Science.gov

Sample records for phase change memory

  1. Interfacial phase-change memory.

    PubMed

    Simpson, R E; Fons, P; Kolobov, A V; Fukaya, T; Krbal, M; Yagi, T; Tominaga, J

    2011-07-03

    Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.

  2. Bipolar switching in chalcogenide phase change memory

    PubMed Central

    Ciocchini, N.; Laudato, M.; Boniardi, M.; Varesi, E.; Fantini, P.; Lacaita, A. L.; Ielmini, D.

    2016-01-01

    Phase change materials based on chalcogenides are key enabling technologies for optical storage, such as rewritable CD and DVD, and recently also electrical nonvolatile memory, named phase change memory (PCM). In a PCM, the amorphous or crystalline phase affects the material band structure, hence the device resistance. Although phase transformation is extremely fast and repeatable, the amorphous phase suffers structural relaxation and crystallization at relatively low temperatures, which may affect the temperature stability of PCM state. To improve the time/temperature stability of the PCM, novel operation modes of the device should be identified. Here, we present bipolar switching operation of PCM, which is interpreted by ion migration in the solid state induced by elevated temperature and electric field similar to the bipolar switching in metal oxides. The temperature stability of the high resistance state is demonstrated and explained based on the local depletion of chemical species from the electrode region. PMID:27377822

  3. Bipolar switching in chalcogenide phase change memory

    NASA Astrophysics Data System (ADS)

    Ciocchini, N.; Laudato, M.; Boniardi, M.; Varesi, E.; Fantini, P.; Lacaita, A. L.; Ielmini, D.

    2016-07-01

    Phase change materials based on chalcogenides are key enabling technologies for optical storage, such as rewritable CD and DVD, and recently also electrical nonvolatile memory, named phase change memory (PCM). In a PCM, the amorphous or crystalline phase affects the material band structure, hence the device resistance. Although phase transformation is extremely fast and repeatable, the amorphous phase suffers structural relaxation and crystallization at relatively low temperatures, which may affect the temperature stability of PCM state. To improve the time/temperature stability of the PCM, novel operation modes of the device should be identified. Here, we present bipolar switching operation of PCM, which is interpreted by ion migration in the solid state induced by elevated temperature and electric field similar to the bipolar switching in metal oxides. The temperature stability of the high resistance state is demonstrated and explained based on the local depletion of chemical species from the electrode region.

  4. Bipolar switching in chalcogenide phase change memory.

    PubMed

    Ciocchini, N; Laudato, M; Boniardi, M; Varesi, E; Fantini, P; Lacaita, A L; Ielmini, D

    2016-07-05

    Phase change materials based on chalcogenides are key enabling technologies for optical storage, such as rewritable CD and DVD, and recently also electrical nonvolatile memory, named phase change memory (PCM). In a PCM, the amorphous or crystalline phase affects the material band structure, hence the device resistance. Although phase transformation is extremely fast and repeatable, the amorphous phase suffers structural relaxation and crystallization at relatively low temperatures, which may affect the temperature stability of PCM state. To improve the time/temperature stability of the PCM, novel operation modes of the device should be identified. Here, we present bipolar switching operation of PCM, which is interpreted by ion migration in the solid state induced by elevated temperature and electric field similar to the bipolar switching in metal oxides. The temperature stability of the high resistance state is demonstrated and explained based on the local depletion of chemical species from the electrode region.

  5. Projected phase-change memory devices

    PubMed Central

    Koelmans, Wabe W.; Sebastian, Abu; Jonnalagadda, Vara Prasad; Krebs, Daniel; Dellmann, Laurent; Eleftheriou, Evangelos

    2015-01-01

    Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states. PMID:26333363

  6. Material Engineering for Phase Change Memory

    NASA Astrophysics Data System (ADS)

    Cabrera, David M.

    As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge2Sb2Te3 and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell's state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/mum to be at least 375 V/mum for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss. Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and litetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters. The materials G2S2T5, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory

  7. Crystal growth within a phase change memory cell.

    PubMed

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  8. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  9. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2011-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.

  10. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2012-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  11. Towards integrating chalcogenide based phase change memory with silicon microelectronics

    NASA Astrophysics Data System (ADS)

    Devasia, Archana

    The continued dominance of floating gate technology as the premier non-volatile memory (NVM) technology is expected to hit a roadblock due to issues associated with its inability to catch up with CMOS scaling. The uncertain future of floating gate memory has led to a host of unorthodox NVM technologies to surface as potential heirs. Among the mix is phase change memory (PCM), which is a non-volatile, resistance variable, memory technology wherein the state of the memory bit is defined by the resistance of the memory material. This research study examines novel, bilayer chalcogenide based materials composed of Ge-chalcogenide (GeTe or Ge2Se3) and Sn-chalcogenide (SnTe or SnSe) for phase change memory applications and explores their integration with CMOS technology. By using a layered arrangement, it is possible to induce phase change response in materials, which normally do not exhibit such behavior, and thus form new materials which may have lower threshold voltage and programming current requirements. Also, through the incorporation of a metal containing layer, the phase transition characteristics of the memory layer can be tailored in order to obtain in-situ, a material with optimized phase change properties. Using X-ray diffraction (XRD) and time resolved XRD, it has been demonstrated that stacked phase change memory films exhibit both structural and compositional dependency with annealing temperature. The outcome of the structural transformation of the bottom layer, is an annealing temperature dependent residual stress. By the incorporation of a Sn layer, the phase transition characteristics of Ge-chalcogenide thin films can be tuned. Clear evidence of thermally induced Ge, Sn and chalcogen inter-diffusion, has been discerned via transmission electron microscopy and parallel electron energy loss spectroscopy. The presence of Al2O3 as capping layer has been found to mitigate volatilization and metallic Sn phase separation at high temperatures. Two terminal PCM

  12. Inverse heat conduction problem in a phase change memory device

    NASA Astrophysics Data System (ADS)

    Battaglia, Jean-Luc; De, Indrayush; Sousa, Véronique

    2017-01-01

    An invers heat conduction problem is solved considering the thermal investigation of a phase change memory device using the scanning thermal microscopy. The heat transfer model rests on system identification for the probe thermal impedance and on a finite element method for the device thermal impedance. Unknown parameters in the model are then identified using a nonlinear least square algorithm that minimizes the quadratic gap between the measured probe temperature and the simulated one.

  13. New developments in optical phase-change memory

    NASA Astrophysics Data System (ADS)

    Ovshinsky, Stanford R.; Czubatyj, Wolodymyr

    2001-02-01

    Phase change technology has progressed from the original invention of Ovshinsky to become the leading choice for rewritable optical disks. ECD's early work in phase change materials and methods for operating in a direct overwrite fashion were crucial to the successes that have been achieved. Since the introduction of the first rewritable phase change products in 1991, the market has expanded from CD-RW into rewritable DVD with creative work going on worldwide. Phase change technology is ideally suited to address the continuous demand for increased storage capacity. First, laser beams can be focused to ever-smaller spot sizes using shorter wavelength lasers and higher performance optics. Blue lasers are now commercially viable and high numerical aperture and near field lenses have been demonstrated. Second, multilevel approaches can be used to increase capacity by a factor of three or more with concomitant increases in data transfer rate. In addition, ECD has decreased manufacturing costs through the use of innovative production technology. These factors combine to accelerate the widespread use of phase change technology. As in all our technologies, such as thin film photovoltaics, nickel metal hydride batteries, hydrogen storage systems, fuel cells, electrical memory, etc., we have invented the materials, the products, the production machines and the production processes for high rate, low-cost manufacture.

  14. Understanding Phase-Change Memory Alloys from a Chemical Perspective.

    PubMed

    Kolobov, A V; Fons, P; Tominaga, J

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  15. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    PubMed Central

    Kolobov, A.V.; Fons, P.; Tominaga, J.

    2015-01-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials. PMID:26323962

  16. Nanoscale phase change memory with graphene ribbon electrodes

    NASA Astrophysics Data System (ADS)

    Behnam, Ashkan; Xiong, Feng; Cappelli, Andrea; Wang, Ning C.; Carrion, Enrique A.; Hong, Sungduk; Dai, Yuan; Lyons, Austin S.; Chow, Edmond K.; Piccinini, Enrico; Jacoboni, Carlo; Pop, Eric

    2015-09-01

    Phase change memory (PCM) devices are known to reduce in power consumption as the bit volume and contact area of their electrodes are scaled down. Here, we demonstrate two types of low-power PCM devices with lateral graphene ribbon electrodes: one in which the graphene is patterned into narrow nanoribbons and the other where the phase change material is patterned into nanoribbons. The sharp graphene "edge" contacts enable switching with threshold voltages as low as ˜3 V, low programming currents (<1 μA SET and <10 μA RESET) and OFF/ON resistance ratios >100. Large-scale fabrication with graphene grown by chemical vapor deposition also enables the study of heterogeneous integration and that of variability for such nanomaterials and devices.

  17. Low-energy phase change memory with graphene confined layer

    NASA Astrophysics Data System (ADS)

    Zhu, Chengqiu; Ma, Jun; Ge, Xiaoming; Rao, Feng; Ding, Keyuan; Lv, Shilong; Wu, Liangcai; Song, Zhitang

    2016-06-01

    How to reduce the Reset operation energy is the key scientific and technological problem in the field of phase change memory (PCM). Here, we show in the Ge2Sb2Te5 based PCM cell, inserting an additional graphene monolayer in the Ge2Sb2Te5 layer can remarkably decrease both the Reset current and energy. Because of the small out-of-plane electrical and thermal conductivities of such monolayer graphene, the Set resistance and the heat dissipation towards top TiN electrode of the modified PCM cell are significantly increased and decreased, respectively. The mushroom-typed larger active phase transition volume thus can be confined inside the underlying thinner GST layer, resulting in the lower power consumption.

  18. FPGA-based prototype storage system with phase change memory

    NASA Astrophysics Data System (ADS)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  19. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory.

    PubMed

    Huang, Yu-Ting; Huang, Chun-Wei; Chen, Jui-Yuan; Ting, Yi-Hsin; Lu, Kuo-Chang; Chueh, Yu-Lun; Wu, Wen-Wei

    2014-09-23

    Phase change random access memory (PCRAM) has been extensively investigated for its potential applications in next-generation nonvolatile memory. In this study, indium(III) selenide (In2Se3) was selected due to its high resistivity ratio and lower programming current. Au/In2Se3-nanowire/Au phase change memory devices were fabricated and measured systematically in an in situ transmission electron microscope to perform a RESET/SET process under pulsed and dc voltage swept mode, respectively. During the switching, we observed the dynamic evolution of the phase transformation process. The switching behavior resulted from crystalline/amorphous change and revealed that a long pulse width would induce the amorphous or polycrystalline state by different pulse amplitudes, supporting the improvement of the writing speed, retention, and endurance of PCRAM.

  20. Autobiographical memory and structural brain changes in chronic phase TBI.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection.

  1. Flexible one diode-one phase change memory array enabled by block copolymer self-assembly.

    PubMed

    Mun, Beom Ho; You, Byoung Kuk; Yang, Se Ryeun; Yoo, Hyeon Gyun; Kim, Jong Min; Park, Woon Ik; Yin, You; Byun, Myunghwan; Jung, Yeon Sik; Lee, Keon Jae

    2015-04-28

    Flexible memory is the fundamental component for data processing, storage, and radio frequency communication in flexible electronic systems. Among several emerging memory technologies, phase-change random-access memory (PRAM) is one of the strongest candidate for next-generation nonvolatile memories due to its remarkable merits of large cycling endurance, high speed, and excellent scalability. Although there are a few approaches for flexible phase-change memory (PCM), high reset current is the biggest obstacle for the practical operation of flexible PCM devices. In this paper, we report a flexible PCM realized by incorporating nanoinsulators derived from a Si-containing block copolymer (BCP) to significantly lower the operating current of the flexible memory formed on plastic substrate. The reduction of thermal stress by BCP nanostructures enables the reliable operation of flexible PCM devices integrated with ultrathin flexible diodes during more than 100 switching cycles and 1000 bending cycles.

  2. Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L.

    2012-04-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory.

  3. Thermally efficient and highly scalable In2Se3 nanowire phase change memory

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Kang, Daegun; Kim, Jungsik; Meyyappan, M.; Lee, Jeong-Soo

    2013-04-01

    The electrical characteristics of nonvolatile In2Se3 nanowire phase change memory are reported. Size-dependent memory switching behavior was observed in nanowires of varying diameters and the reduction in set/reset threshold voltage was as low as 3.45 V/6.25 V for a 60 nm nanowire, which is promising for highly scalable nanowire memory applications. Also, size-dependent thermal resistance of In2Se3 nanowire memory cells was estimated with values as high as 5.86×1013 and 1.04×106 K/W for a 60 nm nanowire memory cell in amorphous and crystalline phases, respectively. Such high thermal resistances are beneficial for improvement of thermal efficiency and thus reduction in programming power consumption based on Fourier's law. The evaluation of thermal resistance provides an avenue to develop thermally efficient memory cell architecture.

  4. Nonvolatile ``AND,'' ``OR,'' and ``NOT'' Boolean logic gates based on phase-change memory

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhong, Y. P.; Deng, Y. F.; Zhou, Y. X.; Xu, L.; Miao, X. S.

    2013-12-01

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  5. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation.

    PubMed

    Zhou, Xilin; Dong, Weiling; Zhang, Hao; Simpson, Robert E

    2015-06-11

    Oxygen-doped germanium telluride phase change materials are proposed for high temperature applications. Up to 8 at.% oxygen is readily incorporated into GeTe, causing an increased crystallisation temperature and activation energy. The rhombohedral structure of the GeTe crystal is preserved in the oxygen doped films. For higher oxygen concentrations the material is found to phase separate into GeO2 and TeO2, which inhibits the technologically useful abrupt change in properties. Increasing the oxygen content in GeTe-O reduces the difference in film thickness and mass density between the amorphous and crystalline states. For oxygen concentrations between 5 and 6 at.%, the amorphous material and the crystalline material have the same density. Above 6 at.% O doping, crystallisation exhibits an anomalous density change, where the volume of the crystalline state is larger than that of the amorphous. The high thermal stability and zero-density change characteristic of Oxygen-incorporated GeTe, is recommended for efficient and low stress phase change memory devices that may operate at elevated temperatures.

  6. Program and read scaling trade-offs in phase change memories.

    PubMed

    Braga, Stefania; Cabrini, Alessandro; Torelli, Guido

    2011-12-01

    This paper investigates the scaling perspectives of Phase Change Memory technology by analyzing the effects of geometrical dimensions reduction and the read voltage scaling on program and read operations. To this end, we derive analytical expressions which allow us to estimate the dependence of the RESET and read current on key geometrical parameters of the memory cell, such as heater size and chalcogenide layer thickness.

  7. Size effect of nano scale phase change random access memory.

    PubMed

    Son, Ji Hoon; Choi, HongKyw; Jang, Nakwon; Kim, Hong Seung; Yi, Dong Young; Lee, Seong Hwan

    2010-05-01

    In this paper, we have investigated the size effect of nano scale PRAM using three-dimensional finite element analysis tool. The reset current and temperature profile of PRAM cells with top and bottom electrode contact hole size were calculated by the numerical method. And temperature profile of PRAM unit cell with size and thickness of GST thin film was simulated. As top electrode contact size was smaller, reset current decreased. But these variations couldn't affect to operate memory. On the other hand, as bottom electrode contact size was smaller, reset current abruptly decreased.

  8. Bond constraint theory studies of chalcogenide phase change memories

    SciTech Connect

    Paesler, M.A.; Baker, D.A.; Lucovsky, G.

    2008-07-08

    Studies of amorphous (a-) semiconductors have been driven by technological advances as well as fundamental theories. Observation of electrical switching, for example, fueled early interest in a-chalcogenides. More recently a-chalcogenide switching has been applied successfully to programmable memory devices as well as DVD technology where the quest for the discovery of better-suited materials continues. Thus, switching grants researchers today with an active arena of technological as well as fundamental study. Bond constraint theory (BCT) and rigidity theory provide a powerful framework for understanding the structure and properties of a-materials. Application of these theories to switching in a-chalcogenides holds the promise of finding the best composition suited for switching applications. Extended X-ray absorption fine structure (EXAFS) spectroscopy is an ideally suited technique to investigate the switching properties of these materials. Films of amorphous Ge{sub 2}Sb{sub 2}Te{sub 4}, Ge{sub 2}Sb{sub 2}Te{sub 5}, and Ge{sub 2}Sb{sub 2}Te{sub 7} exhibit differing bonding structures and bond statistics, which result in different electronic and optical properties. Results of new EXAFS experiments on these three critical compositions in the Ge-Sb-Te system are presented in light of BCT and rigidity theory.

  9. How important is the {103} plane of stable Ge2 Sb2 Te5 for phase-change memory?

    PubMed

    Zhang, W; Zheng, W T; Kim, J-G; Cui, X Q; Li, L; Qi, J G; Kim, Y-J; Song, S A

    2015-07-01

    Closely correlating with {200} plane of cubic phase, {103} plane of hexagonal phase of Ge(2)Sb(2)Te(5) plays a crucial role in achieving fast phase change process as well as formation of modulation structures, dislocations and twins in Ge(2)Sb(2)Te(5). The behaviors of {103} plane of hexagonal phase render the phase-change memory process as a nanoscale shape memory.

  10. Logic computation in phase change materials by threshold and memory switching.

    PubMed

    Cassinerio, M; Ciocchini, N; Ielmini, D

    2013-11-06

    Memristors, namely hysteretic devices capable of changing their resistance in response to applied electrical stimuli, may provide new opportunities for future memory and computation, thanks to their scalable size, low switching energy and nonvolatile nature. We have developed a functionally complete set of logic functions including NOR, NAND and NOT gates, each utilizing a single phase-change memristor (PCM) where resistance switching is due to the phase transformation of an active chalcogenide material. The logic operations are enabled by the high functionality of nanoscale phase change, featuring voltage comparison, additive crystallization and pulse-induced amorphization. The nonvolatile nature of memristive states provides the basis for developing reconfigurable hybrid logic/memory circuits featuring low-power and high-speed switching.

  11. Material engineering of GexTe100-x compounds to improve phase-change memory performances

    NASA Astrophysics Data System (ADS)

    Navarro, G.; Sousa, V.; Persico, A.; Pashkov, N.; Toffoli, A.; Bastien, J.-C.; Perniola, L.; Maitrejean, S.; Roule, A.; Zuliani, P.; Annunziata, R.; De Salvo, B.

    2013-11-01

    In this paper we provide a detailed physical and electrical characterization of Germanium Telluride compounds (GexTe100-x) targeting phase-change memory applications. Thin films of Germanium-rich as well as Tellurium-rich phase-change materials are deposited for material analysis (XRD, resistivity and optical characterization). GexTe100-x compounds are then integrated in lance-type analytical phase-change memory devices allowing for a thorough analysis of the switching characteristics, data retention and endurance performances. Tellurium-rich GeTe alloys exhibit stable programming characteristics and can sustain endurance up to 107 cycles, while Germanium-rich compounds show an unstable RESET state during repeated write/erase cycles, probably affected by Ge segregation. Finally we demonstrate that data retention is strongly improved departing from Ge50Te50 stoichiometric composition.

  12. GeTe/Sb7Te3 superlatticelike structure for lateral phase change memory

    NASA Astrophysics Data System (ADS)

    Yang, Hongxin; Chong, Chong Tow; Zhao, Rong; Lee, Hock Koon; Li, Jianming; Lim, Kian Guan; Shi, Luping

    2009-05-01

    A series of superlatticelike (SLL) structure incorporated with two phase-change materials GeTe and Sb7Te3 was applied in lateral phase change memory. Power consumption and lifetime were used as two criteria to optimize the SLL structure. It was found that with the thickness ratio of GeTe to Sb7Te3 at 1.6, the RESET current could be as low as 1.5 mA and the endurance could reach as high as 5.3×106 cycles. By varying the thickness ratio of GeTe to Sb7Te3, the crystallization temperature of SLL structures and the performance of lateral phase change memory with these SLL structures can be controlled.

  13. Temperature dependence of SET switching characteristics in phase-change memory cells

    NASA Astrophysics Data System (ADS)

    He, Qiang; Li, Zhen; Liu, Chang; Meng, Xiang-ru; Peng, Ju-hong; Lai, Zhi-bo; Miao, Xiang-shui

    2016-09-01

    The temperature dependence of crystallization kinetics of phase-change materials raises a series of reliability issues, while phase-change memory cells work at high temperature or thermal-disturbance condition. These issues hinder the development of ultrahigh-density storage devices. We investigate the evolution of SET switching characteristics of phase-change memory cells at high operating temperature. We show that the high temperature strongly impacts the SET state resistance. As a result, SET failure has been observed with elevated ambient temperature. Our SPICE simulations indicate that transient amorphization behavior during a complete SET pulse period is considered as the potential mechanism of SET failure. By modifying the SET pulse intensity and width linearly, we successfully reduce the SET failure in the experiments. The results illustrate that the demonstrated linear properties may optimize SET pulse performance.

  14. Two-bit multi-level phase change random access memory with a triple phase change material stack structure

    NASA Astrophysics Data System (ADS)

    Gyanathan, Ashvini; Yeo, Yee-Chia

    2012-11-01

    This work demonstrates a novel two-bit multi-level device structure comprising three phase change material (PCM) layers, separated by SiN thermal barrier layers. This triple PCM stack consisted of (from bottom to top), Ge2Sb2Te5 (GST), an ultrathin SiN barrier, nitrogen-doped GST, another ultrathin SiN barrier, and Ag0.5In0.5Sb3Te6. The PCM layers can selectively amorphize to form 4 different resistance levels ("00," "01," "10," and "11") using respective voltage pulses. Electrical characterization was extensively performed on these devices. Thermal analysis was also done to understand the physics behind the phase changing characteristics of the two-bit memory devices. The melting and crystallization temperatures of the PCMs play important roles in the power consumption of the multi-level devices. The electrical resistivities and thermal conductivities of the PCMs and the SiN thermal barrier are also crucial factors contributing to the phase changing behaviour of the PCMs in the two-bit multi-level PCRAM device.

  15. Threshold-voltage modulated phase change heterojunction for application of high density memory

    SciTech Connect

    Yan, Baihan; Tong, Hao Qian, Hang; Miao, Xiangshui

    2015-09-28

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.

  16. Programming power reduction in confined phase change memory cells with titanium dioxide clad layer

    NASA Astrophysics Data System (ADS)

    Chen, Liangliang; Zhang, Zhonghua; Song, Sannian; Song, Zhitang; Zheng, Qianqian; Zhang, Xin; Zhang, Juan; Zheng, Wanting; Shao, Hehong; Zhu, Xiuwei; Yu, Wenlei

    2017-01-01

    A confined structure phase change memory (PCM) cell has been fabricated based on the focused-ion beam technique. Furthermore, the titanium dioxide clad layer was proposed for promoting the temperature rise in the Ge0.61Sb2Te layer that causes the reduction in the reset voltage and current compared to the phase change memory cell without clad layer. Theoretical thermal simulation and calculation for the reset process are conducted to analyze the thermal effect of the titanium dioxide heating layer. The improved performance of the PCM cell with dioxide clad layer can be attributed to the fact that the buffer layer not only acted as heating layer but also efficiently reduced the cell dissipated power.

  17. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    NASA Astrophysics Data System (ADS)

    Jin, Bo; Kim, Jungsik; Pi, Dong-Hai; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo

    2014-12-01

    Phase change random access memory (PCRAM) devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM) and the encapsulating layer material (YELM) according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM) while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  18. Yttrium-Doped Sb2Te3: A Promising Material for Phase-Change Memory.

    PubMed

    Li, Zhen; Si, Chen; Zhou, Jian; Xu, Huibin; Sun, Zhimei

    2016-10-05

    Sb2Te3 exhibits outstanding performance among the candidate materials for phase-change memory; nevertheless, its low electrical resistivity and thermal stability hinder its practical application. Hence, numerous studies have been carried out to search suitable dopants to improve the performance; however, the explored dopants always cause phase separation and thus drastically reduce the reliability of phase-change memory. In this work, on the basis of ab initio calculations, we have identified yttrium (Y) as an optimal dopant for Sb2Te3, which overcomes the phase separation problem and significantly increases the resistivity of crystalline state by at least double that of Sb2Te3. The good phase stability of crystalline Y-doped Sb2Te3 (YST) is attributed to the same crystal structure between Y2Te3 and Sb2Te3 as well as their tiny lattice mismatch of only ∼1.1%. The significant increase in resistivity of c-YST is understood by our findings that Y can dramatically increase the carrier's effective mass by regulating the band structure and can also reduce the intrinsic carrier density by suppressing the formation of SbTe antisite defects. Y doping can also improve the thermal stability of amorphous YST based on our ab initio molecular dynamics simulations, which is attributed to the stronger interactions between Y and Te than that of Sb and Te.

  19. Development and application of a new CMP slurry for phase change memory

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Liu, Weili; Liu, Bo; Song, Zhitang

    2016-10-01

    In this paper, the development of a new chemical mechanical planarization (CMP) slurry for phase change material GeSbTe (GST) and its application in the manufacturing process of phase change memory based on GST is presented. The basic abrasive of the slurry was special colloid silica which was chosen from several kinds of colloid silica with different surface treatment and stable pH range. Oxidizer, chelator, inhibitor and protective agent were added to the colloid silica to accelerate the polishing rate and protect the surface. A series of CMP experiments were carried out on a 4-inch experimental platform to confirm and optimize the performance of the slurry with different ratio of reagents. After the recipe was frozen, the slurry was used in the CMP process of manufacturing the phase change memory on 12-inch wafers. The results on blanket wafers show that the remove rate, endurance life, residue control is at the same level with those of the old slurry, while the scratch control is much better than that of the old one. The final results on both metal line structure and blade structure show that the new slurry has much better performance than the old one on oxide loss, scratch and erosion control.

  20. Balancing the Lifetime and Storage Overhead on Error Correction for Phase Change Memory.

    PubMed

    An, Ning; Wang, Rui; Gao, Yuan; Yang, Hailong; Qian, Depei

    2015-01-01

    As DRAM is facing the scaling difficulty in terms of energy cost and reliability, some nonvolatile storage materials were proposed to be the substitute or supplement of main memory. Phase Change Memory (PCM) is one of the most promising nonvolatile memory that could be put into use in the near future. However, before becoming a qualified main memory technology, PCM should be designed reliably so that it can ensure the computer system's stable running even when errors occur. The typical wear-out errors in PCM have been well studied, but the transient errors, that caused by high-energy particles striking on the complementary metal-oxide semiconductor (CMOS) circuit of PCM chips or by resistance drifting in multi-level cell PCM, have attracted little focus. In this paper, we propose an innovative mechanism, Local-ECC-Global-ECPs (LEGE), which addresses both soft errors and hard errors (wear-out errors) in PCM memory systems. Our idea is to deploy a local error correction code (ECC) section to every data line, which can detect and correct one-bit errors immediately, and a global error correction pointers (ECPs) buffer for the whole memory chip, which can be reloaded to correct more hard error bits. The local ECC is used to detect and correct the unknown one-bit errors, and the global ECPs buffer is used to store the corrected value of hard errors. In comparison to ECP-6, our method provides almost identical lifetimes, but reduces approximately 50% storage overhead. Moreover, our structure reduces approximately 3.55% access latency overhead by increasing 1.61% storage overhead compared to PAYG, a hard error only solution.

  1. Towards a drift-free multi-level Phase Change Memory

    NASA Astrophysics Data System (ADS)

    Cinar, Ibrahim; Ozdemir, Servet; Cogulu, Egecan; Gokce, Aisha; Stipe, Barry; Katine, Jordan; Aktas, Gulen; Ozatay, Ozhan

    For ultra-high density data storage applications, Phase Change Memory (PCM) is considered a potentially disruptive technology. Yet, the long-term reliability of the logic levels corresponding to the resistance states of a PCM device is an important issue for a stable device operation since the resistance levels drift uncontrollably in time. The underlying mechanism for the resistance drift is considered as the structural relaxation and spontaneous crystallization at elevated temperatures. We fabricated a nanoscale single active layer-phase change memory cell with three resistance levels corresponding to crystalline, amorphous and intermediate states by controlling the current injection site geometry. For the intermediate state and the reset state, the activation energies and the trap distances have been found to be 0.021 eV and 0.235 eV, 1.31 nm and 7.56 nm, respectively. We attribute the ultra-low and weakly temperature dependent drift coefficient of the intermediate state (ν = 0.0016) as opposed to that of the reset state (ν = 0.077) as being due to the dominant contribution of the interfacial defects in electrical transport in the case of the mixed phase. Our results indicate that the engineering of interfacial defects will enable a drift-free multi-level PCM device design.

  2. Microstructural Characterization in Reliability Measurement of Phase Change Random Access Memory

    NASA Astrophysics Data System (ADS)

    Bae, Junsoo; Hwang, Kyuman; Park, Kwangho; Jeon, Seongbu; Kang, Dae-hwan; Park, Soonoh; Ahn, Juhyeon; Kim, Seoksik; Jeong, Gitae; Chung, Chilhee

    2011-04-01

    The cell failures after cycling endurance in phase-change random access memory (PRAM) have been classified into three groups, which have been analyzed by transmission electron microscopy (TEM). Both stuck reset of the set state (D0) and stuck set of the reset state (D1) are due to a void created inside GeSbTe (GST) film or thereby lowering density of GST film. The decrease of the both set and reset resistances that leads to the tails from the reset distribution are induced from the Sb increase with cycles.

  3. Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier.

    PubMed

    Ahn, Chiyui; Fong, Scott W; Kim, Yongsung; Lee, Seunghyun; Sood, Aditya; Neumann, Christopher M; Asheghi, Mehdi; Goodson, Kenneth E; Pop, Eric; Wong, H-S Philip

    2015-10-14

    Phase-change memory (PCM) is an important class of data storage, yet lowering the programming current of individual devices is known to be a significant challenge. Here we improve the energy-efficiency of PCM by placing a graphene layer at the interface between the phase-change material, Ge2Sb2Te5 (GST), and the bottom electrode (W) heater. Graphene-PCM (G-PCM) devices have ∼40% lower RESET current compared to control devices without the graphene. This is attributed to the graphene as an added interfacial thermal resistance which helps confine the generated heat inside the active PCM volume. The G-PCM achieves programming up to 10(5) cycles, and the graphene could further enhance the PCM endurance by limiting atomic migration or material segregation at the bottom electrode interface.

  4. High thermal stable and fast switching Ni-Ge-Te alloy for phase change memory applications

    NASA Astrophysics Data System (ADS)

    Cao, Liangliang; Wu, Liangcai; Zhu, Wenqing; Ji, Xinglong; Zheng, Yonghui; Song, Zhitang; Rao, Feng; Song, Sannian; Ma, Zhongyuan; Xu, Ling

    2015-12-01

    Ni-Ge-Te phase change material is proposed and investigated for phase change memory (PCM) applications. With Ni addition, the crystallization temperature, the data retention ability, and the crystallization speed are remarkably improved. The Ni-Ge-Te material has a high crystallization temperature (250 °C) and good data retention ability (149 °C). A reversible switching between SET and RESET state can be achieved by an electrical pulse as short as 6 ns. Up to ˜3 × 104 SET/RESET cycles are obtained with a resistance ratio of about two orders of magnitude. All of these demonstrate that Ni-Ge-Te alloy is a promising material for high speed and high temperature PCM applications.

  5. A power-efficient and non-volatile programmable logic array based on phase change memory

    NASA Astrophysics Data System (ADS)

    Du, Yuan; Ye, Yong; Kang, Yong; Xia, Yangyang; Song, Zhitang; Chen, Bomy

    2016-10-01

    Recently, numerous efforts have been made on NVM-based Field Programmable Gate Arrays (FPGAs) because the emerging non-volatile memory (NVM) technologies have the advantages of lower leakage power and higher density than Static Random Access Memory (SRAM) technology. However, the cost and the scale of FPGAs are so high and large that they can't be applied in the consumer electronics field and Internet of Things (IoT). Due to the small scale and low cost, Programmable Logic Array (PLA) is an ideal option for these fields. However, up to now there are few researches on non-volatile PLA based on emerging NVMs. In this paper, a power-efficient non-volatile PLA based on Phase Change Memory (PCM) is proposed. The proposed non-volatile PLA architecture has been evaluated using the 40 nm Complementary Metal Oxide Semiconductor (CMOS) technology, and the simulation results show the correct functionality of the PLA. After the PLA reads the configuration bits from the non-volatile programmable elements (PEs), the power of the programmable elements can be OFF. Therefore, the standby power of the programmable elements is much smaller than that of the commonly SRAM-based PLAs. The simulation results also show that the total power of nvPLA is reduced by about 53.6% when the supply power of Programmable Element is OFF.

  6. In-situ crystallization of GeTe\\GaSb phase change memory stacked films

    SciTech Connect

    Velea, A.; Borca, C. N.; Grolimund, D.; Socol, G.; Galca, A. C.; Popescu, M.; Bokhoven, J. A. van

    2014-12-21

    Single and double layer phase change memory structures based on GeTe and GaSb thin films were deposited by pulsed laser deposition (PLD). Their crystallization behavior was studied using in-situ synchrotron techniques. Electrical resistance vs. temperature investigations, using the four points probe method, showed transition temperatures of 138 °C and 198 °C for GeTe and GaSb single films, respectively. It was found that after GeTe crystallization in the stacked films, Ga atoms from the GaSb layer diffused in the vacancies of the GeTe crystalline structure. Therefore, the crystallization temperature of the Sb-rich GaSb layer is decreased by more than 30 °C. Furthermore, at 210 °C, the antimony excess from GaSb films crystallizes as a secondary phase. At higher annealing temperatures, the crystalline Sb phase increased on the expense of GaSb crystalline phase which was reduced. Extended X-ray absorption fine structure (EXAFS) measurements at the Ga and Ge K-edges revealed changes in their local atomic environments as a function of the annealing temperature. Simulations unveil a tetrahedral configuration in the amorphous state and octahedral configuration in the crystalline state for Ge atoms, while Ga is four-fold coordinated in both as-deposited and annealed samples.

  7. Electrophysical Properties of Ge-Sb-Te Thin Films for Phase Change Memory Devices

    NASA Astrophysics Data System (ADS)

    Lazarenko, P. I.; Kozyukhin, S. A.; Sherchenkov, A. A.; Babich, A. V.; Timoshenkov, S. P.; Gromov, D. G.; Zabolotskaya, A. V.; Kozik, V. V.

    2017-01-01

    In this work, we studied temperature dependences of the resistivity and current-voltage characteristics of amorphous thin films based on the materials of a Ge-Sb-Te system of compositions GeSb4Te7 (GST147), GeSb2Te4 (GST124), and Ge2Sb2Te5 (GST225) applied in the phase change memory devices. The effect of changes in the composition of thin films on the crystallization temperature, resistivity of films in amorphous and crystalline states, and on the activation energy of conductivity is determined. It is found that the peculiarity of these materials is the mechanism of two-channel conductivity where the contribution to the conductivity is made by charge carriers excited into localized states in the band tails and by carriers of the delocalized states in the valence band.

  8. Nanomechanical morphology of amorphous, transition, and crystalline domains in phase change memory thin films

    NASA Astrophysics Data System (ADS)

    Bosse, J. L.; Grishin, I.; Huey, B. D.; Kolosov, O. V.

    2014-09-01

    In the search for phase change materials (PCM) that may rival traditional random access memory, a complete understanding of the amorphous to crystalline phase transition is required. For the well-known Ge2Sb2Te5 (GST) and GeTe (GT) chalcogenides, which display nucleation and growth dominated crystallization kinetics, respectively, this work explores the nanomechanical morphology of amorphous and crystalline phases in 50 nm thin films. Subjecting these PCM specimens to a lateral thermal gradient spanning the crystallization temperature allows for a detailed morphological investigation. Surface and depth-dependent analyses of the resulting amorphous, transition and crystalline regions are achieved with shallow angle cross-sections, uniquely implemented with beam exit Ar ion polishing. To resolve the distinct phases, ultrasonic force microscopy (UFM) with simultaneous topography is implemented revealing a relative stiffness contrast between the amorphous and crystalline phases of 14% for the free film surface and 20% for the cross-sectioned surface. Nucleation is observed to occur preferentially at the PCM-substrate and free film interface for both GST and GT, while fine subsurface structures are found to be sputtering direction dependent. Combining surface and cross-section nanomechanical mapping in this manner allows 3D analysis of microstructure and defects with nanoscale lateral and depth resolution, applicable to a wide range of materials characterization studies where the detection of subtle variations in elastic modulus or stiffness are required.

  9. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices

    PubMed Central

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-01

    Crystal–amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier–lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13–0.6 MA cm−2) compared with the melt-quench strategy (∼50 MA cm−2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation. PMID:26805748

  10. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices

    NASA Astrophysics Data System (ADS)

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-01

    Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm-2) compared with the melt-quench strategy (~50 MA cm-2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.

  11. Can conventional phase-change memory devices be scaled down to single-nanometre dimensions?

    NASA Astrophysics Data System (ADS)

    Hayat, Hasan; Kohary, Krisztian; Wright, C. David

    2017-01-01

    The scaling potential of ‘mushroom-type’ phase-change memory devices is evaluated, down to single-nanometre dimensions, using physically realistic simulations that combine electro-thermal modelling with a Gillespie Cellular Automata phase-transformation approach. We found that cells with heater contact sizes as small as 6 nm could be successfully amorphized and re-crystallized (RESET and SET) using moderate excitation voltages. However, to enable the efficient formation of amorphous domes during RESET in small cells (heater contact diameters of 10 nm or less), it was necessary to improve the thermal confinement of the cell to reduce heat loss via the electrodes. The resistance window between the SET and RESET states decreased as the cell size reduced, but it was still more than an order of magnitude even for the smallest cells. As expected, the RESET current reduced as the cells got smaller; indeed, RESET current scaled with the inverse of the heater contact diameter and ultra-small RESET currents of only 19 μA were achieved for the smallest cells. Our results show that the conventional mushroom-type phase-change cell architecture is scalable and operable in the sub-10nm region.

  12. Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses

    PubMed Central

    Ambrogio, Stefano; Ciocchini, Nicola; Laudato, Mario; Milo, Valerio; Pirovano, Agostino; Fantini, Paolo; Ielmini, Daniele

    2016-01-01

    We present a novel one-transistor/one-resistor (1T1R) synapse for neuromorphic networks, based on phase change memory (PCM) technology. The synapse is capable of spike-timing dependent plasticity (STDP), where gradual potentiation relies on set transition, namely crystallization, in the PCM, while depression is achieved via reset or amorphization of a chalcogenide active volume. STDP characteristics are demonstrated by experiments under variable initial conditions and number of pulses. Finally, we support the applicability of the 1T1R synapse for learning and recognition of visual patterns by simulations of fully connected neuromorphic networks with 2 or 3 layers with high recognition efficiency. The proposed scheme provides a feasible low-power solution for on-line unsupervised machine learning in smart reconfigurable sensors. PMID:27013934

  13. Optimization of J-V characteristic in diode array for phase change memory

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Liu, Yan; Liu, Bo; Zhang, Chao; Song, Zhitang

    2016-10-01

    In this paper, current density-voltage (J-V) characteristic of dual trench diode array have been investigated by both TCAD model and experimental method. It is shown that the arsenic concentration in buried N+ layer (BNL), epitaxial (EPI) layer thickness, and the dosage of P region in PN junction are expected to be the prominent factors responsible for both of the leakage and drive current performance according to TCAD simulation. By introducing the optimal siliconbased results, the 4×4 diode arrays were successfully manufactured by 40nm CMOS technology. The median values of drive and reverse leakage current densities are 7.30×10-2 A/μm2 and 5.61×10-9 A/μm2, respectively. The breakdown voltages (BVDs) of diode array are exceeding 6V, and the Jon/Joff ratios of 109, which can satisfy the requirements of phase change memory (PCM) applications.

  14. GeTe sequences in superlattice phase change memories and their electrical characteristics

    SciTech Connect

    Ohyanagi, T. Kitamura, M.; Takaura, N.; Araidai, M.; Kato, S.; Shiraishi, K.

    2014-06-23

    We studied GeTe structures in superlattice phase change memories (superlattice PCMs) with a [GeTe/Sb{sub 2}Te{sub 3}] stacked structure by X-ray diffraction (XRD) analysis. We examined the electrical characteristics of superlattice PCMs with films deposited at different temperatures. It was found that XRD spectra differed between the films deposited at 200 °C and 240 °C; the differences corresponded to the differences in the GeTe sequences in the films. We applied first-principles calculations to calculate the total energy of three different GeTe sequences. The results showed the Ge-Te-Ge-Te sequence had the lowest total energy of the three and it was found that with this sequence the superlattice PCMs did not run.

  15. Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory

    SciTech Connect

    Lee, Bong-Sub Darmawikarta, Kristof; Abelson, John R.; Raoux, Simone; Shih, Yen-Hao; Zhu, Yu

    2014-02-17

    The nanoscale crystal nuclei in an amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} bit in a phase change memory device were evaluated by fluctuation transmission electron microscopy. The quench time in the device (∼10 ns) afforded more and larger nuclei in the melt-quenched state than in the as-deposited state. However, nuclei were even more numerous and larger in a test structure with a longer quench time (∼100 ns), verifying the prediction of nucleation theory that slower cooling produces more nuclei. It also demonstrates that the thermal design of devices will strongly influence the population of nuclei, and thus the speed and data retention characteristics.

  16. Direct observation of nanometer-scale Joule and Peltier effects in phase change memory devices

    NASA Astrophysics Data System (ADS)

    Grosse, Kyle L.; Xiong, Feng; Hong, Sungduk; King, William P.; Pop, Eric

    2013-05-01

    We measure power dissipation in phase change memory (PCM) devices by scanning Joule expansion microscopy (SJEM) with ˜50 nm spatial and 0.2 K temperature resolution. The temperature rise in the Ge2Sb2Te5 (GST) is dominated by Joule heating, but at the GST-TiW contacts it is a combination of Peltier and current crowding effects. Comparison of SJEM and electrical measurements with simulations of the PCM devices uncovers a thermopower of ˜350 μV K-1 and a contact resistance of ˜2.0 × 10-8 Ω m2 (to TiW) for 25 nm thick films of face centered-cubic crystalline GST. Knowledge of such nanometer-scale Joule, Peltier, and current crowding effects is essential for energy-efficient design of future PCM technology.

  17. Simulation study on heat conduction of a nanoscale phase-change random access memory cell.

    PubMed

    Kim, Junho; Song, Ki-Bong

    2006-11-01

    We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly.

  18. Ultrafast switching in nanoscale phase-change random access memory with superlattice-like structures.

    PubMed

    Loke, Desmond; Shi, Luping; Wang, Weijie; Zhao, Rong; Yang, Hongxin; Ng, Lung-Tat; Lim, Kian-Guan; Chong, Tow-Chong; Yeo, Yee-Chia

    2011-06-24

    Phase-change random access memory cells with superlattice-like (SLL) GeTe/Sb(2)Te(3) were demonstrated to have excellent scaling performance in terms of switching speed and operating voltage. In this study, the correlations between the cell size, switching speed and operating voltage of the SLL cells were identified and investigated. We found that small SLL cells can achieve faster switching speed and lower operating voltage compared to the large SLL cells. Fast amorphization and crystallization of 300 ps and 1 ns were achieved in the 40 nm SLL cells, respectively, both significantly faster than those observed in the Ge(2)Sb(2)Te(5) (GST) cells of the same cell size. 40 nm SLL cells were found to switch with low amorphization voltage of 0.9 V when pulse-widths of 5 ns were employed, which is much lower than the 1.6 V required by the GST cells of the same cell size. These effects can be attributed to the fast heterogeneous crystallization, low thermal conductivity and high resistivity of the SLL structures. Nanoscale PCRAM with SLL structure promises applications in high speed and low power memory devices.

  19. Study of phase change technology for computer memory using Se70Te30-xAgx system

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Agarwal, Pragya; Saxena, Abhay

    2013-06-01

    The phase change memory is the revolutionary technology for computer world today. Phase change memory alloy is composed of chalcogenide glasses. In the present work Ag is doped in binary Se70Te30 system and activation energy of crystallization is calculated. These ternary alloys are explored in various fields like photo doping, optical imaging, and phase change optical recording. The crystallization kinetics of various ternary Se70Te30-xAgx(x = 0,2,4,6) alloys are studied by using Non-isothermal Iso-Conversional methods. The dependence of activation energy Ec is discussed by various methods. The result shows that the activation energy Ec plays a vital role in proving these materials as best applicable materials in optical phase change recording devices.

  20. Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling.

    PubMed

    Lee, Jaeho; Asheghi, Mehdi; Goodson, Kenneth E

    2012-05-25

    The coupled transport of heat and electrical current, or thermoelectric phenomena, can strongly influence the temperature distribution and figures of merit for phase-change memory (PCM). This paper simulates PCM devices with careful attention to thermoelectric transport and the resulting impact on programming current during the reset operation. The electrothermal simulations consider Thomson heating within the phase-change material and Peltier heating at the electrode interface. Using representative values for the Thomson and Seebeck coefficients extracted from our past measurements of these properties, we predict a cell temperature increase of 44% and a decrease in the programming current of 16%. Scaling arguments indicate that the impact of thermoelectric phenomena becomes greater with smaller dimensions due to enhanced thermal confinement. This work estimates the scaling of this reduction in programming current as electrode contact areas are reduced down to 10 nm × 10 nm. Precise understanding of thermoelectric phenomena and their impact on device performance is a critical part of PCM design strategies.

  1. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    SciTech Connect

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-14

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

  2. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

  3. Suppression of thermoelectric Thomson effect in silicon microwires under large electrical bias and implications for phase-change memory devices

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Gokirmak, Ali; Silva, Helena

    2014-12-01

    We have observed how thermoelectric effects that result in asymmetric melting of silicon wires are suppressed for increasing electric current density (J). The experimental results are investigated using numerical modeling of the self-heating process, which elucidates the relative contributions of the asymmetric thermoelectric Thomson heat (˜J) and symmetric Joule heating (˜J2) that lead to symmetric heating for higher current levels. These results are applied in modeling of the self-heating process in phase-change memory devices. While, phase-change memory devices show a clearly preferred operation polarity due to thermoelectric effects, nearly symmetric operation can be achieved with higher amplitude and shorter current pulses, which can lead to design of improved polarity-invariant memory circuitry.

  4. Investigation and solution of low yield problem for phase change memory with lateral fully-confined structure

    NASA Astrophysics Data System (ADS)

    Yaling, Zhou; Xiaofeng, Wang; Yingchun, Fu; Xiaodong, Wang; Fuhua, Yang

    2016-08-01

    This paper mainly focuses on solving the low yield problem for lateral phase change random access memory with a fully confined phase change material node. Improper over-etching and bad step-coverage of physical vapor deposition were the main reasons for the poor contact quality, which leads to the low yield problem. Process improvement was carried out to better control over-etching within 10 nm. Atomic layer deposition process was used to replace physical vapor deposition to guarantee good step coverage. Contrasting cross-sectional photos taken by scanning electron microscopy showed great improvement in contact quality. The atom layer deposition process was demonstrated to have good prospects in nano-contact for phase change memory application. Project supported by the National Basic Research Program of China (No. 2011CB922103), the National Natural Science Foundation of China (Nos. 61376420, 61404126, A040203), and the Science and Technology Project of Shenzhen (No. JCYJ20140509172609175).

  5. Investigation of data retention under current bias for phase change memory

    NASA Astrophysics Data System (ADS)

    Lu, Yao-Yao; Cai, Dao-Lin; Chen, Yi-Feng; Wang, Yue-Qing; Wei, Hong-Yang; Huo, Ru-Ru; Song, Zhi-Tang

    2016-10-01

    With Phase-change memory (PCM), information can be stored as different resistance states even when not powered. In order to accurately characterize the reliability of PCM devices, data retention has to be tested carefully. In this paper, a new test method is applied to measure the data retention of T-shaped PCM devices. This method makes it possible to accelerate crystallization in the amorphous area by using current bias. The new method works based on the field-induced crystallization theory, and could be able to gather fast and detailed information about high-resistance state's failure process, and at the same time, it could avoid issues related to high temperature. Experimental data for T-shaped PCM devices based on Ge2Sb2Te5 are presented and analyzed. An exponential trend-line of failure time t versus reciprocal bias current 1/I shows only negligible deviation of the measured data points, enabling the extrapolation of the retention behavior for ten-year lifetime. A maximum disturb current value of 5.08 μA is extracted to guarantee the ten years data retention requirement for PCM applications.

  6. Role of mechanical stress in the resistance drift of Ge2Sb2Te5 films and phase change memories

    NASA Astrophysics Data System (ADS)

    Rizzi, M.; Spessot, A.; Fantini, P.; Ielmini, D.

    2011-11-01

    In a phase change memory (PCM), the device resistance increases slowly with time after the formation of the amorphous phase, thus affecting the stability of stored data. This work investigates the resistance drift in thin films of amorphous Ge2Sb2Te5 and in PCMs, demonstrating a common kinetic of drift in stressed/unstressed films and in the nanometer-size active volume of a PCM with different stress levels developed via stressor layers. It is concluded that stress is not the root cause of PCM drift, which is instead attributed to intrinsic structural relaxation due to the disordered, metastable nature of the amorphous chalcogenide phase.

  7. Ge2Sb2Te5/SnSe2 nanocomposite multilayer thin films for phase change memory application

    NASA Astrophysics Data System (ADS)

    Feng, Xiaoyi; Wen, Ting; Zhai, Jiwei; Lai, Tianshu; Wang, Changzhou; Song, Sannian; Song, Zhitang

    2014-10-01

    By nanocompositing Ge2Sb2Te5 and SnSe2, the electrical and thermal proprieties of Ge2Sb2Te5/SnSe2 multilayer films for phase change random access memory (PCRAM) are better than those of Ge2Sb2Te5 films. The crystallization temperature rises and can be controlled. The resistance gap can reach approximately five orders of magnitude to ensure high data reliability. The activity energy (Ea) is more than 2.60 eV and the temperature for 10 year data retention reach 110 °C. The analysis of both XRD patterns and TEM images confirmed the reversible phase change transition between amorphous and crystalline state in Ge2Sb2Te5/SnSe2 nanocomposite multilayer films. According to transient photoreflectance traces, the speed of crystallization process was about 33 ns. Among different Ge2Sb2Te5/SnSe2 multilayer films, the film constitute of [Ge2Sb2Te5 (4 nm)/SnSe2(10 nm)]7 showed better properties and was manufactured by CMOS technology to phase change memory (PCM) cells. This result revealed that the Ge2Sb2Te5/SnSe2 nanocomposite multilayer film is a promising phase change material.

  8. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.

    PubMed

    Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R

    2015-07-08

    We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.

  9. High thermal stability Sb{sub 3}Te-TiN{sub 2} material for phase change memory application

    SciTech Connect

    Ji, Xinglong; Zhou, Wangyang; Wu, Liangcai Zhu, Min; Rao, Feng; Song, Zhitang; Cao, Liangliang; Feng, Songlin

    2015-01-12

    For phase change memory (PCM) applications, it has been widely accepted that δ phase Sb-Te has fast operation speed and good phase stability. However, the fast growth crystallization mechanism will cause poor amorphous phase stability and overlarge grain size. We introduce TiN{sub 2} into δ phase Sb-Te (Sb{sub 3}Te) to enhance the amorphous thermal stability and refine the grain size. With TiN{sub 2} incorporating, the temperature for 10-year data retention increases from 79 °C to 124 °C. And the grain size decreases to dozens of nanometers scale. Based on X-ray photoelectron spectroscopy and transmission electron microscopy results, we knew that nitrogen atoms bond with titanium, forming disorder region at the grain boundary of Sb{sub 3}Te-TiN{sub 2} (STTN). Thus, STTN has a quite different crystallization mechanism from Sb{sub 3}Te. Furthermore, PCM device based on STTN can realize reversible phase change under 20 ns electrical pulse.

  10. Effect of Ti diffusion on the microstructure of Ge2Sb2Te5 in phase-change memory cell.

    PubMed

    Park, Jucheol; Bae, JunSoo

    2015-12-01

    The dependence of the microstructure of Ge2Sb2Te5 (GST) on Ti diffusion into GST by annealing in GST/Ti/TiN phase-change random access memory stack was studied by various transmission electron microscopy (TEM) techniques. The microstructure and crystal structure of GST were identified with high-resolution TEM (HRTEM) and image simulation technique, and the Ti diffusion into GST was revealed by scanning transmission electron microscope-energy-dispersive X-ray spectroscopy analysis. It was observed that Ti atoms of Ti/TiN thin layers were incorporated into GST cell through several thermal annealing steps and they could retard the phase transition from face-centered cubic (FCC) phase into hexagonal close-packed (HCP) phase partially and restrain the increase in grain size. Thus, it is concluded that Ti diffusion can affect the microstructure of GST including the type of the crystal phase and grain size of GST. It was shown that the insertion of diffusion barrier between TiN and GST could block Ti diffusion into GST and make it possible for FCC phase to completely transform into HCP phase.

  11. Nonvolatile “AND,” “OR,” and “NOT” Boolean logic gates based on phase-change memory

    SciTech Connect

    Li, Y.; Zhong, Y. P.; Deng, Y. F.; Zhou, Y. X.; Xu, L.; Miao, X. S.

    2013-12-21

    Electronic devices or circuits that can implement both logic and memory functions are regarded as the building blocks for future massive parallel computing beyond von Neumann architecture. Here we proposed phase-change memory (PCM)-based nonvolatile logic gates capable of AND, OR, and NOT Boolean logic operations verified in SPICE simulations and circuit experiments. The logic operations are parallel computing and results can be stored directly in the states of the logic gates, facilitating the combination of computing and memory in the same circuit. These results are encouraging for ultralow-power and high-speed nonvolatile logic circuit design based on novel memory devices.

  12. Heterogeneous nanometer-scale Joule and Peltier effects in sub-25 nm thin phase change memory devices

    NASA Astrophysics Data System (ADS)

    Grosse, Kyle L.; Pop, Eric; King, William P.

    2014-09-01

    We measure heterogeneous power dissipation in phase change memory (PCM) films of 11 and 22 nm thin Ge2Sb2Te5 (GST) by scanning Joule expansion microscopy (SJEM), with sub-50 nm spatial and ˜0.2 K temperature resolution. The heterogeneous Joule and Peltier effects are explained using a finite element analysis (FEA) model with a mixture of hexagonal close-packed and face-centered cubic GST phases. Transfer length method measurements and effective media theory calculations yield the GST resistivity, GST-TiW contact resistivity, and crystal fraction of the GST films at different annealing temperatures. Further comparison of SJEM measurements and FEA modeling also predicts the thermopower of thin GST films. These measurements of nanometer-scale Joule, thermoelectric, and interface effects in PCM films could lead to energy-efficient designs of highly scaled PCM technology.

  13. Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory.

    PubMed

    Xia, Mengjiao; Zhu, Min; Wang, Yuchan; Song, Zhitang; Rao, Feng; Wu, Liangcai; Cheng, Yan; Song, Sannian

    2015-04-15

    Phase-change memory (PCM) has great potential for numerous attractive applications on the premise of its high-device performances, which still need to be improved by employing a material with good overall phase-change properties. In respect to fast speed and high endurance, the Ti-Sb-Te alloy seems to be a promising candidate. Here, Ti-doped Sb2Te3 (TST) materials with different Ti concentrations have been systematically studied with the goal of finding the most suitable composition for PCM applications. The thermal stability of TST is improved dramatically with increasing Ti content. The small density change of T0.32Sb2Te3 (2.24%), further reduced to 1.37% for T0.56Sb2Te3, would greatly avoid the voids generated at phase-change layer/electrode interface in a PCM device. Meanwhile, the exponentially diminished grain size (from ∼200 nm to ∼12 nm), resulting from doping more and more Ti, enhances the adhesion between phase-change film and substrate. Tests of TST-based PCM cells have demonstrated a fast switching rate of ∼10 ns. Furthermore, because of the lower thermal conductivities of TST materials, compared with Sb2Te3-based PCM cells, T0.32Sb2Te3-based ones exhibit lower required pulse voltages for Reset operation, which largely decreases by ∼50% for T0.43Sb2Te3-based ones. Nevertheless, the operation voltages for T0.56Sb2Te3-based cells dramatically increase, which may be due to the phase separation after doping excessive Ti. Finally, considering the decreased resistance ratio, TixSb2Te3 alloy with x around 0.43 is proved to be a highly promising candidate for fast and long-life PCM applications.

  14. Sub 10 ns fast switching and resistance control in lateral GeTe-based phase-change memory

    NASA Astrophysics Data System (ADS)

    Yin, You; Zhang, Yulong; Takehana, Yousuke; Kobayashi, Ryota; Zhang, Hui; Hosaka, Sumio

    2016-06-01

    In this study, we investigated the fast switching and resistance control in a lateral GeTe-based phase-change memory (PCM). The resistivity of GeTe as a function of annealing temperature showed that it changed by more than 6 orders of magnitude in a very narrow temperature range. X-ray diffraction patterns of GeTe films indicated that GeTe had only one crystal structure, that is, face-centered cubic. It was demonstrated that the lateral device with a top conducting layer had a good performance. The operation characteristics of the GeTe-based lateral PCM device showed that it could be operated even when sub-10-ns voltage pulses were applied, making it much faster than a Ge2Sb2Te5-based device. The device resistance was successfully controlled by applying a staircase-like pulse, which enables the device to be used for fast multilevel storage.

  15. Investigation of electromigration in In{sub 2}Se{sub 3} nanowire for phase change memory devices

    SciTech Connect

    Kang, Daegun; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M.; Lee, Jeong-Soo

    2013-12-02

    The decomposition of In{sub 2}Se{sub 3} nanowire phase change memory devices during current-driving operation was investigated. The devices were subjected to thermal/electrical stress with current density and electric field during the reset operation at 0.24–0.38 MA/cm{sup 2} and 5.3–6.4 kV/cm, respectively. After multiple operation cycles, a change in morphology and composition of the In{sub 2}Se{sub 3} nanowire was observed and led to the device failure. The transmission electron microscopy and energy dispersive analysis indicate that electromigration causes the catastrophic failure by void formation where In atoms migrate toward the cathode and Se atoms migrate toward the anode depending on their electronegativities.

  16. Phase change memory devices formed by using 2 dimensional layered Graphene-In2 Se3 van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Choi, Min Sup; Yang, Chenxi; Ra, Chang Ho; Yoo, Won Jong

    Indium selenide (In2Se3) is one of the unique materials which have both a layered structure and phase change property. One of the advantages of using 2 dimensional (2D) materials is their potential to form van der Waals heterostructures which enable unique physical properties and novel quantum device functions, which cannot be achieved in 2D material alone. In this study, we fabricated vertically stacked graphene-In2Se3 heterostructured memory devices. The fabricated devices showed a rapid increase of current conduction, which is attributed to the phase transition of In2Se3. The TEM images demonstrated that In2Se3 transformed from polycrystalline to layered structure thanks to the effective thermal confinement effect between graphene and In2Se3, attributed to the low thermal conductivity of layered materials in vertical direction. In addition, the current conduction could be controlled effectively by applying different pulse voltages, showing stable retention and endurance characteristics. It is thought that the differently bonded states contribute to this control process. This study demonstrates the possibility of Graphene-In2Se3 van der Waals heterostructure as 2D based future memory electronics. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MEST) (No. 2013R1A2A2A01015516).

  17. Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires

    NASA Astrophysics Data System (ADS)

    Selmo, S.; Cecchini, R.; Cecchi, S.; Wiemer, C.; Fanciulli, M.; Rotunno, E.; Lazzarini, L.; Rigato, M.; Pogany, D.; Lugstein, A.; Longo, M.

    2016-11-01

    We report on the fabrication and electrical characterization of phase change memory (PCM) devices formed by In3Sb1Te2 chalcogenide nanowires (NWs), with diameters as small as 20 nm. The NWs were self-assembled by metal organic chemical vapor deposition via the vapor-liquid-solid method, catalyzed by Au nanoparticles. Reversible and well reproducible memory switching of the NWs between low and high resistance states was demonstrated. The conduction mechanism of the high resistance state was investigated according to a trap-limited model for electrical transport in the amorphous phase. The size of the amorphized portion of the NW and the critical electric field for the transition to the low resistance state were evaluated. The In3Sb1Te2 NW-based devices showed very low working parameters, such as RESET voltage (˜3 V), current (˜40 μA), and power (˜130 μW). Our results indicated that the studied NWs are suitable candidates for the realization of ultra-scaled, high performance PCM devices.

  18. Epitaxy of Ge-Sb-Te phase-change memory alloys

    SciTech Connect

    Braun, Wolfgang; Shayduk, Roman; Flissikowski, Timur; Ramsteiner, Manfred; Grahn, Holger T.; Riechert, Henning; Fons, Paul; Kolobov, Alex

    2009-01-26

    The authors demonstrate the epitaxy of Ge-Sb-Te alloys close to the Ge{sub 2}Sb{sub 2}Te{sub 5} composition on GaSb(001). Using molecular beam epitaxy with elemental sources, amorphous films are obtained at growth temperatures below 120 deg. C and films with a cubic structure and a predominant cube-on-cube epitaxial relationship above 180 deg. C. Using a high-power pulsed laser, the epitaxial films are switched between the crystalline and the amorphous phases. Streaks in the diffraction data help to resolve the apparent ambiguity in interatomic distances between earlier x-ray absorption and powder diffraction measurements. The structural changes are confirmed by Raman spectroscopy.

  19. Phase-change memory technology with self-aligned μTrench cell architecture for 90 nm node and beyond

    NASA Astrophysics Data System (ADS)

    Pirovano, A.; Pellizzer, F.; Tortorelli, I.; Riganó, A.; Harrigan, R.; Magistretti, M.; Petruzza, P.; Varesi, E.; Redaelli, A.; Erbetta, D.; Marangon, T.; Bedeschi, F.; Fackenthal, R.; Atwood, G.; Bez, R.

    2008-09-01

    A novel self-aligned μTrench-based cell architecture for phase change memory (PCM) process is presented. The low programming current and the good dimensional control of the sub-lithographic features achieved with the μTrench structure are combined with a self-aligned patterning strategy that simplify the integration process in term of alignment tolerances and of number of critical masks. The proposed architecture has been integrated in a 90 nm 128 Mb vehicle based on a pnp bipolar junction transistor for the array selection. The good active and leakage currents achieved by the purposely optimized selecting transistors combined with programming currents of 300 μA of the storage element and good distributions measured on the 128 Mb array demonstrate the suitability of the proposed architecture for the production of high-density PCM arrays at 90 nm and beyond.

  20. Ge2Sb2Te5/Sb superlattice-like thin film for high speed phase change memory application

    NASA Astrophysics Data System (ADS)

    Hu, Yifeng; Zou, Hua; Zhang, Jianhao; Xue, Jianzhong; Sui, Yongxing; Wu, Weihua; Yuan, Li; Zhu, Xiaoqin; Song, Sannian; Song, Zhitang

    2015-12-01

    In order to improve the operation speed of phase change memory (PCM), superlattice-like Ge2Sb2Te5/Sb (SLL GST/Sb) thin films were prepared in a sputtering method to explore the suitability as an active material for PCM application. Compared with GST, SLL GST/Sb thin film has a lower crystallization temperature, crystallization activation energy, thermal conductivity, and smaller crystalline grain size. A faster SET/RESET switching speed (10 ns) and a lower operation power consumption (the energy for RESET operation 9.1 × 10-13 J) are obtained. In addition, GST/Sb shows a good endurance of 8.3 × 104 cycles.

  1. Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation

    NASA Astrophysics Data System (ADS)

    Choi, Byung Joon; Choi, Seol; Eom, Taeyong; Rha, Sang Ho; Kim, Kyung Min; Hwang, Cheol Seong

    2010-09-01

    A phase change memory cell was fabricated by stacking plasma-enhanced cyclic chemical-vapor-deposited Ge2Sb2Te5 (GST) and atomic layer deposited TiO2 thin films. Different pairs of resistance states were obtained by controlling the current flow, which can be used to achieve higher memory density by multilevel operation. The multiresistance states of the stacked cell were explained by the resistance switching phenomena of TiO2 and the thermoelectric phase change properties of GST. The phase change characteristics of GST could be altered by controlling the degree of filament formation in the TiO2 layer, which eventually changed the phase change volume in the GST.

  2. Correlative transmission electron microscopy and electrical properties study of switchable phase-change random access memory line cells

    SciTech Connect

    Oosthoek, J. L. M.; Kooi, B. J.; Voogt, F. C.; Attenborough, K.; Verheijen, M. A.; Hurkx, G. A. M.; Gravesteijn, D. J.

    2015-02-14

    Phase-change memory line cells, where the active material has a thickness of 15 nm, were prepared for transmission electron microscopy (TEM) observation such that they still could be switched and characterized electrically after the preparation. The result of these observations in comparison with detailed electrical characterization showed (i) normal behavior for relatively long amorphous marks, resulting in a hyperbolic dependence between SET resistance and SET current, indicating a switching mechanism based on initially long and thin nanoscale crystalline filaments which thicken gradually, and (ii) anomalous behavior, which holds for relatively short amorphous marks, where initially directly a massive crystalline filament is formed that consumes most of the width of the amorphous mark only leaving minor residual amorphous regions at its edges. The present results demonstrate that even in (purposely) thick TEM samples, the TEM sample preparation hampers the probability to observe normal behavior and it can be debated whether it is possible to produce electrically switchable TEM specimen in which the memory cells behave the same as in their original bulk embedded state.

  3. Influence of silicon oxide on the performance of TiN bottom electrode in phase change memory

    NASA Astrophysics Data System (ADS)

    Gao, Dan; Liu, Bo; Xu, Zhen; Wang, Heng; Xia, Yangyang; Wang, Lei; Zhu, Nanfei; Li, Ying; Zhan, Yipeng; Song, Zhitang; Feng, Songlin

    2016-10-01

    The stability of TiN which is the preferred bottom electrode contact (BEC) of phase change memory (PCM) due to its low thermal conductivity and suitable electrical conductivity, is very essential to the reliability of PCM devices. In this work, in order to investigate the effect of high aspect ratio process (HARP) SiO2 on the performance of TiN, both TiN/SiO2, TiN/SiN thin films and TiN BEC device structures are analyzed. By combining transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS), we found that the TiN would be oxidized after the deposition of HARP SiO2 and there exist a thin ( 4 nm) oxidation interfacial layer between TiN and SiO2. Electrical measurements were performed on the 1R PCM test-key die with 7 nm and 10 nm BEC-only cells. The statistical initial resistances of BEC have wide distribution and it is confirmed that the non-uniform oxidation of TiN BEC affects the astringency of the resistance of TiN BEC. The experimental results help to optimize the process of TiN BEC, and SiN is recommended as a better choice as the linear layer.

  4. Addition of HfO2 interface layer for improved synaptic performance of phase change memory (PCM) devices

    NASA Astrophysics Data System (ADS)

    Suri, M.; Bichler, O.; Hubert, Q.; Perniola, L.; Sousa, V.; Jahan, C.; Vuillaume, D.; Gamrat, C.; DeSalvo, B.

    2013-01-01

    In this work, we will focus on the use of phase change memory (PCM) to emulate synaptic behavior in emerging neuromorphic system-architectures. In particular, we will show that the performance and energy-efficiency of large scale neuromorphic systems can be improved by engineering individual PCM devices used as synapses. This is obtained by adding a thin HfO2 interface layer to standard GST PCM devices, allowing for the lowering of the Set/Reset currents and the increase of the number of intermediate resistance states (or synaptic weights) in the synaptic potentiation characteristics. The experimentally obtained potentiation characteristics of such PCM devices are used to simulate a 2-layer ultra-dense spiking neural network (SNN) and to perform a complex visual pattern extraction from a test case based on real world data (i.e. cars passing on a 6-lane freeway). The total power dissipated in the learning mode, for the pattern extraction experiment is estimated to be as low as 60 μW. Average detection rate of cars is found to be greater than 90%.

  5. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    NASA Astrophysics Data System (ADS)

    Grosse, Kyle L.; Pop, Eric; King, William P.

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K-1. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  6. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    SciTech Connect

    Grosse, Kyle L.; Pop, Eric; King, William P.

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  7. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    PubMed

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  8. The effect of oxygen plasma ashing on the resistance of TiN bottom electrode for phase change memory

    NASA Astrophysics Data System (ADS)

    Dan, Gao; Bo, Liu; Ying, Li; Zhitang, Song; Wanchun, Ren; Juntao, Li; Zhen, Xu; Shilong, Lü; Nanfei, Zhu; Jiadong, Ren; Yipeng, Zhan; Hanming, Wu; Songlin, Feng

    2015-05-01

    Phase change memory (PCM) has been regarded as a promising candidate for the next generation of nonvolatile memory. To decrease the power required to reset the PCM cell, titanium nitride (TiN) is preferred to be used as the bottom electrode of PCM due to its low thermal and suitable electrical conductivity. However, during the manufacture of PCM cell in 40 nm process node, abnormally high and discrete distribution of the resistance of TiN bottom electrode was found, which might be induced by the surface oxidation of TiN bottom electrode during the photoresist ashing process by oxygen plasma. In this work, we have studied the oxidation of TiN and found that with the increasing oxygen plasma ashing time, the thickness of the TiO2 layer became thicker and the state of the TiO2 layer changed from amorphous to crystalline, respectively. The resistance of TiN electrode contact chain with 4-5 nm TiO2 layer was confirmed to be almost three-orders of magnitude higher than that of pure TiN electrode, which led to the failure issue of PCM cell. We efficiently removed the oxidation TiO2 layer by a chemical mechanical polishing (CMP) process, and we eventually recovered the resistance of TiN bottom electrode from 1 × 105 Ω/via back to 6 × 102 Ω/via and successfully achieved a uniform resistance distribution of the TiN bottom electrode. Project supported by the National Key Basic Research Program of China (Nos. 2010CB934300, 2013CBA01900, 2011CBA00607, 2011CB932804), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09020402), the National Integrate Circuit Research Program of China (No. 2009ZX02023-003), the National Natural Science Foundation of China (Nos. 61176122, 61106001, 61261160500, 61376006), and the Science and Technology Council of Shanghai (Nos. 12nm0503701, 13DZ2295700, 12QA1403900, 13ZR1447200).

  9. Pressure tunes electrical resistivity by four orders of magnitude in amorphous Ge2Sb2Te5 phase-change memory alloy.

    PubMed

    Xu, M; Cheng, Y Q; Wang, L; Sheng, H W; Meng, Y; Yang, W G; Han, X D; Ma, E

    2012-05-01

    Ge-Sb-Te-based phase-change memory is one of the most promising candidates to succeed the current flash memories. The application of phase-change materials for data storage and memory devices takes advantage of the fast phase transition (on the order of nanoseconds) and the large property contrasts (e.g., several orders of magnitude difference in electrical resistivity) between the amorphous and the crystalline states. Despite the importance of Ge-Sb-Te alloys and the intense research they have received, the possible phases in the temperature-pressure diagram, as well as the corresponding structure-property correlations, remain to be systematically explored. In this study, by subjecting the amorphous Ge(2)Sb(2)Te(5) (a-GST) to hydrostatic-like pressure (P), the thermodynamic variable alternative to temperature, we are able to tune its electrical resistivity by several orders of magnitude, similar to the resistivity contrast corresponding to the usually investigated amorphous-to-crystalline (a-GST to rock-salt GST) transition used in current phase-change memories. In particular, the electrical resistivity drops precipitously in the P = 0 to 8 GPa regime. A prominent structural signature representing the underlying evolution in atomic arrangements and bonding in this pressure regime, as revealed by the ab initio molecular dynamics simulations, is the reduction of low-electron-density regions, which contributes to the narrowing of band gap and delocalization of trapped electrons. At P > 8 GPa, we have observed major changes of the average local structures (bond angle and coordination numbers), gradually transforming the a-GST into a high-density, metallic-like state. This high-pressure glass is characterized by local motifs that bear similarities to the body-centered-cubic GST (bcc-GST) it eventually crystallizes into at 28 GPa, and hence represents a bcc-type polyamorph of a-GST.

  10. Pressure tunes electrical resistivity by four orders of magnitude in amorphous Ge[subscript 2]Sb[subscript 2]Te[subscript 5] phase-change memory alloy

    SciTech Connect

    Xu, M.; Cheng, Y.Q.; Wang, L.; Sheng, H.W.; Meng, Y.; Yang, W.G.; Hang, X.D.; Ma, E.

    2012-05-22

    Ge-Sb-Te-based phase-change memory is one of the most promising candidates to succeed the current flash memories. The application of phase-change materials for data storage and memory devices takes advantage of the fast phase transition (on the order of nanoseconds) and the large property contrasts (e.g., several orders of magnitude difference in electrical resistivity) between the amorphous and the crystalline states. Despite the importance of Ge-Sb-Te alloys and the intense research they have received, the possible phases in the temperature-pressure diagram, as well as the corresponding structure-property correlations, remain to be systematically explored. In this study, by subjecting the amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} (a-GST) to hydrostatic-like pressure (P), the thermodynamic variable alternative to temperature, we are able to tune its electrical resistivity by several orders of magnitude, similar to the resistivity contrast corresponding to the usually investigated amorphous-to-crystalline (a-GST to rock-salt GST) transition used in current phase-change memories. In particular, the electrical resistivity drops precipitously in the P = 0 to 8 GPa regime. A prominent structural signature representing the underlying evolution in atomic arrangements and bonding in this pressure regime, as revealed by the ab initio molecular dynamics simulations, is the reduction of low-electron-density regions, which contributes to the narrowing of band gap and delocalization of trapped electrons. At P > 8 GPa, we have observed major changes of the average local structures (bond angle and coordination numbers), gradually transforming the a-GST into a high-density, metallic-like state. This high-pressure glass is characterized by local motifs that bear similarities to the body-centered-cubic GST (bcc-GST) it eventually crystallizes into at 28 GPa, and hence represents a bcc-type polyamorph of a-GST.

  11. Logic gates realized by nonvolatile GeTe/Sb2Te3 super lattice phase-change memory with a magnetic field input

    NASA Astrophysics Data System (ADS)

    Lu, Bin; Cheng, Xiaomin; Feng, Jinlong; Guan, Xiawei; Miao, Xiangshui

    2016-07-01

    Nonvolatile memory devices or circuits that can implement both storage and calculation are a crucial requirement for the efficiency improvement of modern computer. In this work, we realize logic functions by using [GeTe/Sb2Te3]n super lattice phase change memory (PCM) cell in which higher threshold voltage is needed for phase change with a magnetic field applied. First, the [GeTe/Sb2Te3]n super lattice cells were fabricated and the R-V curve was measured. Then we designed the logic circuits with the super lattice PCM cell verified by HSPICE simulation and experiments. Seven basic logic functions are first demonstrated in this letter; then several multi-input logic gates are presented. The proposed logic devices offer the advantages of simple structures and low power consumption, indicating that the super lattice PCM has the potential in the future nonvolatile central processing unit design, facilitating the development of massive parallel computing architecture.

  12. Investigation of thermal resistance and power consumption in Ga-doped indium oxide (In{sub 2}O{sub 3}) nanowire phase change random access memory

    SciTech Connect

    Jin, Bo; Lee, Jeong-Soo E-mail: ljs6951@postech.ac.kr; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Pi, Dong-Hai; Seop Kim, Hyoung; Meyyappan, M. E-mail: ljs6951@postech.ac.kr

    2014-03-10

    The resistance stability and thermal resistance of phase change memory devices using ∼40 nm diameter Ga-doped In{sub 2}O{sub 3} nanowires (Ga:In{sub 2}O{sub 3} NW) with different Ga-doping concentrations have been investigated. The estimated resistance stability (R(t)/R{sub 0} ratio) improves with higher Ga concentration and is dependent on annealing temperature. The extracted thermal resistance (R{sub th}) increases with higher Ga-concentration and thus the power consumption can be reduced by ∼90% for the 11.5% Ga:In{sub 2}O{sub 3} NW, compared to the 2.1% Ga:In{sub 2}O{sub 3} NW. The excellent characteristics of Ga-doped In{sub 2}O{sub 3} nanowire devices offer an avenue to develop low power and reliable phase change random access memory applications.

  13. Role of the nano amorphous interface in the crystallization of Sb2Te3 towards non-volatile phase change memory: insights from first principles.

    PubMed

    Wang, Xue-Peng; Chen, Nian-Ke; Li, Xian-Bin; Cheng, Yan; Liu, X Q; Xia, Meng-Jiao; Song, Z T; Han, X D; Zhang, S B; Sun, Hong-Bo

    2014-06-14

    The nano amorphous interface is important as it controls the phase transition for data storage. Yet, atomic scale insights into such kinds of systems are still rare. By first-principles calculations, we obtain the atomic interface between amorphous Si and amorphous Sb2Te3, which prevails in the series of Si-Sb-Te phase change materials. This interface model reproduces the experiment-consistent phenomena, i.e. the amorphous stability of Sb2Te3, which defines the data retention in phase change memory, and is greatly enhanced by the nano interface. More importantly, this method offers a direct platform to explore the intrinsic mechanism to understand the material function: (1) by steric effects through the atomic "channel" of the amorphous interface, the arrangement of the Te network is significantly distorted and is separated from the p-orbital bond angle in the conventional phase-change material; and (2) through the electronic "channel" of the amorphous interface, high localized electrons in the form of a lone pair are "projected" to Sb2Te3 from amorphous Si by a proximity effect. These factors set an effective barrier for crystallization and improve the amorphous stability, and thus data retention. The present research and scheme sheds new light on the engineering and manipulation of other key amorphous interfaces, such as Si3N4/Ge2Sb2Te5 and C/Sb2Te3, through first-principles calculations towards non-volatile phase change memory.

  14. Vanadium doped Sb{sub 2}Te{sub 3} material with modified crystallization mechanism for phase-change memory application

    SciTech Connect

    Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang; Wu, Liangcai Cao, Liangliang; Zhu, Min; Rao, Feng; Song, Zhitang; Feng, Songlin

    2015-06-15

    In this paper, V{sub 0.21}Sb{sub 2}Te{sub 3} (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb{sub 2}Te{sub 3} and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted in the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10{sup 4} cycles makes VST a promising candidate for phase-change memory applications.

  15. Sub-nanosecond threshold-switching dynamics and set process of In3SbTe2 phase-change memory devices

    NASA Astrophysics Data System (ADS)

    Pandey, Shivendra Kumar; Manivannan, Anbarasu

    2016-06-01

    Phase-change materials show promising features for high-speed, non-volatile, random access memory, however achieving a fast electrical switching is a key challenge. We report here, the dependence of electrical switching dynamics including transient parameters such as delay time, switching time, etc., on the applied voltage and the set process of In3SbTe2 phase-change memory devices at the picosecond (ps) timescale. These devices are found to exhibit threshold-switching at a critical voltage called threshold-voltage, VT of 1.9 ± 0.1 V, having a delay time of 25 ns. Further, the delay time decreases exponentially to a remarkably smaller value, as short as 300 ± 50 ps upon increasing the applied voltage up to 1.1VT. Furthermore, we demonstrate a rapid phase-change behavior from amorphous (˜10 MΩ) to poly-crystalline (˜10 kΩ) phase using time-resolved measurements revealing an ultrafast set process, which is primarily initiated by the threshold-switching process within 550 ps for an applied voltage pulse with a pulse-width of 1.5 ns and an amplitude of 2.3 V.

  16. Cr-doped Ge{sub 2}Sb{sub 2}Te{sub 5} for ultra-long data retention phase change memory

    SciTech Connect

    Wang, Qing; Xia, Yangyang; Zheng, Yonghui; Zhang, Qi; Liu, Bo Song, Sannian; Cheng, Yan; Song, Zhitang; Feng, Songlin; Huo, Ruru

    2015-11-30

    Phase change memory is regarded as one of the most promising candidates for the next-generation non-volatile memory. Its storage medium, phase change material, has attracted continuous exploration. Ge{sub 2}Sb{sub 2}Te{sub 5} (GST) is the most popular phase change material, but its thermal stability needs to be improved when used in some fields at high temperature (more than 120 °C). In this paper, we doped Cr atoms into GST and obtained Cr{sub 10}(Ge{sub 2}Sb{sub 2}Te{sub 5}){sub 90} (labeled as Cr-GST) with high thermal stability. For Cr-GST film, the sheet resistance ratio between amorphous and crystalline states is high up to 3 orders of magnitude. The crystalline Cr-GST film inherits the phase structure of GST, with metastable face-centered cubic phase and/or stable hexagonal phase. The doped Cr atoms not only bond with other atoms but also help to improve the anti-oxidation property of Cr-GST. As for the amorphous thermal stability, the calculated temperature for 10-year-data-retention of Cr-GST film, based on the Arrhenius equation, is about 180 °C. The threshold current and threshold voltage of a cell based on Cr-GST are about 6 μA and 2.7 V. The cell could be operated by suitable voltages for more than 40 000 cycles. Thus, Cr-GST is proved to be a promising phase change material with ultra-long data retention.

  17. Fast switching and low power of superlattice-like SnSe2/Sb thin films for phase change memory application

    NASA Astrophysics Data System (ADS)

    Wu, Weihua; He, Zifang; Chen, Shiyu; Zhai, Jiwei; Liu, Xinyi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2016-10-01

    Two non-promising phase change materials (SnSe2 and Sb) were prepared through the superlattice-like (SLL) method to explore the suitable phase change layer for phase change memory (PCM) application. The crystallization temperature, activation energy, and 10-year data retention of the SLL [SnSe2(10 nm)/Sb(2 nm)]4 ([SS(10)/S(2)]4) thin film are 185 °C, 3.03 eV, and 116 °C, respectively. The volume change of the SLL [SS(10)/S(2)]4 thin film during the crystallization is as small as 3.5%. The phase transition speed of the SLL [SS(10)/S(2)]4 thin film for crystallization is only about 11.9 ns. PCM cell based on the SLL [SS(10)/S(2)]4 thin film shows high operation speed (20 ns for SET/RESET) and lower power consumption (2.75 × 10-11 J for RESET operation).

  18. Electrical performance of phase change memory cells with Ge{sub 3}Sb{sub 2}Te{sub 6} deposited by molecular beam epitaxy

    SciTech Connect

    Boschker, Jos E.; Riechert, Henning; Calarco, Raffaella; Boniardi, Mattia; Redaelli, Andrea

    2015-01-12

    Here, we report on the electrical characterization of phase change memory cells containing a Ge{sub 3}Sb{sub 2}Te{sub 6} (GST) alloy grown in its crystalline form by Molecular Beam Epitaxy (MBE). It is found that the high temperature growth on the amorphous substrate results in a polycrystalline film exhibiting a rough surface with a grain size of approximately 80–150 nm. A detailed electrical characterization has been performed, including I-V characteristic curves, programming curves, set operation performance, crystallization activation at low temperature, and resistance drift, in order to determine the material related parameters. The results indicate very good alignment of the electrical parameters with the current state-of-the-art GST, deposited by physical vapor deposition. Such alignment enables a possible employment of the MBE deposition technique for chalcogenide materials in the phase change memory technology, thus leading to future studies of as-deposited crystalline chalcogenides as integrated in electrical vehicles.

  19. Redefining the Speed Limit of Phase Change Memory Revealed by Time-resolved Steep Threshold-Switching Dynamics of AgInSbTe Devices

    PubMed Central

    Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu

    2016-01-01

    Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing. PMID:27886266

  20. Coherent phonon study of (GeTe){sub l}(Sb{sub 2}Te{sub 3}){sub m} interfacial phase change memory materials

    SciTech Connect

    Makino, Kotaro Saito, Yuta; Fons, Paul; Kolobov, Alexander V.; Nakano, Takashi; Tominaga, Junji; Hase, Muneaki

    2014-10-13

    The time-resolved reflectivity measurements were carried out on the interfacial phase change memory (iPCM) materials ([(GeTe){sub 2}(Sb{sub 2}Te{sub 3}){sub 4}]{sub 8} and [(GeTe){sub 2}(Sb{sub 2}Te{sub 3}){sub 1}]{sub 20}) as well as conventional Ge{sub 2}Sb{sub 2}Te{sub 5} alloy at room temperature and above the RESET-SET phase transition temperature. In the high-temperature phase, coherent phonons were clearly observed in the iPCM samples while drastic attenuation of coherent phonons was induced in the alloy. This difference strongly suggests the atomic rearrangement during the phase transition in iPCMs is much smaller than that in the alloy. These results are consistent with the unique phase transition model in which a quasi-one-dimensional displacement of Ge atoms occurs for iPCMs and a conventional amorphous-crystalline phase transition takes place for the alloy.

  1. Managing Chemotherapy Side Effects: Memory Changes

    MedlinePlus

    ... C ancer I nstitute Managing Chemotherapy Side Effects Memory Changes What is causing these changes? Your doctor ... thinking or remembering things Managing Chemotherapy Side Effects: Memory Changes Get help to remember things. Write down ...

  2. Memory Optimization for Phase-field Simulations

    SciTech Connect

    Derek Gaston; John Peterson; Andrew Slaughter; Cody Permann; David Andrs

    2014-08-01

    Phase-field simulations are computationally and memory intensive applications. Many of the phase-field simulations being conducted in support of NEAMS were not capable of running on “normal clusters” with 2-4GB of RAM per core, and instead required specialized “big-memory” clusters with 64GB per core. To address this issue, the MOOSE team developed a new Python-based utility called MemoryLogger, and applied it to locate, diagnose, and eradicate memory bottlenecks within the MOOSE framework. MemoryLogger allows for a better understanding of the memory usage of an application being run in parallel across a cluster. Memory usage information is captured for every individual process in a parallel job, and communicated to the head node of the cluster. Console text output from the application itself is automatically matched with this memory usage information to produce a detailed picture of memory usage over time, making it straightforward to identify the subroutines which contribute most to the application’s peak memory usage. The information produced by the MemoryLogger quickly and effectively narrows the search for memory optimizations to the most data-intensive parts of the simulation.

  3. Effect of Dielectric Material Films on Crystallization Characteristics of Ge2Sb2Te5 Phase-Change Memory Film

    NASA Astrophysics Data System (ADS)

    Nishiuchi, Kenichi; Yamada, Noboru; Kawahara, Katsumi; Kojima, Rie

    2007-11-01

    Reduction of the film thickness of phase-change film and the adoption of GeN- or ZrO2-based dielectric films are both effective in achieving good thermal stability in phase-change optical disks. It was experimentally confirmed that, at a heating rate of 10 °C/min, the crystallization temperature Tx of the Ge2Sb2Te5 amorphous film when sandwiched by ZnS-SiO2 films markedly increases from 162 to 197 °C, while the thickness of the Ge2Sb2Te5 film decreases from 10 to 3 nm. Tx also slightly increases when ZnS-SiO2 films are substituted for GeN-based films (from 162 to 165 °C) and ZrO2-based films (from 162 to 167 °C). At the same time, the activation energy of crystallization is 2.4 eV for both GeN- and ZrO2-based films, and is higher than 2.2 eV for ZnS-SiO2 films.

  4. In silico optimization of phase-change materials for digital memories: a survey of first-row transition-metal dopants for Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Skelton, J. M.; Elliott, S. R.

    2013-05-01

    Phase-change materials are the alloys at the heart of an emerging class of next-generation, non-volatile digital memory technologies. However, the widely studied Ge-Sb-Te system possesses several undesirable properties, and enhancing its properties, e.g. by doping, is an area of active research. Various first-row transition-metal dopants have been shown to impart useful property enhancements, but a systematic study of the entire period has yet to be undertaken, and little has been done to investigate their interaction with the host material at the atomic level. We have carried out first-principles computer simulations of the complete phase-change cycle in Ge2Sb2Te5 doped with each of the ten first-row transition metals. In this article, we present a comprehensive survey of the electronic, magnetic and optical properties of these doped materials. We discuss in detail their atomic-level structure, and relate the microscopic behaviours of the dopant atoms to their influence on the Ge2Sb2Te5 host. By considering an entire family of similar materials, we identify trends and patterns which might be used to predict suitable dopants for optimizing materials for specific phase-change applications. The computational method employed here is general, and this materials-discovery approach could be applied in the future to study other families of potential dopants for such materials.

  5. In silico optimization of phase-change materials for digital memories: a survey of first-row transition-metal dopants for Ge₂Sb₂Te₅.

    PubMed

    Skelton, J M; Elliott, S R

    2013-05-22

    Phase-change materials are the alloys at the heart of an emerging class of next-generation, non-volatile digital memory technologies. However, the widely studied Ge-Sb-Te system possesses several undesirable properties, and enhancing its properties, e.g. by doping, is an area of active research. Various first-row transition-metal dopants have been shown to impart useful property enhancements, but a systematic study of the entire period has yet to be undertaken, and little has been done to investigate their interaction with the host material at the atomic level. We have carried out first-principles computer simulations of the complete phase-change cycle in Ge2Sb2Te5 doped with each of the ten first-row transition metals. In this article, we present a comprehensive survey of the electronic, magnetic and optical properties of these doped materials. We discuss in detail their atomic-level structure, and relate the microscopic behaviours of the dopant atoms to their influence on the Ge2Sb2Te5 host. By considering an entire family of similar materials, we identify trends and patterns which might be used to predict suitable dopants for optimizing materials for specific phase-change applications. The computational method employed here is general, and this materials-discovery approach could be applied in the future to study other families of potential dopants for such materials.

  6. Enhancement of a cyclic endurance of phase change memory by application of a high-density C15(Ge21Sb36Te43) film

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Kim, S. W.; Kim, J. H.; Ko, D. H.; Wu, Z.; Ahn, D.; Ahn, D. H.; Lee, J. M.; Kang, S. B.; Choi, S. Y.

    2016-02-01

    The lower cyclic endurance of Phase Change Memory (PCM) devices limits the spread of its applications for reliable memory. The findings reported here show that micro-voids and excess vacancies that are produced during the deposition process and the subsequent growth in sputtered carbon-doped GeSbTe films is one of the major causes of device failure in PCM with cycling. We found that the size of voids in C15(Ge21Sb36Te43) films increased with increasing annealing temperature and the activation energy for the growth rate of voids was determined to be 2.22 eV. The film density, which is closely related to voids, varies with the deposition temperature and sputtering power used. The lower heat of vaporization of elemental Sb and Te compared to that for elemental Ge and C is a major cause of the low density of the film. It was possible to suppress void formation to a considerable extent by optimizing the deposition conditions, which leads to a dramatic enhancement in cyclic endurance by 2 orders of magnitude in PCM devices prepared at 300oC-300W compared to one prepared at 240oC-500W without change of compositions.

  7. Associative memory in phasing neuron networks

    SciTech Connect

    Nair, Niketh S; Bochove, Erik J.; Braiman, Yehuda

    2014-01-01

    We studied pattern formation in a network of coupled Hindmarsh-Rose model neurons and introduced a new model for associative memory retrieval using networks of Kuramoto oscillators. Hindmarsh-Rose Neural Networks can exhibit a rich set of collective dynamics that can be controlled by their connectivity. Specifically, we showed an instance of Hebb's rule where spiking was correlated with network topology. Based on this, we presented a simple model of associative memory in coupled phase oscillators.

  8. Simulation of phase-change random access memory with 35nm diameter of the TiN bottom electrode by finite element modeling

    NASA Astrophysics Data System (ADS)

    Jin, Qiuxue; Liu, Bo; Liu, Yan; Wang, Heng; Xu, Zhen; Gao, Dan; Wang, Qing; Xia, Yangyang; Wang, Weiwei; Song, Zhitang; Feng, Songlin

    2016-10-01

    A three-dimensional finite element model for Phase-Change Random Access Memory (PCRAM) is established to simulate thermal and electrical distribution during RESET operation. The establishment of the model is highly in accordance with the manufacture of PCRAM cell in the 40nm process and the model is applied to simulate the RESET behaviors of 35 nm diameter of titanium nitride (TiN) bottom electrode in the conventional mushroom structure (MS). By the simulations of thermal and electrical distribution, the highest temperature is observed in TiN bottom electrode contactor and meanwhile the voltage of the TiN bottom electrode accounts for as high as 65 percent of the total voltage. It induces high RESET current which suggests that the thermoelectric conductivity of MS is crucial in improving the heating efficiency in RESET process. Simulation results of RESET current and high resistance distribution during RESET operation are close to the data from the actual measurement. However those two values of low resistance are slightly different, probably due to the interface resistance between Ge2Sb2Te5 (GST) and other materials and the resistance caused by microstructural defects. This work reveals the importance of the thermoelectrical properties of materials in PCRAM cells and improves the quality of PCRAM simulations in industrial application.

  9. Demonstrating Phase Changes.

    ERIC Educational Resources Information Center

    Rohr, Walter

    1995-01-01

    Presents two experiments that demonstrate phase changes. The first experiment explores phase changes of carbon dioxide using powdered dry ice sealed in a piece of clear plastic tubing. The second experiment demonstrates an equilibrium process in which a crystal grows in equilibrium with its saturated solution. (PVD)

  10. Memory Reconsolidation: Time to Change Your Mind

    PubMed Central

    Bailey, Matthew R.; Balsam, Peter D.

    2016-01-01

    A new study shows that temporal expectations about threats are a key part of fear memories and that changing this temporal expectation is enough to trigger the updating and reconsolidation of a previously learned fear. PMID:23518056

  11. Phase change compositions

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  12. Phase change compositions

    DOEpatents

    Salyer, Ival O.

    1989-01-01

    Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.

  13. Fun with Phase Changes

    ERIC Educational Resources Information Center

    Purvis, David

    2006-01-01

    A lot of good elementary science involves studying solids, liquids, and gases, and some inquiry-based activities that are easy to set up and do. In this article, the author presents activities pertaining to simple phase change. Using water as the example, these activities introduce upper-grade students to the idea of the arrangement of molecules…

  14. Phase change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  15. Unpredictable visual changes cause temporal memory averaging.

    PubMed

    Ohyama, Junji; Watanabe, Katsumi

    2007-09-01

    Various factors influence the perceived timing of visual events. Yet, little is known about the ways in which transient visual stimuli affect the estimation of the timing of other visual events. In the present study, we examined how a sudden color change of an object would influence the remembered timing of another transient event. In each trial, subjects saw a green or red disk travel in circular motion. A visual flash (white frame) occurred at random times during the motion sequence. The color of the disk changed either at random times (unpredictable condition), at a fixed time relative to the motion sequence (predictable condition), or it did not change (no-change condition). The subjects' temporal memory of the visual flash in the predictable condition was as veridical as that in the no-change condition. In the unpredictable condition, however, the flash was reported to occur closer to the timing of the color change than actual timing. Thus, an unpredictable visual change distorts the temporal memory of another visual event such that the remembered moment of the event is closer to the timing of the unpredictable visual change.

  16. Accounting for Change in Declarative Memory: A Cognitive Neuroscience Perspective

    ERIC Educational Resources Information Center

    Richmond, Jenny; Nelson, Charles A.

    2007-01-01

    The medial temporal lobe memory system matures relatively early and supports rudimentary declarative memory in young infants. There is considerable development, however, in the memory processes that underlie declarative memory performance during infancy. Here we consider age-related changes in encoding, retention, and retrieval in the context of…

  17. PHASE CHANGE LIQUIDS

    SciTech Connect

    Susan S. Sorini; John F. Schabron

    2006-03-01

    Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

  18. Frontal GABA levels change during working memory.

    PubMed

    Michels, Lars; Martin, Ernst; Klaver, Peter; Edden, Richard; Zelaya, Fernando; Lythgoe, David J; Lüchinger, Rafael; Brandeis, Daniel; O'Gorman, Ruth L

    2012-01-01

    Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing.

  19. High thermal stability and low density variation of carbon-doped Ge{sub 2}Sb{sub 2}Te{sub 5} for phase-change memory application

    SciTech Connect

    Zhou, Wangyang; Wu, Liangcai Zhou, Xilin; Rao, Feng; Song, Zhitang Yao, Dongning; Yin, Weijun; Song, Sannian; Liu, Bo; Feng, Songlin; Qian, Bo

    2014-12-15

    Carbon-doped Ge{sub 2}Sb{sub 2}Te{sub 5} (GSTC) film has been experimentally studied as a thermal stable material for high temperature applications. The 10-yr data retention temperature is remarkably increased through C doping. Furthermore, GSTC films have better interface properties after annealing at 410 °C for 30 min. The density variation of GSTC film is significantly improved, which is very important to device reliability. X-ray photoelectron spectroscopy results reveal that the thermal stability enhancement of GSTC film attributes to the forming of C-Ge, C-Sb, and C-Te bonds. The perfect thermal stability makes GSTC materials a good candidate in the actual production of phase-change memory.

  20. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Feng, Song-Lin

    2009-11-01

    A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater addition structure (HS) and the ring-type contact in bottom electrode (RIB) structure are compared with each other. There are two ways to reduce the RESET current, applying a high resistivity interfacial layer and building a new device structure. The simulation results indicate that the variation of SET current with different power reduction ways is little. This study takes the RESET and SET operation current into consideration, showing that the RIB structure PCRAM cell is suitable for future devices with high heat efficiency and high-density, due to its high heat efficiency in RESET operation.

  1. Confined crystals of the smallest phase-change material.

    PubMed

    Giusca, Cristina E; Stolojan, Vlad; Sloan, Jeremy; Börrnert, Felix; Shiozawa, Hidetsugu; Sader, Kasim; Rümmeli, Mark H; Büchner, Bernd; Silva, S Ravi P

    2013-09-11

    The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.

  2. Phase Change Material Heat Exchangers

    NASA Video Gallery

    NASA’s Game Changing Development is taking on a technologydevelopment and demonstration effort to design, build, and test the next generation of Phase Change Material Heat Exchangers (PCM HXs) on ...

  3. Critical behavior and magnetic entropy change at magnetic phase transitions in Ni50Mn35In14Si1 ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Das, R.; Alagarsamy, P.; Srinivasan, A.

    2014-12-01

    We have investigated critical behaviour and magnetocaloric effect in polycrystalline Ni50Mn35In14Si1 alloy near the second-order ferromagnetic phase transitions (SOPT) at austenite Curie temperature (TC,A) and at martensite Curie temperature (TC,M) by determining the critical exponents, β, γ and δ corresponding to the temperature dependence of spontaneous magnetization, initial susceptibility and isothermal magnetization, respectively. The field dependence of the maximum value of the magnetic entropy change (Δ SM) at the two TC's was estimated using the Maxwell relation as well as from the values of the critical exponents. Values of Δ SM obtained by these two methods at both the SOPT are in remarkable agreement with each other. The critical exponents have been determined by analysing isothermal magnetization data using two different methods, viz., the modified Arrott plot method and the Widom scaling relation. The scaling plots depicted on linear as well as logarithmic scales confirm the reliability of the values of critical exponents obtained. The values of the critical exponents of polycrystalline Ni50Mn35In14Si1 alloy at both the TC's are close to those predicted by mean-field theory confirming the presence of long-range magnetic ordering in the investigated alloy.

  4. Does Active Memory Capacity Change with Age?

    ERIC Educational Resources Information Center

    Halford, Graeme S.; And Others

    A series of experiments, which used the primary memory paradigm of Wickens et al. (1981, 1985) with university students, adults, and 8- and 9-year-old children, found an increase in primary memory capacity with age. Primary memory differs from secondary memory in that the latter is susceptible to proactive interference, whereas the former is not.…

  5. A Different Phase Change

    ERIC Educational Resources Information Center

    Link, Lyndsay B.; Christmann, Edwin P.

    2004-01-01

    This article provides instructions, and a list of supplies for a teacher performed class demonstration showing, change of state. Having students engage in technology-based inquiry activities is an excellent way for teachers to introduce topics that are driven by the National Science Education Standards (NRC 1996). Based on Content Standard B, this…

  6. Modelling the phase diagram of magnetic shape memory Heusler alloys

    NASA Astrophysics Data System (ADS)

    Entel, P.; Buchelnikov, V. D.; Khovailo, V. V.; Zayak, A. T.; Adeagbo, W. A.; Gruner, M. E.; Herper, H. C.; Wassermann, E. F.

    2006-03-01

    We have modelled the phase diagram of magnetic shape memory alloys of the Heusler type by using the phenomenological Ginzburg-Landau theory. When fixing the parameters by realistic values taken from experiment we are able to reproduce most details of, for example, the phase diagram of Ni2+xMn1-xGa in the (T, x) plane. We present the results of ab initio calculations of the electronic and phonon properties of several ferromagnetic Heusler alloys, which allow one to characterize the structural changes associated with the martensitic instability leading to the modulated and tetragonal phases. From the ab initio investigations emerges a complex pattern of the interplay of magic valence electron per atom numbers (Hume-Rothery rules for magnetic ternary alloys), Fermi surface nesting and phonon instability. As the main result, we find that the driving force for structural transformations is considerably enhanced by the extremely low lying optical modes of Ni in the Ni-based Heusler alloys, which interfere with the acoustical modes enhancing phonon softening of the TA2 mode. In contrast, the ferromagnetic Co-based Heusler alloys show no tendency for phonon softening.

  7. Changes in Memory Prediction Accuracy: Age and Performance Effects

    ERIC Educational Resources Information Center

    Pearman, Ann; Trujillo, Amanda

    2013-01-01

    Memory performance predictions are subjective estimates of possible memory task performance. The purpose of this study was to examine possible factors related to changes in word list performance predictions made by younger and older adults. Factors included memory self-efficacy, actual performance, and perceptions of performance. The current study…

  8. Sex and menstrual cycle phase at encoding influence emotional memory for gist and detail.

    PubMed

    Nielsen, Shawn E; Ahmed, Imran; Cahill, Larry

    2013-11-01

    Sex influences on emotional memory have received increasing interest over the past decade. However, only a subset of this previous work explored the influence of sex on memory for central information (gist) and peripheral detail in emotional versus neutral contexts. Here we examined the influence of sex and menstrual cycle phase at encoding on memory for either an emotional or neutral story, specifically with respect to the retention of gist and peripheral detail. Healthy naturally cycling women and men viewed a brief, narrated, three-phase story containing neutral or emotionally arousing elements. One week later, participants received a surprise free recall test for story elements. The results indicate that naturally cycling women in the luteal (high hormone) phase of the menstrual cycle at encoding show enhanced memory for peripheral details, but not gist, when in the emotional compared with neutral stories (p<.05). In contrast, naturally cycling women in the follicular (low hormone) phase of the menstrual cycle at encoding did not show enhanced memory for gist or peripheral details in the emotional compared with neutral stories. Men show enhanced memory for gist, but not peripheral details, in the emotional versus neutral stories (p<.05). In addition, these sex influences on memory cannot be attributed to differences in attention or arousal; luteal women, follicular women, and men performed similarly on measures of attention (fixation time percentage) and arousal (pupil diameter changes) during the most arousing phase of the emotional story. These findings suggest that sex and menstrual cycle phase at encoding influence long term memory for different types of emotional information.

  9. Stochastic phase-change neurons

    NASA Astrophysics Data System (ADS)

    Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos

    2016-08-01

    Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.

  10. Stochastic phase-change neurons.

    PubMed

    Tuma, Tomas; Pantazi, Angeliki; Le Gallo, Manuel; Sebastian, Abu; Eleftheriou, Evangelos

    2016-08-01

    Artificial neuromorphic systems based on populations of spiking neurons are an indispensable tool in understanding the human brain and in constructing neuromimetic computational systems. To reach areal and power efficiencies comparable to those seen in biological systems, electroionics-based and phase-change-based memristive devices have been explored as nanoscale counterparts of synapses. However, progress on scalable realizations of neurons has so far been limited. Here, we show that chalcogenide-based phase-change materials can be used to create an artificial neuron in which the membrane potential is represented by the phase configuration of the nanoscale phase-change device. By exploiting the physics of reversible amorphous-to-crystal phase transitions, we show that the temporal integration of postsynaptic potentials can be achieved on a nanosecond timescale. Moreover, we show that this is inherently stochastic because of the melt-quench-induced reconfiguration of the atomic structure occurring when the neuron is reset. We demonstrate the use of these phase-change neurons, and their populations, in the detection of temporal correlations in parallel data streams and in sub-Nyquist representation of high-bandwidth signals.

  11. Vacancy-mediated three-center four-electron bonds in GeTe-Sb2Te3 phase-change memory alloys

    NASA Astrophysics Data System (ADS)

    Kolobov, Alexander V.; Fons, Paul; Tominaga, Junji; Ovshinsky, Stanford R.

    2013-04-01

    Although GeTe-Sb2Te3 (GST) alloys are widely used in data storage, many fundamental issues are still under debate. Here, we demonstrate that the presence of vacancies in the crystalline phase has far-reaching consequences, namely, a triad of twofold coordinated Te atoms with lone-pair electrons generated around the vacancy enables the formation of soft three-center four-electron bonds, whose properties provide an explanation for the unusual characteristics of GST, in particular, the increase in local disorder upon crystallization, the co-existence of a very fast switching rate with a large property contrast, the possibility of a solid-solid amorphization process that excludes conventional melting, and the drastic difference in crystallization behavior between GST and the ideal binary GeTe. Anisotropy of the three-center bonds may serve as an additional degree of freedom for information recording and provide a unified explanation for a variety of unique effects observed in lone-pair semiconductors.

  12. Vibration damping and heat transfer using material phase changes

    DOEpatents

    Kloucek, Petr; Reynolds, Daniel R.

    2009-03-24

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  13. Vibration damping and heat transfer using material phase changes

    NASA Technical Reports Server (NTRS)

    Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)

    2009-01-01

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  14. Nanoscale martensitic phase transition at interfaces in shape memory materials

    NASA Astrophysics Data System (ADS)

    Dar, Rebecca D.; Chen, Ying

    2017-01-01

    In polycrystalline shape memory materials, mechanical interactions between martensitic transformation and grain boundaries at small scales play a critical role. Using a cobalt-based shape memory alloy, instrumented nanoindentation that probes nanoscale behavior reveals that grain boundary regions are resistant to transformation and have an adverse effect on shape memory possibly because an increase in strain energy outweighs reduction in interface energy. When grain boundaries are replaced by a thin, intergranular layer of a ductile and more malleable phase, grain boundary constraints are greatly alleviated, and transformation nearby can be well accommodated. Statistical analysis of results from a large number of nanoindents shows a decrease in shape recovery near grain boundaries and an increase in shape recovery near the new grain boundary phase, compared to grain interior. This is corroborated by analysis of nanoscale hardness and energy dissipation. Nanoscale martensitic transformation near interfaces depends largely on how the material across the interface accommodates transformation displacement. Engineering interfaces and enhancing local compatibility could drastically alter the energetics for phase transition at interfaces favorable for shape memory.

  15. Circadian phase and intertrial interval interfere with social recognition memory.

    PubMed

    Moura, Paula J; Gimenes-Júnior, João A; Valentinuzzi, Verónica S; Xavier, Gilberto F

    2009-01-08

    A modified version of the social habituation/dis-habituation paradigm was employed to examine social recognition memory in Wistar rats during two opposing (active and inactive) circadian phases, using different intertrial intervals (30 and 60 min). Wheel-running activity was monitored continuously to identify circadian phase. To avoid possible masking effects of the light-dark cycle, the rats were synchronized to a skeleton photoperiod, which allowed testing during different circadian phases under identical lighting conditions. In each trial, an infantile intruder was introduced into an adult's home-cage for a 5-minute interaction session, and social behaviors were registered. Rats were exposed to 5 trials per day for 4 consecutive days: on days 1 and 2, each resident was exposed to the same intruder; on days 3 and 4, each resident was exposed to a different intruder in each trial. The resident's social investigatory behavior was more intense when different intruders were presented compared to repeated presentation of the same intruder, suggesting social recognition memory. This effect was stronger when the rats were tested during the inactive phase and when the intertrial interval was 60 min. These findings suggest that social recognition memory, as evaluated in this modified habituation/dis-habituation paradigm, is influenced by the circadian rhythm phase during which testing is performed, and by intertrial interval.

  16. Accounting for change in declarative memory: A cognitive neuroscience perspective

    PubMed Central

    Richmond, Jenny; Nelson, Charles A.

    2007-01-01

    The medial temporal lobe memory system matures relatively early and supports rudimentary declarative memory in young infants. There is considerable development, however, in the memory processes that underlie declarative memory performance during infancy. Here we consider age-related changes in encoding, retention, and retrieval in the context of current knowledge about the brain systems that may underlie these memory processes. While changes in infants’ encoding may be attributed to rapid myelination during the first year of life, improvements in long-term retention and flexible retrieval are likely due to the prolonged development of the dentate gyrus. Future studies combining measures of brain and behavior are critical in improving our understanding of how brain development drives memory development during infancy and early childhood. PMID:18769510

  17. Superconducting phase domains for memory applications

    NASA Astrophysics Data System (ADS)

    Bakurskiy, S. V.; Klenov, N. V.; Soloviev, I. I.; Kupriyanov, M. Yu.; Golubov, A. A.

    2016-01-01

    In this work, we study theoretically the properties of S-F/N-sIS type Josephson junctions in the frame of the quasiclassical Usadel formalism. The structure consists of two superconducting electrodes (S), a tunnel barrier (I), a combined normal metal/ferromagnet (N/F) interlayer, and a thin superconducting film (s). We demonstrate the breakdown of a spatial uniformity of the superconducting order in the s-film and its decomposition into domains with a phase shift π. The effect is sensitive to the thickness of the s layer and the widths of the F and N films in the direction along the sIS interface. We predict the existence of a regime where the structure has two energy minima and can be switched between them by an electric current injected laterally into the structure. The state of the system can be non-destructively read by an electric current flowing across the junction.

  18. Conditions of steady switching in phase-transition memory cells

    SciTech Connect

    Popov, A. I. Salnikov, S. M.; Anufriev, Yu. V.

    2015-04-15

    Three types of non-volatile memory cells of different designs based on phase transitions are developed and implemented. The effect of the design features of the cells and their active-region sizes on the switching characteristics and normal operation of the cells is considered as a whole. The causes of failure of the cells are analyzed from the obtained series of scanning electron images upon level-by-level etching of the samples. It is shown that the cell design is the most critical factor from the viewpoint of switching to the high-resistance state. The causes of this fact are analyzed and the criterion for providing the steady operation of cells of non-volatile memory based on phase transitions is formulated.

  19. Phase change material storage heater

    DOEpatents

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  20. Effects of timbre and tempo change on memory for music.

    PubMed

    Halpern, Andrea R; Müllensiefen, Daniel

    2008-09-01

    We investigated the effects of different encoding tasks and of manipulations of two supposedly surface parameters of music on implicit and explicit memory for tunes. In two experiments, participants were first asked to either categorize instrument or judge familiarity of 40 unfamiliar short tunes. Subsequently, participants were asked to give explicit and implicit memory ratings for a list of 80 tunes, which included 40 previously heard. Half of the 40 previously heard tunes differed in timbre (Experiment 1) or tempo (Experiment 2) in comparison with the first exposure. A third experiment compared similarity ratings of the tunes that varied in timbre or tempo. Analysis of variance (ANOVA) results suggest first that the encoding task made no difference for either memory mode. Secondly, timbre and tempo change both impaired explicit memory, whereas tempo change additionally made implicit tune recognition worse. Results are discussed in the context of implicit memory for nonsemantic materials and the possible differences in timbre and tempo in musical representations.

  1. On phase transformation behavior of porous Shape Memory Alloys.

    PubMed

    Liu, Bingfei; Dui, Guansuo; Zhu, Yuping

    2012-01-01

    This paper is concerned on the phase transformation mechanism of porous Shape Memory Alloys (SMAs). A unit-cell model is adopted to establish the constitutive relation for porous SMAs, the stress distributions, the phase distributions and the martensitic volume fractions for the model are then derived under both pure hydrostatic stress and uniaxial compression. Further, an example for the uniaxial response under compression for a porous Ni-Ti SMA material considering hydrostatic stress is supplied. Good agreement between the theoretical prediction of the proposed model and published experimental data is observed.

  2. Spatiotemporal oscillatory dynamics during the encoding and maintenance phases of a visual working memory task.

    PubMed

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2015-08-01

    Many electrophysiology studies have examined neural oscillatory activity during the encoding, maintenance, and/or retrieval phases of various working memory tasks. Together, these studies have helped illuminate the underlying neural dynamics, although much remains to be discovered and some findings have not replicated in subsequent work. In this study, we examined the oscillatory dynamics that serve visual working memory operations using high-density magnetoencephalography (MEG) and advanced time-frequency and beamforming methodology. Specifically, we recorded healthy adults while they performed a high-load, Sternberg-type working memory task, and focused on the encoding and maintenance phases. We found significant 9-16 Hz desynchronizations in the bilateral occipital cortices, left dorsolateral prefrontal cortex (DLPFC), and left superior temporal areas throughout the encoding phase. Our analysis of the dynamics showed that the left DLPFC and superior temporal desynchronization became stronger as a function of time during the encoding period, and was sustained throughout most of the maintenance phase until sharply decreasing in the milliseconds preceding retrieval. In contrast, desynchronization in occipital areas became weaker as a function of time during encoding and eventually evolved into a strong synchronization during the maintenance period, consistent with previous studies. These results provide clear evidence of dynamic network-level processes during the encoding and maintenance phases of working memory, and support the notion of a dynamic pattern of functionally-discrete subprocesses within each working memory phase. The presence of such dynamic oscillatory networks may be a potential source of inconsistent findings in this literature, as neural activity within these networks changes dramatically with time.

  3. Pupil size changes during recognition memory.

    PubMed

    Otero, Samantha C; Weekes, Brendan S; Hutton, Samuel B

    2011-10-01

    Pupils dilate to a greater extent when participants view old compared to new items during recognition memory tests. We report three experiments investigating the cognitive processes associated with this pupil old/new effect. Using a remember/know procedure, we found that the effect occurred for old items that were both remembered and known at recognition, although it was attenuated for known compared to remembered items. In Experiment 2, the pupil old/new effect was observed when items were presented acoustically, suggesting the effect does not depend on low-level visual processes. The pupil old/new effect was also greater for items encoded under deep compared to shallow orienting instructions, suggesting it may reflect the strength of the underlying memory trace. Finally, the pupil old/new effect was also found when participants falsely recognized items as being old. We propose that pupils respond to a strength-of-memory signal and suggest that pupillometry provides a useful technique for exploring the underlying mechanisms of recognition memory.

  4. Phase Change Fabrics Control Temperature

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.

  5. Atomic structure and pressure-induced phase transformations in a phase-change alloy

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their

  6. Dual origins of measured phase-amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the human cortex.

    PubMed

    Vaz, Alex P; Yaffe, Robert B; Wittig, John H; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Phase-amplitude coupling (PAC) is hypothesized to coordinate neural activity, but its role in successful memory formation in the human cortex is unknown. Measures of PAC are difficult to interpret, however. Both increases and decreases in PAC have been linked to memory encoding, and PAC may arise due to different neural mechanisms. Here, we use a waveform analysis to examine PAC in the human cortex as participants with intracranial electrodes performed a paired associates memory task. We found that successful memory formation exhibited significant decreases in left temporal lobe and prefrontal cortical PAC, and these two regions exhibited changes in PAC within different frequency bands. Two underlying neural mechanisms, nested oscillations and sharp waveforms, were responsible for the changes in these regions. Our data therefore suggest that decreases in measured cortical PAC during episodic memory reflect two distinct underlying mechanisms that are anatomically segregated in the human brain.

  7. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    PubMed

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) < U < 10(-1) m/s) spanning a wide temperature range (415 < T < 580 K). We also observed direct evidence of non-Arrhenius crystallization behavior in programmed PCM devices at very high heating rates (>10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  8. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    PubMed

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process.

  9. Anticipatory alpha phase influences visual working memory performance.

    PubMed

    Zanto, Theodore P; Chadick, James Z; Gazzaley, Adam

    2014-01-15

    Alpha band (8-12 Hz) phase dynamics in the visual cortex are thought to reflect fluctuations in cortical excitability that influences perceptual processing. As such, visual stimuli are better detected when their onset is concurrent with specific phases of the alpha cycle. However, it is unclear whether alpha phase differentially influences cognitive performance at specific times relative to stimulus onset (i.e., is the influence of phase maximal before, at, or after stimulus onset?). To address this, participants performed a delayed-recognition, working memory (WM) task for visual motion direction during two separate visits. The first visit utilized functional magnetic resonance (fMRI) imaging to identify neural regions associated with task performance. Replicating previous studies, fMRI data showed engagement of visual cortical area V5, as well as a prefrontal cortical region, the inferior frontal junction (IFJ). During the second visit, transcranial magnetic stimulation (TMS) was applied separately to both the right IFJ and right V5 (with the vertex as a control region) while electroencephalography (EEG) was simultaneously recorded. During each trial, a single pulse of TMS (spTMS) was applied at one of six time points (-200, -100, -50, 0, 80, 160 ms) relative to the encoded stimulus onset. Results demonstrated a relationship between the phase of the posterior alpha signal prior to stimulus encoding and subsequent response times to the memory probe two seconds later. Specifically, spTMS to V5, and not the IFJ or vertex, yielded faster response times, indicating improved WM performance, when delivered during the peak, compared to the trough, of the alpha cycle, but only when spTMS was applied 100 ms prior to stimulus onset. These faster responses to the probe correlated with decreased early event related potential (ERP) amplitudes (i.e., P1) to the probe stimuli. Moreover, participants that were least affected by spTMS exhibited greater functional connectivity

  10. Model for resistance evolution in shape memory alloys including R-phase

    NASA Astrophysics Data System (ADS)

    Brammajyosula, Ravindra; Buravalla, Vidyashankar; Khandelwal, Ashish

    2011-03-01

    The electrical resistance behavior of a shape memory alloy (SMA) wire can be used for sensing the state of an SMA device. Hence, this study investigates the resistance evolution in SMAs. A lumped parameter model with cosine kinetics to capture the resistance variation during the phase transformation is developed. Several SMA materials show the presence of trigonal or rhombohedral (R) phase as an intermediate phase, apart from the commonly recognized austenite and martensite phases. Most of the SMA models ignore the R-phase effect in their prediction of thermomechanical response. This may be acceptable since the changes in thermomechanical response associated with the R-phase are relatively less. However, the resistivity related effects are pronounced in the presence of the R-phase and its appearance introduces non-monotonicity in the resistivity evolution. This leads to additional complexities in the use of resistance signal for sensing and control. Hence, a lumped model is developed here for resistance evolution including the R-phase effects. A phase-diagram-based model is proposed for predicting electro-thermomechanical response. Both steady state hysteretic response and transient response are modeled. The model predictions are compared with the available test data. Numerical studies have shown that the model is able to capture all the essential features of the resistance evolution in SMAs in the presence of the R-phase.

  11. The effects of velocity difference changes with memory on the dynamics characteristics and fuel economy of traffic flow

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Zhao, Xiangmo; Xu, Zhigang; Zhang, Licheng

    2016-11-01

    To evaluate the effects of velocity difference changes with memory in the intelligent transportation environment on the dynamics and fuel consumptions of traffic flow, we first investigate the linkage between velocity difference changes with memory and car-following behaviors with the measured data in cities, and then propose an improved cooperative car-following model considering multiple velocity difference changes with memory in the cooperative adaptive cruise control strategy, finally carry out several numerical simulations under the periodic boundary condition and at signalized intersections to explore how velocity difference changes with memory affect car's velocity, velocity fluctuation, acceleration and fuel consumptions in the intelligent transportation environment. The results show that velocity difference changes with memory have obvious effects on car-following behaviors, that the improved cooperative car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that the stability and fuel economy of traffic flow simulated by the improved car-following model with velocity difference changes with memory is obviously superior to those without velocity difference changes, and that taking velocity difference changes with memory into account in designing the advanced adaptive cruise control strategy can significantly improve the stability and fuel economy of traffic flow.

  12. Changes in Semantic Memory in Early Stage Alzheimer's Disease Patients.

    ERIC Educational Resources Information Center

    Weingartner, Herbert J.; And Others

    1993-01-01

    Contrasts changes in semantic memory in elderly normal controls and Alzheimer's disease (AD) patients before patients expressed symptoms. Found that controls generated more uncommon exemplars from closed semantic categories (fruits and vegetables) than did AD patients prior to presumed onset of AD. AD patients were just as productive as controls…

  13. Extinction Partially Reverts Structural Changes Associated with Remote Fear Memory

    ERIC Educational Resources Information Center

    Vetere, Gisella; Restivo, Leonardo; Novembre, Giovanni; Aceti, Massimiliano; Lumaca, Massimo; Ammassari-Teule, Martine

    2011-01-01

    Structural synaptic changes occur in medial prefrontal cortex circuits during remote memory formation. Whether extinction reverts or further reshapes these circuits is, however, unknown. Here we show that the number and the size of spines were enhanced in anterior cingulate (aCC) and infralimbic (ILC) cortices 36 d following contextual fear…

  14. Memory under stress: from single systems to network changes.

    PubMed

    Schwabe, Lars

    2017-02-01

    Stressful events have profound effects on learning and memory. These effects are mainly mediated by catecholamines and glucocorticoid hormones released from the adrenals during stressful encounters. It has been known for long that both catecholamines and glucocorticoids influence the functioning of the hippocampus, a critical hub for episodic memory. However, areas implicated in other forms of memory, such as the insula or the dorsal striatum, can be affected by stress as well. Beyond changes in single memory systems, acute stress triggers the reconfiguration of large scale neural networks which sets the stage for a shift from thoughtful, 'cognitive' control of learning and memory toward more reflexive, 'habitual' processes. Stress-related alterations in amygdala connectivity with the hippocampus, dorsal striatum, and prefrontal cortex seem to play a key role in this shift. The bias toward systems proficient in threat processing and the implementation of well-established routines may facilitate coping with an acute stressor. Overreliance on these reflexive systems or the inability to shift flexibly between them, however, may represent a risk factor for psychopathology in the long-run.

  15. Controlling the Phase of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    NASA Astrophysics Data System (ADS)

    Niedzielski, Bethany; Gingrich, Eric; Glick, Joseph; Wang, Yixing; Miller, Don; Loloee, Reza; Pratt, William, Jr.; Birge, Norman

    Josephson junctions containing ferromagnetic layers are currently of interest for use in cryogenic memory where either the phase or critical current can be switched between two distinct states. We present the first direct phase measurements of such a junction demonstrating control of the phase. If a junction contains one ferromagnetic layer, the thickness of that layer dictates the ground state phase between the superconducting electrodes, which can be either 0 or π. If the junction contains two ferromagnetic layers and the layer thicknesses are carefully chosen, then the phase of a single junction can be switched between 0 and π by changing the relative magnetization directions of the two layers from antiparallel to parallel. We have successfully fabricated and directly measured the relative phase of two such spin valve junctions in a SQUID loop to confirm the phase change from π to 0 and back again of each junction. We report our continued progress in optimizing the control of such systems. This work was supported by IARPA via ARO Contract W911NF-14-C-0115.

  16. One order of magnitude faster phase change at reduced power in Ti-Sb-Te.

    PubMed

    Zhu, Min; Xia, Mengjiao; Rao, Feng; Li, Xianbin; Wu, Liangcai; Ji, Xinglong; Lv, Shilong; Song, Zhitang; Feng, Songlin; Sun, Hongbo; Zhang, Shengbai

    2014-07-08

    To date, slow Set operation speed and high Reset operation power remain to be important limitations for substituting dynamic random access memory by phase change memory. Here, we demonstrate phase change memory cell based on Ti0.4Sb2Te3 alloy, showing one order of magnitude faster Set operation speed and as low as one-fifth Reset operation power, compared with Ge2Sb2Te5-based phase change memory cell at the same size. The enhancements may be rooted in the common presence of titanium-centred octahedral motifs in both amorphous and crystalline Ti0.4Sb2Te3 phases. The essentially unchanged local structures around the titanium atoms may be responsible for the significantly improved performance, as these structures could act as nucleation centres to facilitate a swift, low-energy order-disorder transition for the rest of the Sb-centred octahedrons. Our study may provide an alternative to the development of high-speed, low-power dynamic random access memory-like phase change memory technology.

  17. One order of magnitude faster phase change at reduced power in Ti-Sb-Te

    PubMed Central

    Zhu, Min; Xia, Mengjiao; Rao, Feng; Li, Xianbin; Wu, Liangcai; Ji, Xinglong; Lv, Shilong; Song, Zhitang; Feng, Songlin; Sun, Hongbo; Zhang, Shengbai

    2014-01-01

    To date, slow Set operation speed and high Reset operation power remain to be important limitations for substituting dynamic random access memory by phase change memory. Here, we demonstrate phase change memory cell based on Ti0.4Sb2Te3 alloy, showing one order of magnitude faster Set operation speed and as low as one-fifth Reset operation power, compared with Ge2Sb2Te5-based phase change memory cell at the same size. The enhancements may be rooted in the common presence of titanium-centred octahedral motifs in both amorphous and crystalline Ti0.4Sb2Te3 phases. The essentially unchanged local structures around the titanium atoms may be responsible for the significantly improved performance, as these structures could act as nucleation centres to facilitate a swift, low-energy order-disorder transition for the rest of the Sb-centred octahedrons. Our study may provide an alternative to the development of high-speed, low-power dynamic random access memory-like phase change memory technology. PMID:25001009

  18. Multilevel data storage in multilayer phase change material

    NASA Astrophysics Data System (ADS)

    Lu, Yegang; Wang, Miao; Song, Sannian; Xia, Mengjiao; Jia, Yu; shen, Xiang; Wang, Guoxiang; Dai, Shixun; Song, Zhitang

    2016-10-01

    Superlattice-like GaSb/Sb4Te phase change film was proposed for multilevel phase change memory with the feature of three stable resistance states. Two distinct transition temperatures of around 170 and 230 °C were observed in the superlattice-like GaSb/Sb4Te thin film. Under elevated temperature, the precipitated rhombohedral Sb phase was found in the Sb4Te layer, which was followed by the crystallization of rhombohedral Sb2Te3, whereas the GaSb layer remained almost in the amorphous state except the impinged Sb grains. The formation of percolation path for crystallization in the GaSb layer can account for the multilevel resistance states. For the GaSb/Sb4Te-based device, the reversibly electrical switching was realized under the electrical pulse as short as 10 ns, and the endurance was achieved at least 105 cycles among different resistance states.

  19. Sleep supports cued fear extinction memory consolidation independent of circadian phase.

    PubMed

    Melo, Irene; Ehrlich, Ingrid

    2016-07-01

    Sleep promotes memory, particularly for declarative learning. However, its role in non-declarative, emotional memories is less well understood. Some studies suggest that sleep may influence fear-related memories, and thus may be an important factor determining the outcome of treatments for emotional disorders such as post-traumatic stress disorder. Here, we investigated the effect of sleep deprivation and time of day on fear extinction memory consolidation. Mice were subjected to a cued Pavlovian fear and extinction paradigm at the beginning of their resting or active phase. Immediate post-extinction learning sleep deprivation for 5h compromised extinction memory when tested 24h after learning. Context-dependent extinction memory recall was completely prevented by sleep-manipulation during the resting phase, while impairment was milder during the active phase and extinction memory retained its context-specificity. Importantly, control experiments excluded confounding factors such as differences in baseline locomotion, fear generalization and stress hormone levels. Together, our findings indicate that post-learning sleep supports cued fear extinction memory consolidation in both circadian phases. The lack of correlation between memory efficacy and sleep time suggests that extinction memory may be influenced by specific sleep events in the early consolidation period.

  20. Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Hinrichs, Hermann; Heinze, Hans-Jochen; Rugg, Michael D; Knight, Robert T; Richardson-Klavehn, Alan

    2015-05-20

    Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al., 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

  1. Precipitate Phases in Several High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Initiated by the aerospace industry, there has been a great interest to develop high temperature shape memory alloys (HTSMAs) for actuator type of application at elevated temperatures. Several NiTi based ternary systems have been shown to be potential candidates for HTSMAs and this work focuses on one or more alloys in the TiNiPt, TiNiPd, NiTiHf, NiPdTiHf systems. The sheer scope of alloys of varying compositions across all four systems suggests that the questions raised and addressed in this work are just the tip of the iceberg. This work focuses on materials characterization and aims to investigate microstructural evolution of these alloys as a function of heat treatment. The information gained through the study can serve as guidance for future alloy processing. The emphasis of this work is to describe novel precipitate phases that are formed under aging in the ternary systems and one quaternary system. Employing conventional transmission electron microscopy (TEM), high resolution high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM), 3D atom probe tomography (3D APT), as well as ab initio calculations, the complete description of the unit cell for the new precipitates was determined. The methodology is summarized in the appendix to help elucidate some basics of such a process.

  2. Brain network changes and memory decline in aging.

    PubMed

    Beason-Held, Lori L; Hohman, Timothy J; Venkatraman, Vijay; An, Yang; Resnick, Susan M

    2016-06-18

    One theory of age-related cognitive decline proposes that changes within the default mode network (DMN) of the brain impact the ability to successfully perform cognitive operations. To investigate this theory, we examined functional covariance within brain networks using regional cerebral blood flow data, measured by (15)O-water PET, from 99 participants (mean baseline age 68.6 ± 7.5) in the Baltimore Longitudinal Study of Aging collected over a 7.4 year period. The sample was divided in tertiles based on longitudinal performance on a verbal recognition memory task administered during scanning, and functional covariance was compared between the upper (improvers) and lower (decliners) tertile groups. The DMN and verbal memory networks (VMN) were then examined during the verbal memory scan condition. For each network, group differences in node-to-network coherence and individual node-to-node covariance relationships were assessed at baseline and in change over time. Compared with improvers, decliners showed differences in node-to-network coherence and in node-to-node relationships in the DMN but not the VMN during verbal memory. These DMN differences reflected greater covariance with better task performance at baseline and both increasing and declining covariance with declining task performance over time for decliners. When examined during the resting state alone, the direction of change in DMN covariance was similar to that seen during task performance, but node-to-node relationships differed from those observed during the task condition. These results suggest that disengagement of DMN components during task performance is not essential for successful cognitive performance as previously proposed. Instead, a proper balance in network processes may be needed to support optimal task performance.

  3. Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing.

    PubMed

    Uchida, Shusaku; Martel, Guillaume; Pavlowsky, Alice; Takizawa, Shuichi; Hevi, Charles; Watanabe, Yoshifumi; Kandel, Eric R; Alarcon, Juan Marcos; Shumyatsky, Gleb P

    2014-07-10

    Changes in the stability of microtubules regulate many biological processes, but their role in memory remains unclear. Here we show that learning causes biphasic changes in the microtubule-associated network in the hippocampus. In the early phase, stathmin is dephosphorylated, enhancing its microtubule-destabilizing activity by promoting stathmin-tubulin binding, whereas in the late phase these processes are reversed leading to an increase in microtubule/KIF5-mediated localization of the GluA2 subunit of AMPA receptors at synaptic sites. A microtubule stabilizer paclitaxel decreases or increases memory when applied at the early or late phases, respectively. Stathmin mutations disrupt changes in microtubule stability, GluA2 localization, synaptic plasticity and memory. Aged wild-type mice show impairments in stathmin levels, changes in microtubule stability and GluA2 localization. Blocking GluA2 endocytosis rescues memory deficits in stathmin mutant and aged wild-type mice. These findings demonstrate a role for microtubules in memory in young adult and aged individuals.

  4. Learning-induced and stathmin-dependent changes in microtubule stability are critical for memory and disrupted in ageing

    PubMed Central

    Uchida, Shusaku; Martel, Guillaume; Pavlowsky, Alice; Takizawa, Shuichi; Hevi, Charles; Watanabe, Yoshifumi; Kandel, Eric R.; Alarcon, Juan Marcos; Shumyatsky, Gleb P.

    2014-01-01

    Changes in the stability of microtubules regulate many biological processes, but their role in memory remains unclear. Here we show that learning causes biphasic changes in the microtubule-associated network in the hippocampus. In the early phase, stathmin is dephosphorylated, enhancing its microtubule-destabilizing activity by promoting stathmin-tubulin binding, whereas in the late phase these processes are reversed leading to an increase in microtubule/KIF5-mediated localization of the GluA2 subunit of AMPA receptors at synaptic sites. A microtubule stabilizer paclitaxel decreases or increases memory when applied at the early or late phases, respectively. Stathmin mutations disrupt changes in microtubule stability, GluA2 localization, synaptic plasticity and memory. Aged wild-type mice show impairments in stathmin levels, changes in microtubule stability, and GluA2 localization. Blocking GluA2 endocytosis rescues memory deficits in stathmin mutant and aged wild-type mice. These findings demonstrate a role for microtubules in memory in young adult and aged individuals. PMID:25007915

  5. Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.

    PubMed

    Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh

    2017-01-11

    Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

  6. Metal organic chemical vapor deposition of phase change Ge1Sb2Te4 nanowires.

    PubMed

    Longo, Massimo; Fallica, Roberto; Wiemer, Claudia; Salicio, Olivier; Fanciulli, Marco; Rotunno, Enzo; Lazzarini, Laura

    2012-03-14

    The self-assembly of Ge(1)Sb(2)Te(4) nanowires (NWs) for phase change memories application was achieved by metal organic chemical vapor deposition, catalyzed by Au nanoislands in a narrow range of temperatures and deposition pressures. In the optimized conditions of 400 °C, 50 mbar, the NWs are Ge(1)Sb(2)Te(4) single hexagonal crystals. Phase change memory switching was reversibly induced by nanosecond current pulses through metal-contacted NWs with threshold voltage of about 1.35 V.

  7. Memory

    MedlinePlus

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  8. Longitudinal Changes in Component Processes of Working Memory.

    PubMed

    Rieckmann, Anna; Pudas, Sara; Nyberg, Lars

    2017-01-01

    Working memory (WM) entails maintenance and manipulation of information in the absence of sensory input. This study investigated the trajectories and neural basis of these component processes of WM functions in aging. Longitudinal human functional magnetic resonance imaging (fMRI) data are presented from 136 older individuals (55-80 years) who were scanned at baseline and again 4 years later. We obtained evidence that age-related changes in parietal and frontal components of the WM core network are dissociable in terms of their role in maintenance of perceptual representations and further manipulation of this information, respectively. Individual difference analyses in performance subgroups showed that only prefrontal changes in fMRI activation were accompanied by changes in performance, but parietal brain activity was related to study dropout. We discuss the results in terms of possible neurobiological causes underlying separable aging-related declines in inferior parietal cortex and lateral prefrontal cortex that differentially affect WM functions.

  9. Longitudinal Changes in Component Processes of Working Memory

    PubMed Central

    2017-01-01

    Abstract Working memory (WM) entails maintenance and manipulation of information in the absence of sensory input. This study investigated the trajectories and neural basis of these component processes of WM functions in aging. Longitudinal human functional magnetic resonance imaging (fMRI) data are presented from 136 older individuals (55–80 years) who were scanned at baseline and again 4 years later. We obtained evidence that age-related changes in parietal and frontal components of the WM core network are dissociable in terms of their role in maintenance of perceptual representations and further manipulation of this information, respectively. Individual difference analyses in performance subgroups showed that only prefrontal changes in fMRI activation were accompanied by changes in performance, but parietal brain activity was related to study dropout. We discuss the results in terms of possible neurobiological causes underlying separable aging-related declines in inferior parietal cortex and lateral prefrontal cortex that differentially affect WM functions. PMID:28374009

  10. Memory reconsolidation, emotional arousal, and the process of change in psychotherapy: New insights from brain science.

    PubMed

    Lane, Richard D; Ryan, Lee; Nadel, Lynn; Greenberg, Leslie

    2015-01-01

    Since Freud, clinicians have understood that disturbing memories contribute to psychopathology and that new emotional experiences contribute to therapeutic change. Yet, controversy remains about what is truly essential to bring about psychotherapeutic change. Mounting evidence from empirical studies suggests that emotional arousal is a key ingredient in therapeutic change in many modalities. In addition, memory seems to play an important role but there is a lack of consensus on the role of understanding what happened in the past in bringing about therapeutic change. The core idea of this paper is that therapeutic change in a variety of modalities, including behavioral therapy, cognitive-behavioral therapy, emotion-focused therapy, and psychodynamic psychotherapy, results from the updating of prior emotional memories through a process of reconsolidation that incorporates new emotional experiences. We present an integrated memory model with three interactive components - autobiographical (event) memories, semantic structures, and emotional responses - supported by emerging evidence from cognitive neuroscience on implicit and explicit emotion, implicit and explicit memory, emotion-memory interactions, memory reconsolidation, and the relationship between autobiographical and semantic memory. We propose that the essential ingredients of therapeutic change include: (1) reactivating old memories; (2) engaging in new emotional experiences that are incorporated into these reactivated memories via the process of reconsolidation; and (3) reinforcing the integrated memory structure by practicing a new way of behaving and experiencing the world in a variety of contexts. The implications of this new, neurobiologically grounded synthesis for research, clinical practice, and teaching are discussed.

  11. Molecular mechanisms of phase change in locusts.

    PubMed

    Wang, Xianhui; Kang, Le

    2014-01-01

    Phase change in locusts is an ideal model for studying the genetic architectures and regulatory mechanisms associated with phenotypic plasticity. The recent development of genomic and metabolomic tools and resources has furthered our understanding of the molecular basis of phase change in locusts. Thousands of phase-related genes and metabolites have been highlighted using large-scale expressed sequence tags, microarrays, high-throughput transcriptomic sequences, or metabolomic approaches. However, only several key factors, including genes, metabolites, and pathways, have a critical role in phase transition in locusts. For example, CSP (chemosensory protein) and takeout genes, the dopamine pathway, protein kinase A, and carnitines were found to be involved in the regulation of behavioral phase change and gram-negative bacteria-binding proteins in prophylaxical disease resistance of gregarious locusts. Epigenetic mechanisms including small noncoding RNAs and DNA methylation have been implicated. We review these new advances in the molecular basis of phase change in locusts and present some challenges that need to be addressed.

  12. Dynamic changes in parietal activation during encoding: implications for human learning and memory.

    PubMed

    Elman, Jeremy A; Rosner, Zachary A; Cohn-Sheehy, Brendan I; Cerreta, Adelle G; Shimamura, Arthur P

    2013-11-15

    The ventral posterior parietal cortex (vPPC) monitors successful memory retrieval, yet its role during learning remains unclear. Indeed, increased vPPC activation during stimulus encoding is often negatively correlated with subsequent memory performance, suggesting that this region is suppressed during learning. Alternatively, the vPPC may engage in learning-related processes immediately after stimulus encoding thus facilitating retrieval at a later time. To investigate this possibility, we assessed vPPC activity during item presentation and immediately following its offset when a cue to remember was presented. We observed a dynamic change in vPPC response such that activity was negatively correlated with subsequent memory during stimulus presentation but positively correlated immediately following the stimulus during the cue phase. Furthermore, regional differences in this effect suggest a degree of functional heterogeneity within the vPPC. These findings demonstrate that the vPPC is engaged during learning and acts to facilitate post-encoding memory processes that establish long-term cortical representations.

  13. Disorder-induced localization in crystalline phase-change materials.

    PubMed

    Siegrist, T; Jost, P; Volker, H; Woda, M; Merkelbach, P; Schlockermann, C; Wuttig, M

    2011-03-01

    Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.

  14. Solar heat storage in phase change material

    SciTech Connect

    Phillips, H.J.

    1984-02-28

    The objective of this project was to develop a chemical heat storage system that had a phase change with release of latent heat at about 105/sup 0/F. The primary reason this kind on system was sought was that heat storage capacity of commonly used storage systems do not match the heat collection capacity of open air collectors. In addition to the phase change three other factors were considered: the cost of the material, the amount of heat the system would hold per unit volume, and the rate at which the system released sensible and latent heat. One hundred nineteen tests were made on 32 systems. Only data on six of the more promising are presented. In the six systems, borax was used as the major component with other materials used as nucleating agents toraise the temperature of phase change.

  15. Memory.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  16. A Reevaluation of Age-Related Changes in Associative Memory Organization.

    ERIC Educational Resources Information Center

    Lindauer, Barbara K.; Paris, Scott G.

    This paper focuses on a study which replicates and extends earlier work employing a recognition memory paradigm to investigate children's memory and developmental changes in dominant word associations. On the recognition test the implicit associative response can lead to better memory for the original items (this is the hit rate), and it can also…

  17. Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Juergen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Esslinger, Christine; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Richardson-Klavehn, Alan

    2014-12-23

    The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the scenes, demonstrating a key role for the ATN in human memory encoding.

  18. Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation

    PubMed Central

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Juergen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Esslinger, Christine; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Richardson-Klavehn, Alan

    2014-01-01

    The anterior thalamic nucleus (ATN) is thought to play an important role in a brain network involving the hippocampus and neocortex, which enables human memories to be formed. However, its small size and location deep within the brain have impeded direct investigation in humans with non-invasive techniques. Here we provide direct evidence for a functional role for the ATN in memory formation from rare simultaneous human intrathalamic and scalp electroencephalogram (EEG) recordings from eight volunteering patients receiving intrathalamic electrodes implanted for the treatment of epilepsy, demonstrating real-time communication between neocortex and ATN during successful memory encoding. Neocortical-ATN theta oscillatory phase synchrony of local field potentials and neocortical-theta-to-ATN-gamma cross-frequency coupling during presentation of complex photographic scenes predicted later memory for the scenes, demonstrating a key role for the ATN in human memory encoding. DOI: http://dx.doi.org/10.7554/eLife.05352.001 PMID:25535839

  19. Changing disturbance regimes, ecological memory, and forest resilience

    USGS Publications Warehouse

    Johnstone, Jill F.; Allen, Craig D.; Franklin, Jerry F.; Frelich, Lee E.; Harvey, Brian J.; Higuera, Philip E.; Mack, Michelle C.; Meentemeyer, Ross K.; Metz, Margaret R.; Perry, George LW; Schoennagel, Tania; Turner, Monica G.

    2016-01-01

    Ecological memory is central to how ecosystems respond to disturbance and is maintained by two types of legacies – information and material. Species life-history traits represent an adaptive response to disturbance and are an information legacy; in contrast, the abiotic and biotic structures (such as seeds or nutrients) produced by single disturbance events are material legacies. Disturbance characteristics that support or maintain these legacies enhance ecological resilience and maintain a “safe operating space” for ecosystem recovery. However, legacies can be lost or diminished as disturbance regimes and environmental conditions change, generating a “resilience debt” that manifests only after the system is disturbed. Strong effects of ecological memory on post-disturbance dynamics imply that contingencies (effects that cannot be predicted with certainty) of individual disturbances, interactions among disturbances, and climate variability combine to affect ecosystem resilience. We illustrate these concepts and introduce a novel ecosystem resilience framework with examples of forest disturbances, primarily from North America. Identifying legacies that support resilience in a particular ecosystem can help scientists and resource managers anticipate when disturbances may trigger abrupt shifts in forest ecosystems, and when forests are likely to be resilient.

  20. Negative P-T slopes characterize phase change processes: Case of the Ge1Sb2Te4 phase change alloy

    NASA Astrophysics Data System (ADS)

    Kalkan, B.; Sen, S.; Aitken, B. G.; Raju, S. V.; Clark, S. M.

    2011-07-01

    The crystalline, liquid and amorphous phase stabilities and transformations of the Ge1Sb2Te4 (GST124) alloy are investigated as a function of pressure and temperature using synchrotron diffraction experiments in a diamond anvil cell. The results indicate that the solid-state amorphization of the cubic GST124 phase under high pressure may correspond to a metastable extension of the stability field of the GST124 liquid along a hexagonal crystal-liquid phase boundary with a negative P-T slope. The internal pressures generated during phase change are shown to be too small to affect phase stability. However, they may be important in understanding reliability issues related to thermomechanical stress development in phase change random access memory structures.

  1. Phase change thermal energy storage material

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1987-01-01

    A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

  2. Polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  3. Episodic sequence memory is supported by a theta-gamma phase code

    PubMed Central

    Heusser, Andrew C.; Poeppel, David; Ezzyat, Youssef; Davachi, Lila

    2016-01-01

    The meaning we derive from our experiences is not a simple static extraction of the elements, but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high and low frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (i.e. gamma) and sequential order is coded by the specific timing of firing with respect to a lower frequency oscillation (i.e. theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit relatively greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. These results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling. PMID:27571010

  4. Memory-based mismatch response to frequency changes in rats.

    PubMed

    Astikainen, Piia; Stefanics, Gabor; Nokia, Miriam; Lipponen, Arto; Cong, Fengyu; Penttonen, Markku; Ruusuvirta, Timo

    2011-01-01

    Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive detection of such changes generates the mismatch negativity (MMN) component of event-related brain potentials. MMN is elicited to rare changes ('deviants') in a series of otherwise regularly repeating stimuli ('standards'). Deviant stimuli are detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response to auditory changes. To resolve this issue, epidural potentials were recorded above the primary auditory cortex of urethane-anesthetized rats. In an oddball condition, tone frequency was used to differentiate deviants interspersed randomly among a standard tone. Mismatch responses were observed at 60-100 ms after stimulus onset for frequency increases of 5% and 12.5% but not for similarly descending deviants. The response diminished when the silent inter-stimulus interval was increased from 375 ms to 600 ms for +5% deviants and from 600 ms to 1000 ms for +12.5% deviants. In comparison to the oddball condition the response also diminished in a control condition in which no repetitive standards were presented (equiprobable condition). These findings suggest that the rat mismatch response is similar to the human MMN and indicate that anesthetized rats provide a valuable model for studies of central auditory processing.

  5. Ultrafast phase-change logic device driven by melting processes.

    PubMed

    Loke, Desmond; Skelton, Jonathan M; Wang, Wei-Jie; Lee, Tae-Hoon; Zhao, Rong; Chong, Tow-Chong; Elliott, Stephen R

    2014-09-16

    The ultrahigh demand for faster computers is currently tackled by traditional methods such as size scaling (for increasing the number of devices), but this is rapidly becoming almost impossible, due to physical and lithographic limitations. To boost the speed of computers without increasing the number of logic devices, one of the most feasible solutions is to increase the number of operations performed by a device, which is largely impossible to achieve using current silicon-based logic devices. Multiple operations in phase-change-based logic devices have been achieved using crystallization; however, they can achieve mostly speeds of several hundreds of nanoseconds. A difficulty also arises from the trade-off between the speed of crystallization and long-term stability of the amorphous phase. We here instead control the process of melting through premelting disordering effects, while maintaining the superior advantage of phase-change-based logic devices over silicon-based logic devices. A melting speed of just 900 ps was achieved to perform multiple Boolean algebraic operations (e.g., NOR and NOT). Ab initio molecular-dynamics simulations and in situ electrical characterization revealed the origin (i.e., bond buckling of atoms) and kinetics (e.g., discontinuouslike behavior) of melting through premelting disordering, which were key to increasing the melting speeds. By a subtle investigation of the well-characterized phase-transition behavior, this simple method provides an elegant solution to boost significantly the speed of phase-change-based in-memory logic devices, thus paving the way for achieving computers that can perform computations approaching terahertz processing rates.

  6. Locust dynamics: behavioral phase change and swarming.

    PubMed

    Topaz, Chad M; D'Orsogna, Maria R; Edelstein-Keshet, Leah; Bernoff, Andrew J

    2012-01-01

    Locusts exhibit two interconvertible behavioral phases, solitarious and gregarious. While solitarious individuals are repelled from other locusts, gregarious insects are attracted to conspecifics and can form large aggregations such as marching hopper bands. Numerous biological experiments at the individual level have shown how crowding biases conversion towards the gregarious form. To understand the formation of marching locust hopper bands, we study phase change at the collective level, and in a quantitative framework. Specifically, we construct a partial integrodifferential equation model incorporating the interplay between phase change and spatial movement at the individual level in order to predict the dynamics of hopper band formation at the population level. Stability analysis of our model reveals conditions for an outbreak, characterized by a large scale transition to the gregarious phase. A model reduction enables quantification of the temporal dynamics of each phase, of the proportion of the population that will eventually gregarize, and of the time scale for this to occur. Numerical simulations provide descriptions of the aggregation's structure and reveal transiently traveling clumps of gregarious insects. Our predictions of aggregation and mass gregarization suggest several possible future biological experiments.

  7. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  8. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory.

    PubMed

    Halder, Rashi; Hennion, Magali; Vidal, Ramon O; Shomroni, Orr; Rahman, Raza-Ur; Rajput, Ashish; Centeno, Tonatiuh Pena; van Bebber, Frauke; Capece, Vincenzo; Garcia Vizcaino, Julio C; Schuetz, Anna-Lena; Burkhardt, Susanne; Benito, Eva; Navarro Sala, Magdalena; Javan, Sanaz Bahari; Haass, Christian; Schmid, Bettina; Fischer, Andre; Bonn, Stefan

    2016-01-01

    The ability to form memories is a prerequisite for an organism's behavioral adaptation to environmental changes. At the molecular level, the acquisition and maintenance of memory requires changes in chromatin modifications. In an effort to unravel the epigenetic network underlying both short- and long-term memory, we examined chromatin modification changes in two distinct mouse brain regions, two cell types and three time points before and after contextual learning. We found that histone modifications predominantly changed during memory acquisition and correlated surprisingly little with changes in gene expression. Although long-lasting changes were almost exclusive to neurons, learning-related histone modification and DNA methylation changes also occurred in non-neuronal cell types, suggesting a functional role for non-neuronal cells in epigenetic learning. Finally, our data provide evidence for a molecular framework of memory acquisition and maintenance, wherein DNA methylation could alter the expression and splicing of genes involved in functional plasticity and synaptic wiring.

  9. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    NASA Astrophysics Data System (ADS)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  10. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    PubMed Central

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-01-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity. PMID:27306959

  11. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations.

    PubMed

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-16

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  12. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    PubMed Central

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  13. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement.

    PubMed

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes.

  14. Sleep, Memory, and Aging: The Link Between Slow-Wave Sleep and Episodic Memory Changes from Younger to Older Adults

    PubMed Central

    Scullin, Michael K.

    2012-01-01

    In younger adults, recently learned episodic memories are reactivated and consolidated during slow-wave sleep (SWS). Interestingly, SWS declines across the lifespan but little research has examined whether sleep-dependent memory consolidation occurs in older adults. In the present study, younger adults and healthy older adults encoded word pairs in the morning or evening and then returned following a sleep or no-sleep interval. Sleep stage scoring was obtained using a home sleep-stage monitoring system. In the younger adult group, there was a positive correlation between word retention and amount of SWS. In contrast, the older adults demonstrated no significant positive correlations, but one significant negative correlation, between memory and SWS. These findings suggest that the link between episodic memory and SWS that is typically observed in younger adults may be weakened or otherwise changed in the healthy elderly. PMID:22708533

  15. Dependence of phase transitions on small changes

    NASA Astrophysics Data System (ADS)

    Stoop, R.

    1993-06-01

    In this contribution, the generalized thermodynamic formalism is applied to a nonhyperbolic dynamical system in two comparable situations. The change from one situation to the other is small in the sense that the grammar and the singularities of the system are preserved. For the discussion of the effects generated by this change, the generalized entropy functions are calculated and the sets of the specific scaling functions which reflect the phase transition of the system are investigated. It is found that even under mild variations, this set is not invariant.

  16. Sb-Te Phase-change Materials under Nanoscale Confinement

    NASA Astrophysics Data System (ADS)

    Ihalawela, Chandrasiri A.

    Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with

  17. Developmental Change in Working Memory Strategies: From Passive Maintenance to Active Refreshing

    ERIC Educational Resources Information Center

    Camos, Valerie; Barrouillet, Pierre

    2011-01-01

    Change in strategies is often mentioned as a source of memory development. However, though performance in working memory tasks steadily improves during childhood, theories differ in linking this development to strategy changes. Whereas some theories, such as the time-based resource-sharing model, invoke the age-related increase in use and…

  18. Circadian waveform bifurcation, but not phase-shifting, leaves cued fear memory intact.

    PubMed

    Harrison, E M; Carmack, S A; Block, C L; Sun, J; Anagnostaras, S G; Gorman, M R

    2017-02-01

    In mammals, memory acquisition and retrieval can be affected by time of day, as well as by manipulations of the light/dark cycle. Under bifurcation, a manipulation of circadian waveform, two subjective days and nights are experimentally induced in rodents. We examined the effect of bifurcation on Pavlovian fear conditioning, a prominent model of learning and memory. Here we demonstrate that bifurcation of the circadian waveform produces a small deficit in acquisition, but not on retrieval of fear memory. In contrast, repeated phase-shifting in a simulated jet-lag protocol impairs retrieval of memory for cued fear. The results have implications for those attempting to adjust to shift-work or other challenging schedules.

  19. Sprayable Phase Change Coating Thermal Protection Material

    NASA Technical Reports Server (NTRS)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  20. An improved car-following model considering headway changes with memory

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Shi, Zhongke

    2015-03-01

    To describe car-following behaviors in complex situations better, increase roadway traffic mobility and minimize cars' fuel consumptions, the linkage between headway changes with memory and car-following behaviors was explored with the field car-following data by using the gray correlation analysis method, and then an improved car-following model considering headway changes with memory on a single lane was proposed based on the full velocity difference model. Some numerical simulations were carried out by employing the improved car-following model to explore how headway changes with memory affected each car's velocity, acceleration, headway and fuel consumptions. The research results show that headway changes with memory have significant effects on car-following behaviors and fuel consumptions and that considering headway changes with memory in designing the adaptive cruise control strategy can improve the traffic flow stability and minimize cars' fuel consumptions.

  1. The Study of the Thermoelectric Properties of Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Abdi, Mohammed; Noimande, Zibusisu; Mbamalu, Godwin; Alameeri, Dheyaa; Datta, Timir

    We study thermoelectric property that is electrical phenomena occurring in conjunction with the flow of heat of phase-change materials (PCM) in particular GeSbTe (GST225). From given sets of material parameters, COMSOL Multiphysics heat-transfer module is used to compute maps of temperature and voltage distribution in the PCM samples. These results are used to design an apparatus including the variable temperature sample holder set up. An Arbitrary/ Function generator and a circuit setup is also designed to control the alternation of heaters embedded on the sample holder in order to ensure sequential back and forward flow of heat current from both sides of the sample. Accurate values of potential differences and temperature distribution profiles are obtained in order to compute the Seebeck coefficient of the sample. The results of elemental analysis and imaging studies such as XRD, UV-VIS, EDEX and SEM of the sample are obtained. Factors affecting the thermoelectric properties of phase change memory are also discussed. NNSA/ DOD Consortium for Materials and Energy Studies.

  2. Phase memory across two single-photon interferometers including wavelength conversion

    NASA Astrophysics Data System (ADS)

    Heuer, A.; Raabe, S.; Menzel, R.

    2014-10-01

    Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal generates two single photons (signal and idler) with random phases. Thus, no first-order interference between them occurs. However, coherence can be induced in a cascaded setup of two crystals if, e.g., the idler modes of both crystals are aligned to be indistinguishable. Due to the effect of phase memory it is found that the first-order interference of the signal beams can be controlled by the phase delay between the pump beams. Even for pump photon delays much larger than the coherence length of the SPDC photons, the visibility is above 90%. The high visibilities reported here prove an almost perfect phase memory effect across the two interferometers for the pump and the signal photon modes.

  3. Why Narrating Changes Memory: A Contribution to an Integrative Model of Memory and Narrative Processes.

    PubMed

    Smorti, Andrea; Fioretti, Chiara

    2016-06-01

    This paper aims to reflect on the relation between autobiographical memory (ME) and autobiographical narrative (NA), examining studies on the effects of narrating on the narrator and showing how studying these relations can make more comprehensible both memory's and narrating's way of working. Studies that address explicitly on ME and NA are scarce and touch this issue indirectly. Authors consider different trends of studies of ME and NA: congruency vs incongruency hypotheses on retrieving, the way of organizing memories according to gist or verbatim format and their role in organizing positive and negative emotional experiences, the social roots of ME and NA, the rules of conversation based on narrating. Analysis of investigations leads the Authors to point out three basic results of their research. Firstly, NA transforms ME because it narrativizes memories according to a narrative format. This means that memories, when are narrated, are transformed in stories (verbal language) and socialised. Secondly, the narrativization process is determined by the act of telling something within a communicative situation. Thus, relational situation of narrating act, by modifying the story, modifies also memories. The Authors propose the RE.NA.ME model (RElation, NArration, MEmory) to understand and study ME and NA. Finally, this study claims that ME and NA refer to two different types of processes having a wide area of overlapping. This is due to common social, developmental and cultural roots that make NA to include part of ME (narrative of memory) and ME to include part of NA (memory of personal events that have been narrated).

  4. Oxygen Tuned Local Structure and Phase-Change Performance of Germanium Telluride.

    PubMed

    Zhou, Xilin; Du, Yonghua; Behera, Jitendra K; Wu, Liangcai; Song, Zhitang; Simpson, Robert E

    2016-08-10

    The effect of oxygen on the local structure of Ge atoms in GeTe-O materials has been investigated. Oxygen leads to a significant modification to the vibrational modes of Ge octahedra, which results from a decrease in its coordination. We find that a defective octahedral Ge network is the crucial fingerprint for rapid and reversible structural transitions in GeTe-based phase change materials. The appearance of oxide Raman modes confirms phase separation into GeO and TeO at high level O doping. Counterintuitively, despite the increase in crystallization temperature of oxygen doped GeTe-O phase change materials, when GeTe-O materials are used in electrical phase change memory cells, the electrical switching energy is lower than the pure GeTe material. This switching energy reduction is ascribed to the smaller change in volume, and therefore smaller enthalpy change, for the oxygen doped GeTe materials.

  5. Neuronal Oscillations Indicate Sleep-dependent Changes in the Cortical Memory Trace.

    PubMed

    Köster, Moritz; Finger, Holger; Kater, Maren-Jo; Schenk, Christoph; Gruber, Thomas

    2017-04-01

    Sleep promotes the consolidation of newly acquired associative memories. Here we used neuronal oscillations in the human EEG to investigate sleep-dependent changes in the cortical memory trace. The retrieval activity for object-color associations was assessed immediately after encoding and after 3 hr of sleep or wakefulness. Sleep had beneficial effects on memory performance and led to reduced event-related theta and gamma power during the retrieval of associative memories. Furthermore, event-related alpha suppression was attenuated in the wake group for memorized and novel stimuli. There were no sleep-dependent changes in retrieval activity for missed items or items retrieved without color. Thus, the sleep-dependent reduction in theta and gamma oscillations was specific for the retrieval of associative memories. In line with theoretical accounts on sleep-dependent memory consolidation, decreased theta may indicate reduced mediotemporal activity because of a transfer of information into neocortical networks during sleep, whereas reduced parietal gamma may reflect effects of synaptic downscaling. Changes in alpha suppression in the wake group possibly index reduced attentional resources that may also contribute to a lower memory performance in this group. These findings indicate that the consolidation of associative memories during sleep is associated with profound changes in the cortical memory trace and relies on multiple neuronal processes working in concert.

  6. Tunable hyperbolic metamaterials utilizing phase change heterostructures

    SciTech Connect

    Krishnamoorthy, Harish N. S.; Menon, Vinod M.; Zhou, You; Ramanathan, Shriram; Narimanov, Evgenii

    2014-03-24

    We present a metal-free tunable anisotropic metamaterial where the iso-frequency surface is tuned from elliptical to hyperbolic dispersion by exploiting the metal-insulator phase transition in the correlated material vanadium dioxide (VO{sub 2}). Using VO{sub 2}-TiO{sub 2} heterostructures, we demonstrate the transition in the effective dielectric constant parallel to the layers to undergo a sign change from positive to negative as the VO{sub 2} undergoes the phase transition. The possibility to tune the iso-frequency surface in real time using external perturbations such as temperature, voltage, or optical pulses creates new avenues for controlling light-matter interaction.

  7. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5.

    PubMed

    Eremeev, S V; Rusinov, I P; Echenique, P M; Chulkov, E V

    2016-12-13

    The Ge2Sb2Te5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge2Sb2Te5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge2Sb2Te5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge2Sb2Te5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

  8. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5

    PubMed Central

    Eremeev, S. V.; Rusinov, I. P.; Echenique, P. M.; Chulkov, E. V.

    2016-01-01

    The Ge2Sb2Te5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge2Sb2Te5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge2Sb2Te5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge2Sb2Te5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential. PMID:27958321

  9. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Eremeev, S. V.; Rusinov, I. P.; Echenique, P. M.; Chulkov, E. V.

    2016-12-01

    The Ge2Sb2Te5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge2Sb2Te5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge2Sb2Te5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge2Sb2Te5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

  10. Different Phases of Long-Term Memory Require Distinct Temporal Patterns of PKA Activity after Single-Trial Classical Conditioning

    ERIC Educational Resources Information Center

    Michel, Maximilian; Kemenes, Ildiko; Muller, Uli; Kemenes, Gyorgy

    2008-01-01

    The cAMP-dependent protein kinase (PKA) is known to play a critical role in both transcription-independent short-term or intermediate-term memory and transcription-dependent long-term memory (LTM). Although distinct phases of LTM already have been demonstrated in some systems, it is not known whether these phases require distinct temporal patterns…

  11. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    NASA Astrophysics Data System (ADS)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  12. Memory load modulates graded changes in distracter filtering

    PubMed Central

    Shimi, Andria; Woolrich, Mark W.; Mantini, Dante; Astle, Duncan E.

    2015-01-01

    Our ability to maintain small amounts of information in mind is critical for successful performance on a wide range of tasks. However, it remains unclear exactly how this maintenance is achieved. One possibility is that it is brought about using mechanisms that overlap with those used for attentional control. That is, the same mechanisms that we use to regulate and optimize our sensory processing may be recruited when we maintain information in visual short-term memory (VSTM). We aimed to test this hypothesis by exploring how distracter filtering is modified by concurrent VSTM load. We presented participants with sequences of target items, the order and location of which had to be maintained in VSTM. We also presented distracter items alongside the targets, and these distracters were graded such that they could be either very similar or dissimilar to the targets. We analyzed scalp potentials using a novel multiple regression approach, which enabled us to explore the neural mechanisms by which the participants accommodated these variable distracters on a trial-to-trial basis. Critically, the effect of distracter filtering interacted with VSTM load; the same graded changes in perceptual similarity exerted effects of a different magnitude depending upon how many items participants were already maintaining in VSTM. These data provide compelling evidence that maintaining information in VSTM recruits an overlapping set of attentional control mechanisms that are otherwise used for distracter filtering. PMID:25610387

  13. Long-term memory and volatility clustering in high-frequency price changes

    NASA Astrophysics Data System (ADS)

    oh, Gabjin; Kim, Seunghwan; Eom, Cheoljun

    2008-02-01

    We studied the long-term memory in diverse stock market indices and foreign exchange rates using Detrended Fluctuation Analysis (DFA). For all high-frequency market data studied, no significant long-term memory property was detected in the return series, while a strong long-term memory property was found in the volatility time series. The possible causes of the long-term memory property were investigated using the return data filtered by the AR(1) model, reflecting the short-term memory property, the GARCH(1,1) model, reflecting the volatility clustering property, and the FIGARCH model, reflecting the long-term memory property of the volatility time series. The memory effect in the AR(1) filtered return and volatility time series remained unchanged, while the long-term memory property diminished significantly in the volatility series of the GARCH(1,1) filtered data. Notably, there is no long-term memory property, when we eliminate the long-term memory property of volatility by the FIGARCH model. For all data used, although the Hurst exponents of the volatility time series changed considerably over time, those of the time series with the volatility clustering effect removed diminish significantly. Our results imply that the long-term memory property of the volatility time series can be attributed to the volatility clustering observed in the financial time series.

  14. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-12-06

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

  15. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1995-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  16. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1995-12-26

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

  17. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  18. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  19. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOEpatents

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  20. Effect of Circadian Phase on Memory Acquisition and Recall: Operant Conditioning vs. Classical Conditioning

    PubMed Central

    Garren, Madeleine V.; Sexauer, Stephen B.; Page, Terry L.

    2013-01-01

    There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning. PMID:23533587

  1. Changing Behavior by Memory Aids: A Social Psychological Model of Prospective Memory and Habit Development Tested with Dynamic Field Data

    ERIC Educational Resources Information Center

    Tobias, Robert

    2009-01-01

    This article presents a social psychological model of prospective memory and habit development. The model is based on relevant research literature, and its dynamics were investigated by computer simulations. Time-series data from a behavior-change campaign in Cuba were used for calibration and validation of the model. The model scored well in…

  2. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  3. The influence of the memory effect on preparative separations using the amylose tris(3,5-dimethylphenylcarbamate) stationary phase.

    PubMed

    Putnam, Joel; Guiochon, Georges

    2011-08-05

    Acid/base mobile phase modifiers affect enantioseparations in ways that are not yet understood for the lack of systematic studies, which makes the scale-up of preparative separations difficult to predict. Shifts of the selectivity of certain pairs of enantiomers upon exposure of the column to these modifiers is amply documented. Furthermore, once the modifier has been removed from the mobile phase, the improved selectivity remains, this phenomenon has been named the memory effect. We selected four enantiomeric pairs for a systematic study of this memory effect. The selectivity of 4-chlorophenylalanine ethyl ester (4CPEE) improves after a solution of ethanesulfonic acid (ESA) is percolated through the column. The selectivity of propranolol HCl and Tröger's base increases after a solution of diiospropylethylamine is percolated through the column. The selectivity of these three pairs of enantiomers is inversely affected by percolation of the opposite acid/base solution. Each of these four compounds reached an equilibrium concentration that maintained the separation of the enantiomeric pairs. In contrast, the selectivity of trans-stilbene oxide (TSO) is not affected by either acid/base modifier. Preparative separations can be used to detect changes in the active surface of the chiral polymer stationary phase by measuring the change in selectivity and resolution when modifiers are used. Preparative method development was carried out on analytical columns and scale-up to 1cm ID columns were performed in this study.

  4. Basic perceptual changes that alter meaning and neural correlates of recognition memory

    PubMed Central

    Gao, Chuanji; Hermiller, Molly S.; Voss, Joel L.; Guo, Chunyan

    2015-01-01

    It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color) on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not). Abstract visual shapes (“squiggles”) were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential (ERP) correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400), implying that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition). Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates of

  5. Memory for surface features of unfamiliar melodies: independent effects of changes in pitch and tempo.

    PubMed

    Schellenberg, E Glenn; Stalinski, Stephanie M; Marks, Bradley M

    2014-01-01

    A melody's identity is determined by relations between consecutive tones in terms of pitch and duration, whereas surface features (i.e., pitch level or key, tempo, and timbre) are irrelevant. Although surface features of highly familiar recordings are encoded into memory, little is known about listeners' mental representations of melodies heard once or twice. It is also unknown whether musical pitch is represented additively or interactively with temporal information. In two experiments, listeners heard unfamiliar melodies twice in an initial exposure phase. In a subsequent test phase, they heard the same (old) melodies interspersed with new melodies. Some of the old melodies were shifted in key, tempo, or key and tempo. Listeners' task was to rate how well they recognized each melody from the exposure phase while ignoring changes in key and tempo. Recognition ratings were higher for old melodies that stayed the same compared to those that were shifted in key or tempo, and detrimental effects of key and tempo changes were additive in between-subjects (Experiment 1) and within-subjects (Experiment 2) designs. The results confirm that surface features are remembered for melodies heard only twice. They also imply that key and tempo are processed and stored independently.

  6. Functional and evolutionary trade-offs co-occur between two consolidated memory phases in Drosophila melanogaster.

    PubMed

    Lagasse, Fabrice; Moreno, Celine; Preat, Thomas; Mery, Frederic

    2012-10-07

    Memory is a complex and dynamic process that is composed of different phases. Its evolution under natural selection probably depends on a balance between fitness benefits and costs. In Drosophila, two separate forms of consolidated memory phases can be generated experimentally: anaesthesia-resistant memory (ARM) and long-term memory (LTM). In recent years, several studies have focused on the differences between these long-lasting memory types and have found that, at the functional level, ARM and LTM are antagonistic. How this functional relationship will affect their evolutionary dynamics remains unknown. We selected for flies with either improved ARM or improved LTM over several generations, and found that flies selected specifically for improvement of one consolidated memory phase show reduced performance in the other memory phase. We also found that improved LTM was linked to decreased longevity in male flies but not in females. Conversely, males with improved ARM had increased longevity. We found no correlation between either improved ARM or LTM and other phenotypic traits. This is, to our knowledge, the first evidence of a symmetrical evolutionary trade-off between two memory phases for the same learning task. Such trade-offs may have an important impact on the evolution of cognitive capacities. On a neural level, these results support the hypothesis that mechanisms underlying these forms of consolidated memory are, to some degree, antagonistic.

  7. Quantum memory and phase gate in Optical cavities based on EIT

    NASA Astrophysics Data System (ADS)

    Borges, Halyne; Villas-Bôas, Celso

    In this work we investigate theoretically the implementation of an optical quantum memory in a system composed by a single atom, trapped in a high finesse optical cavity. In order to analyse the feasibility of implementing a quantum memory in the atom-cavity system based on the EIT phenomenon, we investigated in detail which parameter configuration the memory efficiency is optimized considering the two different setups. Our results shows that for a asymmetric one-sided cavity, which is the experimental setup commonly used to observe the EIT effect, the memory efficiency value saturates at about 8 . 5 % . Meanwhile, for an one-sided cavity, we observe for a sufficiently high value of the coupling constant g, the efficiency has its maximum value increased considerably, close to 100 % . However, this experimental setup is not suitable to observe cavity-EIT in the transmission spectrum, being necessary another kind of experiment, such as measurements phase difference field that leaves the cavity induced by the control field. Considering this configuration we also showed the implementation of a quantum phase gate based on the same nonlinear effect, where the pulse probe can experience a phase shift on the order of π, due to the presence or absence of a control pulse. Supported by FAPESP (Proc. 2014/12740-1) and INCT-IQ.

  8. Developmental Changes in Memory Encoding: Insights from Event-Related Potentials

    ERIC Educational Resources Information Center

    Rollins, Leslie; Riggins, Tracy

    2013-01-01

    The aim of the present study was to investigate developmental changes in encoding processes between 6-year-old children and adults using event-related potentials (ERPs). Although episodic memory ("EM") effects have been reported in both children and adults at retrieval and subsequent memory effects have been established in adults, no…

  9. Intensive Working Memory Training Produces Functional Changes in Large-scale Frontoparietal Networks.

    PubMed

    Thompson, Todd W; Waskom, Michael L; Gabrieli, John D E

    2016-04-01

    Working memory is central to human cognition, and intensive cognitive training has been shown to expand working memory capacity in a given domain. It remains unknown, however, how the neural systems that support working memory are altered through intensive training to enable the expansion of working memory capacity. We used fMRI to measure plasticity in activations associated with complex working memory before and after 20 days of training. Healthy young adults were randomly assigned to train on either a dual n-back working memory task or a demanding visuospatial attention task. Training resulted in substantial and task-specific expansion of dual n-back abilities accompanied by changes in the relationship between working memory load and activation. Training differentially affected activations in two large-scale frontoparietal networks thought to underlie working memory: the executive control network and the dorsal attention network. Activations in both networks linearly scaled with working memory load before training, but training dissociated the role of the two networks and eliminated this relationship in the executive control network. Load-dependent functional connectivity both within and between these two networks increased following training, and the magnitudes of increased connectivity were positively correlated with improvements in task performance. These results provide insight into the adaptive neural systems that underlie large gains in working memory capacity through training.

  10. Changes in Neural Connectivity and Memory Following a Yoga Intervention for Older Adults: A Pilot Study

    PubMed Central

    Eyre, Harris A.; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M.; Cyr, Natalie St.; Narr, Katherine; Baune, Bernhard T.; Khalsa, Dharma S.; Lavretsky, Helen

    2016-01-01

    Background: No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. Objectives: This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Methods: Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active “gold-standard” control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Results: Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Conclusion:Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies. PMID:27060939

  11. Relation between bandgap and resistance drift in amorphous phase change materials

    PubMed Central

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-01-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift. PMID:26621533

  12. Relation between bandgap and resistance drift in amorphous phase change materials.

    PubMed

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-12-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift.

  13. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1992-04-21

    A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

  14. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-10-19

    Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.

  15. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  16. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  17. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  18. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  19. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O.

    1994-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  20. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-05-18

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  1. Age-related changes to the neural correlates of working memory which emerge after midlife.

    PubMed

    Macpherson, Helen N; White, David J; Ellis, Kathryn A; Stough, Con; Camfield, David; Silberstein, Richard; Pipingas, Andrew

    2014-01-01

    Previous research has indicated that the neural processes which underlie working memory change with age. Both age-related increases and decreases to cortical activity have been reported. This study investigated which stages of working memory are most vulnerable to age-related changes after midlife. To do this we examined age-differences in the 13 Hz steady state visually evoked potential (SSVEP) associated with a spatial working memory delayed response task. Participants were 130 healthy adults separated into a midlife (40-60 years) and an older group (61-82 years). Relative to the midlife group, older adults demonstrated greater bilateral frontal activity during encoding and this pattern of activity was related to better working memory performance. In contrast, evidence of age-related under activation was identified over left frontal regions during retrieval. Findings from this study suggest that after midlife, under-activation of frontal regions during retrieval contributes to age-related decline in working memory performance.

  2. Design rules for phase-change materials in data storage applications.

    PubMed

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented.

  3. Phase change material thermal capacitor clothing

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  4. Effects of Developmental Changes in Affective Meaning Structure on Memory.

    ERIC Educational Resources Information Center

    Ghatala, Elizabeth S.; And Others

    In an incidental memory task, second, sixth, and tenth-grade students performed three orientating tasks on different subsets of items in a list of common nouns. In one condition (EPA), children judged words on the Evaluative, Potency and Activity dimensions of the semantic differential. In another condition (EEE) children made phonetic judgments.…

  5. Working Memory Training: Improving Intelligence--Changing Brain Activity

    ERIC Educational Resources Information Center

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…

  6. Developmental Changes in Working Memory, Updating, and Math Achievement

    ERIC Educational Resources Information Center

    Lee, Kerry; Bull, Rebecca

    2016-01-01

    Children with higher working memory or updating (WMU) capacity perform better in math. What is less clear is whether and how this relation varies with grade. Children (N = 673, kindergarten to Grade 9) participated in a 4-year cross-sequential study. Data from 3 WMU (Listening Recall, Mr. X, and an updating task) and a standardized math task…

  7. An analytical model for nanoscale electrothermal probe recording on phase-change media

    NASA Astrophysics Data System (ADS)

    Aziz, Mustafa M.; Wright, C. David

    2006-02-01

    Scanning probe memories are now emerging as a means of achieving nanoscale resolution data storage. The use of microscopic conductive tips in contact with a phase-change material to record data as amorphous and crystalline marks is one such approach, making use of the large difference in electrical conductivity between the two phases to distinguish between two binary states on replay and hence provide a memory function. The writing process is complex and involves electronic, thermal, and phase-change processes that are difficult to model and study except using numerical techniques. A simplified analytical model of electrothermal writing by probe on a basic two-layer phase-change structure is developed here, and used to predict the required voltage levels for recording and the expected diameters of recorded crystalline and amorphous marks. A simplified model of cooling and solidification was also developed to study the cooling rates during amorphization. The predictions are shown to be in agreement with published experimental measurements and numerical simulations. The developed analytical models were extended to investigate the effects of introducing coating layers on recording voltage levels, to study the depth profiles of recorded marks, and to derive expressions for the capacitance and resistance of the phase-change layer that contribute to the transient behavior of the recording system.

  8. Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys

    SciTech Connect

    Xu, Xiao Omori, Toshihiro; Kainuma, Ryosuke; Nagasako, Makoto; Kanomata, Takeshi

    2015-11-02

    In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy change can be expected on the same alloy.

  9. The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE+ cells in memory responses is particularly unclear. IgE B cell differentiation is characterized by a transient GC phase, a bias towards the plasma cell (PC) fate,...

  10. Lessons from a crab: molecular mechanisms in different memory phases of Chasmagnathus.

    PubMed

    Romano, Arturo; Locatelli, Fernando; Freudenthal, Ramiro; Merlo, Emiliano; Feld, Mariana; Ariel, Pablo; Lemos, Darío; Federman, Noel; Fustiñana, Maria Sol

    2006-06-01

    Consolidation of long-term memory requires the activation of several transduction pathways that lead to post-translational modifications of synaptic proteins and to regulation of gene expression, both of which promote stabilization of specific changes in the activated circuits. In search of the molecular mechanisms involved in such processes, we used the context-signal associative learning paradigm of the crab Chasmagnathus. In this model, we studied the role of some molecular mechanisms, namely cAMP-dependent protein kinase (PKA), extracellular-signal-regulated kinase (ERK), the nuclear factor kappa B (NF-kappaB) transcription factor, and the role of synaptic proteins such as amyloid beta precursor protein, with the object of describing key mechanisms involved in memory processing. In this article we review the most salient results obtained over a decade of research in this memory model.

  11. A dynamic neural field model of visual working memory and change detection.

    PubMed

    Johnson, Jeffrey S; Spencer, John P; Luck, Steven J; Schöner, Gregor

    2009-05-01

    Efficient visually guided behavior depends on the ability to form, retain, and compare visual representations for objects that may be separated in space and time. This ability relies on a short-term form of memory known as visual working memory. Although a considerable body of research has begun to shed light on the neurocognitive systems subserving this form of memory, few theories have addressed these processes in an integrated, neurally plausible framework. We describe a layered neural architecture that implements encoding and maintenance, and links these processes to a plausible comparison process. In addition, the model makes the novel prediction that change detection will be enhanced when metrically similar features are remembered. Results from experiments probing memory for color and for orientation were consistent with this novel prediction. These findings place strong constraints on models addressing the nature of visual working memory and its underlying mechanisms.

  12. An optoelectronic framework enabled by low-dimensional phase-change films.

    PubMed

    Hosseini, Peiman; Wright, C David; Bhaskaran, Harish

    2014-07-10

    The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.

  13. An optoelectronic framework enabled by low-dimensional phase-change films

    NASA Astrophysics Data System (ADS)

    Hosseini, Peiman; Wright, C. David; Bhaskaran, Harish

    2014-07-01

    The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent `smart' glasses, `smart' contact lenses and artificial retina devices.

  14. Mechanics of Metals with Phase Changes

    SciTech Connect

    Lashley, Jason C.

    2001-01-01

    New experimental data is presented on some exotic metals that exhibit phase changes at cryogenic temperatures. The types of phase changes that were detected in the specific heat data range from martensitic (diffusion less) transitions to superconducting transitions. In addition, the charge density wave (CDW) state in uranium metal was detected in the specific heat. Specific-heat measurements were made in zero-magnetic field using an apparatus capable of obtaining temperatures as low as 0.4 K. Calibration performed on this apparatus, using a single-crystal copper sample, show its accuracy to be 0.50%, while the resolution was better than 0.1%. Our measurements demonstrate that similar high precision and accurate specific-heat measurements can be obtained on milligram-scale samples. In Chapters 2 and 3, specific-heat measurements are presented for the B2 (CsCl structure) alloy AuZn and for α-uranium (orthorhombic symmetry). The AuZn alloy exhibits a continuous transition at 64.75 K and an entropy of transition of (ΔStr) 2.02 J K-1 mol-1. Calculation of the Debye temperature, by extrapolating of the high temperature phase elastic constants to T = 0 K yields a value of 207 K (±2 K), in favorable agreement with the calorimetric value of 219 K (±0.50 K), despite the intervening martensitic transition. Reported results for single-crystal α-U show a low-temperature limiting θD of 256 K (±0.50 K) and four low-temperature anomalies: a superconducting transition below 1 K, an electronic transition at 22 K, and two anomalies at 38 K and at 42 K indicative of the CDW state. In order to continue the study of the actinide series of elements, a program was initiated to first purify and then grow single crystals of plutonium. Accordingly, the focus of Chapters 4 through 6 will be a description of plutonium sample preparation. In this program plutonium metal was purified via zone refining, using a levitated molten zone to minimize

  15. Reconfigurable Braille display with phase change locking

    NASA Astrophysics Data System (ADS)

    Soule, Cody W.; Lazarus, Nathan

    2016-07-01

    Automatically updated signs and displays for sighted people are common in today’s world. However, there is no cheap, low power equivalent available for the blind. This work demonstrates a reconfigurable Braille cell using the solid-to-liquid phase change of a low melting point alloy as a zero holding power locking mechanism. The device is actuated with the alloy in the liquid state, and is then allowed to solidify to lock the Braille dot in the actuated position. A low-cost manufacturing process is developed that includes molding of a rigid silicone to create pneumatic channels, and bonding of a thin membrane of a softer silicone on the surface for actuation. A plug of Field’s metal (melting point 62 °C) is placed in the pneumatic channels below each Braille dot to create the final device. The device is well suited for low duty cycle operation in applications such as signs, and is able to maintain its state indefinitely without additional power input. The display requires a pneumatic pressure of only 24 kPa for actuation, and reconfiguration has been demonstrated in less than a minute and a half.

  16. Phase Change Material Heat Exchanger Life Test

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean; Stephan, Ryan; Lee, Steve; He, Hung

    2008-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed and reported in the current document.

  17. Phase Change Material Heat Exchanger Life Test

    NASA Technical Reports Server (NTRS)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  18. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    PubMed

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  19. Memories.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  20. Damping characteristics of R-phase NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wu, Kuang-Hsi; Dalip, S. K.; Liu, Y. Q.; Pu, Zhongjie J.

    1995-05-01

    This paper focuses on the study of damping behavior associated with the R-phase in NiTi shape memory alloy. The variation of the tan((delta) ) and Young's modulus as a function of temperature, ramp rate, frequency, and applied amplitude are systematically studied using a dynamic mechanical analyzer (DMA). It was found that the tan((delta) ) versus the temperature curve exhibits four peaks during the thermal cycle, two peaks each in the heating and in the cooling process. These peaks correspond to the martensite to R-phase, R-phase to austenite, austenite to R-phase, and R-phase to martensite transformations. The value of the tan((delta) ) at each peak is in proportion to the ramp rate and in reverse proportion to frequency. The vibration amplitude tends to have a minor effect on the tan((delta) ). The variation of these peaks with ramp rate, frequency, and amplitude are discussed based on the Delorme and De Jonghe damping model. In addition, the experimental results show that an isotropic softening occurs in the Young's modulus during martensite to R-phase, R-phase to austenite, austenite to R-phase, and R-phase to martensite transformations.

  1. Aluminum-centered tetrahedron-octahedron transition in advancing Al-Sb-Te phase change properties.

    PubMed

    Xia, Mengjiao; Ding, Keyuan; Rao, Feng; Li, Xianbin; Wu, Liangcai; Song, Zhitang

    2015-02-24

    Group IIIA elements, Al, Ga, or In, etc., doped Sb-Te materials have proven good phase change properties, especially the superior data retention ability over popular Ge2Sb2Te5, while their phase transition mechanisms are rarely investigated. In this paper, aiming at the phase transition of Al-Sb-Te materials, we reveal a dominant rule of local structure changes around the Al atoms based on ab initio simulations and nuclear magnetic resonance evidences. By comparing the local chemical environments around Al atoms in respective amorphous and crystalline Al-Sb-Te phases, we believe that Al-centered motifs undergo reversible tetrahedron-octahedron reconfigurations in phase transition process. Such Al-centered local structure rearrangements significantly enhance thermal stability of amorphous phase compared to that of undoped Sb-Te materials, and facilitate a low-energy amorphization due to the weak links among Al-centered and Sb-centered octahedrons. Our studies may provide a useful reference to further understand the underlying physics and optimize performances of all IIIA metal doped Sb-Te phase change materials, prompting the development of NOR/NAND Flash-like phase change memory technology.

  2. Electrical properties of Cr-doped Sb2Te3 phase change material

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Liu, Bo; Xia, Yangyang; Zheng, Yonghui; Song, Sannian; Cheng, Yan; Song, Zhitang; Feng, Songlin

    2016-10-01

    Phase Change Memory (PCM) is regarded as one of the most promising candidates for the next-generation nonvolatile memory. Its storage medium, phase change material, has attracted continuous exploration. Sb2Te3 is a high-speed phase change material matrix with low crystallization temperature. Cr-doped Sb2Te3 (CST) films with suitable composition have been studied and proved to be a promising novel phase change material with high speed and good thermal stability. In this paper, detailed Rs-T characteristics and Hall characteristics of the CST films are studied. We find that, when more parts of the film crystallizes into the ordered structure, the activation energy for electrical conduction (Eσ) decreases, indicating that the semiconductor property is weakened. And with the increase of Cr-dopants, Eσ of the As-deposited (As-de) amorphous CST films decreases, thus the thermal stability of resistance is improved. Hall results show that Sb2Te3 and CST films are all in P-type. For As-de amorphous films, with the increase of Cr-dopants, the carrier mobility decreases all along, while the carrier density decreases at first and then increases. For the crystalline films, with the increase of Cr-dopants, the carrier mobility decreases, while the carrier density increases.

  3. Changes in global and regional modularity associated with increasing working memory load

    PubMed Central

    Stanley, Matthew L.; Dagenbach, Dale; Lyday, Robert G.; Burdette, Jonathan H.; Laurienti, Paul J.

    2014-01-01

    Using graph theory measures common to complex network analyses of neuroimaging data, the objective of this study was to explore the effects of increasing working memory processing load on functional brain network topology in a cohort of young adults. Measures of modularity in complex brain networks quantify how well a network is organized into densely interconnected communities. We investigated changes in both the large-scale modular organization of the functional brain network as a whole and regional changes in modular organization as demands on working memory increased from n = 1 to n = 2 on the standard n-back task. We further investigated the relationship between modular properties across working memory load conditions and behavioral performance. Our results showed that regional modular organization within the default mode and working memory circuits significantly changed from 1-back to 2-back task conditions. However, the regional modular organization was not associated with behavioral performance. Global measures of modular organization did not change with working memory load but were associated with individual variability in behavioral performance. These findings indicate that regional and global network properties are modulated by different aspects of working memory under increasing load conditions. These findings highlight the importance of assessing multiple features of functional brain network topology at both global and regional scales rather than focusing on a single network property. PMID:25520639

  4. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    PubMed

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings.

  5. A semi-Markov model with memory for price changes

    NASA Astrophysics Data System (ADS)

    D'Amico, Guglielmo; Petroni, Filippo

    2011-12-01

    We study the high-frequency price dynamics of traded stocks by means of a model of returns using a semi-Markov approach. More precisely we assume that the intraday returns are described by a discrete time homogeneous semi-Markov model which depends also on a memory index. The index is introduced to take into account periods of high and low volatility in the market. First of all we derive the equations governing the process and then theoretical results are compared with empirical findings from real data. In particular we analyzed high-frequency data from the Italian stock market from 1 January 2007 until the end of December 2010.

  6. Detection of the Number of Changes in a Display in Working Memory

    ERIC Educational Resources Information Center

    Cowan, Nelson; Hardman, Kyle; Saults, J. Scott; Blume, Christopher L.; Clark, Katherine M.; Sunday, Mackenzie A.

    2016-01-01

    Here we examine a new task to assess working memory for visual arrays in which the participant must judge how many items changed from a studied array to a test array. As a clue to processing, on some trials in the first 2 experiments, participants carried out a metamemory judgment in which they were to decide how many items were in working memory.…

  7. Changing maladaptive memories through reconsolidation: A role for sleep in psychotherapy?

    PubMed

    Diekelmann, Susanne; Forcato, Cecilia

    2015-01-01

    Like Lane et al., we believe that change in psychotherapy comes about by updating dysfunctional memories with new adaptive experiences. We suggest that sleep is essential to (re-)consolidate such corrective experiences. Sleep is well-known to strengthen and integrate new memories into pre-existing networks. Targeted sleep interventions might be promising tools to boost this process and thereby increase therapy effectiveness.

  8. Phase diagram kinetics for shape memory alloys: a robust finite element implementation

    NASA Astrophysics Data System (ADS)

    Gao, Xiujie; Qiao, Rui; Brinson, L. Catherine

    2007-12-01

    A physically based one-dimensional shape memory alloy (SMA) model is implemented into the finite element software ABAQUS via a user interface. Linearization of the SMA constitutive law together with complete transformation kinetics is performed and tabulated for implementation. Robust rules for transformation zones of the phase diagram are implemented and a new strategy for overlapping transformation zones is developed. The iteration algorithm, switching point updates and solution strategies are developed and are presented in detail. The code is validated via baseline simulations including the shape memory effect and pseudoelasticity and then further tested with complex loading paths. A hybrid composite with self-healing function is then simulated using the developed code. The example demonstrates the usefulness of the methods for the design and simulation of materials or structures actuated by SMA wires or ribbons.

  9. Stochastic cortical neurodynamics underlying the memory and cognitive changes in aging.

    PubMed

    Rolls, Edmund T; Deco, Gustavo

    2015-02-01

    The relatively random spiking times of individual neurons provide a source of noise in the brain. We show how this noise interacting with altered depth in the basins of attraction of networks involved in short-term memory, attention, and episodic memory provide an approach to understanding some of the cognitive changes in normal aging. The effects of the neurobiological changes in aging that are considered include reduced synaptic modification and maintenance during learning produced in part through reduced acetylcholine in normal aging, reduced dopamine which reduces NMDA-receptor mediated effects, reduced noradrenaline which increases cAMP and thus shunts excitatory synaptic inputs, and the effects of a reduction in acetylcholine in increasing spike frequency adaptation. Using integrate-and-fire simulations of an attractor network implementing memory recall and short-term memory, it is shown that all these changes associated with aging reduce the firing rates of the excitatory neurons, which in turn reduce the depth of the basins of attraction, resulting in a much decreased probability in maintaining in short-term memory what has been recalled from the attractor network. This stochastic dynamics approach opens up new ways to understand and potentially treat the effects of normal aging on memory and cognitive functions.

  10. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2016-12-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.

  11. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles.

    PubMed

    Chen, Bin; Ten Brink, Gert H; Palasantzas, George; Kooi, Bart J

    2016-12-20

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.

  12. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles

    PubMed Central

    Chen, Bin; ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2016-01-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations. PMID:27996054

  13. Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases

    SciTech Connect

    Wei, Z. Y.; Liu, E. K. Chen, J. H.; Xi, X. K.; Zhang, H. W.; Wang, W. H.; Wu, G. H.; Li, Y.; Liu, G. D.; Luo, H. Z.

    2015-07-13

    Heusler ferromagnetic shape-memory alloys (FSMAs) normally consist of transition-group d-metals and main-group p-elements. Here, we report the realization of FSMAs in Heusler phases that completely consist of d metals. By introducing the d-metal Ti into NiMn alloys, cubic B2-type Heusler phase is obtained and the martensitic transformation temperature is decreased efficiently. Strong ferromagnetism is established by further doping Co atoms into the B2-type antiferromagnetic Ni-Mn-Ti austenite. Based on the magnetic-field-induced martensitic transformations, collective multifunctional properties are observed in Ni(Co)-Mn-Ti alloys. The d metals not only facilitate the formation of B2-type Heusler phases but also establish strong ferromagnetic coupling and offer the possibility to tune the martensitic transformation.

  14. The Less Things Change, the More They Are Different: Contributions of Long-Term Synaptic Plasticity and Homeostasis to Memory

    ERIC Educational Resources Information Center

    Schacher, Samuel; Hu, Jiang-Yuan

    2014-01-01

    An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for…

  15. A Phase-Change Composite for Use in Building Envelopes

    SciTech Connect

    Graves, Ron S.

    1992-06-15

    The objective of this project is to develop composite thermal insulations containing phase-change materials for use in the building envelope. The use of a phase-change insulation composite in the building envelope could result in a significant increase in energy efficiency. PhD Research provided candidate phase-change composites, and ORNL performed analytical and experimental evaluations of their thermal performance. The thermal resistance of the prototype panels was somewhat less than that of commercial products, although their thermal capacity was greater. Using these results, PhD Research has been working to modify the design and to produce practical building elements that incorporate phase-change material.

  16. Acute pre-learning stress and declarative memory: impact of sex, cortisol response and menstrual cycle phase.

    PubMed

    Espin, Laura; Almela, Mercedes; Hidalgo, Vanesa; Villada, Carolina; Salvador, Alicia; Gomez-Amor, Jesus

    2013-05-01

    This study explores the influence of pre-learning stress on performance on declarative memory tasks in healthy young adults in relation to sex and menstrual cycle phase. The sample was composed of 119 students (32 men and 87 women) from 18 to 25 years of age. The women were tested in different hormonal stages (30 in follicular phase, 34 in luteal phase, and 23 using oral contraceptives). The participants were exposed to the Trier Social Stress Test (TSST) or a control condition. Afterwards, their memory performance was measured using a standardized memory test (Rey's Auditory Verbal Learning Test). In the control condition, all groups of women recalled more words than men, but these differences disappeared in the group exposed to TSST because men's performance on the memory test improved, but only to the level of women. In addition, our data suggest that in women the relationship between cortisol and memory can be modulated by sex hormone levels, since in luteal women a negative relationship was found between memory performance and peak cortisol level. These results confirm that sex differences need to be considered in the relationship between pre-learning stress and memory performance.

  17. Nap and melatonin-induced changes in hippocampal activation and their role in verbal memory consolidation.

    PubMed

    Gorfine, Tali; Yeshurun, Yaara; Zisapel, Nava

    2007-11-01

    Overnight sleep contributes to memory consolidation; even a short nap improves memory performance. Such improvement has been linked to hippocampal activity during sleep. Melatonin has been shown to affect the human hippocampus and to induce 'sleep like' changes in brain activation. We therefore conducted and compared two functional magnetic resonance imaging studies: the first study assessed the effect of a 2-hr mid-day nap versus an equal amount of wakefulness on a verbal memory task (unrelated word pair association); the second assessed the effect of melatonin versus placebo (both conditions without nap) on a similar task. We report that following a nap relative to wakefulness, successful retrieval-related activation in the parahippocampus is decreased. A smaller decrease is seen in wakefulness with melatonin but not placebo. In parallel, an improvement in verbal memory recall was found after a nap compared with wakefulness but not with melatonin during wakefulness compared with placebo. Our findings demonstrate effects of melatonin that resemble those of sleep on verbal memory processing in the hippocampus thus suggesting that melatonin, like sleep, can initiate offline plastic changes underlying memory consolidation; they also suggest that concomitant rest without interferences is necessary for enhanced performance.

  18. A numerical method for phase-change problems

    NASA Technical Reports Server (NTRS)

    Kim, Charn-Jung; Kaviany, Massoud

    1990-01-01

    A highly accurate and efficient finite-difference method for phase-change problems with multiple moving boundaries of irregular shape is developed by employing a coordinate transformation that immobilizes moving boundaries and preserves the conservative forms of the original governing equations. The numerical method is first presented for one-dimensional phase-change problems (involving large density variation between phases, heat generation, and multiple moving boundaries) and then extended to solve two-dimensional problems (without change of densities between phases). Numerical solutions are obtained non-iteratively using an explicit treatment of the interfacial mass and energy balances and an implicit treatment of the temperature field equations. The accuracy and flexibility of the present numerical method are verified by solving some phase-change problems and comparing the results with existing analytical, semi-analytical and numerical solutions. Results indicate that one- and two-dimensional phase-change problems can be handled easily with excellent accuracies.

  19. Developmental Changes in Item and Source Memory: Evidence from an ERP Recognition Memory Study with Children, Adolescents, and Adults

    ERIC Educational Resources Information Center

    Sprondel, Volker; Kipp, Kerstin H.; Mecklinger, Axel

    2011-01-01

    Event-related potential (ERP) correlates of item and source memory were assessed in 18 children (7-8 years), 20 adolescents (13-14 years), and 20 adults (20-29 years) performing a continuous recognition memory task with object and nonobject stimuli. Memory performance increased with age and was particularly low for source memory in children. The…

  20. Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe

    NASA Astrophysics Data System (ADS)

    Gabardi, S.; Caravati, S.; Sosso, G. C.; Behler, J.; Bernasconi, M.

    2015-08-01

    Aging is a common feature of the glassy state. In the case of phase-change chalcogenide alloys the aging of the amorphous state is responsible for an increase of the electrical resistance with time. This phenomenon called drift is detrimental in the application of these materials in phase-change nonvolatile memories, which are emerging as promising candidates for storage class memories. By means of combined molecular dynamics and electronic structure calculations based on density functional theory, we have unraveled the atomistic origin of the resistance drift in the prototypical phase-change compound GeTe. The drift results from a widening of the band gap and a reduction of Urbach tails due to structural relaxations leading to the removal of chains of Ge-Ge homopolar bonds. The same structural features are actually responsible for the high mobility above the glass transition which boosts the crystallization speed exploited in the device.

  1. Toward structural/chemical cotailoring of phase-change Ge-Sb-Te in a transmission electron microscope.

    PubMed

    Zhang, W; Kim, J-G; Zheng, W T; Cui, X Q; Kim, Y-J; Song, S A

    2015-03-01

    Ge2Sb2Te5, as the prototype material for phase-change memory, can be transformed from amorphous phase into nanoscale rocksalt-type GeTe provided with an electron irradiation assisted by heating to 520°C in a 1250 kV transmission electron microscope. This sheds a new light into structural and chemical cotailoring of materials through coupling of thermal and electrical fields.

  2. Te-centric view of the phase change mechanism in Ge-Sb-Te alloys.

    PubMed

    Sen, S; Edwards, T G; Cho, J-Y; Joo, Y-C

    2012-05-11

    The short-range structure of amorphous and fcc Ge1Sb2Te4 and Ge2Sb2Te5 phase-change alloys is investigated using 125Te NMR spectroscopy. Both amorphous and fcc structures consist solely of heteropolar Ge/Sb-Te bonds that may enable rapid displacive phase transformation without the need for extensive atomic rearrangement. The vacancy distribution is random in microcrystalline fcc phases while significant clustering is observed in their nanocrystalline counterparts that may result in the formation of tetrahedrally coordinated Ge atoms in the latter. This structural commonality may further facilitate the kinetics of transformation between amorphous and nanocrystalline fcc phases, a situation relevant for high-density memory storage.

  3. A Two-Phase Model of Resource Allocation in Visual Working Memory.

    PubMed

    Ye, Chaoxiong; Hu, Zhonghua; Li, Hong; Ristaniemi, Tapani; Liu, Qiang; Liu, Taosheng

    2017-03-02

    Two broad theories of visual working memory (VWM) storage have emerged from current research, a discrete slot-based theory and a continuous resource theory. However, neither the discrete slot-based theory or continuous resource theory clearly stipulates how the mental commodity for VWM (discrete slot or continuous resource) is allocated. Allocation may be based on the number of items via stimulus-driven factors, or it may be based on task demands via voluntary control. Previous studies have obtained conflicting results regarding the automaticity versus controllability of such allocation. In the current study, we propose a two-phase allocation model, in which the mental commodity could be allocated only by stimulus-driven factors in the early consolidation phase. However, when there is sufficient time to complete the early phase, allocation can enter the late consolidation phase, where it can be flexibly and voluntarily controlled according to task demands. In an orientation recall task, we instructed participants to store either fewer items at high-precision or more items at low-precision. In 3 experiments, we systematically manipulated memory set size and exposure duration. We did not find an effect of task demands when the set size was high and exposure duration was short. However, when we either decreased the set size or increased the exposure duration, we found a trade-off between the number and precision of VWM representations. These results can be explained by a two-phase model, which can also account for previous conflicting findings in the literature. (PsycINFO Database Record

  4. Oscillation Phase Locking and Late ERP Components of Intracranial Hippocampal Recordings Correlate to Patient Performance in a Working Memory Task

    PubMed Central

    Kleen, Jonathan K.; Testorf, Markus E.; Roberts, David W.; Scott, Rod C.; Jobst, Barbara J.; Holmes, Gregory L.; Lenck-Santini, Pierre-Pascal

    2016-01-01

    In working memory tasks, stimulus presentation induces a resetting of intracranial temporal lobe oscillations in multiple frequency bands. To further understand the functional relevance of this phenomenon, we investigated whether working memory performance depends on the phase precision of ongoing oscillations in the hippocampus. We recorded intra-hippocampal local field potentials in individuals performing a working memory task. Two types of trials were administered. For high memory trials presentation of a list of four letters (“List”) was followed by a single letter memory probe (“Test”). Low memory load trials, consisting of four identical letters (AAAA) followed by a probe with the same letter (A), were interspersed. Significant phase locking of ongoing oscillations across trials, estimated by the Pairwise Phase Consistency Index (PPCI) was observed in delta (0.5–4 Hz), theta (5–7 Hz), and alpha (8–12 Hz) bands during stimulus presentation and recall but was increased in low memory load trials. Across patients however, higher delta PPCIs during recall in the left hippocampus were associated with faster reaction times. Because phase locking could also be interpreted as a consequence of a stimulus evoked potential, we performed event related potential analysis (ERP) and examined the relationship of ERP components with performance. We found that both amplitude and latency of late ERP components correlated with both reaction time and accuracy. We propose that, in the Sternberg task, phase locking of oscillations, or alternatively its ERP correlate, synchronizes networks within the hippocampus and connected structures that are involved in working memory. PMID:27378885

  5. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE PAGES

    Subedi, Alaska; Siegrist, Theo; Singh, David J.; ...

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionicmore » and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  6. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    SciTech Connect

    Subedi, Alaska; Siegrist, Theo; Singh, David J.; Mukhopadhyay, Saikat; Sun, Jifeng

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  7. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    PubMed

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  8. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    PubMed Central

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J.

    2016-01-01

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties. PMID:27193531

  9. Confined martensitic phase transformation kinetics and lattice dynamics in Ni–Co–Fe–Ga shape memory alloys

    SciTech Connect

    Cong, Daoyong; Rule, Kirrily Clair; Li, Wen-Hsien; Lee, Chi-Hung; Zhang, Qinghua; Wang, Haoliang; Hao, Yulin; Wang, Yandong; Huang, E-Wen

    2016-09-02

    Here we describe insights into the phase transformation kinetics and lattice dynamics associated with the newly discovered confined martensitic transformation, which are of great significance to the in-depth understanding of the phase transformation behavior responsible for the rich new physical phenomena in shape memory alloys and could shed light on the design of novel multifunctional properties through tuning the confined martensitic transformation.

  10. Microstructure and electrical properties of Sb2Te phase-change material

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Li, Tao; Rao, Feng; Song, Sannian; Liu, Bo; Song, Zhitang

    2016-10-01

    Phase Change Memory (PCM) has great potential for commercial applications of next generation non-volatile memory (NVM) due to its high operation speed, high endurance and low power consumption. Sb2Te (ST) is a common phase-change material and has fast crystallization speed, while thermal stability is relatively poor and its crystallization temperature is about 142°C. According to the Arrhenius law, the extrapolated failure temperature is about 55°C for ten years. When heated above the crystallization temperature while below the melting point, its structure can be transformed from amorphous phase to hexagonal phase. Due to the growth-dominated crystallization mechanism, the grain size of ST film is large and the diameter of about 300 nm is too large compared with Ge2Sb2Te5 (GST), which may deteriorate the device performance. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) were employed to study the microstructures and the results indicate that the crystal plane is {110}. In addition, device cells were manufactured and their current-voltage (I-V) and resistance-voltage characteristics were tested, and the results reveal that the threshold voltage (Vth) of ST film is 0.87 V. By researching the basic properties of ST, we can understand its disadvantages and manage to improve its performance by doping or other proper methods. Finally, the improved ST can be a candidate for optical discs and PCM.

  11. Modeling Longitudinal Changes in Older Adults’ Memory for Spoken Discourse: Findings from the ACTIVE Cohort

    PubMed Central

    Payne, Brennan R.; Gross, Alden L.; Parisi, Jeanine M.; Sisco, Shannon M.; Stine-Morrow, Elizabeth A. L.; Marsiske, Michael; Rebok, George W.

    2014-01-01

    Episodic memory shows substantial declines with advancing age, but research on longitudinal trajectories of spoken discourse memory (SDM) in older adulthood is limited. Using parallel process latent growth curve models, we examined 10 years of longitudinal data from the no-contact control group (N = 698) of the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) randomized controlled trial in order to test (a) the degree to which SDM declines with advancing age, (b) predictors of these age-related declines, and (c) the within-person relationship between longitudinal changes in SDM and longitudinal changes in fluid reasoning and verbal ability over 10 years, independent of age. Individuals who were younger, White, had more years of formal education, were male, and had better global cognitive function and episodic memory performance at baseline demonstrated greater levels of SDM on average. However, only age at baseline uniquely predicted longitudinal changes in SDM, such that declines accelerated with greater age. Independent of age, within-person decline in reasoning ability over the 10-year study period was substantially correlated with decline in SDM (r = .87). An analogous association with SDM did not hold for verbal ability. The findings suggest that longitudinal declines in fluid cognition are associated with reduced spoken language comprehension. Unlike findings from memory for written prose, preserved verbal ability may not protect against developmental declines in memory for speech. PMID:24304364

  12. Evaluating working memory: Comparing change-detection tasks and Wechsler working memory subtests in school-age children.

    PubMed

    Colbert, Alison; Bo, Jin

    2016-11-13

    Among a number of methods for assessing working memory (WM), span tasks have been commonly utilized in clinical psychology, whereas change-detection tasks are often used in experimental or cognitive psychology. This study sought to understand the use of change-detection tasks in children and to evaluate the relationship between change-detection tasks and clinical WM measures in the Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV). Results revealed that the overall pattern of performance in change-detection tasks for children was similar to adults' performance in the literature; with increased array size, response accuracy systematically decreased. Significant age-related improvements on visuospatial and verbal WM capacities were found in school-age children. Although WISC-IV WM measures were significantly correlated with each other, only the Arithmetic subtest was significantly correlated with visuospatial WM as measured by the change-detection task, and none were significantly correlated with verbal WM as measured by the change-detection task. These results suggest the clinical WISC-IV WM subtests may not elicit the same construct as experimental change-detection WM measures, with the possible exception of the Arithmetic subtest.

  13. A Flicker Change Detection Task Reveals Object-in-Scene Memory Across Species.

    PubMed

    Chau, Vivian L; Murphy, Emily F; Rosenbaum, R Shayna; Ryan, Jennifer D; Hoffman, Kari L

    2011-01-01

    Tests of recognition memory in macaques typically assay memory for objects or isolated images, over time spans of seconds to hours from stimulus presentation, and/or require extensive training. Here, we propose a new application of the flicker change detection task that could measure object-in-scene memory days after single-trial exposures. In three experiments, participants searched for a changing object - or "target" - embedded within a scene as their eye movements were tracked. For new targets-in-scenes, the change is difficult to detect and requires extensive search. Once the target is found, however, the change becomes obvious. We reasoned that the decreased times required to find a target in a repeated scene would indicate memory for the target. In humans, targets were found faster when the targets-and-scenes were explicitly remembered than when they were forgotten, or had never been seen before. This led to faster repeated-trial compared to novel-trial search times. Based solely on repeated-trial search times, we were able to select distributions comprised of predominantly remembered or predominantly forgotten trials. Macaques exhibited the same repetition effects as humans, suggesting that remembered trials could be dissociated from novel or forgotten trials using the same procedures we established in humans. Finally, an anterograde amnesic patient with damage that included the medial temporal lobe (MTL) showed no search time differences, suggesting that memory revealed through search times on this task requires MTL integrity. Together, these findings indicate that the time required to locate a changing object reveals object-in-scene memory over long retention intervals in humans and macaques.

  14. Cross-phase modulation and entanglement in a compound gradient echo memory

    NASA Astrophysics Data System (ADS)

    Fu, Shuangshuang; Carvalho, André R. R.; Hush, Michael R.; James, Matthew R.

    2016-02-01

    We present a theoretical model for a Kerr-like interaction between two registers of a compound gradient echo memory (GEM). This type of interaction is known to generate cross-phase modulation (XPM) between optical fields, an effect that is limited by the typically small values of nonlinearities in crystals. Here we show that in GEM systems the phase shift increases linearly with the interaction time and quadratically with the strength of the field. Increasing storage (interaction) times would then lead to stronger XPM effects even with fields with very low intensity. This interaction also generates two other effects: entanglement between the registers, which depends on the strength of the interaction and its spatial profile, and an interaction-induced gradient. We show that the latter produces leakage during the storage stage depending on the shape of the stored pulses, an undesirable consequence that can be minimized by carefully designing the temporal profile of the input fields.

  15. Magnetically induced nonvolatile magnetoresistance and resistance memory effect in phase-separated manganite thin films

    NASA Astrophysics Data System (ADS)

    Li, Qian; Cao, Qingqi; Wang, Dunhui; Du, Youwei

    2017-03-01

    We report the observation of magnetically induced resistance memory effect in a typical electronic phase-separated manganite La5/8‑x Pr x Ca3/8MnO3 (x  =  0.3) thin film. In the hysteresis region of metal-to-insulator transition, the resistance exhibits a sharp drop with the application of magnetic field and maintains the low resistance state after the removal of field, showing a nonvolatile magnetoresistance effect. The high resistance state can be recovered until the temperature is warmed. More explicit measurements at the hysteresis region exhibit the non-volatility and irreversibility of magnetoresistance, which can be ascribed to the percolative feature in the electronic phase-separated manganite. The origin and potential applications of these interesting effects are discussed.

  16. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials

    DOE PAGES

    Mitrofanov, Kirill V.; Fons, Paul; Makino, Kotaro; ...

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms themore » existence of an intermediate state with disordered bonds. Furthermore, this newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.« less

  17. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials

    SciTech Connect

    Mitrofanov, Kirill V.; Fons, Paul; Makino, Kotaro; Terashima, Ryo; Shimada, Toru; Kolobov, Alexander V.; Tominaga, Junji; Bragaglia, Valeria; Giussani, Alessandro; Calarco, Raffaella; Riechert, Henning; Sato, Takahiro; Katayama, Tetsuo; Ogawa, Kanade; Togashi, Tadashi; Yabashi, Makina; Wall, Simon; Brewe, Dale; Hase, Muneaki

    2016-02-12

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms the existence of an intermediate state with disordered bonds. Furthermore, this newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.

  18. Sub-nanometre resolution of atomic motion during electronic excitation in phase-change materials

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Kirill V.; Fons, Paul; Makino, Kotaro; Terashima, Ryo; Shimada, Toru; Kolobov, Alexander V.; Tominaga, Junji; Bragaglia, Valeria; Giussani, Alessandro; Calarco, Raffaella; Riechert, Henning; Sato, Takahiro; Katayama, Tetsuo; Ogawa, Kanade; Togashi, Tadashi; Yabashi, Makina; Wall, Simon; Brewe, Dale; Hase, Muneaki

    2016-02-01

    Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms the existence of an intermediate state with disordered bonds. This newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.

  19. Phase change properties of Ti-Sb-Te thin films deposited by thermal atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Song, Sannian; Shen, Lanlan; Song, Zhitang; Yao, Dongning; Guo, Tianqi; Li, Le; Liu, Bo; Wu, Liangcai; Cheng, Yan; Ding, Yuqiang; Feng, Songlin

    2016-10-01

    Phase change random access memory (PCM) appears to be the strongest candidate for next-generation high density nonvolatile memory. The fabrication of ultrahigh density PCM depends heavily on the thin film growth technique for the phase changing chalcogenide material. In this study, TiSb2Te4 (TST) thin films were deposited by thermal atomic layer deposition (ALD) method using TiCl4, SbCl3, (Et3Si)2Te as precursors. The threshold voltage for the cell based on thermal ALD-deposited TST is about 2.0 V, which is much lower than that (3.5 V) of the device based on PVD-deposited Ge2Sb2Te5 (GST) with the identical cell architecture. Tests of TST-based PCM cells have demonstrated a fast switching rate of 100 ns. Furthermore, because of the lower melting point and thermal conductivities of TST materials, TST-based PCM cells exhibit 19% reduction of pulse voltages for Reset operation compared with GST-based PCM cells. These results show that thermal ALD is an attractive method for the preparation of phase change materials.

  20. The change probability effect: incidental learning, adaptability, and shared visual working memory resources.

    PubMed

    van Lamsweerde, Amanda E; Beck, Melissa R

    2011-12-01

    Statistical properties in the visual environment can be used to improve performance on visual working memory (VWM) tasks. The current study examined the ability to incidentally learn that a change is more likely to occur to a particular feature dimension (shape, color, or location) and use this information to improve change detection performance for that dimension (the change probability effect). Participants completed a change detection task in which one change type was more probable than others. Change probability effects were found for color and shape changes, but not location changes, and intentional strategies did not improve the effect. Furthermore, the change probability effect developed and adapted to new probability information quickly. Finally, in some conditions, an improvement in change detection performance for a probable change led to an impairment in change detection for improbable changes.

  1. Context Memory Decline in Middle Aged Adults is Related to Changes in Prefrontal Cortex Function.

    PubMed

    Kwon, Diana; Maillet, David; Pasvanis, Stamatoula; Ankudowich, Elizabeth; Grady, Cheryl L; Rajah, M Natasha

    2016-06-01

    The ability to encode and retrieve spatial and temporal contextual details of episodic memories (context memory) begins to decline at midlife. In the current study, event-related fMRI was used to investigate the neural correlates of context memory decline in healthy middle aged adults (MA) compared with young adults (YA). Participants were scanned while performing easy and hard versions of spatial and temporal context memory tasks. Scans were obtained at encoding and retrieval. Significant reductions in context memory retrieval accuracy were observed in MA, compared with YA. The fMRI results revealed that overall, both groups exhibited similar patterns of brain activity in parahippocampal cortex, ventral occipito-temporal regions and prefrontal cortex (PFC) during encoding. In contrast, at retrieval, there were group differences in ventral occipito-temporal and PFC activity, due to these regions being more activated in MA, compared with YA. Furthermore, only in YA, increased encoding activity in ventrolateral PFC, and increased retrieval activity in occipital cortex, predicted increased retrieval accuracy. In MA, increased retrieval activity in anterior PFC predicted increased retrieval accuracy. These results suggest that there are changes in PFC contributions to context memory at midlife.

  2. Changes in spatial memory and BDNF expression to simultaneous dietary restriction and forced exercise.

    PubMed

    Khabour, Omar F; Alzoubi, Karem H; Alomari, Mahmoud A; Alzubi, Mohammad A

    2013-01-01

    Previous literature suggests that learning and memory formation can be influenced by diet and exercise. In the current study, we investigated the combined effects of forced swimming exercise (FSE) and every other day fasting (EODF) on spatial memory formation and on the levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of Wistar male rats. The radial arm water maze (RAWM) paradigm was used to assess changes in learning and memory formation, whereas ELISA assay was used to measure BDNF protein levels. The FSE and/or EODF were simultaneously instituted for 6 weeks. Results show that FSE improved learning, short-term as well as long-term memory formation, and significantly increased BDNF protein in the hippocampus (p<0.05). However, EODF had no effect on either spatial learning and memory formation or the levels of hippocamapal BDNF protein (p>0.05). In addition, EODF did not modulate beneficial effect of swimming exercise on cognitive function (p>0.05). Thus exercise enhanced, while EODF did not affect spatial learning and memory formation.

  3. Changes in spatial memory and BDNF expression to concurrent dietary restriction and voluntary exercise.

    PubMed

    Khabour, Omar F; Alzoubi, Karem H; Alomari, Mahmoud A; Alzubi, Mohammad A

    2010-05-01

    Substantial data suggest that cognitive function can be influenced by many lifestyle activities associated with changes in energy metabolism such as exercise and diet. In the current study, we investigated the combined effects of voluntary exercise (access to running wheels) and dietary restriction (every other day fasting, EODF) on spatial memory formation and on the levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of Wistar male rats. Spatial learning and memory formation was assessed using the radial arm water maze (RAWM) paradigm, while BDNF protein was measured using ELISA test. Voluntary exercise and/or EODF were instituted for 6 weeks. Voluntary exercise alone significantly enhanced short-term, intermediate-term, and long-term memory formation, and increased BDNF protein levels in the hippocampus. EODF enhanced mean running wheel activity by approximately twofold. However, EODF did not modulate the effects of exercise on memory formation and expression of BDNF. In addition, EODF alone had no effect on memory and BDNF protein in the hippocampus. In conclusion, results of this study indicate that exercise enhanced while EODF had neutral effect on both spatial memory formation and hippocampus BDNF levels.

  4. Heat storage system utilizing phase change materials government rights

    DOEpatents

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  5. Reflectance Changes during Shock-induced Phase Transformations in Metals

    SciTech Connect

    Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Jensen, B. J.; Rigg, P. A.

    2010-06-01

    In performing shock wave experiments to study the characteristics of metals at high pressures, wave profiles (i.e., velocity measurements of the surface of the sample) are an established and useful way to study phase transformations. For example, a sudden change in the velocity or its slope can occur when the phase transformation induces a large volume change leading to a change in particle velocity. Allowing the shock to release into a transparent window that is in contact with the sample surface allows the study of conditions away from the shock Hugoniot. However, in cases where the wave profile is not definitive an additional phase-transformation diagnostic would be useful. Changes in the electronic structure of the atoms in the crystal offer opportunities to develop new phase-change diagnostics. We have studied optical reflectance changes for several phase transformations to see whether reflectance changes might be a generally applicable phase-transformation diagnostic. Shocks were produced by direct contact with explosives or with impacts from guns. Optical wavelengths for the reflectance measurements ranged from 355 to 700 nm. We studied samples of tin, iron, gallium, and cerium as each passed through a phase transformation during shock loading and, if observable, a reversion upon unloading. For solid-solid phase changes in tin and iron we saw small changes in the surface scattering characteristics, perhaps from voids or rough areas frozen into the surface of the sample as it transformed to a new crystal structure. For melt in gallium and cerium we saw changes in the wavelength dependence of the reflectance, and we surmise that these changes may result from changes in the crystal electronic structure. It appears that reflectance measurements can be a significant part of a larger suite of diagnostics to search for difficult-to-detect phase transformations.

  6. Structural Phase Transition Effect on Resistive Switching Behavior of MoS2 -Polyvinylpyrrolidone Nanocomposites Films for Flexible Memory Devices.

    PubMed

    Zhang, Peng; Gao, Cunxu; Xu, Benhua; Qi, Lin; Jiang, Changjun; Gao, Meizhen; Xue, Desheng

    2016-04-01

    The 2H phase and 1T phase coexisting in the same molybdenum disulfide (MoS2 ) nanosheets can influence the electronic properties of the materials. The 1T phase of MoS2 is introduced into the 2H-MoS2 nanosheets by two-step hydrothermal synthetic methods. Two types of nonvolatile memory effects, namely write-once read-many times memory and rewritable memory effect, are observed in the flexible memory devices with the configuration of Al/1T@2H-MoS2 -polyvinylpyrrolidone (PVP)/indium tin oxide (ITO)/polyethylene terephthalate (PET) and Al/2H-MoS2 -PVP/ITO/PET, respectively. It is observed that structural phase transition in MoS2 nanosheets plays an important role on the resistive switching behaviors of the MoS2 -based device. It is hoped that our results can offer a general route for the preparation of various promising nanocomposites based on 2D nanosheets of layered transition metal dichalcogenides for fabricating the high performance and flexible nonvolatile memory devices through regulating the phase structure in the 2D nanosheets.

  7. The scene and the unseen: manipulating photographs for experiments on change blindness and scene memory: image manipulation for change blindness.

    PubMed

    Ball, Felix; Elzemann, Anne; Busch, Niko A

    2014-09-01

    The change blindness paradigm, in which participants often fail to notice substantial changes in a scene, is a popular tool for studying scene perception, visual memory, and the link between awareness and attention. Some of the most striking and popular examples of change blindness have been demonstrated with digital photographs of natural scenes; in most studies, however, much simpler displays, such as abstract stimuli or "free-floating" objects, are typically used. Although simple displays have undeniable advantages, natural scenes remain a very useful and attractive stimulus for change blindness research. To assist researchers interested in using natural-scene stimuli in change blindness experiments, we provide here a step-by-step tutorial on how to produce changes in natural-scene images with a freely available image-processing tool (GIMP). We explain how changes in a scene can be made by deleting objects or relocating them within the scene or by changing the color of an object, in just a few simple steps. We also explain how the physical properties of such changes can be analyzed using GIMP and MATLAB (a high-level scientific programming tool). Finally, we present an experiment confirming that scenes manipulated according to our guidelines are effective in inducing change blindness and demonstrating the relationship between change blindness and the physical properties of the change and inter-individual differences in performance measures. We expect that this tutorial will be useful for researchers interested in studying the mechanisms of change blindness, attention, or visual memory using natural scenes.

  8. Phase-locking and amplitude modulations of EEG alpha: Two measures reflect different cognitive processes in a working memory task.

    PubMed

    Herrmann, Christoph S; Senkowski, Daniel; Röttger, Stefan

    2004-01-01

    It has been demonstrated in numerous experiments that oscillatory EEG responses in the alpha frequency band (8-12 Hz) increase with memory load during the retention interval in working memory tasks. However, the findings diverge with respect to which measurement of alpha activity is influenced by memory processes. Here, we differentiate between evoked and total alpha activity in order to separate effects of phase-locking and amplitude modulation. We present data from a delayed-matching-to-sample task (S1-S2 paradigm) for which we compared EEG alpha responses between a perception and a memory condition. Increased total alpha activity was found in the retention interval for the memory as compared to the perception condition. Evoked alpha activity, however, did not differentiate between memory and perception conditions but, instead, was increased for the more complex condition of processing non-Kanizsa figures as compared to Kanizsa figures. Thus, our results demonstrate a functional differentiation between evoked and total alpha activity. While alpha phase locking seemed to be influenced mainly by task complexity, alpha amplitude clearly reflected memory demands in our paradigm.

  9. EEG-power and -coherence changes in a unimodal and a crossmodal working memory task with visual and kinesthetic stimuli.

    PubMed

    Seemüller, A; Müller, E M; Rösler, F

    2012-01-01

    We investigated EEG-power and EEG-coherence changes in a unimodal and a crossmodal matching-to-sample working memory task with either visual or kinesthetic stimuli. Angle-shaped trajectories were used as stimuli presented either as a moving dot on a screen or as a passive movement of a haptic device. Effects were evaluated during the different phases of encoding, maintenance, and recognition. Alpha power was modulated during encoding by the stimulus modality, and in crossmodal conditions during encoding and maintenance by the expected modality of the upcoming test stimulus. These power modulations were observed over modality-specific cortex regions. Systematic changes of coherence for crossmodal compared to unimodal tasks were not observed during encoding and maintenance but only during recognition. There, coherence in the theta-band increased between electrode sites over left central and occipital cortex areas in the crossmodal compared to the unimodal conditions. The results underline the importance of modality-specific representations and processes in unimodal and crossmodal working memory tasks. Crossmodal recognition of visually and kinesthetically presented object features seems to be related to a direct interaction of somatosensory/motor and visual cortex regions by means of long-range synchronization in the theta-band and such interactions seem to take place at the beginning of the recognition phase, i.e. when crossmodal transfer is actually necessary.

  10. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  11. Phase-change radiative thermal diode

    SciTech Connect

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2013-11-04

    A thermal diode transports heat mainly in one preferential direction rather than in the opposite direction. This behavior is generally due to the non-linear dependence of certain physical properties with respect to the temperature. Here we introduce a radiative thermal diode which rectifies heat transport thanks to the phase transitions of materials. Rectification coefficients greater than 70% and up to 90% are shown, even for small temperature differences. This result could have important applications in the development of future contactless thermal circuits or in the conception of radiative coatings for thermal management.

  12. Sleep leads to changes in the emotional memory trace: evidence from FMRI.

    PubMed

    Payne, Jessica D; Kensinger, Elizabeth A

    2011-06-01

    After information is encoded into memory, it undergoes an off-line period of consolidation that may occur optimally during sleep. The consolidation process not only solidifies memories but also changes them in useful and adaptive ways. Here, we provide evidence for a shift in the neural structures used to retrieve emotional memories after a night of sleep compared to a day of wakefulness. Although the hippocampus was activated during successful retrieval of negative objects regardless of whether participants slept during a delay, sleep led to a shift from engagement of a diffuse memory retrieval network-including widespread activity in the lateral prefrontal and parietal cortices-to a more refined network of regions-including the amygdala and ventromedial pFC. Effective connectivity analyses revealed stronger connections among limbic regions after sleep versus wake. Although circadian effects may have contributed to these findings, our data strongly suggest that a night of sleep is sufficient to evoke qualitative changes in the emotional memory retrieval network.

  13. The effect of memory and context changes on color matches to real objects.

    PubMed

    Allred, Sarah R; Olkkonen, Maria

    2015-07-01

    Real-world color identification tasks often require matching the color of objects between contexts and after a temporal delay, thus placing demands on both perceptual and memory processes. Although the mechanisms of matching colors between different contexts have been widely studied under the rubric of color constancy, little research has investigated the role of long-term memory in such tasks or how memory interacts with color constancy. To investigate this relationship, observers made color matches to real study objects that spanned color space, and we independently manipulated the illumination impinging on the objects, the surfaces in which objects were embedded, and the delay between seeing the study object and selecting its color match. Adding a 10-min delay increased both the bias and variability of color matches compared to a baseline condition. These memory errors were well accounted for by modeling memory as a noisy but unbiased version of perception constrained by the matching methods. Surprisingly, we did not observe significant increases in errors when illumination and surround changes were added to the 10-minute delay, although the context changes alone did elicit significant errors.

  14. Environmental context change affects memory for performed actions.

    PubMed

    Sahakyan, Lili

    2010-03-01

    The current study investigated the effect of environmental context change between the study and test on the recall of action phrases that either were performed during encoding (subject-performed tasks, SPTs) or were verbally encoded (verbal tasks, VTs). Both SPTs and VTs showed the same magnitude of impaired recall when the study and test contexts mismatched. Furthermore, changing the context between the two study lists reduced cross-list intrusion errors compared to encoding the lists in the same context. Both SPTs and VTs benefited from studying the lists in different contexts as evidenced by reduced intrusions. Taken together, the results suggest that SPTs are integrated with their context because they suffered when context changed between the study and test, and they also benefited when they were performed in two environments versus the same environment.

  15. The changing perspectives of trauma care. The Sinkler Memorial Lecture.

    PubMed Central

    Jacobs, L. M.

    1992-01-01

    Trauma and the management of injuries have changed considerably over the past century. A sound understanding of the factors that generate injuries and sophisticated systems that can be accessed immediately are now in place in most of the United States. The concept of a team approach to the management of multiple system injuries using specialists from all disciplines has resulted in the reduction of morbidity and mortality. Although many of the challenges of managing the trauma patient have been overcome, there are still a number of exciting areas that lend themselves to ongoing research. These changing perspectives allow for many exciting challenges for the trauma team. PMID:1507246

  16. Adapting to Changing Memory Retrieval Demands: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Benoit, Roland G.; Werkle-Bergner, Markus; Mecklinger, Axel; Kray, Jutta

    2009-01-01

    This study investigated preparatory processes involved in adapting to changing episodic memory retrieval demands. Event-related potentials (ERPs) were recorded while participants performed a general old/new recognition task and a specific task that also required retrieval of perceptual details. The relevant task remained either constant or changed…

  17. Age-Related Changes in Duration Reproduction: Involvement of Working Memory Processes

    ERIC Educational Resources Information Center

    Baudouin, Alexia; Vanneste, Sandrine; Pouthas, Viviane; Isingrini, Michel

    2006-01-01

    The aim of the present research was to study age-related changes in duration reproduction by differentiating the working memory processes underlying this time estimation task. We compared performances of young and elderly adults in a duration reproduction task performed in simple and concurrent task conditions. Participants were also administered…

  18. Short-Term Longitudinal Changes in Memory, Intelligence and Perceived Competence in Older Adults.

    ERIC Educational Resources Information Center

    Gilewski, Michael J.; Schaie, K. Warner

    Previous research on intelligence and aging has relied on tests developed for younger adults, which often incorporate many factors that could impede optimal performance in elderly populations. To investigate short-term longitudinal changes in memory, intelligence, and perceived competence in everyday situations among older adults, 227 adults were…

  19. Developmental changes in visual short-term memory in infancy: evidence from eye-tracking

    PubMed Central

    Oakes, Lisa M.; Baumgartner, Heidi A.; Barrett, Frederick S.; Messenger, Ian M.; Luck, Steven J.

    2013-01-01

    We assessed visual short-term memory (VSTM) for color in 6- and 8-month-old infants (n = 76) using a one-shot change detection task. In this task, a sample array of two colored squares was visible for 517 ms, followed by a 317-ms retention period and then a 3000-ms test array consisting of one unchanged item and one item in a new color. We tracked gaze at 60 Hz while infants looked at the changed and unchanged items during test. When the two sample items were different colors (Experiment 1), 8-month-old infants exhibited a preference for the changed item, indicating memory for the colors, but 6-month-olds exhibited no evidence of memory. When the two sample items were the same color and did not need to be encoded as separate objects (Experiment 2), 6-month-old infants demonstrated memory. These results show that infants can encode information in VSTM in a single, brief exposure that simulates the timing of a single fixation period in natural scene viewing, and they reveal rapid developmental changes between 6 and 8 months in the ability to store individuated items in VSTM. PMID:24106485

  20. Developmental Change in Proactive Interference across the Life Span: Evidence from Two Working Memory Tasks

    ERIC Educational Resources Information Center

    Loosli, Sandra V.; Rahm, Benjamin; Unterrainer, Josef M.; Weiller, Cornelius; Kaller, Christoph P.

    2014-01-01

    Working memory (WM) as the ability to temporarily maintain and manipulate various kinds of information is known to be affected by proactive interference (PI) from previously relevant contents, but studies on developmental changes in the susceptibility to PI are scarce. In the present study, we investigated life span development of item-specific…

  1. Picosecond electric-field-induced threshold switching in phase-change materials [THz-induced threshold switching and crystallization of phase-change materials

    DOE PAGES

    Zalden, Peter; Shu, Michael J.; Chen, Frank; ...

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of threshold switching and reveals potentialmore » applications as an ultrafast electronic switch.« less

  2. Picosecond electric-field-induced threshold switching in phase-change materials [THz-induced threshold switching and crystallization of phase-change materials

    SciTech Connect

    Zalden, Peter; Shu, Michael J.; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi -Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W.; Wong, H. -S. Philip; Sher, Meng -Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M.

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. As a result, this supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  3. Seymour Sarason in Memorial: Prospects for Community and Social Change

    ERIC Educational Resources Information Center

    Maton, Kenneth I.

    2012-01-01

    Seymour Sarason passed away on January 10, 2010 at the age of 91. He was the author of more than 40 books, including The Culture of the School and the Problem of Change (1971), The Creation of Settings and the Future Societies (1972), and The Psychological Sense of Community: Prospects for a Community Psychology (1974). His groundbreaking ideas…

  4. A study to evaluate non-uniform phase maps in shape memory alloys using finite element method

    NASA Astrophysics Data System (ADS)

    Motte, Naren

    The unique thermo-mechanical behavior of Shape Memory Alloys (SMAs), such as their ability to recover the original shape upon heating or being able to tolerate large deformations without undergoing plastic transformations, makes them a good choice for actuators. This work studies their application in the aerospace and defense industries where SMA components can serve as release mechanisms for gates of enclosures that have to be deployed remotely. This work provides a novel approach in evaluating the stress and heat induced change of phase in a SMA, in terms of the transformation strain tensor. In particular, the FEA tool ANSYS has been used to perform a 2-D analysis of a Cu-Al-Zn-Mn SMA specimen undergoing a nontraditional loading path in two steps with stress and heating loads. In the first load step, tensile displacement is applied, followed by the second load step in which the specimen is heated while the end displacements are held constant. A number of geometric configurations are examined under the two step loading path. Strain results are used to calculate transformation strain which provides a quantitative measure of phase at a material point; when transformation strain is zero, the material point is either twinned martensite, or austenite depending on the temperature. Transformation strain value of unity corresponds to detwinned martensite. A value between zero and one indicates mixed phase. In this study, through two step loading in conjunction with transformation strain calculations, a method for mapping transient non-uniform distribution of phases in an SMA is introduced. Ability to obtain drastically different phase distributions under same loading path by modifying the geometry is demonstrated. The failure behavior of SMAs can be designed such that the load level the crack initiates and the path it propagates can be customized.

  5. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    SciTech Connect

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  6. Nonvolatile transtance change random access memory based on magnetoelectric P(VDF-TrFE)/Metglas heterostructures

    NASA Astrophysics Data System (ADS)

    Lu, Peipei; Shang, Dashan; Shen, Jianxin; Chai, Yisheng; Yang, Chuansen; Zhai, Kun; Cong, Junzhuang; Shen, Shipeng; Sun, Young

    2016-12-01

    Transtance change random access memory (TCRAM) is a type of nonvolatile memory based on the nonlinear magnetoelectric coupling effects of multiferroics. In this work, ferroelectric P(VDF-TrFE) thin films were prepared on Metglas foil substrates by the sol-gel technique to form multiferroic heterostructures. The magnetoelectric voltage coefficient of the heterostructure can be switched reproducibly to different levels between positive and negative values by applying selective electric-field pulses. Compared with bulk multiferroic heterostructures, the polarization switching voltage was reduced to 7 V. Our facile technological approach enables this organic magnetoelectric heterostructure as a promising candidate for the applications in multilevel TCRAM devices.

  7. Crystal-amorphous transformation via defect-templating in phase-change materials

    NASA Astrophysics Data System (ADS)

    Nukala, Pavan

    Phase-change materials (PCM) such as GeTe and Ge-Sb-Te alloys are potential candidates for non-volatile memory applications, because they can reversibly and rapidly transform between a crystalline phase and an amorphous phase with medium-range order. Traditionally, crystal-amorphous transformation in these materials has been carried out via melt-quench pathway, where the crystalline phase is heated beyond its melting point by the rising edge of an electric pulse, and the melt phase is quenched by the falling edge into a glassy phase. Formation of an intermediate melt phase in this transformation pathway requires usage of large switching current densities, resulting in energy wastage, and device degradation issues. Furthermore, melt-quench pathway is a brute force strategy of amorphizing PCM, and does not utilize the peculiar structural properties in crystalline phase. It will be beneficial from a device perspective that crystal-amorphous transformation is carried out via subtler solid-state pathways. Single-crystalline nanowire phase-change memory, owing to its lateral geometry and large volumes of active material, offers a platform to construct a crystal-amorphous transformation pathway via gradually increasing disorder in the crystalline phase, and study it. Using in situ transmission electron microscopy on GeTe and Ge2Sb2Te5 systems, we showed that the application of an electric pulse (heat-shock) creates dislocations in the PCM that migrate with the hole-wind force, and interact with the already existing ferroelectric boundaries in case of GeTe, changing their nature. We adapted novel tools such as optical second harmonic generation polarimety to carefully study these defect interactions. These defects accumulate at a region of local inhomogeneity, and upon addition of defects beyond a critical limit to that region via electrical pulsing, an amorphous phase "nucleates". We also studied the effect of defect dynamics on carrier transport using temperature

  8. Effects of experimentally necessary changes in husbandry on olfactory memory: Chronic food restriction and social isolation.

    PubMed

    Manella, Laura; Woldeyohannes, Leuk; McMahon, Devon; Linster, Christiane

    2016-03-01

    Changes to typical procedures in animal husbandry are often necessary to accommodate the needs of behavioral experiments. Two common changes in husbandry for rodents are light chronic food restriction (to motivate animals in reward-association tasks) and social isolation (to accommodate individual feeding schedules or need to reduce interactions because of implants for example). Each of these intervention individually has been shown to modulate behavioral state and with it performance in behavioral tasks. We here systematically test how social isolation and light chronic food restriction modulate olfactory memory in rats. Our results show a strong modulation of olfactory memory after both types of husbandry interventions. These results suggest that common changes in animal husbandry promote distinct and relevant changes in animal behavior.

  9. Memory signals from the thalamus: early thalamocortical phase synchronization entrains gamma oscillations during long-term memory retrieval.

    PubMed

    Staudigl, Tobias; Zaehle, Tino; Voges, Jürgen; Hanslmayr, Simon; Esslinger, Christine; Hinrichs, Hermann; Schmitt, Friedhelm C; Heinze, Hans-Jochen; Richardson-Klavehn, Alan

    2012-12-01

    The thalamus is believed to be a key node in human memory networks, however, very little is known about its real-time functional role. Here we examined the dynamics of thalamocortical communication during long-term episodic memory retrieval in two experiments. In experiment 1, intrathalamic and surface EEG was recorded in an epileptic patient implanted with depth electrodes for brain stimulation therapy. In a recognition memory test, early (300-500 ms) stimulus-linked oscillatory synchrony between mediodorsal thalamic and frontal surface electrodes at beta frequency (20 Hz) was enhanced for correctly remembered old compared to correctly rejected new items. Directionality measures (Granger causality) indicated that the thalamus was the sender, and the neocortex the receiver, of this beta signal, which also modulated the power of neocortical gamma (55-80 Hz) oscillations (cross-frequency coupling). Experiment 2 validated the cross-frequency coupling effects in a healthy participant sample. Confirming the findings from experiment 1, significantly increased cross-frequency coupling was found over frontal scalp electrodes during successful recognition. Extending anatomical knowledge on thalamic connectivity with frontal neocortex, these results suggest that the thalamus sends an early memory signal to frontal regions, triggering further memory search processes.

  10. Polarization selective phase-change nanomodulator

    SciTech Connect

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-10-27

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.

  11. Polarization selective phase-change nanomodulator

    DOE PAGES

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-10-27

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume ofmore » only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. Lastly, this architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements.« less

  12. Polarization selective phase-change nanomodulator

    PubMed Central

    Appavoo, Kannatassen; Haglund Jr., Richard F.

    2014-01-01

    Manipulating optical signals below the diffraction limit is crucial for next-generation data-storage and telecommunication technologies. Although controlling the flow of light around nanoscale waveguides was achieved over a decade ago, modulating optical signals at terahertz frequencies within nanoscale volumes remains a challenge. Since the physics underlying any modulator relies on changes in dielectric properties, the incorporation of strongly electron-correlated materials (SECMs) has been proposed because they can exhibit orders of magnitude changes in electrical and optical properties with modest thermal, electrical or optical trigger signals. Here we demonstrate a hybrid nanomodulator of deep sub-wavelength dimensions with an active volume of only 0.002 µm3 by spatially confining light on the nanometre length scale using a plasmonic nanostructure while simultaneously controlling the reactive near-field environment at its optical focus with a single, precisely positioned SECM nanostructure. Since the nanomodulator functionality hinges on this near-field electromagnetic interaction, the modulation is also selectively responsive to polarization. This architecture suggests one path for designing reconfigurable optoelectronic building blocks with responses that can be tailored with exquisite precision by varying size, geometry, and the intrinsic materials properties of the hybrid elements. PMID:25346427

  13. Keeping an eye on the truth? Pupil size changes associated with recognition memory.

    PubMed

    Heaver, Becky; Hutton, Sam B

    2011-05-01

    During recognition memory tests participants' pupils dilate more when they view old items compared to novel items. We sought to replicate this "pupil old/new effect" and to determine its relationship to participants' responses. We compared changes in pupil size during recognition when participants were given standard recognition memory instructions, instructions to feign amnesia, and instructions to report all items as new. Participants' pupils dilated more to old items compared to new items under all three instruction conditions. This finding suggests that the increase in pupil size that occurs when participants encounter previously studied items is not under conscious control. Given that pupil size can be reliably and simply measured, the pupil old/new effect may have potential in clinical settings as a means for determining whether patients are feigning memory loss.

  14. Frequency, phase, and amplitude changes of the hydrogen maser oscillation

    NASA Technical Reports Server (NTRS)

    Audoin, Claude; Diener, William A.

    1992-01-01

    The frequency, the phase, and the amplitude changes of the hydrogen maser oscillation, which are induced by the modulation of the cavity resonant frequency, are considered. The results obtained apply specifically to one of the H-maser cavity autotuning methods which is actually implemented, namely the cavity frequency-switching method. The frequency, the phase, and the amplitude changes are analyzed theoretically. The phase and the amplitude variations are measured experimentally. It is shown, in particular, that the phase of oscillation is subjected to abrupt jumps at the times of the cavity frequency switching, whose magnitude is specified. The results given can be used for the design of a phase-locked loop (PLL) aimed at minimizing the transfer of the phase modulation to the slaved VCXO.

  15. Nonlinear analysis of a new car-following model accounting for the optimal velocity changes with memory

    NASA Astrophysics Data System (ADS)

    Peng, Guanghan; Lu, Weizhen; He, Hongdi; Gu, Zhenghua

    2016-11-01

    We, in this study, construct a new car-following model by accounting for the effect of the optimal velocity changes with memory in terms of the full velocity difference (FVD) model. The stability condition and mKdV equation concerning the optimal velocity changes with memory are derived through both linear stability and nonlinear analyses, respectively. Then, the space concerned can be divided into three regions classified as the stable, the metastable and the unstable ones. Moreover, it is shown that the effect of the optimal velocity changes with memory could enhance the stability of traffic flow. Furthermore, the numerical results verify that not only the sensitivity parameter of the optimal velocity changes with memory of driver but also the memory step could effectively stabilize the traffic flow. In addition, the stability of traffic flow is strengthened by increasing the memory step-size of optimal velocity changes and the intensity of drivers' memory with such changes. Most importantly, the effect of the optimal velocity changes with memory may avoid the disadvantage of historical information, which decreases the stability of traffic flow on road.

  16. tACS Phase Locking of Frontal Midline Theta Oscillations Disrupts Working Memory Performance

    PubMed Central

    Chander, Bankim S.; Witkowski, Matthias; Braun, Christoph; Robinson, Stephen E.; Born, Jan; Cohen, Leonardo G.; Birbaumer, Niels; Soekadar, Surjo R.

    2016-01-01

    Background: Frontal midline theta (FMT) oscillations (4–8 Hz) are strongly related to cognitive and executive control during mental tasks such as memory processing, arithmetic problem solving or sustained attention. While maintenance of temporal order information during a working memory (WM) task was recently linked to FMT phase, a positive correlation between FMT power, WM demand and WM performance was shown. However, the relationship between these measures is not well understood, and it is unknown whether purposeful FMT phase manipulation during a WM task impacts FMT power and WM performance. Here we present evidence that FMT phase manipulation mediated by transcranial alternating current stimulation (tACS) can block WM demand-related FMT power increase (FMTΔpower) and disrupt normal WM performance. Methods: Twenty healthy volunteers were assigned to one of two groups (group A, group B) and performed a 2-back task across a baseline block (block 1) and an intervention block (block 2) while 275-sensor magnetoencephalography (MEG) was recorded. After no stimulation was applied during block 1, participants in group A received tACS oscillating at their individual FMT frequency over the prefrontal cortex (PFC) while group B received sham stimulation during block 2. After assessing and mapping phase locking values (PLV) between the tACS signal and brain oscillatory activity across the whole brain, FMT power and WM performance were assessed and compared between blocks and groups. Results: During block 2 of group A but not B, FMT oscillations showed increased PLV across task-related cortical areas underneath the frontal tACS electrode. While WM task-related FMTΔpower and WM performance were comparable across groups in block 1, tACS resulted in lower FMTΔpower and WM performance compared to sham stimulation in block 2. Conclusion: tACS-related manipulation of FMT phase can disrupt WM performance and influence WM task-related FMTΔpower. This finding may have important

  17. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2014-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  18. Phase change material thermal power generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2011-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  19. Divided attention can enhance early-phase memory encoding: the attentional boost effect and study trial duration.

    PubMed

    Mulligan, Neil W; Spataro, Pietro

    2015-07-01

    Divided attention during encoding typically produces marked reductions in later memory. The attentional boost effect (ABE) is a surprising variation on this phenomenon. In this paradigm, each study stimulus (e.g., a word) is presented along with a target or a distractor (e.g., different colored circles) in a detection task. Later memory is better for stimuli co-occurring with targets. The present experiments indicate that the ABE arises during an early phase of memory encoding that involves initial stimulus perception and comprehension rather than at a later phase entailing controlled, elaborative rehearsal. Experiment 1 demonstrated that the ABE was robust at a short study duration (700 ms) and did not increase with increasing study trial durations (1,500 ms and 4,000 ms). Furthermore, the target condition is boosted to the level of memory performance in a full-attention condition for the short duration but not the long duration. Both results followed from the early-phase account. This account also predicts that for very short study times (limiting the influence of late-phase controlled encoding and thus minimizing the usual negative effect of divided attention), the target condition will produce better memory than will the full-attention condition. Experiment 2 used a study time of 400 ms and found that words presented with targets lead to greater recognition accuracy than do either words presented with distractors or words in the full-attention condition. Consistent with the early-phase account, a divided attention condition actually produced superior memory than did the full-attention condition, a very unusual but theoretically predicted result.

  20. Aging mechanisms in amorphous phase-change materials.

    PubMed

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-06-24

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

  1. A Gibbs Formulation for Reactive Materials with Phase Change

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott

    2015-11-01

    A large class of applications have pure, condensed phase constituents that come into contact, chemically react and simultaneously undergo phase change. Phase change in a given molecular material has often been considered to be separate from chemical reaction. Continuum modelers of phase change often use a phase field model whereby an indicator function is allowed to change from one value to another in regions of phase change, governed by evolutionary (Ginzburg-Landau) equations, whereas classic chemical kinetics literally count species concentrations and derive kinetics evolution equations based on species mass transport. We argue the latter is fundamental and is the same as the former, if all species, phase or chemical are treated as distinct chemical species. We pose a self-consistent continuum, thermo-mechanical model to account for significant energetic quantities with correct molecular and continuum limits in the mixture. A single stress tensor, and a single temperature is assumed for the mixture with specified Gibbs potentials for all relevant species, and interaction energies. We discuss recent examples of complex reactive material modeling, drawn from thermitic and propellant combustion that use this new model. DSS supported by DTRA, ONR and AFOSR.

  2. A Gibbs Formulation for Reactive Materials with Phase Change

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott

    2015-06-01

    A large class of applications have pure, condensed phase constituents that come into contact, chemically react and simultaneously undergo phase change. Phase change in a given molecular material has often been considered to be separate from chemical reaction. Continuum modelers of phase change often use a phase field model whereby an indicator function is allowed to change from one value to another in regions of phase change, governed by evolutionary (Ginzburg-Landau) equations, whereas classic chemical kinetics literally count species concentrations and derive kinetics evolution equations based on species mass transport. We argue the latter is fundamental and is the same as the former, if all species, phase or chemical are treated as distinct chemical species. We pose a self-consistent continuum, thermo-mechanical model to account for significant energetic quantities with correct molecular and continuum limits in the mixture. A single stress tensor, and a single temperature is assumed for the mixture with specified Gibbs potentials for all relevant species, and interaction energies. We discuss recent examples of complex reactive material modeling, drawn from thermitic and propellant combustion that use this new model. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR) and FA8651-10-1-0004 (AFRL/RW).

  3. Phase change materials in energy sector - applications and material requirements

    NASA Astrophysics Data System (ADS)

    Kuta, Marta; Wójcik, Tadeusz M.

    2015-05-01

    Phase change materials (PCMs) have been applying in many areas. One of them is energy field. PCMs are interesting for the energy sector because their use enables thermal stabilization and storage of large amount of heat. It is major issue for safety of electronic devices, thermal control of buildings and vehicles, solar power and many others energy domains. This paper contains preliminary results of research on solid-solid phase change materials designed for thermal stabilisation of electronic devices.

  4. Social Isolation During Adolescence Strengthens Retention of Fear Memories and Facilitates Induction of Late-Phase Long-Term Potentiation.

    PubMed

    Liu, Ji-Hong; You, Qiang-Long; Wei, Mei-Dan; Wang, Qian; Luo, Zheng-Yi; Lin, Song; Huang, Lang; Li, Shu-Ji; Li, Xiao-Wen; Gao, Tian-Ming

    2015-12-01

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation that often manifests as abnormal behavior in adulthood. The enduring consequence of isolation might be caused by a weakened ability to forget unpleasant memories. However, it remains unclear whether isolation affects unpleasant memories. To address this, we used a model of associative learning to induce the fear memories and evaluated the influence of isolation mice during adolescence on the subsequent retention of fear memories and its underlying cellular mechanisms. Following adolescent social isolation, we found that mice decreased their social interaction time and had an increase in anxiety-related behavior. Interestingly, when we assessed memory retention, we found that isolated mice were unable to forget aversive memories when tested 4 weeks after the original event. Consistent with this, we observed that a single train of high-frequency stimulation (HFS) enabled a late-phase long-term potentiation (L-LTP) in the hippocampal CA1 region of isolated mice, whereas only an early-phase LTP was observed with the same stimulation in the control mice. Social isolation during adolescence also increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and application of a tropomyosin-related kinase B (TrkB) receptor inhibitor ameliorated the facilitated L-LTP seen after isolation. Together, our results suggest that adolescent isolation may result in mental disorders during adulthood and that this may stem from an inability to forget the unpleasant memories via BDNF-mediated synaptic plasticity. These findings may give us a new strategy to prevent mental disorders caused by persistent unpleasant memories.

  5. Effects of Quenching Media on Phase Transformation Characteristics and Hardness of Cu-Al-Ni-Co Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Farahany, S.; Bakhsheshi-Rad, H. R.

    2015-04-01

    This paper presents the investigation on the effects of various thermal treatments and quenching media on the phase transformation behaviour of Cu-Al-Ni-Co shape memory alloys (SMAs). The transformation temperatures were determined using a differential scanning calorimeter. The variation of cooling rates had a consequential effect on the phase transformation characteristics of the Cu-Al-Ni-Co SMAs. Nevertheless, the transformation temperature peaks were varied in terms of location as well as heat flow. The results indicated that there was an improvement in transformation temperatures whenever ice water was used as quenching medium. It was also observed that the forward transformation temperatures were higher than the reverse transformation. It was verified that the required heat for the transformation of martensite into austenite was more than the transformation of austenite into martensite. Moreover, thermodynamic parameters, such as enthalpy and entropy, tended to decrease and increase as a result of the changes in the cooling rates of each medium. To clarify the variations of the structures and properties of Cu-Al-Ni-Co SMA quenched samples, x-ray diffraction, atomic force microscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, and Vickers hardness were used.

  6. A latchable thermally activated phase change actuator for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Richter, Christiane; Sachsenheimer, Kai; Rapp, Bastian E.

    2016-03-01

    Complex microfluidic systems often require a high number of individually controllable active components like valves and pumps. In this paper we present the development and optimization of a latchable thermally controlled phase change actuator which uses a solid/liquid phase transition of a phase change medium and the displacement of the liquid phase change medium to change and stabilize the two states of the actuator. Because the phase change is triggered by heat produced with ohmic resistors the used control signal is an electrical signal. In contrast to pneumatically activated membrane valves this concept allows the individual control of several dozen actuators with only two external pressure lines. Within this paper we show the general working principle of the actuator and demonstrate its general function and the scalability of the concept at an example of four actuators. Additionally we present the complete results of our studies to optimize the response behavior of the actuator - the influence of the heating power as well as the used phase change medium on melting and solidifying times.

  7. Phase Change Material Systems for High Temperature Heat Storage.

    PubMed

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance.

  8. Adolphe Abrahams memorial lecture, 1988. Exercise and lifestyle change.

    PubMed Central

    Shephard, R J

    1989-01-01

    While the evidence for a clustering of health habits is not particularly strong, there are both pedagogic and economic arguments in favour of a multifaceted approach to health education. The present review thus examines the impact of regular physical exercise upon other forms of health behaviour, testing the extent to which an activity programme can be a catalyst of improved lifestyle in both primary and secondary preventive therapy. The conceptual framework of health promotion is examined with particular reference to the models of Skinner, Becker, Fishbein, Triandis and Rokeach. Certain differences are noted between the decision to exercise and the marketing decisions for which Fishbein's model was originally designed. Nevertheless, in its later modifications, it provides a basic framework for understanding how human lifestyle is shaped. Theoretical mechanisms are suggested whereby exercise could influence such behaviours as cigarette smoking, alcohol consumption and drug usage, seat-belt usage, hypertension, body mass, lipid profile, promiscuous sexual behaviour, the carrying of lethal weapons, and acceptance of regular preventive medical examinations. The empirical evidence from both cross-sectional and longitudinal experiments shows a relatively weak association between exercise habits and other desirable forms of health behaviour. Moreover, it is arguable that other forms of health intervention such as smoking withdrawal or dieting might be equally effective as a primary change agent, and much of the observed association between exercise and other health habits could be attributable to a common dependence on demographic and socio-economic factors. On the other hand, the apparent weakness of associations may arise in part from difficulties in measuring both habitual physical activity and other forms of health behaviour, with a resultant attenuation of correlations. Possibly, a stronger association between exercise participation and other favourable health

  9. Treadmill Exercise Improves Memory Function Depending on Circadian Rhythm Changes in Mice

    PubMed Central

    2016-01-01

    Purpose Exercise enhances memory function by increasing neurogenesis in the hippocampus, and circadian rhythms modulate synaptic plasticity in the hippocampus. The circadian rhythm-dependent effects of treadmill exercise on memory function in relation with neurogenesis were investigated using mice. Methods The step-down avoidance test was used to evaluate short-term memory, the 8-arm maze test was used to test spatial learning ability, and 5-bromo-2’-deoxyuridine immunofluorescence was used to assess neurogenesis. Western blotting was also performed to assess levels of synaptic plasticity-associated proteins, such as brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element-binding protein, early growth response protein 1, postsynaptic density protein 95, and growth-associated protein 43. The mice in the treadmill exercise at zeitgeber 1 group started exercising 1 hour after sunrise, the mice in the treadmill exercise at zeitgeber 6 group started exercising 6 hours after sunrise, and the mice in the treadmill exercise at zeitgeber 13 group started exercising 1 hour after sunset. The mice in the exercise groups were forced to run on a motorized treadmill for 30 minutes once a day for 7 weeks. Results Treadmill exercise improved short-term memory and spatial learning ability, and increased hippocampal neurogenesis and the expression of synaptic plasticity-associated proteins. These effects of treadmill exercise were stronger in mice that exercised during the day or in the evening than in mice that exercised at dawn. Conclusions Treadmill exercise improved memory function by increasing neurogenesis and the expression of synaptic plasticity-associated proteins. These results suggest that the memory-enhancing effect of treadmill exercise may depend on circadian rhythm changes. PMID:27915477

  10. Phase change material in floor tiles for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Lee, Amy Sarah

    Traditional passive solar systems have relied on sensible heat storage for energy savings. Recent research has investigated taking advantage of latent heat storage for additional energy savings. This is accomplished by the incorporation of phase change material into building materials used in traditional passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. This research introduces a new flooring material that incorporates a phase change material ready for commercial manufacture. An agglomerate floor tile containing 20% by mass of encapsulated octadecane has been manufactured. Flexural and compressive strength of 7.4 MPa and 24.5 MPa respectively, were measured for the tile. Peak melting transition temperature was determined to be 27.2°C with a latent heat of 33.9 J/g of tile. Structural and thermal performance of the tile surpassed that of a typical ceramic tile. Each tile was composed of quartz, resin and phase change material. Statistical modeling was performed to analyze the response of flexural and compressive strength on varying amounts of quartz, resin and phase change material. Resulting polynomials described the effect of adding phase change material into the tile. With as little as 10% by mass of phase change material, the strength was reduced to less than 50% of tile without phase change material. It was determined that the maximum phase change material content to attain structural integrity greater than ceramic tile was 20% by mass. The statistical analysis used for this research was based on mixture experiments. A procedure was developed to simplify the selection of data points used in the fit of the polynomials to describe the response of flexural and compressive strengths. Analysis of energy savings using this floor tile containing 20% by mass of phase change material was performed as an addendum to this research. A known static simulation method, SLR (solar load ratio), was adapted to include

  11. Numerical Simulation of Two-phase flow with Phase Change Using the Level-set Method

    NASA Astrophysics Data System (ADS)

    Li, Hongying; Lou, Jing; Pan, Lunsheng; Yap, Yitfatt

    2016-11-01

    Multiphase flow with phase change is widely encountered in many engineering applications. A distinct feature involves in these applications is the phase transition from one phase to another due to the non-uniform temperature distribution. Such kind of process generally releases or absorbs large amount of energy with mass transfer happened simultaneously. It demands great cautions occasionally such as the high pressure due to evaporation. This article presents a numerical model for simulation of two-fluid flow with phase change problem. In these two fluids, one of them changes its state due to phase change. Such a problem then involves two substances with three phases as well as two different interfaces, i.e. the interface between two substances and the interface of one substance between its two phases. Two level-set functions are used to capture the two interfaces in the current problem. The current model is validated against one-dimensional and two-dimensional liquid evaporation. With the code validated, it is applied to different phase change problems including (1) a falling evaporating droplet and the rising of one bubble and (2) two-fluid stratified flow with solidification of one fluid. Comparisons on the bubble and droplet topologies, flow and temperature fields are made for the first case between the falling evaporating droplet and the falling droplet without evaporation. For the second demonstration case, the effect of the superheated temperature on the solidification process is investigated.

  12. Microstructure evolution of the phase change material TiSbTe

    NASA Astrophysics Data System (ADS)

    Chen, Yongjin; Zhang, Bin; Ding, Qingqing; Deng, Qingsong; Cheng, Yan; Song, Zhitang; Li, Jixue; Zhang, Ze; Han, Xiaodong

    2016-10-01

    The crystallization process and crystal structure of the phase change material TiSbTe alloy have been successfully established, which is essential for applying this alloy in phase change memory. Specifically, transmission electron microscopy (TEM) analyses of the film annealed in situ were used in combination with selected-area electron diffraction (SAED) and radial distribution function (RDF) analyses to investigate the structural evolution from the amorphous phase to the polycrystalline phase. Moreover, the presence of structures with medium-range order in amorphous TST, which is beneficial to high-speed crystallization, was indicated by the structure factors S(Q)s. The crystallization temperature was determined to be approximately 170°C, and the grain size varied from several to dozens of nanometers. As the temperature increased, particularly above 200°C, the first single peak of the rG(r) curves transformed into double shoulder peaks due to the increasing impact of the Ti-Te bonds. In general, the majority of Ti atoms enter the SbTe lattice, whereas the remainder of the Ti atoms aggregate, leading to the appearance of TiTe2 phase separation, as confirmed by the SAED patterns, high-angle annular dark field scanning transmission electron microscopy (HAADFSTEM) images and the corresponding energy-dispersive X-ray (EDX) mappings.

  13. Synthesis of the Research on Educational Change: Implementation Phase.

    ERIC Educational Resources Information Center

    Busick, Kathleen U.; Inos, Rita Hocog

    As Pacific educational leaders strive to make their educational systems meaningful for their own island people, lessons can be learned from the research on change. This is the second in a series of three papers on the broad phases of educational change: initiation, implementation, and institutionalization and renewal. The Concerns Based Adoption…

  14. Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array

    PubMed Central

    Eryilmaz, Sukru B.; Kuzum, Duygu; Jeyasingh, Rakesh; Kim, SangBum; BrightSky, Matthew; Lam, Chung; Wong, H.-S. Philip

    2014-01-01

    Recent advances in neuroscience together with nanoscale electronic device technology have resulted in huge interests in realizing brain-like computing hardwares using emerging nanoscale memory devices as synaptic elements. Although there has been experimental work that demonstrated the operation of nanoscale synaptic element at the single device level, network level studies have been limited to simulations. In this work, we demonstrate, using experiments, array level associative learning using phase change synaptic devices connected in a grid like configuration similar to the organization of the biological brain. Implementing Hebbian learning with phase change memory cells, the synaptic grid was able to store presented patterns and recall missing patterns in an associative brain-like fashion. We found that the system is robust to device variations, and large variations in cell resistance states can be accommodated by increasing the number of training epochs. We illustrated the tradeoff between variation tolerance of the network and the overall energy consumption, and found that energy consumption is decreased significantly for lower variation tolerance. PMID:25100936

  15. Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass

    SciTech Connect

    Lim, Jinhyong; Lee, Myeongkyu; Kim, Eunkyoung

    2005-05-09

    The feasibility of three-dimensional (3D) optical memory has been demonstrated by utilizing the photoluminescence (PL) spectrum change in a Sm-doped fluoride glass [K. Miura, J. Qiu, S. Fujiwara, S. Sakasuchi, and K. Hirao, Appl. Phys. Lett. 80 2263 (2002)]. We here report on a femtosecond laser-induced PL change in a Sm-doped sodium borate glass that is easier to synthesize and its potential application to 3D memory. Irradiation with a femtosecond pulsed laser (800 nm, 1 kHz, 100 fs) induced a PL peak near 682 nm, resulting from the photoreduction of the Sm ions. A multilayer pattern (bit size=1 {mu}m,layer separation=8 {mu}m) formed by femtosecond laser irradiation was read out by a reflection-type fluorescent confocal microscope, which detected the emission at 682 nm as a signal. High-contrast pattern images were obtained without crosstalk.

  16. Changes in blood glucose and salivary cortisol are not necessary for arousal to enhance memory in young or older adults.

    PubMed

    Gore, Jane B; Krebs, Desiree L; Parent, Marise B

    2006-06-01

    Emotional arousal enhances memory, and this memory-enhancing effect may involve neurochemicals released by arousal, such as glucose and cortisol. Physiological consequences of arousal change with age, and these changes may contribute to age-related memory decline. The present study examined whether emotionally arousing pictures would affect glucose and cortisol levels and enhance memory in young and older adults. Blood glucose and salivary cortisol were measured once before and six times after young and old adults viewed either 60 highly arousing or 60 relatively neutral pictures. Recall for the stimuli was measured 75 min later. The results indicated that recall was impaired in older adults. Arousal as measured by self-report enhanced recall in both young and older adults. However, arousal did not affect glucose or cortisol levels in either group. These findings demonstrate that changes in blood glucose or salivary cortisol levels are not necessary for arousal to enhance memory.

  17. Adversary phase change detection using SOMs and text data.

    SciTech Connect

    Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

    2010-05-01

    In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.

  18. Learning about frequency on the fly: Recent experience changes strategies regarding linguistic frequency in recognition memory.

    PubMed

    Miller, Jeremy K

    2010-01-01

    In the present study, the author examines whether participants can adjust recognition response strategies to account for the effects of linguistic frequency. Experiment 1 used a counterfeit-list technique to replicate findings that indicate that participants exhibit a bias toward choosing high-frequency lures. Experiment 2 demonstrates that when participants are exposed to a training phase that includes an opportunity to recognize high- and low-frequency words, participants no longer demonstrate a significant bias toward choosing high-frequency items on the counterfeit list task. Experiments 3 and 4 examine how participants learn to adjust for linguistic frequency by manipulating the information available during training. The results demonstrate that participants use information from the training phase indicating that high word frequency is a good cue to oldness to guide their memory decisions during the counterfeit list task, but do not use training phase information indicating that low frequency is the best cue to oldness in a similar fashion.

  19. Developmental Changes in the Effect of Verbal, Non-verbal, and Spatial-Positional Cues for Memory

    ERIC Educational Resources Information Center

    Derevensky, Jeffrey

    1976-01-01

    Sixty kindergarten, sixty second grade, and sixty fourth grade students performed several memory tasks under one of six conditions. The conditions differed as to the method of presentation of information. The study focused on developmental changes in children's use of verbal, nonverbal, and spatial-positional cues for memory. (Editor)

  20. The microsurgery fellowship at chang gung memorial hospital: blossom of caterpillars.

    PubMed

    Abdelrahman, Mohamed

    2015-04-01

    Against a background of globalization and medical migration, issues have been raised regarding training outside the clinician's own context. Fellowship was not commonly used as a career step, or a means of migration, but as a process of professional and personal development. Taking Chang Gung Memorial Hospital Microsurgery Fellowship as the case study, I would like to highlight an example of a long-running successful training program in a special field such as plastic surgery.

  1. Working memory in ALS patients: preserved performance but marked changes in underlying neuronal networks.

    PubMed

    Zaehle, Tino; Becke, Andreas; Naue, Nicole; Machts, Judith; Abdulla, Susanne; Petri, Susanne; Kollewe, Katja; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Müller, Notger G

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease which affects the motor system but also other frontal brain regions. In this study we investigated changes in functional neuronal networks including posterior brain regions that are not directly affected by the neurodegenerative process. To this end, we analyzed the contralateral delay activity (CDA), an ERP component considered an online marker of memory storage in posterior cortex, while 23 ALS patients and their controls performed a delayed-matching-to-sample working memory (WM) task. The task required encoding of stimuli in the cued hemifield whilst ignoring stimuli in the other hemifield. Despite their unimpaired behavioral performance patients displayed several changes in the neuronal markers of the memory processes. Their CDA amplitude was smaller; it showed less load-dependent modulation and lacked the reduction observed when controls performed the same task three months later. The smaller CDA in the patients could be attributed to more ipsilateral cortical activity which may indicate that ALS patients unnecessarily processed the irrelevant stimuli as well. The latter is presumably related to deterioration of the frontal cortex in the patient group which was indicated by slight deficits in tests of their executive functions that increased over time. The frontal pathology presumably affected their top-down control of memory storage in remote regions in the posterior brain. In sum, the present results demonstrate functional changes in neuronal networks, i.e. neuroplasticity, in ALS that go well beyond the known structural changes. They also show that at least in WM tasks, in which strategic top-down control demands are relatively low, the frontal deficit can be compensated for by intact low level processes in posterior brain regions.

  2. Vegetative phase change and shoot maturation in plants

    PubMed Central

    Poethig, R. Scott

    2014-01-01

    As a plant shoot develops, it produces different types of leaves, buds, and internodes, and eventually acquires the capacity to produce structures involved in sexual reproduction. Morphological and anatomical traits that change in coordinated fashion at a predictable time in vegetative development allow this process to be divided into several more-or-less discrete phases; the transition between these phases is termed vegetative phase change. Vegetative phase change is regulated by a decrease in the expression of the related microRNAs, miR156 and miR157, which act by repressing the expression of SBP/SPL transcription factors. SBP/SPL proteins regulate a wide variety of processes in shoot development, including flowering time and inflorescence development. Answers to long-standing questions about the relationship between vegetative and reproductive maturation have come from genetic analyses of the transcriptional and post-transcriptional regulatory networks in which these proteins are involved. Studies conducted over several decades indicate that carbohydrates have a significant effect on phase-specific leaf traits, and recent research suggests that sugar may be the leaf signal that promotes vegetative phase change. PMID:23962841

  3. Vegetative phase change and shoot maturation in plants.

    PubMed

    Poethig, R Scott

    2013-01-01

    As a plant shoot develops, it produces different types of leaves, buds, and internodes, and eventually acquires the capacity to produce structures involved in sexual reproduction. Morphological and anatomical traits that change in coordinated fashion at a predictable time in vegetative development allow this process to be divided into several more-or-less discrete phases; the transition between these phases is termed "vegetative phase change." Vegetative phase change is regulated by a decrease in the expression of the related microRNAs, miR156, and miR157, which act by repressing the expression of squamosa promoter binding protein/SBP-like (SBP/SPL) transcription factors. SBP/SPL proteins regulate a wide variety of processes in shoot development, including flowering time and inflorescence development. Answers to long-standing questions about the relationship between vegetative and reproductive maturation have come from genetic analyses of the transcriptional and posttranscriptional regulatory networks in which these proteins are involved. Studies conducted over several decades indicate that carbohydrates have a significant effect on phase-specific leaf traits, and recent research suggests that sugar may be the leaf signal that promotes vegetative phase change.

  4. A Gibbs formulation for reactive materials with phase change

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott

    2017-01-01

    Energetic material condensed phase constituents come into contact, chemically react and simultaneously undergo phase change. Phase change in a given molecular material is often considered separately from chemical reaction. Continuum phase field models often use a indicator function to change the phase in different regions according to an evolutionary (Ginzburg-Landau) equation. But chemical kinetic descriptions of change (according to physical chemistry formulations) count species or component concentrations and derive kinetic evolution equations based on component mass transport. We argue the latter is fundamental and that all components, designated by both phase and chemical characters are treated as distinct chemical species. We pose a self-consistent continuum, thermo-mechanical model based on specified Gibbs potentials for all relevant species/components that are present in a single material. Therefore a single stress tensor, and a single temperature is assumed for the material for all relevant component-species, for all equilibrium potentials, interaction energies and material properties. We discuss recent examples where we have applied the Gibbs formulation to model behavior of complex reactive materials.

  5. Preservice Elementary Teachers' Knowledge of Observable Moon Phases and Pattern of Change in Phases

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Atwood, Ronald K.; Christopher, John E.

    2006-01-01

    The purpose of this study was to describe selected content knowledge held by 52 preservice elementary teachers about the observable phases of the moon and the monthly pattern of change in observable phases. Data were obtained from participants in a physics course before and after they received inquiry-based instruction designed to promote…

  6. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    PubMed Central

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-01-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows. PMID:27033314

  7. Crystallization Times of Ge-Te Phase Change Materials as a Function of Composition

    SciTech Connect

    S Raoux; H Cheng; M Caldwell; H Wong

    2011-12-31

    The crystallization times of Ge-Te phase change materials with variable Ge concentrations (29.5-72.4 at. %) were studied. A very strong dependence of the crystallization time on the composition for as-deposited, amorphous films was confirmed, with a minimum for the stoichiometric composition GeTe. The dependence is weaker for melt-quenched, amorphous material and crystallization times are between one to almost four orders of magnitude shorter than for as-deposited materials. This is promising for applications because recrystallization from the melt-quenched phase is the relevant process for optical and solid state memory, and fast crystallization and weak dependence on compositional variations are desirable.

  8. Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide.

    PubMed

    Dastidar, Subham; Hawley, Christopher J; Dillon, Andrew D; Gutierrez-Perez, Alejandro D; Spanier, Jonathan E; Fafarman, Aaron T

    2017-03-16

    The perovskite phase of cesium lead iodide (α-CsPbI3 or "black" phase) possesses favorable optoelectronic properties for photovoltaic applications. However, the stable phase at room temperature is a nonfunctional "yellow" phase (δ-CsPbI3). Black-phase polycrystalline thin films are synthesized above 330 °C and rapidly quenched to room temperature, retaining their phase in a metastable state. Using differential scanning calorimetry, it is shown herein that the metastable state is maintained in the absence of moisture, up to a temperature of 100 °C, and a reversible phase-change enthalpy of 14.2 (±0.5) kJ/mol is observed. The presence of atmospheric moisture hastens the black-to-yellow conversion kinetics without significantly changing the enthalpy of the transition, indicating a catalytic effect, rather than a change in equilibrium due to water adduct formation. These results delineate the conditions for trapping the desired phase and highlight the significant magnitude of the entropic stabilization of this phase.

  9. The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Shi, Zhongke

    2015-06-01

    To evaluate the impacts of new influence factor in cooperative adaptive cruise control strategy on the dynamic characteristics of traffic flow, an improved cooperative car-following model considering multiple vehicular gap changes with memory is developed to study the influences of multiple vehicular gap changes with memory on each car's speed, acceleration and relative distance. Some numerical simulations are carried out and the results show that considering multiple vehicular gap changes with memory in designing the cooperative adaptive cruise control strategy can improve the stability of traffic flow and reduce the accidental probability.

  10. Rayleigh-Taylor instability of viscous fluids with phase change.

    PubMed

    Kim, Byoung Jae; Kim, Kyung Doo

    2016-04-01

    Film boiling on a horizontal surface is a typical example of the Rayleigh-Taylor instability. During the film boiling, phase changes take place at the interface, and thus heat and mass transfer must be taken into consideration in the stability analysis. Moreover, since the vapor layer is not quite thick, a viscous flow must be analyzed. Existing studies assumed equal kinematic viscosities of two fluids, and/or considered thin viscous fluids. The purpose of this study is to derive the analytical dispersion relation of the Rayleigh-Taylor instability for more general conditions. The two fluids have different properties. The thickness of the vapor layer is finite, but the liquid layer is thick enough to be nearly semi-infinite in view of perturbation. Initially, the vapor is in equilibrium with the liquid at the interface, and the direction of heat transfer is from the vapor side to the liquid side. In this case, the phase change has a stabilizing effect on the growth rate of the interface. When the vapor layer is thin, there is a coupled effect of the vapor viscosity, phase change, and vapor thickness on the critical wave number. For the other limit of a thick vapor, both the liquid and vapor viscosities influence the critical wave number. Finally, the most unstable wavelength is investigated. When the vapor layer is thin, the most unstable wavelength is not affected by phase change. When the vapor layer is thick, however, it increases with the increasing rate of phase change.

  11. Dielectric properties of amorphous phase-change materials

    NASA Astrophysics Data System (ADS)

    Chen, C.; Jost, P.; Volker, H.; Kaminski, M.; Wirtssohn, M.; Engelmann, U.; Krüger, K.; Schlich, F.; Schlockermann, C.; Lobo, R. P. S. M.; Wuttig, M.

    2017-03-01

    The dielectric function of several amorphous phase-change materials has been determined by employing a combination of impedance spectroscopy (9 kHz-3 GHz) and optical spectroscopy from the far- (20 c m-1 , 0.6 THz) to the near- (12 000 c m-1 , 360 THz) infrared, i.e., from the DC limit to the first interband transition. While phase-change materials undergo a change from covalent bonding to resonant bonding on crystallization, the amorphous and crystalline phases of ordinary chalcogenide semiconductors are both governed by virtually the same covalent bonds. Here, we study the dielectric properties of amorphous phase-change materials on the pseudobinary line between GeTe and S b2T e3 . These data provide important insights into the charge transport and the nature of bonding in amorphous phase-change materials. No frequency dependence of permittivity and conductivity is discernible in the impedance spectroscopy measurements. Consequently, there are no dielectric relaxations. The frequency-independent conductivity is in line with charge transport via extended states. The static dielectric constant significantly exceeds the optical dielectric constant. This observation is corroborated by transmittance measurements in the far infrared, which show optical phonons. From the intensity of these phonon modes, a large Born effective charge is derived. Nevertheless, it is known that crystalline phase-change materials such as GeTe possess even significantly larger Born effective charges. Crystallization is hence accompanied by a huge increase in the Born effective charge, which reveals a significant change of bonding upon crystallization. In addition, a clear stoichiometry trend in the static dielectric constant along the pseudobinary line between GeTe and S b2T e3 has been identified.

  12. Ultrafast phase-change logic device driven by melting processes

    PubMed Central

    Loke, Desmond; Skelton, Jonathan M.; Wang, Wei-Jie; Lee, Tae-Hoon; Zhao, Rong; Chong, Tow-Chong; Elliott, Stephen R.

    2014-01-01

    The ultrahigh demand for faster computers is currently tackled by traditional methods such as size scaling (for increasing the number of devices), but this is rapidly becoming almost impossible, due to physical and lithographic limitations. To boost the speed of computers without increasing the number of logic devices, one of the most feasible solutions is to increase the number of operations performed by a device, which is largely impossible to achieve using current silicon-based logic devices. Multiple operations in phase-change–based logic devices have been achieved using crystallization; however, they can achieve mostly speeds of several hundreds of nanoseconds. A difficulty also arises from the trade-off between the speed of crystallization and long-term stability of the amorphous phase. We here instead control the process of melting through premelting disordering effects, while maintaining the superior advantage of phase-change–based logic devices over silicon-based logic devices. A melting speed of just 900 ps was achieved to perform multiple Boolean algebraic operations (e.g., NOR and NOT). Ab initio molecular-dynamics simulations and in situ electrical characterization revealed the origin (i.e., bond buckling of atoms) and kinetics (e.g., discontinuouslike behavior) of melting through premelting disordering, which were key to increasing the melting speeds. By a subtle investigation of the well-characterized phase-transition behavior, this simple method provides an elegant solution to boost significantly the speed of phase-change–based in-memory logic devices, thus paving the way for achieving computers that can perform computations approaching terahertz processing rates. PMID:25197044

  13. A Four–Component Model of Age–Related Memory Change

    PubMed Central

    Healey, M. Karl; Kahana, Michael J.

    2015-01-01

    We develop a novel, computationally explicit, theory of age–related memory change within the framework of the context maintenance and retrieval (CMR2) model of memory search. We introduce a set of benchmark findings from the free recall and recognition tasks that includes aspects of memory performance that show both age-related stability and decline. We test aging theories by lesioning the corresponding mechanisms in a model fit to younger adult free recall data. When effects are considered in isolation, many theories provide an adequate account, but when all effects are considered simultaneously, the existing theories fail. We develop a novel theory by fitting the full model (i.e., allowing all parameters to vary) to individual participants and comparing the distributions of parameter values for older and younger adults. This theory implicates four components: 1) the ability to sustain attention across an encoding episode, 2) the ability to retrieve contextual representations for use as retrieval cues, 3) the ability to monitor retrievals and reject intrusions, and 4) the level of noise in retrieval competitions. We extend CMR2 to simulate a recognition memory task using the same mechanisms the free recall model uses to reject intrusions. Without fitting any additional parameters, the four–component theory that accounts for age differences in free recall predicts the magnitude of age differences in recognition memory accuracy. Confirming a prediction of the model, free recall intrusion rates correlate positively with recognition false alarm rates. Thus we provide a four–component theory of a complex pattern of age differences across two key laboratory tasks. PMID:26501233

  14. Microcapsule Buckling Triggered by Compression-Induced Interfacial Phase Change.

    PubMed

    Salmon, Andrew Roy; Parker, Richard M; Groombridge, Alexander S; Maestro, Armando; Coulston, Roger J; Hegemann, Jonas; Kierfeld, Jan; Scherman, Oren A; Abell, Chris

    2016-10-04

    There is an emerging trend towards the fabrication of microcapsules at liquid interfaces. In order to control the parameters of such capsules, the interfacial processes governing their formation must be understood. Here, poly(vinyl alcohol) films are assembled at the interface of water-in-oil microfluidic droplets. The polymer is cross-linked using cucurbit[8]uril ternary supramolecular complexes. It is shown that compression-induced phase change causes the onset of buckling in the interfacial film. On evaporative compression, the interfacial film both increases in density and thickens, until it reaches a critical density and a phase change occurs. We show that this increase in density can be simply related to the film Poisson ratio and area compression. This description captures fundamentals of many compressive interfacial phase changes and can also explain the observation of a fixed thickness-to-radius ratio at buckling, (T/R)buck.

  15. A Study on Phase Changes of Heterogeneous Composite Materials

    NASA Astrophysics Data System (ADS)

    Hirasawa, Yoshio; Saito, Akio; Takegoshi, Eisyun

    In this study, a phase change process in heterogeneous composite materials which consist of water and coiled copper wires as conductive solid is investigated by four kinds of typical calculation models : 1) model-1 in which the effective thermal conductivity of the composite material is used, 2) model-2 in which a fin metal acts for many conductive solids, 3) model-3 in which the effective thermal conductivities between nodes are estimated and three-dimensional calculation is performed, 4) model-4 proposed by authors in the previous paper in which effective thermal conductivity is not needed. Consequently, model-1 showed the phase change rate considerably lower than the experimental results. Model-2 gave the larger amount of the phase change rate. Model-3 agreed well with the experiment in the case of small coil diameter and relatively large Vd. Model-4 showed a very well agreement with the experiment in the range of this study.

  16. Here's looking at me: the effect of memory perspective on assessments of personal change.

    PubMed

    Libby, Lisa K; Eibach, Richard P; Gilovich, Thomas

    2005-01-01

    Five studies manipulated the memory perspective (1st-person vs. 3rd-person) individuals used to visually recall autobiographical events and examined its effects on assessments of personal change. Psychotherapy clients recalled their first treatment (Study 1), and undergraduates recalled past social awkwardness (Study 2). Participants who were induced to recall from the 3rd-person perspective believed, and acted as though (Study 2), they had changed more since the events occurred. Subsequent studies revealed a crucial moderator: Third-person recall produces judgments of greater self-change when people are inclined to look for evidence of change, but lesser self-change when they are inclined to look for evidence of continuity. This pattern emerged when motivation (Studies 1 and 2), goals (Study 3), instructions (Study 4), and self-esteem (Study 5) determined participants' focus on change versus continuity. Results have implications for constructivism in memory and judgment and for the ability to sustain self-improvement efforts.

  17. Optical response of phase change material for metasurface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chu, Cheng Hung; Tseng, Ming Lun; Chen, Jie; Wu, Hui Jun; Wang, Hsiang-Chu; Chen, Ting-Yu; Tsai, Din Ping

    2016-09-01

    Phase change materials are used as the recording layer in optical data storage, electronic storage and nanolithography due to the enormous physical difference between crystalline and amorphous states. In recent years, they are demonstrated to exploit in various tunable plasmonic devices, such as perfect absorber, planar lenses, plasmonic antenna, Fano resonance and so on. However, in these researches, the phase change material merely plays a role as a refractive index switchable substrate. In this paper, we study the intrinsic optical properties of phase change material Ge2Sb2Te5 (GST) in the near-infrared regime. A clear insight into the dipole resonance system of GST is provided. The reflection phase retardation and intensity of each unit cells depending on the phase state and geometry are estimated. Further, we introduce the concept of reconfigurable gradient metasurface, which has different anomalous reflection angles by switching the combination of nanorods with different geometries and phase states. The research has great potential in the area of tunable metamaterial device (metadevice) in the future.

  18. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge4SbTe5

    DOE PAGES

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; ...

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe)1-x(Sb2Te3)x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge4SbTe5, a single phase compound just off of the (GeTe)1-x(Sb2Te3)x tie-line, that forms in a stable rocksalt crystal structure atmore » room temperature. We find that stoichiometric and undoped Ge4SbTe5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.« less

  19. Why Phase-Change Media Are Fast and Stable: A New Approach to an Old Problem

    NASA Astrophysics Data System (ADS)

    Kolobov, Alexander V.; Fons, Paul; Tominaga, Junji; Frenkel, Anatoly I.; Ankudinov, Alexei L.; Yannopoulos, Spyros N.; Andrikopoulos, Konstantinos S.; Uruga, Tomoya

    2005-05-01

    Present-day multimedia strongly relies on re-writable phase-change optical memories. We find that, different from current consensus Ge2Sb2Te5 (GST), the material of choice in digital versatile discs—random access memory (DVD-RAM), possesses a structure similar to ferroelectric GeTe, namely that Ge and Sb atoms are located off-center giving rise to a net dipole moment. Amorphisation of both GeTe and GST results in a significant shortening of covalent bonds and a decrease in the mean-square relative displacement concomitant with a drastic change in the short-range order. We demonstrate that the order-disorder transition in GeTe and GST is primarily due to a flip of Ge atoms from an octahedral position into a tetrahedral position without rupture of strong covalent bonds. It is this nature of the transformation that ensures large changes in reflectivity, fast disk performance and repeatable switching over millions cycles.

  20. Changes in FKBP5 expression and memory functions during cognitive-behavioral therapy in posttraumatic stress disorder: a preliminary study.

    PubMed

    Szabó, Csilla; Kelemen, Oguz; Kéri, Szabolcs

    2014-05-21

    Posttraumatic stress disorder (PTSD) is characterized by hyperarousal, flashbacks, avoidance, and memory dysfunctions. Although psychotherapy improves the clinical symptoms, its effect on memory has not been explored. In addition, there is no information about gene expression changes related to hippocampal functions. We assessed PTSD patients (n=20) using the Wechsler Memory Scale-Revised (WAIS-R) and a paired associates learning (PAL) test, as well as changes in blood FK506 binding protein (FKBP5) mRNA expression before and after cognitive behavioral therapy (CBT). Results revealed that before CBT PTSD patients were impaired on WAIS-R delayed recall, attention/concentration, and PAL compared with trauma-exposed control subjects (n=20). These memory dysfunctions showed a significant improvement after CBT. Better performance on the PAL test correlated with enhanced blood FKBP5 mRNA expression. These results suggest that elevated FKBP5 expression during CBT is related to improved associative memory linked to the hippocampal formation.

  1. Zero-static-power phase-change optical modulator.

    PubMed

    Jafari, Mohsen; Rais-Zadeh, Mina

    2016-03-15

    This Letter presents an innovative design of an electro-optical modulator using germanium telluride (GeTe) phase change material with an integrated nano-heater. The refractive index and the electrical conductivity of GeTe significantly change as the GeTe goes though the crystallographic phase change. Amorphization and crystallization of GeTe is achieved using the Joule heating method by passing current through an array of metal gratings, where GeTe fills the slits between the metal lines. These metal slits also increase the contrast between the amorphous (on) and crystalline (off) phases of the modulator by having extraordinary transmission and reflection response based on interactions of surface plasmon polaritons (SPPs) with the incoming light. The modulator is designed for 1550 nm wavelength, where GeTe is transparent in the amorphous phase and provides high optical on/off contrast. The metal-insulator-metal (MIM) is designed in such a way to only support SPP excitation when GeTe is crystalline and slit resonance when it is amorphous to increase the modulation index. The modulator is stable in both phases with higher than 12 dB change in transmission with zero static power consumption at room temperature.

  2. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  3. Measurement of crystal growth velocity in a melt-quenched phase-change material

    PubMed Central

    Salinga, Martin; Carria, Egidio; Kaldenbach, Andreas; Bornhöfft, Manuel; Benke, Julia; Mayer, Joachim; Wuttig, Matthias

    2013-01-01

    Phase-change materials are the basis for next-generation memory devices and reconfigurable electronics, but fundamental understanding of the unconventional kinetics of their phase transitions has been hindered by challenges in the experimental quantification. Here we obtain deeper understanding based on the temperature dependence of the crystal growth velocity of the phase-change material AgInSbTe, as derived from laser-based time-resolved reflectivity measurements. We observe a strict Arrhenius behaviour for the growth velocity over eight orders of magnitude (from ~10 nm s−1 to ~1 m s−1). This can be attributed to the formation of a glass at elevated temperatures because of rapid quenching of the melt. Further, the temperature dependence of the viscosity is derived, which reveals that the supercooled liquid phase must have an extremely high fragility (>100). Finally, the new experimental evidence leads to an interpretation, which comprehensively explains existing data from various different experiments reported in literature. PMID:23986035

  4. Phase change material for temperature control and material storage

    NASA Technical Reports Server (NTRS)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  5. Lightweight Phase-Change Material For Solar Power

    NASA Technical Reports Server (NTRS)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  6. Finite-element model for phase-change recording

    NASA Astrophysics Data System (ADS)

    Brusche, J. H.; Segal, A.; Urbach, H. P.

    2005-04-01

    The finite-element method is applied to model phase-change recording in a grooved recording stack. A rigorous model for the scattering of a three-dimensional focused spot by a one-dimensional periodic grating is used to determine the absorbed light in a three-dimensional region inside the phase-change layer. The optical model is combined with a three-dimensional thermal model to compute the temperature distribution. Land and groove recording and polarization dependence are studied, and the model is applied to the Blu-ray Disc.

  7. Using adversary text to detect adversary phase changes.

    SciTech Connect

    Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

    2009-05-01

    The purpose of this work was to help develop a research roadmap and small proof ofconcept for addressing key problems and gaps from the perspective of using text analysis methods as a primary tool for detecting when a group is undergoing a phase change. Self- rganizing map (SOM) techniques were used to analyze text data obtained from the tworld-wide web. Statistical studies indicate that it may be possible to predict phase changes, as well as detect whether or not an example of writing can be attributed to a group of interest.

  8. Inserting Phase Change Lines into Microsoft Excel® Graphs.

    PubMed

    Dubuque, Erick M

    2015-10-01

    Microsoft Excel® is a popular graphing tool used by behavior analysts to visually display data. However, this program is not always friendly to the graphing conventions used by behavior analysts. For example, adding phase change lines has typically been a cumbersome process involving the insertion of line objects that do not move when new data is added to a graph. The purpose of this article is to describe a novel way to add phase change lines that move when new data is added and when graphs are resized.

  9. The future of memory

    NASA Astrophysics Data System (ADS)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  10. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Zalden, Peter; Shu, Michael J.; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W.; Wong, H.-S. Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M.

    2016-08-01

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26 . Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  11. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    PubMed

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  12. Overgeneral autobiographical memory predicts changes in depression in a community sample.

    PubMed

    Van Daele, Tom; Griffith, James W; Van den Bergh, Omer; Hermans, Dirk

    2014-01-01

    This study investigated whether overgeneral autobiographical memory (OGM) predicts the course of symptoms of depression and anxiety in a community sample, after 5, 6, 12 and 18 months. Participants (N=156) completed the Autobiographical Memory Test and the Depression Anxiety Stress Scales-21 (DASS-21) at baseline and were subsequently reassessed using the DASS-21 at four time points over a period of 18 months. Using latent growth curve modelling, we found that OGM was associated with a linear increase in depression. We were unable to detect changes over time in anxiety. OGM may be an important marker to identify people at risk for depression in the future, but more research is needed with anxiety.

  13. Imagery Rescripting: The Impact of Conceptual and Perceptual Changes on Aversive Autobiographical Memories

    PubMed Central

    Slofstra, Christien; Nauta, Maaike H.; Holmes, Emily A.; Bockting, Claudi L. H.

    2016-01-01

    Background Imagery rescripting (ImRs) is a process by which aversive autobiographical memories are rendered less unpleasant or emotional. ImRs is thought only to be effective if a change in the meaning-relevant (semantic) content of the mental image is produced, according to a cognitive hypothesis of ImRs. We propose an additional hypothesis: that ImRs can also be effective by the manipulation of perceptual features of the memory, without explicitly targeting meaning-relevant content. Methods In two experiments using a within-subjects design (both N = 48, community samples), both Conceptual-ImRs—focusing on changing meaning-relevant content—and Perceptual-ImRs—focusing on changing perceptual features—were compared to Recall-only of aversive autobiographical image-based memories. An active control condition, Recall + Attentional Breathing (Recall+AB) was added in the first experiment. In the second experiment, a Positive-ImRs condition was added—changing the aversive image into a positive image that was unrelated to the aversive autobiographical memory. Effects on the aversive memory’s unpleasantness, vividness and emotionality were investigated. Results In Experiment 1, compared to Recall-only, both Conceptual-ImRs and Perceptual-ImRs led to greater decreases in unpleasantness, and Perceptual-ImRs led to greater decreases in emotionality of memories. In Experiment 2, the effects on unpleasantness were not replicated, and both Conceptual-ImRs and Perceptual-ImRs led to greater decreases in emotionality, compared to Recall-only, as did Positive-ImRs. There were no effects on vividness, and the ImRs conditions did not differ significantly from Recall+AB. Conclusions Results suggest that, in addition to traditional forms of ImRs, targeting the meaning-relevant content of an image during ImRs, relatively simple techniques focusing on perceptual aspects or positive imagery might also yield benefits. Findings require replication and extension to clinical

  14. Compensating temperature-induced ultrasonic phase and amplitude changes

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.

    2016-04-01

    In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.

  15. Neonatal anoxia in rats: hippocampal cellular and subcellular changes related to cell death and spatial memory.

    PubMed

    Takada, S H; dos Santos Haemmerle, C A; Motta-Teixeira, L C; Machado-Nils, A V; Lee, V Y; Takase, L F; Cruz-Rizzolo, R J; Kihara, A H; Xavier, G F; Watanabe, I-S; Nogueira, M I

    2015-01-22

    Neonatal anoxia in rodents has been used to understand brain changes and cognitive dysfunction following asphyxia. This study investigated the time-course of cellular and subcellular changes and hippocampal cell death in a non-invasive model of anoxia in neonatal rats, using Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) to reveal DNA fragmentation, Fluoro-Jade® B (FJB) to show degenerating neurons, cleaved caspase-3 immunohistochemistry (IHC) to detect cells undergoing apoptosis, and transmission electron microscopy (TEM) to reveal fine ultrastructural changes related to cell death. Anoxia was induced by exposing postnatal day 1 (P1) pups to a flow of 100% gaseous nitrogen for 25 min in a chamber maintained at 37 °C. Control rats were similarly exposed to this chamber but with air flow instead of nitrogen. Brain changes following anoxia were evaluated at postnatal days 2, 14, 21 and 60 (P2, P14, P21 and P60). In addition, spatial reference memory following anoxia and control treatments was evaluated in the Morris water maze, starting at P60. Compared to their respective controls, P2 anoxic rats exhibited (1) higher TUNEL labeling in cornus ammonis (CA) 1 and the dentate gyrus (DG), (2) higher FJB-positive cells in the CA2-3, and (3) somato-dendritic swelling, mitochondrial injury and chromatin condensation in irregular bodies, as well as other subcellular features indicating apoptosis, necrosis, autophagy and excitotoxicity in the CA1, CA2-3 and DG, as revealed by TEM. At P14, P21 and P60, both groups showed small numbers of TUNEL-positive and FJB-positive cells. Stereological analysis at P2, P14, P21 and P60 revealed a lack of significant differences in cleaved caspase-3 IHC between anoxic and control subjects. These results suggest that the type of hippocampal cell death following neonatal anoxia is likely independent of caspase-3 activation. Neonatal anoxia induced deficits in acquisition and performance of spatial reference

  16. Sex-dependent changes in anxiety, memory, and monoamines following one week of stress.

    PubMed

    Bowman, R E; Micik, R; Gautreaux, C; Fernandez, L; Luine, V N

    2009-04-20

    Chronic restraint stress alters performance of rats on cognitive tasks, and anxiety measurements, and these stress-induced behavioral alterations are sexually dimorphic. Following a long stress period (21 days restraint) males show cognitive impairments while females are either not affected or enhanced on the same tasks. The current study examined whether sexually differentiated responses are also induced following shorter restraint stress durations. Male and female Sprague Dawley rats, aged 2.5 months, served as controls or received restraint stress (6 h/day, 7 days) and were tested for anxiety (plus maze), non-spatial memory (object recognition), and spatial memory (object placement). Plus maze performance was altered by sex and stress exposure. Stress impaired male object recognition but did not affect female performance. Stress did not affect male spatial memory; however, control females could not significantly discriminate between the old and new locations, but stress exposure enhanced female performance. Following behavioral testing, monoamines and metabolites were measured in prefrontal cortex (PFC), hippocampus (CA1, CA3), and amygdala. Notably, PFC and CA3 indices for noradrenergic activity (MHPG levels and MHPG/NE ratios) were increased in stress females, but decreased in males, and similar changes were found in CA1 and BLA dopaminergic indices. Thus, these sexually dimorphic neurochemical changes following stress may underlie the behavioral differences. Current results show that short-term restraint elicits sex-dependent behavioral and neural changes different from those previously reported for longer term stresses and suggest that the temporal relationship between the change from adaptive to maladaptive responses to stress is shorter in male than female rats.

  17. Phase Change Permeation Technology For Environmental Control Life Support Systems

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.

  18. Method for preparing polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1990-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  19. High-pressure Raman spectroscopy of phase change materials

    SciTech Connect

    Hsieh, Wen-Pin Mao, Wendy L.; Zalden, Peter; Wuttig, Matthias; Lindenberg, Aaron M.

    2013-11-04

    We used high-pressure Raman spectroscopy to study the evolution of vibrational frequencies of the phase change materials (PCMs) Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 4}, and SnSb{sub 2}Te{sub 4}. We found that the critical pressure for triggering amorphization in the PCMs decreases with increasing vacancy concentration, demonstrating that the presence of vacancies, rather than differences in the atomic covalent radii, is crucial for pressure-induced amorphization in PCMs. Compared to the as-deposited amorphous phase, the pressure-induced amorphous phase has a similar vibrational spectrum but requires much lower laser power to transform into the crystalline phase, suggesting different kinetics of crystallization, which may have implications for applications of PCMs in non-volatile data storage.

  20. Extended investigation of intermartensitic transitions in Ni-Mn-Ga magnetic shape memory alloys: A detailed phase diagram determination

    NASA Astrophysics Data System (ADS)

    Ćakιr, Aslι; Righi, Lara; Albertini, Franca; Acet, Mehmet; Farle, Michael; Aktürk, Selçuk

    2013-11-01

    Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni50Mn50-xGax in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L10, 5M →7M, and 5M→7M→L10 with decreasing temperature. The L10 non-modulated structure is most stable at low temperature.

  1. Structure Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape Memory Alloy

    SciTech Connect

    Yang, Fan; Coughlin, D. R.; Phillips, Patrick J.; Yang, L.; Devaraj, Arun; Kovarik, Libor; Noebe, Ronald D.; Mills, M. J.

    2013-03-22

    Thermal aging of the high temperature shape memory alloy 50.3Ni-29.7Ti-20Hf (at.%) introduces a novel precipitate phase, which plays an important role in improving shape memory properties. The precipitate phase was investigated by conventional electron diffraction, high resolution scanning transmission electron microscopy (STEM) and three dimensional atom probe tomography. An unrelaxed orthorhombic atomic structural model is proposed based on these observations. This model was subsequently relaxed by ab initio calculations. As a result of the relaxation, atom shuffle displacements occur, which in turn yields improved agreement with the STEM images. The relaxed structure, which is termed the “H-phase”, has also been verified to be thermodymanically stable at 0 K.

  2. Changes in pattern completion – a key mechanism to explain age-related recognition memory deficits?

    PubMed Central

    Vieweg, Paula; Stangl, Matthias; Howard, Lorelei R.; Wolbers, Thomas

    2016-01-01

    Accurate memory retrieval from partial or degraded input requires the reactivation of memory traces, a hippocampal mechanism termed pattern completion. Age-related changes in hippocampal integrity have been hypothesized to shift the balance of memory processes in favor of the retrieval of already stored information (pattern completion), to the detriment of encoding new events (pattern separation). Using a novel behavioral paradigm, we investigated the impact of cognitive aging (1) on recognition performance across different levels of stimulus completeness, and (2) on potential response biases. Participants were required to identify previously learned scenes among new ones. Additionally, all stimuli were presented in gradually masked versions to alter stimulus completeness. Both young and older adults performed increasingly poorly as the scenes became less complete, and this decline in performance was more pronounced in elderly participants indicative of a pattern completion deficit. Intriguingly, when novel scenes were shown, only the older adults showed an increased tendency to identify these as familiar scenes. In line with theoretical models, we argue that this reflects an age-related bias towards pattern completion. PMID:25597525

  3. The objects of visuospatial short-term memory: Perceptual organization and change detection

    PubMed Central

    Nikolova, Atanaska; Macken, Bill

    2016-01-01

    We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy. PMID:26286369

  4. Possible Overlapping Time Frames of Acquisition and Consolidation Phases in Object Memory Processes: A Pharmacological Approach

    ERIC Educational Resources Information Center

    Akkerman, Sven; Blokland, Arjan; Prickaerts, Jos

    2016-01-01

    In previous studies, we have shown that acetylcholinesterase inhibitors and phosphodiesterase inhibitors (PDE-Is) are able to improve object memory by enhancing acquisition processes. On the other hand, only PDE-Is improve consolidation processes. Here we show that the cholinesterase inhibitor donepezil also improves memory performance when…

  5. Irradiation induced structural change in Mo2Zr intermetallic phase

    DOE PAGES

    Gan, J.; Keiser, Jr., D. D.; Miller, B. D.; ...

    2016-05-14

    The Mo2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. Transmission electron microscopy in-situ irradiation with Kr ions at 200 °C with doses up to 2.0E+16 ions/cm2 was carried out to investigate the radiation stability of the Mo2Zr. The Mo2Zr undergoes a radiation-induced structural change, from a large cubic (cF24) to a small cubic (cI2), along with an estimated 11.2% volume contraction without changing its composition. The structural change begins at irradiation dose below 1.0E+14 ions/cm2. Furthermore, the transformed Mo2Zr phase demonstrates exceptional radiation tolerance with the development of dislocations without bubblemore » formation.« less

  6. Three phase partitioning leads to subtle structural changes in proteins.

    PubMed

    Rather, Gulam Mohmad; Gupta, Munishwar Nath

    2013-09-01

    Three phase partitioning consists of precipitation of proteins due to simultaneous presence of ammonium sulphate and t-butanol. The technique has been successfully used for purification and refolding of proteins. There are however indications that the structures of proteins subjected to three phase partitioning are different from native structure of proteins. Taking several proteins, the present work examines the structural changes in proteins by comparing their thermal stabilities, secondary structure contents, surface hydrophobicities, hydrodynamic radii and solubilities in the presence of ammonium sulphate. The results show that while the nature or extent of structural changes may vary, in all the cases the changes are rather subtle and not drastic in nature. Hence, the technique can be safely used for protein purification and refolding.

  7. Improvement in memory and static balance with abstinence in alcoholic men and women: selective relations with change in brain structure.

    PubMed

    Rosenbloom, Margaret J; Rohlfing, Torsten; O'Reilly, Anne W; Sassoon, Stephanie A; Pfefferbaum, Adolf; Sullivan, Edith V

    2007-07-15

    We investigated whether changes in memory or static balance in chronic alcoholics, occurring with abstinence or relapse, are associated with changes in lateral and fourth ventricular volume. Alcoholics meeting DSM-IV criteria for Alcohol Dependence (n=15) and non-alcoholic controls (n=26) were examined twice at a mean interval of 2 years with standard Wechsler Abbreviated Scale of Intelligence (WASI), Wechsler Memory Scale-Revised (WMS-R) tests, an ataxia battery, and structural MRI. At study entry, alcoholics had been abstinent on average for over 4 months and achieved lower scores than controls on WASI General IQ Index, WMS-R General Memory Index, and the ataxia battery. The 10 alcoholics who maintained sobriety at retest did not differ at study entry in socio-demographic measures, alcohol use, or WASI and WMS-R summary scores from the five relapsers. At follow-up, abstainers improved more than controls on the WMS-R General Memory Index. Ataxia tended to improve in abstainers relative to controls. Associations were observed between memory and lateral ventricular volume change and between ataxia and fourth ventricular volume change in alcoholics but not in the controls. Both memory and ataxia can improve with sustained sobriety, and brain-behavior associations suggest selective brain structural substrates for the changes observed.

  8. An ALE Finite Element Approach for Two-Phase Flow with Phase Change

    NASA Astrophysics Data System (ADS)

    Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team

    2016-11-01

    In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.

  9. Working Memory Network Changes in ALS: An fMRI Study

    PubMed Central

    Vellage, Anne-Katrin; Veit, Maria; Kobeleva, Xenia; Petri, Susanne; Vielhaber, Stefan; Müller, Notger G.

    2016-01-01

    We used amyotrophic lateral sclerosis (ALS) as a model of prefrontal dysfunction in order to re-assess the potential neuronal substrates of two sub processes of working memory, namely information storage and filtering. To date it is unclear which exact neuronal networks sustain these two processes and the prefrontal cortex was suggested to play a crucial role both for filtering out of irrelevant information and for the storage of relevant information in memory. Other research has attributed information storage to more posterior brain regions, including the parietal cortex and stressed the role of subcortical areas in information filtering. We studied 14 patients suffering from ALS and the same number of healthy controls in an fMRI-task that allowed calculating separate storage and filtering scores. A brain volume analysis confirmed prefrontal atrophy in the patient group. Regarding their performance in the working memory task, we observed a trend toward slightly impaired storage capabilities whereas filtering appeared completely intact. Despite the rather subtle behavioral deficits we observed marked changes in neuronal activity associated with ALS: Compared to healthy controls patients showed significantly reduced hemodynamic responses in the left occipital cortex and right prefrontal cortex in the storage contrast. The filter contrast on the other hand revealed a relative hyperactivation in the superior frontal gyrus of the ALS patients. This hyperactivation might reflect a possible compensational mechanism for the prefrontal degeneration found in ALS. The reduced hemodynamic responses in the storage contrast might reflect a disruption of prefrontal top-down control of posterior brain regions, a process which was especially relevant in the most difficult high load memory task. Taken together, the present study demonstrates marked neurophysiological changes in ALS patients compared to healthy controls during the filtering and storage of information in spite of

  10. Working Memory Network Changes in ALS: An fMRI Study.

    PubMed

    Vellage, Anne-Katrin; Veit, Maria; Kobeleva, Xenia; Petri, Susanne; Vielhaber, Stefan; Müller, Notger G

    2016-01-01

    We used amyotrophic lateral sclerosis (ALS) as a model of prefrontal dysfunction in order to re-assess the potential neuronal substrates of two sub processes of working memory, namely information storage and filtering. To date it is unclear which exact neuronal networks sustain these two processes and the prefrontal cortex was suggested to play a crucial role both for filtering out of irrelevant information and for the storage of relevant information in memory. Other research has attributed information storage to more posterior brain regions, including the parietal cortex and stressed the role of subcortical areas in information filtering. We studied 14 patients suffering from ALS and the same number of healthy controls in an fMRI-task that allowed calculating separate storage and filtering scores. A brain volume analysis confirmed prefrontal atrophy in the patient group. Regarding their performance in the working memory task, we observed a trend toward slightly impaired storage capabilities whereas filtering appeared completely intact. Despite the rather subtle behavioral deficits we observed marked changes in neuronal activity associated with ALS: Compared to healthy controls patients showed significantly reduced hemodynamic responses in the left occipital cortex and right prefrontal cortex in the storage contrast. The filter contrast on the other hand revealed a relative hyperactivation in the superior frontal gyrus of the ALS patients. This hyperactivation might reflect a possible compensational mechanism for the prefrontal degeneration found in ALS. The reduced hemodynamic responses in the storage contrast might reflect a disruption of prefrontal top-down control of posterior brain regions, a process which was especially relevant in the most difficult high load memory task. Taken together, the present study demonstrates marked neurophysiological changes in ALS patients compared to healthy controls during the filtering and storage of information in spite of

  11. Learning, memory, and glial cell changes following recovery from chronic unpredictable stress.

    PubMed

    Bian, Yanqing; Pan, Zhuo; Hou, Ziyuan; Huang, Cui; Li, Wei; Zhao, Baohua

    2012-08-01

    Previous research has indicated that chronic stress induces inflammatory responses, cognitive impairments, and changes in microglia and astrocytes. However, whether stress-induced changes following recovery are reversible is unclear. The present study examined the effects of chronic unpredictable stress (CUS) following recovery on spatial learning and memory impairments, changes in microglia and astrocytes, and interleukine-1β (IL-1β) and glial-derived neurotrophic factor (GDNF) levels. Mice were randomly divided into control, stress, and recovery groups, and CUS was applied to mice in the stress and recovery groups for 40 days. Following the application of CUS, the recovery group was allowed 40 days without stress. The results of the Morris water maze illustrated that CUS-induced spatial learning and memory impairments could be reversed or even improved by a period of recovery. Immunohistochemical tests revealed that CUS-induced alterations in microglia could dissipate with time in the CA3 region of the hippocampus and prelimbic areas. However, CUS-induced activation of astrocytes was sustained in the CA3 area following recovery. Western blot analyses revealed that CUS induced a significant increase of GDNF and a significant decrease in IL-1β. Additionally, increased GDNF levels were sustained in the hippocampus during recovery. In conclusion, this study provides evidence that CUS-induced learning and memory impairments could be reversible following recovery. However, activated astrocytes and increased GDNF levels in the hippocampus remained elevated after recovery, suggesting that activated astrocytes and increased GDNF play important roles in the adaptation of the brain to CUS and in repairing CUS-induced impairments during recovery.

  12. Microstructure, Phase Transformations, and Properties of Hot-Extruded Ni-Rich NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Lekston, Z.; Zubko, M.; Prusik, K.; Stróż, D.

    2014-07-01

    Processing of NiTi shape memory alloys strongly influences their microstructure, phase transformations, mechanical, and shape memory properties. Hot forging, hot swaging, or hot rolling are efficient techniques for obtaining the desired shape, but during multiple operations the material must be heated and worked in the temperature range from 700 to 900 °C. During these processes, intense oxidation takes place. In order to reduce it, the hot-pack working is applied. The hot extrusion is more effective for reduction of ingot, billet, and rod diameters than hot forging, hot swaging, or hot rolling. Also, during hot extrusion the material surface undergoes considerably less oxidation. In the present work, results of the characterization by differential scanning calorimetry, low-temperature x-ray powder diffraction, and three-point bending and free recovery ASTM F2082-06 tests of the samples after hot direct extrusion and heat treatment are presented. The obtained alloy after hot direct extrusion exhibits desired shape memory effect. The phase transformations during cooling and heating cycle occur with the presence of the R phase. The range of the characteristic temperatures for the obtained material gives possibility for further medical applications. After annealing at 400 and 500 °C, the characteristic temperatures shift to higher values.

  13. First Principles Study of structural characteristics and phase change mechanism of Ge-Sb-Te based materials

    NASA Astrophysics Data System (ADS)

    Park, Hanjin; Kim, Cheol-Woon; Lee, Hyung-June; Song, Hosin; Kwon, Young-Kyun

    Using ab initio density functional theory, we investigate the structural properties and their phase transition mechanism of the crystalline and amorphous phases of Ge-Sb-Te (GST) based phase change materials, which would be utilized for phase change random access memory. Among various stochiometries of GST, we focus on compositions along the (GeTe)n(Sb2Te3)m pseudo-binary line, denoted simply by (n , m) with integer n and m. We explore various GST materials corresponding (n , m) sets including (1,0), (0,1), (1,1), (2,1) and (1,2) by modeling their both phases. Especially, their amorphous phases can be constructed based on experimental data available or molecular dynamics (MD) simulations performing melt-quench processes. To understand the phase transition mechanism, we evaluate their coordination numbers, radial distribution functions, and angle distribution functions, which enables us to identify the characteristic local geometry representing each phase. We further investigate the thermal properties of various phases by evaluating their phonon densities of states obtained by Fourier-transforming the velocity autocorrelation functions calculated directly from our MD simulation.

  14. Hydrogen doping in HfO{sub 2} resistance change random access memory

    SciTech Connect

    Duncan, D.; Magyari-Köpe, B.; Nishi, Y.

    2016-01-25

    The structures and energies of hydrogen-doped monoclinic hafnium dioxide were calculated using density-functional theory. The electronic interactions are described within the LDA + U formalism, where on-site Coulomb corrections are applied to the 5d orbital electrons of Hf atoms and 2p orbital electrons of the O atoms. The effects of charge state, defect-defect interactions, and hydrogenation are investigated and compared with experiment. It is found that hydrogenation of HfO{sub 2} resistance-change random access memory devices energetically stabilizes the formation of oxygen vacancies and conductive vacancy filaments through multiple mechanisms, leading to improved switching characteristic and device yield.

  15. Structural transformations in amorphous ↔ crystalline phase change of Ga-Sb alloys

    SciTech Connect

    Edwards, T. G.; Sen, S.; Hung, I.; Gan, Z.; Kalkan, B.; Raoux, S.

    2013-12-21

    Ga-Sb alloys with compositions ranging between ∼12 and 50 at. % Ga are promising materials for phase change random access memory applications. The short-range structures of two such alloys with compositions Ga{sub 14}Sb{sub 86} and Ga{sub 46}Sb{sub 54} are investigated, in their amorphous and crystalline states, using {sup 71}Ga and {sup 121}Sb nuclear magnetic resonance spectroscopy and synchrotron x-ray diffraction. The Ga and Sb atoms are fourfold coordinated in the as-deposited amorphous Ga{sub 46}Sb{sub 54} with nearly 40% of the constituent atoms being involved in Ga-Ga and Sb-Sb homopolar bonding. This necessitates extensive bond switching and elimination of homopolar bonds during crystallization. On the other hand, Ga and Sb atoms are all threefold coordinated in the as-deposited amorphous Ga{sub 14}Sb{sub 86}. Crystallization of this material involves phase separation of GaSb domains in Sb matrix and a concomitant increase in the Ga coordination number from 3 to 4. Results from crystallization kinetics experiments suggest that the melt-quenching results in the elimination of structural “defects” such as the homopolar bonds and threefold coordinated Ga atoms in the amorphous phases of these alloys, thereby rendering them structurally more similar to the corresponding crystalline states compared to the as-deposited amorphous phases.

  16. Microstructural changes in memory and reticular formation neural pathway after simple concussion☆

    PubMed Central

    Ouyang, Lin; Shi, Rongyue; Xiao, Yuhui; Meng, Jiarong; Guo, Yihe; Lu, Guangming

    2012-01-01

    Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions. PMID:25538741

  17. A novel paradigm for nonassociative long-term memory in Drosophila: predator-induced changes in oviposition behavior.

    PubMed

    Kacsoh, Balint Z; Bozler, Julianna; Hodge, Sassan; Ramaswami, Mani; Bosco, Giovanni

    2015-04-01

    Learning processes in Drosophila have been studied through the use of Pavlovian associative memory tests, and these paradigms have been extremely useful in identifying both genetic factors and neuroanatomical structures that are essential to memory formation. Whether these same genes and brain compartments also contribute to memory formed from nonassociative experiences is not well understood. Exposures to environmental stressors such as predators are known to induce innate behavioral responses and can lead to new memory formation that allows a predator response to persist for days after the predator threat has been removed. Here, we utilize a unique form of nonassociative behavior in Drosophila where female flies detect the presence of endoparasitoid predatory wasps and alter their oviposition behavior to lay eggs in food containing high levels of alcohol. The predator-induced change in fly oviposition preference is maintained for days after wasps are removed, and this persistence in behavior requires a minimum continuous exposure time of 14 hr. Maintenance of this behavior is dependent on multiple long-term memory genes, including orb2, dunce, rutabaga, amnesiac, and Fmr1. Maintenance of the behavior also requires intact synaptic transmission of the mushroom body. Surprisingly, synaptic output from the mushroom body (MB) or the functions of any of these learning and memory genes are not required for the change in behavior when female flies are in constant contact with wasps. This suggests that perception of this predator that leads to an acute change in oviposition behavior is not dependent on the MB or dependent on learning and memory gene functions. Because wasp-induced oviposition behavior can last for days and its maintenance requires a functional MB and the wild-type products of several known learning and memory genes, we suggest that this constitutes a paradigm for a bona fide form of nonassociative long-term memory that is not dependent on associated

  18. Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task.

    PubMed

    Lin, Po-Han; Luck, Steven J

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.

  19. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition.

    PubMed

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips.

  20. Round-Robin Test of Paraffin Phase-Change Material

    NASA Astrophysics Data System (ADS)

    Vidi, S.; Mehling, H.; Hemberger, F.; Haussmann, Th.; Laube, A.

    2015-11-01

    A round-robin test between three institutes was performed on a paraffin phase-change material (PCM) in the context of the German quality association for phase-change materials. The aim of the quality association is to define quality and test specifications for PCMs and to award certificates for successfully tested materials. To ensure the reproducibility and comparability of the measurements performed at different institutes using different measuring methods, a round-robin test was performed. The sample was unknown. The four methods used by the three participating institutes in the round-robin test were differential scanning calorimetry, Calvet calorimetry and three-layer calorimetry. Additionally, T-history measurements were made. The aim of the measurements was the determination of the enthalpy as a function of temperature. The results achieved following defined test specifications are in excellent agreement.

  1. Nitric oxide synthase inhibitor, aminoguanidine reduces intracerebroventricular colchicine induced neurodegeneration, memory impairments and changes of systemic immune responses in rats.

    PubMed

    Sil, Susmita; Ghosh, Tusharkanti; Ghosh, Rupsa; Gupta, Pritha

    2017-02-15

    Intracerebroventricular (i.c.v.) injection of colchicine induces neurodegeneration, memory impairments and changes of some systemic immune responses in rats. Though the role of cox 2 in these colchicine induced changes have been evaluated, the influence of nitric oxide synthase (NOS) remains to be studied. The present study was designed to assess the role of NOS on the i.c.v. colchicine induced neurodegeneration, memory impairments and changes of some systemic immune responses by inhibiting its activity with aminoguanidine. In the present study the impairments of working and reference memories, neurodegeneration (chromatolysis and plaque formation) and changes of neuroinflammatory markers in the hippocampus (increased TNF α, IL 1β, ROS and nitrite) along with changes of serum inflammatory markers (TNF α, IL 1β, ROS and nitrite) and alteration of systemic immune responses (higher phagocytic activity of blood WBC and splenic PMN, higher cytotoxicity and lower leukocyte adhesion inhibition index of splenic MNC) were measured in the intracerebroventricular colchicine injected rats (ICIR). Administration of aminoguanidine (p.o. 30/50mg/kg body weight) to ICIR resulted in recovery of neuroinflammation and partial prevention of neurodegeneration which could be corroborated with the partial recovery of memory impairments in this model. The recovery of serum inflammatory markers and the systemic immune responses in ICIR was also observed after administration of aminoguanidine. Therefore, the present study shows that aminoguanidine can protect the colchicine induced neurodegeneration, memory impairments, and changes of systemic immune systemic responses in ICIR by inhibiting the iNOS.

  2. Surface expression of NMDA receptor changes during memory consolidation in the crab Neohelice granulata.

    PubMed

    Hepp, Yanil; Salles, Angeles; Carbo-Tano, Martin; Pedreira, Maria Eugenia; Freudenthal, Ramiro

    2016-08-01

    The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation.

  3. Phase Change Materials (PCM) fabricated in vertical structures for reconfigurable and tunable circuits

    NASA Astrophysics Data System (ADS)

    Barajas, Eduardo; Coutu, Ronald A.

    2014-03-01

    Germanium Telluride (GeTe) can be described as a non-volatile (latching state) phase change material (PCM) in memory applications. GeTe also exhibits a volatile (reversible state) region when heated and cooled between 100-180 °C. At temperatures higher than 185 °C the material crystallizes and "latches" until a temperature near to its melting point (725 °C) is reached and cooled rapidly (quenching). Germanium Antimony Telluride (GeSbTe) or also known as GST has similar characteristics as GeTe. GST also exhibits a volatile (reversible state) region when heated and cooled between 100-150 °C. GST crystallizes at 155 °C and its melting point is 600 °C. This paper demonstrates the feasibility of fabricating radio frequency (RF) devices of phase change materials (PCM) and it also presents a comparison between amorphous and crystalline PCMs in the RF spectrum. Previous work focuses on exploiting GeTe and GST as nonvolatile materials in memory applications, and also on characterizing them for their electrical and mechanical properties. The approach here focuses on fabricating RF devices and analyzing their responses. A simulation with resistor-capacitor (RC) and resistor-inductor (RL) circuits is presented to represent the response of the RF devices under testing. The fabrication process includes two-layer and four-layer devices on the Si wafer. PCMs are sputtered and the test pads are deposited using electron beam evaporation. Results show that these RF devices alone can serve as a low pass filter with a cutoff frequency of 10 MHz.

  4. Reconsolidation-induced memory persistence: Participation of late phase hippocampal ERK activation.

    PubMed

    Krawczyk, M C; Navarro, N; Blake, M G; Romano, A; Feld, M; Boccia, M M

    2016-09-01

    Persistence is an attribute of long-term memories (LTM) that has recently caught researcher's attention in search for mechanisms triggered by experience that assure memory perdurability. Up-to-date, scarce evidence of relationship between reconsolidation and persistence has been described. Here, we characterized hippocampal ERK participation in LTM reconsolidation and persistence using an inhibitory avoidance task (IA) at different time points. Intra-dorsal-hippocampal (dHIP) administration of an ERK inhibitor (PD098059, PD, 1.0μg/hippocampus) 3h after retrieval did not affect reconsolidation of a strong IA, when tested 24h apart. However, the same manipulation impaired performance when animals were tested at 7d, regardless of the training's strength; and being specific to memory reactivation. To the best of our knowledge, this is the first report showing that persistence might be triggered after memory reactivation involving an ERK/MAPK-dependent process.

  5. Thermal Performance of Microencapsulated Phase Change Material Slurry

    DTIC Science & Technology

    2008-03-01

    tetradec- ane-containing microcapsules with an average size of 4.4 μm. Yamagishi et al. (1999) obtained empirical data for microencapsulated octadecane ob...MPCM slurry (90 – 150 μm). It should be noted that the mass of an average microcapsule is equal to the mass of microencapsulated PCM and the mass...ER D C TR -0 8 -4 Basic Research/Military Construction Thermal Performance of Microencapsulated Phase Change Material Slurry Jorge L

  6. Thermal Performance of Microencapsulated Phase Change Material Survey

    DTIC Science & Technology

    2008-03-01

    tetradec- ane-containing microcapsules with an average size of 4.4 μm. Yamagishi et al. (1999) obtained empirical data for microencapsulated octadecane ob...MPCM slurry (90 – 150 μm). It should be noted that the mass of an average microcapsule is equal to the mass of microencapsulated PCM and the mass...ER D C TR -0 8 -4 Basic Research/Military Construction Thermal Performance of Microencapsulated Phase Change Material Slurry Jorge L

  7. Microencapsulated Phase-Change Materials For Storage Of Heat

    NASA Technical Reports Server (NTRS)

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  8. Study of large nonlinear change phase in Hibiscus Sabdariffa

    NASA Astrophysics Data System (ADS)

    Trejo-Durán, M.; Alvarado-Méndez, E.; Andrade-Lucio, J. A.; Rojas-Laguna, R.; Vázquez-Guevara, M. A.

    2015-09-01

    High intensities electromagnetic energy interacting with organic media gives rise to nonlinear optical effects. Hibiscus Sabdariffa is a flower whose concentrated solution presents interesting nonlinear optical properties. This organic material shows an important self-phase modulation with changes bigger than 2π. We present a diffraction ring patterns study of the Hibiscus Sabdariffa solution. Numerical results of transmittance, with refraction and simultaneous absorption, are shown.

  9. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect

    2010-07-01

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  10. Epigenetic Regulation of Vegetative Phase Change in Arabidopsis

    PubMed Central

    Xu, Mingli; Hu, Tieqiang; Smith, Michael R.; Poethig, R. Scott

    2016-01-01

    Vegetative phase change in flowering plants is regulated by a decrease in the level of miR156. The molecular mechanism of this temporally regulated decrease in miR156 expression is still unknown. Most of the miR156 in Arabidopsis thaliana shoots is produced by MIR156A and MIR156C. We found that the downregulation of these genes during vegetative phase change is associated with an increase in their level of histone H3 lysine 27 trimethylation (H3K27me3) and requires this chromatin modification. The increase in H3K27me3 at MIR156A/MIR156C is associated with an increase in the binding of PRC2 to these genes and is mediated redundantly by the E(z) homologs SWINGER and CURLY LEAF. The CHD3 chromatin remodeler PICKLE (PKL) promotes the addition of H3K27me3 to MIR156A/MIR156C but is not responsible for the temporal increase in this chromatin mark. PKL is bound to the promoters of MIR156A/MIR156C, where it promotes low levels of H3K27ac early in shoot development and stabilizes the nucleosome at the +1 position. These results suggest a molecular mechanism for the initiation and maintenance of vegetative phase change in plants. PMID:26704382

  11. Epigenetic Regulation of Vegetative Phase Change in Arabidopsis.

    PubMed

    Xu, Mingli; Hu, Tieqiang; Smith, Michael R; Poethig, R Scott

    2016-01-01

    Vegetative phase change in flowering plants is regulated by a decrease in the level of miR156. The molecular mechanism of this temporally regulated decrease in miR156 expression is still unknown. Most of the miR156 in Arabidopsis thaliana shoots is produced by MIR156A and MIR156C. We found that the downregulation of these genes during vegetative phase change is associated with an increase in their level of histone H3 lysine 27 trimethylation (H3K27me3) and requires this chromatin modification. The increase in H3K27me3 at MIR156A/MIR156C is associated with an increase in the binding of PRC2 to these genes and is mediated redundantly by the E(z) homologs SWINGER and CURLY LEAF. The CHD3 chromatin remodeler PICKLE (PKL) promotes the addition of H3K27me3 to MIR156A/MIR156C but is not responsible for the temporal increase in this chromatin mark. PKL is bound to the promoters of MIR156A/MIR156C, where it promotes low levels of H3K27ac early in shoot development and stabilizes the nucleosome at the +1 position. These results suggest a molecular mechanism for the initiation and maintenance of vegetative phase change in plants.

  12. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories

    PubMed Central

    Pattwell, Siobhan S.; Liston, Conor; Jing, Deqiang; Ninan, Ipe; Yang, Rui R.; Witztum, Jonathan; Murdock, Mitchell H.; Dincheva, Iva; Bath, Kevin G.; Casey, B. J.; Deisseroth, Karl; Lee, Francis S.

    2016-01-01

    Fear can be highly adaptive in promoting survival, yet it can also be detrimental when it persists long after a threat has passed. Flexibility of the fear response may be most advantageous during adolescence when animals are prone to explore novel, potentially threatening environments. Two opposing adolescent fear-related behaviours—diminished extinction of cued fear and suppressed expression of contextual fear—may serve this purpose, but the neural basis underlying these changes is unknown. Using microprisms to image prefrontal cortical spine maturation across development, we identify dynamic BLA-hippocampal-mPFC circuit reorganization associated with these behavioural shifts. Exploiting this sensitive period of neural development, we modified existing behavioural interventions in an age-specific manner to attenuate adolescent fear memories persistently into adulthood. These findings identify novel strategies that leverage dynamic neurodevelopmental changes during adolescence with the potential to extinguish pathological fears implicated in anxiety and stress-related disorders. PMID:27215672

  13. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment.

    PubMed

    Singh, Padmanabh; Konar, Arpita; Kumar, Ashish; Srivas, Sweta; Thakur, Mahendra K

    2015-08-01

    The amnesic potential of scopolamine is well manifested through synaptic plasticity gene expression changes and behavioral paradigms of memory impairment. However, the underlying mechanism remains obscure and consequently ideal therapeutic target is lacking. In this context, chromatin-modifying enzymes, which regulate memory gene expression changes, deserve major attention. Therefore, we analyzed the expression of chromatin-modifying enzymes and recovery potential of enzyme modulators in scopolamine-induced amnesia. Scopolamine administration drastically up-regulated DNA methyltransferases (DNMT1) and HDAC2 expression while CREB-binding protein (CBP), DNMT3a and DNMT3b remained unaffected. HDAC inhibitor sodium butyrate and DNMT inhibitor Aza-2'deoxycytidine recovered scopolamine-impaired hippocampal-dependent memory consolidation with concomitant increase in the expression of synaptic plasticity genes Brain-derived neurotrophic factor (BDNF) and Arc and level of histone H3K9 and H3K14 acetylation and decrease in DNA methylation level. Sodium butyrate showed more pronounced effect than Aza-2'deoxycytidine and their co-administration did not exhibit synergistic effect on gene expression. Taken together, we showed for the first time that scopolamine-induced up-regulation of chromatin-modifying enzymes, HDAC2 and DNMT1, leads to gene expression changes and consequent decline in memory consolidation. Our findings on the action of scopolamine as an epigenetic modulator can pave a path for ideal therapeutic targets. We propose the following putative pathway for scopolamine-mediated memory impairment; scopolamine up-regulates hippocampal DNMT1 and HDAC2 expression, induces methylation and deacetylation of BDNF and Arc promoter, represses gene expression and eventually impairs memory consolidation. On the other hand, Aza-2 and NaB inhibit DNMT1 and HDAC2 respectively, up-regulate BDNF and Arc expression and recover memory consolidation. We elucidate the action of

  14. Phase-change properties of GeSbTe thin films deposited by plasma-enchanced atomic layer depositon.

    PubMed

    Song, Sannian; Yao, Dongning; Song, Zhitang; Gao, Lina; Zhang, Zhonghua; Li, Le; Shen, Lanlan; Wu, Liangcai; Liu, Bo; Cheng, Yan; Feng, Songlin

    2015-01-01

    Phase-change access memory (PCM) appears to be the strongest candidate for next-generation high-density nonvolatile memory. The fabrication of ultrahigh-density PCM depends heavily on the thin-film growth technique for the phase-changing chalcogenide material. In this study, Ge2Sb2Te5 (GST) and GeSb8Te thin films were deposited by plasma-enhanced atomic layer deposition (ALD) method using Ge [(CH3)2 N]4, Sb [(CH3)2 N]3, Te(C4H9)2 as precursors and plasma-activated H2 gas as reducing agent of the metallorganic precursors. Compared with GST-based device, GeSb8Te-based device exhibits a faster switching speed and reduced reset voltage, which is attributed to the growth-dominated crystallization mechanism of the Sb-rich GeSb8Te films. These results show that ALD is an attractive method for preparation of phase-change materials.

  15. Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study.

    PubMed

    Tian, Fenghua; Yennu, Amarnath; Smith-Osborne, Alexa; Gonzalez-Lima, F; North, Carol S; Liu, Hanli

    2014-01-01

    Neuroimaging studies of post-traumatic stress disorder (PTSD)-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS) was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related) forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval) of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.

  16. On the Takayanagi principle for the shape memory effect and thermomechanical behaviors in polymers with multi-phases

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Yu, Kai; Huang, Wei Min; Leng, Jinsong

    2016-12-01

    We present an explicit model to study the mechanics and physics of the shape memory effect (SME) in polymers based on the Takayanagi principle. The molecular structural characteristics and elastic behavior of shape memory polymers (SMPs) with multi-phases are investigated in terms of the thermomechanical properties of the individual components, of which the contributions are combined by using Takayanagi’s series-parallel model and parallel-series model, respectively. After that, Boltzmann superposition principle is employed to couple the multi-SME, elastic modulus parameter (E) and temperature parameter (T) in SMPs. Furthermore, the extended Takayanagi model is proposed to separate the plasticizing effect and physical swelling effect on the thermo-/chemo-responsive SME in polymers and then compared with the available experimental data reported in the literature. This study is expected to provide a powerful simulation tool for modeling and experimental substantiation of the mechanics and working mechanism of SME in polymers.

  17. Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay

    NASA Astrophysics Data System (ADS)

    Chao, Pan; Qing-hui, Liu; Xin, Zheng; Qing-bao, He; Ya-jun, Wu

    2016-04-01

    On 14th December 2013, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking pictures of each other. With the same beam VLBI (Very Long Baseline Interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect the minor changes of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in the moving process and the lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.

  18. Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay

    NASA Astrophysics Data System (ADS)

    Pan, C.; Liu, Q. H.; Zheng, X.; He, Q. B.; Wu, Y. J.

    2015-07-01

    On 2013 December 14, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking the photos of each other. With the same beam VLBI (Very long baseline interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect a minor change of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in moving process, and lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.

  19. Controlled Phase Changes of Titania Using Nitrogen Plasma.

    PubMed

    Trejo-Tzab, R; Caballero-Espada, Liliana; Quintana, P; Ávila-Ortega, Alejandro; Medina-Esquivel, R A

    2017-12-01

    In this work, the development of a new crystallization technique is reported, using nitrogen plasma (AC) to obtain nanostructured anatase and rutile from amorphous titanium oxide (TiO2). This methodology increases throughput and minimizes thermal effects. Nanostructured amorphous TiO2 was obtained by the sol-gel method and subsequently subjected to AC treatment, at a controlled pressure, applying different powers and treatment times in order to obtain phase changes. The obtained samples were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The results show the crystallization in parallel with anatase and rutile phases with a proportion that is directly related to the applied power in the plasma and the treatment time. This technique allows us to obtain smaller crystals in comparison with those of classic thermal methodologies. It is also demonstrated that the application of plasma represents a novel and innovative method to obtain phase polymorphic changes in titanium oxide without needing to apply prolonged heat treatments at high temperatures and can therefore be taken into consideration as a technique with low energy costs, in comparison with conventional heat treatments.

  20. Small RNAs of Sequoia sempervirens during rejuvenation and phase change.

    PubMed

    Chen, Y-T; Shen, C-H; Lin, W-D; Chu, H-A; Huang, B-L; Kuo, C-I; Yeh, K-W; Huang, L-C; Chang, I-F

    2013-01-01

    In this work, the population of small RNAs (sRNAs) was studied in the gymnosperm Sequoia sempervirens during phase changes, specifically in the juvenile, adult and rejuvenated plants obtained in vitro. The potential target genes of Sequoia sRNAs were predicted through bioinformatics. Rejuvenation is a pivotal process in woody plants that enables them to regain their growth potential, which results in the recovery of physiologic and molecular characteristics that were lost when the juveniles mature into adult plants. The results from the five repeated graftings of juvenile, adult and rejuvenated plants in vitro showed that sRNAs could be classified into structural RNAs (Group I), small interfering RNAs (Group II), annotated microRNAs (Group III, and unannotated sRNAs (Group IV). The results indicate that only 573 among 15,485,415 sRNAs (Groups III and IV) had significantly different expression patterns associated with rejuvenation and phase change. A total of 215 sRNAs exhibited up-regulated expression patterns in adult shoots, and 358 sRNAs were down-regulated. Expression profiling and prediction of possible target genes of these unique small RNAs indicate possible functions in the control of photosynthetic efficiency and rooting competence abundance during plant rejuvenation. Moreover, the increase in SsmiR156 and decrease in SsmiR172 during plant rejuvenation suggested that these two microRNAs extensively affect phase transition.

  1. A phenomenological approach of solidification of polymeric phase change materials

    NASA Astrophysics Data System (ADS)

    Bahrani, Seyed Amir; Royon, Laurent; Abou, Bérengère; Osipian, Rémy; Azzouz, Kamel; Bontemps, André

    2017-01-01

    Phase Change Materials (PCMs) are widely used in thermal energy storage and thermal management systems due to their small volume for a given stored energy and their capability for maintaining nearly constant temperatures. However, their performance is limited by their low thermal conductivity and possible leaks while in the liquid phase. One solution is to imprison the PCM inside a polymer mesh to create a Polymeric Phase Change Material (PPCM). In this work, we have studied the cooling and solidification of five PPCMs with different PCMs and polymer fractions. To understand the heat transfer mechanisms involved, we have carried out micro- and macrorheological measurements in which Brownian motion of tracers embedded in PPCMs has been depicted and viscoelastic moduli have been measured, respectively. Beyond a given polymer concentration, it was shown that the Brownian motion of the tracers is limited by the polymeric chains and that the material exhibits an elastic behavior. This would suggest that heat transfer essentially occurs by conduction, instead of convection. Experiments were conducted to measure temperature variation during cooling of the five samples, and a semi-empirical model based on a phenomenological approach was proposed as a practical tool to choose and size PPCMs.

  2. Controlled Phase Changes of Titania Using Nitrogen Plasma

    NASA Astrophysics Data System (ADS)

    Trejo-Tzab, R.; Caballero-Espada, Liliana; Quintana, P.; Ávila-Ortega, Alejandro; Medina-Esquivel, R. A.

    2017-01-01

    In this work, the development of a new crystallization technique is reported, using nitrogen plasma (AC) to obtain nanostructured anatase and rutile from amorphous titanium oxide (TiO2). This methodology increases throughput and minimizes thermal effects. Nanostructured amorphous TiO2 was obtained by the sol-gel method and subsequently subjected to AC treatment, at a controlled pressure, applying different powers and treatment times in order to obtain phase changes. The obtained samples were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The results show the crystallization in parallel with anatase and rutile phases with a proportion that is directly related to the applied power in the plasma and the treatment time. This technique allows us to obtain smaller crystals in comparison with those of classic thermal methodologies. It is also demonstrated that the application of plasma represents a novel and innovative method to obtain phase polymorphic changes in titanium oxide without needing to apply prolonged heat treatments at high temperatures and can therefore be taken into consideration as a technique with low energy costs, in comparison with conventional heat treatments.

  3. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    NASA Astrophysics Data System (ADS)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  4. Cryogenic two-phase flow and phase-change heat transfer in microgravity

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng

    The applications of cryogenic flow and heat transfer are found in many different types of industries, whether it be the liquid fuel for propulsion or the cryogenic cooling in medical applications. It is very common to find the transportation of cryogenic flow under microgravity in space missions. For example, the liquid oxygen and hydrogen are used to power launch vehicles and helium is used for pressurizing the fuel tank. During the transportation process in pipes, because of high temperature and heat flux from the pipe wall, the cryogenic flow is always in a two-phase condition. As a result, the physics of cryogenic two-phase flow and heat transfer is an important topic for research. In this research, numerical simulation is employed to study fluid flow and heat transfer. The Sharp Interface Method (SIM) with a Cut-cell approach (SIMCC) is adopted to handle the two-phase flow and heat transfer computation. In SIMCC, the background grid is Cartesian and explicit true interfaces are immersed into the computational domain to divide the entire domain into different sub-domains/phases. In SIMCC, each phase comes with its own governing equations and the interfacial conditions act as the bridge to connect the information between the two phases. The Cut-cell approach is applied to handle nonrectangular cells cut by the interfaces and boundaries in SIMCC. With the Cut-cell approach, the conservative properties can be maintained better near the interface. This research will focus on developing the numerical techniques to simulate the two-phase flow and phase change phenomena for one of the major flow patterns in film boiling, the inverted annular flow.

  5. Two different phase-change origins with chemical- and structural-phase-changes in C doped (1.5 wt.%) In3Sb1Te2

    PubMed Central

    Lee, Y. M.; Lee, S. Y.; Sasaki, T.; Kim, K.; Ahn, D.; Jung, M.-C.

    2016-01-01

    We fabricated C-doped (1.5 wt.%) In3Sb1Te2 (CIST) thin films with amorphous phase (a-CIST) using a sputter method. Two electrical-phase-changes at 250 and 275 °C were observed in the sheet resistance measurement. In order to understand the origin of these electrical-phase-changes, all samples were characterized by XRD, TEM, and HRXPS with synchrotron radiation. In a-CIST, only weak Sb-C bonding was observed. In the first electrical-phase-change at 250 °C, strong Sb-C bonding occurred without an accompanying structural/phase change (still amorphous). On the other hand, the second electrical-phase-change at 275 °C was due to the structural/phase change from amorphous to crystalline without a chemical state change. PMID:27929133

  6. Two different phase-change origins with chemical- and structural-phase-changes in C doped (1.5 wt.%) In3Sb1Te2.

    PubMed

    Lee, Y M; Lee, S Y; Sasaki, T; Kim, K; Ahn, D; Jung, M-C

    2016-12-08

    We fabricated C-doped (1.5 wt.%) In3Sb1Te2 (CIST) thin films with amorphous phase (a-CIST) using a sputter method. Two electrical-phase-changes at 250 and 275 °C were observed in the sheet resistance measurement. In order to understand the origin of these electrical-phase-changes, all samples were characterized by XRD, TEM, and HRXPS with synchrotron radiation. In a-CIST, only weak Sb-C bonding was observed. In the first electrical-phase-change at 250 °C, strong Sb-C bonding occurred without an accompanying structural/phase change (still amorphous). On the other hand, the second electrical-phase-change at 275 °C was due to the structural/phase change from amorphous to crystalline without a chemical state change.

  7. Two different phase-change origins with chemical- and structural-phase-changes in C doped (1.5 wt.%) In3Sb1Te2

    NASA Astrophysics Data System (ADS)

    Lee, Y. M.; Lee, S. Y.; Sasaki, T.; Kim, K.; Ahn, D.; Jung, M.-C.

    2016-12-01

    We fabricated C-doped (1.5 wt.%) In3Sb1Te2 (CIST) thin films with amorphous phase (a-CIST) using a sputter method. Two electrical-phase-changes at 250 and 275 °C were observed in the sheet resistance measurement. In order to understand the origin of these electrical-phase-changes, all samples were characterized by XRD, TEM, and HRXPS with synchrotron radiation. In a-CIST, only weak Sb-C bonding was observed. In the first electrical-phase-change at 250 °C, strong Sb-C bonding occurred without an accompanying structural/phase change (still amorphous). On the other hand, the second electrical-phase-change at 275 °C was due to the structural/phase change from amorphous to crystalline without a chemical state change.

  8. Engineering the Phase Front of Light with Phase-Change Material Based Planar lenses

    PubMed Central

    Chen, Yiguo; Li, Xiong; Sonnefraud, Yannick; Fernández-Domínguez, Antonio I.; Luo, Xiangang; Hong, Minghui; Maier, Stefan A.

    2015-01-01

    A novel hybrid planar lens is proposed to engineer the far-field focusing patterns. It consists of an array of slits which are filled with phase-change material Ge2Sb2Te5 (GST). By varying the crystallization level of GST from 0% to 90%, the Fabry-Pérot resonance supported inside each slit can be spectrally shifted across the working wavelength at 1.55 µm, which results in a transmitted electromagnetic phase modulation as large as 0.56π. Based on this geometrically fixed platform, different phase fronts can be constructed spatially on the lens plane by assigning the designed GST crystallization levels to the corresponding slits, achieving various far-field focusing patterns. The present work offers a promising route to realize tunable nanophotonic components, which can be used in optical circuits and imaging applications. PMID:25726864

  9. Heat transfer and phase change in an impinging droplet

    NASA Astrophysics Data System (ADS)

    Rangchian, Aysan; Shirazi, Nikki L.; Kavehpour, H. Pirouz

    2016-11-01

    Non isothermal droplet impact on solid surfaces has several industrial applications such as spray cooling and 3D printing. Impinging of a droplet on a surface involves an initial phase of spreading followed by a subsequent return to the equilibrium shape. Thermal energy exchanged within the droplet fluid as well as between liquid/solid during the impact has been studied using an ultra high speed infrared camera. Variable parameters in the experiment include droplet temperature and kinetic energy of the droplet during the impact. The evolution of droplet shape viewed by IR camera is similar to what previously observed by high speed photography. The thermal map of droplet over time in these experiments agrees with previously reported numerical simulation. In addition, spacial and temporal temperature variations of liquid droplets on a surface as they solidify are presented. IR camera provides an accurate temperature diagram as the phase change occurs, which is essential for understanding the physics of 3D printing.

  10. Phase-Change Contrast Agents for Imaging and Therapy

    PubMed Central

    Sheeran, Paul S.; Dayton, Paul A.

    2016-01-01

    Phase-change contrast agents (PCCAs) for ultrasound-based applications have resulted in novel ways of approaching diagnostic and therapeutic techniques beyond what is possible with microbubble contrast agents and liquid emulsions. When subjected to sufficient pressures delivered by an ultrasound transducer, stabilized droplets undergo a phase-transition to the gaseous state and a volumetric expansion occurs. This phenomenon, termed acoustic droplet vaporization, has been proposed as a means to address a number of in vivo applications at the microscale and nanoscale. In this review, the history of PCCAs, physical mechanisms involved, and proposed applications are discussed with a summary of studies demonstrated in vivo. Factors that influence the design of PCCAs are discussed, as well as the need for future studies to characterize potential bioeffects for administration in humans and optimization of ultrasound parameters. PMID:22352770

  11. Phase-Change Modelling in Severe Nuclear Accidents

    NASA Astrophysics Data System (ADS)

    Pain, Christopher; Pavlidis, Dimitrios; Xie, Zhihua; Percival, James; Gomes, Jefferson; Matar, Omar; Moatamedi, Moji; Tehrani, Ali; Jones, Alan; Smith, Paul

    2014-11-01

    This paper describes progress on a consistent approach for multi-phase flow modelling with phase-change. Although, the developed methods are general purpose the applications presented here cover core melt phenomena at the lower vessel head. These include corium pool formation, coolability and solidification. With respect to external cooling, comparison with the LIVE experiments (from Karlsruhe) is undertaken. Preliminary re-flooding simulation results are also presented. These include water injection into porous media (debris bed) and boiling. Numerical simulations follow IRSN's PEARL experimental programme on quenching/re-flooding. The authors wish to thank Prof. Timothy Haste of IRSN. Dr. D. Pavlidis is funded by EPSRC Consortium ``Computational Modelling for Advanced Nuclear Plants,'' Grant Number EP/I003010/1.

  12. Thermodynamic design of a phase change thermal storage module

    SciTech Connect

    Conti, M.; Bellecci, C.; Charach, C.

    1996-05-01

    This paper analyzes the irreversibilities due to the heat transfer processes in a latent heat thermal storage system. The Thermal Storage Module (TSM) consists of a cylindrical shell that surrounds an internal coaxial tube. The shell side is filled by a Phase Change Material (PCM); a fluid flows through the inner tube and exchanges heat along the way. The most fundamental assumption underlying this study is that the exergy of the hot fluid stream in the active phase is discharged into the environment and completely destroyed, unless it is partially intercepted by the storage system. A numerical study is conducted to identify and to minimize the thermodynamic losses of the storage and removal processes. The dependence of the second-law efficiency of the system on various design parameters is investigated and discussed.

  13. Comparison of thermal stabilities between Zr9(Ge2Sb2Te5)91 and Ge2Sb2Te5 phase change films

    NASA Astrophysics Data System (ADS)

    Li, Zengguang; Lu, Yegang; Ma, Yadong; Song, Sannian; Shen, Xiang; Wang, Guoxiang; Dai, Shixun; Song, Zhitang

    2016-10-01

    Phase change memory is regarded as one of the most promising candidates for the next-generation non-volatile memory. Zr9(Ge2Sb2Te5)91 film was investigated as storage material for phase-change memory application. The crystallization temperature (Tc) and 10 years data retention temperature of the Zr9(Ge2Sb2Te5)91 film are about 195 and 106.7°C, respectively, and both higher than that of Ge2Sb2Te5 (GST). The sheet resistance ratio between amorphous and crystalline states is up to four orders of magnitude. The crystalline resistance of Zr9(Ge2Sb2Te5)91 film is higher than GST for one order of magnitude, which contribute to reduce the power consumption for PCM device. Zr9(Ge2Sb2Te5)91 film exhibit larger optical band gap in comparison with GST. Zr9(Ge2Sb2Te5)91 is considered to be a promising material for phase change memory.

  14. Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change

    NASA Astrophysics Data System (ADS)

    Anumolu, C. R. Lakshman; Trujillo, Mario F.

    2016-11-01

    A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.

  15. Ion-irradiation-assisted tuning of phase transformations and physical properties in single crystalline Fe7Pd3 ferromagnetic shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Arabi-Hashemi, A.; Witte, R.; Lotnyk, A.; Brand, R. A.; Setzer, A.; Esquinazi, P.; Hahn, H.; Averback, R. S.; Mayr, S. G.

    2015-05-01

    Control of multi-martensite phase transformations and physical properties constitute greatly unresolved challenges in Fe7Pd3-based ferromagnetic shape memory alloys. Single crystalline Fe7Pd3 thin films reveal an austenite to martensite phase transformation, continuously ranging from the face-centered cubic (fcc) to the face-centered tetragonal (fct) and body-centered cubic (bcc) phases upon irradiation with 1.8 MeV Kr+ ions. Within the present contribution, we explore this scenario within a comprehensive experimental study: employing atomic force microscopy (AFM) and high resolution transmission electron microscopy (HR-TEM), we first clarify the crystallography of the ion-irradiation-induced austenite \\Rightarrow martensite and inter-martensite transitions, explore the multi-variant martensite structures with c-a twinning and unravel a very gradual transition between variants at twin boundaries. Accompanying magnetic properties, addressed locally and globally, are characterized by an increasing saturation magnetization from fcc to bcc, while coercivity and remanence are demonstrated to be governed by magnetocrystalline anisotropy and ion-irradiation-induced defect density, respectively. Based on reversibility of ion-irradiation-induced materials changes due to annealing treatment and a conversion electron Mößbauer spectroscopy (CEMS) study to address changes in order, a quantitative defect-based physical picture of ion-irradiation-induced austenite ⇔ martensite transformation in Fe7Pd3 is developed. The presented concepts thus pave the way for ion-irradiation-assisted optimization strategies for tailored functional alloys.

  16. Early versus Late-Phase Consolidation of Opiate Reward Memories Requires Distinct Molecular and Temporal Mechanisms in the Amygdala-Prefrontal Cortical Pathway

    PubMed Central

    Gholizadeh, Shervin; Sun, Ninglei; De Jaeger, Xavier; Bechard, Melanie; Coolen, Lique; Laviolette, Steven R.

    2013-01-01

    The consolidation of newly acquired memories involves the temporal transition from a recent, less stable trace to a more permanent consolidated form. Opiates possess potent rewarding effects and produce powerful associative memories. The activation of these memories is associated with opiate abuse relapse phenomena and the persistence of compulsive opiate dependence. However, the neuronal, molecular and temporal mechanisms by which associative opiate reward memories are consolidated are not currently understood. We report that the consolidation of associative opiate reward memories involves a temporal and molecular switch between the basolateral nucleus of the amygdala (BLA) (early consolidation phase) to the medial prefrontal cortex (mPFC) (late consolidation phase). We demonstrate at the molecular, behavioral and neuronal levels that the consolidation of a recently acquired opiate reward memory involves an extracellular signal-related kinase (ERK)-dependent phosphorylation process within the BLA. In contrast, later-stage consolidation of a newly acquired memory is dependent upon a calcium-calmodulin-dependent (CaMKII), ERK-independent, mechanism in the mPFC, over a 12 hr temporal gradient. In addition, using in vivo multi-unit neuronal recordings in the mPFC, we report that protein synthesis within the BLA modulates the consolidation of opiate-reward memory in neuronal mPFC sub-populations, via the same temporal dynamic. PMID:23696837

  17. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  18. Enhanced thermoelectric performance driven by high-temperature phase transition in the phase change material Ge4SbTe5

    SciTech Connect

    Williams, Jared B.; Lara-Curzio, Edgar; Cakmak, Ercan; Watkins, Thomas R.; Morelli, Donald T.

    2015-05-15

    Phase change materials are identified for their ability to rapidly alternate between amorphous and crystalline phases and have large contrast in the optical/electrical properties of the respective phases. The materials are primarily used in memory storage applications, but recently they have also been identified as potential thermoelectric materials. Many of the phase change materials researched today can be found on the pseudo-binary (GeTe)1-x(Sb2Te3)x tie-line. While many compounds on this tie-line have been recognized as thermoelectric materials, here we focus on Ge4SbTe5, a single phase compound just off of the (GeTe)1-x(Sb2Te3)x tie-line, that forms in a stable rocksalt crystal structure at room temperature. We find that stoichiometric and undoped Ge4SbTe5 exhibits a thermal conductivity of ~1.2 W/m-K at high temperature and a large Seebeck coefficient of ~250 μV/K. The resistivity decreases dramatically at 623 K due to a structural phase transition which lends to a large enhancement in both thermoelectric power factor and thermoelectric figure of merit at 823 K. In a more general sense the research presents evidence that phase change materials can potentially provide a new route to highly efficient thermoelectric materials for power generation at high temperature.

  19. Polymerase chain reaction with phase change as intrinsic thermal control

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei

    2013-04-01

    This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 °C to 45 °C. These features imply that the candle ccPCR system can provide robust medical detection services.

  20. Satellite thermal storage systems using metallic phase-change materials

    SciTech Connect

    Lauf, R.J.; Hamby, C.

    1989-01-01

    Solar (thermal) dynamic power systems for satellites require a heat storage system capable of operating the engine during eclipse. This paper describes a system in which the phase-change material (PCM) is a metal rather than the more conventional fluoride salts. Thermal storage modules consisting of germanium contained in graphite have good thermal conductivity, low parasitic mass, and are physically and chemically stable. We describe the result of thermal cycle testing of graphite capsules containing germanium and several germanium- and silicon-based alloys, as well as some initial tests of the compatibility of graphite with Nb-1%Zr structural materials. 7 refs., 7 figs., 3 tabs.

  1. Polymeric compositions incorporating polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  2. Covert thermal barcodes based on phase change nanoparticles

    PubMed Central

    Duong, Binh; Liu, Helin; Ma, Liyuan; Su, Ming

    2014-01-01

    An unmet need is to develop covert barcodes that can be used to track-trace objects, and authenticate documents. This paper describes a new nanoparticle-based covert barcode system, in which a selected panel of solid-to-liquid phase change nanoparticles with discrete and sharp melting peaks is added in a variety of objects such as explosive derivative, drug, polymer, and ink. This method has high labeling capacity owing to the small sizes of nanoparticles, sharp melting peaks, and large scan range of thermal analysis. The thermal barcode can enhance forensic investigation by its technical readiness, structural covertness, and robustness. PMID:24901064

  3. Phase change thermal storage for a solar total energy system

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  4. Automated baseline change detection phase I. Final report

    SciTech Connect

    1995-12-01

    The Automated Baseline Change Detection (ABCD) project is supported by the DOE Morgantown Energy Technology Center (METC) as part of its ER&WM cross-cutting technology program in robotics. Phase 1 of the Automated Baseline Change Detection project is summarized in this topical report. The primary objective of this project is to apply robotic and optical sensor technology to the operational inspection of mixed toxic and radioactive waste stored in barrels, using Automated Baseline Change Detection (ABCD), based on image subtraction. Absolute change detection is based on detecting any visible physical changes, regardless of cause, between a current inspection image of a barrel and an archived baseline image of the same barrel. Thus, in addition to rust, the ABCD system can also detect corrosion, leaks, dents, and bulges. The ABCD approach and method rely on precise camera positioning and repositioning relative to the barrel and on feature recognition in images. In support of this primary objective, there are secondary objectives to determine DOE operational inspection requirements and DOE system fielding requirements.

  5. Opposing Effects of Oxytocin on Overt Compliance and Lasting Changes to Memory

    PubMed Central

    Edelson, Micah G; Shemesh, Maya; Weizman, Abraham; Yariv, Shahak; Sharot, Tali; Dudai, Yadin

    2015-01-01

    From infancy we learn to comply with societal norms. However, overt compliance is not necessarily accompanied by a change in internal beliefs. The neuromodulatory processes underlying these different phenomena are not yet understood. Here, we test the role of oxytocin in controlling overt compliance versus internalization of information delivered by a social source. After intranasal oxytocin administration, participants showed enhanced compliance to the erroneous opinion of others. However, this expression was coupled with a decrease in the influence of others on long-term memories. Our data suggest that this dissociation may result from reduced conflict in the face of social pressure, which increases immediate conforming behavior, but reduces processing required for deep encoding. These findings reveal a neurobiological control system that oppositely affects internalization and overt compliance. PMID:25308350

  6. Developmental changes in memorial comparisons: the effects of stimulus presentation mode.

    PubMed

    Wright, K P; Berch, D B

    1992-06-01

    First graders, fifth graders, and college students made comparative size judgments of either pictures (line drawings) or names (spoken words) of common objects by designating the "bigger" item in real life. Care was taken to equate the picture and word conditions on a number of critical parameters including method of item-pair presentation and activation of response-time intervals. All groups exhibited a symbolic distance effect. While judgments were faster with pictures than words, the magnitude of the difference did not change with age. Previous research suggesting a marked developmental decline in the magnitude of the "pictorial superiority effect" may have confounded reduced memory demands with stimulus presentation mode for young children. Finally, slopes of the symbolic distance functions were found to decrease with increasing grade level, at least from first to fifth grade. This is the first demonstration of an age-related decline in slopes for magnitude comparisons of concrete objects.

  7. Synaptic transmission changes in fear memory circuits underlie key features of an animal model of schizophrenia.

    PubMed

    Pollard, Marie; Varin, Christophe; Hrupka, Brian; Pemberton, Darrel J; Steckler, Thomas; Shaban, Hamdy

    2012-02-01

    Non-competitive antagonists of the N-methyl-d-aspartate receptor (NMDA) such as phencyclidine (PCP) elicit schizophrenia-like symptoms in healthy individuals. Similarly, PCP dosing in rats produces typical behavioral phenotypes that mimic human schizophrenia symptoms. Although schizophrenic behavioral phenotypes of the PCP model have been extensively studied, the underlying alterations of intrinsic neuronal properties and synaptic transmission in relevant limbic brain microcircuits remain elusive. Acute brain slice electrophysiology and immunostaining of inhibitory neurons were used to identify neuronal circuit alterations of the amygdala and hippocampus associated with changes in extinction of fear learning in rats following PCP treatment. Subchronic PCP application led to impaired long-term potentiation (LTP) and marked increases in the ratio of NMDA to 2-amino-3(5-methyl-3-oxo-1,2-oxazol-4-yl)propionic acid (AMPA) receptor-mediated currents at lateral amygdala (LA) principal neurons without alterations in parvalbumin (PV) as well as non-PV, glutamic acid decarboxylase 67 (GAD 67) immunopositive neurons. In addition, LTP was impaired at the Schaffer collateral to CA1 hippocampal pathway coincident with a reduction in colocalized PV and GAD67 immunopositive neurons in the CA3 hippocampal area. These effects occurred without changes in spontaneous events or intrinsic membrane properties of principal cells in the LA. The impairment of LTP at both amygdalar and hippocampal microcircuits, which play a key role in processing relevant survival information such as fear and extinction memory concurred with a disruption of extinction learning of fear conditioned responses. Our results show that subchronic PCP administration in rats impairs synaptic functioning in the amygdala and hippocampus as well as processing of fear-related memories.

  8. Collaboration changes both the content and the structure of memory: Building the architecture of shared representations.

    PubMed

    Congleton, Adam R; Rajaram, Suparna

    2014-08-01

    Memory research has primarily focused on how individuals form and maintain memories across time. However, less is known about how groups of people working together can create and maintain shared memories of the past. Recent studies have focused on understanding the processes behind the formation of such shared memories, but none has investigated the structure of shared memory. This study investigated the circumstances under which collaboration would influence the likelihood that participants come to share both a similar content and a similar organization of the past by aligning their individual representations into a shared rendering. We tested how the frequency and the timing of collaboration affect participants' retrieval organization, and how this in turn influences the formation of shared memory and its persistence over time. Across numerous foundational and novel analyses, we observed that as the size of the collaborative inhibition effect-a counterintuitive finding that collaboration reduces group recall-increased, so did the amount of shared memory and the shared organization of memories. These findings reveal the interconnected relationship between collaborative inhibition, retrieval disruption, shared memory, and shared organization. Together, these relationships have intriguing implications for research across a wide variety of domains, including the formation of collective memory, beliefs and attitudes, parent-child narratives and the development of autobiographical memory, and the emergence of shared representations in educational settings.

  9. The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory

    PubMed Central

    Tseng, Philip; Chang, Yu-Ting; Chang, Chi-Fu; Liang, Wei-Kuang; Juan, Chi-Hung

    2016-01-01

    How does the brain enable us to remember two or more object representations in visual working memory (VWM) without confusing them? This “gluing” process, or feature binding, refers to the ability to join certain features together while keeping them segregated from others. Recent neuroimaging research has reported higher BOLD response in the left temporal and parietal cortex during a binding-VWM task. However, less is known about how the two regions work in synchrony to support such process. In this study, we applied transcranial alternating current stimulation (tACS) over the left temporal and parietal cortex in gamma and theta frequency, with a phase difference of either 0° (in-phase) or 180° (anti-phase) to account for the different ways through which neural synchronization may occur. We found no facilitatory or inhibitory effect from sham, theta, and in-phase gamma stimulation. Importantly, there was an enhancement effect from anti-phase gamma tACS that was binding-specific, and such effect was only apparent in low-performing individuals who had room for improvement. Together, these results demonstrate that binding-VWM is supported by a temporally-precise oscillatory mechanism within the gamma frequency range, and that the advantageous 180°-apart phase relationship also implies a possible temporal driver-to-receiver time-lag between the temporal and parietal cortex. PMID:27573864

  10. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory

    PubMed Central

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-01-01

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain. PMID:28266595

  11. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory.

    PubMed

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-03-07

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain.

  12. Foreground Contextual Fear Memory Consolidation Requires Two Independent Phases of Hippocampal ERK/CREB Activation

    ERIC Educational Resources Information Center

    Trifilieff, Pierre; Vanhoutte, Peter; Caboche, Jocelyne; Desmedt, Aline; Riedel, Gernot; Mons, Nicole; Micheau, Jacques; Herry, Cyril

    2006-01-01

    Fear conditioning is a popular model for investigating physiological and cellular mechanisms of memory formation. In this paradigm, a footshock is either systematically associated to a tone (paired conditioning) or is pseudorandomly distributed (unpaired conditioning). In the former procedure, the tone/shock association is acquired, whereas in the…

  13. Optimal Design for Hetero-Associative Memory: Hippocampal CA1 Phase Response Curve and Spike-Timing-Dependent Plasticity

    PubMed Central

    Miyata, Ryota; Ota, Keisuke; Aonishi, Toru

    2013-01-01

    Recently reported experimental findings suggest that the hippocampal CA1 network stores spatio-temporal spike patterns and retrieves temporally reversed and spread-out patterns. In this paper, we explore the idea that the properties of the neural interactions and the synaptic plasticity rule in the CA1 network enable it to function as a hetero-associative memory recalling such reversed and spread-out spike patterns. In line with Lengyel’s speculation (Lengyel et al., 2005), we firstly derive optimally designed spike-timing-dependent plasticity (STDP) rules that are matched to neural interactions formalized in terms of phase response curves (PRCs) for performing the hetero-associative memory function. By maximizing object functions formulated in terms of mutual information for evaluating memory retrieval performance, we search for STDP window functions that are optimal for retrieval of normal and doubly spread-out patterns under the constraint that the PRCs are those of CA1 pyramidal neurons. The system, which can retrieve normal and doubly spread-out patterns, can also retrieve reversed patterns with the same quality. Finally, we demonstrate that purposely designed STDP window functions qualitatively conform to typical ones found in CA1 pyramidal neurons. PMID:24204822

  14. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    PubMed Central

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-01-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management. PMID:25748640

  15. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-03-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.

  16. Phase change energy storage for solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  17. Metallic phase change material thermal storage for Dish Stirling

    DOE PAGES

    Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; ...

    2015-06-05

    Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in themore » area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.« less

  18. Natural convection during a phase change of sodium acetate trihydrate

    NASA Astrophysics Data System (ADS)

    Ouchi, Yasunori; Someya, Satoshi; Munakata, Tetsuo

    2014-11-01

    A latent heat storage system has higher storage capacity than a sensible heat storage system. Sodium acetate trihydrate has large latent heat at the temperature, 58°C, suitable for a hot-water supply system. The present study focused on convection in a phase change process to understand the heat transfer from the phase change material (PCM). The convection occurred only in certain conditions of supercooling temperature and PCM concentration. A spicular crystal grew quickly and the thermal convection couldn't be detected at large supercooling temperature with high concentration of PCM. In the range of 5 ~ 13°C of supercooling temperature, the buoyancy driven convection due to the latent heat of PCM was measured using the PIV. It was also observed that a part of CH3COONa-3H2O solution was sucked into the growing spicular crystals to supply CH3COONa at the condition with small concentration and at 5 ~ 13°C of supercooling temperature.

  19. Phase Change Effects on Immiscible Flow Displacements in Radial Injection

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2014-11-01

    We report a systematic simulation of immiscible fluid-fluid displacements in radial injection in the presence of phase change. Due to the presence of two fluid-fluid interfaces in the system, a special treatment has been adopted. To track the leading interface position, two highly accurate methods including Level Set and Immersed Interface Method were used, while for locating the trailing interface an energy equation was adopted assuming the existence of a constant thin condensate layer. Dimensional analysis led to three important dimensionless groups including capillary number (Ca), Jacob number (Ja) and viscosity ratios (M) of the three fluids. Simulation results indicate significant influences of these parameters on the development of the instability and the interfacial morphology of fingers. Increasing Ca or M tends to amplify the interfacial instability, fingertip splitting, and results in longer fingers. In contrast, increasing Ja has stabilizing effects due to an increase of the thickness of the condensate layer. On the other hand at lower viscosity ratios as well as lower Ca, because of compensation effects of the phase change, both leading and trailing interfaces are found to be less unstable. Moreover accumulated condensate and oil saturation depletion curves show increasing and decreasing trends, respectively, when the Ca increases. Although viscosity ratio and Ja have similar effects on the accumulated condensate, they do not show any effect on the oil depletion saturation.

  20. Metallic phase change material thermal storage for Dish Stirling

    SciTech Connect

    Andraka, C. E.; Kruizenga, A. M.; Hernandez-Sanchez, B. A.; Coker, E. N.

    2015-06-05

    Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do not incorporate thermal storage. For the next generation of non-intermittent and cost-competitive solar power plants, we propose adding a thermal energy storage system that combines latent (phase-change) energy transport and latent energy storage in order to match the isothermal input requirements of Stirling engines while also maximizing the exergetic efficiency of the entire system. This paper reports current findings in the area of selection, synthesis and evaluation of a suitable high performance metallic phase change material (PCM) as well as potential interactions with containment alloy materials. The metallic PCM's, while more expensive than salts, have been identified as having substantial performance advantages primarily due to high thermal conductivity, leading to high exergetic efficiency. Systems modeling has indicated, based on high dish Stirling system performance, an allowable cost of the PCM storage system that is substantially higher than SunShot goals for storage cost on tower systems. Several PCM's are identified with suitable melting temperature, cost, and performance.

  1. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  2. Analysis of wallboard containing a phase change material

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. J.; Heberle, D. P.

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified to accommodate walls that are covered with PCM plasterboard, and to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application.

  3. Subscale Water Based Phase Change Material Heat Exchanger Development

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  4. A Novel Training-Free Processed Fe-Mn-Si-Cr-Ni Shape Memory Alloy Undergoing δ → γ Phase Transformation

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Wang, Gaixia; Du, Yangyang; Wang, Shanling; Chen, Jie; Wen, Yuhua

    2016-07-01

    We not only suppress the formation of twin boundaries but also introduce a high density of stacking faults by taking advantage of δ → γ phase transformation in a processed Fe-19.38Mn-5.29Si-8.98Cr-4.83Ni shape memory alloy. As a result, its shape memory effect is remarkably improved after heating at 1533 K (1260 °C) (single-phase region of δ ferrite) and air cooling due to δ → γ phase transformation.

  5. Object representations in visual working memory change according to the task context.

    PubMed

    Balaban, Halely; Luria, Roy

    2016-08-01

    This study investigated whether an item's representation in visual working memory (VWM) can be updated according to changes in the global task context. We used a modified change detection paradigm, in which the items moved before the retention interval. In all of the experiments, we presented identical color-color conjunction items that were arranged to provide a common fate Gestalt grouping cue during their movement. Task context was manipulated by adding a condition highlighting either the integrated interpretation of the conjunction items or their individuated interpretation. We monitored the contralateral delay activity (CDA) as an online marker of VWM. Experiment 1 employed only a minimal global context; the conjunction items were integrated during their movement, but then were partially individuated, at a late stage of the retention interval. The same conjunction items were perfectly integrated in an integration context (Experiment 2). An individuation context successfully produced strong individuation, already during the movement, overriding Gestalt grouping cues (Experiment 3). In Experiment 4, a short priming of the individuation context managed to individuate the conjunction items immediately after the Gestalt cue was no longer available. Thus, the representations of identical items changed according to the task context, suggesting that VWM interprets incoming input according to global factors which can override perceptual cues.

  6. Investigation on the crystallization properties and structure of oxygen-doped Ge8Sb92 phase change thin films

    NASA Astrophysics Data System (ADS)

    Wu, Weihua; He, Zifang; Chen, Shiyu; Zhai, Jiwei; Song, Sannian; Song, Zhitang

    2017-03-01

    Effects of oxygen incorporation on the crystallization characteristics and crystal structure of Ge8Sb92 films were systematically investigated. The amorphous-to-crystalline transition was studied by in situ resistance measurement. The thermal stability, electrical resistance and band gap of Ge8Sb92 material increase significantly by the addition of oxygen. X-ray diffraction, transmission electron microscopy and x-ray photoelectron spectroscopy illustrate that a small amount of oxygen dopant can inhibit the grain growth and limit the grain size because of the formation of Ge and Sb oxide. Atomic force microscopy and x-ray reflectivity results indicate that the film surface becomes smoother and the film thickness change becomes smaller after oxygen doping. Phase change memory cells based on oxygen-doped Ge8Sb92 film were fabricated to evaluate the electrical properties as well. All the results demonstrate that suitable incorporation of oxygen is an effective way to enhance the comprehensive performance of Ge8Sb92 thin films for phase change memory application.

  7. Overview of emerging nonvolatile memory technologies

    PubMed Central

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new

  8. Changes in brain network efficiency and working memory performance in aging.

    PubMed

    Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.

  9. Serial measurement of memory and diffusion tensor imaging changes within the first week following uncomplicated mild traumatic brain injury.

    PubMed

    Wilde, Elisabeth A; McCauley, Stephen R; Barnes, Amanda; Wu, Trevor C; Chu, Zili; Hunter, Jill V; Bigler, Erin D

    2012-06-01

    Patients (n = 8) with uncomplicated mild traumatic brain injury (mTBI) underwent serial assessments (4) with diffusion tensor imaging (DTI) and neuropsychological testing within the first 8 days post-injury. Using a multi-case study design, we examined changes in brain parenchyma (via DTI-derived fractional anisotropy [FA], apparent diffusion coefficient [ADC], axial diffusivity [AD] and radial diffusivity [RD] in the left cingulum bundle) and in memory performance (via Hopkins Verbal Learning Test-Revised). Qualitative inspection of the results indicated that memory performance was transiently affected in most participants over the course of the week, with performance most negatively impacted on the second assessment (days 3-4 or 97-144 h post-injury), and then returning to within normal limits by 8 days post-injury. Alternatively, FA and other DTI metrics showed a more complex pattern, with the trajectory of some participants changing more prominently than others. For example, FA transiently increased in some participants over the study period, but the pattern was heterogeneous. Memory performance appeared to mirror changes in FA in certain cases, supporting a pathophysiological basis to memory impairment following mTBI. However, the pattern and the degree of symmetry between FA and memory performance was complex and did not always correspond. Serial imaging over the semi-acute recovery period may be important in reconciling conflicting findings in mTBI utilizing memory and/or DTI. Serial use of imaging modalities including DTI may aid understanding of underlying pathophysiological changes in the semi-acute post-injury period. Should a consistent pattern emerge that allows identification of patients at-risk for acute and/or persistent symptoms, such knowledge could guide development of therapeutic targets in mTBI and in understanding the most effective administration time window for these agents.

  10. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report

    SciTech Connect

    Qiu, Songgang

    2013-05-15

    The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase change TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.

  11. Dynamics of plumes in a compressible mantle with phase changes: Implications for phase boundary topography

    NASA Astrophysics Data System (ADS)

    Bossmann, Andrea B.; van Keken, Peter E.

    2013-11-01

    While plumes rising from the deep mantle may be responsible for hotspot volcanism, their existence has not yet been unambiguously confirmed by seismological studies. Several seismic studies reported that the topography of the 670-km discontinuity is flat below hotspots, which disagrees with the elevation expected due to its negative Clapeyron slope and plume excess temperature. An improved numerical method that includes compressibility and consistently implemented phase transitions is used to study plume evolution in the Earth’s mantle. The influence of latent heat on plume behavior for varying convective vigor and Clapeyron slope of the endothermic phase change at 670 km depth is studied in axisymmetric spherical shell geometry. Minor differences in plume dynamics are found for models considering and neglecting latent heat. Three regimes of plume behavior at the endothermic phase boundary are observed: besides complete plume inhibition and penetration along the symmetry axis an intermediate regime in which the plume forms a ring around the symmetry axis is found. These models also predict that the 670-km discontinuity is flat below hotspots due to a large plume head in the lower mantle of about 1000 km diameter that significantly thins as it rises into the upper mantle. This is explained by the lower viscosity in the upper mantle and the spreading of the temporarily inhibited plume below the endothermic phase boundary, which reconciles the flat 670-km discontinuity with a deep mantle plume origin.

  12. Catechol-O-methyltransferase (COMT) Genotype Affects Age-Related Changes in Plasticity in Working Memory: A Pilot Study

    PubMed Central

    Riemer, Thomas G.; Schulte, Stefanie; Onken, Johanna; Heinz, Andreas; Rapp, Michael A.

    2014-01-01

    Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT) amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults. Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24–30 years) and 25 older (aged 60–75 years) healthy adults. Participants underwent adaptive training in the n-back working memory task over 12 sessions under increasing difficulty conditions. Results. Both younger and older adults exhibited sizeable behavioral plasticity through training (P < .001), which was larger in younger as compared to older adults (P < .001). Age-related differences were qualified by an interaction with COMT genotype (P < .001), and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults. Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism. PMID:24772423

  13. Early effector cells survive the contraction phase in malaria infection and generate both central and effector memory T cells.

    PubMed

    Opata, Michael M; Carpio, Victor H; Ibitokou, Samad A; Dillon, Brian E; Obiero, Joshua M; Stephens, Robin

    2015-06-01

    CD4 T cells orchestrate immunity against blood-stage malaria. However, a major challenge in designing vaccines to the disease is poor understanding of the requirements for the generation of protective memory T cells (Tmem) from responding effector T cells (Teff) in chronic parasite infection. In this study, we use a transgenic mouse model with T cells specific for the merozoite surface protein (MSP)-1 of Plasmodium chabaudi to show that activated T cells generate three distinct Teff subsets with progressive activation phenotypes. The earliest observed Teff subsets (CD127(-)CD62L(hi)CD27(+)) are less divided than CD62L(lo) Teff and express memory genes. Intermediate (CD62L(lo)CD27(+)) effector subsets include the most multicytokine-producing T cells, whereas fully activated (CD62L(lo)CD27(-)) late effector cells have a terminal Teff phenotype (PD-1(+), Fas(hi), AnnexinV(+)). We show that although IL-2 promotes expansion, it actually slows terminal effector differentiation. Using adoptive transfer, we show that only early Teff survive the contraction phase and generate the terminal late Teff subsets, whereas in uninfected recipients, they become both central and effector Tmem. Furthermore, we show that progression toward full Teff activation is promoted by increased duration of infection, which in the long-term promotes Tem differentiation. Therefore, we have defined markers of progressive activation of CD4 Teff at the peak of malaria infection, including a subset that survives the contraction phase to make Tmem, and show that Ag and cytokine levels during CD4 T cell expansion influence the proportion of activated cells that can survive contraction and generate memory in malaria infection.

  14. Consideration of a Phase Change Model Based on Apparent Phase Equilibrium

    NASA Astrophysics Data System (ADS)

    Kashiwada, S.; Iga, Y.

    2015-12-01

    It has been known that cavity volume is underestimated and there is a discrepancy between predicted and measured breakdown characteristics for the numerical simulation of unsteady cavitation around a hydrofoil at high angle of attack. Therefore, in this study, in order to predict the cavity volume with high accuracy, the phenomena that gas phase increases even at a pressure higher than saturated vapour pressure which is known as aeration is modelled, and applied to phase change term. It was assumed that the precipitation of dissolved air is promoted by mechanical stimulation such as Reynolds stress in unsteady flow. The effectivity of the proposed model is discussed through the comparison among some kinds of components of the pressure variation.

  15. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; H. Yasuhara; A. Alajmi; Z. Karpyn

    2002-10-28

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray microtomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. Pilot multi-phase experiments have been performed, proving the ability to detect two phases in certain large fractures. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the

  16. Structural properties of phase-change InSbTe thin films grown at a low temperature by metalorganic chemical vapor deposition.

    PubMed

    Ahn, Jun-Ku; Park, Kyoung-Woo; Hur, Sung-Gi; Kim, Chung-Soo; Lee, Jeong-Yong; Yoon, Soon-Gil

    2011-01-01

    The feasibility of new InSbTe (IST) chalcogenide materials at the deposition temperatures of 225 and 250 degrees C using metalorganic chemical vapor deposition (MOCVD) for phase-change random access memory (PRAM) applications was investigated. Samples grown at 225 degrees C consisted of the main InTe phase, including a small amount of Sb. On the other hand, samples grown at 250 degrees C included the crystalline phases of InSb and InSbTe. MOCVD-IST materials are powerful candidates for highly-integrated PRAM applications.

  17. A "Picture" of Children's Potential for Learning: Looking into Strategy Changes and Working Memory by Dynamic Testing

    ERIC Educational Resources Information Center

    Resing, Wilma C. M.; Xenidou-Dervou, Iro; Steijn, Wouter M. P.; Elliott, Julian G.

    2012-01-01

    We examined whether children would show different change-patterns in their strategy use when administered a number of series completion tasks that were presented within a dynamic testing format utilizing a graduated prompts approach. The role of working memory was also examined. An electronic console using tangible objects with sensors enabled the…

  18. NMDA Receptor- and ERK-Dependent Histone Methylation Changes in the Lateral Amygdala Bidirectionally Regulate Fear Memory Formation

    ERIC Educational Resources Information Center

    Gupta-Agarwal, Swati; Jarome, Timothy J.; Fernandez, Jordan; Lubin, Farah D.

    2014-01-01

    It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory…

  19. Optimized Structures for Low-Profile Phase Change Thermal Spreaders

    NASA Astrophysics Data System (ADS)

    Sharratt, Stephen Andrew

    Thin, low-profile phase change thermal spreaders can provide cooling solutions for some of today's most pressing heat flux dissipation issues. These thermal issues are only expected to increase as future electronic circuitry requirements lead to denser and potentially 3D chip packaging. Phase change based heat spreaders, such as heat pipes or vapor chambers, can provide a practical solution for effectively dissipating large heat fluxes. This thesis reports a comprehensive study of state-of-the-art capillary pumped wick structures using computational modeling, micro wick fabrication, and experimental analysis. Modeling efforts focus on predicting the shape of the liquid meniscus inside a complicated 3D wick structure. It is shown that this liquid shape can drastically affect the wick's thermal resistance. In addition, knowledge of the liquid meniscus shape allows for the computation of key parameters such as permeability and capillary pressure which are necessary for predicting the maximum heat flux. After the model is validated by comparison to experimental results, the wick structure is optimized so as to decrease overall wick thermal resistance and increase the maximum capillary limited heat flux before dryout. The optimized structures are then fabricated out of both silicon and copper using both traditional and novel micro-fabrication techniques. The wicks are made super-hydrophilic using chemical and thermal oxidation schemes. A sintered monolayer of Cu particles is fabricated and analyzed as well. The fabricated wick structures are experimentally tested for their heat transfer performance inside a well controlled copper vacuum chamber. Heat fluxes as high as 170 W/cm2 are realized for Cu wicks with structure heights of 100 μm. The structures optimized for both minimized thermal resistance and high liquid supply ability perform much better than their non-optimized counterparts. The super-hydrophilic oxidation scheme is found to drastically increase the maximum

  20. Surface topographical changes measured by phase-locked interferometry

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Fung, S. S.

    1984-01-01

    An electronic optical laser interferometer capable of resolving depth differences of as low as 30 A and planar displacements of 6000 A was constructed to examine surface profiles of bearing surfaces without physical contact. Topological chemical reactivity was determined by applying a drop of dilute alcoholic hydrochloric acid and measuring the profile of the solid surface before and after application of this probe. Scuffed bearing surfaces reacted much faster than virgin ones but that bearing surfaces exposed to lubricants containing an organic chloride reacted much more slowly. The reactivity of stainless steel plates, heated in a nitrogen atmosphere to different temperatures, were examined later at ambient temperature. The change of surface contour as a result of the probe reaction followed Arrhenius-type relation with respect to heat treatment temperature. The contact area of the plate of a ball/plate sliding elastohydrodynamic contact run on trimethylopropane triheptanoate with or without additives was optically profiled periodically. As scuffing was approached, the change of profile within the contact region changed much more rapidly by the acid probe and assumed a constant high value after scuffing. A nonetching metallurgical phase was found in the scuff mark, which was apparently responsible for the high reactivity.