Lisa Carlucci
2011-01-01
In this article, the author discusses the four essential building blocks for personal brands: (1) name; (2) message; (3) channels; and (4) bridges. However, outstanding building materials can only take a person so far. The author emphasizes that vision, determination, faith, a sense of humor, and humility are also required.
On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension
NASA Astrophysics Data System (ADS)
Rohde, Christian; Zeiler, Christoph
2018-06-01
We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.
Local geology controlled the feasibility of vitrifying Iron Age buildings
Fabian B Wadsworth,; Michael J Heap,; Damby, David; Kai-Uwe Hess,; Jens Najorka,; Jérémie Vasseur,; Dominik Fahrner,; Donald B Dingwell,
2017-01-01
During European prehistory, hilltop enclosures made from polydisperse particle-and-block stone walling were exposed to temperatures sufficient to partially melt the constituent stonework, leading to the preservation of glassy walls called ‘vitrified forts’. During vitrification, the granular wall rocks partially melt, sinter viscously and densify, reducing inter-particle porosity. This process is strongly dependent on the solidus temperature, the particle sizes, the temperature-dependence of the viscosity of the evolving liquid phase, as well as the distribution and longevity of heat. Examination of the sintering behaviour of 45 European examples reveals that it is the raw building material that governs the vitrification efficiency. As Iron Age forts were commonly constructed from local stone, we conclude that local geology directly influenced the degree to which buildings were vitrified in the Iron Age. Additionally, we find that vitrification is accompanied by a bulk material strengthening of the aggregates of small sizes, and a partial weakening of larger blocks. We discuss these findings in the context of the debate surrounding the motive of the wall-builders. We conclude that if wall stability by bulk strengthening was the desired effect, then vitrification represents an Iron Age technology that failed to be effective in regions of refractory local geology.
Automate Your Physical Plant Using the Building Block Approach.
ERIC Educational Resources Information Center
Michaelson, Matt
1998-01-01
Illustrates how Mount Saint Vincent University (Halifax), by upgrading the control and monitoring of one building or section of the school at a time, could produce savings in energy and operating costs and improve the environment. Explains a gradual, "building block" approach to facility automation that provides flexibility without a…
ERIC Educational Resources Information Center
Burkhart, Jerry
2009-01-01
Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…
2. OBLIQUE VIEW LOOKING NORTHWEST FROM 21ST STREET VIADUCT TOWARDS ...
2. OBLIQUE VIEW LOOKING NORTHWEST FROM 21ST STREET VIADUCT TOWARDS 2000 BLOCK OF MORRIS AVENUE WITH HEAVIEST CORNER ON EARTH BUILDINGS (TOP LEFT) AND COMER BUILDING (TOP RIGHT) - Morris Avenue Warehouse District, 2000-2400 blocks of Morris Avenue & 2100-2500 blocks of First Avenue, North, Birmingham, Jefferson County, AL
Strategies for Controlled Placement of Nanoscale Building Blocks
2007-01-01
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185
From nonfinite to finite 1D arrays of origami tiles.
Wu, Tsai Chin; Rahman, Masudur; Norton, Michael L
2014-06-17
CONSPECTUS: DNA based nanotechnology provides a basis for high-resolution fabrication of objects almost without physical size limitations. However, the pathway to large-scale production of large objects is currently unclear. Operationally, one method forward is to use high information content, large building blocks, which can be generated with high yield and reproducibility. Although flat DNA origami naturally invites comparison to pixels in zero, one, and two dimensions and voxels in three dimensions and has provided an excellent mechanism for generating blocks of significant size and complexity and a multitude of shapes, the field is young enough that a single "brick" has not become the standard platform used by the majority of researchers in the field. In this Account, we highlight factors we considered that led to our adoption of a cross-shaped, non-space-filling origami species, designed by Dr. Liu of the Seeman laboratory, as the building block ideal for use in the fabrication of finite one-dimensional arrays. Three approaches that can be employed for uniquely coding origami-origami linkages are presented. Such coding not only provides the energetics for tethering the species but also uniquely designates the relative orientation of the origami building blocks. The strength of the coding approach implemented in our laboratory is demonstrated using examples of oligomers ranging from finite multimers composed of four, six, and eight origami structures to semi-infinite polymers (100mers). Two approaches to finite array design and the series of assembly steps that each requires are discussed. The process of AFM observation for array characterization is presented as a critical case study. For these soft species, the array images do not simply present the solution phase geometry projected onto a two-dimensional surface. There are additional perturbations associated with fluidic forces associated with sample preparation. At this time, reconstruction of the "true" or average solution structures for blocks is more readily achieved using computer models than using direct imaging methods. The development of scalable 1D-origami arrays composed of uniquely addressable components is a logical, if not necessary, step in the evolution of higher order fully addressable structures. Our research into the fabrication of arrays has led us to generate a listing of several important areas of future endeavor. Of high importance is the re-enforcement of the mechanical properties of the building blocks and the organization of multiple arrays on a surface of technological importance. While addressing this short list of barriers to progress will prove challenging, coherent development along each of these lines of inquiry will accelerate the appearance of commercial scale molecular manufacturing.
and leptons seem to be the fundamental building blocks - but perhaps there is something even smaller properties of the fundamental building blocks of our universe, there are untold mysteries still to solve
Measuring health systems strength and its impact: experiences from the African Health Initiative.
Sherr, Kenneth; Fernandes, Quinhas; Kanté, Almamy M; Bawah, Ayaga; Condo, Jeanine; Mutale, Wilbroad
2017-12-21
Health systems are essential platforms for accessible, quality health services, and population health improvements. Global health initiatives have dramatically increased health resources; however, funding to strengthen health systems has not increased commensurately, partially due to concerns about health system complexity and evidence gaps demonstrating health outcome improvements. In 2009, the African Health Initiative of the Doris Duke Charitable Foundation began supporting Population Health Implementation and Training Partnership projects in five sub-Saharan African countries (Ghana, Mozambique, Rwanda, Tanzania, and Zambia) to catalyze significant advances in strengthening health systems. This manuscript reflects on the experience of establishing an evaluation framework to measure health systems strength, and associate measures with health outcomes, as part of this Initiative. Using the World Health Organization's health systems building block framework, the Partnerships present novel approaches to measure health systems building blocks and summarize data across and within building blocks to facilitate analytic procedures. Three Partnerships developed summary measures spanning the building blocks using principal component analysis (Ghana and Tanzania) or the balanced scorecard (Zambia). Other Partnerships developed summary measures to simplify multiple indicators within individual building blocks, including health information systems (Mozambique), and service delivery (Rwanda). At the end of the project intervention period, one to two key informants from each Partnership's leadership team were asked to list - in rank order - the importance of the six building blocks in relation to their intervention. Though there were differences across Partnerships, service delivery and information systems were reported to be the most common focus of interventions, followed by health workforce and leadership and governance. Medical products, vaccines and technologies, and health financing, were the building blocks reported to be of lower focus. The African Health Initiative experience furthers the science of evaluation for health systems strengthening, highlighting areas for further methodological development - including the development of valid, feasible measures sensitive to interventions in multiple contexts (particularly in leadership and governance) and describing interactions across building blocks; in developing summary statistics to facilitate testing intervention effects on health systems and associations with health status; and designing appropriate analytic models for complex, multi-level open health systems.
Mutale, Wilbroad; Bond, Virginia; Mwanamwenge, Margaret Tembo; Mlewa, Susan; Balabanova, Dina; Spicer, Neil; Ayles, Helen
2013-08-01
The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia's MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity to hold health workers accountable for the drugs and services. The study has shown that building block specific weaknesses had cross cutting effect in other health system building blocks. These linkages emphasised the need to use system wide approaches in assessing the performance of health system strengthening interventions.
Synthesis of heparin-like oligosaccharides on polymer supports.
Ojeda, Rafael; Terentí, Olimpia; de Paz, José-Luis; Martín-Lomas, Manuel
2004-01-01
The biological functions of a variety of proteins are regulated by heparan sulfate glycosaminoglycans. In order to facilitate the elucidation of the molecular basis of glycosaminoglycan-protein interactions we have developed syntheses of heparin-like oligosaccharides on polymer supports. A completely stereoselective strategy previously developed by us for the synthesis of these oligosaccharides in solution has been extended to the solid phase using an acceptor-bound approach. Both a soluble polymer support and a polyethylene glycol-grafted polystyrene resin have been used and different strategies for the attachment of the acceptor to the support have been explored. The attachment of fully protected disaccharide building blocks to a soluble support through the carboxylic group of the uronic acid unit by a succinic ester linkage, the use of trichloroacetimidates as glycosylating agents and of a functionalized Merryfield type resin for the capping process allowed for the construction of hexasaccharide and octasaccharide fragments containing the structural motif of the regular region of heparin. This strategy may facilitate the synthesis of glycosaminoglycan oligosaccharides by using the required building blocks in the glycosylation sequence.
Reconciling the Orbital and Physical Properties of the Martian Moons
NASA Astrophysics Data System (ADS)
Ronnet, T.; Vernazza, P.; Mousis, O.; Brugger, B.; Beck, P.; Devouard, B.; Witasse, O.; Cipriani, F.
2016-09-01
The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) are able to reconcile their orbital and physical properties. Here we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present-day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties, alleviating the need to invoke an unlikely capture scenario to explain their physical properties.
The presence of clathrates in comet 67P/Churyumov-Gerasimenko
Luspay-Kuti, Adrienn; Mousis, Olivier; Hässig, Myrtha; Fuselier, Stephen A.; Lunine, Jonathan I.; Marty, Bernard; Mandt, Kathleen E.; Wurz, Peter; Rubin, Martin
2016-01-01
Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate. PMID:27152351
The presence of clathrates in comet 67P/Churyumov-Gerasimenko.
Luspay-Kuti, Adrienn; Mousis, Olivier; Hässig, Myrtha; Fuselier, Stephen A; Lunine, Jonathan I; Marty, Bernard; Mandt, Kathleen E; Wurz, Peter; Rubin, Martin
2016-04-01
Cometary nuclei are considered to most closely reflect the composition of the building blocks of our solar system. As such, comets carry important information about the prevalent conditions in the solar nebula before and after planet formation. Recent measurements of the time variation of major and minor volatile species in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko (67P) by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument onboard Rosetta provide insight into the possible origin of this comet. The observed outgassing pattern indicates that the nucleus of 67P contains crystalline ice, clathrates, and other ices. The observed outgassing is not consistent with gas release from an amorphous ice phase with trapped volatile gases. If the building blocks of 67P were formed from crystalline ices and clathrates, then 67P would have agglomerated from ices that were condensed and altered in the protosolar nebula closer to the Sun instead of more pristine ices originating from the interstellar medium or the outskirts of the disc, where amorphous ice may dominate.
NASA Astrophysics Data System (ADS)
Gilani, S. A. N.; Awrangjeb, M.; Lu, G.
2015-03-01
Building detection in complex scenes is a non-trivial exercise due to building shape variability, irregular terrain, shadows, and occlusion by highly dense vegetation. In this research, we present a graph based algorithm, which combines multispectral imagery and airborne LiDAR information to completely delineate the building boundaries in urban and densely vegetated area. In the first phase, LiDAR data is divided into two groups: ground and non-ground data, using ground height from a bare-earth DEM. A mask, known as the primary building mask, is generated from the non-ground LiDAR points where the black region represents the elevated area (buildings and trees), while the white region describes the ground (earth). The second phase begins with the process of Connected Component Analysis (CCA) where the number of objects present in the test scene are identified followed by initial boundary detection and labelling. Additionally, a graph from the connected components is generated, where each black pixel corresponds to a node. An edge of a unit distance is defined between a black pixel and a neighbouring black pixel, if any. An edge does not exist from a black pixel to a neighbouring white pixel, if any. This phenomenon produces a disconnected components graph, where each component represents a prospective building or a dense vegetation (a contiguous block of black pixels from the primary mask). In the third phase, a clustering process clusters the segmented lines, extracted from multispectral imagery, around the graph components, if possible. In the fourth step, NDVI, image entropy, and LiDAR data are utilised to discriminate between vegetation, buildings, and isolated building's occluded parts. Finally, the initially extracted building boundary is extended pixel-wise using NDVI, entropy, and LiDAR data to completely delineate the building and to maximise the boundary reach towards building edges. The proposed technique is evaluated using two Australian data sets: Aitkenvale and Hervey Bay, for object-based and pixel-based completeness, correctness, and quality. The proposed technique detects buildings larger than 50 m2 and 10 m2 in the Aitkenvale site with 100% and 91% accuracy, respectively, while in the Hervey Bay site it performs better with 100% accuracy for buildings larger than 10 m2 in area.
Zhang, Zheng; Wu, Yuyang; Yu, Feng; Niu, Chaoqun; Du, Zhi; Chen, Yong; Du, Jie
2017-10-01
The construction and self-assembly of DNA building blocks are the foundation of bottom-up development of three-dimensional DNA nanostructures or hydrogels. However, most self-assembly from DNA components is impeded by the mishybridized intermediates or the thermodynamic instability. To enable rapid production of complicated DNA objects with high yields no need for annealing process, herein different DNA building blocks (Y-shaped, L- and L'-shaped units) were assembled in presence of a cationic comb-type copolymer, poly (L-lysine)-graft-dextran (PLL-g-Dex), under physiological conditions. The results demonstrated that PLL-g-Dex not only significantly promoted the self-assembly of DNA blocks with high efficiency, but also stabilized the assembled multi-level structures especially for promoting the complicated 3D DNA hydrogel formation. This study develops a novel strategy for rapid and high-yield production of DNA hydrogel even derived from instable building blocks at relatively low DNA concentrations, which would endow DNA nanotechnology for more practical applications.
Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure
NASA Astrophysics Data System (ADS)
Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.
2010-02-01
Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.
2014-01-01
equatorial waves, and extratropical intrusions. When convection is phase-locked to the underlying dynamic structure to such an extent that this...classification evidently guarantees (in all but a few instances) subsequent growth to a named tropical storm . It is not only the statistical narrowness of the...representing numerical simulations that moist vortical updrafts are the essential building blocks of the tropical storm within the rotating proto-vortex. These
New coplanar waveguide feed network for 2 x 2 linearly tapered slot antenna subarray
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Perl, Thomas D.; Lee, Richard Q.
1992-01-01
A novel feed method is presently demonstrated for a 2 x 2 linearly tapered slot antenna (LTSA) on the basis of a coplanar-waveguide (CPW)-to-slotline transition and a coax-to-CPW in-phase, four-way power divider. The LTSA subarray exhibits excellent radiation patterns and return-loss characteristics at 18 GHz, and has symmetric beamwidth; its compactness renders it applicable as either a feed for a reflector antenna or as a building-block for large arrays.
Inequivalent coherent state representations in group field theory
NASA Astrophysics Data System (ADS)
Kegeles, Alexander; Oriti, Daniele; Tomlin, Casey
2018-06-01
In this paper we propose an algebraic formulation of group field theory and consider non-Fock representations based on coherent states. We show that we can construct representations with an infinite number of degrees of freedom on compact manifolds. We also show that these representations break translation symmetry. Since such representations can be regarded as quantum gravitational systems with an infinite number of fundamental pre-geometric building blocks, they may be more suitable for the description of effective geometrical phases of the theory.
An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition
NASA Astrophysics Data System (ADS)
Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni
2010-08-01
This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).
15. WEST SIDE OF 1900 BLOCK, PACIFIC AVE. FROM RIGHT; ...
15. WEST SIDE OF 1900 BLOCK, PACIFIC AVE. FROM RIGHT; 1920-22 PACIFIC AVE., WIEGAL COMPANY CANDY FACTORY (1904); 1924-26 PACIFIC AVE., CAMPBELL BUILDING (DAVIS BUILDING) (1890); 1928-30 PACIFIC AVE., REESE-CRANDALL & REDMAN BUILDING, (1890); 1932-36 PACIFIC AVE., MC DONALD & SMITH BUILDING (1890); 1938-48 PACIFIC AVE., F.S. HARMON COMPANY WAREHOUSE (1908), DESIGNED BY CARL AUGUST DARMER. - Union Depot Area Study, Tacoma, Pierce County, WA
Qin, Jian-Hua; Wang, Hua-Rui; Han, Min-Le; Chang, Xin-Hong; Ma, Lu-Fang
2017-11-14
Two pH-stable luminescent metal-organic frameworks (LMOFs), {[Ln 2 (L) 2 (OH)(HCOO)]·[H 2 O]} n (Ln = Eu 1, Tb 2), based on a new π-conjugated organic building block involving both carboxylate and terpyridine groups were rationally synthesized under a combination of hydro/solvothermal and ionothermal conditions (H 2 L = 4'-(4-(3,5-dicarboxylphenoxy)phenyl)-4,2':6',4''-terpyridine). 1 and 2 are isostructural and feature noninterpenetrated open 3D condensed frameworks constructed by rod-shaped lanthanide-carboxylate building units. Their excellent water-stability and pH-stability allow them to be used in aquatic systems. 1 and 2 both exhibit selective and sensitive aqueous phase detection of the well-known nitroaromatic explosive environmental pollutant 2,4,6-trinitrophenol (TNP), which is highly desirable for practical applications. The presence of a free pyridine group on the LMOF particle surface was strategically utilized for the purpose of exclusive TNP-sensing.
NASA Astrophysics Data System (ADS)
Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary
2017-11-01
Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.
How Crossover Speeds up Building Block Assembly in Genetic Algorithms.
Sudholt, Dirk
2017-01-01
We reinvestigate a fundamental question: How effective is crossover in genetic algorithms in combining building blocks of good solutions? Although this has been discussed controversially for decades, we are still lacking a rigorous and intuitive answer. We provide such answers for royal road functions and OneMax, where every bit is a building block. For the latter, we show that using crossover makes every ([Formula: see text]+[Formula: see text]) genetic algorithm at least twice as fast as the fastest evolutionary algorithm using only standard bit mutation, up to small-order terms and for moderate [Formula: see text] and [Formula: see text]. Crossover is beneficial because it can capitalize on mutations that have both beneficial and disruptive effects on building blocks: crossover is able to repair the disruptive effects of mutation in later generations. Compared to mutation-based evolutionary algorithms, this makes multibit mutations more useful. Introducing crossover changes the optimal mutation rate on OneMax from [Formula: see text] to [Formula: see text]. This holds both for uniform crossover and k-point crossover. Experiments and statistical tests confirm that our findings apply to a broad class of building block functions.
Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie
2017-07-25
Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.
Single molecule magnets from magnetic building blocks
NASA Astrophysics Data System (ADS)
Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.
2013-03-01
We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.
Embeddable Reconfigurable Neuroprocessors
NASA Technical Reports Server (NTRS)
Daud, Taher; Duong, Tuan; Langenbacher, Harry; Tran, Mua; Thakoor, Anil
1993-01-01
Reconfigurable and cascadable building block neural network chips, fabricated using analog VLSI design tools, are interfaced to a PC. The building block chip designs, the cascadability and the hardware-in-the-loop supervised learning aspects of these chips are described.
Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Zhong, Y. P.; Deng, Y. F.
2013-12-21
Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.
Schmidt, Deborah; Schuhmacher, Frank; Geissner, Andreas; Seeberger, Peter H; Pfrengle, Fabian
2015-04-07
Monoclonal antibodies that recognize plant cell wall glycans are used for high-resolution imaging, providing important information about the structure and function of cell wall polysaccharides. To characterize the binding epitopes of these powerful molecular probes a library of eleven plant arabinoxylan oligosaccharides was produced by automated solid-phase synthesis. Modular assembly of oligoarabinoxylans from few building blocks was enabled by adding (2-naphthyl)methyl (Nap) to the toolbox of orthogonal protecting groups for solid-phase synthesis. Conjugation-ready oligosaccharides were obtained and the binding specificities of xylan-directed antibodies were determined on microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tops as building blocks for G 2 manifolds
NASA Astrophysics Data System (ADS)
Braun, Andreas P.
2017-10-01
A large number of examples of compact G 2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.
Origami-inspired building block and parametric design for mechanical metamaterials
NASA Astrophysics Data System (ADS)
Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo
2016-08-01
An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.
Large space erectable structures - building block structures study
NASA Technical Reports Server (NTRS)
Armstrong, W. H.; Skoumal, D. E.; Straayer, J. W.
1977-01-01
A modular planar truss structure and a long slender boom concept identified as building block approaches to construction of large spacecraft configurations are described. The concepts are compatible in weight and volume goals with the Space Transportation System, use standard structural units, and represent high on-orbit productivity in terms of structural area or beam length. Results of structural trade studies involving static and dynamic analyses of a single module and rigid body deployment analyses to assess kinetics and kinematics of automatic deployment of the building block modules are presented.
Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; ...
2015-05-15
The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less
Smectic phase in suspensions of gapped DNA duplexes
Salamonczyk, Miroslaw; Zhang, Jing; Portale, Giuseppe; ...
2016-11-15
Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, in spite of the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue thatmore » this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. These results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals.« less
Polarization entangled cluster state generation in a lithium niobate chip
NASA Astrophysics Data System (ADS)
Szep, Attila; Kim, Richard; Shin, Eunsung; Fanto, Michael L.; Osman, Joseph; Alsing, Paul M.
2016-10-01
We present a design of a quantum information processing C-phase (Controlled-phase) gate applicable for generating cluster states that has a form of integrated photonic circuits assembled with cascaded directional couplers on a Ti in-diffused Lithium Niobate (Ti-LN) platform where directional couplers as the integrated optical analogue of bulk beam splitters are used as fundamental building blocks. Based on experimentally optimized fabrication parameters of Ti-LN optical waveguides operating at an 810nm wavelength, an integrated Ti-LN quantum C-phase gate is designed and simulated. Our proposed C-phase gate consists of three tunable directional couplers cascaded together with having different weighted switching ratios for providing a tool of routing vertically- and horizontally-polarized photons independently. Its operation mechanism relies on selectively controlling the optical coupling of orthogonally polarized modes via the change in the index of refraction, and its operation is confirmed by the BPM simulation.
Elbert, Donald L.
2010-01-01
Macroporous hydrogels may have direct applications in regenerative medicine as scaffolds to support tissue formation. Hydrogel microspheres may be used as drug delivery vehicles or as building blocks to assemble modular scaffolds. A variety of techniques exist to produce macroporous hydrogels and hydrogel microspheres. A subset of these relies on liquid-liquid two phase systems. Within this subset, vastly different types of polymerization processes are found. In this review, the history, terminology and classification of liquid-liquid two phase polymerization and crosslinking are described. Instructive examples of hydrogel microsphere and macroporous scaffold formation by precipitation/dispersion, emulsion and suspension polymerizations are used to illustrate the nature of these processes. The role of the kinetics of phase separation in determining the morphology of scaffolds and microspheres is also delineated. Brief descriptions of miniemulsion, microemulsion polymerization and ionotropic gelation are also included. PMID:20659596
View of the southwest guard tower, cell blocks seven and ...
View of the southwest guard tower, cell blocks seven and eight, administration building west tower, and Fairmount Avenue, looking from the administration building facing west - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA
A Fully Integrated Sensor SoC with Digital Calibration Hardware and Wireless Transceiver at 2.4 GHz
Kim, Dong-Sun; Jang, Sung-Joon; Hwang, Tae-Ho
2013-01-01
A single-chip sensor system-on-a-chip (SoC) that implements radio for 2.4 GHz, complete digital baseband physical layer (PHY), 10-bit sigma-delta analog-to-digital converter and dedicated sensor calibration hardware for industrial sensing systems has been proposed and integrated in a 0.18-μm CMOS technology. The transceiver's building block includes a low-noise amplifier, mixer, channel filter, receiver signal-strength indicator, frequency synthesizer, voltage-controlled oscillator, and power amplifier. In addition, the digital building block consists of offset quadrature phase-shift keying (OQPSK) modulation, demodulation, carrier frequency offset compensation, auto-gain control, digital MAC function, sensor calibration hardware and embedded 8-bit microcontroller. The digital MAC function supports cyclic redundancy check (CRC), inter-symbol timing check, MAC frame control, and automatic retransmission. The embedded sensor signal processing block consists of calibration coefficient calculator, sensing data calibration mapper and sigma-delta analog-to-digital converter with digital decimation filter. The sensitivity of the overall receiver and the error vector magnitude (EVM) of the overall transmitter are −99 dBm and 18.14%, respectively. The proposed calibration scheme has a reduction of errors by about 45.4% compared with the improved progressive polynomial calibration (PPC) method and the maximum current consumption of the SoC is 16 mA. PMID:23698271
Woerly, Eric M; Roy, Jahnabi; Burke, Martin D
2014-06-01
The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
NASA Astrophysics Data System (ADS)
Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.
2014-06-01
The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
Expanding the biomass derived chemical space
Brun, Nicolas; Hesemann, Peter
2017-01-01
Biorefinery aims at the conversion of biomass and renewable feedstocks into fuels and platform chemicals, in analogy to conventional oil refinery. In the past years, the scientific community has defined a number of primary building blocks that can be obtained by direct biomass decomposition. However, the large potential of this “renewable chemical space” to contribute to the generation of value added bio-active compounds and materials still remains unexplored. In general, biomass derived building blocks feature a diverse range of chemical functionalities. In order to be integrated into value-added compounds, they require additional functionalization and/or covalent modification thereby generating secondary building blocks. The latter can be thus regarded as functional components of bio-active molecules or materials and represent an expansion of the renewable chemical space. This perspective highlights the most recent developments and opportunities for the synthesis of secondary biomass derived building blocks and their application to the preparation of value added products. PMID:28959397
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Phase I program and the design plan for the Phase II Experiment Integration wherein the AAI Corporation's 24/1 concentrating collector is used to produce hot water to cure concrete blocks is described. This concept has a tremendous potential since each block requires about 1500 Btu for curing at a temperature of 140/sup 0/F to 180/sup 0/F. To demonstrate this process, the solar hot water system will be installed at the new block fabricating plant being built by the York Building Products Co., Inc. at Harrisburg, Pa. A circular underground curing tank will be the storage tank for the solarmore » system. Since the plane is new, no retrofitting is required. The collectors will be mounted on the roof of the new block producing facility. A full-scale 256 ft/sup 2/ module of the 24/1 collector has been built and tested by AAI Corporation. A 9216 ft/sup 2/ array of collectors is required for this experiment. AAI Corporation is pursuing a development program planned to culminate in the marketing of the 24/1 collector at a selling price of $7 to $10 per square foot. The collector is built in 9 ft by 34 ft modules and is self-supporting with pads located at the four corners. It can be inclined at the most favorable angle for solar performance, and can be located on a roof, or as a separate unit on the ground. A final design and performance analysis and an economic analysis are presented. (WHK)« less
A VLSI decomposition of the deBruijn graph
NASA Technical Reports Server (NTRS)
Collins, O.; Dolinar, S.; Mceliece, R.; Pollara, F.
1990-01-01
A new Viterbi decoder for convolutional codes with constraint lengths up to 15, called the Big Viterbi Decoder, is under development for the Deep Space Network. It will be demonstrated by decoding data from the Galileo spacecraft, which has a rate 1/4, constraint-length 15 convolutional encoder on board. Here, the mathematical theory underlying the design of the very-large-scale-integrated (VLSI) chips that are being used to build this decoder is explained. The deBruijn graph B sub n describes the topology of a fully parallel, rate 1/v, constraint length n+2 Viterbi decoder, and it is shown that B sub n can be built by appropriately wiring together (i.e., connecting together with extra edges) many isomorphic copies of a fixed graph called a B sub n building block. The efficiency of such a building block is defined as the fraction of the edges in B sub n that are present in the copies of the building block. It is shown, among other things, that for any alpha less than 1, there exists a graph G which is a B sub n building block of efficiency greater than alpha for all sufficiently large n. These results are illustrated by describing a special hierarchical family of deBruijn building blocks, which has led to the design of the gate-array chips being used in the Big Viterbi Decoder.
Ambreen, S; Pandey, N D; Pandey, A
2017-07-31
TiO2 has been well recognized as a proficient photocatalyst. TiO2 nanoparticles have been synthesized from titanium sec butoxide (1) and its monochloroacetate derived compounds. The modifications of Ti(OsBu)4 with monochloroacetic acid in 1:1 and 1:2 molar ratios afforded Ti(OsBu)3(OOCCH2Cl) (2) and Ti(OsBu)2(OOCCH2Cl)2 (3), respectively. The use of monochloroacetic acid as a modifier allows the control of both the degree of condensation and oligomerization of the precursor. The cross linking of the gel and connectivity of the molecular building blocks are lowered in these heteroleptic alkoxides which results in the formation of gels instead of crystalline precipitate. This modification of the precursors leads to the generation of new building blocks which significantly affect the properties of the resulting TiO2. TiO2 powders were prepared via sol-gel method from these precursors and calcined at 400°C and 600°C for 4 h. Phase and morphology of the prepared metal oxide nanoparticles were studied. XRD patterns showed TiO2 in anatase phase. After coating with the surfactant trioctyl phosphinoxide (TOPO), TiO2 particles were dispersed in chloroform to study the particle size and distribution. The optical properties were studied by UV-VIS drs. The photocatalytic activity was studied over the degradation of Rhodamine B under UV radiation.
NASA Astrophysics Data System (ADS)
Chen, Chelsea; Wong, David; Beers, Keith; Balsara, Nitash
2013-03-01
In an effort to understand the fundamentals of proton transport in polymer electrolyte membranes (PEMs), we have developed a series of poly(styrene-b-ethylene-b-styrene) (SES) membranes. The SES membranes were subsequently sulfonated to yield proton conducting S-SES membranes. We examine the effects of sulfonation level, temperature and thermal history on the morphology of S-SES membranes in both dry and hydrated states. The effects of these parameters on water uptake and proton transport characteristics of the membranes are also examined. Furthermore, building upon the strategy we deployed in sulfonating the SES membranes, we fabricated mesoporous S-SES membranes, with pores lined up with the proton conducting channels. These membranes have three distinct phases: structural block, proton-conducting block, and void. We examine the effects of pore size, domain structure and sulfonation level on water uptake and proton conductivity of the mesoporous PEMs at different temperatures. This work is funded by Department of Energy.
A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.
ERIC Educational Resources Information Center
Templin, Mark A.; Fetters, Marcia K.
2002-01-01
Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)
Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.
Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin
2014-01-21
A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.
2013-01-01
Background The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia’s MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. Methods A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. Results The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity to hold health workers accountable for the drugs and services. Conclusion The study has shown that building block specific weaknesses had cross cutting effect in other health system building blocks. These linkages emphasised the need to use system wide approaches in assessing the performance of health system strengthening interventions. PMID:23902601
2016-04-01
characterization has just started. The hybrids that we have synthesized are based on plasmonic gold and silver nanoparticles (NPs) but the concept is...AFRL-AFOSR-UK-TR-2016-0010 Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials Bertrand...2015 4. TITLE AND SUBTITLE Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials 5a. CONTRACT
Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He
2014-01-13
A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three dimensional Origami-based metamaterial
NASA Astrophysics Data System (ADS)
Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan; High Performance Materials; Structures Labratory Team
We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson's ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.
Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials
NASA Astrophysics Data System (ADS)
Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.
2018-05-01
The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.
Catalytic Gas-Phase Production of Lactide from Renewable Alkyl Lactates.
De Clercq, Rik; Dusselier, Michiel; Makshina, Ekaterina; Sels, Bert F
2018-03-12
A new route to lactide, which is a key building block of the bioplastic polylactic acid, is proposed involving a continuous catalytic gas-phase transesterification of renewable alkyl lactates in a scalable fixed-bed setup. Supported TiO 2 /SiO 2 catalysts are highly selective to lactide, with only minimal lactide racemization. The solvent-free process allows for easy product separation and recycling of unconverted alkyl lactates and recyclable lactyl intermediates. The catalytic activity of TiO 2 /SiO 2 catalysts was strongly correlated to their optical properties by DR UV/Vis spectroscopy. Catalysts with high band-gap energy of the supported TiO 2 phase, indicative of a high surface spreading of isolated Ti centers, show the highest turnover frequency per Ti site. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1991-01-01
We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.
NASA Technical Reports Server (NTRS)
Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara
1994-01-01
The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.
NASA Astrophysics Data System (ADS)
Perez-Lopez, Raul; Rodríguez-Pascua, Miguel Angel; Garduño-Monroy, Victor Hugo; Oliveros, Arturo; Giner-Robles, Jorge L.; Silva, Pablo G.
2010-05-01
Teotihuacán was one of the blooming and greater cities of the Prehispanic cultural period within the central valley of México and one of the best archaeological findings of the Earth. During the period of splendour (Middle-Late Classic Period, 350-650 AD), almost 125.000 inhabitants lived in a vast city with more than 2000 stucco and block buildings, including the great religious and ceremonial pyramids: the Great Sun Pyramid, built between 1- 150 AD, the Moon Pyramid, built during a large time span (1-650 AD) and the outstanding Quetzalcóatl Pyramid (Feathered Snake Temple), built in two phases: the first original edifice built before 350 AD and the second one mainly are repairs of the west side and dated post-350 AD. The Quetzalcóatl Pyramid (Q- pyramid) shows a quadrangular base of ca. 3500 m2 with an extraordinary decoration of feathered snakes (attributed to the God Quetzalcóatl) and lizards. The second phase of construction consisted in a townhouse façade covering the west side of the pyramid (post 350AD), up to now with no evidence to justify such annexed wrapper of this west side. This ceremonial building was built within the Citadel, a complex area of Teotihuacán with residential and common zones as well (i.e. market). A detailed view of the steps of the west side stairs, displays different patterns of deformation affecting the blocks of the stair. The original and ancient stair exhibits rotated, overturned and displaced blocks, being stronger this deformation at the base of the pyramid. Moreover, the upper corners of the blocks appear broken in a similar form than the seismic-related feature defined as dipping broken corners or chipped corners. However, the horizontal disposition of the blocks suggests lateral vibration between them from horizontal shaking propagation. Besides, this feature appears lesser evident affecting the lower blocks of the annexed west façade, the only originally preserved ones. We have carried out a systematic measurement of this feature across the original west stairs of the Q- pyramid and the first stair level of the Sun pyramid. Furthermore, these horizontal dipping broken corners were also described affecting the new stairs of the annexed façade of the Q- pyramid. This suggests that seismic shaking could produce that deformation with a relative date of 350 AD post-quem. More data are necessary to properly test the earthquake occurrence and to bracket a probable intensity value.
Probing the Conformational Landscape of a Polyether Building Block by Raman Jet Spectroscopy
NASA Astrophysics Data System (ADS)
Bocklitz, Sebastian; Suhm, Martin A.
2015-06-01
Polyethylene oxides (Polyethylene glycoles) represent a prominent class of water-soluble polymers. Surprisingly, already 1,2-dimethoxyethane as the simplest representative of this polymer family has an undetermined conformational preference in the gas phase. Here, we address this problem by spontaneous Raman scattering in a supersonic jet. Variation of carrier gas, stagnation pressure, nozzle distance and temperature provides information on the three lowest conformations and their mutual interconversion during collisions in the expansion. The results are compared to quantum chemical calculations of the potential energy landscape and of normal modes.
Ground support system methodology and architecture
NASA Technical Reports Server (NTRS)
Schoen, P. D.
1991-01-01
A synergistic approach to systems test and support is explored. A building block architecture provides transportability of data, procedures, and knowledge. The synergistic approach also lowers cost and risk for life cycle of a program. The determination of design errors at the earliest phase reduces cost of vehicle ownership. Distributed scaleable architecture is based on industry standards maximizing transparency and maintainability. Autonomous control structure provides for distributed and segmented systems. Control of interfaces maximizes compatibility and reuse, reducing long term program cost. Intelligent data management architecture also reduces analysis time and cost (automation).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozolins, Vidvuds
Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues relatedmore » to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO 2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.« less
NASA Astrophysics Data System (ADS)
Zunger, Alex; Zhang, Xiuwen; Abdalla, Leonardo; Liu, Qihang
Currently known topological insulators (TIs) are limited to narrow gap compounds incorporating heavy elements, thus severely limiting the material pool available for such applications. We show how a heterovalent superlattice made of common semiconductor building blocks can transform its non-TI components into a topological heterostructure. The heterovalent nature of such interfaces sets up, in the absence of interfacial atomic exchange, a natural internal electric field that along with the quantum confinement leads to band inversion, transforming these semiconductors into a topological phase while also forming a giant Rashba spin splitting. We demonstrate this paradigm of designing TIs from ordinary semiconductors via first-principle calculations on III-V/II-VI superlattice InSb/CdTe. We illustrate the relationship between the interfacial stability and the topological transition, finding a ``window of opportunity'' where both conditions can be optimized. This work illustrates the general principles of co-evaluation of TI functionality with thermodynamic stability as a route of identifying realistic combination of common insulators that could produce topological heterostructures. This work was supported by Basic Energy Science, MSE division (Grant DE-FG02-13ER46959).
pH-independent triple-helix formation with 6-oxocytidine as cytidine analogue.
Parsch, U; Engels, J W
2000-07-03
The syntheses of six different phosphoramidite building blocks of 6-oxocytosine and 5-allyl-6-oxocytosine as analogues of N(3)-protonated cytosine are described. These compounds have been incorporated into oligonucleotides by standard solid-phase synthesis. Hybridization of 15-mer Hoogsteen strands with target 21-mer duplexes was investigated. Comparison of the triplex-forming abilities of the different building blocks revealed that: i) 5-allyl substitution has a negative influence on triplex stability, ii) a uniform backbone of the Hoogsteen strand stabilizes triplexes relative to mixed backbones; iii) RNA strands with 6-oxocytidine or 5-allyl-6-oxocytidine do not form a triple helix with the DNA target duplex, probably due to backbone torsional constraints; and (iv) a 15-mer DNA sequence with three isolated 2'-deoxy-6-oxocytidines has the highest T(m) of all cytidine analogues investigated in this study. CD experiments provided further evidence for the presence or absence of triplex structures. In the course of these temperature-dependent CD measurements we were able to detect duplex and triplex melting independent from each other at selected wavelengths. This methodology is especially interesting in cases where UV melting curves show only one transition owing to spectral overlap.
ERIC Educational Resources Information Center
Fernelius, W. Conrad, Ed.; And Others
1979-01-01
The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)
Two integrator loop quadrature oscillators: A review.
Soliman, Ahmed M
2013-01-01
A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper.
Building Blocks of Psychology: on Remaking the Unkept Promises of Early Schools.
Gozli, Davood G; Deng, Wei Sophia
2018-03-01
The appeal and popularity of "building blocks", i.e., simple and dissociable elements of behavior and experience, persists in psychological research. We begin our assessment of this research strategy with an historical review of structuralism (as espoused by E. B. Titchener) and behaviorism (espoused by J. B. Watson and B. F. Skinner), two movements that held the assumption in their attempts to provide a systematic and unified discipline. We point out the ways in which the elementism of the two schools selected, framed, and excluded topics of study. After the historical review, we turn to contemporary literature and highlight the persistence of research into building blocks and the associated framing and exclusions in psychological research. The assumption that complex categories of human psychology can be understood in terms of their elementary components and simplest forms seems indefensible. In specific cases, therefore, reliance on the assumption requires justification. Finally, we review alternative strategies that bypass the commitment to building blocks.
Toward Generalization of Iterative Small Molecule Synthesis
Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.
2018-01-01
Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152
NASA Astrophysics Data System (ADS)
Unzueta, Ugutz; Serna, Naroa; Sánchez-García, Laura; Roldán, Mónica; Sánchez-Chardi, Alejandro; Mangues, Ramón; Villaverde, Antonio; Vázquez, Esther
2017-12-01
The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.
ERIC Educational Resources Information Center
Groenewoud, A. Stef; van Exel, N. Job A.; Berg, Marc; Huijsman, Robbert
2008-01-01
Purpose: This article reports on a study to identify "building blocks" for quality report cards for geriatric care. Its aim is to present (a) the results of the study and (b) the innovative step-by-step approach that was developed to arrive at these results. Design and Methods: We used Concept Mapping/Structured Conceptualization to…
Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties
NASA Astrophysics Data System (ADS)
Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan
2017-04-01
We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.
Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties
Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan
2017-01-01
We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments. PMID:28387345
Schindler, Corinna S; Carreira, Erick M
2009-11-01
This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).
Recent advances in synthesis of bacterial rare sugar building blocks and their applications.
Emmadi, Madhu; Kulkarni, Suvarn S
2014-07-01
Covering: 1964 to 2013. Bacteria have unusual glycans on their surfaces which distinguish them from the host cells. These unique structures offer avenues for targeting bacteria with specific therapeutics and vaccine. However, these rare sugars are not accessible in acceptable purity and amounts by isolation from natural sources. Thus, procurement of orthogonally protected rare sugar building blocks through efficient chemical synthesis is regarded as a crucial step towards the development of glycoconjugate vaccines. This Highlight focuses on recent advances in the synthesis of the bacterial deoxy amino hexopyranoside building blocks and their application in constructing various biologically important bacterial O-glycans.
Kabbour, Houria; Cario, Laurent
2006-03-20
We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.
Michalak, Karol; Wicha, Jerzy
2011-08-19
An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.
Siriwardana, Gamini; Seligman, Paul A
2013-12-01
Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.
Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.
Song, Junyeob; Zhou, Wei
2018-06-27
Optical nanoantennas can concentrate light and enhance light-matter interactions in subwavelength domain, which is useful for photodetection, light emission, optical biosensing, and spectroscopy. However, conventional optical nanoantennas operating at a single wavelength band are not suitable for multiband applications. Here, we propose and exploit an out-of-plane plasmonic engineering strategy to design and create composite optical nanoantennas that can support multiple nanolocalized modes at different resonant wavelengths. These multiresonant composite nanoantennas are composed of vertically stacked building blocks of metal-insulator-metal loop nanoantennas. Studies of multiresonant composite nanoantennas demonstrate that the number of supported modes depends on the number of vertically stacked building blocks and the resonant wavelengths of individual modes are tunable by controlling the out-of-plane geometries of their building blocks. In addition, numerical studies show that the resonant wavelengths of individual modes in composite nanoantennas can deviate from the optical response of building blocks due to hybridization of magnetic modes in neighboring building blocks. Using Au nanohole arrays as deposition masks to fabricate arrays of multilayered composite nanoantennas, we experimentally demonstrate their multiresonant optical properties in good agreement with theory predictions. These studies show that out-of-plane engineered multiresonant composite nanoantennas can provide new opportunities for fundamental nanophotonics research and practical applications involving optical multiband operations, such as multiphoton process, broadband solar energy conversion, and wavelength-multiplexed optical system.
Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.
Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik
2015-01-12
This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian
2012-05-01
While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. Electronic supplementary information (ESI) available: SEM, and TEM images. See DOI: 10.1039/c2nr30743j
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.
1995-12-31
The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalystsmore » for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.« less
Alq3 nanorods: promising building blocks for optical devices.
Chen, Wei; Peng, Qing; Li, Yadong
2008-07-17
Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conjugated block copolymers: A building block for high-performance organic photovoltaics
NASA Astrophysics Data System (ADS)
Guo, Changhe
State-of-the-art organic photovoltaics rely on kinetically trapped, partially phase-separated structures of donor/acceptor mixtures to create a high interfacial area for exciton dissociation and networks of bicontinuous phases for charge transport. Nevertheless, intrinsic structural disorder and weak intermolecular interactions in polymer blends limit the performance and stability of organic electronic devices. We demonstrate a potential strategy to control morphology and donor/acceptor heterojunctions through conjugated block copolymer poly(3-hexylthiophene)- block-poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (P3HT-b-PFTBT). Block copolymers can self-assemble into well-ordered nanostructures ideal for photovoltaic applications. When utilized as the photovoltaic active layer, P3HT-b-PFTBT block copolymer devices demonstrate thermal stability and photoconversion efficiency of 3% well beyond devices composed of the constituent polymer blends. Resonant soft X-ray scattering (RSOXS) is used to elucidate the structural origin for efficient block copolymer photovoltaics. Energy tuning in soft X-ray ranges gives RSOXS chemical sensitivity to characterize organic thin films with compositionally similar phases or complicated multiphase systems. RSOXS reveals that the remarkable performance of P3HT-b-PFTBT devices is due to self-assembly into nanoscale in-plane lamellar morphology, which not only establishes an equilibrium microstructure amenable for exciton dissociation but also provides pathways for efficient charge transport. Furthermore, we find evidence that covalent control of donor/acceptor interfaces in block copolymers has the potential to promote charge separation and optimize the photoconversion process by limiting charge recombination. To visualize the nanostructure in organic thin films, we introduce low energy-loss energy-filtered transmission electron microscopy (EFTEM) as an important alternative approach to generate contrast from differences in optoelectronic properties and enable chemical imaging of organic materials. The widely-studied polymer/fullerene system is used as a test sample to demonstrate the application of this technique for structure characterization in the active layer of organic solar cells. In addition, well-ordered equilibrium nanostructures and covalent control of donor/acceptor interfaces make P3HT-b-PFTBT an excellent model for studying the effect of crystalline texture in the active layer on charge transport and photovoltaic performance. Solvent additives are applied to induce a drastic texture change from mainly face-on to edge-on orientations in crystalline P3HT domains of block copolymer thin films. We find that P3HT- b-PFTBT block copolymer devices demonstrate similar optimal performance, regardless of the dramatic changes in the predominant crystalline orientations adopted in P3HT domains. Our results provide further insights into the molecular organization required for efficient charge transport and device operation.
2017-06-01
importantly, it examines the methodology used to build the class IX block embarked on ship prior to deployment. The class IX block is defined as a repository...compared to historical data to evaluate model and simulation outputs. This thesis provides recommendations on improving the methodology implemented in...improving the level of organic support available to deployed units. More importantly, it examines the methodology used to build the class IX block
Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi
2017-11-22
The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.
Range Information Systems Management (RISM) Phase 1 Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Nelson, Richard A.
2002-01-01
RISM investigated alternative approaches, technologies, and communication network architectures to facilitate building the Spaceports and Ranges of the future. RISM started by document most existing US ranges and their capabilities. In parallel, RISM obtained inputs from the following: 1) NASA and NASA-contractor engineers and managers, and; 2) Aerospace leaders from Government, Academia, and Industry, participating through the Space Based Range Distributed System Working Group (SBRDSWG), many of whom are also; 3) Members of the Advanced Range Technology Working Group (ARTWG) subgroups, and; 4) Members of the Advanced Spaceport Technology Working Group (ASTWG). These diverse inputs helped to envision advanced technologies for implementing future Ranges and Range systems that builds on today s cabled and wireless legacy infrastructures while seamlessly integrating both today s emerging and tomorrow s building-block communication techniques. The fundamental key is to envision a transition to a Space Based Range Distributed Subsystem. The enabling concept is to identify the specific needs of Range users that can be solved through applying emerging communication tech
Defect-Induced Hedgehog Polarization States in Multiferroics
NASA Astrophysics Data System (ADS)
Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing
2018-03-01
Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.
Unexpected Ground-State Structure and Mechanical Properties of Ir₂Zr Intermetallic Compound.
Zhang, Meiguang; Cao, Rui; Zhao, Meijie; Du, Juan; Cheng, Ke
2018-01-10
Using an unbiased structure searching method, a new orthorhombic Cmmm structure consisting of ZrIr 12 polyhedron building blocks is predicted to be the thermodynamic ground-state of stoichiometric intermetallic Ir₂Zr in Ir-Zr systems. The formation enthalpy of the Cmmm structure is considerably lower than that of the previously synthesized Cu₂Mg-type phase, by ~107 meV/atom, as demonstrated by the calculation of formation enthalpy. Meanwhile, the phonon dispersion calculations further confirmed the dynamical stability of Cmmm phase under ambient conditions. The mechanical properties, including elastic stability, rigidity, and incompressibility, as well as the elastic anisotropy of Cmmm -Ir₂Zr intermetallic, have thus been fully determined. It is found that the predicted Cmmm phase exhibits nearly elastic isotropic and great resistance to shear deformations within the (100) crystal plane. Evidence of atomic bonding related to the structural stability for Ir₂Zr were manifested by calculations of the electronic structures.
Quantum frequency up-conversion of continuous variable entangled states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenyuan; Wang, Ning; Li, Zongyang
We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pumpmore » field, making it a practical building block for quantum information processing and communication networks.« less
Defect-Induced Hedgehog Polarization States in Multiferroics.
Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G; Chen, Long-Qing; Pan, Xiaoqing
2018-03-30
Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO_{3}. An array of charged NSNRs are produced in BiFeO_{3} thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.
Galvanic Liquid Applied Coating Development for Protection of Steel in Concrete
NASA Technical Reports Server (NTRS)
Curran, Joseph John; Curran, Jerry; MacDowell, Louis
2004-01-01
Corrosion of reinforcing steel in concrete is a major problem affecting NASA facilities at Kennedy Space Center (KSC), other government agencies, and the general public. Problems include damage to KSC launch support structures, transportation and marine infrastructures, as well as building structures. A galvanic liquid applied coating was developed at KSC in order to address this problem. The coating is a non-epoxy metal rich ethyl silicate liquid coating. The coating is applied as a liquid from initial stage to final stage. Preliminary data shows that this coating system exceeds the NACE 100 millivolt shift criterion. The remainder of the paper details the development of the coating system through the following phases: Phase I: Development of multiple formulations of the coating to achieve easy application characteristics, predictable galvanic activity, long-term protection, and minimum environmental impact. Phase II: Improvement of the formulations tested in Phase I including optimization of metallic loading as well as incorporation of humectants for continuous activation. Phase III: Application and testing of improved formulations on the test blocks. Phase IV: Incorporation of the final formulation upgrades onto large instrumented structures (slabs).
Determining Possible Building Blocks of the Earth and Mars
NASA Technical Reports Server (NTRS)
Burbine, T. H.; OBrien, K. M.
2004-01-01
One of the fundamental questions concerning planetary formation is exactly what material did the planets form from? All the planets in our solar system are believed to have formed out of material from the solar nebula. Chondritic meteorites appear to sample this primitive material. Chondritic meteorites are generally classified into 13 major groups, which have a variety of compositions. Detailed studies of possible building blocks of the terrestrial planets require samples that can be used to estimate the bulk chemistry of these bodies. This study will focus on trying to determine possible building blocks of Earth and Mars since samples of these two planets can be studied in detail in the laboratory.
Phase noise suppression for coherent optical block transmission systems: a unified framework.
Yang, Chuanchuan; Yang, Feng; Wang, Ziyu
2011-08-29
A unified framework for phase noise suppression is proposed in this paper, which could be applied in any coherent optical block transmission systems, including coherent optical orthogonal frequency-division multiplexing (CO-OFDM), coherent optical single-carrier frequency-domain equalization block transmission (CO-SCFDE), etc. Based on adaptive modeling of phase noise, unified observation equations for different coherent optical block transmission systems are constructed, which lead to unified phase noise estimation and suppression. Numerical results demonstrate that the proposal is powerful in mitigating laser phase noise.
Siriwardana, Gamini; Seligman, Paul A.
2013-01-01
Abstract Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid‐G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid‐G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856
Hasan, Mehedi; Guemri, Rabiaa; Maldonado-Basilio, Ramón; Lucarz, Frédéric; de Bougrenet de la Tocnaye, Jean-Louis; Hall, Trevor
2014-12-15
A photonic circuit design for implementing frequency 8-tupling and 24-tupling is proposed. The front- and back-end of the circuit comprises 4×4 MMI couplers enclosing an array of four pairs of phase modulators and 2×2 MMI couplers. The proposed design for frequency multiplication requires no optical or electrical filters, the operation is not limited to carefully adjusted modulation indexes, and the drift originated from static DC bias is mitigated by making use of the intrinsic phase relations of multi-mode interference couplers. A transfer matrix approach is used to represent the main building blocks of the design and hence to describe the operation of the frequency 8-tupling and 24-tupling. The concept is theoretically developed and demonstrated by simulations. Ideal and imperfect power imbalances in the multi-mode interference couplers, as well as ideal and imperfect phases of the electric drives to the phase modulators, are analyzed.
Graphene-silicon phase modulators with gigahertz bandwidth
NASA Astrophysics Data System (ADS)
Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A. K.; Ferrari, A. C.; Romagnoli, M.
2018-01-01
The modulator is a key component in optical communications. Several graphene-based amplitude modulators have been reported based on electro-absorption. However, graphene phase modulators (GPMs) are necessary for functions such as applying complex modulation formats or making switches or phased arrays. Here, we present a 10 Gb s-1 GPM integrated in a Mach-Zehnder interferometer configuration. This is a compact device based on a graphene-insulator-silicon capacitor, with a phase-shifter length of 300 μm and extinction ratio of 35 dB. The GPM has a modulation efficiency of 0.28 V cm at 1,550 nm. It has 5 GHz electro-optical bandwidth and operates at 10 Gb s-1 with 2 V peak-to-peak driving voltage in a push-pull configuration for binary transmission of a non-return-to-zero data stream over 50 km of single-mode fibre. This device is the key building block for graphene-based integrated photonics, enabling compact and energy-efficient hybrid graphene-silicon modulators for telecom, datacom and other applications.
Feng, Xingli; Ma, Houyi; Huang, Shaoxin; Pan, Wei; Zhang, Xiaokai; Tian, Fang; Gao, Caixia; Cheng, Yingwen; Luo, Jingli
2006-06-29
A simple but effective aqueous-organic phase-transfer method for gold, silver, and platinum nanoparticles was developed on the basis of the decrease of the PVP's solubility in water with the temperature increase. The present method is superior in the transfer efficiency of highly stable nanoparticles to the common phase-transfer methods. The gold, silver, and platinum nanoparticles transferred to the 1-butanol phase dispersed well, especially silver and platinum particles almost kept the previous particle size. Electrochemical synthesis of gold nanoparticles in an oil-water system was achieved by controlling the reaction temperature at 80 degrees C, which provides great conveniences for collecting metal particles at the oil/water interface and especially for fabricating dense metal nanoparticle films. A technique to fabricate gold nanofilms on solid supports was also established. The shapes and sizes of gold nanoparticles as the building blocks may be controllable through changing reaction conditions.
LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants
Lind, Kara R.; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico
2014-01-01
LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil. PMID:24963716
LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.
Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico
2014-01-01
LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.
Building Blocks and Cognitive Building Blocks: Playing to Know the World Mathematically
ERIC Educational Resources Information Center
Sarama, Julie; Clements, Douglas H.
2009-01-01
The authors explore how children's play can support the development of the foundations of mathematics learning and how adults can support children's representation of--and thus the "mathematization" of--their play. The authors review research about the amount and nature of mathematics found in the free play of children. They briefly…
Trainer's Guide to Building Blocks for Teaching Preschoolers with Special Needs [CD-ROM
ERIC Educational Resources Information Center
Joseph, Gail E.; Sandall, Susan R.; Schwartz, Ilene S.
2010-01-01
An essential teaching companion for instructors of pre-K educators, this convenient CD-ROM is a vivid blueprint for effective inclusive education using the popular "Building Blocks" approach. Following the structure of the bestselling textbook, this comprehensive guide helps teacher educators provide effective instruction on the three types of…
1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING ...
1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING 0520 WEST OF FIRING CONTOL BLOCK HOUSE (BLDG. 0545), BETWEEN SLED TRACK AND CAMERA ACCESS ROAD. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA
Building an Early Childhood Parent-Teacher Resource Center.
ERIC Educational Resources Information Center
Holloway, Mary A.
This manual is a guidebook to the development of the Project Enlightenment Parent-Teacher Resource Center and serves as a reference for the replication of this type of center in other communities. The manual consists of three chapters that are conceptualized as building blocks, because they are sequential, incremental, and independent. Block A…
Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project
ERIC Educational Resources Information Center
Clements, Douglas H.; Sarama, Julie
2007-01-01
This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…
PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...
PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
University Education in Ontario: Shared Goals & Building Blocks.
ERIC Educational Resources Information Center
Council of Ontario Universities, Toronto.
This brochure suggests five goals that are likely to be shared by the people of Ontario, their government, and the province's publicly funded universities for a strong university system, and identifies the building blocks and resource-related commitments that would enable Ontario universities to achieve these goals. The goals are: (1) all…
Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.
Borkar, Santosh Ramdas; Aidhen, Indrapal Singh
2017-04-18
Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.
Patterning nonisometric origami in nematic elastomer sheets
NASA Astrophysics Data System (ADS)
Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik
Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.
Structure of clusters and building blocks in amylopectin from African rice accessions.
Gayin, Joseph; Abdel-Aal, El-Sayed M; Marcone, Massimo; Manful, John; Bertoft, Eric
2016-09-05
Enzymatic hydrolysis in combination with gel-permeation and anion-exchange chromatography techniques were employed to characterise the composition of clusters and building blocks of amylopectin from two African rice (Oryza glaberrima) accessions-IRGC 103759 and TOG 12440. The samples were compared with one Asian rice (Oryza sativa) sample (cv WITA 4) and one O. sativa×O. glaberrima cross (NERICA 4). The average DP of clusters from the African rice accessions (ARAs) was marginally larger (DP=83) than in WITA 4 (DP=81). However, regarding average number of chains, clusters from the ARAs represented both the smallest and largest clusters. Overall, the result suggested that the structure of clusters in TOG 12440 was dense with short chains and high degree of branching, whereas the situation was the opposite in NERICA 4. IRGC 103759 and WITA 4 possessed clusters with intermediate characteristics. The commonest type of building blocks in all samples was group 2 (single branched dextrins) representing 40.3-49.4% of the blocks, while groups 3-6 were found in successively lower numbers. The average number of building blocks in the clusters was significantly larger in NERICA 4 (5.8) and WITA 4 (5.7) than in IRGC 103759 and TOG 12440 (5.1 and 5.3, respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Williams, Daniel M.
2006-01-01
Described is the research process that NASA researchers used to validate the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept. The four phase building-block validation and verification process included multiple elements ranging from formal analysis of HVO procedures to flight test, to full-system architecture prototype that was successfully shown to the public at the June 2005 SATS Technical Demonstration in Danville, VA. Presented are significant results of each of the four research phases that extend early results presented at ICAS 2004. HVO study results have been incorporated into the development of the Next Generation Air Transportation System (NGATS) vision and offer a validated concept to provide a significant portion of the 3X capacity improvement sought after in the United States National Airspace System (NAS).
NASA Astrophysics Data System (ADS)
Dingel, Benjamin
2017-01-01
In this invited paper, we summarize the current developments in linear optical field modulators (LOFMs) for coherent multilevel optical transmitters. Our focus is the presentation of a new, novel LOFM design that provides beneficial and necessary features such as lowest hardware component counts, lowered insertion loss, smaller RF power consumption, smaller footprint, simple structure, and lowered cost. We refer to this modulator as called Double-Pass LOFM (DP-LOFM) that becomes the building block for high-performance, linear Dual-Polarization, In-Phase- Quadrature-Phase (DP-IQ) modulator. We analyze its performance in term of slope linearity, and present one of its unique feature -- a built-in compensation functionality that no other linear modulators possessed till now.
NASA Astrophysics Data System (ADS)
Bradshaw, Darren; Rosseinsky, Matthew J.
2005-12-01
Reaction of Co(NO3)2ṡ6H2O with the multidentate ligands benzene-1,3,5-tricarboxylate (btc) and the flexible bipyridyl ligand 1,2-bis(4-pyridyl)ethane (bpe) affords the 3-dimensional coordination polymers [Co3(btc)2(bpe)3(eg)2]ṡ(guests) 1, where eg = ethylene glycol, and [Co2(Hbtc)2(bpe)2]ṡ(bpe) 2. Both phases are comprised of infinite metal-carboxylate dimer chains, linked into 2-dimensional sheets by the bpe ligands. These sheets are further linked to adjacent sheets through covalent interactions, 1, or through hydrogen-bonding interactions, 2, to yield the 3-dimensional structures. Phase 1 exhibits solvent filled 1-dimensional pores, whereas 2 is triply-interpenetrated to form a dense solid array.
Effective Light Directed Assembly of Building Blocks with Microscale Control.
Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung
2017-06-01
Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SynTrack: DNA Assembly Workflow Management (SynTrack) v2.0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
MENG, XIANWEI; SIMIRENKO, LISA
2016-12-01
SynTrack is a dynamic, workflow-driven data management system that tracks the DNA build process: Management of the hierarchical relationships of the DNA fragments; Monitoring of process tasks for the assembly of multiple DNA fragments into final constructs; Creations of vendor order forms with selectable building blocks. Organizing plate layouts barcodes for vendor/pcr/fusion/chewback/bioassay/glycerol/master plate maps (default/condensed); Creating or updating Pre-Assembly/Assembly process workflows with selected building blocks; Generating Echo pooling instructions based on plate maps; Tracking of building block orders, received and final assembled for delivering; Bulk updating of colony or PCR amplification information, fusion PCR and chewback results; Updating with QA/QCmore » outcome with .csv & .xlsx template files; Re-work assembly workflow enabled before and after sequencing validation; and Tracking of plate/well data changes and status updates and reporting of master plate status with QC outcomes.« less
Diode amplifier of modulated optical beam power
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'yachkov, N V; Bogatov, A P; Gushchik, T I
2014-11-30
Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)
Hydrogen isotope exchange in a metal hydride tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, David B.
2014-09-01
This report describes a model of the displacement of one hydrogen isotope within a metal hydride tube by a different isotope in the gas phase that is blown through the tube. The model incorporates only the most basic parameters to make a clear connection to the theory of open-tube gas chromatography, and to provide a simple description of how the behavior of the system scales with controllable parameters such as gas velocity and tube radius. A single tube can be seen as a building block for more complex architectures that provide higher molar flow rates or other advanced design goals.
Signal replication in a DNA nanostructure
NASA Astrophysics Data System (ADS)
Mendoza, Oscar; Houmadi, Said; Aimé, Jean-Pierre; Elezgaray, Juan
2017-01-01
Logic circuits based on DNA strand displacement reaction are the basic building blocks of future nanorobotic systems. The circuits tethered to DNA origami platforms present several advantages over solution-phase versions where couplings are always diffusion-limited. Here we consider a possible implementation of one of the basic operations needed in the design of these circuits, namely, signal replication. We show that with an appropriate preparation of the initial state, signal replication performs in a reproducible way. We also show the existence of side effects concomitant to the high effective concentrations in tethered circuits, such as slow leaky reactions and cross-activation.
Solid-Phase Synthesis of Diverse Peptide Tertiary Amides By Reductive Amination
Pels, Kevin; Kodadek, Thomas
2015-01-01
The synthesis of libraries of conformationally-constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as peptide tertiary amide (PTA). PTAs are strongly biased conformationally due to allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers. PMID:25695359
Solid-phase synthesis of diverse peptide tertiary amides by reductive amination.
Pels, Kevin; Kodadek, Thomas
2015-03-09
The synthesis of libraries of conformationally constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as a peptide tertiary amide (PTA). PTAs are conformationally constrained because of allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers.
Building Trades. Block II. Foundations.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Twelve informational lessons and eleven manipulative lessons are provided on foundations as applied to the building trades. Informational lessons cover land measurements; blueprint reading; level instruments; building and site planning; building site preparation; laying out building lines; soil preparation and special evacuation; concrete forms;…
Design of a 2.4-GHz CMOS monolithic fractional-N frequency synthesizer
NASA Astrophysics Data System (ADS)
Shu, Keliu
The wireless communication technology and market have been growing rapidly since a decade ago. The high demand market is a driving need for higher integration in the wireless transceivers. The trend is to achieve low-cost, small form factor and low power consumption. With the ever-reducing feature size, it is becoming feasible to integrate the RF front-end together with the baseband in the low-cost CMOS technology. The frequency synthesizer is a key building block in the RF front-end of the transceivers. It is used as a local oscillator for frequency translation and channel selection. The design of a 2.4-GHz low-power frequency synthesizer in 0.35mum CMOS is a challenging task mainly due to the high-speed prescaler. In this dissertation, a brief review of conventional PLL and frequency synthesizers is provided. Design techniques of a 2.4-GHz monolithic SigmaDelta fractional-N frequency synthesizer are investigated. Novel techniques are proposed to tackle the speed and integration bottlenecks of high-frequency PLL. A low-power and inherently glitch-free phase-switching prescaler and an on-chip loop filter with capacitance multiplier are developed. Compared with the existing and popular dual-path topology, the proposed loop filter reduces circuit complexity and its power consumption and noise are negligible. Furthermore, a third-order three-level digital SigmaDelta modulator topology is employed to reduce the phase noise generated by the modulator. Suitable PFD and charge-pump designs are employed to reduce their nonlinearity effects and thus minimize the folding of the SigmaDelta modulator-shaped phase noise. A prototype of the fractional-N synthesizer together with some standalone building blocks is designed and fabricated in TSMC 0.35mum CMOS through MOSIS. The prototype frequency synthesizer and standalone prescaler and loop filter are characterized. The feasibility and practicality of the proposed prescaler and loop filter are experimentally verified.
ERIC Educational Resources Information Center
Dezuanni, Michael
2015-01-01
This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
These military-developed curriculum materials consist of a course description, course chart, plan of instruction, lesson plans, study guides, and workbooks for use in training plumbing specialists II and III. Covered in the course blocks are building waste systems and exterior and interior supply systems. Course block II, on building waste…
Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry
ERIC Educational Resources Information Center
Geyer, Michael J.
2017-01-01
A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…
Functionalized coronenes: synthesis, solid structure, and properties.
Wu, Di; Zhang, Hua; Liang, Jinhua; Ge, Haojie; Chi, Chunyan; Wu, Jishan; Liu, Sheng Hua; Yin, Jun
2012-12-21
The construction of coronenes using simple building blocks is a challenging task. In this work, triphenylene was used as a building block to construct functionalized coronenes, and their solid structures and optoelectronic properties were investigated. The single crystal structures showed that coronenes have different packing motifs. Their good solubility and photostability make them potential solution-processable candidates for organic devices.
The Development of Logico-Mathematical Knowledge in a Block-Building Activity at Ages 1-4
ERIC Educational Resources Information Center
Kamii, Constance; Miyakawa, Yoko; Kato, Yasuhiko
2004-01-01
To study the developmental interrelationships among various aspects of logico-mathematical knowledge, 80 one- to 4-year-olds were individually asked to build "something tall" with 20 blocks. Percentages of new and significant behaviors increased with age and were analyzed in terms of the development of logico-mathematical relationships. It was…
ERIC Educational Resources Information Center
Mehdiabadi, Amir Hedayati; Seo, Gaeun; Huang, Wenhao David; Han, Seung-hyun Caleb
2017-01-01
Human resource development is known to encapsulate a collection of social science disciplines including communications, psychology, and economics. Since these and other similar areas are the cornerstones of HRD, the changing nature of HRD demands constant reflections on the value and building blocks of contemporary HRD inquiries. This article…
Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian
2017-07-21
The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Orlov, Alexandr; Chubarkina, Irina
2018-03-01
The paper is dedicated to main modern trends in the area of high-rise construction. The classification of buildings and structures by height is given. Functional distribution by the height of buildings is presented. A review of positive and negative aspects of high-rise construction from the economic point of view is given. On the basis of the data obtained, it is proposed to build up residential microdistricts in the form of urban blocks. A plan of microdistricts development is presented. It takes into account urban blocks and includes their main characteristics. An economic and mathematical model was developed to carry out a comprehensive assessment of the effectiveness of high-rise construction projects.
Chen, Yun; Nielsen, Jens
2013-12-01
Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.
An Ap-Structure with Finslerian Flavor I:. the Principal Idea
NASA Astrophysics Data System (ADS)
Wanas, M. I.
A geometric structure (FAP-structure), having both absolute parallelism and Finsler properties, is constructed. The building blocks of this structure are assumed to be functions of position and direction. A nonlinear connection emerges naturally and is defined in terms of the building blocks of the structure. Two linear connections, one of Berwald type and the other of the Cartan type, are defined using the nonlinear connection of the FAP. Both linear connections are nonsymmetric and consequently admit torsion. A metric tensor is defined in terms of the building blocks of the structure. The condition for this metric to be a Finslerian one is obtained. Also, the condition for an FAP-space to be an AP-one is given.
Integrated optic single-ring filter for narrowband phase demodulation
NASA Astrophysics Data System (ADS)
Madsen, C. K.
2017-05-01
Integrated optic notch filters are key building blocks for higher-order spectral filter responses and have been demonstrated in many technology platforms from dielectrics (such as Si3N4) to semiconductors (Si photonics). Photonic-assisted RF processing applications for notch filters include identifying and filtering out high-amplitude, narrowband signals that may be interfering with the desired signal, including undesired frequencies detected in radar and free-space optical links. The fundamental tradeoffs for bandwidth and rejection depth as a function of the roundtrip loss and coupling coefficient are investigated along with the resulting spectral phase response for minimum-phase and maximum-phase responses compared to the critical coupling condition and integration within a Mach Zehnder interferometer. Based on a full width at half maximum criterion, it is shown that maximum-phase responses offer the smallest bandwidths for a given roundtrip loss. Then, a new role for passive notch filters in combination with high-speed electro-optic phase modulation is explored around narrowband phase-to-amplitude demodulation using a single ring operating on one sideband. Applications may include microwave processing and instantaneous frequency measurement (IFM) for radar, space and defense applications.
NASA Astrophysics Data System (ADS)
Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk
2017-10-01
A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.
Improved Timing Scheme for Spaceborne Precipitation Radar
NASA Technical Reports Server (NTRS)
Berkun, Andrew; Fischman, Mark
2004-01-01
An improved timing scheme has been conceived for operation of a scanning satellite-borne rain-measuring radar system. The scheme allows a real-time-generated solution, which is required for auto targeting. The current timing scheme used in radar satellites involves pre-computing a solution that allows the instrument to catch all transmitted pulses without transmitting and receiving at the same time. Satellite altitude requires many pulses in flight at any time, and the timing solution to prevent transmit and receive operations from colliding is usually found iteratively. The proposed satellite has a large number of scanning beams each with a different range to target and few pulses per beam. Furthermore, the satellite will be self-targeting, so the selection of which beams are used will change from sweep to sweep. The proposed timing solution guarantees no echo collisions, can be generated using simple FPGA-based hardware in real time, and can be mathematically shown to deliver the maximum number of pulses per second, given the timing constraints. The timing solution is computed every sweep, and consists of three phases: (1) a build-up phase, (2) a feedback phase, and (3) a build-down phase. Before the build-up phase can begin, the beams to be transmitted are sorted in numerical order. The numerical order of the beams is also the order from shortest range to longest range. Sorting the list guarantees no pulse collisions. The build-up phase begins by transmitting the first pulse from the first beam on the list. Transmission of this pulse starts a delay counter, which stores the beam number and the time delay to the beginning of the receive window for that beam. The timing generator waits just long enough to complete the transmit pulse plus one receive window, then sends out the second pulse. The second pulse starts a second delay counter, which stores its beam number and time delay. This process continues until an output from the first timer indicates there is less than one transmit pulse width until the start of the next receive event. This blocks future transmit pulses in the build-up phase. The feedback phase begins with the first timer paying off and starting the first receive window. When the first receive window is complete, the timing generator transmits the next beam from the list. When the second timer pays off, the second receive event is started. Following the second receive event, the timing generator will transmit the next beam on the list and start an additional timer. The timers work in a circular buffer fashion so there only need to be enough to cover the maximum number of echoes in flight.
Translation from UML to Markov Model: A Performance Modeling Framework
NASA Astrophysics Data System (ADS)
Khan, Razib Hayat; Heegaard, Poul E.
Performance engineering focuses on the quantitative investigation of the behavior of a system during the early phase of the system development life cycle. Bearing this on mind, we delineate a performance modeling framework of the application for communication system that proposes a translation process from high level UML notation to Continuous Time Markov Chain model (CTMC) and solves the model for relevant performance metrics. The framework utilizes UML collaborations, activity diagrams and deployment diagrams to be used for generating performance model for a communication system. The system dynamics will be captured by UML collaboration and activity diagram as reusable specification building blocks, while deployment diagram highlights the components of the system. The collaboration and activity show how reusable building blocks in the form of collaboration can compose together the service components through input and output pin by highlighting the behavior of the components and later a mapping between collaboration and system component identified by deployment diagram will be delineated. Moreover the UML models are annotated to associate performance related quality of service (QoS) information which is necessary for solving the performance model for relevant performance metrics through our proposed framework. The applicability of our proposed performance modeling framework in performance evaluation is delineated in the context of modeling a communication system.
Fluorine-Rich Planetary Environments as Possible Habitats for Life
Budisa, Nediljko; Kubyshkin, Vladimir; Schulze-Makuch, Dirk
2014-01-01
In polar aprotic organic solvents, fluorine might be an element of choice for life that uses selected fluorinated building blocks as monomers of choice for self-assembling of its catalytic polymers. Organofluorine compounds are extremely rare in the chemistry of life as we know it. Biomolecules, when fluorinated such as peptides or proteins, exhibit a “fluorous effect”, i.e., they are fluorophilic (neither hydrophilic nor lipophilic). Such polymers, capable of creating self-sorting assemblies, resist denaturation by organic solvents by exclusion of fluorocarbon side chains from the organic phase. Fluorous cores consist of a compact interior, which is shielded from the surrounding solvent. Thus, we can anticipate that fluorine-containing “teflon”-like or “non-sticking” building blocks might be monomers of choice for the synthesis of organized polymeric structures in fluorine-rich planetary environments. Although no fluorine-rich planetary environment is known, theoretical considerations might help us to define chemistries that might support life in such environments. For example, one scenario is that all molecular oxygen may be used up by oxidation reactions on a planetary surface and fluorine gas could be released from F-rich magma later in the history of a planetary body to result in a fluorine-rich planetary environment. PMID:25370378
Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo; ...
2016-08-16
Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo
Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less
Blockbusters: Ideas for the Block Center.
ERIC Educational Resources Information Center
Adams, Polly K.; Nesmith, Jaynie
1996-01-01
Goals of block building in early childhood classrooms focus on physical, social, cognitive, and emotional development. Reports survey results of the value teachers place on block play. Offers illustrations of task cards to use with blocks in math, language arts, social studies, and science. Discusses guidelines and suggests idea cards and sentence…
Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A
2018-01-09
Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.
Statistical analysis of atmospheric turbulence about a simulated block building
NASA Technical Reports Server (NTRS)
Steely, S. L., Jr.
1981-01-01
An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.
"Looking through the Eyes of the Learner": Implementation of Building Blocks for Student Engagement
ERIC Educational Resources Information Center
D'Annolfo, Suzanne Cordier; Schumann, Jeffrey A.
2012-01-01
The Building Blocks for Student Engagement (BBSE) protocol was designed to provide a consistent framework of common language and a visual point of reference shared among students, teachers and school leaders to keep a laser-like focus on the instructional core and student engagement. Grounded in brain-based learning and implemented in urban,…
Oligomers and Polymers Based on Pentacene Building Blocks
Lehnherr, Dan; Tykwinski, Rik R.
2010-01-01
Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.
Public Opinion on Youth, Crime and Race: A Guide for Advocates. Building Blocks for Youth.
ERIC Educational Resources Information Center
Soler, Mark
This guide summarizes public opinion research on youth and juvenile justice issues from the Building Blocks for Youth focus groups and various national polls. Overall, the public is less fearful about crime than in the past but believes juvenile crime is increasing. There is serious public concern about the effectiveness of the juvenile justice…
Matsidik, Rukiya; Martin, Johannes; Schmidt, Simon; Obermayer, Johannes; Lombeck, Florian; Nübling, Fritz; Komber, Hartmut; Fazzi, Daniele; Sommer, Michael
2015-01-16
Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N′-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor–acceptor–donor building blocks to be further used for the preparation of a variety of conjugated materials.
A “fullerene-carbon nanotube” structure with tunable mechanical properties
NASA Astrophysics Data System (ADS)
Ji, W. M.; Zhang, L. W.; Liew, K. M.
2018-03-01
Carbon-based nanostructures have drawn tremendous research interest and become promising building blocks for the new generation of smart sensors and devices. Utilizing a bottom-up strategy, the chemical interconnecting sp 3 covalent bond between carbon building blocks is an efficient way to enhance its Young's modulus and ductility. The formation of sp 3 covalent bond, however, inevitably degrades its ultimate tensile strength caused by stress concentration at the junction. By performing a molecular dynamics simulation of tensile deformation for a fullerene-carbon nanotube (FCNT) structure, we propose a tunable strategy in which fullerenes with various angle energy absorption capacities are utilized as building blocks to tune their ductile behavior, while still maintaining a good ultimate tensile strength of the carbon building blocks. A higher ultimate tensile strength is revealed with the reduction of stress concentration at the junction. A brittle-to-ductile transition during the tensile deformation is detected through the structural modification. The development of ductile behavior is attributed to the improvement of energy propagation ability during the fracture initiation, in which the released energy from bonds fracture is mitigated properly, leading to the further development of mechanical properties.
De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
Schneider, G; Lee, M L; Stahl, M; Schneider, P
2000-07-01
An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.
Gruber, Steffen; Schwab, Helmut; Koefinger, Petra
2015-12-25
The Gram-negative bacterium Escherichia coli is currently the most efficient and widely used prokaryotic host for recombinant protein and metabolite production. However, due to some limitations and to various interesting features of other Gram-negative bacteria efficient vector systems applicable to a broad range are desired. Basic building blocks for plasmid-based vectors include besides the need for a suitable selection marker in the first line a proper replication and maintenance system. In addition to these basic requirements, further elements are needed for Gram-negative bacteria beyond E. coli, such as Pseudomonas pudita, Ralstonia eutropha, Burkholderia glumae or Acinetobacter sp.. Established building blocks have to be adapted and new building blocks providing the desired functions need to be identified and exploited. This minireview addresses so far described and used genetic elements for broad host range replication, efficient plasmid maintenance, and conjugative plasmid transfer as well as expression elements and protein secretion signals. The industrially important bacterium R. eutropha H16 was chosen as a model organism to provide specific data on the effectivity and utility of building blocks based on such genetic elements. Copyright © 2015 Elsevier B.V. All rights reserved.
Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks
NASA Astrophysics Data System (ADS)
Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.
2015-12-01
Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.
13. A southeastward view of buildings #3 (on the right), ...
13. A southeastward view of buildings #3 (on the right), building #5 ( to the immediate left of building #3), and buildings #6-B (low building on the far left) and #6 ( to the immediate rear of #6-B). - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
1. Historic American Buildings Survey E. W. Russell, Photographer, October ...
1. Historic American Buildings Survey E. W. Russell, Photographer, October 17, 1935 51-69 Government St. BLOCK OF BUILDINGS ON GOVERNMENT ST. (S. SIDE) BETWEEN WATER AND ROYAL STREETS - 51-69 Government Street (Commercial Building), Mobile, Mobile County, AL
Coexistence of superconductivity and magnetism by chemical design
NASA Astrophysics Data System (ADS)
Coronado, Eugenio; Martí-Gastaldo, Carlos; Navarro-Moratalla, Efrén; Ribera, Antonio; Blundell, Stephen J.; Baker, Peter J.
2010-12-01
Although the coexistence of superconductivity and ferromagnetism in one compound is rare, some examples of such materials are known to exist. Methods to physically prepare hybrid structures with both competing phases are also known, which rely on the nanofabrication of alternating conducting layers. Chemical methods of building up hybrid materials with organic molecules (superconducting layers) and metal complexes (magnetic layers) have provided examples of superconductivity with some magnetic properties, but not fully ordered. Now, we report a chemical design strategy that uses the self assembly in solution of macromolecular nanosheet building blocks to engineer the coexistence of superconductivity and magnetism in [Ni0.66Al0.33(OH)2][TaS2] at ~4 K. The method is further demonstrated in the isostructural [Ni0.66Fe0.33(OH)2][TaS2], in which the magnetic ordering is shifted from 4 K to 16 K.
Organizational factors related to occupational accidents in construction.
Filho, J M Jackson; Fonseca, E D; Lima, F P A; Duarte, F J C M
2012-01-01
The purpose of this paper is to understand the influence of organizational factors on occupational accident causation. A field study was undertaken and focused on the phase of concreting the floors of a residential block in a building project in Brazil. The methodological approach was based on the analysis of carpenters' work practices and of the workers' accounts of minor falls. Observations were noted on work practices over this stage. Furthermore, interviews were conducted with the workers hired by the subcontractors and with professionals working for the main contractor. The results show that falls were related to the introduction of new building technology and its use by the workforce. The production planning and organization of activities by the subcontracted firms also led to temporary demands that were additional determining factors for falls on site. The work analysis reveals the need to consider organizational factors in prevention practices.
Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanatzidis, Mercouri G.
The discovery of new materials and their efficient syntheses is a fundamental goal of chemistry. A related objective is to identify foundational and rational approaches to enhance the art of synthesis by combining the exquisite predictability of organic synthesis with the high yields of solid-state chemistry. In contrast to so-called solid-state methods, inorganic syntheses in liquid fluxes permit bond formation, framework assembly, and crystallization at lower temperatures because of facile diffusion and chemical reactions with and within the flux itself. The fluxes are bona fide solvents similar to conventional organic or aqueous solvents. Such reactions can produce a wide rangemore » of materials, often metastable, from oxides to intermetallics, but typically the formation mechanisms are poorly understood. This article discusses how one can design, perform, observe, understand, and engineer the formation of compounds from inorganic melts. The focus is also design concepts such as "dimensional reduction", "phase homologies", and "panoramic synthesis", and their broad applicability. When well-defined building blocks are present and stable in the reaction, prospects for increased structural diversity and product control increase substantially. Common structural motifs within these materials systems may be related to structural precursors in the melt that may be controlled by tuning reaction conditions and composition. Stabilization of a particular building block is often accomplished with tuning of the flux composition, which controls the Lewis basicity and redox potential. In such tunable and dynamic fluxes, the synthesis can be directed toward new materials. Using complementary techniques of in situ X-ray diffraction, we can create time-dependent maps of reaction space and probe the mobile species present in melts. Lastly, certain thoughts toward the ultimate goal of targeted materials synthesis by controlling inorganic melt chemistry are discussed.« less
Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases
Kanatzidis, Mercouri G.
2017-03-09
The discovery of new materials and their efficient syntheses is a fundamental goal of chemistry. A related objective is to identify foundational and rational approaches to enhance the art of synthesis by combining the exquisite predictability of organic synthesis with the high yields of solid-state chemistry. In contrast to so-called solid-state methods, inorganic syntheses in liquid fluxes permit bond formation, framework assembly, and crystallization at lower temperatures because of facile diffusion and chemical reactions with and within the flux itself. The fluxes are bona fide solvents similar to conventional organic or aqueous solvents. Such reactions can produce a wide rangemore » of materials, often metastable, from oxides to intermetallics, but typically the formation mechanisms are poorly understood. This article discusses how one can design, perform, observe, understand, and engineer the formation of compounds from inorganic melts. The focus is also design concepts such as "dimensional reduction", "phase homologies", and "panoramic synthesis", and their broad applicability. When well-defined building blocks are present and stable in the reaction, prospects for increased structural diversity and product control increase substantially. Common structural motifs within these materials systems may be related to structural precursors in the melt that may be controlled by tuning reaction conditions and composition. Stabilization of a particular building block is often accomplished with tuning of the flux composition, which controls the Lewis basicity and redox potential. In such tunable and dynamic fluxes, the synthesis can be directed toward new materials. Using complementary techniques of in situ X-ray diffraction, we can create time-dependent maps of reaction space and probe the mobile species present in melts. Lastly, certain thoughts toward the ultimate goal of targeted materials synthesis by controlling inorganic melt chemistry are discussed.« less
Molenaar, Heike; Boehm, Robert; Piepho, Hans-Peter
2017-01-01
Robust phenotypic data allow adequate statistical analysis and are crucial for any breeding purpose. Such data is obtained from experiments laid out to best control local variation. Additionally, experiments frequently involve two phases, each contributing environmental sources of variation. For example, in a former experiment we conducted to evaluate production related traits in Pelargonium zonale , there were two consecutive phases, each performed in a different greenhouse. Phase one involved the propagation of the breeding strains to obtain the stem cutting count, and phase two involved the assessment of root formation. The evaluation of the former study raised questions regarding options for improving the experimental layout: (i) Is there a disadvantage to using exactly the same design in both phases? (ii) Instead of generating a separate layout for each phase, can the design be optimized across both phases, such that the mean variance of a pair-wise treatment difference (MVD) can be decreased? To answer these questions, alternative approaches were explored to generate two-phase designs either in phase-wise order (Option 1) or across phases (Option 2). In Option 1 we considered the scenarios (i) using in both phases the same experimental design and (ii) randomizing each phase separately. In Option 2, we considered the scenarios (iii) generating a single design with eight replicates and splitting these among the two phases, (iv) separating the block structure across phases by dummy coding, and (v) design generation with optimal alignment of block units in the two phases. In both options, we considered the same or different block structures in each phase. The designs were evaluated by the MVD obtained by the intra-block analysis and the joint inter-block-intra-block analysis. The smallest MVD was most frequently obtained for designs generated across phases rather than for each phase separately, in particular when both phases of the design were separated with a single pseudo-level. The joint optimization ensured that treatment concurrences were equally balanced across pairs, one of the prerequisites for an efficient design. The proposed alternative approaches can be implemented with any model-based design packages with facilities to formulate linear models for treatment and block structures.
Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Neil P.; Sheffler, William; Sawaya, Michael R.
2015-09-17
We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method canmore » be used to design a wide variety of self-assembling protein nanomaterials.« less
Expressivism, Relativism, and the Analytic Equivalence Test
Frápolli, Maria J.; Villanueva, Neftalí
2015-01-01
The purpose of this paper is to show that, pace (Field, 2009), MacFarlane’s assessment relativism and expressivism should be sharply distinguished. We do so by arguing that relativism and expressivism exemplify two very different approaches to context-dependence. Relativism, on the one hand, shares with other contemporary approaches a bottom–up, building block, model, while expressivism is part of a different tradition, one that might include Lewis’ epistemic contextualism and Frege’s content individuation, with which it shares an organic model to deal with context-dependence. The building-block model and the organic model, and thus relativism and expressivism, are set apart with the aid of a particular test: only the building-block model is compatible with the idea that there might be analytically equivalent, and yet different, propositions. PMID:26635690
Mission building blocks for outer solar system exploration.
NASA Technical Reports Server (NTRS)
Herman, D.; Tarver, P.; Moore, J.
1973-01-01
Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.
2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND ...
2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
77 FR 9655 - Mobility Fund Phase I Auction Updated List of Potentially Eligible Census Blocks
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
... Updated List of Potentially Eligible Census Blocks AGENCY: Federal Communications Commission. ACTION... Bureaus provide an updated list of potentially eligible census blocks for Auction 901 scheduled to... summary of the Mobility Fund Phase I Auction Updated List of Potentially Eligible Census Blocks Public...
Block Play: Practical Suggestions for Common Dilemmas
ERIC Educational Resources Information Center
Tunks, Karyn Wellhousen
2009-01-01
Learning materials and teaching methods used in early childhood classrooms have fluctuated greatly over the past century. However, one learning tool has stood the test of time: Wood building blocks, often called unit blocks, continue to be a source of pleasure and learning for young children at play. Wood blocks have the unique capacity to engage…
Projected phase-change memory devices.
Koelmans, Wabe W; Sebastian, Abu; Jonnalagadda, Vara Prasad; Krebs, Daniel; Dellmann, Laurent; Eleftheriou, Evangelos
2015-09-03
Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.
Zhang, Lei; Lushington, Gerald H; Neuenswander, Benjamin; Hershberger, John C; Malinakova, Helena C
2008-01-01
Parallel solution-phase synthesis of combinatorial libraries of hexahydro-1 H-isoindolones exploiting a novel "tactical combination" of Cu-catalyzed three-component coupling and Diels-Alder reactions was accomplished. Three distinct libraries consisting of 24 members (library I), 60 members (library II), and 32 members (library III) were constructed. Variation of three substituents on the isoindolone scaffold in library I was exclusively achieved by the choice of the building blocks. In the syntheses of libraries II and III, sublibraries of isoindolone scaffolds were prepared initially in a one-pot/two-step process and were further diversified via Pd-catalyzed Suzuki cross-coupling reaction with boronic acids at two different diversification points. The Lipinski profiles and calculated ADME properties of the compounds are also reported.
Strain-induced phase transition and electron spin-polarization in graphene spirals
Zhang, Xiaoming; Zhao, Mingwen
2014-01-01
Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices. PMID:25027550
Strain-induced phase transition and electron spin-polarization in graphene spirals.
Zhang, Xiaoming; Zhao, Mingwen
2014-07-16
Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate theoretically the unique features of electron motion in the spiral lattice by means of first-principles calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics devices.
Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light.
Li, Zile; Kim, Inki; Zhang, Lei; Mehmood, Muhammad Q; Anwar, Muhammad S; Saleem, Murtaza; Lee, Dasol; Nam, Ki Tae; Zhang, Shuang; Luk'yanchuk, Boris; Wang, Yu; Zheng, Guoxing; Rho, Junsuk; Qiu, Cheng-Wei
2017-09-26
Efficient transmission-type meta-holograms have been demonstrated using high-index dielectric nanostructures based on Huygens' principle. It is crucial that the geometry size of building blocks be judiciously optimized individually for spectral overlap of electric and magnetic dipoles. In contrast, reflection-type meta-holograms using the metal/insulator/metal scheme and geometric phase can be readily achieved with high efficiency and small thickness. Here, we demonstrate a general platform for design of dual magnetic resonance based meta-holograms based on the geometric phase using silicon nanostructures that are quarter wavelength thick for visible light. Significantly, the projected holographic image can be unambiguously observed without a receiving screen even under the illumination of natural light. Within the well-developed semiconductor industry, our ultrathin magnetic resonance-based meta-holograms may have promising applications in anticounterfeiting and information security.
Chimeric Plastics : a new class of thermoplastic
NASA Astrophysics Data System (ADS)
Sonnenschein, Mark
A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.
Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S
2016-09-29
We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid-liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid-fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil-water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil-water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil-water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller "building block" particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil-water interface from the infusing phase. The experiment showed that when attaching at the hexadecane-water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The experimental data for the attachment of porous supra particles to the air-water interface from both air and water also agree with the theoretical model. This study gives important insights about how porous particles and particle aggregates attach to the oil-water interface in Pickering emulsions and the air-water surface in particle-stabilised aqueous foams relevant in ore flotation and a range of cosmetic, pharmaceutical, food, home and personal care formulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascherl, Laura; Sick, Torben; Margraf, Johannes
Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guidedmore » the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.« less
Emergent mechanics of biological structures
Dumont, Sophie; Prakash, Manu
2014-01-01
Mechanical force organizes life at all scales, from molecules to cells and tissues. Although we have made remarkable progress unraveling the mechanics of life's individual building blocks, our understanding of how they give rise to the mechanics of larger-scale biological structures is still poor. Unlike the engineered macroscopic structures that we commonly build, biological structures are dynamic and self-organize: they sculpt themselves and change their own architecture, and they have structural building blocks that generate force and constantly come on and off. A description of such structures defies current traditional mechanical frameworks. It requires approaches that account for active force-generating parts and for the formation of spatial and temporal patterns utilizing a diverse array of building blocks. In this Perspective, we term this framework “emergent mechanics.” Through examples at molecular, cellular, and tissue scales, we highlight challenges and opportunities in quantitatively understanding the emergent mechanics of biological structures and the need for new conceptual frameworks and experimental tools on the way ahead. PMID:25368421
NASA Astrophysics Data System (ADS)
Ascherl, Laura; Sick, Torben; Margraf, Johannes T.; Lapidus, Saul H.; Calik, Mona; Hettstedt, Christina; Karaghiosoff, Konstantin; Döblinger, Markus; Clark, Timothy; Chapman, Karena W.; Auras, Florian; Bein, Thomas
2016-04-01
Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guided the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.
Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio
2018-02-01
Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Pirrone, Concetta; Tienken, Christopher H.; Pagano, Tatiana; Di Nuovo, Santo
2018-01-01
In an experimental study to explain the effect of structured Building Block Play with LEGO™ bricks on 6-year-old student mathematics achievement and in the areas of logical thinking, divergent thinking, nonverbal reasoning, and mental imagery, students in the experimental group scored significantly higher (p = 0.05) in mathematics achievement and…
Novel single photon sources for new generation of quantum communications
2017-06-13
be used as building blocks for quantum cryptography and quantum key distribution There were numerous important achievements for the projects in the...single photon sources that will be used as build- ing blocks for quantum cryptography and quantum key distribution There were numerous im- portant...and enable absolutely secured information transfer between distant nodes – key prerequisite for quantum cryptography . Experiment: the experimental
Building Blocks for Transport-Class Hybrid and Turboelectric Vehicles
NASA Technical Reports Server (NTRS)
Jankovsky, Amy; Bowman, Cheryl; Jansen, Ralph
2016-01-01
NASA has been investing in research efforts to define potential vehicles that use hybrid and turboelectric propulsion to enable savings in fuel burn and carbon usage. This paper overviews the fundamental building blocks that have been derived from those studies and details what key performance parameters have been defined, what key ground and flight tests need to occur, and highlights progress toward each.
2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures
2016-06-16
Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.
Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels.
Ma, Chunxin; Li, Tiefeng; Zhao, Qian; Yang, Xuxu; Wu, Jingjun; Luo, Yingwu; Xie, Tao
2014-08-27
Inspired by the assembly of Lego toys, hydrogel building blocks with heterogeneous responsiveness are assembled utilizing macroscopic supramolecular recognition as the adhesion force. The Lego hydrogel provides 3D transformation upon pH variation. After disassembly of the building blocks by changing the oxidation state, they can be re-assembled into a completely new shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Damage of modern building materials by microscopic fungi].
Chuenko, A I; Karpenko, Iu V
2011-01-01
Resistance of three materials, produced on the basis of concrete compounds to the action of microscopic fungi, isolated from damaged living buildings, has been first investigated. It has been shown that samples of froth-block and thermoeffective block had low fungal resistance, in contrast to samples of cellular polystyrene concrete, which were resistant to fungal action, that can be associated with peculiarities of their component composition.
ERIC Educational Resources Information Center
US Department of Health and Human Services, Head Start Bureau, 2004
2004-01-01
Nearly 30 years ago, leading child psychologist Michael E. Lamb reminded us that fathers are the "forgotten contributors to child development." Since then, much work has been done to explore the ways fathers uniquely contribute to the healthy development of their children. Scholars now know that boys and girls who grow up with an involved father,…
Highly crystalline covalent organic frameworks from flexible building blocks.
Xu, Liqian; Ding, San-Yuan; Liu, Junmin; Sun, Junliang; Wang, Wei; Zheng, Qi-Yu
2016-03-28
Two novel 2D covalent organic frameworks (TPT-COF-1 and TPT-COF-2) were synthesized from the flexible 2,4,6-triaryloxy-1,3,5-triazine building blocks on a gram scale, which show high crystallinity and large surface area. The controllable formation of highly ordered frameworks is mainly attributed to the self-assembly Piedfort unit of 2,4,6-triaryloxy-1,3,5-triazine.
2010-10-21
Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F...long chain fluorinated alkyl groups ranging from 6-12 carbon atoms in length. Herein, a disilanol perfluoroalkyl polyhedral oligomeric...FUNCTIONAL PERFLUOROALKYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (F-POSS): BUILDING BLOCKS FOR LOW SURFACE ENERGY MATERIA LS Sean M Rami,.e:, Yvonne Dia
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
Techniques are presented for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis). FORMA is a library of subroutines coded in FORTRAN 4 for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.
NASA Astrophysics Data System (ADS)
Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi
2017-02-01
We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.
Parametric Symmetry Breaking in a Nonlinear Resonator
NASA Astrophysics Data System (ADS)
Leuch, Anina; Papariello, Luca; Zilberberg, Oded; Degen, Christian L.; Chitra, R.; Eichler, Alexander
2016-11-01
Much of the physical world around us can be described in terms of harmonic oscillators in thermodynamic equilibrium. At the same time, the far-from-equilibrium behavior of oscillators is important in many aspects of modern physics. Here, we investigate a resonating system subject to a fundamental interplay between intrinsic nonlinearities and a combination of several driving forces. We have constructed a controllable and robust realization of such a system using a macroscopic doubly clamped string. We experimentally observe a hitherto unseen double hysteresis in both the amplitude and the phase of the resonator's response function and present a theoretical model that is in excellent agreement with the experiment. Our work unveils that the double hysteresis is a manifestation of an out-of-equilibrium symmetry breaking between parametric phase states. Such a fundamental phenomenon, in the most ubiquitous building block of nature, paves the way for the investigation of new dynamical phases of matter in parametrically driven many-body systems and motivates applications ranging from ultrasensitive force detection to low-energy computing memory units.
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.
Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H
2016-11-22
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.
Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface
Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.
2016-01-01
Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053
Metamaterials based on the phase transition of VO2
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Lu, Junpeng; Renshaw Wang, Xiao
2018-01-01
In this article, we present a comprehensive review on recent research progress in design and fabrication of active tunable metamaterials and devices based on phase transition of VO2. Firstly, we introduce mechanisms of the metal-to-insulator phase transition (MIPT) in VO2 investigated by ultrafast THz spectroscopies. By analyzing the THz spectra, the evolutions of MIPT in VO2 induced by different external excitations are described. The superiorities of using VO2 as building blocks to construct highly tunable metamaterials are discussed. Subsequently, the recently demonstrated metamaterial devices based on VO2 are reviewed. These metamaterials devices are summarized and described in the categories of working frequency. In each working frequency range, representative metamaterials based on VO2 with different architectures and functionalities are reviewed and the contributions of the MIPT of VO2 are emphasized. Finally, we conclude the recent reports and provide a prospect on the strategies of developing future tunable metamaterials based on VO2.
Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2018-06-01
We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.
Beyond the Periodic Table of Elements: The Role of Superatoms.
Jena, Puru
2013-05-02
Atomic clusters composed of homo or heteroatomic species constitute an intermediate phase of matter where every atom counts and whose properties depend on their size, shape, composition, and charge. If specific clusters mimicking the chemistry of atoms can be produced, they can be thought of as man-made superatoms forming the building blocks of a new three-dimensional periodic table. Novel materials with tailored properties can then be synthesized by assembling these superatoms. This invited Perspective presents a brief summary of the pioneering works that led to this concept, and highlights the recent breakthroughs that hold promise for a new era in materials science.
Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds
Rios, Orlando; Chen, Jihua; Li, Yuzhan; ...
2016-06-01
Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. Lastly, all three functionalmore » building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively.« less
General synthesis of inorganic single-walled nanotubes
Ni, Bing; Liu, Huiling; Wang, Peng-peng; He, Jie; Wang, Xun
2015-01-01
The single-walled nanotube (SWNT) is an interesting nanostructure for fundamental research and potential applications. However, very few inorganic SWNTs are available to date due to the lack of efficient fabrication methods. Here we synthesize four types of SWNT: sulfide; hydroxide; phosphate; and polyoxometalate. Each type of SWNT possesses essentially uniform diameters. Detailed studies illustrate that the formation of SWNTs is initiated by the self-coiling of the corresponding ultrathin nanostructure embryo/building blocks on the base of weak interactions between them, which is not limited to specific compounds or crystal structures. The interactions between building blocks can be modulated by varying the solvents used, thus multi-walled tubes can also be obtained. Our results reveal that the generalized synthesis of inorganic SWNTs can be achieved by the self-coiling of ultrathin building blocks under the proper weak interactions. PMID:26510862
Shape-designed single-polymer micelles: a proof-of-concept simulation
NASA Astrophysics Data System (ADS)
Moths, Brian; Witten, Thomas A.
Much effort has been directed towards self-assembling nanostructures. Strong, local interactions between specific building blocks often determine these structures (e.g., globular proteins). We seek to produce designed structures that are instead determined by collective effects of weak interactions (e.g., surfactant self-assembly). Such structures may reversibly change conformation or disassemble in response to changing solvent conditions, and, being soft, have potential to adapt to fluctuating or unknown application-imposed shape requirements. Concretely, we aim to realize such a structure in the form of a single polymer micelle--an amphiphilic polymer exhibiting a condensed, phase-segregated conformation when immersed in solvent. Connecting all amphiphiles into a single chain provides geometric constraints controlling the surface curvature profile, thus dictating a non-trivial shape. We present 2D Monte Carlo simulation results demonstrating the feasibility of such soft, shape-designed micelles. Preliminary results demonstrate a stable concave ``dimple'' in a micelle composed of a single A-B multiblock linear copolymer. We discuss both current limitations on shape robustness and effects of block asymmetry, block molecular weights and overall chain length on micelle shape. This work was supported in part by the National Science Foundation's MRSEC Program under Award Number DMR-1420709.
NASA Astrophysics Data System (ADS)
Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg
2017-02-01
Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.
7. Historic American Buildings Survey Verlin Berry, Photographer November 10, ...
7. Historic American Buildings Survey Verlin Berry, Photographer November 10, 1977 FIRST FLOOR, VIEW OF PRESSED TIN CEILING WITH WOOD BLOCKING AT CROWN MOLDING - 111 West First Street (Commercial Building), Mishawaka, St. Joseph County, IN
Main-chain supramolecular block copolymers.
Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus
2011-01-01
Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.
GENERAL VIEW OF TYPE HB54s (BUILDINGS T1088 TO T1093) & ...
GENERAL VIEW OF TYPE HB-54s (BUILDINGS T-1088 TO T-1093) & CONVERTED TYPE HB-54S (BUILDINGS T-1094 TO T-1096), LOOKING SOUTHWEST; BUILDING T-1088 AT LEFT, BUILDING T-1096 AT RIGHT - Fort McCoy, Building No. T-1096, South side of South Ninth Avenue, Block 10, Sparta, Monroe County, WI
Phase-Quantized Block Noncoherent Communication
2013-07-01
2828 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 7, JULY 2013 Phase-Quantized Block Noncoherent Communication Jaspreet Singh and Upamanyu...in a carrier asynchronous system. Specifically, we consider transmission over the block noncoherent additive white Gaussian noise channel, and...block noncoherent channel. Several results, based on the symmetry inherent in the channel model, are provided to characterize this transition density
Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua
2015-08-12
Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ostras, Konstantin S; Gorobets, Nikolay Yu; Desenko, Sergey M; Musatov, Vladimir I
2006-08-01
A new one-stage fast multicomponent synthesis of title compounds leads to products in 21-55% isolated yields under both conventional and microwave conditions. The primary amino group in the building blocks can be easily acylated by various usual electophilic agents that can be utilized in the synthesis of diverse heterocylic compounds libraries.
Li, Jun-Ying; Hu, Yuan-Man; Chen, Wei; Liu, Miao; Hu, Jian-Bo; Zhong, Qiao-Lin; Lu, Ning
2012-06-01
Population is the most active factor affecting city development. To understand the distribution characteristics of urban population is of significance for making city policy decisions and for optimizing the layout of various urban infrastructures. In this paper, the information of the residential buildings in Shenyang urban area was extracted from the QuickBird remote sensing images, and the spatial distribution characteristics of the population within the Third-Ring Road of the City were analyzed, according to the social and economic statistics data. In 2010, the population density in different types of residential buildings within the Third-Ring Road of the City decreased in the order of high-storey block, mixed block, mixed garden, old multi-storey building, high-storey garden, multi-storey block, multi-storey garden, villa block, shanty, and villa garden. The vacancy rate of the buildings within the Third-Ring Road was more than 30%, meaning that the real estate market was seriously overstocked. Among the five Districts of Shenyang City, Shenhe District had the highest potential population density, while Tiexi District and Dadong District had a lower one. The gravity center of the City and its five Districts was also analyzed, which could provide basic information for locating commercial facilities and planning city infrastructure.
Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy
2015-01-01
Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W−1 due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications. PMID:26066737
Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy
2015-06-11
Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W(-1) due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications.
Alauddin, Mohammad; Gloaguen, Eric; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel; Zehnacker-Rentien, Anne; Declerck, Valérie; Aitken, David J
2015-11-09
This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic β-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zobin, V. M.; Cruz-Bravo, A. A.; Ventura-Ramírez, F.
2010-06-01
A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM) for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM) intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.
NASA Technical Reports Server (NTRS)
Bekey, I.; Mayer, H. L.; Wolfe, M. G.
1976-01-01
The methodology of alternate world future scenarios is utilized for selecting a plausible, though not advocated, set of future scenarios each of which results in a program plan appropriate for the respective environment. Each such program plan gives rise to different building block and technology requirements, which are analyzed for common need between the NASA and the DoD for each of the alternate world scenarios. An essentially invariant set of system, building block, and technology development plans is presented at the conclusion, intended to allow protection of most of the options for system concepts regardless of what the actual future world environment turns out to be. Thus, building block and technology needs are derived which support: (1) each specific world scenario; (2) all the world scenarios identified in this study; or (3) generalized scenarios applicable to almost any future environment. The output included in this volume consists of the building blocks, i.e.: transportation vehicles, orbital support vehicles, and orbital support facilities; the technology required to support the program plans; identification of their features which could support the DoD and NASA in common; and a complete discussion of the planning methodology.
Making Your Own Hollow Blocks. What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
The procedures needed to make hollow blocks from palay hull, sawdust, soil, or sand are outlined in this module. Also outlined are the procedures needed to construct the wooden molds used to make the blocks. The hollow blocks can be used in building a one story house where the roof does not rest on the hollow block wall, an additional room to the…
Mapping from Space - Ontology Based Map Production Using Satellite Imageries
NASA Astrophysics Data System (ADS)
Asefpour Vakilian, A.; Momeni, M.
2013-09-01
Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83%. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7%. Results showed that vegetation cover and water features have been extracted completely (100%) and about 71% of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.
Mapping from Space - Ontology Based Map Production Using Satellite Imageries
NASA Astrophysics Data System (ADS)
Asefpour Vakilian, A.; Momeni, M.
2013-09-01
Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83 %. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7 %. Results showed that vegetation cover and water features have been extracted completely (100 %) and about 71 % of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.
Nano-structured polymer composites and process for preparing same
Hillmyer, Marc; Chen, Liang
2013-04-16
A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.
17. A southward view of buildings #6B and #6 in ...
17. A southward view of buildings #6-B and #6 in the left background and buildings #5 (center) and #3 (right of center). - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Streambank Protection Guidelines,
1983-10-01
the types of rubble suitable for dumping on an eroding bank include broken pavement, bricks, building blocks , slag , and quarry waste. Large flat slabs...not provide any long-termn protection. blocks , and house brick. I rfbiae omrilgbo akt Completed gabion revetment made from prefabricated baskets...prevent pressure buildup that could cause revetment failure. BLOCKS . Precast cellular blocks can be ypi i .,, p no- , ,,, ,hag ,.,.,,,,t
Rockfall vulnerability assessment for masonry buildings
NASA Astrophysics Data System (ADS)
Mavrouli, Olga
2015-04-01
The methodologies for the quantitative risk assessment vary in function of the application scale and the available data. For fragmental rockfalls, risk calculation requires data for the expected damage of the exposed elements due to potential rock block impacts with a range of trajectories, magnitudes and intensities. Although the procedures for the quantification of the rock block characteristics in terms of magnitude-frequency relationships are well established, there are few methodologies for the calculation of the vulnerability, and these are usually empirical or judgmental. The response of buildings to rock block impacts using analytical methods has been mainly realised so far for reinforced concrete buildings, and some fragility curves have been calculated with the results, indicating the potential damage for a range of rock block characteristics. Masonry buildings, as a common structural typology in mountainous areas, are in many cases impacted by rock blocks during rockfalls. Their response presents some peculiarities in comparison with reinforced-concrete structures given the non-homogeneity and variability of the compound materials (blocks and mortar), their orthotropy, low strength in tension, the statically indeterminate load-bearing system and the non-monolithic connections. To this purpose, analytical procedures which are specifically adapted to masonry structures should be used for the evaluation of the expected damage due to rock impacts. In this contribution we discuss the application of the analytical approach for the assessment of the expected damage in rockfall prone areas and the simulation assumptions that can be made concerning the materials, geometry, loading and the relevant simplifications. The amount of uncertainties introduced during their analytical simulation is high due to the dispersion of the data for material mechanical properties and the construction techniques and quality and thus a probabilistic assessment is suggested. The random nature of the rockfall as far as it concerns the magnitude and the intensity of the rock blocks can also be introduced using parametric analyses.
Graphene analogue in (111)-oriented BaBiO3 bilayer heterostructures for topological electronics.
Kim, Rokyeon; Yu, Jaejun; Jin, Hosub
2018-01-11
Topological electronics is a new field that uses topological charges as current-carrying degrees of freedom. For topological electronics applications, systems should host topologically distinct phases to control the topological domain boundary through which the topological charges can flow. Due to their multiple Dirac cones and the π-Berry phase of each Dirac cone, graphene-like electronic structures constitute an ideal platform for topological electronics; graphene can provide various topological phases when incorporated with large spin-orbit coupling and mass-gap tunability via symmetry-breaking. Here, we propose that a (111)-oriented BaBiO 3 bilayer (BBL) sandwiched between large-gap perovskite oxides is a promising candidate for topological electronics by realizing a gap-tunable, and consequently a topology-tunable, graphene analogue. Depending on how neighboring perovskite spacers are chosen, the inversion symmetry of the BBL heterostructure can be either conserved or broken, leading to the quantum spin Hall (QSH) and quantum valley Hall (QVH) phases, respectively. BBL sandwiched by ferroelectric compounds enables switching of the QSH and QVH phases and generates the topological domain boundary. Given the abundant order parameters of the sandwiching oxides, the BBL can serve as versatile topological building blocks in oxide heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakovec, P.; Kranjec, I.; Fettich, J.J.
1985-01-01
Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combinedmore » electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashraf, Arman R.; Ryan, Justin J.; Satkowski, Michael M.
Block copolymers have been extensively studied due to their ability to spontaneously self-organize into a wide variety of morphologies that are valuable in energy-, medical- and conservation-related (nano)technologies. While the phase behavior of bicomponent diblock and triblock copolymers is conventionally governed by temperature and individual block masses, we demonstrate that their phase behavior can alternatively be controlled through the use of blocks with random monomer sequencing. Block random copolymers (BRCs), i.e., diblock copolymers wherein one or both blocks is a random copolymer comprised of A and B repeat units, have been synthesized, and their phase behavior, expressed in terms ofmore » the order-disorder transition (ODT), has been investigated. Our results establish that, depending on the block composition contrast and molecular weight, BRCs can microphase-separate. We also report that the predicted ODT can be generated at relatively constant molecular weight and temperature with these new soft materials. This sequence-controlled synthetic strategy is extended to thermoplastic elastomeric triblock copolymers differing in chemistry and possessing a random-copolymer midblock.« less
Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian
2012-06-21
While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.
Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays
Reinhard, Björn M.; Ahn, Wonmi; Hong, Yan; ...
2015-10-06
The integration of metallic and dielectric building blocks into optoplasmonic structures creates new electromagnetic systems in which plasmonic and photonic modes can interact in the near-, intermediate- and farfield. The morphology-dependent electromagnetic coupling between the different building blocks in these hybrid structures provides a multitude of opportunities for controlling electromagnetic fields in both spatial and frequency domain as well as for engineering the phase landscape and the local density of optical states. Control over any of these properties requires, however, rational fabrication approaches for well-defined metal-dielectric hybrid structures. Template-guided self-assembly is a versatile fabrication method capable of integrating metallic andmore » dielectric components into discrete optoplasmonic structures, arrays, or metasurfaces. The structural flexibility provided by the approach is illustrated by two representative implementations of optoplasmonic materials discussed in this review. In optoplasmonic atoms or molecules optical microcavities (OMs) serve as whispering gallery mode resonators that provide a discrete photonic mode spectrum to interact with plasmonic nanostructures contained in the evanescent fields of the OMs. In extended hetero-nanoparticle arrays in-plane scattered light induces geometry-dependent photonic resonances that mix with the localized surface plasmon resonances of the metal nanoparticles. As a result, we characterize the fundamental electromagnetic working principles underlying both optoplasmonic approaches and review the fabrication strategies implemented to realize them.« less
Template-guided self-assembly of discrete optoplasmonic molecules and extended optoplasmonic arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhard, Björn M.; Ahn, Wonmi; Hong, Yan
The integration of metallic and dielectric building blocks into optoplasmonic structures creates new electromagnetic systems in which plasmonic and photonic modes can interact in the near-, intermediate- and farfield. The morphology-dependent electromagnetic coupling between the different building blocks in these hybrid structures provides a multitude of opportunities for controlling electromagnetic fields in both spatial and frequency domain as well as for engineering the phase landscape and the local density of optical states. Control over any of these properties requires, however, rational fabrication approaches for well-defined metal-dielectric hybrid structures. Template-guided self-assembly is a versatile fabrication method capable of integrating metallic andmore » dielectric components into discrete optoplasmonic structures, arrays, or metasurfaces. The structural flexibility provided by the approach is illustrated by two representative implementations of optoplasmonic materials discussed in this review. In optoplasmonic atoms or molecules optical microcavities (OMs) serve as whispering gallery mode resonators that provide a discrete photonic mode spectrum to interact with plasmonic nanostructures contained in the evanescent fields of the OMs. In extended hetero-nanoparticle arrays in-plane scattered light induces geometry-dependent photonic resonances that mix with the localized surface plasmon resonances of the metal nanoparticles. As a result, we characterize the fundamental electromagnetic working principles underlying both optoplasmonic approaches and review the fabrication strategies implemented to realize them.« less
Yamamoto, Junpei; Hitomi, Kenichi; Todo, Takeshi; Iwai, Shigenori
2006-01-01
The pyrimidine(6–4)pyrimidone photoproduct, a major UV lesion formed between adjacent pyrimidine bases, is transformed to its Dewar valence isomer upon exposure to UVA/UVB light. We have synthesized a phosphoramidite building block of the Dewar photoproduct formed at the thymidylyl(3′–5′)thymidine site and incorporated it into oligodeoxyribonucleotides. The diastereoisomers of the partially protected dinucleoside monophosphate bearing the (6–4) photoproduct, which were caused by the chirality of the phosphorus atom, were separated by reversed-phase chromatography, and the (6–4) photoproduct was converted to the Dewar photoproduct by irradiation of each isomer with Pyrex-filtered light from a high-pressure mercury lamp. The Dewar photoproduct was stable under both acidic and alkaline conditions at room temperature. After characterization of the isomerized base moiety by NMR spectroscopy, a phosphoramidite building block was synthesized in three steps. Although the ordinary method could be used for the oligonucleotide synthesis, benzimidazolium triflate as an alternative activator yielded better results. The oligonucleotides were used for the analysis of the reaction and the binding of Xenopus (6–4) photolyase. Although the affinity of this enzyme for the Dewar photoproduct-containing duplex was reportedly similar to that for the (6–4) photoproduct-containing substrate, the results suggested a difference in the binding mode. PMID:16936311
Design and synthesis of unnatural heparosan and chondroitin building blocks
Bera, Smritilekha; Linhardt, Robert J.
2011-01-01
Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620
PBF Reactor Building (PER620). After lowering reactor vessel onto blocks, ...
PBF Reactor Building (PER-620). After lowering reactor vessel onto blocks, it is rolled on logs into PBF. Metal framework under vessel is handling device. Various penetrations in reactor bottom were for instrumentation, poison injection, drains. Large one, below center "manhole" was for primary coolant. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-736 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL ...
11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL BLOCK 'A' (SOLITARY CONFINEMENT CELL BLOCK), TYPICAL SOLITARY CONFINEMENT CELL. THE CELL SHOWN IN CENTER OF PHOTO, HAS A 2-1/2' THICK STEEL DOOR. THE CELL SHOWN IN THE LEFT OF PHOTO, HAS A 3/4' DIAMETER IRON GRILLE DOOR. - U.S. Naval Base, Pearl Harbor, Brig, Neville Way near Ninth Street at Marine Barracks, Pearl City, Honolulu County, HI
Advanced information processing system: Local system services
NASA Technical Reports Server (NTRS)
Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter
1989-01-01
The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.
Effector-Triggered Self-Replication in Coupled Subsystems.
Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren
2017-11-13
In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laboratory testing of a building envelope segment based on cellular concrete
NASA Astrophysics Data System (ADS)
Fořt, Jan; Pavlík, Zbyšek; Černý, Robert
2016-07-01
Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.
Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.
Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon
2017-11-01
The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Dorian S. N.; Kaiser, Ralf I.; Kostko, Oleg
Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, yet the formation mechanisms of even their simplest prototypes—quinoline and isoquinoline—remain elusive. Here, we reveal a novel concept that under high temperature conditions representing circumstellar envelopes of carbon stars, (iso)quinoline can be synthesized via the reaction of pyridyl radicals with two acetylene molecules. The facile gas phase formation of (iso)quinoline in circumstellar envelopes defines a hitherto elusive reaction class synthesizing aromatic structures with embedded nitrogen atoms that are essential building blocks in contemporary biological-structural motifs. Once ejected from circumstellarmore » shells and incorporated into icy interstellar grains in cold molecular clouds, these NPAHs can be functionalized by photo processing forming nucleobase-type structures as sampled in the Murchison meteorite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, J.T.; Chu, L.A.
The modular nature of gasification-combined-cycle (GCC) plants is known to facilitate capacity addition in increments (phased construction) that may match more closely with the anticipated growth in electrical load. Because the gas turbines are the primary building blocks of a phased GCC plant, utility planners are investigating in more detail prospective gas turbines of current and advanced designs developed by several manufacturers. This report summarizes the results of the evaluation of a GCC power plant based on the Kraftwerk Union Model V84.2 gas turbines of the current design now offered for the US market. The design of the Model V84.2more » machine, a scaled-down version of Kraftwerk Union's 50 Hz Model V94 machine, incorporates features suitable for burning gases, such as coal-derived synthesis gas. 14 figs., 42 tabs.« less
Bomboi, Francesca; Romano, Flavio; Leo, Manuela; Fernandez-Castanon, Javier; Cerbino, Roberto; Bellini, Tommaso; Bordi, Federico; Filetici, Patrizia; Sciortino, Francesco
2016-01-01
DNA is acquiring a primary role in material development, self-assembling by design into complex supramolecular aggregates, the building block of a new-materials world. Using DNA nanoconstructs to translate sophisticated theoretical intuitions into experimental realizations by closely matching idealized models of colloidal particles is a much less explored avenue. Here we experimentally show that an appropriate selection of competing interactions enciphered in multiple DNA sequences results into the successful design of a one-pot DNA hydrogel that melts both on heating and on cooling. The relaxation time, measured by light scattering, slows down dramatically in a limited window of temperatures. The phase diagram displays a peculiar re-entrant shape, the hallmark of the competition between different bonding patterns. Our study shows that it is possible to rationally design biocompatible bulk materials with unconventional phase diagrams and tuneable properties by encoding into DNA sequences both the particle shape and the physics of the collective response. PMID:27767029
Method and apparatus for determining two-phase flow in rock fracture
Persoff, Peter; Pruess, Karsten; Myer, Larry
1994-01-01
An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.
Tandem Repeat Proteins Inspired By Squid Ring Teeth
NASA Astrophysics Data System (ADS)
Pena-Francesch, Abdon
Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides that allow for a fine control of the sequence and network morphology. The results provided in this work establish a clear dependence between the repetitive building blocks, the network morphology, and the properties of squid-inspired repetitive protein materials. Increasing the number of tandem repeat units in SRT-inspired proteins led to more effective protein networks with superior properties. Through increasing tandem repetition and optimization of network morphology, highly efficient protein materials capable of withstanding deformations up to 400% of their original length, with MPa-GPa modulus, high energy absorption (50 MJ m-3), peak proton conductivity of 3.7 mS cm-1 (at pH 7, highest reported to date for biological materials), and peak thermal conductivity of 1.4 W m-1 K -1 (which exceeds that of most polymer materials) were developed. These findings introduce new design rules in the engineering of proteins based on tandem repetition and morphology control, and provide a novel framework for tailoring and optimizing the properties of protein-based materials.
Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.
Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier
2018-04-17
The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational spectroscopy, to ascertain features about the constituent superatomic building blocks, such as the charge of the cluster cores, by analysis of bond distances from the SCXRD data. The combination of atomic precision and intercluster interactions in these SACs produces novel collective properties, including tunable electrical transport, crystalline thermal conductivity, and ferromagnetism. In addition, we have developed a synthetic strategy to insert redox-active guests into the superstructure of SACs via single-crystal-to-single-crystal intercalation. This intercalation process allows us to tune the optical and electrical transport properties of the superatomic crystal host. These properties are explored using a host of techniques, including Raman spectroscopy, SQUID magnetometry, electrical transport measurements, electronic absorption spectroscopy, differential scanning calorimetry, and frequency-domain thermoreflectance. Superatomic crystals have proven to be both robust and tunable, representing a new method of materials design and architecture. This Account demonstrates how precisely controlling the structure and properties of nanoscale building blocks is key in developing the next generation of functional materials; several examples are discussed and detailed herein.
Building a Case for Blocks as Kindergarten Mathematics Learning Tools
ERIC Educational Resources Information Center
Kinzer, Cathy; Gerhardt, Kacie; Coca, Nicole
2016-01-01
Kindergarteners need access to blocks as thinking tools to develop, model, test, and articulate their mathematical ideas. In the current educational landscape, resources such as blocks are being pushed to the side and being replaced by procedural worksheets and academic "seat time" in order to address standards. Mathematics research…
Revisit Pattern Blocks to Develop Rational Number Sense
ERIC Educational Resources Information Center
Champion, Joe; Wheeler, Ann
2014-01-01
Pattern blocks are inexpensive wooden, foam, or plastic manipulatives developed in the 1960s to help students build an understanding of shapes, proportions, equivalence, and fractions (EDC 1968). The colorful collection of basic shapes in classic pattern block kits affords opportunities for amazing puzzle-like problem-solving tasks and for…
He, Shaolong; He, Junfeng; Zhang, Wenhao; Zhao, Lin; Liu, Defa; Liu, Xu; Mou, Daixiang; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J
2013-07-01
The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Luo, Xuan; Duan, Yuanling; Huang, Yanping; Zhang, Nanxi; Zhao, Liyan; Wu, Jie
2017-08-01
Two new inorganic-organic hybrid materials [Cu(enMe)2]2{(As2Mo6O26) [Cu(enMe)2]}·4H2O (1) and [As2Mo6(OH)2O24][Cu(H2O)2(phen)]2 (2) (enMe = 1,2'-propanediamine, phen = 1,10'-phenanthroline) based on [As2Mo6O26]6- building blocks, denoted as [As2Mo6], have been obtained by hydrothermal methods. 1 shows a 1-D straight chain structure constructed form [As2Mo6] building blocks and [Cu(enMe)2] complexes, and then extended to 3-D supramolecular network by lattice water via hydrogen bonds interactions. 2 exhibits a new 1-D covalent ribbon with large rectangular grids formed from [As2Mo6] building blocks connected by [Cu(H2O)2(phen)] complexes, then extended into 3-D supramolecular network via hydrogen bonds and π···π interactions. In additional, the photocatalytic activity for methylene blue degradation under visible-light irradiation of 2 was investigated.
Phase response curves for models of earthquake fault dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franović, Igor, E-mail: franovic@ipb.ac.rs; Kostić, Srdjan; Perc, Matjaž
We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how themore » profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.« less
Escalante, Yolanda; Saavedra, Jose M.; Tella, Victor; Mansilla, Mirella; García-Hermoso, Antonio; Dominguez, Ana M.
2012-01-01
The aims of this study were (i) to compare women’s water polo game-related statistics by match outcome (winning and losing teams) and phase (preliminary, classificatory, and semi-final/bronze medal/gold medal), and (ii) identify characteristics that discriminate performances for each phase. The game-related statistics of the 124 women’s matches played in five International Championships (World and European Championships) were analyzed. Differences between winning and losing teams in each phase were determined using the chi-squared. A discriminant analysis was then performed according to context in each of the three phases. It was found that the game-related statistics differentiate the winning from the losing teams in each phase of an international championship. The differentiating variables were both offensive (centre goals, power-play goals, counterattack goal, assists, offensive fouls, steals, blocked shots, and won sprints) and defensive (goalkeeper-blocked shots, goalkeeper-blocked inferiority shots, and goalkeeper-blocked 5-m shots). The discriminant analysis showed the game-related statistics to discriminate performance in all phases: preliminary, classificatory, and final phases (92%, 90%, and 83%, respectively). Two variables were discriminatory by match outcome (winning or losing teams) in all three phases: goals and goalkeeper-blocked shots. Key pointsThe preliminary phase that more than one variable was involved in this differentiation, including both offensive and defensive aspects of the game.The game-related statistics were found to have a high discriminatory power in predicting the result of matches with shots and goalkeeper-blocked shots being discriminatory variables in all three phases.Knowledge of the characteristics of women’s water polo game-related statistics of the winning teams and their power to predict match outcomes will allow coaches to take these characteristics into account when planning training and match preparation. PMID:24149356
BCube: A Broker Framework for Next Generation Geoscience
NASA Astrophysics Data System (ADS)
Khalsa, S. S.; Pearlman, J.; Nativi, S.
2013-12-01
EarthCube is an NSF initiative that aims to transform the conduct of research through the creation of community-guided cyberinfrastructure enabling the integration information and data across the geosciences. Following an initial phase of concept and community development activities, NSF has made awards for the development of cyberinfrastructure 'building blocks.' In this talk we describe the goals and methods for one of these projects - BCube, for Brokering Building Blocks. BCube addresses the need for effective and efficient multi-disciplinary collaboration and interoperability through the introduction of brokering technologies. Brokers, as information systems middleware, have existed for many years and are found in diverse domains and industries such as financial systems, business-to-business interfaces, medicine and the automotive industry, to name a few. However, the emergence of brokers in science is relatively new and is now being piloted with great promise in cyberinfrastructure and science communities in the U.S., Europe, and elsewhere. Brokers act as intermediaries between information systems that implement well-defined interfaces, providing a bridge between communities using different specifications. The BCube project is helping to build a truly cross-disciplinary, global platform for data providers, cyberinfrastructure developers, and data users to make data more available and interoperable through a brokering framework. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including * Expanded semantic brokering * Business Model support for work flows * Automated metadata generation * Automated linking to services discovered via web crawling * Plug and play for most community service buses * Credential passing for seamless access to data * Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. Our research is initially focused on four disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.
NASA Astrophysics Data System (ADS)
Grason, Gregory M.
2017-12-01
The spontaneous assembly of particulate or molecular 'building blocks' into larger architectures underlies structure formation in many biological and synthetic materials. Shape frustration of ill-fitting blocks holds a surprising key to more regular assemblies.
Door in west wall of the center block, positioned near ...
Door in west wall of the center block, positioned near the detached kitchen/bake house building. - Lazaretto Quarantine Station, Wanamaker Avenue and East Second Street, Essington, Delaware County, PA
A crown-like heterometallic unit as the building block for a 3D In-Ge-S framework.
Han, Xiaohui; Wang, Zhenqing; Xu, Jin; Liu, Dan; Wang, Cheng
2015-12-14
Supertetrahedral clusters are the most common building blocks in constructing Group 13/14/16 microporous metal chalcogenide materials while other types of clusters are yet scarcely explored. Herein, a new crown-like building unit [In3Ge3S16] has been obtained. The units assemble into a 3D framework [C6H14NO]4[In6Ge3S17]·1.5H2O (1) via a dual-connection mode and a SrSi2 (srs)-type topology could be achieved by treating each unit as a tri-connected node.
Šmigovec Ljubič, Tina; Pahovnik, David; Žigon, Majda; Žagar, Ema
2012-01-01
The separation of a mixture of three poly(styrene-block-t-butyl methacrylate) copolymers (PS-b-PtBMA), consisting of polystyrene (PS) blocks of similar length and t-butyl methacrylate (PtBMA) blocks of different lengths, was performed using various chromatographic techniques, that is, a gradient liquid chromatography on reversed-phase (C18 and C8) and normal-phase columns, a liquid chromatography under critical conditions for polystyrene as well as a fully automated two-dimensional liquid chromatography that separates block copolymers by chemical composition in the first dimension and by molar mass in the second dimension. The results show that a partial separation of the mixture of PS-b-PtBMA copolymers can be achieved only by gradient liquid chromatography on reversed-phase columns. The coelution of the two block copolymers is ascribed to a much shorter PtBMA block length, compared to the PS block, as well as a small difference in the length of the PtBMA block in two of these copolymers, which was confirmed by SEC-MALS and NMR spectroscopy. PMID:22489207
Alkan, Arda; Wald, Sarah; Louage, Benoit; De Geest, Bruno G; Landfester, Katharina; Wurm, Frederik R
2017-01-10
An important and usually the only function of most surfactants in heterophase systems is stabilizing one phase in another, for example, droplets or particles in water. Surfactants with additional chemical or physical handles are promising in controlling the colloidal properties by external stimuli. The redox stimulus is an attractive feature; however, to date only a few ionic redox-responsive surfactants have been reported. Herein, the first nonionic and noncytotoxic ferrocene-containing block copolymers are prepared, carrying a hydrophilic poly(ethylene glycol) (PEG) chain and multiple ferrocenes in the hydrophobic segment. These amphiphiles were studied as redox-sensitive surfactants that destabilize particles as obtained in miniemulsion polymerization. Because of the nonionic nature of such PEG-based copolymers, they can stabilize nanoparticles even after the addition of ions, whereas particles stabilized with ionic surfactants would be destabilized by the addition of salt. The redox-active surfactants were prepared by the anionic ring-opening polymerization of ferrocenyl glycidyl ether, with PEG monomethyl ether as the macroinitiator. The resultant block copolymers with molecular weights (M n ) between 3600 and 8600 g mol -1 and narrow molecular weight distributions (M w /M n = 1.04-1.10) were investigated via 1 H nuclear magnetic resonance and diffusion ordered spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Furthermore, the block copolymers were used as building blocks for redox-responsive micelles and as redox-responsive surfactants in radical polymerization in miniemulsion to stabilize model polystyrene nanoparticles. Oxidation of iron to the ferrocenium species converted the amphiphilic block copolymers into double hydrophilic macromolecules, which led to the destabilization of the nanoparticles. This destabilization of nanoparticle dispersions may be useful for the formation of coatings and the recovery of surfactants.
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1993-01-01
PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.
VLSI architecture for a Reed-Solomon decoder
NASA Technical Reports Server (NTRS)
Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor)
1992-01-01
A basic single-chip building block for a Reed-Solomon (RS) decoder system is partitioned into a plurality of sections, the first of which consists of a plurality of syndrome subcells each of which contains identical standard-basis finite-field multipliers that are programmable between 10 and 8 bit operation. A desired number of basic building blocks may be assembled to provide a RS decoder of any syndrome subcell size that is programmable between 10 and 8 bit operation.
Exploring endoperoxides as a new entry for the synthesis of branched azasugars
Domeyer, Svenja; Bjerregaard, Mark; Johansson, Henrik
2017-01-01
A new class of nitrogen-containing endoperoxides were synthesised by a photochemical [4 + 2]-cycloaddition between a diene and singlet oxygen. The endoperoxides were dihydroxylated and protected to provide a series of endoperoxide building blocks for organic synthesis, with potential use as precursors for the synthesis of branched azasugars. Preliminary exploration of the chemistry of these building blocks provided access to a variety of derivatives including tetrahydrofurans, epoxides and protected amino-tetraols. PMID:28487758
Cascaded VLSI neural network architecture for on-line learning
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P. (Inventor); Duong, Tuan A. (Inventor); Daud, Taher (Inventor)
1992-01-01
High-speed, analog, fully-parallel, and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A computation intensive feature classification application was demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as an application specific coprocessor for solving real world problems at extremely high data rates.
Schäffer, Christian; Todea, Ana Maria; Gouzerh, Pierre; Müller, Achim
2012-01-11
The addition of dinuclear {Mo(2)} units to a dynamic library containing molybdates results in the spontaneous self-assembly of a giant spherical metal-oxide species of the type {(Mo)Mo(5)}(12){Mo(2)}(30) while the required pentagonal {(Mo)Mo(5)} building blocks are "immediately" formed. This journal is © The Royal Society of Chemistry 2012
Zhang, Ying; Zhan, Tian-Guang; Zhou, Tian-You; Qi, Qiao-Yan; Xu, Xiao-Na; Zhao, Xin
2016-06-18
A two-dimensional (2D) supramolecular organic framework (SOF) has been constructed through the co-assembly of a triphenylamine-based building block and cucurbit[8]uril (CB[8]). Fluorescence turn-on of the non-emissive building block was observed upon the formation of the 2D SOF, which displayed highly selective and sensitive recognition of picric acid over a variety of nitroaromatics.
Cascaded VLSI neural network architecture for on-line learning
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor); Daud, Taher (Inventor); Thakoor, Anilkumar P. (Inventor)
1995-01-01
High-speed, analog, fully-parallel and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware-compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A comparison-intensive feature classification application has been demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as application-specific-coprocessors for solving real-world problems at extremely high data rates.
Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie
2012-07-17
Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.
Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping
2017-08-03
The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe 3 O 4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.
Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach
NASA Technical Reports Server (NTRS)
Fisher, David; Thomas, Flint O.; Nelson, Robert C.
1996-01-01
Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.
Single-trabecula building block for large-scale finite element models of cancellous bone.
Dagan, D; Be'ery, M; Gefen, A
2004-07-01
Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) 'building-block' of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of approximately 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of approximately 30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.
Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.
2016-12-01
Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Two-phase design-build...-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if the contracting officer uses the two-phase design-build selection procedures authorized by 570...
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... for Leasehold Interests in Real Property 570.305 Two-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if you use the two-phase design-build...
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Two-phase design-build...-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if the contracting officer uses the two-phase design-build selection procedures authorized by 570...
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Two-phase design-build...-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if the contracting officer uses the two-phase design-build selection procedures authorized by 570...
48 CFR 570.305 - Two-phase design-build selection procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Two-phase design-build...-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if the contracting officer uses the two-phase design-build selection procedures authorized by 570...
NASA Astrophysics Data System (ADS)
Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert
2015-03-01
Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.
Channon, Sue; Bekkers, Marie-Jet; Sanders, Julia; Cannings-John, Rebecca; Robertson, Laura; Bennert, Kristina; Butler, Christopher; Hood, Kerenza; Robling, Michael
2016-01-01
Motivational Interviewing (MI) is a person-centred counselling approach to behaviour change which is increasingly being used in public health settings, either as a stand-alone approach or in combination with other structured programmes of health promotion. One example of this is the Family Nurse Partnership (FNP) a licensed, preventative programme for first time mothers under the age of 20, delivered by specialist family nurses who are additionally trained in MI. The Building Blocks trial was an individually randomised controlled trial comparing effectiveness of Family Nurse Partnership when added to usual care compared to usual care alone within 18 sites in England. The aim of this process evaluation component of the trial is to determine the extent to which Motivational Interviewing skills taught to Family Nurse Partnership nurses were used in their home visits with clients. Between July 2010 and November 2011, 92 audio-recordings of nurse-client consultations were collected during the 'pregnancy' and 'infancy' phases of the FNP programme. They were analysed using The Motivational Interviewing Treatment Integrity (MITI) coding system. A competent level of overall MI adherent practice according to the MITI criteria for 'global clinician ratings' was apparent in over 70 % of the consultations. However, on specific behaviours and the MITI-derived practitioner competency variables, there was a large variation in the percentage of recordings in which "beginner proficiency" levels in MI (as defined by the MITI criteria) was achieved, ranging from 73.9 % for the 'MI adherent behaviour' variable in the pregnancy phase to 6.7 % for 'percentage of questions coded as open' in the infancy phase. The results suggest that it is possible to deliver a structured programme in an MI-consistent way. However, some of the behaviours regarded as key to MI practice such as the percentage of questions coded as open can be more difficult to achieve in such a context. This is an important consideration for those involved in designing effective structured interventions with an MI-informed approach and wanting to maintain fidelity to both MI and the structured programme. Current Controlled Trials ISRCTN23019866 Registered 20/4/2009.
NASA Astrophysics Data System (ADS)
Huang, Mingjun
"Bottom-up" techniques-based self-assembly are always attracting people's interests since this technology provides relatively low economic cost and fast route to construct organized structures at different scales. Considering unprecedented benefits from polymer materials, self-assemblies utilizing polymer building blocks have been extensively studied to achieve diverse hierarchical structures and various attractive properties. However, precise controls of chemical primary structures and compositions and exact constructions of hierarchal ordered structures in synthetic polymers are far from being fully appreciated. In this dissertation, a novel approach has been utilized to construct diverse well-defined nano-building blocks, giant molecules, via conjugating different, and functionalized molecular nanoparticles (MNPs) which are shape- and volume-persistent nano-objects with precise molecular structure and specific symmetry. The representative examples of the three basic categories of giant molecules, "giant polyhedra", "giant surfactants", and "giant shape amphiphiles" were discussed in details. First, a class of precisely defined, nanosized giant tetrahedra was constructed by placing different polyhedral oligomeric silsesquioxane (POSS) molecular nanoparticles at the vertices of a rigid tetrahedral framework. Designed symmetry breaking of these giant tetrahedra introduces accurate positional interactions and results in diverse selectively assembled, highly ordered supramolecular lattices including a Frank-Kasper (FK) A15 phase. The FK and quasicrystal phases are originally identified in metal alloys and only sporadically observed in soft matters. It remains unclear how to correlate their stability with the chemical composition and molecular topology in the self-assembling systems. We then for this purpose designed and studied the self-assembly phase transition sequences of four series of hybrid giant surfactants based on hydrophilic POSS cages tethered with one to four polystyrene (PS) tails. With increasing the number of tails, molecular topological variations not only affect phase boundaries in terms of the PS volume fraction, but also open a window to stabilize supramolecular FK and quasicrystal phases in the spherical phase region, demonstrating the critical role of molecular topology in dictating the formation of unconventional supramolecular lattices of "soft" spherical motifs. The FK A15 phase was even surprisingly observed in the giant shape amphiphile molecule, triphenylene-6BPOSS, which has a disk-like flat triphenylene core connected with six hydrophobic POSS cages by sides. Without conical molecular shape, triphenylene-6BPOSS self-assembled and stabilized into supramolecular sphere via pi-pi interactions through a completely different mechanism with precious two cases. These studies indicate that "bottom-up" self-assemble based on well-defined giant molecules approach can be rather powerful to fabricate usually complicated hierarchical structures and open up a wide field of supramolecular self-assembly with unexpected structure and properties.
Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina
2015-03-24
The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.
ETR BUILDING, TRA642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ...
ETR BUILDING, TRA-642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ETR BUILDING (HIGH ROOF LINE); ELECTRICAL BUILDING (ONE-STORY, MADE OF PUMICE BLOCKS), TRA-648; AND HEAT EXCHANGER BUILDING (WITH BUILDING NUMBERS), TRA-644. NOTE PROJECTION OF ELECTRICAL BUILDING AT LEFT EDGE OF VIEW. CAMERA FACES NORTH. INL NEGATIVE NO. HD46-37-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Lunn, David J.; Gould, Oliver E. C.; Whittell, George R.; Armstrong, Daniel P.; Mineart, Kenneth P.; Winnik, Mitchell A.; Spontak, Richard J.; Pringle, Paul G.; Manners, Ian
2016-01-01
Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale. PMID:27538877
Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai
2015-12-01
Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets. Electronic supplementary information (ESI) available: Additional experimental information, and SEM images of Cu EPD films. See DOI: 10.1039/c5nr06599b
Room temperature ferromagnetism in a phthalocyanine based carbon material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.
2014-02-07
We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c} = 490 ± 10 K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.
Optical reversible programmable Boolean logic unit.
Chattopadhyay, Tanay
2012-07-20
Computing with reversibility is the only way to avoid dissipation of energy associated with bit erase. So, a reversible microprocessor is required for future computing. In this paper, a design of a simple all-optical reversible programmable processor is proposed using a polarizing beam splitter, liquid crystal-phase spatial light modulators, a half-wave plate, and plane mirrors. This circuit can perform 16 logical operations according to three programming inputs. Also, inputs can be easily recovered from the outputs. It is named the "reversible programmable Boolean logic unit (RPBLU)." The logic unit is the basic building block of many complex computational operations. Hence the design is important in sense. Two orthogonally polarized lights are defined here as two logical states, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuzhan; Zhang, Yuehong; Rios, Orlando
The increasing demand for intelligent materials has driven the development of polymers with a variety of functionalities. However, combining multiple functionalities within one polymer is still challenging because of the difficulties encountered in coordinating different functional building blocks during fabrication. In this work, we demonstrate the fabrication of a multifunctional liquid crystalline epoxy network (LCEN) using the combination of thermotropic liquid crystals, photo-responsive azobenzene molecules, and exchangeable disulfide bonds. In addition to shape memory behavior enabled by the reversible liquid crystalline phase transition and photo-induced bending behavior resulting from the photo-responsive azobenzene molecules, the introduction of dynamic disulfide bonds intomore » the LCEN resulted in a structurally dynamic network, allowing the reshaping, repairing, and recycling of the material.« less
Experimental demonstration of a measurement-based realisation of a quantum channel
NASA Astrophysics Data System (ADS)
McCutcheon, W.; McMillan, A.; Rarity, J. G.; Tame, M. S.
2018-03-01
We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the basis of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.
Streambank Protection Guidelines for Landowners and Local Governments,
1983-10-01
building blocks , slag , and quarry waste. UNCHE SON / / Large flat slabs should be broken up into /smaller pieces. Garbage, vegetation, scrap lumber...concrete blocks , and house brick. but will not provide any long-term protection. Preabrfirated commercial gabion basket. Completed gabion revetment made...prevent pressure buildup that could cause revetment failure. BLOCKS . Precast cellular blocks can be *,-’e : Typi.tal sa.d- e, .t bag r ’etment
Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng
2013-04-01
We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.
Automated building of organometallic complexes from 3D fragments.
Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni; Alsberg, Bjørn K; Jensen, Vidar R
2014-07-28
A method for the automated construction of three-dimensional (3D) molecular models of organometallic species in design studies is described. Molecular structure fragments derived from crystallographic structures and accurate molecular-level calculations are used as 3D building blocks in the construction of multiple molecular models of analogous compounds. The method allows for precise control of stereochemistry and geometrical features that may otherwise be very challenging, or even impossible, to achieve with commonly available generators of 3D chemical structures. The new method was tested in the construction of three sets of active or metastable organometallic species of catalytic reactions in the homogeneous phase. The performance of the method was compared with those of commonly available methods for automated generation of 3D models, demonstrating higher accuracy of the prepared 3D models in general, and, in particular, a much wider range with respect to the kind of chemical structures that can be built automatically, with capabilities far beyond standard organic and main-group chemistry.
44. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE ...
44. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE COMPANY FACTORY AND WAREHOUSE AND DUBUQUE SEED COMPANY WAREHOUSE IN BACKGROUND. VIEW TO SOUTHWEST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA
43. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE ...
43. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE COMPANY FACTORY AND WAREHOUSE AND DUBUQUE SEED COMPANY WAREHOUSE IN BACKGROUND. VIEW TO SOUTHWEST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA
42. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE ...
42. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE COMPANY FACTORY AND WAREHOUSE AND DUBUQUE SEED COMPANY WAREHOUSE IN BACKGROUND. VIEW TO SOUTHWEST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA
Molenaar, Heike; Boehm, Robert; Piepho, Hans-Peter
2018-01-01
Robust phenotypic data allow adequate statistical analysis and are crucial for any breeding purpose. Such data is obtained from experiments laid out to best control local variation. Additionally, experiments frequently involve two phases, each contributing environmental sources of variation. For example, in a former experiment we conducted to evaluate production related traits in Pelargonium zonale, there were two consecutive phases, each performed in a different greenhouse. Phase one involved the propagation of the breeding strains to obtain the stem cutting count, and phase two involved the assessment of root formation. The evaluation of the former study raised questions regarding options for improving the experimental layout: (i) Is there a disadvantage to using exactly the same design in both phases? (ii) Instead of generating a separate layout for each phase, can the design be optimized across both phases, such that the mean variance of a pair-wise treatment difference (MVD) can be decreased? To answer these questions, alternative approaches were explored to generate two-phase designs either in phase-wise order (Option 1) or across phases (Option 2). In Option 1 we considered the scenarios (i) using in both phases the same experimental design and (ii) randomizing each phase separately. In Option 2, we considered the scenarios (iii) generating a single design with eight replicates and splitting these among the two phases, (iv) separating the block structure across phases by dummy coding, and (v) design generation with optimal alignment of block units in the two phases. In both options, we considered the same or different block structures in each phase. The designs were evaluated by the MVD obtained by the intra-block analysis and the joint inter-block–intra-block analysis. The smallest MVD was most frequently obtained for designs generated across phases rather than for each phase separately, in particular when both phases of the design were separated with a single pseudo-level. The joint optimization ensured that treatment concurrences were equally balanced across pairs, one of the prerequisites for an efficient design. The proposed alternative approaches can be implemented with any model-based design packages with facilities to formulate linear models for treatment and block structures. PMID:29354145
Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly
NASA Astrophysics Data System (ADS)
Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles
Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.
12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...
12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
NASA Astrophysics Data System (ADS)
Macher, H.; Grussenmeyer, P.; Landes, T.; Halin, G.; Chevrier, C.; Huyghe, O.
2017-08-01
The French collection of Plan-Reliefs, scale models of fortified towns, constitutes a precious testimony of the history of France. The aim of the URBANIA project is the valorisation and the diffusion of this Heritage through the creation of virtual models. The town scale model of Strasbourg at 1/600 currently exhibited in the Historical Museum of Strasbourg was selected as a case study. In this paper, the photogrammetric recording of this scale model is first presented. The acquisition protocol as well as the data post-processing are detailed. Then, the modelling of the city and more specially building blocks is investigated. Based on point clouds of the scale model, the extraction of roof elements is considered. It deals first with the segmentation of the point cloud into building blocks. Then, for each block, points belonging to roofs are identified and the extraction of chimney point clouds as well as roof ridges and roof planes is performed. Finally, the 3D parametric modelling of the building blocks is studied by considering roof polygons and polylines describing chimneys as input. In a future works section, the semantically enrichment and the potential usage scenarios of the scale model are envisaged.
ERIC Educational Resources Information Center
Wierwille, Jennifer; Parker, Lynn; Henchy, Geraldine; Driscoll, Christin M.; Tingling-Clemmons, Michele
The provision of quality before- and after-school child care is a major challenge facing educators. This guide from the Food Research and Action Center's Building Blocks Project provides information to providers of before and after school programs on using the federal Child and Adult Care Food Program (CACFP) to provide snacks and meals. Following…
Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.
Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay
2016-01-26
A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds.
Hari, Durga Prasad; Waser, Jerome
2017-06-28
Enantioselective catalytic methods allowing the addition of both a nucleophile and an electrophile onto diazo compounds give a fast access into important building blocks. Herein, we report the highly enantioselective oxyalkynylation of diazo compounds using ethynylbenziodoxol-(on)e reagents and a simple copper bisoxazoline catalyst. The obtained α-benzoyloxy propargylic esters are useful building blocks, which are difficult to synthesize in enantiopure form using other methods. The obtained products could be efficiently transformed into vicinal diols and α-hydroxy propargylic esters without loss in enantiopurity.
Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.
van der Meulen, Machteld I; Petkov, Nikolay; Morris, Michael A; Kazakova, Olga; Han, Xinhai; Wang, Kang L; Jacob, Ajey P; Holmes, Justin D
2009-01-01
Magnetically doped Si and Ge nanowires have potential application in future nanowire spin-based devices. Here, we report a supercritical fluid method for producing single crystalline Mn-doped Ge nanowires with a Mn-doping concentration of between 0.5-1.0 atomic % that display ferromagnetism above 300 K and a superior performance with respect to the hole mobility of around 340 cm(2)/Vs, demonstrating the potential of using these nanowires as building blocks for electronic devices.
4. Historic American Buildings Survey Nathaniel R. Ewan, Photographer January ...
4. Historic American Buildings Survey Nathaniel R. Ewan, Photographer January 6, 1939 INTERIOR - END CARRIAGE 'BLOCK AND DOGS' - McMurtry's Saw Mill, Hardscrabble Road, Basking Ridge, Somerset County, NJ
Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER ...
Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER SENGLER, 1964 CROSS SECTION AND ORIGINAL JACKSON BOULEVARD ELEVATION - Monadnock Block, 53 West Jackson Boulevard, Chicago, Cook County, IL
Modular Assembly of Hierarchically Structured Polymers
NASA Astrophysics Data System (ADS)
Leophairatana, Porakrit
The synthesis of macromolecules with complex yet highly controlled molecular architectures has attracted significant attention in the past few decades due to the growing demand for specialty polymers that possess novel properties. Despite recent efforts, current synthetic routes lack the ability to control several important architectural variables while maintaining low polydispersity index. This dissertation explores a new synthetic scheme for the modular assembly of hierarchically structured polymers (MAHP) that allows virtually any complex polymer to be assembled from a few basic molecular building blocks using a single common coupling chemistry. Complex polymer structures can be assembled from a molecular toolkit consisting of (1) copper-catalyzed azide-alkyne cycloaddition (CuAAC), (2) linear heterobifunctional macromonomers, (3) a branching heterotrifunctional molecule, (4) a protection/deprotection strategy, (5) "click" functional solid substrates, and (6) functional and responsive polymers. This work addresses the different challenges that emerged during the development of this synthetic scheme, and presents strategies to overcome those challenges. Chapter 3 investigates the alkyne-alkyne (i.e. Glaser) coupling side reactions associated with the atom transfer radical polymerization (ATRP) synthesis of alkyne-functional macromonomers, as well as with the CuAAC reaction of alkyne functional building blocks. In typical ATRP synthesis of unprotected alkyne functional polymers, Glaser coupling reactions can significantly compromise the polymer functionality and undermine the success of subsequent click reactions in which the polymers are used. Two strategies are reported that effectively eliminate these coupling reactions: (1) maintaining low temperature post-ATRP upon exposure to air, followed by immediate removal of copper catalyst; and (2) adding excess reducing agents post-ATRP, which prevents the oxidation of Cu(I) catalyst required by the Glaser coupling mechanism. Post-ATRP Glaser coupling was also influenced by the ATRP synthesis ligand used. The order of ligand activity for catalyzing Glaser coupling was: linear bidentate > tridentate > tetradentate. Glaser coupling can also occur for alkynes held under CuAAC reaction conditions but again can be eliminated by adding appropriate reducing agents. With the strategy presented in Chapter 3, alkyne-terminated polymers of high-functionality were produced without the need for alkyne protecting groups. These "click" functional building blocks were employed to investigate the overall efficiency of the CuAAC "click" coupling reactions between alkyne- and azide-terminated macromonomers as discussed in Chapter 4. Quantitative convolution modeling of the entire molecular weight distribution post-CuAAC indicates a CuAAC efficiency of about 94% and an azide substitution efficiency of >99%. However, incomplete functionality of the azide-terminated macromonomer (˜92%) proves to be the largest factor compromising the overall efficacy of the coupling reactions, and is attributed primarily to the loss of bromine functionality during synthesis by ATRP. To address this issue, we discuss in Chapter 6 the development of a new set of molecular building blocks consisting of alkyne functional substrates and heterobifunctional degradable linkers that allow the growth and subsequent detachment of polymers from the solid substrate. Complex polymeric structures are created by progressive cycles of CuAAC and deprotection reactions that add building blocks to the growing polymer chain ends. We demonstrate that these building blocks were completely stable under both CuAAC and deprotection reaction conditions. Since the desired product is covalently bound to the solid surface, the unreacted monomers/macromonomers and by-products (i.e. non-functional building blocks) can be easily separated from the product via removal of the polymer-tethered solid substrate in one step. Chapter 5 discusses how MAHP was employed to prepare a variety of hierarchically structured polymers and copolymers with controlled branching architectures. alpha-azido,o-TIPS-alkyne-heterobifunctional and heterotrifunctional building blocks were first prepared via ATRP and organic synthesis. Preliminary NMR and SEC studies demonstrated that these building blocks all satisfied the criteria necessary for MAHP: (1) the TIPS protecting group is stable during ATRP and CuAAC, (2) the "click" functionality is completely regenerated during the deprotection step, and (3) the CuAAC reaction of branching macromonomers is quantitative (>94%). To demonstrate the concept, poly(n-butyl acrylate)-b-dipolystyrene- b-dipoly(tert-butyl acrylate) penta-block branching copolymacromer was prepared via MAHP and quantitively characterized with SEC and NMR. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Zhu, Weiyao; Li, Jianhui; Lou, Yu
2018-02-01
Polymer flooding has become an effective way to improve the sweep efficiency in many oil fields. Many scholars have carried out a lot of researches on the mechanism of polymer flooding. In this paper, the effect of polymer on seepage is analyzed. The blocking effect of polymer particles was studied experimentally, and the residual resistance coefficient (RRF) were used to represent the blocking effect. We also build a mathematical model for heterogeneous concentration distribution of polymer particles. Furthermore, the effects of polymer particles on reservoir permeability, fluid viscosity and relative permeability are considered, and a two-phase flow model of oil and polymer particles is established. In addition, the model was tested in the heterogeneous stratum model, and three influencing factors, such as particle concentration, injection volume and PPD (short for polymer particle dispersion) injection time, were analyzed. Simulation results show that PPD can effectively improve sweep efficiency and especially improve oil recovery of low permeability layer. Oil recovery increases with the increase of particle concentration, but oil recovery increase rate gradually decreases with that. The greater the injected amount of PPD, the greater oil recovery and the smaller oil recovery increase rate. And there is an optimal timing to inject PPD for specific reservoir.
Leung, Alison C.; Asch, David A.; Lozada, Kirkland N.; Saynisch, Olivia B.; Asch, Jeremy M.; Becker, Nora; Griffis, Heather M.; Shofer, Frances; Hershey, John C.; Hill, Shawndra; Branas, Charles C.; Nichol, Graham; Becker, Lance B.; Merchant, Raina M.
2013-01-01
Objectives Automated external defibrillators (AEDs) are lifesaving, but little is known about where they are located or how to find them. We sought to locate AEDs in high employment areas of Philadelphia and characterize the process of door-to-door surveying to identify these devices. Methods Block groups representing approximately the top 3rd of total primary jobs in Philadelphia were identified using the US Census Local Employment Dynamics database. All buildings within these block groups were surveyed during regular working hours over six weeks during July-August 2011. Buildings were characterized as publically accessible or inaccessible. For accessible buildings, address, location type, and AED presence were collected. Total devices, location description and prior use were gathered in locations with AEDs. Process information (total people contacted, survey duration) was collected for all buildings. Results Of 1420 buildings in 17 block groups, 949 (67%) were accessible, but most 834 (88%) did not have an AED. 283 AEDs were reported in 115 buildings (12%). 81 (29%) were validated through visualization and 68 (24%) through photo because employees often refused access. In buildings with AEDs, several employees (median 2; range 1–8) were contacted to ascertain information, which required several minutes (mean 4; range 1–55). Conclusions Door-to-door surveying is a feasible, but time-consuming method for identifying AEDs in high employment areas. Few buildings reported having AEDs and few permitted visualization, which raises concerns about AED access. To improve cardiac arrest outcomes, efforts are needed to improve the availability of AEDs, awareness of their location and access to them. PMID:23357702
Leung, Alison C; Asch, David A; Lozada, Kirkland N; Saynisch, Olivia B; Asch, Jeremy M; Becker, Nora; Griffis, Heather M; Shofer, Frances; Hershey, John C; Hill, Shawndra; Branas, Charles C; Nichol, Graham; Becker, Lance B; Merchant, Raina M
2013-07-01
Automated external defibrillators (AEDs) are lifesaving, but little is known about where they are located or how to find them. We sought to locate AEDs in high employment areas of Philadelphia and characterize the process of door-to-door surveying to identify these devices. Block groups representing approximately the top 3rd of total primary jobs in Philadelphia were identified using the US Census Local Employment Dynamics database. All buildings within these block groups were surveyed during regular working hours over six weeks during July-August 2011. Buildings were characterized as publically accessible or inaccessible. For accessible buildings, address, location type, and AED presence were collected. Total devices, location description and prior use were gathered in locations with AEDs. Process information (total people contacted, survey duration) was collected for all buildings. Of 1420 buildings in 17 block groups, 949 (67%) were accessible, but most 834 (88%) did not have an AED. 283 AEDs were reported in 115 buildings (12%). 81 (29%) were validated through visualization and 68 (24%) through photo because employees often refused access. In buildings with AEDs, several employees (median 2; range 1-8) were contacted to ascertain information, which required several minutes (mean 4; range 1-55). Door-to-door surveying is a feasible, but time-consuming method for identifying AEDs in high employment areas. Few buildings reported having AEDs and few permitted visualization, which raises concerns about AED access. To improve cardiac arrest outcomes, efforts are needed to improve the availability of AEDs, awareness of their location and access to them. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cerqueira, N. A.; Choe, D.; Alexandre, J.; Azevedo, A. R. G.; Xavier, C. G.; Souza, V. B.
Building work requires optimization of materials and labor, so that the execution of its subsystems contribute to the quality, reduce costs, decrease waste in buildings, productivity, practicality and especially agility. Thus, the fitting blocks can contribute in this direction. This work therefore consists of physical characterization (determination of fitness levels, grain size and bulk density), chemical (EDX) and thermal (DTA and TGA) sample clay Campos dos Goytacazes-RJ and waste rock ornamental Cachoeiro de Itapemirim-ES, to verify potential for producing red ceramic blocks, pressed and burned, male and female type. The output of block will be with different pe rcentages of incorporation of residues of ornamental rocks (0%, 5% and 10%). With the results obtained, it was found that the raw materials under consideration has the potential for application in the production of ceramic articles.
Shenasa, Mohammad; Josephson, Mark E; Wit, Andrew L
2017-11-01
Paroxysmal atrioventricular (A-V) block is relatively rare, and due to its transient nature, it is often under recognized. It is often triggered by atrial, junctional, or ventricular premature beats, and occurs in the presence of a diseased His-Purkinje system (HPS). Here, we present a 45-year-old white male who was admitted for observation due to recurrent syncope and near-syncope, who had paroxysmal A-V block. The likely cellular electrophysiological mechanisms(s) of paroxysmal A-V block and its differential diagnosis and management are discussed. Continuous electrocardiographic monitoring was done while the patient was in the cardiac unit. Multiple episodes of paroxysmal A-V block were documented in this case. All episodes were initiated and terminated with atrial/junctional premature beats. The patient underwent permanent pacemaker implantation and has remained asymptomatic since then. Paroxysmal A-V block is rare and often causes syncope or near-syncope. Permanent pacemaker implantation is indicated according to the current guidelines. Paroxysmal A-V block occurs in the setting of diseased HPS and is bradycardia-dependent. The detailed electrophysiological mechanisms, which involve phase 4 diastolic depolarization, and differential diagnosis are discussed. © 2017 Wiley Periodicals, Inc.
Composition-dependent stability of the medium-range order responsible for metallic glass formation
Zhang, Feng; Ji, Min; Fang, Xiao-Wei; ...
2014-09-18
The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less
Optical diffraction in ordered VO2 nanoparticle arrays
NASA Astrophysics Data System (ADS)
Lopez, Rene; Feldman, Leonard; Haglund, Richard
2006-03-01
The potential of oxide electronic materials as multifunctional building blocks is one of the driving concepts of the field. In this presentation, we show how nanostructured particle arrays with long-range order can be used to modulate an optical response through exploiting the metal-insulator transition of vanadium dioxide. Arrays of VO2 nanoparticles with long-range order were fabricated by pulsed laser deposition in an arbitrary pattern defined by focused ion-beam lithography. The interaction of light with the nanoparticles is controlled by the nanoparticle size, spacing and geometrical arrangement and by switching between the metallic and semiconducting phases of VO2. In addition to the near-infrared surface plasmon response observed in previous VO2 studies, the VO2 nanoparticle arrays exhibit size-dependent optical resonances in the visible region that likewise show an enhanced optical contrast between the semiconducting and metallic phases. The collective optical response as a function of temperature gives rise to an enhanced scattering state during the evolving phase transition, while the incoherent coupling between the nanoparticles produces an order-disorder-order transition.
Complex apodized Bragg grating filters without circulators in silicon-on-insulator.
Simard, Alexandre D; LaRochelle, Sophie
2015-06-29
Bragg gratings operating in reflection are versatile filters that are an important building block of photonic circuits but, so far, their use has been limited due to the absence of CMOS compatible integrated circulators. In this paper, we propose to introduce two identical Bragg gratings in the arms of a Mach-Zehnder interferometer built with multimode interference 2 x 2 couplers to provide a reflective filter without circulator. We show that this structure has unique properties that significantly reduce phase noise distortions, avoid the need for thermal phase tuning, and make it compatible with complex apodization functions implemented through superposition apodization. We experimentally demonstrate several Bragg grating filters with high quality reflection spectra. For example, we successfully fabricated a 4 nm dispersion-less square-shaped filter having a sidelobe suppression ratio better than 15 dB and an in-band phase response with a group delay standard deviation of 2.0 ps. This result will enable the fabrication of grating based narrowband reflective filters having sharp spectral responses, which represents a major improvement in the filtering capability of the silicon platform.
Observation of a dissipative phase transition in a one-dimensional circuit QED lattice
NASA Astrophysics Data System (ADS)
Fitzpatrick, Mattias; Sundaresan, Neereja; Li, Andy C. Y.; Koch, Jens; Houck, Andrew
The building blocks of circuit QED provide a useful toolbox for the study of nonequilibrium and highly nonlinear behavior. Here, we present results from a one-dimensional chain of 72 microwave cavities, each coupled to a superconducting qubit, where we coherently drive the system into a nonequilibrium steady state. We find experimental evidence for a dissipative phase transition in the system in which the steady state changes dramatically as the mean photon number is increased. Near the boundary between the two observed phases, the system demonstrates bistability, with characteristic switching times as long as 60 ms - far longer than any of the intrinsic rates known for the system. This experiment demonstrates the power of circuit QED systems for the studying nonequilibrium condensed matter physics and paves the way for future experiments exploring nonequilibrium physics with many-body quantum optics. This work was supported by the Army research Offic through Grant W911NF-15-1-0397 and the National Science Foundation through Grants No. DMR-0953475 and No. PHY-1055993. NS was supported by an NDSEG fellowship.
Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information.
Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing
2016-01-01
Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft's algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms.
Complex Organic Molecules Formation in Space Through Gas Phase Reactions: A Theoretical Approach
NASA Astrophysics Data System (ADS)
Redondo, Pilar; Barrientos, Carmen; Largo, Antonio
2017-02-01
Chemistry in the interstellar medium (ISM) is capable of producing complex organic molecules (COMs) of great importance to astrobiology. Gas phase and grain surface chemistry almost certainly both contribute to COM formation. Amino acids as building blocks of proteins are some of the most interesting COMs. The simplest one, glycine, has been characterized in meteorites and comets and, its conclusive detection in the ISM seems to be highly plausible. In this work, we analyze the gas phase reaction of glycine and {{{CH}}5}+ to establish the role of this process in the formation of alanine or other COMs in the ISM. Formation of protonated α- and β-alanine in spite of being exothermic processes is not viable under interstellar conditions because the different paths leading to these isomers present net activation energies. Nevertheless, glycine can evolve to protonated 1-imide-2, 2-propanediol, protonated amino acetone, protonated hydroxyacetone, and protonated propionic acid. However, formation of acetic acid and protonated methylamine is also a favorable process and therefore will be a competitive channel with the evolution of glycine to COMs.
Dense crystalline packings of ellipsoids
NASA Astrophysics Data System (ADS)
Jin, Weiwei; Jiao, Yang; Liu, Lufeng; Yuan, Ye; Li, Shuixiang
2017-03-01
An ellipsoid, the simplest nonspherical shape, has been extensively used as a model for elongated building blocks for a wide spectrum of molecular, colloidal, and granular systems. Yet the densest packing of congruent hard ellipsoids, which is intimately related to the high-density phase of many condensed matter systems, is still an open problem. We discover an unusual family of dense crystalline packings of self-dual ellipsoids (ratios of the semiaxes α : √{α }:1 ), containing 24 particles with a quasi-square-triangular (SQ-TR) tiling arrangement in the fundamental cell. The associated packing density ϕ exceeds that of the densest known SM2 crystal [ A. Donev et al., Phys. Rev. Lett. 92, 255506 (2004), 10.1103/PhysRevLett.92.255506] for aspect ratios α in (1.365, 1.5625), attaining a maximal ϕ ≈0.758 06 ... at α = 93 /64 . We show that the SQ-TR phase derived from these dense packings is thermodynamically stable at high densities over the aforementioned α range and report a phase diagram for self-dual ellipsoids. The discovery of the SQ-TR crystal suggests organizing principles for nonspherical particles and self-assembly of colloidal systems.
NASA Astrophysics Data System (ADS)
Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas
2015-10-01
Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.
NASA Astrophysics Data System (ADS)
Zhou, Wei; Shijimaya, Chiko; Takahashi, Mari; Miyata, Masanobu; Mott, Derrick; Koyano, Mikio; Ohta, Michihiro; Akatsuka, Takeo; Ono, Hironobu; Maenosono, Shinya
2017-12-01
Uniform Cu2Sn1-xZnxS3 (x = 0-0.2) nanoparticles (NPs) with a characteristic size of about 40 nm were chemically synthesized. The primary crystal phase of the NPs was wurtzite (WZ) with a mean crystalline size of about 20 nm. The NPs were sintered to form nanostructured pellets with different compositions preserving the composition and grain size of the original NPs by the pulse electric current sintering technique. The pellets had a zinc blende (ZB) structure with a residual WZ phase, and the mean crystalline size was found to remain virtually unchanged for all pellets. Among all samples, the pellets of Cu2Sn0.95Zn0.05S3 and Cu2Sn0.85Zn0.15S3 exhibited the highest ZT value (0.37 at 670 K) which is 10 times higher than that of a non-nanostructured Cu2SnS3 bulk crystal thanks to effective phonon scattering by nanograins, the phase-pure ZB crystal structure, and the increase in hole carrier density by Zn doping.
Evaluation of Sunshine Duration around a Building in an Urban Area
NASA Astrophysics Data System (ADS)
Kang, J. E.; Kim, J.
2017-12-01
In this study, sunshine duration around a building in a building-congested district in Busan, Korea was analyzed using a numerical model. This model considers sunshine duration blocking caused by topography and buildings and it is properly applicable to evaluation of sunshine duration environment in urban areas. The 2 km Í 2 km area where the building with 45-m height was located at the center was selected as a target area. We selected the target period from December 21 to December 23, 2015, considering the winter solstice (December 22, 2015) when it is expected to have the largest effect of sunshine blocking due to buildings. We validated the calculated solar altitude and azimuth angles against those provided by Korea astronomy and space science institute (KASI) and the calculated results gave very good agreement with those provided by KASI. Topography and buildings used as the input data of the model were constructed using a geographic information system (GIS) data. In order to analyze, in detail, the change in sunshine duration caused by the construction of the building, the sunshine duration on the roof and walls (eastern, western, southern, northern side) were investigated before and after the construction.
Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents
NASA Astrophysics Data System (ADS)
Huang, Yi-Lin; Bode, Jeffrey W.
2014-10-01
Microbial fermentation can rapidly provide potent compounds that can be easily screened for biological activity, and the active components can be isolated. Its success in drug discovery has inspired extensive efforts to modulate and control the products. In this Article, we document a ‘synthetic fermentation’ of bioactive, unnatural peptides ‘grown’ from small building blocks in water using amide-forming ligations. No organisms, enzymes or reagents are needed. The sequences, structures and compositions of the products can be modulated by adjusting the building blocks and conditions. No specialized knowledge of organic chemistry or handling of toxic material is required to produce complex organic molecules. The ‘fermentations’ can be conducted in arrays and screened for biological activity without isolation or workup. As a proof-of-concept, about 6,000 unnatural peptides were produced from just 23 building blocks, from which a hepatitis C virus NS3/4A protease inhibitor with a half-maximum inhibitory concentration of 1.0 μM was identified and characterized.
A triaxial supramolecular weave
NASA Astrophysics Data System (ADS)
Lewandowska, Urszula; Zajaczkowski, Wojciech; Corra, Stefano; Tanabe, Junki; Borrmann, Ruediger; Benetti, Edmondo M.; Stappert, Sebastian; Watanabe, Kohei; Ochs, Nellie A. K.; Schaeublin, Robin; Li, Chen; Yashima, Eiji; Pisula, Wojciech; Müllen, Klaus; Wennemers, Helma
2017-11-01
Despite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist—these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads. Each thread is formed by the self-assembly of a building block comprising a rigid oligoproline segment with two perylene-monoimide chromophores spaced at 18 Å. Upon π stacking of the chromophores, threads form that feature alternating up- and down-facing voids at regular distances. These voids accommodate incoming building blocks and establish crossing points through CH-π interactions on further assembly of the threads into a triaxial woven superstructure. The resulting micrometre-scale supramolecular weave proved to be more robust than non-woven self-assemblies of the same building block. The uniform hexagonal pores of the interwoven network were able to host iridium nanoparticles, which may be of interest for practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiefei; Zhong, Yong; Wang, Liang
The design and engineering of the size, shape, and chemistry of photoactive building blocks enables the fabrication of functional nanoparticles for applications in light harvesting, photocatalytic synthesis, water splitting, phototherapy, and photodegradation. Here, we report the synthesis of such nanoparticles through a surfactant-assisted interfacial self-assembly process using optically active porphyrin as a functional building block. The self-assembly process relies on specific interactions such as π–π stacking and metalation (metal atoms and ligand coordination) between individual porphyrin building blocks. Depending on the kinetic conditions and type of surfactants, resulting structures exhibit well-defined one- to three-dimensional morphologies such as nanowires, nanooctahedra, andmore » hierarchically ordered internal architectures. Specifically, electron microscopy and X-ray diffraction results indicate that these nanoparticles exhibit stable single-crystalline and nanoporous frameworks. In conclusion, due to the hierarchical ordering of the porphyrins, the nanoparticles exhibit collective optical properties resulted from coupling of molecular porphyrins and photocatalytic activities such as photodegradation of methyl orange (MO) pollutants and hydrogen production.« less
Bouvier, León A.; Cámara, María de los Milagros; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.
2013-01-01
The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted. PMID:24205392
Robust excitons inhabit soft supramolecular nanotubes
Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.
2014-01-01
Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336
Hwang, Sung Hoon; Miller, Joseph B; Shahsavari, Rouzbeh
2017-10-25
Many natural materials, such as nacre and dentin, exhibit multifunctional mechanical properties via structural interplay between compliant and stiff constituents arranged in a particular architecture. Herein, we present, for the first time, the bottom-up synthesis and design of strong, tough, and self-healing composite using simple but universal spherical building blocks. Our composite system is composed of calcium silicate porous nanoparticles with unprecedented monodispersity over particle size, particle shape, and pore size, which facilitate effective loading and unloading with organic sealants, resulting in 258% and 307% increases in the indentation hardness and elastic modulus of the compacted composite. Furthermore, heating the damaged composite triggers the controlled release of the nanoconfined sealant into the surrounding area, enabling moderate recovery in strength and toughness. This work paves the path towards fabricating a novel class of biomimetic composites using low-cost spherical building blocks, potentially impacting bone-tissue engineering, insulation, refractory and constructions materials, and ceramic matrix composites.
Wang, Jiefei; Zhong, Yong; Wang, Liang; ...
2016-09-12
The design and engineering of the size, shape, and chemistry of photoactive building blocks enables the fabrication of functional nanoparticles for applications in light harvesting, photocatalytic synthesis, water splitting, phototherapy, and photodegradation. Here, we report the synthesis of such nanoparticles through a surfactant-assisted interfacial self-assembly process using optically active porphyrin as a functional building block. The self-assembly process relies on specific interactions such as π–π stacking and metalation (metal atoms and ligand coordination) between individual porphyrin building blocks. Depending on the kinetic conditions and type of surfactants, resulting structures exhibit well-defined one- to three-dimensional morphologies such as nanowires, nanooctahedra, andmore » hierarchically ordered internal architectures. Specifically, electron microscopy and X-ray diffraction results indicate that these nanoparticles exhibit stable single-crystalline and nanoporous frameworks. In conclusion, due to the hierarchical ordering of the porphyrins, the nanoparticles exhibit collective optical properties resulted from coupling of molecular porphyrins and photocatalytic activities such as photodegradation of methyl orange (MO) pollutants and hydrogen production.« less
Designed synthesis of double-stage two-dimensional covalent organic frameworks
Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin
2015-01-01
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays. PMID:26456081
Engineering cell factories for producing building block chemicals for bio-polymer synthesis.
Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko
2016-01-21
Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.
Yazaki, A; Ohno, S
1983-01-01
Within the published 2,168-base-long mouse C mu gene of Ig heavy chain consisting of four coding and four noncoding segments, 2 base decamers, 8 nonomers, and 39 octamers recurred. Recurring base heptamers (about 100) and hexamers (about 350) were simply too numerous to merit individual identification. In spite of extensive overlaps between these recurring base decamers to hexamers, they occupied nearly the entire length of mouse Ig C mu gene. As with other genes of the beta-sheet-forming beta 2-microglobulin family, the Ig C mu gene (flanking and intervening noncoding sequences included) is not a unique sequence but rather it is degenerate repeats of the 45-base-long primordial building-block sequence uniquely its own. This primordial building block must originally have specified the 15-amino-acid-residue-long primordial arm of beta-sheet-forming loops, the characteristics of the beta 2-microglobulin family of polypeptides. PMID:6403948
Zwickel, Jan; White, Sarah J; Coniston, Devorah; Senju, Atsushi; Frith, Uta
2011-10-01
Individuals with autism spectrum disorders have highly characteristic impairments in social interaction and this is true also for those with high functioning autism or Asperger syndrome (AS). These social cognitive impairments are far from global and it seems likely that some of the building blocks of social cognition are intact. In our first experiment, we investigated whether high functioning adults who also had a diagnosis of AS would be similar to control participants in terms of their eye movements when watching animated triangles in short movies that normally evoke mentalizing. They were. Our second experiment using the same movies, tested whether both groups would spontaneously adopt the visuo-spatial perspective of a triangle protagonist. They did. At the same time autistic participants differed in their verbal accounts of the story line underlying the movies, confirming their specific difficulties in on-line mentalizing. In spite of this difficulty, two basic building blocks of social cognition appear to be intact: spontaneous agency perception and spontaneous visual perspective taking.
Fuel-Mediated Transient Clustering of Colloidal Building Blocks.
van Ravensteijn, Bas G P; Hendriksen, Wouter E; Eelkema, Rienk; van Esch, Jan H; Kegel, Willem K
2017-07-26
Fuel-driven assembly operates under the continuous influx of energy and results in superstructures that exist out of equilibrium. Such dissipative processes provide a route toward structures and transient behavior unreachable by conventional equilibrium self-assembly. Although perfected in biological systems like microtubules, this class of assembly is only sparsely used in synthetic or colloidal analogues. Here, we present a novel colloidal system that shows transient clustering driven by a chemical fuel. Addition of fuel causes an increase in hydrophobicity of the building blocks by actively removing surface charges, thereby driving their aggregation. Depletion of fuel causes reappearance of the charged moieties and leads to disassembly of the formed clusters. This reassures that the system returns to its initial, equilibrium state. By taking advantage of the cyclic nature of our system, we show that clustering can be induced several times by simple injection of new fuel. The fuel-mediated assembly of colloidal building blocks presented here opens new avenues to the complex landscape of nonequilibrium colloidal structures, guided by biological design principles.
Appendices for the Space Applications program, 1974
NASA Technical Reports Server (NTRS)
1974-01-01
To achieve truly low cost system design with direct evolution for inorbit shuttle resupply, a modular building block approach has been adopted. The heart of the modular building block concept lies in the ability to use a common set of nonoptimized subsystems in such a way that a wide variety of missions can be flown with no detrimental impact on performance. By standardizing the mechanical configurations and electrical interfaces of the subsystem modules, and by designing each of them to be structurally and thermally independent entities, it is possible to cluster these building blocks or modules about an instrument system so as to adequately perform the mission without the need for subsystem redevelopments for each mission. This system concept offers the following capabilities: (1) the ability to launch and orbit the observatory by either the Delta, the Titan, or the space shuttle. (2) the ability to completely reconfigure the spacecraft subsystems for different launch vehicles, and (3) the ability to perform in-orbit resupply and/or emergency retrieval of the observatory.
Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly.
Ju, Guannan; Cheng, Mengjiao; Guo, Fengli; Zhang, Qian; Shi, Feng
2018-05-30
Macroscopic supramolecular assembly (MSA) is a recent progress in supramolecular chemistry to associate visible building blocks through non-covalent interactions in a multivalent manner. Although various substrates (e. g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are still lacking and urgently in demand. Here we design three model systems with varied modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic-modulus-dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials applicable for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one magnitude higher strength than that of rigid substrates (2.5 MPa). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loeffler, Felix F; Foertsch, Tobias C; Popov, Roman; Mattes, Daniela S; Schlageter, Martin; Sedlmayr, Martyna; Ridder, Barbara; Dang, Florian-Xuan; von Bojničić-Kninski, Clemens; Weber, Laura K; Fischer, Andrea; Greifenstein, Juliane; Bykovskaya, Valentina; Buliev, Ivan; Bischoff, F Ralf; Hahn, Lothar; Meier, Michael A R; Bräse, Stefan; Powell, Annie K; Balaban, Teodor Silviu; Breitling, Frank; Nesterov-Mueller, Alexander
2016-06-14
Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).
Designed synthesis of double-stage two-dimensional covalent organic frameworks
NASA Astrophysics Data System (ADS)
Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin
2015-10-01
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays.
Multi-scaling in the critical phenomena in the quenched disordered systems
NASA Astrophysics Data System (ADS)
Wu, X. T.
2018-04-01
The Landau-Ginzburg-Wilson Hamiltonian with random temperature for the phase transition in disordered systems from the Griffiths phase to ordered phase is reexamined. From the saddle point solutions, especially the excited state solutions, it is shown that the system self-organizes into blocks coupled with their neighbors like superspins, which are emergent variables. Taking the fluctuation around these saddle point solutions into account, we get an effective Hamiltonian, including the emergent superspins of the blocks, the fluctuation around the saddle point solutions, and their couplings. Applying Stratonovich-Hubbard transformation to the part of superspins, we get a Landau-Ginzburg-Wilson Hamiltonian for the blocks. From the saddle point equations for the blocks, we can get the second generation blocks, of which sizes are much larger than the first generation blocks. Repeating this procedure again and again, we get many generations of blocks to describe the asymptotic behavior. If a field is applied, the effective field on the superspins is multiplied greatly and proportional to the block size. For a very small field, the effective field on the higher generation superspins can be so strong to cause the superspins polarized radically. This can explain the extra large critical isotherm exponent discovered in the experiments. The phase space of reduced temperature vs. field is divided into many layers , in which different generation blocks dominate the critical behavior. The sizes of the different generation emergent blocks are new relevant length scales. This can explain a lot of puzzles in the experiments and the Monte Carlo simulation.
Xu, Feng; Miras, Haralampos N.; Scullion, Rachel A.; Long, De-Liang; Thiel, Johannes; Cronin, Leroy
2012-01-01
Molecular self-assembly has often been suggested as the ultimate route for the bottom-up construction of building blocks atom-by-atom for functional nanotechnology, yet structural design or prediction of nanomolecular assemblies is still far from reach. Whereas nature uses complex machinery such as the ribosome, chemists use painstakingly engineered step-by-step approaches to build complex molecules but the size and complexity of such molecules, not to mention the accessible yields, can be limited. Herein we present the discovery of a palladium oxometalate {Pd84}-ring cluster 3.3 nm in diameter; [Pd84O42(OAc)28(PO4)42]70- ({Pd84} ≡ {Pd12}7) that is formed in water just by mixing two reagents at room temperature, giving crystals of the compound in just a few days. The structure of the {Pd84}-ring has sevenfold symmetry, comprises 196 building blocks, and we also show, using mass spectrometry, that a large library of other related nanostructures is present in solution. Finally, by analysis of the symmetry and the building block library that construct the {Pd84} we show that the correlation of the symmetry, subunit number, and overall cluster nuclearity can be used as a “Rosetta Stone” to rationalize the “magic numbers” defining a number of other systems. This is because the discovery of {Pd84} allows the relationship between seemingly unrelated families of molecular inorganic nanosystems to be decoded from the overall cluster magic-number nuclearity, to the symmetry and building blocks that define such structures allowing the prediction of other members of these nanocluster families. PMID:22753516
Sun, Xiaojun; Guo, Zhimou; Yu, Mengqi; Lin, Chao; Sheng, Anran; Wang, Zhiyu; Linhardt, Robert J; Chi, Lianli
2017-01-06
Low molecular weight heparins (LMWHs) are important anticoagulant drugs that are prepared through depolymerization of unfractionated heparin. Based on the types of processing reactions and the structures of the products, LMWHs can be divided into different classifications. Enoxaparin is prepared by benzyl esterification and alkaline depolymerization, while dalteparin and nadroparin are prepared through nitrous acid depolymerization followed by borohydride reduction. Compositional analysis of their basic building blocks is an effective way to provide structural information on heparin and LMWHs. However, most current compositional analysis methods have been limited to heparin and enoxaparin. A sensitive and comprehensive approach is needed for detailed investigation of the structure of LMWHs prepared through nitrous acid depolymerization, especially their characteristic saturated non-reducing end (NRE) and 2,5-anhydro-d-mannitol reducing end (RE). A maltose modified hydrophilic interaction column offers improved separation of complicated mixtures of acidic disaccharides and oligosaccharides. A total of 36 basic building blocks were unambiguously identified by high-resolution tandem mass spectrometry (MS). Multiple reaction monitoring (MRM) MS/MS quantification was developed and validated in the analysis of dalteparin and nadroparin samples. Each group of building blocks revealed different aspects of the properties of LMWHs, such as functional motifs required for anticoagulant activity, the structure of heparin starting materials, cleavage sites in the depolymerization reaction, and undesired structural modifications resulting from side reactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Modular and Orthogonal Synthesis of Hybrid Polymers and Networks
Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao
2015-01-01
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255
Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
NASA Astrophysics Data System (ADS)
Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A.; Park, Jiwoong
2017-10-01
High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides--which represent one- and three-atom-thick two-dimensional building blocks, respectively--have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.
Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures.
Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A; Park, Jiwoong
2017-10-12
High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides-which represent one- and three-atom-thick two-dimensional building blocks, respectively-have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.
NASA Astrophysics Data System (ADS)
Brown-Steiner, B.
2017-12-01
I study the air and the sky, which can get really, really confusing. When you cup your hands and catch some air, you are holding many hundreds of hundreds of hundreds (do this about ten more times) of really tiny building blocks that keep hitting (and changing) one another every second of every day. We need some of these tiny building blocks to live and breathe, but there are many tiny building blocks that can hurt us - or even kill us. Right now, the way we live - how we make power, how we make food, how we get from place to place - adds a lot of bad building blocks to our air and our sky, and is changing our world in ways we do not really understand. As we learn more about the air and the sky, we get better at knowing how things are changing, but it is also really important to think about the things we do not know, and the things we do not understand. I study our air and our sky by thinking hard not only about the things that we know, but also about the things we do not know, and I try to use what I learn to help us make more sense out of the really confusing stuff. I want to share some of what I have learned with you.
NASA Astrophysics Data System (ADS)
Yu, Yunfang; Wei, Yongqin; Broer, Ria; Sa, Rongjian; Wu, Kechen
2008-03-01
Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen) 2(H 2O)(HTST)]·2H 2O ( 1), [Co 3(phen) 6(H 2O) 2(TST) 2]·7H 2O ( 2), and [Co 2Cu(phen) 6(H 2O) 2(TST) 2]·10H 2O ( 3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H 3TST) with the M2+ ( M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). Complex 1 contains a cis-Co(II)(phen) 2 building block and an HTST as monodentate ligand; complex 2 consists of two TST as bidentate ligands connecting one trans- and two cis-Co(II)(phen) 2 building blocks; complex 3 is formed by replacing the trans-Co(II)(phen) 2 in 2 with a trans-Cu(II)(phen) 2, which is the first reported hetero-trinuclear supramolecular complex containing both the Co(II)(phen) 2 and Cu(II)(phen) 2 as building blocks. The study shows the flexible multifunctional self-assembly capability of the H 3TST ligands presenting in these supramolecular complexes through coordinative, H-bonding and even π- π stacking interactions. The photoluminescent optical properties of these complexes are also investigated and discussed as well as the second-order nonlinear optical properties of 1.
Renaissance architecture for Ground Data Systems
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Zeigenfuss, Lawrence B.
1994-01-01
The Mission Operations and Data Systems Directorate (MO&DSD) has embarked on a new approach for developing and operating Ground Data Systems (GDS) for flight mission support. This approach is driven by the goals of minimizing cost and maximizing customer satisfaction. Achievement of these goals is realized through the use of a standard set of capabilities which can be modified to meet specific user needs. This approach, which is called the Renaissance architecture, stresses the engineering of integrated systems, based upon workstation/local area network (LAN)/fileserver technology and reusable hardware and software components called 'building blocks.' These building blocks are integrated with mission specific capabilities to build the GDS for each individual mission. The building block approach is key to the reduction of development costs and schedules. Also, the Renaissance approach allows the integration of GDS functions that were previously provided via separate multi-mission facilities. With the Renaissance architecture, the GDS can be developed by the MO&DSD or all, or part, of the GDS can be operated by the user at their facility. Flexibility in operation configuration allows both selection of a cost-effective operations approach and the capability for customizing operations to user needs. Thus the focus of the MO&DSD is shifted from operating systems that we have built to building systems and, optionally, operations as separate services. Renaissance is actually a continuous process. Both the building blocks and the system architecture will evolve as user needs and technology change. Providing GDS on a per user basis enables this continuous refinement of the development process and product and allows the MO&DSD to remain a customer-focused organization. This paper will present the activities and results of the MO&DSD initial efforts toward the establishment of the Renaissance approach for the development of GDS, with a particular focus on both the technical and process implications posed by Renaissance to the MO&DSD.
Evidence-based support for the all-hazards approach to emergency preparedness
2012-01-01
Background During the last decade there has been a need to respond and recover from various types of emergencies including mass casualty events (MCEs), mass toxicological/chemical events (MTEs), and biological events (pandemics and bio-terror agents). Effective emergency preparedness is more likely to be achieved if an all-hazards response plan is adopted. Objectives To investigate if there is a relationship among hospitals' preparedness for various emergency scenarios, and whether components of one emergency scenario correlate with preparedness for other emergency scenarios. Methods Emergency preparedness levels of all acute-care hospitals for MCEs, MTEs, and biological events were evaluated, utilizing a structured evaluation tool based on measurable parameters. Evaluations were made by professional experts in two phases: evaluation of standard operating procedures (SOPs) followed by a site visit. Relationships among total preparedness and different components' scores for various types of emergencies were analyzed. Results Significant relationships were found among preparedness for different emergencies. Standard Operating Procedures (SOPs) for biological events correlated with preparedness for all investigated emergency scenarios. Strong correlations were found between training and drills with preparedness for all investigated emergency scenarios. Conclusions Fundamental critical building blocks such as SOPs, training, and drill programs improve preparedness for different emergencies including MCEs, MTEs, and biological events, more than other building blocks, such as equipment or knowledge of personnel. SOPs are especially important in unfamiliar emergency scenarios. The findings support the adoption of an all-hazards approach to emergency preparedness. PMID:23098065
Early chemo-dynamical evolution of dwarf galaxies deduced from enrichment of r-process elements
NASA Astrophysics Data System (ADS)
Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka
2017-04-01
The abundance of elements synthesized by the rapid neutron-capture process (r-process elements) of extremely metal-poor (EMP) stars in the Local Group galaxies gives us clues to clarify the early evolutionary history of the Milky Way halo. The Local Group dwarf galaxies would have similarly evolved with building blocks of the Milky Way halo. However, how the chemo-dynamical evolution of the building blocks affects the abundance of r-process elements is not yet clear. In this paper, we perform a series of simulations using dwarf galaxy models with various dynamical times and total mass, which determine star formation histories. We find that galaxies with dynamical times longer than 100 Myr have star formation rates less than 10-3 M⊙ yr-1 and slowly enrich metals in their early phase. These galaxies can explain the observed large scatters of r-process abundance in EMP stars in the Milky Way halo regardless of their total mass. On the other hand, the first neutron star merger appears at a higher metallicity in galaxies with a dynamical time shorter than typical neutron star merger times. The scatters of r-process elements mainly come from the inhomogeneity of the metals in the interstellar medium whereas the scatters of α-elements are mostly due to the difference in the yield of each supernova. Our results demonstrate that the future observations of r-process elements in EMP stars will be able to constrain the early chemo-dynamical evolution of the Local Group galaxies.
Genetics Home Reference: phenylketonuria
... that increases the levels of a substance called phenylalanine in the blood. Phenylalanine is a building block of proteins ( an amino ... some artificial sweeteners. If PKU is not treated, phenylalanine can build up to harmful levels in the ...
Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen
2012-10-22
Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holographic entanglement and Poincaré blocks in three-dimensional flat space
NASA Astrophysics Data System (ADS)
Hijano, Eliot; Rabideau, Charles
2018-05-01
We propose a covariant prescription to compute holographic entanglement entropy and Poincaré blocks (Global BMS blocks) in the context of three-dimensional Einstein gravity in flat space. We first present a prescription based on worldline methods in the probe limit, inspired by recent analog calculations in AdS/CFT. Building on this construction, we propose a full extrapolate dictionary and use it to compute holographic correlators and blocks away from the probe limit.
Humidity-Induced Phase Transitions in Ion-Containing Block Copolymer Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Moon Jeong; Nedoma, Alisyn J.; Geissler, Phillip L.
2008-08-21
The phase behavior of ion-containing block copolymer membranes in equilibrium with humidified air is studied as a function of the relative humidity (RH) of the surrounding air, ion content of the copolymer, and temperature. Increasing RH at constant temperature results in both disorder-to-order and order-to-order transitions. In-situ small-angle neutron scattering experiments on the open block copolymer system, when combined with water uptake measurement, indicate that the disorder-to-order transition is driven by an increase in the partial molar entropy of the water molecules in the ordered phase relative to that in the disordered phase. This is in contrast to most systemsmore » wherein increasing entropy results in stabilization of the disordered phase.« less
Strategies to integrate patient and family education into patient care redesign.
Yingling, L; Trocino, L
1997-05-01
This article discusses five strategies to effectively integrate patient and family education into patient care redesign. The strategies include building the plan, building a shared mission and vision, building involvement, building collaboration through initiatives, and building accountability. Each strategy or "building block" is vital to the resulting structure of patient and family education. Effective results of the strategies are discussed as milestones. The process must be ongoing to ensure continuous improvement in quality patient care outcomes, consumer satisfaction and cost-effectiveness.
8. Historic view of the building: 'Warren Street from State ...
8. Historic view of the building: 'Warren Street from State Street' ca. 1890. Courtesy of the Trenton Free Public Library. This shows the building before the True American's renovations of 1893. It is the three-story buildings, flanked by lower ones in the middle of the block. At the time of the photograph, the brick exterior was painted a light color and dark-colored louvered shutters flanked all the upper story windows. - 14 North Warren Street (Commercial Building), True American Building, Trenton, Mercer County, NJ
16. A southward view of buildings #6B, #6, #6A, #7, ...
16. A southward view of buildings #6-B, #6, #6-A, #7, #8-A, and #8. The water tower is situated directly behind building #8. To the right ia the eastern wall of the five-storied building #5. In the center background is part of the north face of building #9. All structures to the north of building #9 are to be demolished. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
1. EXTERIOR VIEW OF BUILDING 25A (COLD CHAMBER), LOOKING NORTHEAST, ...
1. EXTERIOR VIEW OF BUILDING 25A (COLD CHAMBER), LOOKING NORTHEAST, WITH WIND TUNNEL IN BACKGROUND (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
Building Our Children's Future: An Interdisciplinary Curriculum for Grades K-12.
ERIC Educational Resources Information Center
Mumma, Tracy; Gant, Shaun; Stone, Laura Armstrong; Harnish, Chris; Fowle, Abigail
This interdisciplinary curriculum provides students with the opportunity to learn about the connection between natural resources and buildings while practicing skills in language arts, math, science, social studies, and visual arts. The learning activities are divided by topic into 15 Building Blocks (units). These units cover such topics as…
The Master Clock Building at USNO Infrastructure
2008-12-01
type finish on top of about 3.5 inches of foam insulation. This along with cinder block, fiber glass insulation, and 5/8-inch-X drywall provides a...keep the building on temperature. The outside surface of the building is an “Exterior Finish Insulation Systems” (EFIS). This is made up of a stucco
Apollo CSM Power Generation System Design Considerations, Failure Modes and Lessons Learned
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
The objectives of this slide presentation are to: review the basic design criteria for fuel cells (FC's), review design considerations during developmental phase that affected Block I and Block II vehicles, summarize the conditions that led to the failure of components in the FC's, and state the solution implemented for each failure. It reviews the location of the fuel cells, the fuel cell theory the design criteria going into development phase and coming from the development phase, failures and solutions of Block I and II, and the lessons learned.
LPT. Elevations of low power test building (TAN640 and 641). ...
LPT. Elevations of low power test building (TAN-640 and -641). West and south elevations show stepped shield wall. South and east elevations show pumice block passageway on south side. Reactor cell walls are concrete. One-story parts are pumice block. Metal rollup doors. Ralph M. Parsons 1229-12 ANP/GE-7-640-A-2. November 1956. Approved by INEEL Classification Office for public release. INEEL index code no. 038-0640-00-693-107275 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A building block for hardware belief networks.
Behin-Aein, Behtash; Diep, Vinh; Datta, Supriyo
2016-07-21
Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models.
Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.
Jin, Hyo-Eon; Lee, Seung-Wuk
2018-01-01
M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.
Shi, Lei; Tuzer, T Umut; Fenollosa, Roberto; Meseguer, Francisco
2012-11-20
A new dielectric metamaterial building block based on high refractive index silicon spherical nanocavities with Mie resonances appearing in the near infrared optical region is prepared and characterized. It is demonstrated both experimentally and theoretically that a single silicon nanocavity supports well-defined and robust magnetic resonances, even in a liquid medium environment, at wavelength values up to six times larger than the cavity radius. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thiophene-based covalent organic frameworks
Bertrand, Guillaume H. V.; Michaelis, Vladimir K.; Ong, Ta-Chung; Griffin, Robert G.; Dincă, Mircea
2013-01-01
We report the synthesis and characterization of covalent organic frameworks (COFs) incorporating thiophene-based building blocks. We show that these are amenable to reticular synthesis, and that bent ditopic monomers, such as 2,5-thiophenediboronic acid, are defect-prone building blocks that are susceptible to synthetic variations during COF synthesis. The synthesis and characterization of an unusual charge transfer complex between thieno[3,2-b]thiophene-2,5-diboronic acid and tetracyanoquinodimethane enabled by the unique COF architecture is also presented. Together, these results delineate important synthetic advances toward the implementation of COFs in electronic devices. PMID:23479656
New self-assembly strategies for next generation lithography
NASA Astrophysics Data System (ADS)
Schwartz, Evan L.; Bosworth, Joan K.; Paik, Marvin Y.; Ober, Christopher K.
2010-04-01
Future demands of the semiconductor industry call for robust patterning strategies for critical dimensions below twenty nanometers. The self assembly of block copolymers stands out as a promising, potentially lower cost alternative to other technologies such as e-beam or nanoimprint lithography. One approach is to use block copolymers that can be lithographically patterned by incorporating a negative-tone photoresist as the majority (matrix) phase of the block copolymer, paired with photoacid generator and a crosslinker moiety. In this system, poly(α-methylstyrene-block-hydroxystyrene)(PαMS-b-PHOST), the block copolymer is spin-coated as a thin film, processed to a desired microdomain orientation with long-range order, and then photopatterned. Therefore, selfassembly of the block copolymer only occurs in select areas due to the crosslinking of the matrix phase, and the minority phase polymer can be removed to produce a nanoporous template. Using bulk TEM analysis, we demonstrate how the critical dimension of this block copolymer is shown to scale with polymer molecular weight using a simple power law relation. Enthalpic interactions such as hydrogen bonding are used to blend inorganic additives in order to enhance the etch resistance of the PHOST block. We demonstrate how lithographically patternable block copolymers might fit in to future processing strategies to produce etch-resistant self-assembled features at length scales impossible with conventional lithography.
7. Historic American Buildings Survey, August, 1966 EXTERIOR STAIR TO ...
7. Historic American Buildings Survey, August, 1966 EXTERIOR STAIR TO SECOND FLOOR, SHOWING PASSAGE BETWEEN MAIN BLOCK AND REAR ELL. - Andrews-Taylor House, State Route 43, Farm Road 2862 Vicinity, Karnack, Harrison County, TX
ASBESTOS RELEASE DURING BUILDING DEMOLITION ACTIVITIES
The U.S. Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory (RREL) monitored block-wide building demolition and debris disposal activities at Santa Cruz and Watsonsville, California following the 1989 earthquake; an implosion demolition of a 26-story bu...
Chiral self-assembly of helical particles.
Kolli, Hima Bindu; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille
2016-01-01
The shape of the building blocks plays a crucial role in directing self-assembly towards desired architectures. Out of the many different shapes, the helix has a unique position. Helical structures are ubiquitous in nature and a helical shape is exhibited by the most important biopolymers like polynucleotides, polypeptides and polysaccharides as well as by cellular organelles like flagella. Helical particles can self-assemble into chiral superstructures, which may have a variety of applications, e.g. as photonic (meta)materials. However, a clear and definite understanding of these structures has not been entirely achieved yet. We have recently undertaken an extensive investigation on the phase behaviour of hard helical particles, using numerical simulations and classical density functional theory. Here we present a detailed study of the phase diagram of hard helices as a function of their morphology. This includes a variety of liquid-crystal phases, with different degrees of orientational and positional ordering. We show how, by tuning the helix parameters, it is possible to control the organization of the system. Starting from slender helices, whose phase behaviour is similar to that of rodlike particles, an increase in curliness leads to the onset of azimuthal correlations between the particles and the formation of phases specific to helices. These phases feature a new kind of screw order, of which there is experimental evidence in colloidal suspensions of helical flagella.
Drug delivery by water-soluble organometallic cages.
Therrien, Bruno
2012-01-01
Until recently, organometallic derivatives were generally viewed as moisture- and air-sensitive compounds, and consequently very challenging to synthesise and very demanding in terms of laboratory requirements (Schlenk techniques, dried solvent, glove box). However, an increasing number of stable, water-soluble organometallic compounds are now available, and organometallic chemistry in aqueous phase is a flourishing area of research. As such, coordination-driven self-assemblies using organometallic building blocks are compatible with water, thus opening new perspectives in bio-organometallic chemistry.This chapter gives a short history of coordination-driven self-assembly, with a special attention to organometallic metalla-cycles, especially those composed of half-sandwich complexes. These metalla-assemblies have been used as sensors, as anticancer agents, as well as drug carriers.
Biomimetic Phases of Microtubule-Motor Mixtures
NASA Astrophysics Data System (ADS)
Ross, Jennifer
2014-03-01
We try to determine the universal principles of organization from the molecular scale that gives rise to architecture on the cellular scale. We are specifically interested in the organization of the microtubule cytoskeleton, a rigid, yet versatile network in most cell types. Microtubules in the cell are organized by motor proteins and crosslinkers. This work applies the ideas of statistical mechanics and condensed matter physics to the non-equilibrium pattern formation behind intracellular organization using the microtubule cytoskeleton as the building blocks. We examine these processes in a bottom-up manner by adding increasingly complex protein actors into the system. Our systematic experiments expose nature's laws for organization and has large impacts on biology as well as illuminating new frontiers of non-equilibrium physics.
Classical simulation of infinite-size quantum lattice systems in two spatial dimensions.
Jordan, J; Orús, R; Vidal, G; Verstraete, F; Cirac, J I
2008-12-19
We present an algorithm to simulate two-dimensional quantum lattice systems in the thermodynamic limit. Our approach builds on the projected entangled-pair state algorithm for finite lattice systems [F. Verstraete and J. I. Cirac, arxiv:cond-mat/0407066] and the infinite time-evolving block decimation algorithm for infinite one-dimensional lattice systems [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)10.1103/PhysRevLett.98.070201]. The present algorithm allows for the computation of the ground state and the simulation of time evolution in infinite two-dimensional systems that are invariant under translations. We demonstrate its performance by obtaining the ground state of the quantum Ising model and analyzing its second order quantum phase transition.
A new silicon phase with direct band gap and novel optoelectronic properties
Guo, Yaguang; Wang, Qian; Kawazoe, Yoshiyuki; ...
2015-09-23
Due to the compatibility with the well-developed Si-based semiconductor industry, there is considerable interest in developing silicon structures with direct energy band gaps for effective sunlight harvesting. In this paper, using silicon triangles as the building block, we propose a new silicon allotrope with a direct band gap of 0.61 eV, which is dynamically, thermally and mechanically stable. Symmetry group analysis further suggests that dipole transition at the direct band gap is allowed. Additionally, this new allotrope displays large carrier mobility (~10 4 cm/V · s) at room temperature and a low mass density (1.71 g/cm 3), making it amore » promising material for optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiehagen, J.; Del Bianco, M.; Wood, A.
2013-02-01
A multi-year pilot energy efficiency retrofit project has been undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 co-operative of circa 1930 and '40 homes. The three predominate construction methods of the townhomes in the community are materials common to the area and climate zone including 8” CMU block, wood frame with brick veneer and wood frame with vinyl siding. GHI has established a pilot project that will serve as a basis for decision making for the roll out of a decade-long community upgrade program that will incorporate energy efficiency to the building envelope and equipment with the modernization of othermore » systems like plumbing, mechanical equipment, and cladding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiehagen, J.; Del Bianco, M.; Wood, A.
2013-02-01
A multi-year pilot energy efficiency retrofit project has been undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 co-operative of circa 1930 and '40 homes. The three predominate construction methods of the townhomes in the community are materials common to the area and climate zone including 8" CMU block, wood frame with brick veneer and wood frame with vinyl siding. GHI has established a pilot project that will serve as a basis for decision making for the roll out of a decade-long community upgrade program that will incorporate energy efficiency to the building envelope and equipment with the modernization of othermore » systems like plumbing, mechanical equipment, and cladding.« less
Electron teleportation via Majorana bound states in a mesoscopic superconductor.
Fu, Liang
2010-02-05
Zero-energy Majorana bound states in superconductors have been proposed to be potential building blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic superconductor because of an all-important but previously overlooked charging energy. We propose an experimental setup to detect this phenomenon in a superconductor-quantum-spin-Hall-insulator-magnetic-insulator hybrid system.
An optical/digital processor - Hardware and applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Sterling, W. M.
1975-01-01
A real-time two-dimensional hybrid processor consisting of a coherent optical system, an optical/digital interface, and a PDP-11/15 control minicomputer is described. The input electrical-to-optical transducer is an electron-beam addressed potassium dideuterium phosphate (KD2PO4) light valve. The requirements and hardware for the output optical-to-digital interface, which is constructed from modular computer building blocks, are presented. Initial experimental results demonstrating the operation of this hybrid processor in phased-array radar data processing, synthetic-aperture image correlation, and text correlation are included. The applications chosen emphasize the role of the interface in the analysis of data from an optical processor and possible extensions to the digital feedback control of an optical processor.
NASA Astrophysics Data System (ADS)
Wang, Maoyuan; Liu, Liping; Liu, Cheng-Cheng; Yao, Yugui
2016-04-01
We investigate van der Waals (vdW) heterostructures made of germanene, stanene, or silicene with hexagonal boron nitride (h-BN). The intriguing topological properties of these buckled honeycomb materials can be maintained and further engineered in the heterostructures, where the competition between the substrate effect and external electric fields can be used to control the tunable topological phase transitions. Using such heterostructures as building blocks, various vdW topological domain walls (DW) are designed, along which there exist valley polarized quantum spin Hall edge states or valley-contrasting edge states which are protected by valley(spin)- resolved topological charges and can be tailored by the patterning of the heterojunctions and by external fields.
Preschoolers' Thinking during Block Play
ERIC Educational Resources Information Center
Piccolo, Diana L.; Test, Joan
2010-01-01
Children build foundations for mathematical thinking in early play and exploration. During the preschool years, children enjoy exploring mathematical concepts--such as patterns, shape, spatial relationships, and measurement--leading them to spontaneously engage in mathematical thinking during play. Block play is one common example that engages…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The final design, performance analysis, and economic analysis of a solar hot water system for curing concrete blocks at the new Rotoclave block fabricating plant being built by the York Building Products Co. Inc. at Harrisburg, Pa. are presented. The system will use AAI Corporation's 24/1 concentrating collectors. (WHK)
NASA Astrophysics Data System (ADS)
Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.
2017-09-01
Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.