ERIC Educational Resources Information Center
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Singh, Viraj; Spencer, Paulette
2013-01-01
During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases have been characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using granular micromechanics based model that incorporates poro-mechanical effects and polymer-solvent thermodynamics. The variation of the model parameters and model-predicted polymer properties has been studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers. PMID:24076070
NASA Astrophysics Data System (ADS)
Condon, Joshua; Martin, Tyler; Jayaraman, Arthi
We use atomistic (AA) and coarse-grained (CG) molecular dynamics simulations to elucidate the thermodynamic driving forces governing lower critical solution temperature (LCST)-like phase transition exhibited by elastin-like peptides (ELPs) and conjugates of ELP with other macromolecules. In the AA simulations, we study ELP oligomers in explicit water, and mark the transition as the temperature at which they undergo a change in ``hydration'' state. While AA simulations are restricted to small systems of short ELPs and do not capture the chain aggregation observed in experiments of ELPs, they guide the phenomenological CG model development by highlighting the solvent induced polymer-polymer effective interactions with changing temperature. In the CG simulations, we capture the LCST polymer aggregation by increasing polymer-polymer effective attractive interactions in an implicit solvent. We examine the impact of conjugating a block of LCST polymer to another rigid unresponsive macromolecular block on the LCST-like transition. We find that when multiple LCST polymers are conjugated to a rigid polymer block, increased crowding of the LCST polymers shifts the onset of chain aggregation to smaller effective polymer-polymer attraction compared to the free LCST polymers. These simulation results provide guidance on the design of conjugated bio-mimetic thermoresponsive materials, and shape the fundamental understanding of the impact of polymer crowding on phase behavior in thermoresponsive LCST polymer systems.
Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.
2017-01-24
A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.
Phase relationship in three-phase composites which include a void phase
NASA Technical Reports Server (NTRS)
Price, H. L.; Nelson, J. B.
1976-01-01
The paper shows the relationship among polymer, particles, and voids in a three-phase composite and how some of the properties of a composite may be changed by changing the proportions of the phases. The three-phase composite is an aggregate of microspheres bonded together with a small amount of polymer which may not form a continuous matrix. The void space (third phase) is obtained by limiting the amount of polymer which is mixed with the microspheres. A ternary phase diagram is used to show the proportional relationship among the three phases, with each apex representing a volume fraction of unity for a constituent while the side opposite the apex represents a volume fraction of zero for that constituent. The vertical dimension represents some composite property such as density or strength. The effect of composition on composite properties is shown by plotting them on a binary phase diagram which represents a perpendicular plane coincident with the 0.60 volume fraction microsphere line.
Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo
2014-06-16
Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.
Porter; Eastman; Pace; Bradley
2000-09-01
Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.
NASA Astrophysics Data System (ADS)
Lee, Jonghwi; Urry, Dan W.; Macosko, Christopher W.
2000-03-01
Selectively modified elastic protein-based polymers demonstrate diverse energy conversions by means of the control of a phase transition resulting from the sensitivity to stimuli of the hydrophobic association. Among these polymers, poly(GVGVP), poly(GVGIP) and analogues of poly(GVGVP) containing carboxylic acid or amino functional groups as side chains were cross-linked and their swelling behavior was studied. Regardless of cross-linking method, reversible phase transitions can be observed in the swelling of all cross-linked polymers by changing temperature and pH, where relevant. Decreased cross-link density leads to increased swelling ratio as the transition becomes more pronounced. Fibers, chemically cross-linked after formation, exhibit anisotropic dimensional changes on changing the temperature. Gamma-irradiation cross-linked poly(GVGVP) exhibited a more distinct phase transition than modified poly(GVGVP) with ion pairs between side chains, which were partially converted to amide cross-links.
Sequence-Mandated, Distinct Assembly of Giant Molecules
Zhang, Wei; Lu, Xinlin; Mao, Jialin; ...
2017-10-24
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less
Sequence-Mandated, Distinct Assembly of Giant Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Lu, Xinlin; Mao, Jialin
Although controlling the primary structure of synthetic polymers is itself a great challenge, the potential of sequence control for tailoring hierarchical structures remains to be exploited, especially in the creation of new and unconventional phases. A series of model amphiphilic chain-like giant molecules was designed and synthesized by interconnecting both hydrophobic and hydrophilic molecular nanoparticles in precisely defined sequence and composition to investigate their sequence-dependent phase structures. Not only compositional variation changed the self-assembled supramolecular phases, but also specific sequences induce unconventional phase formation, including Frank-Kasper phases. The formation mechanism was attributed to the conformational change driven by the collectivemore » hydrogen bonding and the sequence-mandated topology of the molecules. Lastly, these results show that sequence control in synthetic polymers can have a dramatic impact on polymer properties and self-assembly.« less
Low density microcellular foams
Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.
1985-10-02
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.
Origin of change in molecular-weight dependence for polymer surface tension.
Thompson, R B; Macdonald, J R; Chen, P
2008-09-01
Self-consistent-field theory is used to reproduce the behavior of polymer surface tension with molecular-weight for both lower and higher molecular-weight polymers. The change in behavior of the surface tension between these two regimes is shown to be due to the almost total exclusion of polymer from the nonpolymer bulk phase. The predicted two regime surface tension behavior with molecular-weight and the exclusion explanation are shown to be valid for a range of different polymer compressibilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, I. John; Murthy, N. Sanjeeva; Kohn, Joachim
2015-10-30
Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic componentmore » is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.« less
Low density microcellular foams
Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.
1987-01-01
Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.
Bistable collective behavior of polymers tethered in a nanopore
NASA Astrophysics Data System (ADS)
Osmanovic, Dino; Bailey, Joe; Harker, Anthony H.; Fassati, Ariberto; Hoogenboom, Bart W.; Ford, Ian J.
2012-06-01
Polymer-coated pores play a crucial role in nucleo-cytoplasmic transport and in a number of biomimetic and nanotechnological applications. Here we present Monte Carlo and Density Functional Theory approaches to identify different collective phases of end-grafted polymers in a nanopore and to study their relative stability as a function of intermolecular interactions. Over a range of system parameters that is relevant for nuclear pore complexes, we observe two distinct phases: one with the bulk of the polymers condensed at the wall of the pore, and the other with the polymers condensed along its central axis. The relative stability of these two phases depends on the interpolymer interactions. The existence the two phases suggests a mechanism in which marginal changes in these interactions, possibly induced by nuclear transport receptors, cause the pore to transform between open and closed configurations, which will influence transport through the pore.
A numerical model to simulate foams during devolatilization of polymers
NASA Astrophysics Data System (ADS)
Khan, Irfan; Dixit, Ravindra
2014-11-01
Customers often demand that the polymers sold in the market have low levels of volatile organic compounds (VOC). Some of the processes for making polymers involve the removal of volatiles to the levels of parts per million (devolatilization). During this step the volatiles are phase separated out of the polymer through a combination of heating and applying lower pressure, creating foam with the pure polymer in liquid phase and the volatiles in the gas phase. The efficiency of the devolatilization process depends on predicting the onset of solvent phase change in the polymer and volatiles mixture accurately based on the processing conditions. However due to the complex relationship between the polymer properties and the processing conditions this is not trivial. In this work, a bubble scale model is coupled with a bulk scale transport model to simulate the processing conditions of polymer devolatilization. The bubble scale model simulates the nucleation and bubble growth based on the classical nucleation theory and the popular ``influence volume approach.'' As such it provides the information of bubble size distribution and number density inside the polymer at any given time and position. This information is used to predict the bulk properties of the polymer and its behavior under the applied processing conditions. Initial results of this modeling approach will be presented.
Rheology and microstructure of filled polymer melts
NASA Astrophysics Data System (ADS)
Anderson, Benjamin John
The states of particle dispersion in polymer nanocomposite melts are studied through rheological characterization of nanocomposite melt mechanical properties and small angle X-ray scattering measurement of the particle microstructure. The particle microstructure probed with scattering is related to bulk flow mechanics to determine the origin of slow dynamics in these complex dispersions: whether a gel or glass transition or a slowing down of dispersing phase dynamics. These studies were conducted to understand polymer mediated particle-particle interactions and potential particle-polymer phase separation. The phase behavior of the dispersion will be governed by enthalpic and entropic contributions. A variety of phases are expected: homogeneous fluid, phase separated, or non-equilibrium gel. The effects of dispersion control parameters, namely particle volume fraction, polymer molecular weight, and polymer-particle surface affinity, on the phase behavior of 44 nm silica dispersions are studied in low molecular weight polyethylene oxide (PEO), polyethylene oxide dimethylether (PEODME), and polytetrahydrofuran (PTHF). Scattering measurements of the particle second virial coefficient in PEO melts indicates repulsive particles by a value slightly greater than unity. In PEO nanocomposites, dispersion dynamics slow down witnessed by a plateau in the elastic modulus as the particle separation approaches the length scale of the polymer radius of gyration. As the polymer molecular weight is increased, the transition shifts to lower particle volume fractions. Below polymer entanglement, the slow dynamics mimics that of a colloidal glass by the appearance of two relaxation times in the viscous modulus that display power law scaling with volume fraction. Above entanglement, the slow dynamics is qualitatively different resembling the behavior of a gelled suspension yet lacking any sign of scattering from particle agglomerates. As polymer molecular weight is increased at a fixed volume fraction, two strain yielding events emerge. Further particle loading leads to the formation of a particle-polymer network and the onset of brittle mechanical behavior. The performance of PEO nanocomposites is contrasted by PEODME and PTHF nanocomposites where a change in the polymer segment-surface activity changes the slow dynamics of the nanocomposite and the microstructure of particles in the melt. Slow dynamics and the particle microstructure indicate a gelled suspension as volume fraction is raised with particles in or near contact and support the turning on of particle attractions in the melt.
Johansson, Hans-Olof; Matos, Tiago; Luz, Juliana S; Feitosa, Eloi; Oliveira, Carla C; Pessoa, Adalberto; Bülow, Leif; Tjerneld, Folke
2012-04-13
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na(2)SO(4) systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coli can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coli homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na(2)SO(4)-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. Copyright © 2012 Elsevier B.V. All rights reserved.
Bottoli, Carla B G; Collins, Kenneth E; Collins, Carol H
2003-02-14
The preparation of stationary phases for HPLC using polymers deposited on silica usually includes an immobilization step involving cross-linking by free radicals induced by ionizing radiation or by other radical initiators. The present paper reports changes which occur at ambient temperature in the character of poly(methyloctylsiloxane) deposited on porous silica particles as a function of the time interval between particle loading and column packing. Column performance and retention factors increase with time and these changes are attributed to rearrangement (self-assembly) which result in "self-immobilization" of the polymer molecules on the silica surface.
Salyer, Ival O.; Griffen, Charles W.
1986-01-01
Compositions containing crystalline, long chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.
Salyer, Ival O.
1989-01-01
Compositions containing crystalline, straight chain, alkyl hydrocarbons as phase change materials including cementitious compositions containing the alkyl hydrocarbons neat or in pellets or granules formed by incorporating the alkyl hydrocarbons in polymers or rubbers; and polymeric or elastomeric compositions containing alkyl hydrocarbons.
NASA Astrophysics Data System (ADS)
Radhakrishna, Mithun; Sing, Charles E.
Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.
Ullah, Majeed; Ullah, Hanif; Murtaza, Ghulam; Mahmood, Qaisar; Hussain, Izhar
2015-01-01
The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted.
Ullah, Majeed; Ullah, Hanif; Mahmood, Qaisar; Hussain, Izhar
2015-01-01
The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted. PMID:26380301
Polymerization speed and diffractive experiments in polymer network LC test cells
NASA Astrophysics Data System (ADS)
Braun, Larissa; Gong, Zhen; Habibpourmoghadam, Atefeh; Schafforz, Samuel L.; Wolfram, Lukas; Lorenz, Alexander
2018-02-01
Polymer-network liquid crystals (LCs), where the response properties of a LC can be enhanced by the presence of a porous polymer network, are investigated. In the reported experiments, liquid crystals were doped with a small amount (< 10%) of photo-curable acrylate monomers. Samples with surface grafted photoinitiators, dissolvable photoinitiators, and samples with both kinds of photoinitiators were prepared. Both conventional (planar electrodes) and diffractive (interdigitated electrodes) test cells were used. These samples were exposed with a UV light source and changes of their capacitance were investigated with an LCR meter during exposure. Due to the presence of the in-situ generated polymer network, the electro-optic response properties of photo cured samples were enhanced. For example, their continuous phase modulation properties led to more localized responses in samples with interdigitated electrodes, which caused suppression of selected diffraction orders in the diffraction patterns recorded in polymer network LC samples. Moreover, capacitance changes were investigated during photopolymerization of a blue phase LC.
A Simple, Inexpensive Molecular Weight Measurement for Water-Soluble Polymers Using Microemulsions.
ERIC Educational Resources Information Center
Mathias, Lon J.; Moore, D. Roger
1985-01-01
Describes an experiment involving use of a microemulsion and its characteristic thermal phase change to determine molecular weights of polyoxyethylene samples. The experiment provides students with background information on polymers and organized media and with experience in evaluating polymer molecular weight by using a unique property of a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigro, Valentina, E-mail: nigro@fis.uniroma3.it; Bruni, Fabio; Ricci, Maria Antonietta
The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T ≈ 307 K, a sharp change of the local structure from a water rich open inhomogeneousmore » interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition.« less
Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai
2016-03-01
We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.
Solis, Francisco J.; Vernon, Brent
2009-01-01
Doping of thermoreversible polymer gels with charged monomers provides a way to control phase separation and gelation conditions by coupling the properties of the gel with a tunable ionic environment. We analyze the dependence of the gelation and phase separation conditions on the amount of salt present using a mean field model of weakly charged associative polymers. The ions and co-ions present are explicitly considered at the mean field level, and we determine their concentrations in the different equilibrium phases when the system undergoes phase separation. For weak polymer charge, the entropic contributions of the ions to the free energy of the system play a central role in the determination of the location of phase equilibrium. In the simplest case, when the associative interaction responsible for gel formation is independent of the electrostatic interaction, the addition of salt changes the polymer equilibrium concentrations and indirectly changes the measurable swelling of the gel. We construct phase diagrams of these systems showing the location of the coexistence region, the gel-sol boundary and the location of the tie-lines. We determine the swelling of the gel within the co-existence region. Our main result is that the description of the effect of the salt on the properties of the weakly charged gel can be described through an extra contribution to the effective immiscibility parameter χ proportional to the square of the doping degree f2 and to the inverse square of the added salt concentration s−2. PMID:19759854
How the flow affects the phase behaviour and microstructure of polymer nanocomposites.
Stephanou, Pavlos S
2015-02-14
We address the issue of flow effects on the phase behaviour of polymer nanocomposite melts by making use of a recently reported Hamiltonian set of evolution equations developed on principles of non-equilibrium thermodynamics. To this end, we calculate the spinodal curve, by computing values for the nanoparticle radius as a function of the polymer radius-of-gyration for which the second derivative of the generalized free energy of the system becomes zero. Under equilibrium conditions, we recover the phase diagram predicted by Mackay et al. [Science 311, 1740 (2006)]. Under non-equilibrium conditions, we account for the extra terms in the free energy due to changes in the conformations of polymer chains by the shear flow. Overall, our model predicts that flow enhances miscibility, since the corresponding miscibility window opens up for non-zero shear rate values.
Ruff, Kiersten M; Roberts, Stefan; Chilkoti, Ashutosh; Pappu, Rohit V
2018-06-24
Proteins and synthetic polymers can undergo phase transitions in response to changes to intensive solution parameters such as temperature, proton chemical potentials (pH), and hydrostatic pressure. For proteins and protein-based polymers, the information required for stimulus responsive phase transitions is encoded in their amino acid sequence. Here, we review some of the key physical principles that govern the phase transitions of archetypal intrinsically disordered protein polymers (IDPPs). These are disordered proteins with highly repetitive amino acid sequences. Advances in recombinant technologies have enabled the design and synthesis of protein sequences of a variety of sequence complexities and lengths. We summarize insights that have been gleaned from the design and characterization of IDPPs that undergo thermo-responsive phase transitions and build on these insights to present a general framework for IDPPs with pH and pressure responsive phase behavior. In doing so, we connect the stimulus responsive phase behavior of IDPPs with repetitive sequences to the coil-to-globule transitions that these sequences undergo at the single chain level in response to changes in stimuli. The proposed framework and ongoing studies of stimulus responsive phase behavior of designed IDPPs have direct implications in bioengineering, where designing sequences with bespoke material properties broadens the spectrum of applications, and in biology and medicine for understanding the sequence-specific driving forces for the formation of protein-based membraneless organelles as well as biological matrices that act as scaffolds for cells and mediators of cell-to-cell communication. Copyright © 2018. Published by Elsevier Ltd.
Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J
2013-03-26
Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.
Ferritin nanocontainers that self-direct in synthetic polymer systems
NASA Astrophysics Data System (ADS)
Sengonul, Merih C.
Currently, there are many approaches to introduce functionality into synthetic polymers. Among these, for example, are copolymerization, grafting, and blending methods. However, modifications made by such methods also change the thermodynamics and rheological properties of the polymer system of interest, and each new modification often requires a costly reoptimization of polymer processing. Such a reoptimalization would not be necessary if new functionality could be introduced via a container whose external surface is chemically and physically tuned to interact with the parent polymer. The contents of the container could then be changed without changing other important properties of the parent polymer. In this context this thesis project explores an innovative nanocontainer platform which can be introduced into phase-separating homopolymer blends. Ferritin is a naturally existing nanocontainer that can be used synthetically to package and selectively transport functional moieties to a particular phase that is either in the bulk or on the surface of a homopolymer blend system. The principal focus of this work centers on modifying the surface of wild ferritin to: (1) render modified ferritin soluble in a non-aqueous solvent; and (2) impart it with self-directing properties when exposed to a homopolymer blend surface or incorporated into the bulk of a homopolymer blend. Wild ferritin is water soluble, and this research project successfully modified wild ferritin by grafting either amine-functional poly(ethylene glycol) (PEG) or short-chain alkanes to carbodiimide activated carboxylate groups on ferritin's surface. Such modified ferritin is soluble in dichloromethane (DCM). Modification was confirmed by ion-exchange chromatography, zeta-potential measurements, and electrospray mass spectroscopy. FT-IR was used to quantify the extent of PEGylation of the reaction products through area ratios of the -C-O-C asymmetric stretching vibration of the grafted PEG chains to the carbonyl stretching vibration (amide I band) of the protein. The dimensionless grafting density after PEGylation was found to be 0.13 with 120 average grafted PEG chains per ferritin nanocontainer. Modified ferritin was used for bulk modification of a phase-separated polymer blend of poly(desaminotyrosyl tyrosine dodecyl ester carbonate) [PDTD] and PEG. TEM micrographs showed remarkable selectivity of PEGylated ferritin to PEG domains, while alkylated ferritin self-directs to the PDTD matrix. We explain this strong selectivity by the favourable interaction energies between the grafted and free matrix chains. In addition, both modified and wild ferritin were used for surface modification of the phase-separated homopolymer blend of PDTD and poly(ε-caprolactone) (PCL). At physiological pH wild ferritin selectively adsorbed onto the PDTD phase, while alkylated ferritin showed a striking selectivity to PCL phase. We attribute this behavior to the increase in protein's pI point above physiological pH after modification, which changes the electrostatic interactions between the ferritin and the polymer surface. Collectively, these results demonstrate the versatile use of ferritin as a model nanocontainer for the selective modification of surface and bulk properties of polymers.
Lee, Cholho; Han, Kyung-Hoon; Kim, Kwon-Hyeon; Kim, Jang-Joo
2016-03-21
We have demonstrated a simple and efficient method to fabricate OLEDs with enhanced out-coupling efficiencies and with low pixel blurring by inserting nano-pillar arrays prepared through the lateral phase separation of two immiscible polymers in a blend film. By selecting a proper solvent for the polymer and controlling the composition of the polymer blend, the nano-pillar arrays were formed directly after spin-coating of the polymer blend and selective removal of one phase, needing no complicated processes such as nano-imprint lithography. Pattern size and distribution were easily controlled by changing the composition and thickness of the polymer blend film. Phosphorescent OLEDs using the internal light extraction layer containing the nano-pillar arrays showed a 30% enhancement of the power efficiency, no spectral variation with the viewing angle, and only a small increment in pixel blurring. With these advantages, this newly developed method can be adopted for the commercial fabrication process of OLEDs for lighting and display applications.
Non-invasive analysis of swelling in polymer dispersions by means of time-domain(TD)-NMR.
Nestle, Nikolaus; Häberle, Karl
2009-11-03
In this contribution, we discuss the potential of low-field time-domain(TD)-NMR to study the swelling of (aqueous) polymer dispersions by a volatile solvent. Due to the sensitivity of transverse relaxation times (T2) to swelling-induced changes in the molecular dynamics of the polymer component, the effects of swelling can be measured without spectral resolution. The measurement is performed on polymer dispersions in native state with solids contents around 50% in a non-invasive way without separating the polymeric phase and the water phase from each other. Using acetone in two polyurethane (PU) dispersions with different hard phase contents, we explore the sensitivity of the method and present a data evaluation strategy based on multicomponent fitting and proton balancing. Furthermore, we report exchange continualization as a further effect that needs to be taken into account for correct interpretation of the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budkov, Yu. A., E-mail: urabudkov@rambler.ru; National Research University Higher School of Economics, Moscow; Department of Chemistry, Lomonosov Moscow State University, Moscow
2014-11-28
We investigate local phase transitions of the solvent in the neighborhood of a solvophobic polymer chain which is induced by a change of the polymer-solvent repulsion and the solvent pressure in the bulk solution. We describe the polymer in solution by the Edwards model, where the conditional partition function of the polymer chain at a fixed radius of gyration is described by a mean-field theory. The contributions of the polymer-solvent and the solvent-solvent interactions to the total free energy are described within the mean-field approximation. We obtain the total free energy of the solution as a function of the radiusmore » of gyration and the average solvent number density within the gyration volume. The resulting system of coupled equations is solved varying the polymer-solvent repulsion strength at high solvent pressure in the bulk. We show that the coil-globule (globule-coil) transition occurs accompanied by a local solvent evaporation (condensation) within the gyration volume.« less
A Jamming Phase Diagram for Pressing Polymers
NASA Astrophysics Data System (ADS)
Teng, Chao; Zhang, Zexin; Wang, Xiaoliang; Xue, Gi; Nanjing University Team; Soochow University Collaboration
2011-03-01
Molecular glasses begin to flow when they are heated. Other glassy systems, such as dense foams, emulsions, colloidal suspensions and granular materials, begin to flow when subjected to sufficiently large stresses. The equivalence of these two routes to flow is a basic tenet of jamming, a conceptual means of unifying glassy behavior in a swath of disordered, dynamical arrested systems. However, a full understanding of jamming transition for polymers remains elusive. By controlling the packing densities of polymer glasses, we found that polymer glasses could once flow under cold-pressing at temperatures well below its calorimetric glass transition temperature (Tg). The thermomechanical analysis (TMA) results confirmed that Tg changed with density as well as the applied stress, which is exactly what to be expected within the jamming picture. We propose a jamming phase diagram for polymers based on our laboratory experiments.
NASA Astrophysics Data System (ADS)
Cheng, Stephen Z. D.; Keller, Andrew
1998-08-01
Polymer phases can be described in the same way as phases in other condensed matter using a number density operator and its correlation functions. This description requires the understanding of symmetry operations and order at different atomic and molecular levels. Statistical mechanics provides a link between the microscopic description of the structure and motion and the macroscopic thermodynamic properties. Within the limits of the laws of thermodynamics, polymers exhibit a rich variety of phase transition behaviors. By definition, a first-order phase transition describes a transformation that involves a sudden change of thermodynamic properties at its transition temperature, whereas higher-order phase transitions are classified as critical phenomena. Of special interest is the role of metastability in phase and phase transition behaviors. Although a metastable state possesses a local free energy minimum, it is not at the global equilibrium. Furthermore, metastable states can also be associated with phase sizes. Metastable behavior is also observed in phase transformations that are impeded by kinetic limitations along the pathway to thermodynamic equilibrium. This is illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification, and gel formation, as well as combinations of transformation processes. In these cases, the metastable state often becomes the dominant state for the entire system and is observed over a range of time and size scales. This review describes the general principles of metastability in polymer phases and phase transitions and provides illustrations from current experimental works in selected areas.
Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim
2016-02-16
The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.
Modeling solvent evaporation during thin film formation in phase separating polymer mixtures
Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.; ...
2018-02-09
Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less
Modeling solvent evaporation during thin film formation in phase separating polymer mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, John; Lowengrub, John S.; Sumpter, Bobby G.
Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this paper, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for themore » derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Finally, effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.« less
Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences
NASA Astrophysics Data System (ADS)
Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.
2018-03-01
Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.
Assembly of P3HT/CdSe nanowire networks in an insulating polymer host.
Heo, Kyuyoung; Miesch, Caroline; Na, Jun-Hee; Emrick, Todd; Hayward, Ryan C
2018-06-27
Nanoparticles may act as compatibilizing agents for blending of immiscible polymers, leading to changes in blend morphology through a variety of mechanisms including interfacial adsorption, aggregation, and nucleation of polymer crystals. Herein, we report an approach to define highly structured donor/acceptor networks based on poly(3-hexylthiophene) (P3HT) and CdSe quantum dots (QDs) by demixing from an insulating polystyrene (PS) matrix. The incorporation of QDs led to laterally phase-separated co-continuous structures with sub-micrometer dimensions, and promoted crystallization of P3HT, yielding highly interconnected P3HT/QD hybrid nanowires embedded in the polymer matrix. These nanohybrid materials formed by controlling phase separation, interfacial activity, and crystallization within ternary donor/acceptor/insulator blends, offer attractive morphologies for potential use in optoelectronics.
Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane
NASA Astrophysics Data System (ADS)
Pieczyska, Elzbieta Alicja; Maj, Michal; Kowalczyk-Gajewska, Katarzyna; Staszczak, Maria; Urbanski, Leszek; Tobushi, Hisaaki; Hayashi, Shunichi; Cristea, Mariana
2014-07-01
Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.
NASA Astrophysics Data System (ADS)
Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G.; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S.; Do, Changwoo
Self-assembly of block copolymers provides opportunities to create nano hybrid materials, utilizing self-assembled micro-domains with a variety of morphology and periodic architectures as templates for functional nano-fillers. Here we report new progress towards the fabrication of a thermally responsive conducting polymer self-assembly made from a water-soluble poly(thiophene) derivative with short PEO side chains and Pluronic L62 solution in water. The structural and electrical properties of conjugated polymer-embedded nanostructures were investigated by combining SANS, SAXS, CGMD simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellar-to-lamellar phase transition defines the embedded conjugated polymer network. The conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. The research was sponsored by the Scientific User Facilities Division, Office of BES, U.S. DOE and Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC.
Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineart, Kenneth P.; Tallury, Syamal S.; Li, Tao
Shape-memory polymers (SMPs) change shape upon exposure to an environmental stimulus.1-3 They are of considerable importance in the ongoing development of stimuli-responsive biomedical4,5 and deployable6 devices, and their function depends on the presence of two components.7 The first provides mechanical rigidity to ensure retention of one or more temporary strain states and also serves as a switch capable of releasing a temporary strain state. The second, a network-forming component, is required to restore the polymer to a prior strain state upon stimulation. In thermally-activated SMPs, the switching element typically relies on a melting or glass transition temperature,1-3,7 and broad ormore » multiple switches permit several temporary strain states.8-10 Chemical integration of network-forming and switching species endows SMPs with specific properties.8,10,11 Here, we demonstrate that phase-change materials incorporated into network-forming macromolecules yield shape-memory polymer blends (SMPBs) with physically tunable switching temperatures and recovery kinetics for use in multi-responsive laminates and shape-change electronics.« less
Gift, Alan D; Hettenbaugh, Jacob A; Quandahl, Rachel A; Mapes, Madison
2017-11-06
The effects of polymers on the anhydrate-to-hydrate transformation of carbamazepine (CBZ) was investigated. The three types of polymers studied were polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and substituted celluloses which included hydroxypropyl methylcellulose (HPMC) and methylcellulose (MC). Anhydrous CBZ was added to dilute aqueous polymer solutions and Raman spectroscopy measurements were collected to monitor the kinetics of the solution-mediated transformation to CBZ dihydrate. Polymers exhibiting the greatest inhibition were able to reduce the growth phase of the solution-mediated transformation and change the habit of the hydrate crystal indicating polymer adsorption to the hydrate crystal surface as the mechanism of inhibition. The results of the various polymers showed that short chain substituted celluloses (HPMC and MC) inhibited the CBZ transformation to a much greater extent than longer chains. The same trend was observed for PVP and PVA, but to a lesser extent. These chain length effects were attributed to changes in polymer confirmation when adsorbed on the crystal surface. Additionally, decreasing the percentage of hydroxyl groups on the PVA polymer backbone reduced the ability of the polymer to inhibit the transformation and changing the degree of substitutions of methyl and hydroxypropyl groups on the cellulosic polymer backbone had no effect on the transformation.
Kierys, A; Zaleski, R; Buda, W; Pikus, S; Dziadosz, M; Goworek, J
2013-06-01
Polymer (XAD7HP)/Ti 4+ nanocomposites were prepared through the swelling of polymer in titanium (IV) ethoxide as a titanium dioxide precursor. The nanocomposite beads exhibit relatively high porosity different than the porosity of the initial polymer. Thermal treatment of composite particles up to 200 °C in vacuum causes the change of their internal structure. At higher temperature, the components of composite become more tightly packed. Calcination at 600 °C and total removal of polymer produce spherically shaped TiO 2 condensed phase as determined by XRD. Thermally treated composites show the substantial change of pore dimensions within micro- and mesopores. The presence of micropores and their transformation during thermal processing was studied successfully by positron annihilation lifetime spectroscopy (PALS). The results derived from PALS experiment were compared with those obtaining from low-temperature nitrogen adsorption data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Huipeng; Hsiao, Yu -Che; Chen, Jihua
2014-09-16
It is known, one way to improve power conversion efficiency (PCE) of polymer based bulk-heterojunction (BHJ) photovoltaic cells is to increase the open circuit voltage (V oc). Replacing PCBM with bis-adduct fullerenes significantly improves V oc and the PCE in devices based on the conjugated polymer poly(3-hexyl thiophene) (P3HT). However, for the most promising low band-gap polymer (LBP) system, replacing PCBM with ICBA results in poor short-circuit current (J sc) and PCE although V oc is significantly improved. The optimization of the morphology of as-cast LBP/bis-fullerene BHJ photovoltaics is attempted by adding a co-solvent to the polymer/fullerene solution prior tomore » film deposition. Varying the solubility of polymer and fullerene in the co-solvent, bulk heterojunctions are fabricated with no change of polymer ordering, but with changes in fullerene phase separation. The morphologies of the as-cast samples are characterized by small angle neutron scattering and neutron reflectometry. A homogenous dispersion of ICBA in LBP is found in the samples where the co-solvent is selective to the polymer, giving poor device performance. Aggregates of ICBA are formed in samples where the co-solvent is selective to ICBA. Furthermore, the resultant morphology improves PCE by up to 246%. Finally, a quantitative analysis of the neutron data shows that the interfacial area between ICBA aggregates and its surrounding matrix is improved, facilitating charge transport and improving the PCE.« less
Temperature-responsive chromatography for the separation of biomolecules.
Kanazawa, Hideko; Okano, Teruo
2011-12-09
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here. Copyright © 2011 Elsevier B.V. All rights reserved.
Synthesis of inorganic polymers using fly ash and primary lead slag.
Onisei, S; Pontikes, Y; Van Gerven, T; Angelopoulos, G N; Velea, T; Predica, V; Moldovan, P
2012-02-29
The present work reports on the synthesis and properties of inorganic polymers ("geopolymers") made of 100% fly ash from lignite's combustion, 100% primary lead slag and mixtures of the two. In the inorganic polymers with both fly ash and lead slag the main crystalline phases detected are wüstite, magnetite, sodium zinc silicate, quartz, anorthite, and gehlenite; litharge partially dissolves. FTIR analysis in these samples revealed that the main peaks and bands of end members also exist, along with a new amorphous reaction product. In terms of microstructure, both fly ash and lead slag dissolve and contribute in the binding phase whereas the larger particles act as aggregates. For an increasing lead slag in the composition, the binding phase is changing in chemistry and reaches PbO values higher than 50 wt.% for the 100% lead slag inorganic polymer. Regarding the properties of fly ash and lead slag inorganic polymers, compressive strength is higher than 35 MPa in all cases and water absorption diminishes as the lead slag content increases. A comparison of leaching results before and after polymerisation reveals that pH is an important factor as Pb is immobilised in the binding phase, unlike Zn and As. Copyright © 2011 Elsevier B.V. All rights reserved.
Constitutive modeling of glassy shape memory polymers
NASA Astrophysics Data System (ADS)
Khanolkar, Mahesh
The aim of this research is to develop constitutive models for non-linear materials. Here, issues related for developing constitutive model for glassy shape memory polymers are addressed in detail. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Glassy shape memory polymers are called glassy because the temporary shape is fixed by the formation of a glassy solid, while return to the original shape is due to the melting of this glassy phase. The constitutive model has been developed to capture the thermo-mechanical behavior of glassy shape memory polymers using elements of nonlinear mechanics and polymer physics. The key feature of this framework is that a body can exist stress free in numerous natural configurations, the underlying natural configuration of the body changing during the process, with the response of the body being elastic from these evolving natural configurations. The aim of this research is to formulate a constitutive model for glassy shape memory polymers (GSMP) which takes in to account the fact that the stress-strain response depends on thermal expansion of polymers. The model developed is for the original amorphous phase, the temporary glassy phase and transition between these phases. The glass transition process has been modeled using a framework that was developed recently for studying crystallization in polymers and is based on the theory of multiple natural configurations. Using the same frame work, the melting of the glassy phase to capture the return of the polymer to its original shape is also modeled. The effect of nanoreinforcement on the response of shape memory polymers (GSMP) is studied and a model is developed. In addition to modeling and solving boundary value problems for GSMP's, problems of importance for CSMP, specifically a shape memory cycle (Torsion of a Cylinder) is solved using the developed crystallizable shape memory polymer model. To solve complex boundary value problems in realistic geometries a user material subroutine (UMAT) for GSMP model has been developed for use in conjunction with the commercial finite element software ABAQUS. The accuracy of the UMAT has been verified by testing it against problems for which the results are known.
An investigation of a thermally steerable electroactive polymer/shape memory polymer hybrid actuator
NASA Astrophysics Data System (ADS)
Ren, Kailiang; Bortolin, Robert S.; Zhang, Q. M.
2016-02-01
This paper investigates the thermal response of a hybrid actuator composed of an electroactive polymer (EAP) and a shape memory polymer (SMP). This study introduces the concept of using the large strain from a phase transition (ferroelectric to paraelectric phase) induced by temperature change in a poly(vinylidene fluoride-trifluoroethylene) film to tune the shape of an SMP film above its glass transition temperature (Tg). Based on the material characterization data, it is revealed that the thickness ratio of the EAP/SMP films plays a critical role in the displacement of the actuator. Further, it is also demonstrated that the displacement of the hybrid actuator can be tailored by varying the temperature, and finite element method simulation results fit well with the measurement data. This specially designed hybrid actuator shows great promise for future morphing aircraft applications.
Kinsinger, Michael I.; Buck, Maren E.; Meli, Maria-Victoria; Abbott, Nicholas L.; Lynn, David M.
2009-01-01
We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous-LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir-Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4’-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4’-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous-5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous-5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous-air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films of a novel flexible polymer. A second important outcome is the observation that the existence, extent, and dynamics of this order can be identified and characterized optically by transfer of the Langmuir film to a thin film of LC. Additional characterization of Langmuir films of two other flexible polymers [poly(methyl methacrylate) and poly(vinyl stearate)] using this method also resulted in uniform azimuthal alignment of 5CB, suggesting that the generation of long-range order in uniaxially compressed Langmuir films of polymers may also occur more generally over a broader range of polymers with flexible backbones. PMID:19836025
Luminescent detection of hydrazine and hydrazine derivatives
Swager, Timothy M [Newton, MA; Thomas, III, Samuel W.
2012-04-17
The present invention generally relates to methods for modulating the optical properties of a luminescent polymer via interaction with a species (e.g., an analyte). In some cases, the present invention provides methods for determination of an analyte by monitoring a change in an optical signal of a luminescent polymer upon exposure to an analyte. Methods of the present invention may be useful for the vapor phase detection of analytes such as explosives and toxins. The present invention also provides methods for increasing the luminescence intensity of a polymer, such as a polymer that has been photobleached, by exposing the luminescent polymer to a species such as a reducing agent.
NASA Astrophysics Data System (ADS)
Chung, Hyun-Joong; Ohno, Kohji; Composto, Russell
2013-03-01
We present an novel pathway to control the location of nanoparticles (NPs) in phase-separating polymer blend films containing poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN). Because hydrophobic polymer phases have a small interfacial energy, ~1 mJ/m2, subtle changes in the NP surface functionality can be used to guide NPs to either the interface between immiscible polymers or into one of the phases. Based on this idea, we designed a class of NPs grafted with PMMA brushes. These PMMA brushes were grown from the NP surface by atom transfer radical polymerization (ATRP), which results in chains terminated with chlorine atoms. The chain end can be substituted with protons (H) by dehalogenation. As a result, the NPs are strongly segregated at the interface when grafted PMMA chains are short (Mn =1.8K) and the end group is Cl, whereas NPs partition into PMMA-rich phase when chains are long (Mn =160K) and/or when chains are terminated with hydrogen. The Cl end groups and shorter chain length cause an increase in surface energy for the NPs. The increase in surface energy of short-chained NPs can be attributed to (i) an extended brush conformation (entropic) and/or (ii) a high density of ``unfavorable'' end groups (enthalpic). Finally, the impact of NPs on the morphological evolution of the polymer blend films will be discussed. Ref: H.-J.Chung et al., ACS Macro Lett. 1(1), 252-256 (2012).
Polymer loaded microemulsions: Changeover from finite size effects to interfacial interactions
NASA Astrophysics Data System (ADS)
Kuttich, B.; Ivanova, O.; Grillo, I.; Stühn, B.
2016-10-01
Form fluctuations of microemulsion droplets are observed in experiments using dielectric spectroscopy (DS) and neutron spin echo spectroscopy (NSE). Previous work on dioctyl sodium sulfosuccinate based water in oil microemulsions in the droplet phase has shown that adding a water soluble polymer (Polyethylene glycol M = 1500 g mol-1) modifies these fluctuations. While for small droplet sizes (water core radius rc < 37 Å) compared to the size of the polymer both methods consistently showed a reduction in the bending modulus of the surfactant shell as a result of polymer addition, dielectric spectroscopy suggests the opposite behaviour for large droplets. This observation is now confirmed by NSE experiments on large droplets. Structural changes due to polymer addition are qualitatively independent of droplet size. Dynamical properties, however, display a clear variation with the number of polymer chains per droplet, leading to the observed changes in the bending modulus. Furthermore, the contribution of structural and dynamical properties on the changes in bending modulus shifts in weight. With increasing droplet size, we initially find dominating finite size effects and a changeover to a system, where interactions between the confined polymer and the surfactant shell dominate the bending modulus.
Synthetic biological membrane with self organizing properties
Firestone, Millicent A.; Tiede, David M.
2003-01-01
A mixture is provided which manifests a gel phase at a temperature higher than that in which the mixture manifests a liquid phase. The mixture is a combination of a lipid, a polymer-grafted phospholipid and a surfactant. It is biomimetic in nature and changes phases when subjected to one or a plurality of environmental stimuli.
Mollo, A Rosario; Corrigan, Owen I
2002-01-01
Amoxycillin-poly (D,L-lactide-co-glycolide) (PLGA) compacts were prepared by direct compression of both powder mixtures or films in a pre-heated press. Release profiles generally showed two phases separated by an induction period. Thus, both diffusion and polymer degradation mechanisms were involved in drug release, the relative importance of each depending on processing type and drug loading. Drug release parameters for each phase were determined. The fraction of total drug released, in the initial release phase, increased with drug loading and was much larger for compressed physical mixtures than for compressed composites prepared from co-evaporate films. Comparison of the polymer mass loss profiles of drug-loaded and drug-free discs indicated that the presence of the amphoteric drug amoxycillin had little impact on the polymer degradation rate, in contrast to the marked acceleration previously reported for basic drugs. Significant drug degradation occurred and was associated with release at later times. Release data was fitted to an equation accounting for degradation of the drug on release and suggested accelerated amoxycillin degradation during the polymer degradation controlled release phase, consistent with changes in pH in the microenvironment of the eroding compact.
Gradient polymer network liquid crystal with a large refractive index change.
Ren, Hongwen; Xu, Su; Wu, Shin-Tson
2012-11-19
A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells' movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.
Maserati, Lorenzo; Meckler, Stephen M.; Bachman, Jonathan E.; ...
2017-10-18
Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. We introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal-organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOFmore » to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.« less
Directed Self-Organization of Polymer-Grafted Nanoparticles in Polymer Thin Films
NASA Astrophysics Data System (ADS)
Zhang, Ren
The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. Surface modification of NPs with grafted polymer ligands has emerged as a versatile means to control the interaction and organization of particle constituents in polymer-matrix composite materials. In this study, by incorporating polymer-grafted nanoparticles (PGNPs) into polymeric thin films, we aim to understand and control the spatial organization of PGNPs through the interactions between polymer brush layer and matrix chains. As model systems, we investigate thermodynamic behaviors of polystyrene-tethered gold nanoparticles (denoted as AuPS) dispersed in polymer thin film matrices with identical and different chemical compositions (PS and PMMA, respectively), and evaluate the influence of external perturbation fields on directed organization of nanofillers. With the presence of unfavorable enthalpic interactions between grafted and free polymer chains (i.e. AuPS/ PMMA blend thin films), phase-separated structures are generated upon thermal annealing, characterized with morphologies ranging from discrete droplets to spinodal structures, which is consistent with composition-dependent classic binary polymer blends phase separation. The phase separation kinetics of AuPS/ PMMA blends exhibit distinct features compared to the parent PS/ PMMA homopolymer blends. We further illustrate phase-separated AuPS-rich domains can be directed into unidirectionally aligned anisotropic structures through soft-shear dynamic zone annealing (DZA-SS) process with tunable domain aspect ratios. To exert exquisite control over the shape, size and location of phase-separated PGNP domains, topographically patterned elastomer confinement is introduced to PGNP/ polymer blend thin films during thermal annealing. When the phase-separated lengthscale coincides with confined pattern dimension, long-range ordered submicron-sized AuPS domains are generated in PMMA matrices with dense and well-dispersed nanoparticle distribution. Furthermore, preferential segregation of AuPS nanoparticles at patterned mesa regions can be induced in PS matrices where enthalpic interactions are absent. This selective segregation is achieved due to the local perturbation of grafted chains when confined in a restricted space. The efficiency of this particle segregation process within patterned mesa-trench films can be tuned by changing the relative entropic confinement effects on grafted and matrix chains. This physical pattern directed PGNP organization strategy is applicable to versatile pattern geometries and nanoparticle compositions.
NASA Astrophysics Data System (ADS)
Yoon, Joonsung
The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and phthalic anhydride. A simple method to prepare composite surfaces that can change the wettability in response to the temperature change was proposed and evaluated. Composite surfaces prepared by nanoporous alumina templates filled with polymers showed surface morphology and wettability that depend on temperature. This effect is attributed to the significant difference in thermal conductivity and the thermal expansion coefficient between the alumina and the polymers. The reversibility in thermal response depends on the properties of the polymers.
Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; ...
2016-07-19
Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe
Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less
Influence of polymer coating morphology on microsensor response
NASA Astrophysics Data System (ADS)
Levit, Natalia; Pestov, Dmitry; Tepper, Gary C.
2004-03-01
Nanoscale polymeric coatings are used in a variety of sensor systems. The influence of polymer coating morphology on sensor response was investigated and it was determined that coating morphology plays a particularly important role in transducers based on optical or acoustic resonance such as surface acoustic wave (SAW) or surface plasmon resonance (SPR) devices. Nanoscale polymeric coatings were deposited onto a number of miniature devices using a "solvent-free" deposition technique known as Rapid Expansion of Supercritical Solutions (RESS). In RESS, the supercritical solvent goes into the vapor phase upon fast depressurization and separates from the polymer. Therefore, dry polymer particles are deposited from the gas phase. The average diameter of RESS precipitates is about two orders of magnitude smaller than the minimum droplet size achievable by the air-brush method. For rubbery polymers, such as PIB and PDMS, the nanoscale solute droplets produced by RESS agglomerate on the surface forming a highly-uniform continuous nanoscale film. For glassy and crstalline polymers, the RESS droplets produce uniform particulate coatings exhibiting high surface-to-volume ratio. The coating morphology can be changed by controlling the RESS processing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.
2015-06-24
Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less
NASA Astrophysics Data System (ADS)
Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.
2018-04-01
We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.
Physical properties of immiscible polymers
NASA Technical Reports Server (NTRS)
Harris, J. Milton
1987-01-01
The demixing of immiscible polymers in low gravity is discussed. Applications of knowledge gained in this research will provide a better understanding of the role of phase segregation in determining the properties of polymer blends made from immiscible polymers. Knowledge will also be gained regarding the purification of biological materials by partitioning between the two liquid phases formed by solution of the polymers polyethylene glycol and dextran in water. Testing of new apparatus for space flight, extension of affinity phase partitioning, refinement of polymer chemistry, and demixing of isopycnic polymer phases in a one gravity environment are discussed.
Vertical Phase Segregation Induced by Dipolar Interactions in Planar Polymer Brushes
Mahalik, Jyoti P.; Sumpter, Bobby G.; Kumar, Rajeev
2016-09-13
In this paper, we present a generalized theory for studying structural properties of a planar dipolar polymer brush immersed in a polar solvent. We show that an explicit treatment of the dipolar interactions yields a macroscopic concentration dependent effective “chi” (the Flory–Huggins-like interaction) parameter. Furthermore, it is shown that the concentration dependent chi parameter promotes phase segregation in polymer solutions and brushes so that the polymer-poor phase consists of a finite/nonzero polymer concentration. Such a destabilization of the homogeneous phase by the dipolar interactions appears as vertical phase segregation in a planar polymer brush. In a vertically phase segregated polymermore » brush, the polymer-rich phase near the grafting surface coexists with the polymer-poor phase at the other end. Predictions of the theory are directly compared with prior reported experimental results for dipolar polymers in polar solvents. Excellent agreements with the experimental results are found, hinting that the dipolar interactions play a significant role in vertical phase segregation of planar polymer brushes. We also compare our field theoretical approach with the two-state and other models invoking ad hoc concentration dependence of the chi parameter. Interplay between the short-ranged excluded volume interactions and long-ranged dipolar interactions is shown to play an important role in affecting the vertical phase separation. Finally, effects of mismatch between the dipole moments of the polymer segments and the solvent molecules are investigated in detail.« less
A concise review on smart polymers for controlled drug release.
Aghabegi Moghanjoughi, Arezou; Khoshnevis, Dorna; Zarrabi, Ali
2016-06-01
Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.
Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp
2016-06-07
Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases.
Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases.
Zhang, Bao-Yan; Meng, Fan-Bao; Cong, Yue-Hua
2007-08-06
The optical properties of polymer liquid crystal cell exhibiting polymer blue phases (PBPs) have been determined using ultraviolet-visible spectrophotometry, polarizing optical microscopy (POM), differential scanning calorimetry (DSC), X-ray measurements, FTIR imaging and optical rotation technique. PBPs are thermodynamically stabile mesophases, which appear in chiral systems between isotropic and liquid crystal phases. A series of cyclosiloxane-based blue phase polymers were synthesized using a cholesteric LC monomer and a nematic LC monomer, and some of the polymers exhibit PBPs in temperature range over 300 degrees in cooling cycles. The unique property based on their structure and different twists formed and expect to open up new photonic application and enrich polymer blue phase contents and theory.
Ultra fast polymer network blue phase liquid crystals
NASA Astrophysics Data System (ADS)
Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar
2011-06-01
Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).
Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.
Yang, Hui; Leow, Wan Ru; Chen, Xiaodong
2018-03-01
Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase behavior of ternary polymer brushes
Simocko, Chester K.; Frischknecht, Amalie L.; Huber, Dale L.
2016-01-07
Ternary polymer brushes consisting of polystyrene, poly(methyl methacrylate), and poly(4-vinylpyridine) have been synthesized. These brushes laterally phase separate into several distinct phases and can be tailored by altering the relative polymer composition. Self-consistent field theory has been used to predict the phase diagram and model both the horizontal and vertical phase behavior of the polymer brushes. As a result, all phase behaviors observed experimentally correlate well with the theoretical model.
USDA-ARS?s Scientific Manuscript database
Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...
NASA Astrophysics Data System (ADS)
Wang, Yun; Chen, Ken S.
2016-05-01
In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557-3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.
Wang, Yun; Chen, Ken S.
2016-03-21
In the present study, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Here, analysis is performed on a dimensionless parameter Da 0 introduced in our previous paper and the parameter is further evaluated in a realisticmore » fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da 0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
K., S C; M., T C
Plastic bonded explosives (PBX) generally consist of 85 - 95 % by weight energetic material, such as HMX, and 5 - 15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX {beta}-phase to {delta}-phase transition in PBX 9501 is similar to that inmore » neat HMX. However, in the presence of the PBX 9501 binder, {delta}-phase HMX readily converts back to {beta}-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of {delta}-phase to {beta}-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the surface molecules of the {delta}-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the {delta}-phase to {beta}-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.« less
Processes of Fatigue Destruction in Nanopolymer-Hydrophobised Ceramic Bricks
Fic, Stanisław; Szewczak, Andrzej; Barnat-Hunek, Danuta; Łagód, Grzegorz
2017-01-01
The article presents a proposal of a model of fatigue destruction of hydrophobised ceramic brick, i.e., a basic masonry material. The brick surface was hydrophobised with two inorganic polymers: a nanopolymer preparation based on dialkyl siloxanes (series 1–5) and an aqueous silicon solution (series 6–10). Nanosilica was added to the polymers to enhance the stability of the film formed on the brick surface. To achieve an appropriate blend of the polymer liquid phase and the nano silica solid phase, the mixture was disintegrated by sonication. The effect of the addition of nano silica and sonication on changes in the rheological parameters, i.e., viscosity and surface tension, was determined. Material fatigue was induced by cyclic immersion of the samples in water and drying at a temperature of 100 °C, which caused rapid and relatively dynamic movement of water. The moisture and temperature effect was determined by measurement of changes in surface hardness performed with the Vickers method and assessment of sample absorbability. The results provided an approximate picture of fatigue destruction of brick and hydrophobic coatings in relation to changes in their temporal stability. Additionally, SEM images of hydrophobic coatings in are shown. PMID:28772404
Processes of Fatigue Destruction in Nanopolymer-Hydrophobised Ceramic Bricks.
Fic, Stanisław; Szewczak, Andrzej; Barnat-Hunek, Danuta; Łagód, Grzegorz
2017-01-06
The article presents a proposal of a model of fatigue destruction of hydrophobised ceramic brick, i.e., a basic masonry material. The brick surface was hydrophobised with two inorganic polymers: a nanopolymer preparation based on dialkyl siloxanes (series 1-5) and an aqueous silicon solution (series 6-10). Nanosilica was added to the polymers to enhance the stability of the film formed on the brick surface. To achieve an appropriate blend of the polymer liquid phase and the nano silica solid phase, the mixture was disintegrated by sonication. The effect of the addition of nano silica and sonication on changes in the rheological parameters, i.e., viscosity and surface tension, was determined. Material fatigue was induced by cyclic immersion of the samples in water and drying at a temperature of 100 °C, which caused rapid and relatively dynamic movement of water. The moisture and temperature effect was determined by measurement of changes in surface hardness performed with the Vickers method and assessment of sample absorbability. The results provided an approximate picture of fatigue destruction of brick and hydrophobic coatings in relation to changes in their temporal stability. Additionally, SEM images of hydrophobic coatings in are shown.
Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao
2018-06-01
The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.
Method for separating water soluble organics from a process stream by aqueous biphasic extraction
Chaiko, David J.; Mego, William A.
1999-01-01
A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.
NASA Astrophysics Data System (ADS)
Barbosa Neto, Newton; Dutra, Marcia; Araujo, Paulo; Sampaio, Renato
Solution aggregated thin films of conjugated polymers have demonstrated to be promising materials for many applications, e.g., solar cells and field-effect transistors. There are many standard methods to generate aggregates in polymeric solution, which includes poor solvent addiction and solution temperature manipulation. Here, we demonstrate a new approach to induce aggregate formation on solution of P3HT polymer. Under light excitation with 355 nm or 532 nm pulsed laser the polymer exhibit significant changes on its UV-Vis spectrum which are most known in the literature as the formation of H-J aggregates and additional new bands associated with polaron formation. Such changes in the amorphous phase of the polymers are seen in specific conditions of solvent combinations. We show also the dependency on the excitation laser power which can be identified as a threshold to ignite the formation of the new structure. We are grateful to CNPq and CAPES for financial support.
NASA Astrophysics Data System (ADS)
Mortensen, K.; Almdal, K.; Schwahn, D.; Frielinghaus, H.
1997-03-01
Studies of the phase behavior of polymer systems has proven that the sensitivity to fluctuations is much more distinct than originally anticipated based on theoretical arguments. In blends of homo-polymers, studies have revealed that fluctuations give rise to significant re-normalized critical behavior. It has been argued that the free volume causes an entropic contribution to the Flory-Huggins interaction parameter, \\chi, and is thereby responsible for the re-normalized behavior. In block copolymers fluctuations have even more pronounced effects, as it changes the second order critical point at f=0.5 to first order and additional complex phases are stabilized. Measurements of the structure factor S(q) of PEP-PDMS diblock copolymers have revealed unique character in the phase-diagram with re-entrant ordered structure. Moreover, an unexpected singularity in the conformational compressibility, as identified from the peak-position, q, is observed. In contrary to binary polymer blends, pressure does not affect the Ginzburg number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.
We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratiomore » of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maserati, Lorenzo; Meckler, Stephen M.; Bachman, Jonathan E.
Despite the availability of chemistries to tailor the pore architectures of microporous polymer membranes for chemical separations, trade-offs in permeability and selectivity with functional group manipulations nevertheless persist, which ultimately places an upper bound on membrane performance. We introduce a new design strategy to uncouple these attributes of the membrane. Key to our success is the incorporation of phase-change metal-organic frameworks (MOFs) into the polymer matrix, which can be used to increase the solubility of a specific gas in the membrane, and thereby its permeability. We further show that it is necessary to scale the size of the phase-change MOFmore » to nanoscopic dimensions, in order to take advantage of this effect in a gas separation. Our observation of an increase in solubility and permeability of only one of the gases during steady-state permeability measurements suggests fast exchange between free and chemisorbed gas molecules within the MOF pores. While the kinetics of this exchange in phase-change MOFs are not yet fully understood, their role in enhancing the efficacy and efficiency of the separation is clearly a compelling new direction for membrane technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitazawa, Yuzo; Ueki, Takeshi; McIntosh, Lucas D.
2016-04-29
Here we investigate a hierarchical morphology change and accompanying sol–gel transition using a doubly thermosensitive ABC-triblock copolymer in an ionic liquid (IL). The triblock copolymer contains two different lower critical solution temperature (LCST) thermosensitive polymers, poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA), as the end blocks and poly(methyl methacrylate) (PMMA) as the middle block (PBnMA-b-PMMA-b-PPhEtMA: BMP). BMP undergoes a hierarchical phase transition corresponding to the self-assembly of each of the thermosensitive blocks in the IL, and a sol–gel transition was observed in concentrated, above 10 wt %, polymer solutions. The gelation behavior was affected by polymer concentration, and at 20more » wt %, the BMP/IL composite showed a phase transition, with increasing temperature, from solution through a jammed micelle suspension to a physically cross-linked gel. For each phase was formed reversibly and rapidly over the corresponding temperature range. Finally, the jammed micelle and cross-linked gel states were characterized using viscoelastic measurements and small-angle X-ray scattering (SAXS).« less
Tunable fractional-order capacitor using layered ferroelectric polymers
NASA Astrophysics Data System (ADS)
Agambayev, Agamyrat; Patole, Shashikant; Bagci, Hakan; Salama, Khaled N.
2017-09-01
Pairs of various Polyvinylidene fluoride P(VDF)-based polymers are used for fabricating bilayer fractional order capacitors (FOCs). The polymer layers are constructed using a simple drop casting approach. The resulting FOC has two advantages: It can be easily integrated with printed circuit boards, and its constant phase angle (CPA) can be tuned by changing the thickness ratio of the layers. Indeed, our experiments show that the CPA of the fabricated FOCs can be tuned within the range from -83° to -65° in the frequency band changing from 150 kHz to 10 MHz. Additionally, we provide an empirical formula describing the relationship between the thickness ratio and the CPA, which is highly useful for designing FOCs with the desired CPA.
Metal and polymer melt jet formation by the high-power laser ablation
NASA Astrophysics Data System (ADS)
Yoh, Jack J.; Gojani, Ardian B.
2010-02-01
The laser-induced metal and polymer melt jets are studied experimentally. Two classes of physical phenomena of interest are: first, the process of explosive phase change of laser induced surface ablation and second, the hydrodynamic jetting of liquid melts ejected from a beamed spot. We focus on the dynamic link between these two distinct physical phenomena in a framework of forming and patterning of metallic and polymer jets using a high-power Nd:YAG laser. The microexplosion of ablative spot on a target first forms a pocket of hot liquid melt and then it is followed by a sudden volume change of gas-liquid mixture leading to a pressure-induced spray jet ejection into surrounding medium.
Photo-enhanced performance and photo-tunable degradation in LC ecopolymers
NASA Astrophysics Data System (ADS)
Kaneko, Tatsuo
2007-05-01
Photosensitive, liquid crystalline (LC) polymers were prepared by in-bulk polymerization of phytomonomers such as cinnamic acid derivatives. The p-coumaric acid (4HCA) homopolymer showed a thermotropic LC phase where a photoreaction of [2+2] cycloaddition occurred by ultraviolet irradiation. LC phase was exhibited only in a low molecular weight state but the polymer was too brittle to materialize. Then we copolymerized 4HCA with multifunctional cinnamate, 3,4 dihydroxycinnamic acid (caffeic acid; DHCA), to prepare the hyperbranching architecture. Many branches increased the apparent size of the polymer chain but kept the low number-average molecular weight. P(4HCA-co-DHCA)s showed high performances which may be attained through the entanglement by in-bulk formation of hyperbranching, rigid structures. P(4HCA-co-DHCA)s showed a smooth hydrolysis, an in-soil degradation and a photoreaction cross-linking from conjugated cinnamate esters to aliphatic esters. The change in photoconversion degree tuned the polymer performance and chain hydrolysis.
NASA Astrophysics Data System (ADS)
Kulikovska, Olga; Gharagozloo-Hubmann, Kati; Stumpe, Joachim; Huey, Bryan D.; Bliznyuk, Valery N.
2012-12-01
We studied peculiarities of the structural reconstruction within holographically recorded gratings on the surface of several different amorphous azobenzene-containing polymers. Under illumination with a light interference pattern, two processes take place in this type of polymer. The first process is the light-induced orientation of azobenzene units perpendicular to the polarization plane of the incident light. The second one is a transfer of macromolecules along the grating vector (i.e. perpendicular to the grating lines). These two processes result in the creation of a volume orientation grating (alternating regions of different direction or degree of molecular orientation) and a surface relief grating (SRG)—i.e. modulation of film thickness. One can assume that both orientation of molecules and their movement might change the local mechanical properties of the material. Therefore, formation of the SRG is expected to result also in modulation of the local stiffness of the polymer film. To reveal and investigate these stiffness changes within the grating, spin-coated polymer films were prepared and the gratings were recorded on them in two different ways: with an orthogonal circular or orthogonal linear polarization of two recording light beams. A combination of atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) techniques was applied for SRG development monitoring. We demonstrate that formation of the phase gratings depends on the chemical structure of polymers being used, polymer film thickness, and recording parameters, with the height of grating structures (depth of modulation) increasing with both the exposure time and the film thickness. UFM images suggest that the slopes of the topographic peaks in the phase gratings exhibit an increased stiffness with respect to the grating depressions.
NASA Astrophysics Data System (ADS)
Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Dayong, Zhang; Yongquan, Luo
2015-01-01
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulation effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.
Umapathi, Reddicherla; Vepuri, Suresh B; Venkatesu, Pannuru; Soliman, Mahmoud E
2017-05-11
To provide insights into the aggregation behavior, hydration tendency and variation in phase transition temperature produced by the addition of ionic liquids (ILs) to poly(N-isopropylacrylamide) (PNIPAM) aqueous solution, systematic physicochemical studies, and molecular dynamic simulations were carried out. The influence of ILs possessing the same [Cl] - anion and a set of cations [C n mim] + with increasing alkyl chain length such as 1-ethyl-3-methylimidazolium ([Emim] + ), 1-allyl-3-methylimidazolium ([Amim] + ), 1-butyl-3-methylimidazolium ([Bmim] + ), 1-hexyl-3-methylimidazolium ([Hmim] + ), 1-benzyl-3-methylimidazolium ([Bzmim] + ), and 1-decyl-3-methylimidazolium ([Dmim] + ) on the phase transition of PNIPAM was monitored by the aid of UV-visible absorption spectra, fluorescence intensity spectra, viscosity (η), dynamic light scattering (DLS), and Fourier transform infrared (FTIR) spectroscopy. Furthermore, to interpret the direct images and surface morphologies of the PNIPAM-IL aggregates, we performed field emission scanning electron microscopy (FESEM). The overall specific ranking of ILs in preserving the hydration layer around the PNIPAM aqueous solution was [Emim][Cl] > [Amim][Cl] > [Bmim][Cl] > [Hmim][Cl] > [Bzmim][Cl] > [Dmim][Cl]. Moreover, to investigate the molecular mechanism behind the change in the lower critical solution temperature (LCST) of the polymer in the presence of the ILs, a molecular dynamics (MD) study was performed. The MD simulation has clearly shown the reduction in hydration shell of the polymer after interacting with the ILs at their respective LCST. MD study revealed significant changes in polymer conformation because of IL interactions and strongly supports the experimental observation of polymer phase transition at a temperature lower than typical LCST for all the studied ILs. The driving force for concomitant sharp configurational transition has been attributed to the displacement of water molecules on the polymer surface by the ILs because of their hydrophobic interaction with the polymer.
Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2015-11-28
We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.
Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite
NASA Astrophysics Data System (ADS)
Archer, Lynden
Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.
Amemori, Shogo; Kokado, Kenta; Sada, Kazuki
2012-05-23
The de novo design of thermosensitive polymers in solution has been achieved by using the addition of small organic molecules (or "effectors"). Hydrogen bonding as an attractive polymer-polymer or polymer-effector interaction substantially dominates the responsivity, causing facile switching between LCST-type and UCST-type phase transitions, control of the transition temperature, and further coincidence of the two transitions. Small molecules having a high affinity for the polymer induce UCST-type phase behavior, whereas those having a low affinity for the polymer showed LCST-type phase behavior.
Effect of polymer additives on hydrodynamics and oxygen transfer in a bubble column bioreactor.
Kawase, Y
1993-01-01
The influence of polymer additives (polyethylene oxide and polyacrylamide) on the hydrodynamics and oxygen transfer in a bubble column bioreactor was examined. The addition of small amounts of these polymers has been known to cause significant drag reduction in turbulent flow circumstances. The gas hold-up was slightly decreased and the liquid-phase mixing was somewhat enhanced due to the addition of the polymers. The addition of polymer additives brought about a reduction of the volumetric oxygen transfer coefficient by about 40%. In dilute polymer solutions, large bubbles formed by bubble coalescence moved with high rise velocities in the presence of many small bubbles and the bubble size distributions were less uniform compared with those in water. The complicated changes in bubble hydrodynamic characteristics were examined to give possible explanations for oxygen transfer reduction.
Low voltage polymer network liquid crystal for infrared spatial light modulators.
Peng, Fenglin; Xu, Daming; Chen, Haiwei; Wu, Shin-Tson
2015-02-09
We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. To optimize device performance, we propose a physical model to understand the curing temperature effect on average domain size. Good agreement between model and experiment is obtained. By optimizing the UV curing temperature and employing a large dielectric anisotropy LC host, we have lowered the 2π phase change voltage to 22.8V at 1.55μm wavelength while keeping response time at about 1 ms. Widespread application of such a PNLC integrated into a high resolution liquid-crystal-on-silicon (LCoS) for infrared spatial light modulator is foreseeable.
Alvarez-Lorenzo, Carmen; Garcia-Gonzalez, Carlos A; Bucio, Emilio; Concheiro, Angel
2016-08-01
Polymers can be designed to modify their features as a function of the level and nature of the surrounding microorganisms. Such responsive polymers can endow drug delivery systems and drug-medical device combination products with improved performance against intracellular infections and biofilms. Knowledge on microorganism growth environment outside and inside cells and formation of biofilm communities on biological and synthetic surfaces, together with advances in materials science and drug delivery are prompting strategies with improved efficacy and safety compared to traditional systemic administration of antimicrobial agents. This review deals with antimicrobial strategies that rely on: (i) polymers that disintegrate or undergo phase-transitions in response to changes in enzymes, pH and pO2 associated to microorganism growth; (ii) stimuli-responsive polymers that expose contact-killing groups when microorganisms try to adhere; and (iii) bioinspired polymers that recognize microorganisms for triggered (competitive/affinity-driven) drug release. Prophylaxis and treatment of infections may benefit from polymers that are responsive to the unique changes that microbial growth causes in the surrounding environment or that even recognize the microorganism itself or its quorum sensing signals. These polymers may offer novel tools for the design of macrophage-, bacteria- and/or biofilm-targeted nanocarriers as well as of medical devices with switchable antibiofouling properties.
Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming
2010-06-01
This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.
Binary Colloidal Alloy Test-3 and 4: Critical Point
NASA Technical Reports Server (NTRS)
Weitz, David A.; Lu, Peter J.
2007-01-01
Binary Colloidal Alloy Test - 3 and 4: Critical Point (BCAT-3-4-CP) will determine phase separation rates and add needed points to the phase diagram of a model critical fluid system. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.
Structural dependence of MEH-PPV chromism in solution.
de Magalhães, Carlos E T; Savedra, Ranylson M L; Dias, Karina S; Ramos, Rodrigo; Siqueira, Melissa F
2017-03-01
The chromism observed in the MEH-PPV polymer in tetrahydrofuran (THF) solution is discussed as a function of the structural morphology of the backbone chains. To evaluate this phenomenon, we carried out simulations employing a hybrid methodology using molecular dynamics and quantum mechanical approaches. Our results support the hypothesis that the morphological order-disorder transition is related to the change from red to blue phase observed experimentally. The morphological disorder is associated with total or partial twisted arrangements in the polymer backbone, which induces an electronic conjugation length more confined to shorter segments. In addition, the main band of the MEH-PPV UV-Vis spectrum at the lower wavelength is related to the blue phase, in contrast to the red phase found for the more planar backbone chains.
Chang, Jiahua; Bahethan, Bota; Muhammad, Turghun; Yakup, Burabiye; Abbas, Mamatimin
2017-01-01
In this paper, we report the preparation of molecularly imprinted polymer coatings on quartz chips for selective solid-phase microextraction and fluorescence sensing of the auxin, indole-3-butyric acid. The multiple copolymerization method was used to prepare polymer coatings on silylated quartz chips. The polymer preparation conditions (e.g., the solvent, monomer, and cross-linker) were investigated systemically to enhance the binding performance of the imprinted coatings. Direct solid-phase fluorescence measurements on the chips facilitated monitoring changes in coating performance. The average binding capacity of an imprinted polymer coated chip was approximately 152.9 µg, which was higher than that of a non-imprinted polymer coated chip (60.8 µg); the imprinted coatings showed the highest binding to IBA among the structural analogues, indicating that the coatings possess high selectivity toward the template molecule. The developed method was used for the determination of the auxin in mung bean extraction, and the recovery was found to be in the range of 91.5% to 97.5%, with an RSD (n = 3) of less than 7.4%. Thus, the present study provides a simple method for fabricating a fluorescent sensor chip for selective analysis. PMID:28837081
NASA Astrophysics Data System (ADS)
Li, M. H.; Brûlet, A.; Keller, P.; Cotton, J. P.
1996-09-01
This article describes the conformation of two species of liquid crystalline polymers as revealed by small angle neutron scattering. The results obtained with side chain polymers are recalled. The procedure used to analyze the scattering data of main chains in the nematic phase is reported in this paper. It permits a demonstration of the existence of hairpins. Comparison of both polymer species shows that in the isotropic phase, the two polymers adopt a random coil conformation. In the nematic phase, the conformations are very different; the side chains behave as a melt of penetrable random coils whereas the main chains behave as a nematic phase of non penetrable cylinders.
Demonstration of an optical phased array using electro-optic polymer phase shifters
NASA Astrophysics Data System (ADS)
Hirano, Yoshikuni; Motoyama, Yasushi; Tanaka, Katsu; Machida, Kenji; Yamada, Toshiki; Otomo, Akira; Kikuchi, Hiroshi
2018-03-01
We have been investigating an optical phased array (OPA) using electro-optic (EO) polymers in phase shifters to achieve ultrafast optical beam steering. In this paper, we describe the basic structures of the OPA using EO polymer phase shifters and show the beam steering capability of the OPA. The designed OPA has a multimode interference (MMI) beam splitter and 8-channel polymer waveguides with EO polymer phase shifters. We compare 1 × 8 MMI and cascaded 1 × 2 MMI beam splitters numerically and experimentally, and then obtain uniform intensity outputs from the 1 × 8 beam splitter. We fabricate the EO polymer OPA with a 1 × 8 MMI beam splitter to prevent intensity dispersion due to radiation loss in bending waveguides. We also evaluate the optical beam steering capability of the fabricated OPA and found a 2.7° deflection of far-field patterns when applying a voltage difference of 25 V in adjacent phase shifters.
Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors
Liang, Rongning; Chen, Lusi; Qin, Wei
2015-01-01
Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887
A micro-reactor for preparing uniform molecularly imprinted polymer beads.
Zourob, Mohammed; Mohr, Stephan; Mayes, Andrew G; Macaskill, Alexandra; Pérez-Moral, Natalia; Fielden, Peter R; Goddard, Nicholas J
2006-02-01
In this study, uniform spherical molecularly imprinted polymer beads were prepared via controlled suspension polymerization in a spiral-shaped microchannel using mineral oil and perfluorocarbon liquid as continuous phases. Monodisperse droplets containing the monomers, template, initiator, and porogenic solvent were introduced into the microchannel, and particles of uniform size were produced by subsequent UV polymerization, quickly and without wasting polymer materials. The droplet/particle size was varied by changing the flow conditions in the microfluidic device. The diameter of the resulting products typically had a coefficient of variation (CV) below 2%. The specific binding sites that were created during the imprinting process were analysed via radioligand binding analysis. The molecularly imprinted microspheres produced in the liquid perfluorocarbon continuous phase had a higher binding capacity compared with the particles produced in the mineral oil continuous phase, though it should be noted that the aim of this study was not to optimize or maximize imprinting performance, but rather to demonstrate broad applicability and compatibility with known MIP production methods. The successful imprinting against a model compound using two very different continuous phases (one requiring a surfactant to stabilize the droplets the other not) demonstrates the generality of this current simple approach.
Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Nadazdy, Peter; Nadazdy, Vojtech; Majkova, Eva
2017-03-08
Solvent annealing is an efficient way of phase separation in polymer-fullerene blends to optimize bulk heterojunction morphology of active layer in polymer solar cells. To track the process in real time across all relevant stages of solvent evaporation, laboratory-based in situ small- and wide-angle X-ray scattering measurements were applied simultaneously to a model P3HT:PCBM blend dissolved in dichlorobenzene. The PCBM molecule agglomeration starts at ∼7 wt % concentration of solid content of the blend in solvent. Although PCBM agglomeration is slowed-down at ∼10 wt % of solid content, the rate constant of phase separation is not changed, suggesting agglomeration and reordering of P3HT molecular chains. Having the longest duration, this stage most affects BHJ morphology. Phase separation is accelerated rapidly at concentration of ∼25 wt %, having the same rate constant as the growth of P3HT crystals. P3HT crystallization is driving force for phase separation at final stages before a complete solvent evaporation, having no visible temporal overlap with PCBM agglomeration. For the first time, such a study was done in laboratory demonstrating potential of the latest generation table-top high-brilliance X-ray source as a viable alternative before more sophisticated X-ray scattering experiments at synchrotron facilities are performed.
Integral equation theory study on the phase separation in star polymer nanocomposite melts.
Zhao, Lei; Li, Yi-Gui; Zhong, Chongli
2007-10-21
The polymer reference interaction site model theory is used to investigate phase separation in star polymer nanocomposite melts. Two kinds of spinodal curves were obtained: classic fluid phase boundary for relatively low nanoparticle-monomer attraction strength and network phase boundary for relatively high nanoparticle-monomer attraction strength. The network phase boundaries are much more sensitive with nanoparticle-monomer attraction strength than the fluid phase boundaries. The interference among the arm number, arm length, and nanoparticle-monomer attraction strength was systematically investigated. When the arm lengths are short, the network phase boundary shows a marked shift toward less miscibility with increasing arm number. When the arm lengths are long enough, the network phase boundaries show opposite trends. There exists a crossover arm number value for star polymer nanocomposite melts, below which the network phase separation is consistent with that of chain polymer nanocomposite melts. However, the network phase separation shows qualitatively different behaviors when the arm number is larger than this value.
Polymer-induced phase separation and crystallization in immunoglobulin G solutions.
Li, Jianguo; Rajagopalan, Raj; Jiang, Jianwen
2008-05-28
We study the effects of the size of polymer additives and ionic strength on the phase behavior of a nonglobular protein-immunoglobulin G (IgG)-by using a simple four-site model to mimic the shape of IgG. The interaction potential between the protein molecules consists of a Derjaguin-Landau-Verwey-Overbeek-type colloidal potential and an Asakura-Oosawa depletion potential arising from the addition of polymer. Liquid-liquid equilibria and fluid-solid equilibria are calculated by using the Gibbs ensemble Monte Carlo technique and the Gibbs-Duhem integration (GDI) method, respectively. Absolute Helmholtz energy is also calculated to get an initial coexisting point as required by GDI. The results reveal a nonmonotonic dependence of the critical polymer concentration rho(PEG) (*) (i.e., the minimum polymer concentration needed to induce liquid-liquid phase separation) on the polymer-to-protein size ratio q (equivalently, the range of the polymer-induced depletion interaction potential). We have developed a simple equation for estimating the minimum amount of polymer needed to induce the liquid-liquid phase separation and show that rho(PEG) (*) approximately [q(1+q)(3)]. The results also show that the liquid-liquid phase separation is metastable for low-molecular weight polymers (q=0.2) but stable at large molecular weights (q=1.0), thereby indicating that small sizes of polymer are required for protein crystallization. The simulation results provide practical guidelines for the selection of polymer size and ionic strength for protein phase separation and crystallization.
Structure and Properties of Azobenzene Thin-Films
NASA Astrophysics Data System (ADS)
Allen, R. A.
1987-09-01
Available from UMI in association with The British Library. A number of monomer and polymer materials, all containing the azobenzene group, have been deposited as Langmuir-Blodgett (LB) multilayers and their structures and physical properties studied. LB films of two monomeric materials exhibited liquid crystal phase changes that were investigated by optical microscopy and X-ray diffraction. Multilayers built up from one of the materials exhibited a phase change upon aging and this demonstrated that the LB technique had produced a structure that was not the equilibrium state. A monomer material possessing a fluorocarbon chain was found to initially deposit as an LB film in a Z-type manner, but changed to Y-type deposition with increasing multilayer thickness. A correlation was observed between this behaviour and the surface potential changes that were brought about when deposition took place on an aluminium substrate. The feasibility of building up alternating multilayers of monomer and polymer materials was demonstrated. Combining these two classes of material in the same LB film may confer on it the mechanical durability of the polymers and the highly ordered structure and potentially interesting physical properties of the monomer. The structures developed here may prove to have high second harmonic generation capabilities. Polymer materials were built up into relatively thick Y-type LB multilayers and studied by X-ray diffraction. Only poorly defined layered structures were found. Polymer materials were also cast into thin films from the melt and from solution. One of the compounds developed a high degree of anisotropy in its structure after exposure to linearly polarised white light. A birefringence of up to Deltan = 0.21 was measured. In contrast, LB films formed from the same material could not be ordered in the same manner and this appeared to result from the very close packing that takes place in such structures.
NASA Astrophysics Data System (ADS)
Laskarakis, A.; Gravalidis, C.; Logothetidis, S.
2004-02-01
The continuously increasing application of polymeric materials in many scientific and technological fields has motivated an extensive use of polymer surface treatments, which modify the physical and chemical properties of polymer surfaces leading to surface activation and promotion of the surface adhesion. Fourier transform IR spectroscopic ellipsometry (FTIRSE) and phase modulated ellipsometry (PME) in the IR and Vis-FUV spectral regions respectively have been employed for in situ and real time monitoring of the structural changes on the polymer surface obtained by Ar + ion bombardment. The polymers were industrially supplied polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) membranes. The Ar + ion bombardment has found to change the chemical bonding of the films and especially the amount of the CO, C-C and CC groups. The detailed study of the FTIRSE spectra reveals important information about the effect of the Ar + ion bombardment on each of the above bonding groups. Also, the modification of the characteristic features, attributed to electronic transitions in specific bonds of PET and PEN macromolecules, has been studied using PME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiangjie, Zhao, E-mail: zxjdouble@163.com, E-mail: zxjdouble@gmail.com; Cangli, Liu; Jiazhu, Duan
Optically addressed conventional nematic liquid crystal spatial light modulator has attracted wide research interests. But the slow response speed limited its further application. In this paper, polymer network liquid crystal (PNLC) was proposed to replace the conventional nematic liquid crystal to enhance the response time to the order of submillisecond. The maximum light scattering of the employed PNLC was suppressed to be less than 2% at 1.064 μm by optimizing polymerization conditions and selecting large viscosity liquid crystal as solvent. The occurrence of phase ripple phenomenon due to electron diffusion and drift in photoconductor was found to deteriorate the phase modulationmore » effect of the optical addressed PNLC phase modulator. The wavelength effect and AC voltage frequency effect on the on state dynamic response of phase change was investigated by experimental methods. These effects were interpreted by electron diffusion and drift theory based on the assumption that free electron was inhomogeneously distributed in accordance with the writing beam intensity distribution along the incident direction. The experimental results indicated that the phase ripple could be suppressed by optimizing the wavelength of the writing beam and the driving AC voltage frequency when varying the writing beam intensity to generate phase change in 2π range. The modulation transfer function was also measured.« less
Thermomechanical behavior of shape memory elastomeric composites
NASA Astrophysics Data System (ADS)
Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry
2012-01-01
Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a temperature change. As such, the composite consists of an elastomer reinforced by a soft liquid at high temperature and a stiff solid at low temperature. The model includes a kinetic description of the non-isothermal crystallization and melting of the fibers during a temperature change. As the fibers transform from melt to crystal during cooling it is assumed that new crystals are formed in an undeformed state, which requires careful tracking of the kinematics of the evolving phases which comes at a significant computational cost. In order to improve the computational efficiency, an effective phase model (EPM) is adopted to treat the evolving crystal phases as an effective medium. A suite of careful thermomechanical experiments with a SMEC was carried out to calibrate various model parameters, and then to demonstrate the ability of the model to accurately capture the shape memory behavior of the SMEC system during complex thermomechanical loading scenarios. The model also identifies the effects of microstructural design parameters such as the fiber volume fraction.
Oh, Inrok; Choi, Saehyun; Jung, YounJoon; Kim, Jun Soo
2015-08-28
Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles. For a density of LJ particles above the phase boundary, phase separation occurs and a dense domain of LJ particles forms irrespective of interactions with the condensed polymer chain whereas its localization relative to the polymer chain is determined by the LJ-polymer attraction strength. Especially, in the case of moderately weak attractions, the domain forms separately from the polymer chain and subsequently associates with the polymer chain. When the density is below the phase boundary, however, the formation of a dense domain is possible only when the LJ-polymer attraction is strong enough, for which the domain grows in direct contact with the interacting polymer chain. In this work, different growth behaviors of LJ particles result from the differences in the density of LJ particles and in the LJ-polymer interaction, and this work suggests that the distinct formation of activity-dependent and activity-independent nuclear bodies (NBs) in a cell nucleus may originate from the differences in the concentrations of body-specific NB components and in their interaction with chromatins.
Glass/polymer composites and methods of making
Samuels, W. D.; Exarhos, Gregory J.
1995-01-01
The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.
Glass/polymer composites and methods of making
Samuels, W.D.; Exarhos, G.J.
1995-06-06
The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.
Reentrant equilibrium disordering in nanoparticle–polymer mixtures
Meng, Dong; Kumar, Sanat K.; Grest, Gary S.; ...
2017-01-31
A large body of experimental work has established that athermal colloid/polymer mixtures undergo a sequence of transitions from a disordered fluid state to a colloidal crystal to a second disordered phase with increasing polymer concentration. These transitions are driven by polymer-mediated interparticle attraction, which is a function of both the polymer density and size. It has been posited that the disordered state at high polymer density is a consequence of strong interparticle attractions that kinetically inhibit the formation of the colloidal crystal, i.e., the formation of a non-equilibrium gel phase interferes with crystallization. Here we use molecular dynamics simulations andmore » density functional theory on polymers and nanoparticles (NPs) of comparable size and show that the crystal-disordered phase coexistence at high polymer density for sufficiently long chains corresponds to an equilibrium thermodynamic phase transition. While the crystal is, indeed, stabilized at intermediate polymer density by polymer-induced intercolloid attractions, it is destabilized at higher densities because long chains lose significant configurational entropy when they are forced to occupy all of the crystal voids. Finally, our results are in quantitative agreement with existing experimental data and show that, at least in the nanoparticle limit of sufficiently small colloidal particles, the crystal phase only has a modest range of thermodynamic stability.« less
Tipduangta, Pratchaya; Belton, Peter; Fábián, László; Wang, Li Ying; Tang, Huiru; Eddleston, Mark; Qi, Sheng
2016-01-04
Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated.
Plastic phase change material and articles made therefrom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhari, Ramin
The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10.degree. C. and about 50.degree. C., and more preferably between about 18.degree. C. and about 28.degree. C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds aremore » provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.« less
Investigation of phase-change coatings for variable thermal control of spacecraft
NASA Technical Reports Server (NTRS)
Kelliher, W. C.; Young, P. R.
1972-01-01
An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.
Tuning the Assembly of Spherical Nanoparticles in Semicrystalline Polymers
NASA Astrophysics Data System (ADS)
Zhao, Dan; Jestin, Jacques; Zhao, Longxi; Kumar, Sanat K.; Mohammadkhani, Mohammad; Benicewicz, Brian C.
We propose a simple, novel strategy to controlling nanoparticle (NPs) dispersion states in a semi-crystalline polymer matrix exploiting the kinetics of polymer crystallization. The system consists of poly(methyl methacrylate) grafted spherical silica NPs and poly(ethylene oxide) matrices, which are thermodynamically miscible in the melt. We first show that no remarkable change was observed in the spatial dispersion of NPs upon fast crystallization. However, for slow crystallization, both TEM and X-ray/neutron scattering reveal that the system starts to be organized in a ``layer-by-layer'' architecture, where the NPs are aligned in the amorphous phases intercalated by the crystalline lamellar phases. More importantly, we have found that the resulting ``sheet-like'' NP morphology gives rise to a 2-fold increase in the storage modulus but without compromising the fracture toughness of the neat polymer. These results open pathways for creating in-situ biomimetic hierarchical structures with improved mechanical properties through a simple, single-step crystallization processing, which could lead to new applications for this largest class of commercially relevant polymeric materials.
A computational investigation of the thermodynamics and structure in colloid and polymer mixtures
NASA Astrophysics Data System (ADS)
Mahynski, Nathan Alexander
In this dissertation I use computational tools to study the structure and thermodynamics of colloid-polymer mixtures. I show that fluid-fluid phase separation in mixtures of colloids and linear polymers cannot be universally reduced using polymer-based scaling principles since these assume the binodals exist in a single scaling regime, whereas accurate simulations clearly demonstrate otherwise. I show that rethinking these solutions in terms of multiple length scales is necessary to properly explain the thermodynamic stability and structure of these fluid phases, and produce phase diagrams in nearly quantitative agreement with experimental results. I then extend this work to encompass more geometrically complex "star" polymers revealing how the phase behavior for many of these binary mixtures may be mapped onto that of mixtures containing only linear polymers. I further consider the depletion-driven crystallization of athermal colloidal hard spheres induced by polymers. I demonstrate how the partitioning of a finite amount of polymer into the colloidal crystal phase implies that the polymer's architecture can be tailored to interact with the internal void structure of different crystal polymorphs uniquely, thus providing a direct route to thermodynamically stabilizing one arbitrarily chosen structure over another, e.g., the hexagonal close-packed crystal over the face-centered cubic. I then begin to generalize this result by considering the consequences of thermal interactions and complex polymer architectures. These principles lay the groundwork for intelligently engineering co-solute additives in crystallizing colloidal suspensions that can be used to thermodynamically isolate single crystal morphologies. Finally, I examine the competition between self-assembly and phase separation in polymer-grafted nanoparticle systems by comparing and contrasting the validity of two different models for grafted nanoparticles: "nanoparticle amphiphiles" versus "patchy particles." The latter suggests these systems have some utility in forming novel "equilibrium gel" phases, however, I find that considering grafted nanoparticles as amphiphiles provides a qualitatively accurate description of their thermodynamics revealing either first-order phase separation into two isotropic phases or continuous self-assembly. I find no signs of empty liquid formation, suggesting that these nanoparticles do not provide a route to such phases.
NASA Astrophysics Data System (ADS)
Mashkov, Yu K.; Ruban, A. S.; Rogachev, E. A.; Chemisenko, O. V.
2018-01-01
Conditions of polymer materials usage containing nanoelements as modifiers significantly affect the requirements for their physic-mechanical and tribological properties. However, the mechanisms of nanoparticles effect to the polymers tribotechnical properties have not been studied enough. The article aim is to analyze the results of studying polytetrafluoroethylene modified with cryptocrystalline graphite and silicon dioxide and to determine the effectiveness of the modification methods used and methods for further improving filled PTFE mechanical and tribotechnical properties. The effect of modifiers to PCM supramolecular structure was analyzed with SEM methods. The results of modifying the PCM samples surface by depositing a copper film with ion-vacuum deposition methods and changing the structural-phase composition and tribological characteristics are considered. The findings make possible to characterize the physicochemical processes under frictional interaction in metal polymer tribosystems.
Highly tunable birefringent microstructured optical fiber.
Kerbage, C; Steinvurzel, P; Reyes, P; Westbrook, P S; Windeler, R S; Hale, A; Eggleton, B J
2002-05-15
We demonstrate a method for introducing and dynamically tuning birefringence in a microstructured optical fiber. Waveguide asymmetry in the fiber is obtained by selective filling of air holes with polymer, and tunability is achieved by temperature tuning of the polymer's index. The fiber is tapered such that the mode field expands into the cladding and efficiently overlaps the polymer that has been infused into the air holes, ensuring enhanced tunability and low splice loss. Experimental results are compared with numerical simulations made with the beam propagation method and confirm birefringence tuning that corresponds to a phase change of 6pi for a 1-cm length of fiber.
Cell Partition in Two Polymer Aqueous Phases
NASA Technical Reports Server (NTRS)
Harris, J. M.
1985-01-01
Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.
Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers.
Huang, Cheng; Moosmann, Markus; Jin, Jiehong; Heiler, Tobias; Walheim, Stefan; Schimmel, Thomas
2012-01-01
A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix) can be reproducibly induced. Either of the formed phases (PS or PMMA) can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This "monolayer copy" of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity) at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and (3-aminopropyl)triethoxysilane (APTES), and at the same time featuring regions of bare SiO(x). The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures [1].
Banerjee, Shubhadeep; Pal, Tapan K; Guha, Sujoy K
2012-03-01
To understand and maximize the therapeutic potential of poly(styrene-co-maleic acid) (SMA), a synthetic, pharmacologically-active co-polymer, its effect on conformation, phase behavior and stability of lipid matrix models of cell membranes were investigated. The modes of interaction between SMA and lipid molecules were also studied. While, attenuated total reflection-Fourier-transform infrared (ATR-FTIR) and static (31)P nuclear magnetic resonance (NMR) experiments detected SMA-induced conformational changes in the headgroup region, differential scanning calorimetry (DSC) studies revealed thermotropic phase behavior changes of the membranes. (1)H NMR results indicated weak immobilization of SMA within the bilayers. Molecular interpretation of the results indicated the role of hydrogen-bond formation and hydrophobic forces between SMA and zwitterionic phospholipid bilayers. The extent of membrane fluidization and generation of isotropic phases were affected by the surface charge of the liposomes, and hence suggested the role of electrostatic interactions between SMA and charged lipid headgroups. SMA was thus found to directly affect the structural integrity of model membranes. Copyright © 2011 Elsevier B.V. All rights reserved.
Haler, Jean R N; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin
2017-11-01
Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Haler, Jean R. N.; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin
2017-08-01
Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. [Figure not available: see fulltext.
Li, Zhonghui; Jones, Yolanda; Hossenlopp, Jeanne; Cernosek, Richard; Josse, Fabien
2005-07-15
Direct chemical sensing in liquid environments using polymer-guided shear horizontal surface acoustic wave sensor platforms on 36 degrees rotated Y-cut LiTaO3 is investigated. Design considerations for optimizing these devices for liquid-phase detection are systematically explored. Two different sensor geometries are experimentally and theoretically analyzed. Dual delay line devices are used with a reference line coated with poly (methyl methacrylate) (PMMA) and a sensing line coated with a chemically sensitive polymer, which acts as both a guiding layer and a sensing layer or with a PMMA waveguide and a chemically sensitive polymer. Results show the three-layer model provides higher sensitivity than the four-layer model. Contributions from mass loading and coating viscoelasticity changes to the sensor response are evaluated, taking into account the added mass, swelling, and plasticization. Chemically sensitive polymers are investigated in the detection of low concentrations (1-60 ppm) of toluene, ethylbenzene, and xylenes in water. A low-ppb level detection limit is estimated from the present experimental measurements. Sensor properties are investigated by varying the sensor geometries, coating thickness combinations, coating properties, and curing temperature for operation in liquid environments. Partition coefficients for polymer-aqueous analyte pairs are used to explain the observed trend in sensitivity for the polymers PMMA, poly(isobutylene), poly(epichlorohydrin), and poly(ethyl acrylate) used in this work.
Observation of dynamic equilibrium cluster phase in nanoparticle-polymer system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sugam, E-mail: sugam@barc.gov.in; Mehan, S.; Aswal, V. K.
2016-05-23
Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been used to investigate the existence of a cluster phase in a nanoparticle-polymer system. The nanoparticle-polymer system shows an interesting reentrant phase behavior where the charge stabilized silica nanoparticles undergo particle clustering and back to individual nanoparticles as a function of polymer concentration. This kind of phase behavior is believed to be directed by opposing attractive and repulsive interactions present in the system. The phase behavior shows two narrow regions of polymer concentration immediately before and after the two-phase formation indicating the possibility of the existence of some equilibrium clusters.more » DLS results show a much higher size of particles than individuals in these two regions which remains unchanged even after dilution. The SANS data show the evolution of attraction with increased volume fraction of the particles supporting the dynamic nature of these clusters.« less
Tapping-mode AFM study of tip-induced polymer deformation under geometrical confinement.
Zhang, Hong; Honda, Yukio; Takeoka, Shinji
2013-02-05
The morphological stability of polymer films is critically important to their application as functional materials. The deformation of polymer surfaces on the nanoscale may be significantly influenced by geometrical confinement. Herein, we constructed a mechanically heterogeneous polymer surface by phase separation in a thin polymer film and investigated the deformation behavior of its nanostructure (∼30 nm thickness and ∼100 nm average diameter) with tapping-mode atomic force microscopy. By changing different scan parameters, we could induce deformation localized to the nanostructure in a controllable manner. A quantity called the deformation index is defined and shown to be correlated to energy dissipation by tip-sample interaction. We clarified that the plastic deformation of a polymer on the nanoscale is energy-dependent and is related to the glass-to-rubber transition. The mobility of polymer chains beneath the tapping tip is enhanced, and in the corresponding region a rubberlike deformation with the lateral motion of the tip is performed. The method we developed can provide insight into the geometrical confinement effects on polymer behavior.
Phase separation and the formation of cellular bodies
NASA Astrophysics Data System (ADS)
Xu, Bin; Broedersz, Chase P.; Meir, Yigal; Wingreen, Ned S.
Cellular bodies in eukaryotic cells spontaneously assemble to form cellular compartments. Among other functions, these bodies carry out essential biochemical reactions. Cellular bodies form micron-sized structures, which, unlike canonical cell organelles, are not surrounded by membranes. A recent in vitro experiment has shown that phase separation of polymers in solution can explain the formation of cellular bodies. We constructed a lattice-polymer model to capture the essential mechanism leading to this phase separation. We used both analytical and numerical tools to predict the phase diagram of a system of two interacting polymers, including the concentration of each polymer type in the condensed and dilute phase.
Pearling Instabilities of a Viscoelastic Thread
NASA Astrophysics Data System (ADS)
Deblais, A.; Velikov, K. P.; Bonn, D.
2018-05-01
Pearling instabilities of slender viscoelastic threads have received much attention, but remain incompletely understood. We study the instabilities in polymer solutions subject to uniaxial elongational flow. Two distinctly different instabilites are observed: beads on a string and blistering. The beads-on-a-string structure arises from a capillary instability whereas the blistering instability has a different origin: it is due to a coupling between stress and polymer concentration. By varying the temperature to change the solution properties we elucidate the interplay between flow and phase separation.
Moghaddam, Saeed Zajforoushan; Thormann, Esben
2016-03-01
Although a vast amount of research has been dedicated to investigate the Hofmeister effect on the stability of polymer solutions, a clear understanding of the role of polymer properties in this phenomenon is still missing. Here, the Hofmeister effect of NaCl (destabilizing) and NaSCN (stabilizing) salts on aqueous solutions of poly(propylene oxide) (PPO) is studied. Four different molecular weights of PPO were investigated, to determine how the variation in the polymer coil size affects the Hofmeister effect. The investigation was further conducted for different PPO concentrations, in order to understand the effect of inter-chain interactions on the response to addition of salt. The temperature-driven phase separation of the solutions was monitored by differential scanning calorimetry, which provides the precise value of the phase separation temperature, as well as the enthalpy change accompanied with the transition. It was observed that increasing the molecular weight weakens the effect of the both salts, which is interpreted in terms of a scaling law between the molecular weight and the accessible surface area of the polymers. Increasing the PPO concentration further diminished the NaCl effect, but amplified the NaSCN effect. This difference is attributed to an electrostatic stabilization mechanism in the case of NaSCN. Copyright © 2015 Elsevier Inc. All rights reserved.
'Smart' polymers in biotechnology and medicine
NASA Astrophysics Data System (ADS)
Galaev, Igor Yu
1995-05-01
'Smart' water-soluble polymers and hydrogels are capable of responding reversibly to slight changes in the properties of the medium (pH, temperature, ionic strength, the presence of certain substances, illumination, electric field), the response of the system being readily seen with the naked eye (the formation of a new phase in a hitherto homogeneous solution, sudden swelling or contraction of the hydrogel). The properties of such polymers and hydrogels are examined. The use of 'smart' polymers and hydrogels for the concentration of protein solutions and the dehydration of suspensions, for the creation of membranes with a controllable permeability, for the isolation and purification of biomolecules, for the immobilisation of biocatalysts, and for the creation of sensor systems and systems for the controlled release of medicinal drugs is discussed. The bibliography includes 261 references.
Hou, Lei; Wu, Peiyi
2016-06-21
Turbidity, DLS and FTIR measurements in combination with the perturbation correlation moving window (PCMW) technique and 2D correlation spectroscopy (2Dcos) analysis have been utilized to investigate the LCST-type transition of a oligo ethylene glycol acrylate-based copolymer (POEGA) in aqueous solutions in this work. As demonstrated in turbidity and DLS curves, the macroscopic phase separation was sharp and slightly concentration dependent. Moreover, individual chemical groups along polymer chains also display abrupt changes in temperature-variable IR spectra. However, according to conventional IR analysis, the C-H groups present obvious dehydration, whereas C[double bond, length as m-dash]O and C-O-C groups exhibit anomalous "forced hydration" during the steep phase transition. From these analyses together with the PCMW and 2Dcos results, it has been confirmed that the hydrophobic interaction among polymer chains drove the chain collapse and dominated the phase transition. In addition, the unexpected enhanced hydration behavior of C[double bond, length as m-dash]O and C-O-C groups was induced by forced hydrogen bonding between polar groups along polymer chains and entrapped water molecules in the aggregates, which originated from the special chemical structure of POEGA.
Preparation and characterization of triple shape memory composite foams.
Nejad, Hossein Birjandi; Baker, Richard M; Mather, Patrick T
2014-10-28
Foams prepared from shape memory polymers (SMPs) offer the potential for low density materials that can be triggered to deploy with a large volume change, unlike their solid counterparts that do so at near-constant volume. While examples of shape memory foams have been reported in the past, they have been limited to dual SMPs: those polymers featuring one switching transition between an arbitrarily programmed shape and a single permanent shape established by constituent crosslinks. Meanwhile, advances by SMP researchers have led to several approaches toward triple- or multi-shape polymers that feature more than one switching phase and thus a multitude of temporary shapes allowing for a complex sequence of shape deployments. Here, we report the design, preparation, and characterization of a triple shape memory polymeric foam that is open cell in nature and features a two phase, crosslinked SMP with a glass transition temperature of one phase at a temperature lower than a melting transition of the second phase. The soft materials were observed to feature high fidelity, repeatable triple shape behavior, characterized in compression and demonstrated for complex deployment by fixing a combination of foam compression and bending. We further explored the wettability of the foams, revealing composition-dependent behavior favorable for future work in biomedical investigations.
NASA Astrophysics Data System (ADS)
Chu, Elza
Phase separation in soft matter has been the crucial element in generating hybrid materials, such as polymer blends and mixed polymer brushes. This dissertation discusses two methods of developing self-assembled nanoscale templates via microphase separation induced by polymer brush synthesis. This work introduces a novel soft substrate approach with renewable grafting sites where polyacrylamide is "grafted through" chitosan soft substrates. The mechanism of grafting leads to ordered arrays of filament-like nanostructures spanning the chitosan-air interface. Additionally, the chemical composition of the filaments allows for post-chemical modification to change the physical properties of the filaments, and subsequently tailor surfaces for specific application. Unlike traditional materials, multi-functional or "smart" materials, such as binary polymer brushes (BPB) are capable of spontaneously changing the spatial distribution of functional groups and morphology at the surface upon external stimuli. Although promising in principle, the limited range of available complementary polymers with common non-selective solvents confines the diversity of usable materials and restricts any further advancement in the field. This dissertation also covers the fabrication and characterization of responsive nanoscale polystyrene templates or "mosaic" brushes that are capable of changing interfacial composition upon exposure to varying solvent qualities. Using a "mosaic" brush template is a unique approach that allows the fabrication of strongly immiscible polymer BPB without the need for a common solvent. The synthesis of such BPB is exemplified by two strongly immiscible polymers, i.e. polystyrene (polar) and polyacrylamide (non-polar), where polyacrylamide brush is "graft through" a Si-substrate modified with the polystyrene collapsed "mosaic" brush. The surface exhibits solvent-triggered responses, as well as application potential for anti-biofouling.
Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.
Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C
2016-04-19
Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required to suppress phase separation decreases relative to longer polymers. Collectively, our results demonstrate that crowded, membrane-bound polymers are highly efficient suppressors of phase separation and suggest that the ability of lipid domains to resist steric pressure depends on both their lipid composition and the size and concentration of the membrane-bound polymers they incorporate.
Material System Engineering for Advanced Electrocaloric Cooling Technology
NASA Astrophysics Data System (ADS)
Qian, Xiaoshi
Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor ferroelectric polymers which possess both giant ECE (27 Kelvin temperature drop) and much wider operating temperature window (over 50 kelvin covering RT) by proper defect modification which delicately tailors ferroelectrics in meso-, micro- and molecular scales. In addition, in order to be practical, EC device requires EC material can be driven at low electric fields upon achieve the large ECE. It is demonstrated in this dissertation that by facially modifying materials structure in meso-, micro- and molecular scale, lowfield ECE can be greatly improved. Large ECE, induced by low electric fields and existing in wide temperature window, is a major improvement in EC materials for practical applications. Besides EC polymers, this thesis also investigated EC ceramics. Due to several unique opportunities offered by the EC ceramics, Ba(ZrxTi 1-x)O3 (BZT), that is studied. (i) This class of EC ceramics offers a possibility to explore the invariant critical point (ICP), which maximizes the number of coexistent phase and provides a nearly vanishing energy barrier for switching among different phases. As demonstrated in this thesis, the BZT bulk ceramics at x˜ 0.2 exhibits a large adiabatic temperature drop DeltaTc=4.5 K, a large isothermal entropy change DeltaS = 8 Jkg-1K-1, a large EC coefficient (|DeltaT c/DeltaE| = 0.52x10-6 KmV-1 and DeltaS/DeltaE=0.93x10 -6 Jmkg-1K-1V-1) over a wide operating temperature range Tspan>30K. (ii) The thermal conductivity of EC ceramics is in general, much higher than that of EC polymers, and consequently they will allow EC cooling configurations which are not accessible by the EC polymers. Moreover, in the same device configuration, the high thermal conductivity of EC ceramics (kappa> 5 W/mK, compared with EC polymer, ˜ 0.25 W/mK) allows higher operation frequency and therefore a higher cooling power. (iii) Well-established fabrication processes of multilayer ceramic capacitor (MLCC) provide a foundation for the EC ceramic toward mass production. In this thesis, BZT thick film double layers have been fabricated and large ECE has been directly measured. EC induced temperature drop (DeltaT) around 6.3 °C and entropy change (DeltaS) of 11.0 Jkg-1K -1 are observed under an electric field of DeltaE=14.6 MV/m at 40 °C was observed in BZT thick film double layers. The result encourages further investigations on ECE in MLCC for practical applications. (Abstract shortened by ProQuest.).
Solid-phase synthesis of protein-polymers on reversible immobilization supports.
Murata, Hironobu; Carmali, Sheiliza; Baker, Stefanie L; Matyjaszewski, Krzysztof; Russell, Alan J
2018-02-27
Facile automated biomacromolecule synthesis is at the heart of blending synthetic and biologic worlds. Full access to abiotic/biotic synthetic diversity first occurred when chemistry was developed to grow nucleic acids and peptides from reversibly immobilized precursors. Protein-polymer conjugates, however, have always been synthesized in solution in multi-step, multi-day processes that couple innovative chemistry with challenging purification. Here we report the generation of protein-polymer hybrids synthesized by protein-ATRP on reversible immobilization supports (PARIS). We utilized modified agarose beads to covalently and reversibly couple to proteins in amino-specific reactions. We then modified reversibly immobilized proteins with protein-reactive ATRP initiators and, after ATRP, we released and analyzed the protein polymers. The activity and stability of PARIS-synthesized and solution-synthesized conjugates demonstrated that PARIS was an effective, rapid, and simple method to generate protein-polymer conjugates. Automation of PARIS significantly reduced synthesis/purification timelines, thereby opening a path to changing how to generate protein-polymer conjugates.
Kaya, Ahmet; Onac, Canan; Alpoguz, H Korkmaz
2016-11-05
In this study, the use of polymer inclusion membrane under constant electric current for the removal of Cr(VI) from water has investigated for the first time. Transport of Cr(VI) is performed by an electric current from the donor phase to the acceptor phase with a constant electric current of 0.5A. The optimized membrane includes of 12.1% 2-nitrophenyl octyl ether (2-NPOE), 77.6% cellulose triacetate (CTA), 10.3% tricapryl-methylammonium chloride (Aliquat 336) as a carrier. We tested the applicability of the selected membrane for Cr(VI) removal in real environmental water samples and evaluated its reusability. Electro membrane experiments were carried out under various parameters, such as the effect of electro membrane voltage at constant DC electric current; electro membrane current at constant voltage, acceptor phase pH, and stable electro membrane; and a comparison of polymer inclusion membrane and electro membrane transport studies. The Cr(VI) transport was achieved 98.33% after 40min under optimized conditions. An alternative method has been employed that eliminates the changing of electrical current by the application of constant electric current for higher reproducibility of electro membrane extraction experiments by combining the excellent selective and long-term use features of polymer inclusion membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Hongyun; Zheng, Xianhua; Huang, Yifei; Wang, Haitao; Du, Qiangguo
2016-01-12
Interconnected macroporous polymers were prepared by copolymerizing methyl acrylate (MA) via Pickering high internal phase emulsion (HIPE) templates with modified silica particles. The pore structure of the obtained polymer foams was observed by field-emission scanning electron microscopy (FE-SEM). Gas permeability was characterized to evaluate the interconnectivity of macroporous polymers. The polymerization shrinkage of continuous phase tends to form open pores while the solid particles surrounding the droplets act as barriers to produce closed pores. These two conflicting factors are crucial in determining the interconnectivity of macroporous polymers. Thus, poly-Pickering HIPEs with high permeability and well-defined pore structure can be achieved by tuning the MA content, the internal phase fraction, and the content of modified silica particles.
Optical Input/Electrical Output Memory Elements based on a Liquid Crystalline Azobenzene Polymer.
Mosciatti, Thomas; Bonacchi, Sara; Gobbi, Marco; Ferlauto, Laura; Liscio, Fabiola; Giorgini, Loris; Orgiu, Emanuele; Samorì, Paolo
2016-03-01
Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans → cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans → cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements.
Nam, Kwangwoo; Kimura, Tsuyoshi; Funamoto, Seiichi; Kishida, Akio
2010-02-01
The drawback with collagen/2-methacryloyloxyethyl phosphorylcholine (MPC) polymer hybrid gels (collagen/phospholipid polymer hybrid gels) prepared in alkaline morpholinoethane sulfonic acid (MES) aqueous solution is that the cross-linking rate between the polymer and the collagen is low. To solve this problem, ethanol has been adopted as the reaction solvent, to prevent 1-ethyl-3-(3-dimethylaminopropyl)-1-carbodiimide hydrochloride (EDC) hydrolysis. Alterations in the ethanol mole concentration changed the cross-linking rate between the MPC polymer and the collagen gel. Prevention of EDC hydrolysis is clearly observed; protonation of carboxyl groups implies that the ratio of ethanol to water should be controlled. The polymer shows signs of penetration into the collagen gel layer, thus forming a totally homogeneous phase gel. This affects the mechanical strength of the collagen gel, making the gel much stiffer and brittle with an increase in the swelling ratio, as compared with that prepared in MES buffer. However, it is possible to obtain a collagen/phospholipid polymer hybrid gel with a high polymer portion and the cross-linking rate can be successfully controlled.
NASA Astrophysics Data System (ADS)
Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K. G.
2009-05-01
We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.
Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K G
2009-05-28
We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.
Self-consistent field theory of polymer-ionic molecule complexation.
Nakamura, Issei; Shi, An-Chang
2010-05-21
A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.
NASA Astrophysics Data System (ADS)
Ji, Wei; Timoshevskii, V.; Guo, H.; Abou-Rachid, Hakima; Lussier, Louis-Simon
2009-07-01
We report the density functional theory total energy calculations of thermal stability and formation barrier of polymer nitrogen confined in carbon nanotubes (CNT). The analysis suggests that N8 polymer nitrogen encapsulated in (5,5) carbon nanotube [N8@CNT(5,5)] is thermally (meta)stable at a finite temperature up to energy scale of at least 5000 K, similar to nitrogen molecule gas phase confined in CNT [N2@CNT(5,5)]. The energetic difference between these two phases of N does not significantly change with temperature. A barrier of 1.07 eV was found for the formation of N8@CNT(5,5) from N2@CNT(5,5), while the dissociation barrier was found to be 0.2 eV. Snapshots of the reaction pathway show that the transition state is composed by a N2 and a N6 inside a CNT(5,5).
Yoon, Jungju; Kwag, Jungheon; Shin, Tae Joo; Park, Joonhyuck; Lee, Yong Man; Lee, Yebin; Park, Jonghyup; Heo, Jung; Joo, Chulmin; Park, Tae Jung; Yoo, Pil J; Kim, Sungjee; Park, Juhyun
2014-07-09
Phase separation in films of phospholipids and conjugated polymers results in nanoassemblies because of a difference in the physicochemical properties between the hydrophobic polymers and the polar lipid heads, together with the comparable polymer side-chain lengths to lipid tail lengths, thus producing nanoparticles of conjugated polymers upon disassembly in aqueous media by the penetration of water into polar regions of the lipid heads. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Countercurrent distribution of biological cells
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1982-01-01
Detailed physiochemical studies of dextran/poly(ethylene glycol) (PEG) two phase systems were carried out to characterize and provide understanding of the properties of the systems which determine cell partition and the electrophoretic behavior of phase drops responsible for electric field driven phase separation. A detailed study of the electrostatic and electrokinetic potentials developed in these systems was carried out. The salt partition was examined both in phase systems and with pure polymer solutions via equilibrium dialysis and mechanism of sulfate, chloride and phosphate partition shown to be exclusion by PEG rather than binding by dextran. Salt partition was shown to have a strong effect on the polymer compositions of the phases as well, an effect which produces large changes in the interfacial tension between them. These effects were characterized and the interfacial tension shown to obey a power law with respect to its dependence on the length of the tie line describing the system composition on a phase diagram. The electrostatic potential differences measured via salt bridges were shown to obey thermodynamic predictions. The electrophoretic mobilities measured were utilized to provide a partial test of Levine's incomplete theory of phase drop electrophoresis. The data were consistent with Levine's expression over a limited range of the variables tested.
Separation of aqueous two-phase polymer systems in microgravity
NASA Technical Reports Server (NTRS)
Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.
1984-01-01
Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.
Zhang, Hong; Okamura, Yosuke
2018-02-14
Polymer thin films with micro/nano-structures can be prepared by a solvent evaporation induced phase separation process via spin-casting a polymer blend, where the elongated phase separation domains are always inevitable. The striation defect, as a thickness nonunifomity in spin-cast films, is generally coexistent with the elongated domains. Herein, the morphologies of polymer blend thin films are recorded from the spin-cast center to the edge in a panoramic view. The elongated domains are inclined to appear at the ridge regions of striations with increasing radial distance and align radially, exhibiting a coupling between the phase separation morphology and the striation defect that may exist. We demonstrate that the formation of elongated domains is not attributed to shape deformation, but is accomplished in situ. A possible model to describe the initiation and evolution of the polymer blend phase separation morphology during spin-casting is proposed.
In situ gelling polymers in ocular drug delivery systems: a review.
Mundada, Atish S; Avari, Jasmine G
2009-01-01
The review article aims to highlight the recent developments in various in situ gel-forming polymeric systems that are used to achieve prolonged contact time of drugs with the cornea and increase their ocular bioavailability. These phase-change polymers, which trigger the drug release in response to external stimuli, are the most investigated in controlled drug delivery. The present review summarizes in detail these various polymers, which undergo sol-gel transition due to physical (temperature) or chemical (pH, ions) stimuli when instilled in the eye. As a whole, this article provides valuable insight into current trends in the field of in situ gel-forming ocular drug delivery systems.
Ryu, Young Jay; Kim, Minseob; Yoo, Choong -Shik
2015-10-12
In this study, we present the phase diagram of Fe(CO) 5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO) 5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellarmore » layers of crystalline hematite Fe 2O 3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO) 5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.« less
Balss, K M; Llanos, G; Papandreou, G; Maryanoff, C A
2008-04-01
Raman spectroscopy was used to differentiate each component found in the CYPHER Sirolimus-eluting Coronary Stent. The unique spectral features identified for each component were then used to develop three separate calibration curves to describe the solid phase distribution found on drug-polymer coated stents. The calibration curves were obtained by analyzing confocal Raman spectral depth profiles from a set of 16 unique formulations of drug-polymer coatings sprayed onto stents and planar substrates. The sirolimus model was linear from 0 to 100 wt % of drug. The individual polymer calibration curves for poly(ethylene-co-vinyl acetate) [PEVA] and poly(n-butyl methacrylate) [PBMA] were also linear from 0 to 100 wt %. The calibration curves were tested on three independent drug-polymer coated stents. The sirolimus calibration predicted the drug content within 1 wt % of the laboratory assay value. The polymer calibrations predicted the content within 7 wt % of the formulation solution content. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra from five formulations confirmed a linear response to changes in sirolimus and polymer content. Copyright 2007 Wiley Periodicals, Inc.
New polymers for phase partitioning
NASA Technical Reports Server (NTRS)
Harris, J. M.
1981-01-01
The synthesizing of several polyethylene glycols having crown ethers attached is reported. This work led to the identification of three new polymer types which promise to be more effective at selectively binding specific cell types. Work was completed on identification of chemical properties of the new polymer crowns and on development of new techniques for determination of polymer-phase composition.
Comparison of Plasma Polymerization under Collisional and Collision-Less Pressure Regimes.
Saboohi, Solmaz; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J; Short, Robert D; Michelmore, Andrew
2015-12-10
While plasma polymerization is used extensively to fabricate functionalized surfaces, the processes leading to plasma polymer growth are not yet completely understood. Thus, reproducing processes in different reactors has remained problematic, which hinders industrial uptake and research progress. Here we examine the crucial role pressure plays in the physical and chemical processes in the plasma phase, in interactions at surfaces in contact with the plasma phase, and how this affects the chemistry of the resulting plasma polymer films using ethanol as the gas precursor. Visual inspection of the plasma reveals a change from intense homogeneous plasma at low pressure to lower intensity bulk plasma at high pressure, but with increased intensity near the walls of the chamber. It is demonstrated that this occurs at the transition from a collision-less to a collisional plasma sheath, which in turn increases ion and energy flux to surfaces at constant RF power. Surface analysis of the resulting plasma polymer films show that increasing the pressure results in increased incorporation of oxygen and lower cross-linking, parameters which are critical to film performance. These results and insights help to explain the considerable differences in plasma polymer properties observed by different research groups using nominally similar processes.
Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart
2013-11-12
A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent.
Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.
Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani
2017-10-14
Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.
Reaction-mediated entropic effect on phase separation in a binary polymer system
NASA Astrophysics Data System (ADS)
Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang
2017-10-01
We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.
Cell separations and the demixing of aqueous two phase polymer solutions in microgravity
NASA Technical Reports Server (NTRS)
Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.
1991-01-01
Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.
Vay, Kerstin; Frieß, Wolfgang; Scheler, Stefan
2012-06-01
Biodegradable poly(D,L-lactide-co-glycolide) microspheres were prepared by a well-controlled emulsion solvent extraction/evaporation process. The objective of this study was to investigate how drug release can be modified by changing the morphology of the polymer matrix. The matrix structure was controlled by the preparation temperature which was varied between 10 and 35 °C, thus changing the 4 weeks release pattern from almost linear kinetics to a sigmoidal profile with a distinct lag phase and furthermore decreasing the encapsulation efficiency. By monitoring the glass transition temperature during the extraction process, it was shown that the preparation temperature determines the particle morphology by influencing the time span in which the polymer chains were mobile and flexible during the extraction process. Further factors determining drug release were found to be the molecular weight of the polymer and the rate of solvent removal. The latter, however, has also influence on the encapsulation efficiency with slow removal causing a higher drug loss. A secondary modification of the outer particle structure could be achieved by ethanolic post-treatment of the particles, which caused an extension of the lag phase and subsequently an accelerated drug release. Copyright © 2012. Published by Elsevier B.V.
Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi
2015-09-15
Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.
Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul
2015-01-01
ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506 PMID:27546983
Photo-triggered solvent-free metamorphosis of polymeric materials.
Honda, Satoshi; Toyota, Taro
2017-09-11
Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.
Phase equilibria in polymer blend thin films: A Hamiltonian approach
NASA Astrophysics Data System (ADS)
Souche, M.; Clarke, N.
2009-12-01
We propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We then focus on the case of 50:50 polymer blends confined between antisymmetric walls. The different phases of the system and the transitions between them, including finite-size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films.
Molecular modeling the microstructure and phase behavior of bulk and inhomogeneous complex fluids
NASA Astrophysics Data System (ADS)
Bymaster, Adam
Accurate prediction of the thermodynamics and microstructure of complex fluids is contingent upon a model's ability to capture the molecular architecture and the specific intermolecular and intramolecular interactions that govern fluid behavior. This dissertation makes key contributions to improving the understanding and molecular modeling of complex bulk and inhomogeneous fluids, with an emphasis on associating and macromolecular molecules (water, hydrocarbons, polymers, surfactants, and colloids). Such developments apply broadly to fields ranging from biology and medicine, to high performance soft materials and energy. In the bulk, the perturbed-chain statistical associating fluid theory (PC-SAFT), an equation of state based on Wertheim's thermodynamic perturbation theory (TPT1), is extended to include a crossover correction that significantly improves the predicted phase behavior in the critical region. In addition, PC-SAFT is used to investigate the vapor-liquid equilibrium of sour gas mixtures, to improve the understanding of mercaptan/sulfide removal via gas treating. For inhomogeneous fluids, a density functional theory (DFT) based on TPT1 is extended to problems that exhibit radially symmetric inhomogeneities. First, the influence of model solutes on the structure and interfacial properties of water are investigated. The DFT successfully describes the hydrophobic phenomena on microscopic and macroscopic length scales, capturing structural changes as a function of solute size and temperature. The DFT is used to investigate the structure and effective forces in nonadsorbing polymer-colloid mixtures. A comprehensive study is conducted characterizing the role of polymer concentration and particle/polymer size ratio on the structure, polymer induced depletion forces, and tendency towards colloidal aggregation. The inhomogeneous form of the association functional is used, for the first time, to extend the DFT to associating polymer systems, applicable to any association scheme. Theoretical results elucidate how reversible bonding governs the structure of a fluid near a surface and in confined environments, the molecular connectivity (formation of supramolecules, star polymers, etc.) and the phase behavior of the system. Finally, the DFT is extended to predict the inter- and intramolecular correlation functions of polymeric fluids. A theory capable of providing such local structure is important to understanding how local chemistry, branching, and bond flexibility affect the thermodynamic properties of polymers.
Phase Behavior of Pyrene and Vinyl Polymers with Aromatic Side Groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangovi, Gagan N.; Lee, Sangwoo
The phase behavior and thermodynamic properties of mixtures of pyrene and model vinyl polymers with and without aromatic side groups are investigated using differential scanning calorimetry (DSC) measurements. The melting temperature and associated heat of melting of the pyrene crystals in the mixtures are utilized to extract the effective interaction parameters χ and the composition of polymer-rich phases, respectively. The χ of pyrene mixed with polymers with aromatic side groups investigated in this study, polystyrene, poly(2-vinylpyridine), and poly(3-vinylanisole), is less than 0.5 at the melting point of the pyrene crystals, suggesting that pyrene and the polymers with aromatic sides groupsmore » are enthalpically compatible, likely due to aromatic π–π interactions. In contrast, the χ of pyrene mixed with poly(1,4-isoprene) or poly(ethylene-alt-propylene) is larger than 0.5. The DSC measurements also enable characterization of the composition of polymer-rich phases. Interestingly, the polymers with aromatic side groups are found to have more pronounced miscibility with pyrene at symmetric compositions.« less
Nanopatterns by phase separation of patterned mixed polymer monolayers
Huber, Dale L; Frischknecht, Amalie
2014-02-18
Micron-size and sub-micron-size patterns on a substrate can direct the self-assembly of surface-bonded mixed polymer brushes to create nanoscale patterns in the phase-separated mixed polymer brush. The larger scale features, or patterns, can be defined by a variety of lithographic techniques, as well as other physical and chemical processes including but not limited to etching, grinding, and polishing. The polymer brushes preferably comprise vinyl polymers, such as polystyrene and poly(methyl methacrylate).
Demixing of polymers under nanoimprinting process
NASA Astrophysics Data System (ADS)
Wang, Zhen
Polymer blend has been an important area in polymer science for decades. The knowledge of polymer blend in bulk is well established and technologies based on it have created products ubiquitous in our daily life. More intriguing problem arises when the phase separation of a polymer blend occurs under physical confinement. In this thesis, we investigated the effect of interfacial interactions between constituent polymers and confinement environment on phase evolution. Specifically, morphologies of thin films of binary polymer blends were examined on chemically homogenous substrates (preferential surface, neutral surface), on chemical pattern, between two parallel rigid substrates, and under thermal embossing/step-and-flash nanoimprint lithography conditions. We found that preferential wetting of selective component dominates the phase evolution, which can be suppressed by the use of neutral surfaces or external pressure. By manipulating these factors, a wide range of unique non-equilibrium micro or nanostructures can thus be achieved.
Release mechanism utilizing shape memory polymer material
Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.
2000-01-01
Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.
Chain conformations and phase behavior of conjugated polymers.
Kuei, Brooke; Gomez, Enrique D
2016-12-21
Conjugated polymers may play an important role in various emerging optoelectronic applications because they combine the chemical versatility of organic molecules and the flexibility, stretchability and toughness of polymers with semiconducting properties. Nevertheless, in order to achieve the full potential of conjugated polymers, a clear description of how their structure, morphology, and macroscopic properties are interrelated is needed. We propose that the starting point for understanding conjugated polymers includes understanding chain conformations and phase behavior. Efforts to predict and measure the persistence length have significantly refined our intuition of the chain stiffness, and have led to predictions of nematic-to-isotropic transitions. Exploring mixing between conjugated polymers and small molecules or other polymers has demonstrated tremendous advancements in attaining the needed properties for various optoelectronic devices. Current efforts continue to refine our knowledge of chain conformations and phase behavior and the factors that influence these properties, thereby providing opportunities for the development of novel optoelectronic materials based on conjugated polymers.
Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.
A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less
Phase Tomography Reconstructed by 3D TIE in Hard X-ray Microscope
NASA Astrophysics Data System (ADS)
Yin, Gung-Chian; Chen, Fu-Rong; Pyun, Ahram; Je, Jung Ho; Hwu, Yeukuang; Liang, Keng S.
2007-01-01
X-ray phase tomography and phase imaging are promising ways of investigation on low Z material. A polymer blend of PE/PS sample was used to test the 3D phase retrieval method in the parallel beam illuminated microscope. Because the polymer sample is thick, the phase retardation is quite mixed and the image can not be distinguished when the 2D transport intensity equation (TIE) is applied. In this study, we have provided a different approach for solving the phase in three dimensions for thick sample. Our method involves integration of 3D TIE/Fourier slice theorem for solving thick phase sample. In our experiment, eight sets of de-focal series image data sets were recorded covering the angular range of 0 to 180 degree. Only three set of image cubes were used in 3D TIE equation for solving the phase tomography. The phase contrast of the polymer blend in 3D is obviously enhanced, and the two different groups of polymer blend can be distinguished in the phase tomography.
Composition inversion in mixtures of binary colloids and polymer
NASA Astrophysics Data System (ADS)
Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick
2018-05-01
Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.
Polymer Nanocomposites: Insights from Theory and Molecular Simulations
NASA Astrophysics Data System (ADS)
Pani, Rakhee
Advantages of polymer nanocomposites have attracted great industrial attention due to their multifunctionality and innovative technological properties. Addition of small amount of nanoparticle (nanospheres, nanotubes, nanorods, nanoplatelets, or sheets) to polymer matrix cause dramatic improvement in structural and functional properties, which is difficult to attain from those of individual components. The interaction between polymer and nanoparticle create bulk materials dominated by solid state physics at the nanoscale. Furthermore, morphology of nanocomposites depends on structural arrangements of nanoparticles. Thus, for achievement of optimized functionality like electrical, optical, mechanical and thermal properties control over the dispersion of the nanoparticle is essential. However, properties of polymer nanocomposites depend on morphology control and nature of interfacial interactions. In order to control the morphology it is necessary to understand how the processing conditions, shape and size of nanoparticle influence the structure of composite. Molecular simulations can help us to predict the parameters that control the structural changes and we could design polymer nanocomposite entailing their end-use. In this work, we addressed the following research questions: (1) the dependence of nanoparticle ligand corona structure on solvent quality and (2) the role of interfacial energy and interactions on the dispersion of molecules and nanoparticles. Specifically, this research assessed the effect of solvent interactions on the structure of nanoparticles on the example of redox core encapsulating dendrimer and ligand functionalized gold nanoparticles, role of chemical interaction on solubility of glucose in ionic liquids, diffusion of fullerene nanoparticles in polymer matrix and influence of solubility parameters on the compatibility of gold nanoparticles with diblock copolymers. Computational methods allow quantifying the structure and flexibility of the polymer chains, how energetics and surface tension change with chemical composition of the polymer/dendrimer blocks, influence of nanoparticle on structural properties of polymer and factors which may contribute to the phase separation of the polymer from nanoparticle. Interfacial characteristics are not only determined by the size-induced properties, but also the surface chemistry of the particles. Presence of solvent and the resultant interactions with the solvent are known to influence the morphology and prevent or induce aggregation of nanoparticles in polymers. We found that surface chemistry can induce change in the structure of dendrimers encapsulating a redox active core and change the solubility of the nanoparticles. The interactions between nanoparticles and polymers can also influence the morphology. We performed investigation on the role of orientation of fullerene derivatives and surface energy of polymer surface which may induce the aggregation of the fullerene nanoparticles. Furthermore, we used quantitative measurements like cluster analysis to understand the most probable orientation of the fullerene derivative with respect to the polymer chains and the diffusion of the fullerene nanoparticle, which is related to the efficiency of solar cells, can change on presence of regiorandom and regioregular polymer chains. Furthermore, we have also used different solvents based on their Hildebrand solubility parameters to investigate factors governing the morphology of polymer nanocomposite via solvent interactions. We showed that change in solvent interactions affect the compatibility, aggregation/dispersion of the gold nanoparticles, which will directly affect the morphology of polymer matrix and structural aspects which can impact their functionality. Overall, our research indicated that solvent interaction play a role in controlling the morphology of polymer nanocomposite and solubility parameter can help us to predict the resulting morphology.
Floating liquid phase in sedimenting colloid-polymer mixtures.
Schmidt, Matthias; Dijkstra, Marjolein; Hansen, Jean-Pierre
2004-08-20
Density functional theory and computer simulation are used to investigate sedimentation equilibria of colloid-polymer mixtures within the Asakura-Oosawa-Vrij model of hard sphere colloids and ideal polymers. When the ratio of buoyant masses of the two species is comparable to the ratio of differences in density of the coexisting bulk (colloid) gas and liquid phases, a stable "floating liquid" phase is found, i.e., a thin layer of liquid sandwiched between upper and lower gas phases. The full phase diagram of the mixture under gravity shows coexistence of this floating liquid phase with a single gas phase or a phase involving liquid-gas equilibrium; the phase coexistence lines meet at a triple point. This scenario remains valid for general asymmetric binary mixtures undergoing bulk phase separation.
A Facile Synthesis of Dynamic, Shape-Changing Polymer Particles
2014-04-02
utilizing functional surfactants to control the phase separation of symmetric polystyrene- b -poly(2-vinylpyr- idine) ( PS - b - P2VP ) in dispersed droplets...Figure 1. Schematic representation of a mixed surfactant strategy for controlling the self-assembly of PS - b - P2VP and the generation of particles with...surfactant mixtures to control the phase separation of the symmetric polystyrene- b -poly(2-vinylpyridine) ( PS - b - P2VP ) block copolymers (BCPs) within
Nanoparticles Stabilize Thin Polymer Films: A Fundamental Study to Understand the Phenomenon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael E. Mackay
2009-03-04
A new understanding of thermodynamics at the nanoscale resulted in a recently discovered first order phase transition that nanoparticles in a polymer film will all segregate to the supporting substrate. This is an unusual phase transition that was predicted using a modeling technique developed at Sandia National Laboratories and required the equivalent of many computational years on one computer. This project is a collaboration between Prof. Michael Mackay's group and Dr. Amalie Frischknecht (Sandia National Laboratories) where experimental observation and theoretical rationalization and prediction are brought together. Other discoveries were that this phase transition could be avoided by changing themore » nanoparticle properties yielding control of the assembly process at the nanoscale. In fact, the nanoparticles could be made to assemble to the supporting substrate, to the air interface or not assemble at all within a thin polymer film of order 100 nm in thickness. However, when the assembly process is present it is so robust that it is possible to make rough liquid films at the nanoscale due to nanoparticles assembling around three-dimensional objects. From this knowledge we are able to design and manufacture new coatings with particular emphasis on polymer-based solar cells. Careful control of the morphology at the nanoscale is expected to provide more efficient devices since the physics of these systems is dictated at this length scale and assembly of nanoparticles to various interfaces is critical to operation.« less
NASA Astrophysics Data System (ADS)
Mortensen, Kell; Borger, Anine L.; Kirkensgaard, Jacob J. K.; Garvey, Christopher J.; Almdal, Kristoffer; Dorokhin, Andriy; Huang, Qian; Hassager, Ole
2018-05-01
We present structural small-angle neutron scattering studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon exposure to large extensional flow conditions, the star polymers change conformation resulting in a highly stretched structure that mimics a fully extended three-armed tube model. All three arms are parallel to the flow, one arm being either in positive or negative stretching direction, while the two other arms are oriented parallel, right next to each other in the direction opposite to the first arm.
Work Function and Conductivity Change in Polyaniline.
NASA Astrophysics Data System (ADS)
Chinn, Douglas Alan
1995-01-01
The purpose of this study was to elucidate some basic material properties of the conducting polymer polyaniline. Because of the intractable nature of the polymer, methods to make thin films were developed. The polymer was dissolved in formic acid and cast onto silicon substrates that had four metal leads in a parallel configuration. It was discovered that a cast film could be used as a substrate for the subsequent growth of additional film by electrochemical techniques. The polymer will spontaneously change oxidation states both in air and in solution if oxidized or reduced electrochemically. The change in oxidation states is seen as a changing open cell potential in solution and a change in work function and resistance in air. UV-visible and infrared spectroscopy were used to characterize the polymer during relaxation. The work function decreases from both the oxidized and reduced states, but resistance increases from the reduced state and decreases from the oxidized state in air. A two-phase model which has ordered conducting regions and disordered insulating regions has been used to describe the relaxation phenomena. The relaxation is caused by rearrangement within the film of dopant acid and water, allowing the film to develop ordered regions. It has been determined that chemical polyaniline and electrochemical polyaniline are nearly identical chemically, with the main differences being morphological. The relaxation phenomena can be used to make chemical sensors. As the film relaxes, electrons become available. The electrons reduce metallic ions, which interact with a detectant gas in a gas stream above the film. In films containing Hg_2Cl_2 work function decreases and resistance decreases when in contact with hydrogen cyanide in a dry nitrogen stream.
Multilayer Electroactive Polymer Composite Material
NASA Technical Reports Server (NTRS)
Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)
2011-01-01
An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.
Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)
2009-01-01
An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.
NASA Astrophysics Data System (ADS)
Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah
2017-01-01
The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.
Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M.; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František
2014-01-01
The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the “Dip TIPS” as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields. PMID:25275373
Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František
2014-01-01
The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.
Reactive ion etching effects on carbon-doped Ge2Sb2Te5 phase change material in CF4/Ar plasma
NASA Astrophysics Data System (ADS)
Shen, Lanlan; Song, Sannian; Song, Zhitang; Li, Le; Guo, Tianqi; Liu, Bo; Wu, Liangcai; Cheng, Yan; Feng, Songlin
2016-10-01
Recently, carbon-doped Ge2Sb2Te5 (CGST) has been proved to be a high promising material for future phase change memory technology. In this article, reactive ion etching (RIE) of phase change material CGST films is studied using CF4/Ar gas mixture. The effects on gas-mixing ratio, RF power, gas pressure on the etch rate, etch profile and roughness of the CGST film are investigated. Conventional phase change material Ge2Sb2Te5 (GST) films are simultaneously studied for comparison. Compared with GST film, 10 % more CF4 is needed for high etch rate and 10% less CF4 for good anisotropy of CGST due to more fluorocarbon polymer deposition during CF4 etching. The trends of etch rates and roughness of CGST with varying RF power and chamber pressure are similar with those of GST. Furthermore, the etch rate of CGST are more easily to be saturated when higher RF power is applied.
Khansary, Milad Asgarpour; Mellat, Mostafa; Saadat, Seyed Hassan; Fasihi-Ramandi, Mahdi; Kamali, Mehdi; Taheri, Ramezan Ali
2017-02-01
To analyze polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, here an in-through investigation on the suitability and compatibility of various polymers has been carried out. For this work, estradiol, estrone, testosterone, progesterone, estriol, mestranol, and ethinylestradiol were considered. A total number of 452 polymers were analyzed and initially screened using Hansen solubility parameters. The identified good pairs of hormones and polymers then were examined to obtain the equilibrium capacity of hormones removal from water effluents using a modified Flory-Huggins model. A distribution coefficient was defined as the ratio of hormones in water effluent phase and polymer phase. For removal of mestranol, estradiol and ethinylestradiol, no compatible polymer was identified based on initial screening of collected database. Three compatible polymers were identified for estriol. For progesterone, a wide variety of polymers was identified as good matching of polar, dispersion and hydrogen forces contributions can be observed for these pairs. For estrone, only two polymers can be proposed due to the mismatch observed between polar, dispersion and hydrogen forces contributions of other polymers and this hormone. The phase calculations showed that not all the identified good pairs could be used for practical separation applications. The domain of applicability of each good pair was investigated and potential polymers for practical micropollutants removal together with their removal capacity were represented in terms of phase envelops. The theoretical approach follows fundamental chemical thermodynamic equations and then can be simply applied for any system of interest. Copyright © 2016 Elsevier Ltd. All rights reserved.
Amorphous-amorphous transition in a porous coordination polymer.
Ohtsu, Hiroyoshi; Bennett, Thomas D; Kojima, Tatsuhiro; Keen, David A; Niwa, Yasuhiro; Kawano, Masaki
2017-07-04
The amorphous state plays a key role in porous coordination polymer and metal-organic framework phase transitions. We investigate a crystalline-to-amorphous-to-amorphous-to-crystalline (CAAC) phase transition in a Zn based coordination polymer, by X-ray absorption fine structure (XAFS) and X-ray pair distribution function (PDF) analysis. We show that the system shows two distinct amorphous phases upon heating. The first involves a reversible transition to a desolvated form of the original network, followed by an irreversible transition to an intermediate phase which has elongated Zn-I bonds.
Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.
Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk
2009-03-01
Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.
Combined Mechanical and Electrical Study of Polymers of Biological Origin
NASA Astrophysics Data System (ADS)
Zsoldos, G.; Szoda, K.; Marossy, K.
2017-02-01
Thermally Simulated Depolarization Current measurement is an excellent but not widely used method for identifying relaxation processes in polymers. The DMA method is used here to analyze the mechanical changes depend on temperature in biopolymers. The two techniques take advantage of the energy changes involved in the various phase transitions of certain polymer molecules. This allows for several properties of the material to be ascertained; melting points, enthalpies of melting, crystallization temperatures, glass transition temperatures and degradation temperatures. The examined biopolymer films are made from biological materials such as proteins and polysaccharides. These materials have gained wide usage in pharmaceutical, medical and food areas. The uses of biopolymer films depend on their structure and mechanical properties. This work is based on pectin and gelatin films. The films were prepared by casting. The casting technique used aqueous solutions in each case of sample preparation. The manufacturing process of the pectin and gelatin films was a single stage solving process.
Intelligent windows using new thermotropic layers with long-term stability
NASA Astrophysics Data System (ADS)
Watanabe, Haruo
1995-08-01
This paper concerns the autonomous responsive type light adjustment window (intelligent windows) among smart windows which adjust the light upon receiving environmental energy. More specifically, this is a thermotropic window panel that laminates and seals a new type of highly viscous polymer aqueous solution gel. A conventional thermotropic window panel has never been put to practical use since the reversible change between the colorless, transparent state (water-clear) and translucent scattered state (paper-white) with uniformity was not possible. The change involved phase separation and generated non-uniformity. The author, after fundamental studies of hydrophobic bonding, successfully solved the problem by developing a polymer aqueous solution gel with amphiphatic molecule as the third component in addition to water and water-soluble polymer with hydrophobic radical, based on the molecular spacer concept. In addition, the author established peripheral technologies and succeeded in experimentally fabricating a panel type 'Affinity's Intelligent Window (AIW)' that has attained the level of practical use.
Colbert, Adam E; Janke, Eric M; Hsieh, Stephen T; Subramaniyan, Selvam; Schlenker, Cody W; Jenekhe, Samson A; Ginger, David S
2013-01-17
We use photoinduced absorption (PIA) spectroscopy to investigate pathways for photocurrent generation in hybrid organic/inorganic quantum dot bulk heterojunction solar cells. We study blends of the conjugated polymer poly(2,3-bis(2-(hexyldecyl)quinoxaline-5,8-diyl-alt-N-(2-hexyldecyl)dithieno[3,2-b:2',3'-d]pyrrole) (PDTPQx-HD) with PbS quantum dots and find that positively charged polarons are formed on the conjugated polymer following selective photoexcitation of the PbS quantum dots. This result provides a direct spectroscopic fingerprint demonstrating that photoinduced hole transfer occurs from the photoexcited quantum dots to the host polymer. We compute the relative yields of long-lived holes following photoexcitation of both the polymer and quantum dot phases and estimate that more long-lived polarons are produced per photon absorbed by the polymer phase than by the quantum dot phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonin, Hugues W.; Walker, Michael W.; Bui, Van Tam
2004-01-15
Research carried out at the Royal Military College of Canada on the effects of mixed fields of radiation on high polymer adhesives and composite materials has shown that some polymers are quite resistant to radiation and could well serve in the fabrication of radioactive-waste disposal containers. A research program was launched to investigate the possibilities of using advanced polymers and polymer-based composites for high-level radioactive waste management on one hand and for intermediate- and low-level radioactive waste disposal on the other hand. Research was thus conducted in parallel on both fronts, and the findings for the later phase are presented.more » Thermoplastic polymers were studied for this application because they are superior materials, having the advantage over metals of not corroding and of displaying high resistance to chemical aggression. The experimental methods used in this research focused on determining the effects of radiation on the properties of the materials considered: polypropylene, nylon 66, polycarbonate, and polyurethane, with and without glass fiber reinforcement. The method involved submitting injection-molded tensile test bars to the mixed radiation field generated by the SLOWPOKE-2 nuclear reactor at the Royal Military College of Canada to accumulate doses ranging from 0.5 to 3.0 MGy. The physical, mechanical, and chemical effects of the various radiation doses on the materials were measured from density, tensile, differential scanning calorimetry, and scanning electron microscopy tests.For each polymer, the test results evidenced predominant cross-linking of the polymeric chains severed by radiation. This was evident from observed changes in the mechanical and chemical properties of the polymers, typical of cross-linking. The mechanical changes observed included an overall increase in density, an increase in Young's modulus, a decrease in strain at break, and only minor changes in strength. The chemical changes included differences in chemical transition temperatures characteristic of radiation damage. All the changes in these properties are characteristic of the cross-linking phenomenon. For the glass-fiber-reinforced polymers, the results of the tests evidenced minor radiation degradation at the fiber/matrix interfaces. Based on these results, any of the investigated polymers could potentially be used for disposal containers due to their abilities to adequately resist radiation. This allowed proceeding one step further into determining a potential design framework for containers for the long-term storage and disposal of low- and intermediate-level radioactive waste.« less
Formation of ion clusters in the phase separated structures of neutral-charged polymer blends
NASA Astrophysics Data System (ADS)
Kwon, Ha-Kyung; Olvera de La Cruz, Monica
2015-03-01
Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).
Compositions, methods, and systems comprising fluorous-soluble polymers
Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei
2015-10-13
The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.
Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.
Dzuricky, Michael; Roberts, Stefan; Chilkoti, Ashutosh
2018-05-01
A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.
Perspective: The Asakura Oosawa model: a colloid prototype for bulk and interfacial phase behavior.
Binder, Kurt; Virnau, Peter; Statt, Antonia
2014-10-14
In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
NASA Astrophysics Data System (ADS)
Binder, Kurt; Virnau, Peter; Statt, Antonia
2014-10-01
In many colloidal suspensions, the micrometer-sized particles behave like hard spheres, but when non-adsorbing polymers are added to the solution a depletion attraction (of entropic origin) is created. Since 60 years the Asakura-Oosawa model, which simply describes the polymers as ideal soft spheres, is an archetypical description for the statistical thermodynamics of such systems, accounting for many features of real colloid-polymer mixtures very well. While the fugacity of the polymers (which controls their concentration in the solution) plays a role like inverse temperature, the size ratio of polymer versus colloid radii acts as a control parameter to modify the phase diagram: when this ratio is large enough, a vapor-liquid like phase separation occurs at low enough colloid packing fractions, up to a triple point where a liquid-solid two-phase coexistence region takes over. For smaller size ratios, the critical point of the phase separation and the triple point merge, resulting in a single two-phase coexistence region between fluid and crystalline phases (of "inverted swan neck"-topology, with possibly a hidden metastable phase separation). Furthermore, liquid-crystalline ordering may be found if colloidal particles of non-spherical shape (e.g., rod like) are considered. Also interactions of the particles with solid surfaces should be tunable (e.g., walls coated by polymer brushes), and interfacial phenomena are particularly interesting experimentally, since fluctuations can be studied in the microscope on all length scales, down to the particle level. Due to its simplicity this model has become a workhorse for both analytical theory and computer simulation. Recently, generalizations addressing dynamic phenomena (phase separation, crystal nucleation, etc.) have become the focus of studies.
Huang, Zhoubing; Liu, Shuqin; Xu, Jianqiao; Yin, Li; Zheng, Juan; Zhou, Ningbo; Ouyang, Gangfeng
2017-10-09
Adsorption capacity is the major sensitivity-limited factor in solid-phase microextraction. Due to its light-weight properties, large specific surface area and high porosity, especially tunable pore structures, the utilization of porous organic polymers as solid-phase microextraction adsorbents has attracting researchers' attentions. However, these works mostly concentrated on the utilization of specific porous organic polymers for preparing high-performance solid-phase microextraction coatings. The relationship between pore structures and adsorption performance of the porous organic polymers still remain unclear. Herein, three porous organic polymers with similar properties but different pore distributions were prepared by condensation polymerization reaction of phloroglucinol and terephthalaldehyde, which were fabricated as solid-phase microextraction coatings subsequently. The adsorption capacity of the porous organic polymers-coated fibers were evaluated by using benzene and its derivatives (i.e.,benzene, toluene, ethylbenzene and m-xylene) and polycyclic aromatic hydrocarbons as the target analytes. The results showed that the different adsorption performance of these porous organic polymers was mainly caused by their different pore volumes instead of their surface areas or pore sizes. Finally, the proposed method by using the mesoporous organic polymer coating was successfully applied to the determination of benzene and its derivatives in environmental water samples. As for analytical performance, high pre-concentration factors (74-2984), satisfactory relative recoveries (94.5 ± 18.5-116.9 ± 12.5%), intraday precision (2.44-5.34%), inter-day precision (4.62-7.02%), low limit of detections (LODs, 0.10-0.29 ng L -1 ) and limit of quantifications (LOQs, 0.33-0.96 ng L -1 ) were achieved under the optimal conditions. This study provides an important idea in the rational design of porous organic polymers for solid-phase microextraction or other adsorption applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Caihong; Ma, Xiaofeng; Kitazawa, Yuzo; Kobayashi, Yumi; Zhang, Shiguo; Kokubo, Hisashi; Watanabe, Masayoshi
2016-12-01
Instead of the reported photoinduced lower critical solution temperature (LCST) phase transition behavior in ionic liquids (ILs) achieved by photofunctional polymers, this study reports the facile photoinduced LCST phase behavior of nonfunctionalized polymers (poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA)) in mixed ILs (1,3-dimethylimidazolium bis(trifluoromethanesulfonyl)amide; [C 1 mim][NTf 2 ] and a newly designed functionalized IL containing an azobenzene moiety (1-butyl-3-(4-phenylazobenzyl)imidazolium bis(trifluoromethanesulfonyl)amide; [Azo][NTf 2 ])) as a small-molecular photo trigger. Interestingly, the length of the alkyl spacer between the ester and aryl groups, which is the only structural difference between the two polymers, leads to two different photoresponsive LCST phase transition behaviors. On the basis of spectroscopic studies, the different phase transition behaviors of PBnMA and PPhEtMA may attribute to the different cooperative interactions between the polymers and [C 1 mim][NTf 2 ]. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott
2015-01-01
Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.
New polymers for low-gravity purification of cells by phase partitioning
NASA Technical Reports Server (NTRS)
Harris, J. M.
1983-01-01
A potentially powerful technique for separating different biological cell types is based on the partitioning of these cells between the immiscible aqueous phases formed by solution of certain polymers in water. This process is gravity-limited because cells sediment rather than associate with the phase most favored on the basis of cell-phase interactions. In the present contract we have been involved in the synthesis of new polymers both to aid in understanding the partitioning process and to improve the quality of separations. The prime driving force behind the design of these polymers is to produce materials which will aid in space experiments to separate important cell types and to study the partitioning process in the absence of gravity (i.e., in an equilibrium state).
NASA Astrophysics Data System (ADS)
Gavvalapalli, Nagarjuna
All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not trivial. Thus to avoid micro-phase segregation, nanoparticles of hole and electron transporters are synthesized and blended. But the PCE of nanoparticle blends are far less than those of polymer blends. This is mainly due to the: i) lack of optimal assembly of nanoparticles to facilitate charge transfer and transport processes; and ii) lack of control over the exciton and charge transport properties within the nanoparticles. Polymer packing within the nanoparticle controls the optoelectronic and charge transport properties of the nanoparticle. In this work I have shown that the solvent used to synthesize nanoparticles plays a crucial role in determining the assembly of polymer chains inside the nanoparticle there by affecting its exciton and charge transport processes. To obtain the optimal morphology for better charge transfer and transport, we have also synthesized nanoparticles of different radius with surfactants of opposite charge. We propose that depending on the radius and/or Coulombic interactions these nanoparticles can be assembled into mineral structure-types that are useful for photovoltaic devices.
Tai, Hongyun; Mather, Melissa L; Howard, Daniel; Wang, Wenxin; White, Lisa J; Crowe, John A; Morgan, Steve P; Chandra, Amit; Williams, David J; Howdle, Steven M; Shakesheff, Kevin M
2007-12-17
Tissue engineering scaffolds require a controlled pore size and structure to host tissue formation. Supercritical carbon dioxide (scCO2) processing may be used to form foamed scaffolds in which the escape of CO2 from a plasticized polymer melt generates gas bubbles that shape the developing pores. The process of forming these scaffolds involves a simultaneous change in phase in the CO2 and the polymer, resulting in rapid expansion of a surface area and changes in polymer rheological properties. Hence, the process is difficult to control with respect to the desired final pore size and structure. In this paper, we describe a detailed study of the effect of polymer chemical composition, molecular weight and processing parameters on final scaffold characteristics. The study focuses on poly(DL-lactic acid) (PDLLA) and poly(DL-lactic acid-co-glycolic acid) (PLGA) as polymer classes with potential application as controlled release scaffolds for growth factor delivery. Processing parameters under investigation were temperature (from 5 to 55 degrees C) and pressure (from 60 to 230 bar). A series of amorphous PDLLA and PLGA polymers with various molecular weights (from 13 KD to 96 KD) and/or chemical compositions (the mole percentage of glycolic acid in the polymers was 0, 15, 25, 35 and 50 respectively) were employed. The resulting scaffolds were characterised by optical microscopy, scanning electron microscopy (SEM), and micro X-ray computed tomography (microCT). This is the first detailed study on using these series polymers for scaffold formation by supercritical technique. This study has demonstrated that the pore size and structure of the supercritical PDLLA and PLGA scaffolds can be tailored by careful control of processing conditions.
Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.
Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won
2017-03-15
The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.
Development of Simulation Methods in the Gibbs Ensemble to Predict Polymer-Solvent Phase Equilibria
NASA Astrophysics Data System (ADS)
Gartner, Thomas; Epps, Thomas; Jayaraman, Arthi
Solvent vapor annealing (SVA) of polymer thin films is a promising method for post-deposition polymer film morphology control. The large number of important parameters relevant to SVA (polymer, solvent, and substrate chemistries, incoming film condition, annealing and solvent evaporation conditions) makes systematic experimental study of SVA a time-consuming endeavor, motivating the application of simulation and theory to the SVA system to provide both mechanistic insight and scans of this wide parameter space. However, to rigorously treat the phase equilibrium between polymer film and solvent vapor while still probing the dynamics of SVA, new simulation methods must be developed. In this presentation, we compare two methods to study polymer-solvent phase equilibrium-Gibbs Ensemble Molecular Dynamics (GEMD) and Hybrid Monte Carlo/Molecular Dynamics (Hybrid MC/MD). Liquid-vapor equilibrium results are presented for the Lennard Jones fluid and for coarse-grained polymer-solvent systems relevant to SVA. We found that the Hybrid MC/MD method is more stable and consistent than GEMD, but GEMD has significant advantages in computational efficiency. We propose that Hybrid MC/MD simulations be used for unfamiliar systems in certain choice conditions, followed by much faster GEMD simulations to map out the remainder of the phase window.
NASA Astrophysics Data System (ADS)
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
Complex Fluids at Interfaces and Interfaces of Complex Fluids
NASA Astrophysics Data System (ADS)
Nouri, Mariam
The present thesis deals with two independent projects and is consequently divided into two parts. The first part details a computational study of the fluid structure of ring-shaped molecules and their positional and orientational molecular organizations in different degrees of confinement, while the second part concerns an experimental study of phase behavior and interfacial phenomena in confined colloid-polymer systems. In the first part, ring-shaped molecules are studied using Monte Carlo simulation techniques in one, two and three dimensions. The model used to describe ring-shaped molecules is composed of hard-spheres linked together to form planar rigid rings. For rings of various sizes and for a wide range of densities, positional and orientational orderings are reported in forms of pair distribution functions of the ring centers and correlation functions of the ring normal orientations. Special emphasis is given to understand structural formation at interfaces, i.e., the structure and orderings of these molecules when they are confined to two dimensions. In a plane but the rings themselves are free to rotate around all axes, nematic ordering is observed at sufficiently high densities. In the second part, phase equilibria of confined aqueous colloid-polymer systems are studied experimentally using fluorescence microscopy. Aqueous mixtures of fluorescent polystyrene spheres and polyacrylamide are confined between a glass slide and a coverslip. The phase diagram is determined as a function of the colloidal and polymer concentrations. Liquid-liquid phase coexistence between a colloid-rich phase and a polymer-rich phase occurs at intermediate polymer concentrations, while liquid-solid phase coexistence between a polymer-rich liquid and a colloid-rich solid is observed at high polymer concentrations. Interfacial thickness and tension of the interface between these coexisting phases are measured using image analysis techniques. It is also observed that the colloid-rich solid and liquid domains coarsen mainly by Ostwald ripening.
NASA Astrophysics Data System (ADS)
Fourmaux-Demange, V.; Brûlet, A.; Boué, F.; Davidson, P.; Keller, P.; Cotton, J. P.
2000-04-01
We have studied the rheology and the conformation of stretched comb-like liquid-crystalline polymers. Both the influence of the comb-like structure and the specific effect of the nematic interaction on the dynamics are investigated. For this purpose, two isomers of a comb-like polymetacrylate polymer, of well-defined molecular weights, were synthesized: one displays a nematic phase over a wide range of temperature, the other one has only an isotropic phase. Even with high degrees of polymerization N, between 40 and 1000, the polymer chains studied were not entangled. The stress-strain curves during the stretching and relaxation processes show differences between the isotropic and nematic comb-like polymers. They suggest that, in the nematic phase, the chain dynamics is more cooperative than for a usual linear polymer. Small-angle neutron scattering has been used in order to determine the evolution of the chain conformation after stretching, as a function of the duration of relaxation t_r. The conformation can be described with two parameters only: λ_p, the global deformation of the polymer chain, and p, the number of statistical units of locally relaxed sub-chains. For the comb-like polymer, the chain deformation is pseudo-affine: λ_p is always smaller than λ (the deformation ratio of the whole sample). In the isotropic phase, λ_p has a constant value, while p increases as t_r. This latter behavior is not that expected for non-entangled chains, in which p varies as {t_r}^{1/2} (Rouse model). In the nematic phase, λ_p decreases as a stretched exponential function of t_r, while p remains constant. The dynamics of the comb-like polymers is discussed in terms of living clusters from which junctions are produced by interactions between side chains. The nematic interaction increases the lifetime of these junctions and, strikingly, the relaxation is the same at all scales of the whole polymer chain.
NASA Astrophysics Data System (ADS)
Makhotkina, L. Yu; Khristoliubova, V. I.
2017-01-01
Capillary-porous materials, which include natural macromolecular tanning material, are exposed to a number of factors during the treatment by a nonequilibrium plasma. Plasma particles exchange the charge and energy with the atoms of the material during the interaction of the plasma with the surface. The results of treatment are desorption of atoms and molecules from the body surface, sputtering and evaporation of material’s particles, changes of the structure and phase state. In real terms during the modification of solids by nonequilibrium low-temperature plasma thermal effect influences the process. The energy supplied from the discharge during the process with low pressure, which is converted into heat, is significantly less than during the atmospheric pressure, but the thermal stability of high-molecular compounds used in the manufacture of materials and products of the tanning industry, is very limited and depends on the duration of the effect of temperature. Even short heating of hydrophilic polymers (proteins) (100-180 °C) causes a change in their properties. It decreases the collagen ability to absorb water vapor, to swell in water, acids, alkalis, and thus decreases their durability. Prolonged heating leads to a deterioration of the physical and mechanical properties. Higher heating temperatures it leads to the polymer degradation. The natural leather temperature during plasma exposure does not rise to a temperature of collagen degradation and does not result in changes of physical phase of the dermis. However, the thermal plasma exposure must be considered, since the high temperatures influence on physical and mechanical properties.
Thermo-responsive gels that absorb moisture and ooze water.
Matsumoto, Kazuya; Sakikawa, Nobuki; Miyata, Takashi
2018-06-13
The water content of thermo-responsive hydrogels can be drastically altered by small changes in temperature because their polymer chains change from hydrophilic to hydrophobic above their low critical solution temperature (LCST). In general, such smart hydrogels have been utilized in aqueous solutions or in their wet state, and no attempt has been made to determine the phase-transition behavior of the gels in their dried states. Here we demonstrate an application of the thermo-responsive behavior of an interpenetrating polymer network (IPN) gel comprising thermo-responsive poly(N-isopropylacrylamide) and hydrophilic sodium alginate networks in their dried states. The dried IPN gel absorbs considerable moisture from air at temperatures below its LCST and oozes the absorbed moisture as liquid water above its LCST. These phenomena provide energy exchange systems in which moisture from air can be condensed to liquid water using the controllable hydrophilic/hydrophobic properties of thermo-responsive gels with a small temperature change.
Vitórica-Yrezábal, Iñigo J; Libri, Stefano; Loader, Jason R; Mínguez Espallargas, Guillermo; Hippler, Michael; Fletcher, Ashleigh J; Thompson, Stephen P; Warren, John E; Musumeci, Daniele; Ward, Michael D; Brammer, Lee
2015-06-08
Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)2 ] formed by loss of TMP ligands exclusively from singly-bridging sites. Four polymorphic forms of 1 (1-A(LT) , 1-A(HT) , 1-B(LT) and 1-B(HT) ; HT=high temperature, LT=low temperature) have been identified crystallographically. In situ powder X-ray diffraction (PXRD) studies of the 1-ROH→1→2 transformations indicate the role of the HT polymorphs in these reactions. The structural relationship between polymorphs, involving changes in conformation of perfluoroalkyl chains and a change in orientation of entire polymers (A versus B forms), suggests a mechanism for the observed reactions and a pathway for guest transport within the fluorous layers. Consistent with this pathway, optical microscopy and AFM studies on single crystals of 1-MeOH/1-A(HT) show that cracks parallel to the layers of interdigitated perfluoroalkyl chains develop during the MeOH release/uptake process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermodynamic phase behavior of API/polymer solid dispersions.
Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele
2014-07-07
To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Schmidt, Matthias
2005-06-01
The equilibrium phase behavior of a binary mixture of charged colloids and neutral, nonadsorbing polymers is studied within free-volume theory. A model mixture of charged hard-sphere macroions and ideal, coarse-grained, effective-sphere polymers is mapped first onto a binary hard-sphere mixture with nonadditive diameters and then onto an effective Asakura-Oosawa model [S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954)]. The effective model is defined by a single dimensionless parameter—the ratio of the polymer diameter to the effective colloid diameter. For high salt-to-counterion concentration ratios, a free-volume approximation for the free energy is used to compute the fluid phase diagram, which describes demixing into colloid-rich (liquid) and colloid-poor (vapor) phases. Increasing the range of electrostatic interactions shifts the demixing binodal toward higher polymer concentration, stabilizing the mixture. The enhanced stability is attributed to a weakening of polymer depletion-induced attraction between electrostatically repelling macroions. Comparison with predictions of density-functional theory reveals a corresponding increase in the liquid-vapor interfacial tension. The predicted trends in phase stability are consistent with observed behavior of protein-polysaccharide mixtures in food colloids.
Analyte discrimination from chemiresistor response kinetics.
Read, Douglas H; Martin, James E
2010-08-15
Chemiresistors are polymer-based sensors that transduce the sorption of a volatile organic compound into a resistance change. Like other polymer-based gas sensors that function through sorption, chemiresistors can be selective for analytes on the basis of the affinity of the analyte for the polymer. However, a single sensor cannot, in and of itself, discriminate between analytes, since a small concentration of an analyte that has a high affinity for the polymer might give the same response as a high concentration of another analyte with a low affinity. In this paper we use a field-structured chemiresistor to demonstrate that its response kinetics can be used to discriminate between analytes, even between those that have identical chemical affinities for the polymer phase of the sensor. The response kinetics is shown to be independent of the analyte concentration, and thus the magnitude of the sensor response, but is found to vary inversely with the analyte's saturation vapor pressure. Saturation vapor pressures often vary greatly from analyte to analyte, so analysis of the response kinetics offers a powerful method for obtaining analyte discrimination from a single sensor.
On compression and damage evolution in two thermoplastics
Garcea, S. C.; Eastwood, D. S.; Parry, S.; Rau, C.; Withers, P. J.; McDonald, S. A.; Brown, E. N.
2017-01-01
The well-known Taylor cylinder impact test, which follows the impact of a flat-ended cylindrical rod onto a rigid stationary anvil, is conducted over a range of impact speeds for two polymers, polytetrafluoroethylene (PTFE) and polyetheretherketone (PEEK). In previous work, experiments and a model were developed to capture the deformation behaviour of the cylinder after impact. These works showed a region in which spatial and temporal variation of both longitudinal and radial deformation provided evidence of changes in phase within the material. In this further series of experiments, this region is imaged in a range of impacted targets at the Diamond synchrotron. Further techniques were fielded to resolve compressed regions within the recovered polymer cylinders that showed a fracture zone in the impact region. The combination of macroscopic high-speed photography and three-dimensional X-ray imaging has identified the development of failure with these polymers and shown that there is no abrupt transition in behaviours but rather a continuous range of responses to competing operating mechanisms. The behaviours noted in PEEK in these polymers show critical gaps in understanding of polymer high strain-rate response. PMID:28265185
Xing, Yuxiu; Peng, Jun; Xu, Kai; Gao, Shuxi; Gui, Xuefeng; Liang, Shengyuan; Sun, Longfeng; Chen, Mingcai
2017-08-30
A well-defined pH-responsive star-shaped polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMA) arms and a cage-like methacryloxypropyl silsesquioxane (CMSQ-T 10 ) core was used as an interfacial stabilizer for emulsions consisting of m-xylene and water. We explored the properties of the CMSQ/PDMA star-shaped polymer using the characteristic results of nuclear magnetic resonance (NMR) spectroscopy, size exclusion chromatography (SEC), dynamic light scattering (DLS), and zeta potential and conductivity measurements. The interfacial tension results showed that the CMSQ/PDMA star-shaped polymer reduced the interfacial tension between water and oil in a pH-dependent manner. Gelled high internal phase emulsions (HIPEs) including o/w and w/o types were formed in the pH ranges of 1.2-5.8 and 9.1-12.3 with the CMSQ/PDMA star-shaped polymer as a stabilizer, when the oil fractions were 80-90 vol% and 10-20 vol%, respectively. The soluble star-shaped polymer aggregated spontaneously to form a microgel that adsorbed to the two immiscible phases. Images of the fluorescently labeled polymers demonstrated that there was a star-shaped polymer in the continuous phase, and the non-Pickering stabilization based on the percolating network of the star-shaped polymer also contributed to the stabilization of the HIPE. This pH-dependent HIPE was prepared with a novel stabilization mechanism consisting of microgel adsorption and non-Pickering stabilization. Moreover, the preparation of HIPEs provided the possibility of their application in porous materials and responsive materials.
Annealed scaling for a charged polymer in dimensions two and higher
NASA Astrophysics Data System (ADS)
Berger, Q.; den Hollander, F.; Poisat, J.
2018-02-01
This paper considers an undirected polymer chain on {Z}d , d ≥slant 2 , with i.i.d. random charges attached to its constituent monomers. Each self-intersection of the polymer chain contributes an energy to the interaction Hamiltonian that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The object of interest is the annealed free energy per monomer in the limit as the length n of the polymer chain tends to infinity. We show that there is a critical curve in the parameter plane spanned by the charge bias and the inverse temperature separating an extended phase from a collapsed phase. We derive the scaling of the critical curve for small and for large charge bias and the scaling of the annealed free energy for small inverse temperature. We argue that in the collapsed phase the polymer chain is subdiffusive, namely, on scale \
Protein-surface interactions on stimuli-responsive polymeric biomaterials.
Cross, Michael C; Toomey, Ryan G; Gallant, Nathan D
2016-03-04
Responsive surfaces: a review of the dependence of protein adsorption on the reversible volume phase transition in stimuli-responsive polymers. Specifically addressed are a widely studied subset: thermoresponsive polymers. Findings are also generalizable to other materials which undergo a similarly reversible volume phase transition. As of 2015, over 100,000 articles have been published on stimuli-responsive polymers and many more on protein-biomaterial interactions. Significantly, fewer than 100 of these have focused specifically on protein interactions with stimuli-responsive polymers. These report a clear trend of increased protein adsorption in the collapsed state compared to the swollen state. This control over protein interactions makes stimuli-responsive polymers highly useful in biomedical applications such as wound repair scaffolds, on-demand drug delivery, and antifouling surfaces. Outstanding questions are whether the protein adsorption is reversible with the volume phase transition and whether there is a time-dependence. A clear understanding of protein interactions with stimuli-responsive polymers will advance theoretical models, experimental results, and biomedical applications.
Vogel, M; Herbers, C; Koch, B
2008-09-11
We use (2)H NMR to investigate the segmental motion of poly(ethylene oxide) (PEO) in neat and nanocomposite materials that do and do not contain salt. Specifically, in addition to a neat low-molecular-weight PEO, we study mixtures of this polymer with TiO 2 nanoparticles and LiClO 4. To characterize the polymer dynamics over a wide range of time scales, we combine (2)H NMR spin-lattice relaxation, line-shape, and stimulated-echo analyses. The results consistently show that the presence of nanoparticles hardly affects the behavior of the polymer, while addition of salt leads to substantial changes; e.g., it reduces the crystallinity. For neat PEO and a PEO-TiO 2 mixture, stimulated-echo spectroscopy enables measurement of rotational correlation functions for the crystalline phase. Analysis of the decays allows us to determine correlation times, to demonstrate the existence of a nonexponential relaxation, which implies a high complexity of the polymer dynamics in the crystal, and to show that the reorientation can be described as a large-angle jump. For a PEO-TiO 2-LiClO 4 mixture, we use (2)H and (7)Li NMR to study the polymer and the lithium dynamics, respectively. Analysis of the (7)Li spin-lattice relaxation reveals a high lithium ionic mobility in this nanocomposite polymer electrolyte. The (7)Li stimulated-echo decay is well described by a stretched exponential extending over about 6 orders of magnitude, indicating that a broad and continuous distribution of correlation times characterizes the fluctuations of the local lithium ionic environments.
Kaigala, Govind V; Hoang, Viet N; Backhouse, Christopher J
2008-07-01
Microvalves are key in realizing portable miniaturized diagnostic platforms. We present a scalable microvalve that integrates well with standard lab on a chip (LOC) implementations, yet which requires essentially no external infrastructure for its operation. This electrically controlled, phase-change microvalve is used to integrate genetic amplification and analysis via capillary electrophoresis--the basis of many diagnostics. The microvalve is actuated using a polymer (polyethylene glycol, PEG) that exhibits a large volumetric change between its solid and liquid phases. Both the phase change of the PEG and the genetic amplification via polymerase chain reaction (PCR) are thermally controlled using thin film resistive elements that are patterned using standard microfabrication methods. By contrast with many other valve technologies, these microvalves and their control interface scale down in size readily. The novelty here lies in the use of fully integrated microvalves that require only electrical connections to realize a portable and inexpensive genetic analysis platform.
Conformational Phase Diagram for Polymers Adsorbed on Ultrathin Nanowires
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Bachmann, Michael
2010-05-01
We study the conformational behavior of a polymer adsorbed at an attractive stringlike nanowire and construct the complete structural phase diagram in dependence of the binding strength and effective thickness of the nanowire. For this purpose, Monte Carlo optimization techniques are employed to identify lowest-energy structures for a coarse-grained model of a polymer in contact with the nanowire. Among the representative conformations in the different phases are, for example, compact droplets attached to the wire and also nanotubelike monolayer films wrapping it in a very ordered way. We here systematically analyze low-energy shapes and structural order parameters to elucidate the transitions between the structural phases.
Conformational phase diagram for polymers adsorbed on ultrathin nanowires.
Vogel, Thomas; Bachmann, Michael
2010-05-14
We study the conformational behavior of a polymer adsorbed at an attractive stringlike nanowire and construct the complete structural phase diagram in dependence of the binding strength and effective thickness of the nanowire. For this purpose, Monte Carlo optimization techniques are employed to identify lowest-energy structures for a coarse-grained model of a polymer in contact with the nanowire. Among the representative conformations in the different phases are, for example, compact droplets attached to the wire and also nanotubelike monolayer films wrapping it in a very ordered way. We here systematically analyze low-energy shapes and structural order parameters to elucidate the transitions between the structural phases.
Hou, Huiyun; Cao, Xuejun
2015-07-31
In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Yu Jin; Ahn, Sunyong; Wang, Dong Hwan; Park, Chan Eon
2015-01-01
All-polymer solar cells are herein presented utilizing the PBDTTT-CT donor and the P(NDI2OD-T2) acceptor with 1,8-diiodooctane (DIO) and 1-chloronaphthalene (CN) binary solvent additives. A systematic study of the polymer/polymer bulk heterojunction photovoltaic cells processed from the binary additives revealed that the microstructures and photophysics were quite different from those of a pristine system. The combination of DIO and CN with a DIO/CN ratio of 3:1 (3 vol% DIO, 1 vol% CN and 96 vol% o-DCB) led to suitable penetrating polymer networks, efficient charge generation and balanced charge transport, which were all beneficial to improving the efficiency. This improvement is attributed to increase in power conversion efficiency from 2.81% for a device without additives to 4.39% for a device with the binary processing additives. A detailed investigation indicates that the changes in the polymer:polymer interactions resulted in the formation of a percolating nasnoscale morphology upon processing with the binary additives. Depth profile measurements with a two-dimensional grazing incidence wide-angle X-ray scattering confirm this optimum phase feature. Furthermore impedance spectroscopy also finds evidence for synergistically boosting the device performance. PMID:26658472
The competition of hydrogen-like and isotropic interactions on polymer collapse
NASA Astrophysics Data System (ADS)
Krawczyk, J.; Owczarek, A. L.; Prellberg, T.
2007-09-01
We investigate a lattice model of polymers where the nearest neighbour monomer monomer interaction strengths differ according to whether the local configurations have so-called 'hydrogen-like' formations or not. If the interaction strengths are all the same then the classical θ-point collapse transition occurs on lowering the temperature, and the polymer enters the isotropic liquid drop phase known as the collapsed globule. On the other hand, strongly favouring the hydrogen-like interactions gives rise to an anisotropic folded (solid-like) phase on lowering the temperature. We use Monte Carlo simulations up to a length of 256 to map out the phase diagram in the plane of parameters and determine the order of the associated phase transitions. We discuss the connections to semi-flexible polymers and other polymer models. Importantly, we demonstrate that for a range of energy parameters, two phase transitions occur on lowering the temperature, the second being a transition from the globule state to the crystal state. We argue from our data that this globule-to-crystal transition is continuous in two dimensions in accord with field-theory arguments concerning Hamiltonian walks, but is first order in three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arman, B.; An, Q.; Luo, S. N.
We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less
NASA Astrophysics Data System (ADS)
de Souza, Cabrini F.; Martins, Renata K. S.; da Silva, Andrea R.; da Cunha, Alessandra L. M. C.; Aucélio, Ricardo Q.
A phosphorimetric method was developed to enable the determination of enrofloxacin using photochemical derivatization which was used to both improve detection limits and to minimize the uncertainty of measurements. Phosphorescence was induced on cellulose containing TlNO3. Absolute limit of detection at the ng range and linear analytical response over three orders of magnitude were achieved. A metrological study was made to obtain the combined uncertainty value and to identify that the precision was mainly affected by the changing of substrates when measuring the signal from each replicate. Pharmaceutical formulations containing enrofloxacin were successfully analyzed by the method and the results were similar to the ones achieved using a HPLC method. A solid phase extraction on an acrylic polymer was optimized to separate enrofloxacin from interferents such as diclofenac and other components from biological matrices, which allowed the successful use of the method in urine analysis.
NASA Astrophysics Data System (ADS)
Kang, Shin-Woong; Kundu, Sudarshan; Park, Heung-Shik; Oh, Keun Chan; Lyu, Jae Jin
2017-02-01
We report the in situ creation of reactive polymer nanoparticles and resulting polymer networks formed at the interfaces of liquid crystals. It is known that polymerization-induced phase separation proceeds in two distinct regimes depending on the concentration of monomer. For a high monomer concentration, phase separation occurs mainly through the spinodal decomposition process, consequently resulting in interpenetrating polymer networks. For a dilute system, however, the phase separation mainly proceeds and completes in the binodal decomposition regime. The system resembles the aggregation process of colloidal particle. In this case, the reaction kinetics is limited by the reaction between in situ created polymer aggregates and hence the network morphologies are greatly influenced by the diffusion of reactive polymer particles. The thin polymer layers localized at the surface of substrate are inevitably observed and can be comprehended by the interfacial adsorption and further cross-linking reaction of reactive polymer aggregates at the interface. This process provides a direct perception on understanding polymer stabilized liquid crystals accomplished by the interfacial polymer layer. The detailed study has been performed for an extremely dilute condition (below 0.5 wt%) by employing systematic experimental approaches. Creation and growth of polymer nanoparticles have been measured by particle size analyzer. The interfacial localization of polymer aggregates and resulting interfacial layer formation with a tens of nanometer scale have been exploited at various interfaces such as liquid-solid, liquid-liquid, and liquid-gas interfaces. The resulting interfacial layers have been characterized by using fuorescent confocal microscope and field emission scanning electron microscope. The detailed processes of the polymer stabilized vertically aligned liquid crystals will be discussed in support of the reported study.
Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie
2013-09-05
This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derrida, B.; Spohn, H.
We show that the problem of a directed polymer on a tree with disorder can be reduced to the study of nonlinear equations of reaction-diffusion type. These equations admit traveling wave solutions that move at all possible speeds above a certain minimal speed. The speed of the wavefront is the free energy of the polymer problem and the minimal speed corresponds to a phase transition to a glassy phase similar to the spin-glass phase. Several properties of the polymer problem can be extracted from the correspondence with the traveling wave: probability distribution of the free energy, overlaps, etc.
Observation of the Chiral and Achiral Hexatic Phases of Self-assembled Micellar polymers
Pal, Antara; Kamal, Md. Arif; Raghunathan, V. A.
2016-01-01
We report the discovery of a thermodynamically stable line hexatic (N + 6) phase in a three-dimensional (3D) system made up of self-assembled polymer-like micelles of amphiphilic molecules. The experimentally observed phase transition sequence nematic (N) N + 6 two-dimensional hexagonal (2D-H) is in good agreement with the theoretical predictions. Further, the present study also brings to light the effect of chirality on the N + 6 phase. In the chiral N + 6 phase the bond-orientational order within each “polymer” bundle is found to be twisted about an axis parallel to the average polymer direction. This structure is consistent with the theoretically envisaged Moiré state, thereby providing the first experimental demonstration of the Moiré structure. In addition to confirming the predictions of fundamental theories of two-dimensional melting, these results are relevant in a variety of situations in chemistry, physics and biology, where parallel packing of polymer-like objects are encountered. PMID:27577927
NASA Astrophysics Data System (ADS)
Caliendo, Cinzia
2006-09-01
The relative humidity (RH) sensing behavior of a polymeric film was investigated by means of polymer coated surface acoustic wave (SAW) delay lines implemented on single crystal piezoelectric substrates, such as quartz and LiNbO3, and on thin piezoelectric polycrystalline films, such as ZnO and AlN, on Si and GaAs. The same SAW delay line configuration was implemented on each substrate and the obtained devices' operating frequency was in the range of 105-156MHz, depending on the type of the substrate, on its crystallographic orientation, and on the SAW propagation direction. The surface of each SAW device was covered by the same type RH sensitive film of the same thickness and the RH sensitivity of each polymer coated substrate, i.e., the SAW relative phase velocity shift per RH unit changes, was investigated in the 0%—80% RH range. The perturbational approach was used to relate the SAW sensor velocity response to the RH induced changes in the physical parameters of the sensitive polymer film: the incremental change in the mass density and shear modulus of the polymer film per unit RH change were estimated. The shift of the bare SAW delay lines operating frequency induced by the presence of the polymer film, at RH =0% and at T =-10°C, allowed the experimental estimation of the mass sensitivity values of each substrate. These values were in good accordance with those reported in the literature and with those theoretically evaluated by exact numerical calculation. The shift of the bare SAW delay lines propagation loss induced by the polymer coating of the device surface, at RH =0% and at ambient temperature, allowed the experimental estimation of the elastic sensitivity of each substrate. These values were found in good accordance with those available from the literature. The temperature coefficient of delay and the electromechanical coupling coefficient of the bare substrates were also estimated. The membrane sensitivity to ethanol, methanol and isopropylic alcohol was tested by means of a high-frequency (670MHz) high-sensitivity Si /AlN resonator sensor.
Method for separating biological cells. [suspended in aqueous polymer systems
NASA Technical Reports Server (NTRS)
Brooks, D. E. (Inventor)
1980-01-01
A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.
The rheology and phase separation kinetics of mixed-matrix membrane dopes
NASA Astrophysics Data System (ADS)
Olanrewaju, Kayode Olaseni
Mixed-matrix hollow fiber membranes are being developed to offer more efficient gas separations applications than what the current technologies allow. Mixed-matrix membranes (MMMs) are membranes in which molecular sieves incorporated in a polymer matrix enhance separation of gas mixtures based on the molecular size difference and/or adsorption properties of the component gases in the molecular sieve. The major challenges encountered in the efficient development of MMMs are associated with some of the paradigm shifts involved in their processing, as compared to pure polymer membranes. For instance, mixed-matrix hollow fiber membranes are prepared by a dry-wet jet spinning method. Efficient large scale processing of hollow fibers by this method requires knowledge of two key process variables: the rheology and kinetics of phase separation of the MMM dopes. Predicting the rheological properties of MMM dopes is not trivial; the presence of particles significantly affects neat polymer membrane dopes. Therefore, the need exists to characterize and develop predictive capabilities for the rheology of MMM dopes. Furthermore, the kinetics of phase separation of polymer solutions is not well understood. In the case of MMM dopes, the kinetics of phase separation are further complicated by the presence of porous particles in a polymer solution. Thus, studies on the phase separation kinetics of polymer solutions and suspensions of zeolite particles in polymer solutions are essential. Therefore, this research thesis aims to study the rheology and phase separation kinetics of mixed-matrix membrane dopes. In our research efforts to develop predictive models for the shear rheology of suspensions of zeolite particles in polymer solutions, it was found that MFI zeolite suspensions have relative viscosities that dramatically exceed the Krieger-Dougherty predictions for hard sphere suspensions. Our investigations showed that the major origin of this discrepancy is the selective absorption of solvent molecules from the suspending polymer solution into the zeolite pores. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are greatly increased. A predictive model for the viscosity of porous zeolite suspensions incorporating a solvent absorption parameter, alpha, into the Krieger-Dougherty model was developed. We experimentally determined the solvent absorption parameter and our results are in good agreement with the theoretical pore volume of MFI particles. In addition, fundamental studies were conducted with spherical nonporous silica suspensions to elucidate the role of colloidal and hydrodynamic forces on the rheology of mixed-matrix membrane dopes. Also in this thesis, details of a novel microfluidic device for measuring the phase separation kinetics of membrane dopes are presented. We have used this device to quantify the phase separation kinetics (PSK) of polymer solutions and MMM dopes upon contact with an array of relevant nonsolvent. For the polymer solution, we found that PSK is governed by the micro-rheological and thermodynamic properties of the polymer solution and nonsolvent. For the MMM dopes, we found that the PSK may increase with increase in particles surface area due to surface diffusion enhancement. In addition, it was found that the dispersed particles alter the thermodynamic properties of the dope based on the hydrophilicity and porosity of the particle.
A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.
Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya
2014-03-17
This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning
Zhang, Xinping; Liu, Feifei; Li, Hongwei
2016-01-01
Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers. PMID:28773248
NASA Astrophysics Data System (ADS)
Pawlik, Marzena; Lu, Yiling
2018-05-01
Computational micromechanics is a useful tool to predict properties of carbon fibre reinforced polymers. In this paper, a representative volume element (RVE) is used to investigate a fuzzy fibre reinforced polymer. The fuzzy fibre results from the introduction of nanofillers in the fibre surface. The composite being studied contains three phases, namely: the T650 carbon fibre, the carbon nanotubes (CNTs) reinforced interphase and the epoxy resin EPIKOTE 862. CNTs are radially grown on the surface of the carbon fibre, and thus resultant interphase composed of nanotubes and matrix is transversely isotropic. Transversely isotropic properties of the interphase are numerically implemented in the ANSYS FEM software using element orientation command. Obtained numerical predictions are compared with the available analytical models. It is found that the CNTs interphase significantly increased the transverse mechanical properties of the fuzzy fibre reinforced polymer. This extent of enhancement changes monotonically with the carbon fibre volume fraction. This RVE model enables to investigate different orientation of CNTs in the fuzzy fibre model.
Zhang, Guangzu; Zhang, Xiaoshan; Yang, Tiannan; Li, Qi; Chen, Long-Qing; Jiang, Shenglin; Wang, Qing
2015-07-28
The electrocaloric effect (ECE) refers to conversion of thermal to electrical energy of polarizable materials and could form the basis for the next-generation refrigeration and power technologies that are highly efficient and environmentally friendly. Ferroelectric materials such as ceramic and polymer films exhibit large ECEs, but each of these monolithic materials has its own limitations for practical cooling applications. In this work, nanosized barium strontium titanates with systematically varied morphologies have been prepared to form polymer nanocomposites with the ferroelectric polymer matrix. The solution-processed polymer nanocomposites exhibit an extraordinary room-temperature ECE via the synergistic combination of the high breakdown strength of a ferroelectric polymer matrix and the large change of polarization with temperature of ceramic nanofillers. It is found that a sizable ECE can be generated under both modest and high electric fields, and further enhanced greatly by tailoring the morphology of the ferroelectric nanofillers such as increasing the aspect ratio of the nanoinclusions. The effect of the geometry of the nanofillers on the dielectric permittivity, polarization, breakdown strength, ECE and crystallinity of the ferroelectric polymer has been systematically investigated. Simulations based on the phase-field model have been carried out to substantiate the experimental results. With the remarkable cooling energy density and refrigerant capacity, the polymer nanocomposites are promising for solid-state cooling applications.
Lang, Anthony J; Vyazovkin, Sergey
2008-09-11
Dissolving of ammonium nitrate in highly polar polymers such as poly(vinylpyrrolidone) and/or poly(acrylamide) can result in the formation of single-phase glassy solid materials, in which NH 4 (+) and NO 3 (-) are separated through an ion-dipole interaction with the polymer matrix. Below the glass transition temperature of the polymer matrix the resulting materials remain phase and thermally stable as demonstrated through the absence of decomposition as well as the solid-solid transitions and melting of ammonium nitrate. The structure of the materials is explored by Fourier transform infrared spectroscopy and density functional calculations. Differential scanning calorimetry, thermogravimetry, and isoconversional kinetic analysis are applied to characterize the thermal behavior of the materials.
Guerreiro, António; Soares, Ana; Piletska, Elena; Mattiasson, Bo; Piletsky, Sergey
2008-03-31
Molecularly imprinted (MIP) and blank polymers with affinity for nonylphenol were designed using computational modelling. Chromatographic tests demonstrated higher affinity of imprinted polymers towards the template nonylphenol as compared with blank polymers. The performance of both polymers in solid-phase extraction was however very similar. Both blank and imprinted polymers appeared to be suitable for the removal and pre-concentration of nonylphenol from contaminated water samples with 99% efficiency of the recovery. The commercial resins PH(EC) (Biotage) and C18 (Varian) tested in the same conditions used for comparative purposes had recovery rate <84%. The polymer capacity for nonylphenol was 231 mg g(-1) for blank and 228 mg g(-1) for MIP. The synthesised materials can have significance for sample pre-concentration and environmental analysis of this class of compounds.
Cold and warm swelling of hydrophobic polymers
NASA Astrophysics Data System (ADS)
de Los Rios, Paolo; Caldarelli, Guido
2001-03-01
We introduce a polymer model where the transition from swollen to compact configurations is due to interactions between the monomers and the solvent. These interactions are the origin of the effective attractive interactions between hydrophobic amino acids in proteins. We find that in the low and high temperature phases polymers are swollen, and there is an intermediate phase where the most favorable configurations are compact. We argue that such a model captures in a single framework both the cold and the warm denaturation experimentally detected for thermosensitive polymers and for proteins.
Bobály, Balázs; Guillarme, Davy; Fekete, Szabolcs
2015-02-01
A new superficially porous material possessing a carbon core and nanodiamond-polymer shell and pore size of 180Å was evaluated for the analysis of large proteins. Because the stationary phase on this new support contains a certain amount of protonated amino groups within the shell structure, the resulting retention mechanism is most probably a mix between reversed phase and anion exchange. However, under the applied conditions (0.1-0.5% TFA in the mobile phase), it seemed that the main retention mechanism for proteins was hydrophobic interaction with the C18 alkylchains on this carbon based material. In this study, we demonstrated that there was no need to increase mobile phase temperature, as the peak capacity was not modified considerably between 30 and 80°C for model proteins. Thus, the risk of thermal on-column degradation or denaturation of large proteins is not relevant. Another important difference compared to silica-based materials is that this carbon-based column requires larger amount of TFA, comprised between 0.2 and 0.5%. Finally, it is important to mention that selectivity between closely related proteins (oxidized, native and reduced forms of Interferon α-2A variants) could be changed mostly through mobile phase temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Tiancai; Fu, Chao; Yang, Yingzi; Qiu, Feng
2017-02-07
The phase behaviors of homopolymer-monotethered nanoparticles (HMNs) in melt are investigated via a theoretical method combining self-consistent field theory for polymers and density functional theory for hard spheres. An extremely asymmetric phase diagram is observed: (i) microphases are only possible for the volume fraction of the tethered polymer f A > 0.35; (ii) in addition to lamellar phase, the system can only self-assemble into various morphologies with a polymer-rich matrix, including gyroid phase, cylindrical phase, and spherical phase. In the frame of this theory, the critical point for HMNs' microphase separation is significantly lower than that of linear diblock copolymers. Furthermore, the characteristic length of microphase-separated structures of HMNs is much smaller than that of linear diblock copolymers with the same molecular weight. Our calculation results on morphologies and characteristic length agree well with recent simulations and experimental observations.
Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers
Quiroz, Felipe García; Chilkoti, Ashutosh
2015-01-01
Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327
Mehta, Somil C; Somasundaran, P; Kulkarni, Ravi
2009-05-15
Silicone oils are widely used in cosmetics and personal care applications to improve softness and condition skin and hair. Being insoluble in water and most hydrocarbons, a common mode of delivering them is in the form of emulsions. Currently most applications use polyoxyethylene (non-ionic) modified siloxanes as emulsifiers to stabilize silicone oil emulsions. However, ionically grafted silicone polymers have not received much attention. Ionic silicones have significantly different properties than the non-ionic counterpart. Thus considerable potential exists to formulate emulsions of silicones with different water/silicone oil ratios for novel applications. In order to understand the mechanisms underlying the effects of hydrophilic modifications on the ability of hybrid silicone polymers to stabilize various emulsions, this article focuses on the phase diagram studies for silicone emulsions. The emulsifying ability of functional silicones was seen to depend on a number of factors including hydrophilicity of the polymer, nature of the functional groups, the extent of modification, and the method of emulsification. It was observed that the region of stable emulsion in a phase diagram expanded with increase in shear rate. At a given shear rate, the region of stable emulsion and the nature of emulsion (water-in-oil or oil-in-water) was observed to depend on hydrophilic-hydrophobic balance of the hybrid silicone emulsifier. At a fixed amount of modification, the non-ionically modified silicone stabilized an oil-in-water emulsion, whereas the ionic silicones stabilized inverse water-in-oil emulsions. This was attributed to the greater hydrophilicity of the polyoxyethylene modified silicones than the ionic counterparts. In general, it is postulated that with progressive increase in hydrophilicity of hybrid silicone emulsifiers, their tendency to stabilize water-in-oil emulsion decreases with corresponding increase in oil-in-water emulsion. Further, this behavior is hypothesized to depend on the nature of modifying functional groups. Thus a hybrid silicone polymer can be tailored by selecting the nature and degree of hydrophilicity to obtain a desired silicone emulsion.
Shape memory polymer sensors for tracking cumulative environmental exposure
NASA Astrophysics Data System (ADS)
Snyder, Ryan; Rauscher, Michael; Vining, Ben; Havens, Ernie; Havens, Teresa; McFerran, Jace
2010-04-01
Cornerstone Research Group Inc. (CRG) has developed environmental exposure tracking (EET) sensors using shape memory polymers (SMP) to monitor the degradation of perishable items, such as munitions, foods and beverages, or medicines, by measuring the cumulative exposure to temperature and moisture. SMPs are polymers whose qualities have been altered to give them dynamic shape "memory" properties. Under thermal or moisture stimuli, the SMP exhibits a radical change from a rigid thermoset to a highly flexible, elastomeric state. The dynamic response of the SMP can be tailored to match the degradation profile of the perishable item. SMP-based EET sensors require no digital memory or internal power supply and provide the capability of inexpensive, long-term life cycle monitoring of thermal and moisture exposure over time. This technology was developed through Phase I and Phase II SBIR efforts with the Navy. The emphasis of current research centers on transitioning SMP materials from the lab bench to a production environment. Here, CRG presents the commercialization progress of thermally-activated EET sensors, focusing on fabrication scale-up, process refinements, and quality control. In addition, progress on the development of vapor pressure-responsive SMP (VPR-SMP) will be discussed.
Hashim, Shima N N S; Schwarz, Lachlan J; Danylec, Basil; Potdar, Mahesh K; Boysen, Reinhard I; Hearn, Milton T W
2016-12-01
This investigation describes a general procedure for the selectivity mapping of molecularly imprinted polymers, using (E)-resveratrol-imprinted polymers as the exemplar, and polyphenolic compounds present in Pinot noir grape skin extracts as the test compounds. The procedure is based on the analysis of samples generated before and after solid-phase extraction of (E)-resveratrol and other polyphenols contained within the Pinot noir grape skins using (E)-resveratrol-imprinted polymers. Capillary reversed-phase high-performance liquid chromatography (RP-HPLC) and electrospray ionisation tandem mass spectrometry (ESI MS/MS) was then employed for compound analysis and identification. Under optimised solid-phase extraction conditions, the (E)-resveratrol-imprinted polymer showed high binding affinity and selectivity towards (E)-resveratrol, whilst no resveratrol was bound by the corresponding non-imprinted polymer. In addition, quercetin-3-O-glucuronide and a dimer of catechin-methyl-5-furfuraldehyde, which share some structural features with (E)-resveratrol, were also bound by the (E)-resveratrol-imprinted polymer. Polyphenols that were non-specifically retained by both the imprinted and non-imprinted polymer were (+)-catechin, a B-type procyanidin and (-)-epicatechin. The compounds that did not bind to the (E)-resveratrol molecularly imprinted polymer had at least one of the following molecular characteristics in comparison to the (E)-resveratrol template: (i) different spatial arrangements of their phenolic hydroxyl groups, (ii) less than three or more than four phenolic hydroxyl groups, or (iii) contained a bulky substituent moiety. The results show that capillary RP-HPLC in conjunction with ESI MS/MS represent very useful techniques for mapping the selectivity of the binding sites of imprinted polymer. Moreover, this procedure permits performance monitoring of the characteristics of molecularly imprinted polymers intended for solid-phase extraction of bioactive and nutraceutical molecules from diverse agricultural waste sources. Copyright © 2016 Elsevier B.V. All rights reserved.
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a uniquemore » opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.« less
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
NASA Astrophysics Data System (ADS)
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
2016-10-01
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.
Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kelly, Jesse C.
Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on-off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.
Liquid Crystalline Properties of Amyloid Protein Fibers in Water
NASA Astrophysics Data System (ADS)
Mezzenga, Raffaele; Jung, Jin-Mi
2010-03-01
We have studied the liquid crystalline features of two colloidal systems consisting of food protein amyloid fibrils in water, obtained by heat-denaturation and aggregation of β-lactoglobulin, a globular dairy protein. The resulting fibrils, have a monodisperse cross section of about 4 nm and two groups of polydisperse contour lengths: (i) fibrils 1-10 μm long, showing semiflexible polyeletrolyte-like behaviour and (ii) rigid rods 100-200 nm long. In both systems, the fibers are highly charged (+5 e/nm) and stable in water at low ionic strength (0.01 M) and low pH (pH 2). The physical properties of these systems are studied using a polymer physics approach and phase diagrams of these two systems are obtained by changing concentration and pH. Both systems exhibit rich phase behaviours. Interestingly, the experimentally measured isotropic-nematic phase transition was found to occur at concentrations more than one order of magnitude lower than what expected based on Onsager theory. Experimental results are revisited in terms of the Flory theory developed for rigid polymers in solvent of varying conditions.
NASA Astrophysics Data System (ADS)
Kapri, Anil; Zaidi, M. G. H.; Goel, Reeta
2009-06-01
Plastic waste biodegradation studies have seen several developmental phases from the discovery of potential microbial cultures, inclusion of photo-oxidizable additives into the polymer chain, to the creation of starch-embedded biodegradable plastics. The present study deals with the supplementation of nanobarium titanate (NBT) in the minimal broth in order to alter the growth-profiles of the Low-density polyethylene (LDPE) degrading consortia. The pro-bacterial influence of the nanoparticles could be seen by substantial changes such as shortening of the lag phase and elongation of the exponential as well as stationary growth phases, respectively, which eventually increase the biodegradation efficiency. In-vitro biodegradation studies revealed better dissolution of LDPE in the presence of NBT as compared to control. Significant shifting in λ-max values was observed in the treated samples through UV-Vis spectroscopy, while Fourier transform infrared spectroscopy (FTIR) and simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis (TG-DTG-DTA) further confirmed the breakage and formation of bonds in the polymer backbone. Therefore, this study suggests the implementation of NBT as nutritional additive for plastic waste management through bacterial growth acceleration.
Evolution of material properties during free radical photopolymerization
NASA Astrophysics Data System (ADS)
Wu, Jiangtao; Zhao, Zeang; Hamel, Craig M.; Mu, Xiaoming; Kuang, Xiao; Guo, Zaoyang; Qi, H. Jerry
2018-03-01
Photopolymerization is a widely used polymerization method in many engineering applications such as coating, dental restoration, and 3D printing. It is a complex chemical and physical process, through which a liquid monomer solution is rapidly converted to a solid polymer. In the most common free-radical photopolymerization process, the photoinitiator in the solution is exposed to light and decomposes into active radicals, which attach to monomers to start the polymerization reaction. The activated monomers then attack Cdbnd C double bonds of unsaturated monomers, which leads to the growth of polymer chains. With increases in the polymer chain length and the average molecular weight, polymer chains start to connect and form a network structure, and the liquid polymer solution becomes a dense solid. During this process, the material properties of the cured polymer change dramatically. In this paper, experiments and theoretical modeling are used to investigate the free-radical photopolymerization reaction kinetics, material property evolution and mechanics during the photopolymerization process. The model employs the first order chemical reaction rate equations to calculate the variation of the species concentrations. The degree of monomer conversion is used as an internal variable that dictates the mechanical properties of the cured polymer at different curing states, including volume shrinkage, glass transition temperature, and nonlinear viscoelastic properties. To capture the nonlinear behavior of the cured polymer under low temperature and finite deformation, a multibranch nonlinear viscoelastic model is developed. A phase evolution model is used to describe the mechanics of the coupling between the crosslink network evolution and mechanical loading during the curing process. The comparison of the model and the experimental results indicates that the model can capture property changes during curing. The model is further applied to investigate the internal stress of a thick sample caused by volume shrinkage during photopolymerization. Changes in the conversion degree gradient and the internal stress during photopolymerization are determined using FEM simulation. The model can be extended to many photocuring processes, such as photopolymerization 3D printing, surface coating and automotive part curing processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedev, Oleg V.; N.S. Enikolopov Institute of Synthetic Polymer Materials of RAS, Profsoyuznaya st., Moscow, 117393; Kechek’yan, Alexander S.
Electrically conductive oriented polymer nano-composites of different compositions, based on the reactor powder of ultra-high-molecular-weight polyethylene (UHMWPE) with a special morphology, filled with particles of nanostructured graphite (NG), multi-walled carbon nanotubes (MWCNTs), and electrically conductive carbon black (CB), were investigated. Polymer composites were obtained via compaction of the mechanical mixture of the polymer and filler powder, followed by uniaxial deformation of the material under homogeneous shear (HS) conditions (all of the processing stages were conducted at room temperature). Resulted composites possess a high tensile strength, high level of the electrical conductivity and low percolation threshold, owing it to the formationmore » of the segregated conductive structure, The influence of the type of nanosized carbon filler, degree of the deformation under HS condition, temperature and etc. on the electrical conductivity and mechanical properties of strengthened conductive composites oriented under homogeneous shear conditions was investigated. Changes in the electrical conductivity of oriented composite materials during reversible “tension–shrinkage” cycles along the orientation axis direction were studied. A theoretical approach, describing the process of transformation of the conductive system as a response on polymer phase deformation and volume change, was proposed, based on the data received from the analysis of the conductivity behavior during the uniaxial deformation and thermal treatment of composites.« less
Saboo, Sugandha; Taylor, Lynne S
2017-08-30
The aim of this study was to evaluate the utility of confocal fluorescence microscopy (CFM) to study the water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) (mico-PVPVA) amorphous solid dispersions (ASDs), induced during preparation, upon storage at high relative humidity (RH) and during dissolution. Different fluorescent dyes were added to drug-polymer films and the location of the dyes was evaluated using CFM. Orthogonal techniques, in particular atomic force microscopy (AFM) coupled with nanoscale infrared spectroscopy (AFM-nanoIR), were used to provide additional analysis of the drug-polymer blends. The initial miscibility of mico-PVPVA ASDs prepared under low humidity conditions was confirmed by AFM-nanoIR. CFM enabled rapid identification of drug-rich and polymer-rich phases in phase separated films prepared under high humidity conditions. The identity of drug- and polymer-rich domains was confirmed using AFM-nanoIR imaging and localized IR spectroscopy, together with Lorentz contact resonance (LCR) measurements. The CFM technique was then utilized successfully to further investigate phase separation in mico-PVPVA films exposed to high RH storage and to visualize phase separation dynamics following film immersion in buffer. CFM is thus a promising new approach to study the phase behavior of ASDs, utilizing drug and polymer specific dyes to visualize the evolution of heterogeneity in films exposed to water. Copyright © 2017 Elsevier B.V. All rights reserved.
Crystallization features of normal alkanes in confined geometry.
Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin
2014-01-21
How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D) confining environment. We have studied multiple parameters of these microencapsulated n-alkanes, including surface freezing, metastability of the rotator phase, and the phase separation behaviors of n-alkane mixtures using differential scanning calorimetry (DSC), temperature-dependent X-ray diffraction (XRD), and variable-temperature solid-state nuclear magnetic resonance (NMR). Our investigations revealed new direct evidence for the existence of surface freezing in microencapsulated n-alkanes. By examining the differences among chain packing and nucleation kinetics between bulk alkane solid solutions and their microencapsulated counterparts, we also discovered a mechanism responsible for the formation of a new metastable bulk phase. In addition, we found that confinement suppresses lamellar ordering and longitudinal diffusion, which play an important role in stabilizing the binary n-alkane solid solution in microcapsules. Our work also provided new insights into the phase separation of other mixed system, such as waxes, lipids, and polymer blends in confined geometry. These works provide a profound understanding of the relationship between molecular structure and material properties in the context of crystallization and therefore advance our ability to improve applications incorporating polymeric and molecular materials.
Harvey, Scott D [Kennewick, WA
2011-06-21
A process and sensor device are disclosed that employ metal .beta.-diketonate polymers to selectively capture gas-phase explosives and weaponized chemical agents in a sampling area or volume. The metal .beta.-diketonate polymers can be applied to surfaces in various analytical formats for detection of: improvised explosive devices, unexploded ordinance, munitions hidden in cargo holds, explosives, and chemical weapons in public areas.
Polymer compositions based on PXE
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2015-09-15
New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.
NASA Astrophysics Data System (ADS)
Ghosh, Soumyadeep
Surfactant-polymer (SP) floods have significant potential to recover waterflood residual oil in shallow oil reservoirs. A thorough understanding of surfactant-oil-brine phase behavior is critical to the design of chemical EOR floods. While considerable progress has been made in developing surfactants and polymers that increase the potential of a chemical enhanced oil recovery (EOR) project, very little progress has been made to predict phase behavior as a function of formulation variables such as pressure, temperature, and oil equivalent alkane carbon number (EACN). The empirical Hand's plot is still used today to model the microemulsion phase behavior with little predictive capability as these and other formulation variables change. Such models could lead to incorrect recovery predictions and improper flood designs. Reservoir crudes also contain acidic components (primarily naphthenic acids), which undergo neutralization to form soaps in the presence of alkali. The generated soaps perform synergistically with injected synthetic surfactants to mobilize waterflood residual oil in what is termed alkali-surfactant-polymer (ASP) flooding. The addition of alkali, however, complicates the measurement and prediction of the microemulsion phase behavior that forms with acidic crudes. In this dissertation, we account for pressure changes in the hydrophilic-lipophilic difference (HLD) equation. This new HLD equation is coupled with the net-average curvature (NAC) model to predict phase volumes, solubilization ratios, and microemulsion phase transitions (Winsor II-, III, and II+). This dissertation presents the first modified HLD-NAC model to predict microemulsion phase behavior for live crudes, including optimal solubilization ratio and the salinity width of the three-phase Winsor III region at different temperatures and pressures. This new equation-of-state-like model could significantly aid the design and forecast of chemical floods where key variables change dynamically, and in screening of potential candidate reservoirs for chemical EOR. The modified HLD-NAC model is also extended here for ASP flooding. We use an empirical equation to calculate the acid distribution coefficient from the molecular structure of the soap. Key HLD-NAC parameters like optimum salinities and optimum solubilization ratios are calculated from soap mole fraction weighted equations. The model is tuned to data from phase behavior experiments with real crudes to demonstrate the procedure. We also examine the ability of the new model to predict fish plots and activity charts that show the evolution of the three-phase region. The modified HLD-NAC equations are then made dimensionless to develop important microemulsion phase behavior relationships and for use in tuning the new model to measured data. Key dimensionless groups that govern phase behavior and their effects are identified and analyzed. A new correlation was developed to predict optimum solubilization ratios at different temperatures, pressures and oil EACN with an average relative error of 10.55%. The prediction of optimum salinities with the modified HLD approach resulted in average relative errors of 2.35%. We also present a robust method to precisely determine optimum salinities and optimum solubilization ratios from salinity scan data with average relative errors of 1.17% and 2.44% for the published data examined.
Dunlap, C J; Carr, P W
1996-10-11
Porous zirconia particles made by the oil emulsion (OE) method and the polymerization-induced colloid aggregation (PICA) method have been coated with a small, carboxymethylated (approximately 5%) dextran polymer and crosslinked in place. The parameters of the coating process (dextran concentration, adsorption time and crosslinker concentration) have all been examined and an optimum value for each determined. The coated and uncoated materials were characterized by nitrogen sorptometry and size-exclusion chromatography (SEC) using solutes (polystyrenes and dextrans) of well-defined molecular masses. Nitrogen sorptometry results show that the PICA material has a much lower pore volume and smaller pore diameter than do the OE materials. Despite this, the elution volumes of the SEC probes change very little upon polymer coating the PICA material while the OE material shows a very large change upon coating.
NASA Technical Reports Server (NTRS)
Throne, James L.
1989-01-01
The concept of uniformly and continuously depositing and sinter-fusing nominal 0.1 to 40 microns dimensioned electrostatically charged polymer powder particles onto essentially uniformly spread 5 to 20 micron grounded continuous fiber tow to produce a respoolable thermoplastic composite two-preg was formulated at NASA Langley. The process was reduced to practice under a NASA grant at the University of Akron this spring. The production of tow-preg is called phase 1. The production of ultrafine polymer powders from 5 to 10 percent (wt) polymer solids in solvent is considered. This is phase 0 and is discussed. The production of unitape from multi tow-pregs was also considered. This is phase 2 and is also discussed. And another approach to phase 1, also proposed last summer, was scoped. This is phase 1A and is also discussed.
NASA Astrophysics Data System (ADS)
Nelson, Chris; Anna, Shelley
2013-11-01
Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.
Gas-phase synthesis of magnetic metal/polymer nanocomposites.
Starsich, Fabian H L; Hirt, Ann M; Stark, Wendelin J; Grass, Robert N
2014-12-19
Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.
Gas-phase synthesis of magnetic metal/polymer nanocomposites
NASA Astrophysics Data System (ADS)
Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.
2014-12-01
Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.
Compatibilized Immiscible Polymer Blends for Gas Separations
Panapitiya, Nimanka; Wijenayake, Sumudu; Nguyen, Do; Karunaweera, Chamaal; Huang, Yu; Balkus, Kenneth; Musselman, Inga; Ferraris, John
2016-01-01
Membrane-based gas separation has attracted a great deal of attention recently due to the requirement for high purity gasses in industrial applications like fuel cells, and because of environment concerns, such as global warming. The current methods of cryogenic distillation and pressure swing adsorption are energy intensive and costly. Therefore, polymer membranes have emerged as a less energy intensive and cost effective candidate to separate gas mixtures. However, the use of polymeric membranes has a drawback known as the permeability-selectivity tradeoff. Many approaches have been used to overcome this limitation including the use of polymer blends. Polymer blending technology synergistically combines the favorable properties of different polymers like high gas permeability and high selectivity, which are difficult to attain with a single polymer. During polymer mixing, polymers tend to uncontrollably phase separate due to unfavorable thermodynamics, which limits the number of completely miscible polymer combinations for gas separations. Therefore, compatibilizers are used to control the phase separation and to obtain stable membrane morphologies, while improving the mechanical properties. In this review, we focus on immiscible polymer blends and the use of compatibilizers for gas separation applications. PMID:28773766
NASA Astrophysics Data System (ADS)
Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.
1991-07-01
We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.
Identification of polymer stabilized blue-phase liquid crystal display by chromaticity diagram
NASA Astrophysics Data System (ADS)
Lan, Yi-Fen; Tsai, Cheng-Yeh; Wang, Ling-Yung; Ku, Po-Jen; Huang, Tai-Hsiang; Liu, Chu-Yu; Sugiura, Norio
2012-04-01
We reported an identification method of blue phase liquid crystal (BPLC) display status by using Commission International de l'Éclairage (CIE) chromaticity diagram. The BPLC was injected into in-plane-switch (IPS) cell, polymer stabilized (PS) by ultraviolet cured process and analyzed by luminance colorimeter. The results of CIE chromaticity diagram showed a remarkable turning point when polymer stabilized blue phase liquid crystal II (PSBPLC-II) formed in the IPS cell. A mechanism of CIE chromaticity diagram identify PSBPLC display status was proposed, and we believe this finding will be useful to application and production of PSBPLC display.
Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer
NASA Astrophysics Data System (ADS)
Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee
2018-05-01
We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.
Phase equilibria in polymer-blend thin films
NASA Astrophysics Data System (ADS)
Clarke, Nigel; Souche, Mireille
2010-03-01
To describe equilibrium concentration profiles in thin films of polymer mixtures, we propose a Hamiltonian formulation of the Flory-Huggins-de Gennes theory describing a polymer blend thin film. We first focus on the case of 50:50 polymer blends confined between anti-symmetric walls. The different phases of the system and the transitions between them, including finite size effects, are systematically studied through their relation with the geometry of the Hamiltonian flow in phase space. This method provides an easy and efficient way, with strong graphical insight, to infer the qualitative physical behavior of polymer blend thin films. The addition of a further degree of freedom in the system, namely a solvent, may result in a chaotic behavior of the system, characterized by the existence of solutions with exponential sensitivity to initial conditions. Such solutions and there subsequent contribution to the out-of-equilibrium dynamics of the system are well described in Hamiltonian formalism. A fully consistent treatment of the Flory-Huggins-de Gennes theory of thin film polymer blend solutions, in the spirit of the Hamiltonian approach will be presented. 1. M. Souche and N. Clarke, J. Chem. Phys., submitted.
Miscibility phase diagram of ring-polymer blends: A topological effect.
Sakaue, Takahiro; Nakajima, Chihiro H
2016-04-01
The miscibility of polymer blends, a classical problem in polymer science, may be altered, if one or both of the component do not have chain ends. Based on the idea of topological volume, we propose a mean-field theory to clarify how the topological constraints in ring polymers affect the phase behavior of the blends. While the large enhancement of the miscibility is expected for ring-linear polymer blends, the opposite trend toward demixing, albeit comparatively weak, is predicted for ring-ring polymer blends. Scaling formulas for the shift of critical point for both cases are derived. We discuss the valid range of the present theory, and the crossover to the linear polymer blends behaviors, which is expected for short chains. These analyses put forward a view that the topological constraints could be represented as an effective excluded-volume effects, in which the topological length plays a role of the screening factor.
Neutron scattering studies of molecular conformations in liquid crystal polymers
NASA Astrophysics Data System (ADS)
Noirez, L.; Moussa, F.; Cotton, J. P.; Keller, P.; Pépy, G.
1991-03-01
A comblike liquid crystal polymer (LPC) is a polymer on which mesogenic molecules have been grafted. It exhibits a succession of liquid crystal phases. Usually the equilibrium conformation of an ordinary polymeric chain corresponds to a maximum entropy, i.e., to an isotropic spherical coil. How does the backbone of a LCP behave in the nematic and smectic field? Small-angle neutron scattering may answer this question. Such measurements are presented here on four different polymers as a function of temperature. An anisotropy of the backbone conformation is found in all these studied compounds, much more pronounced in the smectic phase than in the nematic phase: the backbone spreads more or less perpendicularly to its hanging cores. A comparison with existing theories and a discussion of these results is outlined.
Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.
2003-01-01
This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.
Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.
Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J
2016-06-28
We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.
Jung, Hee Joon; Huh, June; Park, Cheolmin
2012-10-21
This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.
NASA Astrophysics Data System (ADS)
Jung, Hee Joon; Huh, June; Park, Cheolmin
2012-09-01
This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm-1). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.
Optical Sensors Based on Single on Arm Thin Film Waveguide Interferometer
NASA Technical Reports Server (NTRS)
Sarkisov, S. S.; Diggs, D.; Curley, M.; Adamovsky, Grigory (Technical Monitor)
2000-01-01
Single-arm dual-mode optical waveguide interferometer utilizes interference between two modes of different order. Sensing effect results from the change in propagation conditions of the modes caused by the environment. The waveguide is made as an open asymmetric structure containing a dye-doped polymer film onto a quartz substrate. It is more sensitive to the change of environment than its conventional polarimetric analog using orthogonal modes (TE and TM) of the same order. The sensor still preserves the option of operating in polarimetric regime using a variety of mode combinations such as TE(sub 0)/TM(sub 0) (conventional) TE(sub 0)/TM(sub 1), TE(sub 1)/TM(sub 0), or TE(sub 1)/TM(sub 1) but can also work in nonpolarimetric regime using combinations TE(sub 0)/TE(sub 1) or TM(sub 0)/TM(sub 1). Utilization of different mode combinations simultaneously makes the device more versatile. Application of the sensor to gas sensing is based on doping polymer film with an organic indicator dye targeting a particular gaseous reagent. Change of the optical absorption spectrum of the dye caused by the gaseous pollutant results in change of the reactive index of the dye-doped polymer film that can be detected by the sensor. As indicator dyes we utilize Bromocresol Purple doped into polymer poly(methyl) methacrylate that is sensitive to small concentrations of ammonia. The indicator dye demonstrated an irreversible increase in optical absorption near the peak at 350 nm being exposed to 5% ammonia in pure nitrogen at 600 Torr. The dye also showed reversible growth of the absorption peak near 600 nm after exposure to a vapor of standard medical ammonia spirit (65% alcohol). We have built a breadboard prototype of the sensor with He-Ne laser as a light source and with a single mode fiber input and a multimode fiber output. The prototype showed a sensitivity to temperature change of the order of 2 C per 2pi phase shift. The sensitivity of the sensor to the presence of dTy ammonia is not less than 300 ppm per 2pi phase shift. The proposed sensor can be used as a robust stand-alone instrument for continuous environment pollution monitoring.
Exact Calculation of the Thermodynamics of Biomacromolecules on Cubic Recursive Lattice.
NASA Astrophysics Data System (ADS)
Huang, Ran
The thermodynamics of biomacromolecules featured as foldable polymer with inner-linkage of hydrogen bonds, e. g. protein, RNA and DNA, play an impressive role in either physical, biological, and polymer sciences. By treating the foldable chains to be the two-tolerate self-avoiding trails (2T polymer), abstract lattice modeling of these complex polymer systems to approach their thermodynamics and subsequent bio-functional properties have been developed for decades. Among these works, the calculations modeled on Bethe and Husimi lattice have shown the excellence of being exactly solvable. Our project extended this effort into the 3D situation, i.e. the cubic recursive lattice. The preliminary exploration basically confirmed others' previous findings on the planar structure, that we have three phases in the grand-canonical phase diagram, with a 1st order transition between non-polymerized and polymer phases, and a 2nd order transition between two distinguishable polymer phases. However the hydrogen bond energy J, stacking energy ɛ, and chain rigidity energy H play more vigorous effects on the thermal behaviors, and this is hypothesized to be due to the larger number of possible configurations provided by the complicated 3D model. By the so far progress, the calculation of biomacromolecules may be applied onto more complex recursive lattices, such as the inhomogeneous lattice to describe the cross-dimensional situations, and beside the thermal properties of the 2T polymers, we may infer some interesting insights of the mysterious folding problem itself. National Natural Science Foundation of China.
Phase partitioning in space and on earth
NASA Technical Reports Server (NTRS)
Van Alstine, James M.; Karr, Laurel J.; Snyder, Robert S.; Matsos, Helen C.; Curreri, Peter A.; Harris, J. Milton; Bamberger, Stephan B.; Boyce, John; Brooks, Donald E.
1987-01-01
The influence of gravity on the efficiency and quality of the impressive separations achievable by bioparticle partitioning is investigated by demixing polymer phase systems in microgravity. The study involves the neutral polymers dextran and polyethylene glycol, which form a two-phase system in aqueous solution at low concentrations. It is found that demixing in low-gravity occurs primarily by coalescence, whereas on earth the demixing occurs because of density differences between the phases.
Polymer lipids stabilize the ripple phase in lipid bilayers
NASA Astrophysics Data System (ADS)
Cunningham, Beth; Likar, Justin; Wolfe, David; Williams, W. Patrick
2001-03-01
We have recently discovered using X-ray diffraction that incorporating membrane lipids with covalently attached polymer headgroups leads to a marked stabilization of the ripple phase of dipalmitoyl phosphatidylcholine (DPPC). The ripple phase of DPPC is an undulated gel phase normally restricted to a temperature range 36 to 41^oC. In the presence of small amounts of dipalmitoyl phosphatidylethanolamine (DPPE) derivatives with polyethylene glycol (PEG) headgroups, the ripple phase is stable over a temperature range of a least 20 to 65^oC. We attribute this ability of the polymer lipid to stabilize the ripple phase to its tendency to accumulate in, and then stabilize, regions of high membrane curvature^1. 1. H.E. Warriner, P. Davidson, N.L. Slack, M. Schellhorn, P. Eiselt, S. H. J. Idziak, H.-W. Schmidt, and C.R. Safinya, J. Chem. Phys. (1997) 107, 3707-3722.
Gel Phase Formation in Dilute Triblock Copolyelectrolyte Complexes
NASA Astrophysics Data System (ADS)
Srivastava, Samanvaya; Andreev, Marat; Prabhu, Vivek; de Pablo, Juan; Tirrell, Matthew
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at extremely low polymer concentrations (<1 % by mass) has been observed in scattering experiments and molecular dynamics simulations. In contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing polymer concentrations, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assemblies of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously upon solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of triblock copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries not only contribute to our fundamental understanding of the structure and pathways of complexation driven assemblies, but also raise intriguing prospects for formation of gel structures at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.
Peacock, Harold B [Evans, GA; Imrich, Kenneth J [Grovetown, GA
2009-03-17
A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.
Ahmadi, Seyed Javad; Noori-Kalkhoran, Omid; Shirvani-Arani, Simindokht
2010-03-15
UO(2)(2+) ion-imprinted polymer materials used for solid-phase extraction were prepared by copolymerization of a ternary complex of uranyl ions with styrene and divinyl benzene in the presence of 2,2'-azobisisobutyronitrile. The imprinted particles were leached by HCl 6M. Various parameters in polymerization steps such as DVB/STY ratio, time of polymerization and temperature of polymerization were varied to achieve the most efficient uranyl-imprinted polymer. X-ray diffraction (XRD), infra-red spectroscopy (IR), thermo gravimetric analysis (TGA), UV-vis and nitrogen sorption were used to characterize the polymer particles. The XRD results showed that uranyl ions were completely removed from the polymer after leaching process. IR Analysis indicated that the N,N'-ethylenebis(pyridoxylideneiminato) remained intact in the polymer even after leaching. Some parameters such as pH, weight of the polymer, elution time, eluent volume and aqueous phase volume which affects the efficiency of the polymer were studied. (c) 2009 Elsevier B.V. All rights reserved.
Directed polymers on a disordered tree with a defect subtree
NASA Astrophysics Data System (ADS)
Madras, Neal; Yıldırım, Gökhan
2018-04-01
We study the question of how the competition between bulk disorder and a localized microscopic defect affects the macroscopic behavior of a system in the directed polymer context at the free energy level. We consider the directed polymer model on a disordered d-ary tree and represent the localized microscopic defect by modifying the disorder distribution at each vertex in a single path (branch), or in a subtree, of the tree. The polymer must choose between following the microscopic defect and finding the best branches through the bulk disorder. We describe three possible phases, called the fully pinned, partially pinned and depinned phases. When the microscopic defect is associated only with a single branch, we compute the free energy and the critical curve of the model, and show that the partially pinned phase does not occur. When the localized microscopic defect is associated with a non-disordered regular subtree of the disordered tree, the picture is more complicated. We prove that all three phases are non-empty below a critical temperature, and that the partially pinned phase disappears above the critical temperature.
Applications of fibrous substrates containing insolubilized phase change polymers
NASA Technical Reports Server (NTRS)
Vigo, Tyrone L.; Bruno, Joseph S.
1993-01-01
Incorporation of polyethylene glycols into fibrous substrates produces several improved functional properties when they are insolubilized by crosslinking with a methylolamide resin or by polyacetal formation by their reaction with glyoxal. The range of molecular weights of polyols that may be insolubilized is broad as are the curing conditions (0.25-10 min at 80-200C). Most representative fiber types and blends (natural and synthetic) and all types of fabric constructions (woven, nonwoven and knit) have been modified by incorporation of the bound polyols. The most novel property is the thermal adaptability of the modified substrates to many climatic conditions. This adaptability is due to the high latent heat of the crosslinked polyols that function as phase change materials, the hydrophilic nature of the crosslinked polymer and its enhanced thermal conductivity. Other enhanced properties imparted to fabrics include flex and flat abrasion, antimicrobial activity, reduced static charge, resistance to oily soils, resiliency, wind resistance and reduced lint loss. Applications commercialized in the U.S. and Japan include sportswear and skiwear. Several examples of electric sets of properties useful for specific end uses are given. In addition, other uses are biomedical horticultural, aerospace, indoor insulation, automotive interiors and components and packaging material.
Applications of fibrous substrates containing insolubilized phase change polymers
NASA Astrophysics Data System (ADS)
Vigo, Tyrone L.; Bruno, Joseph S.
1993-02-01
Incorporation of polyethylene glycols into fibrous substrates produces several improved functional properties when they are insolubilized by crosslinking with a methylolamide resin or by polyacetal formation by their reaction with glyoxal. The range of molecular weights of polyols that may be insolubilized is broad as are the curing conditions (0.25-10 min at 80-200C). Most representative fiber types and blends (natural and synthetic) and all types of fabric constructions (woven, nonwoven and knit) have been modified by incorporation of the bound polyols. The most novel property is the thermal adaptability of the modified substrates to many climatic conditions. This adaptability is due to the high latent heat of the crosslinked polyols that function as phase change materials, the hydrophilic nature of the crosslinked polymer and its enhanced thermal conductivity. Other enhanced properties imparted to fabrics include flex and flat abrasion, antimicrobial activity, reduced static charge, resistance to oily soils, resiliency, wind resistance and reduced lint loss. Applications commercialized in the U.S. and Japan include sportswear and skiwear. Several examples of electric sets of properties useful for specific end uses are given. In addition, other uses are biomedical horticultural, aerospace, indoor insulation, automotive interiors and components and packaging material.
Perlich, J; Schulz, L; Abul Kashem, M M; Cheng, Y-J; Memesa, M; Gutmann, J S; Roth, S V; Müller-Buschbaum, P
2007-09-25
For the controlled modification of sol-gel-templated polymer nanocomposites, which are transferred to a nanostructured, crystalline TiO2 phase by a calcination process, the addition of a single homopolymer was investigated. For the preparation, the homopolymer polystyrene (PS) is added in different amounts to the diblock copolymer P(S-b-EO) acting as a templating agent. The homopolymer/diblock copolymer blend system is combined with sol-gel chemistry to provide and attach the TiO2 nanoparticles to the diblock copolymer. So-called good-poor solvent-pair-induced phase separation leads to the formation of nanostructures by film preparation via spin coating. The fabricated morphologies are studied as a function of added homopolymer before and after calcination with atomic force microscopy, field emission scanning electron microscopy, and grazing incidence small-angle X-ray scattering. The observed behavior is discussed in the framework of controlling the block copolymer morphologies by the addition of homopolymers. At small homopolymer concentrations, the increase in homopolymer concentration changes the structure size, whereas at high homopolymer concentrations, a change in morphology is triggered. Thus, the behavior of a pure polymer system is transferred to a more complex hybrid system.
Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.
Sun, Che-Nan; Zawodzinski, Thomas A; Tenhaeff, Wyatt E; Ren, Fei; Keum, Jong Kahk; Bi, Sheng; Li, Dawen; Ahn, Suk-Kyun; Hong, Kunlun; Rondinone, Adam J; Carrillo, Jan-Michael Y; Do, Changwoo; Sumpter, Bobby G; Chen, Jihua
2015-03-28
Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.
Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V.; Alshetaili, Abdullah S.; Pimparade, Manjeet B.; Repka, Michael A.
2017-01-01
Objective The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion (HME) and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Methods Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing HME technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the Dynamic Vapor Sorption system, and the effect of polymer hydrophobicity, hygroscopicity, molecular weight and the HME process were investigated. FTIR imaging was performed to understand the phase separation driven by the moisture. Key findings Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity, and higher molecular weight could sorb less moisture under the high RH conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared to the physical mixture after HME, which might be due to the decreased surface area and porosity. The FTIR imaging indicated the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Conclusion Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. PMID:26589107
A Facile Synthesis of Dynamic, Shape Changing Polymer Particles
Klinger, Daniel; Wang, Cynthia; Connal, Luke A.; Audus, Debra J.; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L.; Fredrickson, Glenn H.; Kramer, Edward J.; Hawker, Craig J.
2014-01-01
We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles exhibiting a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric PS-b-P2VP in dispersed droplets. In a second step, the dynamic shape change is realized by crosslinking the P2VP domains, hereby connecting glassy PS discs with pH-sensitive hydrogel actuators. PMID:24700705
Li, Alexander D. Q. [Pullman, WA; Wang, Wei [Pullman, WA
2007-07-03
Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.
Li, Alexander D. Q. [Pullman, WA; Wang, Wei [Pullman, WA
2009-07-07
Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.
Combustion of a polymer (PMMA) sphere in microgravity
NASA Technical Reports Server (NTRS)
Yang, Jiann C.; Hamins, Anthony
1995-01-01
Polymer combustion is a highly complicated process where chemical reactions may occur not only in the gas phase, but also in the condensed phase as well as at the solid-gas interphase. The chemistry depends strongly on the coupling between the condensed phase and gas phase phenomena. For some polymers, additional complications arise due to the formation of char layers. For others, the behavior of the condensed phase involves swelling, bubbling, melting, sputtering, and multi-stage combustion. Some of these features bear resemblance to the phenomena observed in coal particle combustion. In addition to its relevance to spacecraft fire safety, the combustion of polymeric materials is related to many applications including solid and hybrid rocket propulsion, and of recent interest, waste incineration . The burning rate is one of the most important parameters used to characterize the combustion of polymers. It has been used to rank the polymer flammability under the same experimental conditions and to evaluate various modes of inhibiting polymer flammability. The main objective of this work is to measure the burning rates of a polymeric material in low gravity. Because of inherent logistical difficulties involved in microgravity experiments, it is impossible to examine a wide spectrum of polymeric materials. It is desirable to investigate a polymer whose combustion is less complicated, and yet will lead to a better understanding of the burning characteristics of other more complicated materials. Therefore, a typical non-charring polymer is selected for use in this experimental study. PMMA (polymethylmethacrylate) has been chosen because its thermo-physical properties are well characterized. Although the combustion of PMMA has been extensively studied in 1G experiments, only a limited amount of work has been conducted in low gravity. A spherical sample geometry is chosen in this study because it is the simplest configuration in terms of the microgravity hardware design requirements. Furthermore, a burning PMMA sphere in microgravity represents a one-dimensional flame with overall combustion characteristics expected to be analogous to the combustion of a liquid fuel droplet, a field with many well-developed theories and models. However, differences can also be expected such as the flame-front standoff ratios and the condensed phase processes occurring during combustion.
Nam, Sungho; Shin, Minjung; Park, Soohyeong; Lee, Sooyong; Kim, Hwajeong; Kim, Youngkyoo
2012-11-21
We report the improved performance of all-polymer solar cells with bulk heterojunction nanolayers of an electron-donating polymer (poly(3-hexylthiophene) (P3HT)) and an electron-accepting polymer (poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)), which were both doped with 4-ethylbenzenesulfonic acid (EBSA). To choose the doping ratio of P3HT for all-polymer solar cells, various EBSA doping ratios (0, 1, 3, 5, 10, 20 wt%) were tested by employing optical absorption spectroscopy, photoluminescence spectroscopy, photoelectron yield spectroscopy, and space-charge-limited current (SCLC) mobility measurement. The doping reaction of P3HT with EBSA was followed by observing the colour change in solutions. The final doping ratio for P3HT was chosen as 1 wt% from the best hole mobility measured in the thickness direction, while that for F8BT was fixed as 10 wt% (F8BT-EBSA). The polymer:polymer solar cells with bulk heterojunction nanolayers of P3HT-EBSA (EBSA-doped P3HT) and F8BT-EBSA (EBSA-doped F8BT) showed greatly improved short circuit current density (J(SC)) and open circuit voltage (V(OC)), compared to the undoped solar cells. As a result, the power conversion efficiency (PCE) was enhanced by ca. 300% for the 6 : 4 (P3HT-EBSA : F8BT-EBSA) composition and ca. 400% for the 8 : 2 composition. The synchrotron-radiation grazing incidence angle X-ray diffraction (GIXD) measurement revealed that the crystallinity of the doped nanolayers significantly increased by EBSA doping owing to the formation of advanced phase segregation morphology, as supported by the surface morphology change measured by atomic force microscopy. Thus the improved PCE can be attributed to the enhanced charge transport by the formation of permanent charges and better charge percolation paths by EBSA doping.
Li, Na; Gilpin, Christopher J; Taylor, Lynne S
2017-05-01
Miscibility is critical for amorphous solid dispersions (ASDs). Phase-separated ASDs are more prone to crystallization, and thus can lose their solubility advantage leading to product failure. Additionally, dissolution performance can be diminished as a result of phase separation in the ASD matrix. Water is known to induce phase separation during storage for some ASDs. However, the impact of water introduced during preparation has not been as thoroughly investigated to date. The purpose of this study was to develop a mechanistic understanding of the effect of water on the phase behavior and microstructure of ASDs. Evacetrapib and two polymers were selected as the model system. Atomic force microscopy coupled with Lorentz contact resonance, and transmission electron microscopy with energy dispersive X-ray spectroscopy were employed to evaluate the microstructure and composition of phase-separated ASDs. It was found that phase separation could be induced via two routes: solution-state phase separation during ASD formation caused by water absorption during film formation by a hydrophilic solvent, or solid-phase separation following exposure to high RH during storage. Water contents of as low as 2% in the organic solvent system used to dissolve the drug and polymer were found to result in phase separation in the resultant ASD film. These findings have profound implications on lab-scale ASD preparation and potentially also for industrial production. Additionally, these high-resolution imaging techniques combined with orthogonal analyses are powerful tools to visualize structural changes in ASDs, which in turn will enable better links to be made between ASD structure and performance.
Phase-separation induced extraordinary toughening of magnetic hydrogels
NASA Astrophysics Data System (ADS)
Tang, Jingda; Li, Chenghai; Li, Haomin; Lv, Zengyao; Sheng, Hao; Lu, Tongqing; Wang, T. J.
2018-05-01
Phase separation markedly influences the physical properties of hydrogels. Here, we find that poly (N, N-dimethylacrylamide) (PDMA) hydrogels suffer from phase separation in aqueous sodium hydroxide solutions when the concentration is higher than 2 M. The polymer volume fraction and mechanical properties show an abrupt change around the transition point. We utilize this phase separation mechanism to synthesize tough magnetic PDMA hydrogels with the in-situ precipitation method. For comparison, we also prepared magnetic poly (2-acrylamido-2-methyl-propane sulfonic acid sodium) (PNaAMPS) magnetic hydrogels, where no phase separation occurs. The phase-separated magnetic PDMA hydrogels exhibit an extraordinarily high toughness of ˜1000 J m-2; while non-phase-separated magnetic PNaAMPS hydrogels only show a toughness of ˜1 J m-2, three orders of magnitude lower than that of PDMA hydrogels. This phase separation mechanism may become a new approach to prepare tough magnetic hydrogels and inspire more applications.
Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A. (Inventor)
2007-01-01
A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.
Advancing Renewable Materials by Light and X-ray Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akpalu, Yvonne A
With the ultimate goal to design PHA polymer nanocomposites with tailored properties, we have completed systematic study of the influence of cooling rate [Xie et al, J. Appl. Poly. Sci., 2008] and nanofiller [Xie et al, Polymer 2009] characteristics on model bionanocomposites. Structure-property relationships for a model bionanocomposites system were investigated. These results yielded new fundamental knowledge that supports the discovery of cost-effective manufacturing technologies for a family of promising polyhydroxyalkanoates (PHAs) polyesters, with the potential to replace polyethylene and polypropylene (see Noda letter). Our results show that simple two-phase composite models do not account for the data. Although improvementmore » of the mechanical properties (stiffness/modulus and toughness) must be due to alteration of the matrix by the nanoparticle filler, the observed improvement was not caused by the change of crystallinity or spherulitic morphology. Instead, improvement depends on the molecular weight of the polymer matrix and unknown filler-matrix interactions.« less
Zhang, Ming; He, Juan; Shen, Yanzheng; He, Weiye; Li, Yuanyuan; Zhao, Dongxin; Zhang, Shusheng
2018-02-01
A polymer-based adsorption medium with molecular recognition ability for homologs of pyrethroids was prepared by atom transfer radical polymer iration using a fragment imprinting technique. Phenyl ether-biphenyl eutectic was utilized as a pseudo-template molecule, and the adsorption medium prepared was evaluated by solid-phase extraction and gas chromatography. Selectivity of the medium for pyrethroids was evaluated using it as solid phase extraction packing by Gas Chromatography. The results demonstrated that the absorption amount of bifenthrin, fenpropathrin, permethrin, cypermethrin, fenvalerate, Dursban and pentachloronitrobenzene for molecularly imprinted polymers were 2.32, 2.12, 2.18, 2.20, 2.30, 1.30 and 1.40mgg -1 , respectively, while the non-imprinted polymers were 1.20, 1.13, 1.25, 1.05, 1.20, 1.23 and 1.32mgg -1 , respectively. The rebinding test based on the molecularly imprinted solid phase extraction column technique showed the recoveries of honey sample spiked with seven insecticides within 88.5-106.2%, with relative standard deviations of 2.38-5.63%. Finally, the method was successfully applied to the analysis of pyrethroids in a honey sample. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, J.; Brackley, C. A.; Cook, P. R.; Marenduzzo, D.
2015-02-01
We present computer simulations of the phase behaviour of an ensemble of proteins interacting with a polymer, mimicking non-specific binding to a piece of bacterial DNA or eukaryotic chromatin. The proteins can simultaneously bind to the polymer in two or more places to create protein bridges. Despite the lack of any explicit interaction between the proteins or between DNA segments, our simulations confirm previous results showing that when the protein-polymer interaction is sufficiently strong, the proteins come together to form clusters. Furthermore, a sufficiently large concentration of bridging proteins leads to the compaction of the swollen polymer into a globular phase. Here we characterise both the formation of protein clusters and the polymer collapse as a function of protein concentration, protein-polymer affinity and fibre flexibility.
Ultra-low density microcellular polymer foam and method
Simandl, Ronald F.; Brown, John D.
1996-01-01
An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.
Ultra-low density microcellular polymer foam and method
Simandl, R.F.; Brown, J.D.
1996-03-19
An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.
Sorption Behavior of Compressed CO2 and CH4 on Ultrathin Hybrid Poly(POSS-imide) Layers.
Raaijmakers, Michiel J T; Ogieglo, Wojciech; Wiese, Martin; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck E
2015-12-09
Sorption of compressed gases into thin polymeric films is essential for applications including gas sensors and membrane based gas separation. For glassy polymers, the sorption behavior is dependent on the nonequilibrium status of the polymer. The uptake of molecules by a polymer is generally accompanied by dilation, or swelling, of the polymer material. In turn, this dilation can result in penetrant induced plasticization and physical aging that affect the nonequilibrium status of the polymer. Here, we investigate the dilation and sorption behavior of ultrathin membrane layers of a hybrid inorganic-organic network material that consists of alternating polyhedral oligomeric silsesquioxane and imide groups, upon exposure to compressed carbon dioxide and methane. The imide precursor contains fluoroalkene groups that provide affinity toward carbon dioxide, while the octa-functionalized silsesquioxane provides a high degree of cross-linking. This combination allows for extremely high sorption capacities, while structural rearrangements of the network are hindered. We study the simultaneous uptake of gases and dilation of the thin films at high pressures using spectroscopic ellipsometry measurements. Ellipsometry provides the changes in both the refractive index and the film thickness, and allows for accurate quantification of sorption and swelling. In contrast, gravimetric and volumetric measurements only provide a single parameter; this does not allow an accurate correction for, for instance, the changes in buoyancy because of the extensive geometrical changes of highly swelling films. The sorption behavior of the ultrathin hybrid layers depends on the fluoroalkene group content. At low pressure, the apparent molar volume of the gases is low compared to the liquid molar volume of carbon dioxide and methane, respectively. At high gas concentrations in the polymer film, the apparent molar volume of carbon dioxide and methane exceeds that of the liquid molar volume, and approaches that of the gas phase. The high sorption capacity and reversible dilation characteristics of the presented materials provide new directions for applications including gas sensors and gas separation membranes.
Mixed polymer brushes by sequential polymer addition: anchoring layer effect.
Draper, John; Luzinov, Igor; Minko, Sergiy; Tokarev, Igor; Stamm, Manfred
2004-05-11
Smart surfaces can be described as surfaces that have the ability to respond in a controllable fashion to specific environmental stimuli. A heterogeneous (mixed) polymer brush (HPB) can provide a synthetic route to designing smart polymer surfaces. In this research we study HPB comprised of end-grafted polystyrene (PS) and poly(2-vinyl pyridine) (P2VP). The synthesis of the HPB involves the use of an "intermolecular glue" acting as a binding/anchoring interlayer between the polymer brush and the substrate, a silicon wafer. We compare anchoring layers of epoxysilane (GPS), which forms a self-assembled monolayer with epoxy functionality, to poly(glycidyl methacrylate) (PGMA), which forms a macromolecular monolayer with epoxy functionality. The PS and P2VP were deposited onto the wafers in a sequential fashion to chemically graft PS in a first step and subsequently graft P2VP. Rinsing the HPB in selective solvents and observing the change in water contact angle as a function of the HPB composition studied the switching nature of the HPB. Scanning probe microscopy was used to probe the topography and phase imagery of the HPB. The nature of the anchoring layer significantly affected the wettability and morphology of the mixed brushes.
On compression and damage evolution in two thermoplastics
Bourne, N. K.; Garcea, S. C.; Eastwood, D. S.; ...
2017-01-18
The well-known Taylor cylinder impact test, which follows the impact of a flat-ended cylindrical rod onto a rigid stationary anvil, is conducted over a range of impact speeds for two polymers, polytetrafluoroethylene (PTFE) and polyetheretherketone (PEEK). In previous work, experiments and a model were developed to capture the deformation behaviour of the cylinder after impact. These works showed a region in which spatial and temporal variation of both longitudinal and radial deformation provided evidence of changes in phase within the material. In this further series of experiments, this region is imaged in a range of impacted targets at the Diamondmore » synchrotron. Further techniques were fielded to resolve compressed regions within the recovered polymer cylinders that showed a fracture zone in the impact region. The combination of macroscopic high-speed photography and three-dimensional X-ray imaging has identified the development of failure with these polymers and shown that there is no abrupt transition in behaviours but rather a continuous range of responses to competing operating mechanisms. The behaviours noted in PEEK in these polymers show critical gaps in understanding of polymer high strain-rate response.« less
The influence of polymer molecular weight in lamellar gels based on PEG-lipids.
Warriner, H E; Keller, S L; Idziak, S H; Slack, N L; Davidson, P; Zasadzinski, J A; Safinya, C R
1998-01-01
We report x-ray scattering, rheological, and freeze-fracture and polarizing microscopy studies of a liquid crystalline hydrogel called Lalpha,g. The hydrogel, found in DMPC, pentanol, water, and PEG-DMPE mixtures, differs from traditional hydrogels, which require high MW polymer, are disordered, and gel only at polymer concentrations exceeding an "overlap" concentration. In contrast, the Lalpha,g uses very low-molecular-weight polymer-lipids (1212, 2689, and 5817 g/mole), shows lamellar order, and requires a lower PEG-DMPE concentration to gel as water concentration increases. Significantly, the Lalpha,g contains fluid membranes, unlike Lbeta' gels, which gel via chain ordering. A recent model of gelation in Lalpha phases predicts that polymer-lipids both promote and stabilize defects; these defects, resisting shear in all directions, then produce elasticity. We compare our observations to this model, with particular attention to the dependence of gelation on the PEG MW used. We also use x-ray lineshape analysis of scattering from samples spanning the fluid-gel transition to obtain the elasticity coefficients kappa and B; this analysis demonstrates that although B in particular depends strongly on PEG-DMPE concentration, gelation is uncorrelated to changes in membrane elasticity. PMID:9649387
Yanagisawa, Miho; Nigorikawa, Shinpei; Sakaue, Takahiro; Fujiwara, Kei; Tokita, Masayuki
2014-11-11
We report the spontaneous patterning of polymer microgels by confining a polymer blend within microspheres. A poly(ethylene glycol) (PEG) and gelatin solution was confined inside water-in-oil (W/O) microdroplets coated with a layer of zwitterionic lipids: dioleoylphosphatidylethanolamine (PE) and dioleoylphosphatidylcholine (PC). The droplet confinement affected the kinetics of the phase separation, wetting, and gelation after a temperature quench, which determined the final microgel pattern. The gelatin-rich phase completely wetted to the PE membrane and formed a hollow microcapsule as a stable state in the PE droplets. Gelation during phase separation varied the relation between the droplet size and thickness of the capsule wall. In the case of the PC droplets, phase separation was completed only for the smaller droplets, wherein the microgel partially wetted the PC membrane and had a hemisphere shape. In addition, the temperature decrease below the gelation point increased the interfacial tension between the PEG/gelatin phases and triggered a dewetting transition. Interestingly, the accompanying shape deformation to minimize the interfacial area was only observed for the smaller PC droplets. The critical size decreased as the gelatin concentration increased, indicating the role of the gel elasticity as an inhibitor of the deformation. Furthermore, variously patterned microgels with spherically asymmetric shapes, such as discs and stars, were produced as kinetically trapped states by regulating the incubation time, polymer composition, and droplet size. These findings demonstrate a way to regulate the complex shapes of microgels using the interplay among phase separation, wetting, and gelation of confined polymer blends in microdroplets.
DOT National Transportation Integrated Search
2017-12-11
Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...
Ji, Yuejia; Zhu, Mengxiang; Gong, Yu; Tang, Haoyu; Li, Juan; Cao, Yi
2017-01-01
Thermoresponsive polymers have gained extensive attention as biomedical materials especially for targeted drug delivery systems. We have recently developed water-soluble polypeptide-based thermoresponsive polymers that exhibit lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase behaviours. In this study, the toxicity of these polymers to human umbilical vein endothelial cells (HUVECs) was investigated to assess the safety and biocompatibility. Up to 100 μg/ml, thermoresponsive polymers did not induce cytotoxicity to HUVECs, showing as unaltered mitochondrial viability assessed as cell counting kit-8 (CCK-8) assay and membrane integrity assessed as lactate dehydrogenase (LDH) assay. Inflammatory response, assessed as the release of chemokine-soluble monocyte chemotactic protein 1 (sMCP-1) and interleukin-8 (IL-8) as well as cytokine IL-6, was not significantly affected by the polymers. In addition, 1 μM thapsigargin (TG), an endoplasmic reticulum (ER) stress inducer, significantly decreased mitochondrial viability, but did not affect membrane integrity or inflammatory response. The presence of thermoresponsive polymers with LCST-type phase behaviour did not further affect the effects of TG. In conclusion, the thermoresponsive polymers used in this study are not toxic to endothelial cells and therefore could be further considered as safe materials for biomedical applications. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Konno, Hajime; Taylor, Lynne S
2008-04-01
To investigate the ability of various polymers to inhibit the crystallization of amorphous felodipine from amorphous molecular dispersions in the presence of absorbed moisture. Spin coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose (HPMC) were exposed to different storage relative humidities and nucleation rates were measured using polarized light microscopy. Solid dispersions were further characterized using differential scanning calorimetry, infrared spectroscopy and gravimetric measurement of water vapor sorption. It was found that the polymer additive reduced nucleation rates whereas absorbed water enhanced the nucleation rate as anticipated. When both polymer and water were present, nucleation rates were reduced relative to those of the pure amorphous drug stored at the same relative humidity, despite the fact that the polymer containing systems absorbed more water. Differences between the stabilizing abilities of the various polymers were observed and these were explained by the variations in the moisture contents of the solid dispersions caused by the different hygroscopicities of the component polymers. No correlations could be drawn between nucleation rates and the glass transition temperature (Tg) of the system. PVP containing solid dispersions appeared to undergo molecular level changes on exposure to moisture which may be indicative of phase separation. In conclusion, it was found that for a given storage relative humidity, although the addition of a polymer increases the moisture content of the system relative to that of the pure amorphous drug, the crystallization tendency was still reduced.
Gu, Bing; Burgess, Diane J
2015-11-10
Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Yi; Yu, Feilong; Deng, Hua; Huang, Yajiang; Li, Guangxian; Fu, Qiang
2017-06-29
The morphology evolution under shear during different processing is indeed an important issue regarding the phase morphology control as well as final physical properties of immiscible polymer blends. High-speed thin wall injection molding (HSTWIM) has recently been demonstrated as an effective method to prepare alternating multilayered structure. To understand the formation mechanism better and explore possible phase morphology for different blends under HSTWIM, the relationship between the morphology evolution of polymer blends based on polypropylene (PP) under HSTWIM and some intrinsic properties of polymer blends, including viscosity ratio, interfacial tension, and melt elasticity, is systematically investigated in this study. Blends based on PP containing polyethylene (PE), ethylene vinyl alcohol copolymer (EVOH), and polylactic acid (PLA) are used as examples. Compatibilizer has also been added into respective blends to alter their interfacial interaction. It is demonstrated that dispersed phase can be deformed into a layered-like structure if interfacial tension, viscosity ratio, and melt elasticity are relatively small. While some of these values are relatively large, these dispersed droplets are not easily deformed under HSTWIM, forming ellipsoidal or fiber-like structure. The addition of a moderate amount of compatibilizer into these blends is shown to be able to reduce interfacial tension and the size of dispersed phase, thus, allowing more deformation on the dispersed phase. Such a study could provide some guidelines on phase morphology control of immiscible polymer blends under shear during various processing methods.
Chromatography, solid-phase extraction, and capillary electrochromatography with MIPs.
Tóth, Blanka; Horvai, George
2012-01-01
Most analytical applications of molecularly imprinted polymers are based on their selective adsorption properties towards the template or its analogs. In chromatography, solid phase extraction and electrochromatography this adsorption is a dynamic process. The dynamic process combined with the nonlinear adsorption isotherm of the polymers and other factors results in complications which have limited the success of imprinted polymers. This chapter explains these problems and shows many examples of successful applications overcoming or avoiding the problems.
Raw materials for wood-polymer composites.
Craig Clemons
2008-01-01
To understand wood-plastic composites (WPCs) adequately, we must first understand the two main constituents. Though both are polymer based, they are very different in origin, structure, and performance. Polymers are high molecular weight materials whose performance is largely determined by its molecular architecture. In WPCs, a polymer matrix forms the continuous phase...
Seo, Kwangwon; Kim, Dukjoon
2006-09-15
New pH-sensitive polyaspartamide derivatives were synthesized by grafting 1-(3-aminopropyl)imidazole and/or O-(2-aminoethyl)-O'-methylpoly(ethylene glycol) 5000 on polysuccinimide for application in intracellular drug delivery systems. The DS of 1-(3-aminopropyl)imidazole was adjusted by the feed molar ratio, and the structure of the prepared polymer was confirmed using FT-IR and 1H NMR spectroscopy. Their pH-sensitive properties were characterized by light transmittance measurements, and the particle size and its distribution were investigated by dynamic light scattering measurements at varying pH values. The pH-sensitive phase transition was clearly observed in polymer solutions with a high substitution of 1-(3-aminopropyl)imidazole. The prepared polymers showed a high buffering capacity between pH 5 and 7, and this increased with the DS of 1-(3-aminopropyl)imidazole. The pH dependence of the aggregation and de-aggregation behavior was examined using a fluorescence spectrometer. For MPEG/imidazole-g-polyaspartamides with a DS of 1-(3-aminopropyl)imidazole over 82%, self aggregates associated with the hydrophobic interactions of the unprotonated imidazole groups were observed at pH values above 7, and their mean size was over 200 nm, while the aggregates of polymers were dissociated at pH values below 7 by the protonation of imidazole groups. These pH-sensitive polyaspartamide derivatives are potential basic candidates for intracellular drug delivery carriers triggered by small pH changes.
Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Douglas, Jack F; Stafford, Christopher M; Kumar, Sanat K; Raghavan, Dharmaraj; Karim, Alamgir
The controlled organization of nanoparticle (NP) constituents into superstructures of well-defined shape, composition and connectivity represents a continuing challenge in the development of novel hybrid materials for many technological applications. We show that the phase separation of polymer-tethered nanoparticles immersed in a chemically different polymer matrix provides an effective and scalable method for fabricating defined submicron-sized amorphous NP domains in melt polymer thin films. We investigate this phenomenon with a view towards understanding and controlling the phase separation process through directed nanoparticle assembly. In particular, we consider isothermally annealed thin films of polystyrene-grafted gold nanoparticles (AuPS) dispersed in a poly(methyl methacrylate) (PMMA) matrix. Classic binary polymer blend phase separation related morphology transitions, from discrete AuPS domains to bicontinuous to inverse domain structure with increasing nanoparticle composition is observed, yet the kinetics of the AuPS/PMMA polymer blends system exhibit unique features compared to the parent PS/PMMA homopolymer blend. We further illustrate how to pattern-align the phase-separated AuPS nanoparticle domain shape, size and location through the imposition of a simple and novel external symmetry-breaking perturbation via soft-lithography. Specifically, submicron-sized topographically patterned elastomer confinement is introduced to direct the nanoparticles into kinetically controlled long-range ordered domains, having a dense yet well-dispersed distribution of non-crystallizing nanoparticles. The simplicity, versatility and roll-to-roll adaptability of this novel method for controlled nanoparticle assembly should make it useful in creating desirable patterned nanoparticle domains for a variety of functional materials and applications.
Rheological changes of polyamide 12 under oscillatory shear
NASA Astrophysics Data System (ADS)
Mielicki, C.; Gronhoff, B.; Wortberg, J.
2014-05-01
Changes in material properties as well as process deviation prevent Laser Sintering (LS) technology from manufacturing of quality assured parts in a series production. In this context, the viscosity of Polyamide 12 (PA12) is assumed to possess the most significant influence, as it determines the sintering velocity, the resistance towards melt formation and the bonding strength of sintered layers. Moreover, the viscosity is directly related to the structure of the molten polymer. In particular, it has been recently reported that LS process conditions lead to structural changes of PA12 affecting viscosity and coalescence of adjacent polymer particles, i.e. melt formation significantly. Structural change of PA12 was understood as a post condensation. Its influence on viscosity was described by a time and temperature depending rheological model whereas time dependence was considered by a novel structural change shift factor which was derived from melt volume rate data. In combination with process data that was recorded using online thermal imaging, the model is suitable to control the viscosity (processability of the material) as result of material and process properties. However, as soon as laser energy is exposed to the powder bed PA12 undergoes a phase transition from solid to molten state. Above the melting point, structural change is expected to occur faster due to a higher kinetic energy and free volume of the molten polymer. Oscillatory shear results were used to study the influence of aging time and for validation of the novel structural change shift factor and its model parameters which were calibrated based on LS processing condition.
NASA Astrophysics Data System (ADS)
Liu, Hua
The addition of nanoparticles into polymer materials has been observed to dramatically change the mechanical, thermal, electrical, and diffusion properties of the host polymers, promising a novel class of polymer matrix composite materials with superior properties and added functionalities that are ideal candidates in many applications, including aerospace, automobile, medical devices, and sporting goods. Understanding the behavior and underlying mechanisms of these polymer nanocomposites is critical. The research work presented in this dissertation represents one of the initial efforts in the long journey pursuing the ultimate understanding of nanoparticle reinforced polymer systems. Particular focal points are experimental evaluation and the development of appropriate modeling methods to capture the influence of the interphase on the overall viscoelastic behavior of carbon nanotube reinforced polymer nanocomposites. The first portion of this dissertation study investigates the viscoelastic behavior of MWCNT based PMMA nanocomposites, which complements our previous study of SWCNT/PMMA systems to confirm functionalization of nanotubes as an effective way to manipulate the interaction between nanotube and polymers and control the properties of the interphase region forming around the nanotubes and consequently change the overall performance of nanotube based polymer nanocomposites. In the second portion of this dissertation, we present a novel hybrid numerical-analytical modeling method that is capable of predicting viscoelastic behavior of multiphase polymer nanocomposites, in which the nanoscopic fillers can assume complex configurations. By combining the finite element technique and a micromechanical approach (particularly, the Mori-Tanaka method) with local phase properties, this method operates at low computational cost and effectively accounts for the influence of the interphase as well as in situ nanoparticle morphology. This modeling method is implemented two-dimensionally on nanotube and nanoplatelet based polymer nanocomposites. Given the experimentally measured frequency domain response of the bulk polymer, the viscoelastic behavior of the nanocomposites in both frequency and temperature domains can be calculated. The predicted pattern of influence of the interphase on the overall performance of the nanocomposites is consistent with the experimental observation. 3D parametric studies utilizing this modeling technique reveal that the nanotube morphology "modifies" the effect of interphase and hence profoundly influences the overall viscoelastic behavior. The findings help explain some experimental observations and furthermore, draw attention to the importance of morphology control through appropriate synthesis and processing techniques to further tune the thermomechanical behavior of the nanocomposites.
Gu, Xiaodan; Yan, Hongping; Kurosawa, Tadanori; ...
2016-08-22
Here in this work, the detailed morphology studies of polymer poly(3-hexylthiophene-2,5-diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all-polymer solar cells. The in situ X-ray scattering and optical interferometry and ex situ hard and soft X-ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the exmore » situ grazing incidence X-ray diffraction and soft X-ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.« less
Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng
2015-12-16
To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.
Pascale, Michelangelo; De Girolamo, Annalisa; Visconti, Angelo; Magan, Naresh; Chianella, Iva; Piletska, Elena V; Piletsky, Sergey A
2008-02-25
Molecular modelling and computational design were used to identify itaconic acid (IA) as a functional monomer with high affinity towards deoxynivalenol (DON), a Fusarium-toxin frequently occurring in cereals. IA-based polymers were photochemically synthesised in dimethyl formamide (porogen) using ethylenglycol dimethacrylate as cross-linker and 1,1'-azo-bis(cyclohexane carbonitrile) as initiator, and the relevant binding interactions with DON in solvents with different polarity were investigated. The performances of the non-imprinted IA-based polymer (blank polymer, BP) and the corresponding molecularly imprinted polymer (MIP) were compared using DON as a template. Both BP and MIP were able to bind about 90% DON either in toluene, water or water containing 5% polyethylene glycol. Non-imprinted polymers with different molar ratios of IA to cross-linker were evaluated as adsorbents for solid-phase extraction (SPE) clean-up and pre-concentration of DON from wheat and pasta samples prior to HPLC analysis. Samples were extracted with PBS/0.1M EDTA solution and cleaned up through a cartridge containing blank IA-based polymer. The column was washed with PBS (pH 9.2) and the toxin was eluted with methanol and quantified by reversed-phase HPLC with UV detector (lambda=220nm), using methanol:water:acetic acid (15:85:0.1, v/v/v) as the mobile phase. Effective removal of matrix interferences was observed only for pasta with DON recoveries higher than 70% (RSD<7%, n=3) at levels close to or higher than EU regulatory limit.
NASA Astrophysics Data System (ADS)
Subramanian, Srinivas
This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to promote efficient mixing of the polymer, initiator, monomer, and solvent. The grafting was qualitatively confirmed by means of a FTIR and quantitatively using titration. The polymer blends were synthesized in a single screw extruder. Rheological, morphological, thermal, mechanical, and molecular weight studies were done on these blends. The graft copolymers produced in larger batches had the same amount of graft content as those produced in smaller batches. This small success is a positive step towards the goal of commercializing this process. Grafting of acrylic acid onto polypropylene gave graft levels of 4 weight percent. However, the attempt to graft maleic anhydride onto polystyrene was not successful. The solid phase graft copolymers were successfully able to compatibilize the polymer blend systems studied (PS/PMMA, PS/nylon 6,6, PS/nylon 6, and PP/nylon 6). The properties of the blends compatibilized using the solid phase graft copolymers were comparable to and in some instances, better than those of the blends compatibilized with commercially available graft copolymers. The successful scale-up of the process, development of new graft copolymers and ability of copolymers to compatibilize blends augurs well for the solid phase grafting process.
Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in; Kuroda, Kenichi, E-mail: kkuroda@umich.edu
Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probablemore » location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.« less
NASA Astrophysics Data System (ADS)
Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.
2014-04-01
External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.
Peres, Anderson M; Pires, Ruthe R; Oréfice, Rodrigo L
2016-01-20
The great quantity of synthetic plastic discarded inappropriately in the environment is forcing the search for materials that can be reprocessable and biodegradable. Blends between synthetic polymers and natural and biodegradable polymers can be good candidates of such novel materials because they can combine processability with biodegradation and the use of renewable raw materials. However, traditional polymers usually present high levels of recyclability and use the well-established recycling infrastructure that can eventually be affected by the introduction of systems containing natural polymers. Thus, this work aims to evaluate the effect of reprocessing (simulated here by multiple extrusions) on the structure and properties of a low density polyethylene/thermoplastic starch (LDPE/TPS) blend compared to LDPE. The results indicated that multiple extrusion steps led to a reduction in the average size of the starch-rich phases of LDPE/TPS blends and minor changes in the mechanical and rheological properties of the materials. Such results suggest that the LDPE/TPS blend presents similar reprocessability to the LDPE for the experimental conditions used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamics of Surface Reorganization of Poly(methyl methacrylate) in Contact with Water
NASA Astrophysics Data System (ADS)
Horinouchi, Ayanobu; Atarashi, Hironori; Fujii, Yoshihisa; Tanaka, Keiji
2013-03-01
New tools for tailor-made diagnostics, such as DNA arrays and tips for micro-total-analysis systems, are generally made from polymers. In these applications, the polymer surface is in contact with a water phase. However, despite the importance of detailed knowledge of the fundamental interactions of polymer interfaces with liquids, such studies are very limited. As an initial benchmark for designing and constructing specialized biomedical surfaces containing polymer, aggregation states and dynamics of chains at the water interface should be systematically examined. We here apply time-resolved contact angle measurement to study the dynamics of the surface reorganization of poly(methyl methacrylate) (PMMA) in contact with water. By doing the measurements at various temperatures, it is possible to discuss the surface dynamics of PMMA based on the apparent activation energy. Also, sum-frequency generation spectroscopy revealed that the surface reorganization involves the conformational changes in the main chain part as well as the side chains. Hence, the dynamics observed here may reflect the segmental motion at the outermost region of the PMMA film, in which water plays as a plasticizer.
Near-Infrared-Induced Heating of Confined Water in Polymeric Particles for Efficient Payload Release
2015-01-01
Near-infrared (NIR) light-triggered release from polymeric capsules could make a major impact on biological research by enabling remote and spatiotemporal control over the release of encapsulated cargo. The few existing mechanisms for NIR-triggered release have not been widely applied because they require custom synthesis of designer polymers, high-powered lasers to drive inefficient two-photon processes, and/or coencapsulation of bulky inorganic particles. In search of a simpler mechanism, we found that exposure to laser light resonant with the vibrational absorption of water (980 nm) in the NIR region can induce release of payloads encapsulated in particles made from inherently non-photo-responsive polymers. We hypothesize that confined water pockets present in hydrated polymer particles absorb electromagnetic energy and transfer it to the polymer matrix, inducing a thermal phase change. In this study, we show that this simple and highly universal strategy enables instantaneous and controlled release of payloads in aqueous environments as well as in living cells using both pulsed and continuous wavelength lasers without significant heating of the surrounding aqueous solution. PMID:24717072
Viger, Mathieu L; Sheng, Wangzhong; Doré, Kim; Alhasan, Ali H; Carling, Carl-Johan; Lux, Jacques; de Gracia Lux, Caroline; Grossman, Madeleine; Malinow, Roberto; Almutairi, Adah
2014-05-27
Near-infrared (NIR) light-triggered release from polymeric capsules could make a major impact on biological research by enabling remote and spatiotemporal control over the release of encapsulated cargo. The few existing mechanisms for NIR-triggered release have not been widely applied because they require custom synthesis of designer polymers, high-powered lasers to drive inefficient two-photon processes, and/or coencapsulation of bulky inorganic particles. In search of a simpler mechanism, we found that exposure to laser light resonant with the vibrational absorption of water (980 nm) in the NIR region can induce release of payloads encapsulated in particles made from inherently non-photo-responsive polymers. We hypothesize that confined water pockets present in hydrated polymer particles absorb electromagnetic energy and transfer it to the polymer matrix, inducing a thermal phase change. In this study, we show that this simple and highly universal strategy enables instantaneous and controlled release of payloads in aqueous environments as well as in living cells using both pulsed and continuous wavelength lasers without significant heating of the surrounding aqueous solution.
NASA Astrophysics Data System (ADS)
Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin
2012-10-01
A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4π rad) than the residual phase type (<0.05π rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1979-01-01
The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.
Nanostructure Control of Biologically Inspired Polymers
NASA Astrophysics Data System (ADS)
Rosales, Adrianne Marie
Biological polymers, such as polypeptides, are responsible for many of life's most sophisticated functions due to precisely evolved hierarchical structures. These protein structures are the result of monodisperse sequences of amino acids that fold into well-defined chain shapes and tertiary structures. Recently, there has been much interest in the design of such sequence-specific polymers for materials applications in fields ranging from biotechnology to separations membranes. Non-natural polymers offer the stability and robustness necessary for materials applications; however, our ability to control monomer sequence in non-natural polymers has traditionally operated on a much simpler level. In addition, the relationship between monomer sequence and self-assembly is not well understood for biological molecules, much less synthetic polymers. Thus, there is a need to explore self-assembly phase space with sequence using a model system. Polypeptoids are non-natural, sequence-specific polymers that offer the opportunity to probe the effect of sequence on self-assembly. A variety of monomer interactions have an impact on polymer properties, such as chirality, hydrophobicity, and electrostatic interactions. Thus, a necessary starting point for this project was to investigate monomer sequence effects on the bulk properties of polypeptoid homopolymers. It was found that several polypeptoids have experimentally accessible melting transitions that are dependent on the choice of side chains, and it was shown that this transition is tuned by the incorporation of "defects" or a comonomer. The polypeptoid chain shape is also controlled with the choice of monomer and monomer sequence. By using at least 50% monomers with bulky, chiral side chains, the polypeptoid backbone is sterically twisted into a helix, and as found for the first time in this work, the persistence length is increased. However, this persistence length, which is a measure of the stiffness of the polymer, is small compared to other folded helices, indicating the conformational flexibility of polypeptoid chains. With a firmer understanding of how monomer sequence and composition influence polypeptoid bulk properties, we designed block copolymer systems for self-assembly. Because the governing parameters of block copolymer self-assembly are well understood, this architecture provides a convenient starting point for probing the effect of changing polymer sequence. We found that polystyrene-polypeptoid block copolymers readily self-assemble into hexagonally-packed and lamellar morphologies with long range order, and furthermore, sequence control of the polypeptoid block enables us to tune the strength of segregation (and therefore the order-disorder transition) of the block copolymer. Polypeptoid chain shape also affects self-assembly. In classical synthetic block copolymers, it has typically been difficult to change chain shape without also changing polymer chemistry and therefore other factors affecting self-assembly. The advantage of the polypeptoid system is that it is modular, as the side chain chemistry (and therefore polymer properties) can easily be changed without changing the backbone chemistry. Thus, we have decoupled conformational effects from chemical composition by comparing the self-assembly of block copolymers containing either a helical peptoid block or its racemic, non-helical analog. The increase in the persistence length of the peptoid block due to helicity translates to an increase in the morphological domain spacing. In this work, we further the understanding of the effect of monomer sequence on bulk polypeptoid properties and self-assembly. Our findings pave the way for the rational design of structured synthetic polymers with tunable, sequence-specific properties.
Controlling Molecular Ordering in Solution-State Conjugated Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev
Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less
Controlling Molecular Ordering in Solution-State Conjugated Polymers
Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; ...
2015-07-17
Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less
SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
1998-10-01
The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system havemore » been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.« less
NASA Astrophysics Data System (ADS)
Anderson, John; Pestov, Dmitry; Fischer, Robert L.; Webb, Stanley; Tepper, Gary C.
2004-03-01
Steady state and lifetime fluorescence measurements were acquired to measure the binding activity associated with molecularly imprinted polymer (MIP) microparticles imprinted to dipicolinic acid. Dipicolinic acid is a unique compound associated with the sporulation phase of spore-forming bacteria (e.g., genus Bacillus and Clostridium). Vinylic monomers were polymerized in a dimethylformamide solution containing the dipicolinic acid as a template. The resulting MIP was then pulverized and size selected into small microscale particles. Samplers were adapted incorporating the MIP particles within a dialyzer (500 MW). Tests were run on replicate samples of biologically active cultures representing both stationary phase and sporulation post fermentation products in standard media. The permeability of the membrane permitted diffusion of lighter molecular weight constituents from media effluents to enter the dialyzer chamber and contact the MIP. Extractions of the media were measured using steady state and lifetime fluorescence. Results showed dramatic steady state fluorescence changes as a function of excitation, emission and intensity and an estimated lifetime of 5.8 ns.
NASA Technical Reports Server (NTRS)
Parmar, D. S.; Singh, J. J.
1993-01-01
Polymer dispersed liquid crystal thin films have been deposited on glass substrates by the processes of polymerization and solvent evaporation induced phase separation. The electron and the optical polarization microscopies of the films reveal that PDLC microdroplets formed during the process of phase separation near the top surface of the film remain exposed and respond to shear stress due to air or gas flow on the surface. Optical response of the film to an air flow-induced shear stress input on the free surface has been measured. Director orientation in the droplets changes with the applied shear stress leading to time varying transmitted light intensity. Director dynamics of the droplet for an applied step shear stress has been discussed from free energy considerations. Results on the measurement of light transmission as a function of the gas flow parameter unambiguously demonstrate the potential of these systems for use as boundary layer and gas flow sensors.
Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading
Arman, B.; An, Q.; Luo, S. N.; ...
2011-01-04
We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less
Phase sensitive thermography for quality assessment of giant magnetostrictive composite materials
NASA Astrophysics Data System (ADS)
Yang, Peng; Law, Chiu T.; Elhajjar, Rani
2017-04-01
Giant magnetostrictive materials are increasingly proposed for smart material applications such as in sensors, actuators, and energy harvesting applications. In a composites form, the materials are combined in particle form with polymer matrix composites. Reviewing the literature on this topic, the reader observes a large amount of variability in the reported properties that are typically based on recording (overall or localized) strain and magnetic field with non-collocating strain gages and a gauss meter, i.e. far field measurements. Previously the linking of the microstructure in magnetostrictive composite to the spatial variability of the localized magnetostrictive response, a significant factor for the composite performance in sensing and acutuation, has not been received adequate attention. In this paper, a full-field phase-sensitive thermography method is proposed to use full-field infrared measurements to infer changes in the microstructure in magnetostrictive polymer composites under a cyclic magnetic field. The results show how defects in the material can be rapidly identified from the proposed approach in inspecting the manufactured smart composites.
NASA Astrophysics Data System (ADS)
Agambayev, Agamyrat; Rajab, Karam H.; Hassan, Ali H.; Farhat, Mohamed; Bagci, Hakan; Salama, Khaled N.
2018-02-01
In this study, multi-walled carbon nanotube (MWCNT) filled polyevinelidenefluoride-trifluoroethylene-chlorofluoroethylene composites are used to realize fractional-order capacitors (FOCs). A solution-mixing and drop-casting approach is used to fabricate the composite. Due to the high aspect ratio of MWCNTs, percolation regime starts at a small weight percentage (wt%), 1.00%.The distributed MWCNTs inside the polymer act as an electrical network of micro-capacitors and micro-resistors, which, in effect, behaves like a FOC. The resulting FOCs’ constant phase angle (CPA) can be tuned from -65{\\hspace{0pt}}^\\circ to -7{\\hspace{0pt}}^\\circ by changing the wt% of the MWCNTs. This is the largest dynamic range reported so far at the frequency range from 150 kHz to 2 MHz for an FOC. Furthermore, the CPA and pseudo-capacitance are shown to be practically stable (with less than 1% variation) when the applied voltage is, changed between 500 µV and 5 V. For a fixed value of CPA, the pseudo-capacitance can be tuned by changing the thickness of the composite, which can be done in a straightforward manner via the solution-mixing and drop-casting fabrication approach. Finally, it is shown that the frequency of a Hartley oscillator built using an FOC is almost 15 times higher than that of a Hartley oscillator built using a conventional capacitor.
Super-hydrophobic coatings based on non-solvent induced phase separation during electro-spraying.
Gao, Jiefeng; Huang, Xuewu; Wang, Ling; Zheng, Nan; Li, Wan; Xue, Huaiguo; Li, Robert K Y; Mai, Yiu-Wing
2017-11-15
The polymer solution concentration determines whether electrospinning or electro-spraying occurs, while the addition of the non-solvent into the polymer solution strongly influences the surface morphology of the obtained products. Both smooth and porous surfaces of the electro-sprayed microspheres can be harvested by choosing different non-solvent and its amount as well as incorporating polymeric additives. The influences of the solution concentration, weight ratio between the non-solvent and the copolymer, and the polymeric additives on the surface morphology and the wettability of the electro-sprayed products were systematically studied. Surface pores and/or asperities on the microsphere surface were mainly caused by the non-solvent induced phase separation (NIPS) and subsequent evaporation of the non-solvent during electro-spraying. With increasing polymer solution concentration, the microsphere was gradually changed to the bead-on-string geometry and finally to a nanofiber form, leading to a sustained decrease of the contact angle (CA). It was found that the substrate coatings derived from the microspheres possessing hierarchical surface pores or dense asperities had high surface roughness and super-hydrophobicity with CAs larger than 150° while sliding angles smaller than 10°; but coatings composed of microspheres with smooth surfaces gave relatively low CAs. Copyright © 2017 Elsevier Inc. All rights reserved.
Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo
2016-04-08
Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Ji; Hu, Xiaoling; Guan, Ping; Zhang, Xiaoyan; Qian, Liwei; Zhang, Nan; Du, Chunbao; Song, Renyuan
2016-05-01
A novel l-phenylalanine molecularly imprinted solid-phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion-pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid-phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l-phenylalanine. Under the optimized conditions of the procedure, an analytical method for l-phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse-phase silica gel, the obtained molecularly imprinted polymer as an solid-phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L(-1) ) for the isolation of l-phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion-pair dummy template imprinting is effective for preparing selective solid-phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jeong, Seonju; Cho, Changsoon; Kang, Hyunbum; Kim, Ki-Hyun; Yuk, Youngji; Park, Jeong Young; Kim, Bumjoon J; Lee, Jung-Yong
2015-03-24
We have investigated the effects of a directly nanopatterned active layer on the electrical and optical properties of inverted polymer solar cells (i-PSCs). The capillary force in confined molds plays a critical role in polymer crystallization and phase separation of the film. The nanoimprinting process induced improved crystallization and multidimensional chain alignment of polymers for more effective charge transfer and a fine phase-separation between polymers and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) to favor exciton dissociation and increase the generation rate of charge transfer excitons. Consequently, the power conversion efficiency with a periodic nanostructure was enhanced from 7.40% to 8.50% and 7.17% to 9.15% in PTB7 and PTB7-Th based i-PSCs, respectively.
Thermodynamics of the adsorption of flexible polymers on nanowires
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Gross, Jonathan; Bachmann, Michael
2015-03-01
Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached to or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. The classification of the transitions is performed by microcanonical inflection-point analysis.
Thermodynamics of the adsorption of flexible polymers on nanowires.
Vogel, Thomas; Gross, Jonathan; Bachmann, Michael
2015-03-14
Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached to or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. The classification of the transitions is performed by microcanonical inflection-point analysis.
Altobelli, R; Salzano de Luna, M; Filippone, G
2017-09-27
The sequence of events which leads to the interfacial crowding of plate-like nanoparticles in co-continuous polymer blends is investigated through a combination of morphological and rheological analyses. Very low amounts (∼0.2 vol%) of organo-modified clay are sufficient to suppress phase coarsening in a co-continuous polystyrene/poly(methyl methacrylate) blend, while lower particle loading allows for a tuning of the characteristic size of the polymer phases at the μm-scale. In any case, an interfacial network of nanoparticles eventually forms, which is driven by the preferred polymer-polymer interface. The elastic features and stress-bearing ability of this peculiar nanoparticle assembly are studied in detail by means of a descriptive two-phase viscoelastic model, which allows isolation of the contribution of the filler network. The role of the co-continuous matrix in driving the space arrangement of the nanoparticles is emphasized by means of comparative analysis with systems based on the same polymers and nanoparticles, but in which the matrix is either a pure polymer or a blend with drop-in-matrix morphology. The relaxation dynamics of the interfacial network was found not to depend on the matrix microstructure, which instead substantially affects the assembly of the nanoplatelets. When the host medium is co-continuous, the particles align along the preferred polymer-polymer interface, percolating at a very low amount (∼0.17 vol%) and prevalently interacting edge-to-edge. The stress bearing ability of such a network is much higher than that in the case of matrix based on a homogeneous polymer or a drop-in-matrix blend, but its elasticity shows low sensitivity to the filler content.
Active self-healing encapsulation of vaccine antigens in PLGA microspheres
Desai, Kashappa-Goud H.; Schwendeman, Steven P.
2013-01-01
Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer, and d) provide improved in vitro controlled release of antigenic TT. PMID:23103983
Lu, Yang; Chen, Bo; Yu, Miao; Han, Juan; Wang, Yun; Tan, Zhenjiang; Yan, Yongsheng
2016-11-01
Smart polymer aqueous two phase flotation system (SPATPF) is a new separation and enrichment technology that integrated the advantages of the three technologies, i.e., aqueous two phase system, smart polymer and flotation sublation. Ethylene oxide and propylene oxide copolymer (EOPO)-(NH4)2SO4 SPATPF is a pretreatment technique, and it is coupled with high-performance liquid chromatography to analyze the trace ciprofloxacin and lomefloxacin in real food samples. The optimized conditions of experiment were determined in the multi-factor experiment by using response surface methodology. The flotation efficiency of lomefloxacin and ciprofloxacin was 94.50% and 98.23% under the optimized conditions. The recycling experimentsshowed that the smart polymer EOPO could use repeatedly, which will reduce the cost in the future application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baggiani, C; Giovannoli, C; Anfossi, L; Tozzi, C
2001-12-14
A molecularly imprinted polymer (MIP) was synthesized using the herbicide 2,4,5-trichlorophenoxyacetic acid as a template, 4-vinylpyridine as an interacting monomer, ethylendimethacrylate as a cross-linker and a methanol-water mixture as a porogen. The binding properties and the selectivity of the polymer towards the template were investigated by frontal and zonal liquid chromatography. The polymer was used as a solid-phase extraction material for the clean-up of the template molecule and some related herbicides (2,4-dichlorophenoxyacetic acid, fenoprop, dichlorprop) from river water samples at a concentration level of ng/ml with quantitative recoveries comparable with those obtained with a traditional C18 reversed-phase column when analyzed by capillary electrophoresis. The results obtained show that the MIP-based approach to the solid-phase extraction is comparable with the more traditional solid-phase extraction with C18 reversed-phase columns in terms of recovery, but it is superior in terms of sample clean-up.
Understanding and Controlling Nanoscale Morphology in Self-Assembled Semiconducting Materials
NASA Astrophysics Data System (ADS)
Kang, Hyeyeon
Self-assembled semiconducting materials have been rapidly developed for a range of applications. This work aims to control the morphology of nanostructured semiconductors to understand how their functions arise from the structural properties. The first part of this dissertation focuses on the formation of a bulk-heterojunction (BHJ) in the active layer of organic photovoltaics (OPV). A BHJ is a bicontinuous interpenetrating network of organic components. The phase separation of the electron donor and the acceptor is required to achieve a BHJ structure in the nanostructured morphology, which promotes an efficient charge transportation. The use of solvent additive is one of the strategies to control the spontaneous phase separation during the film formation. Low vapor pressure solvent additives are introduced to a polymer casting solution in a sequentially processed OPV system, to study the swelling effect on the phase separation. In particular, the change in crystallinity and vertical mixing will be intensively studied upon polymer swelling. As another strategy, we introduce a molecular structure change to fullerene derivatives. A small structural variation leads to a large enough contrast of their surface energy, which is attributed to different vertical phase separation in the active layer. It eventually allows us to examine photovoltaic performance and device physics. In the second part, mesoporous inorganic films are investigated by preparation from a nanocrystal solution or sol-gel precursors for solar energy applications. Mesoporous nanocrystal-based titania is synthesized for inorganic/organic hybrid solar cells. The effect of surface modification is examined by anchoring a fullerene derivative on to titania surface. 3D interconnected mesoporous tantalum nitride films are prepared via sol-gel method as photoanodes in solar water splitting. The simple synthetic method using polymer template enables us to successfully prepare nitride films with excellent pore periodicity. The porous tantalum nitride film is examined with photoelectrochemical measurement to investigate the correlation between nanostructuring and photocatalytic activity. For the final part of this dissertation, porous cobalt ferrite and cadmium sulfide films are studied using ellipsometric porosimetry. Understanding the nature of their pores allows us to tune the intrinsic properties of the materials or prove the newly designed synthetic method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Vitaly A.; Petrova, Marina V.; Lukzen, Nikita N., E-mail: luk@tomo.nsc.ru
2015-08-15
Family of “breathing crystals” is the polymer-chain complexes of Cu(hfac){sub 2} with nitroxides. The polymer chains consist of one-, two- or three-spin clusters. The “breathing crystals” experience simultaneous magnetic and Jahn-Teller type structural phase transitions with change of total cluster spin and drastic change of bond lengths (ca. 10-12%). For the first time the intra-cluster magnetic couplings in ”breathing crystals” have been calculated both by band structure methods GGA + U and hybrid DFT (B3LYP and PBE0) for the isolated exchange clusters. The temperature dependence of the magnetic coupling constant was calculated for two polymer-chain compounds of the “breathing crystal”more » family - C{sub 21}H{sub 19}CuF{sub 12}N{sub 4}O{sub 6} with the chains containing two-spin clusters and C{sub 22}H{sub 21}CuF{sub 12}N{sub 4}O{sub 6} with the chains of alternating three-spin clusters and one-spin sites. It was found that adding a Hubbard-like parameter not only to the copper 3d electrons but also to the oxygen 2p electrons (GGA + U{sub d} + U{sub p} approach) results in an improved description of exchange coupling in the “breathing crystal” compounds. At the same time treatment of the isolated clusters by a large basis hybrid DFT with high computational cost provides a similar quality fit of the experimental magneto-chemical data as that for the GGA + U{sub d} + U{sub p} band structure calculation scheme. Our calculations also showed that in spite of the abrupt transformation of the magnetic coupling constant under the phase transition, the band gap in the “breathing crystals” remains about the same value with temperature decrease.« less
Shape-designed single-polymer micelles: a proof-of-concept simulation
NASA Astrophysics Data System (ADS)
Moths, Brian; Witten, Thomas A.
Much effort has been directed towards self-assembling nanostructures. Strong, local interactions between specific building blocks often determine these structures (e.g., globular proteins). We seek to produce designed structures that are instead determined by collective effects of weak interactions (e.g., surfactant self-assembly). Such structures may reversibly change conformation or disassemble in response to changing solvent conditions, and, being soft, have potential to adapt to fluctuating or unknown application-imposed shape requirements. Concretely, we aim to realize such a structure in the form of a single polymer micelle--an amphiphilic polymer exhibiting a condensed, phase-segregated conformation when immersed in solvent. Connecting all amphiphiles into a single chain provides geometric constraints controlling the surface curvature profile, thus dictating a non-trivial shape. We present 2D Monte Carlo simulation results demonstrating the feasibility of such soft, shape-designed micelles. Preliminary results demonstrate a stable concave ``dimple'' in a micelle composed of a single A-B multiblock linear copolymer. We discuss both current limitations on shape robustness and effects of block asymmetry, block molecular weights and overall chain length on micelle shape. This work was supported in part by the National Science Foundation's MRSEC Program under Award Number DMR-1420709.
Nanoporous thermosetting polymers.
Raman, Vijay I; Palmese, Giuseppe R
2005-02-15
Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.
Martinez, Adam W; Caves, Jeffrey M; Ravi, Swathi; Li, Wehnsheng; Chaikof, Elliot L
2014-01-01
Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor-phase crosslinking strategies, decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA, 24.5%), GTA vapor crosslinking (31.6%), disulfide (SS, 18.2%) and SS vapor crosslinking (25.5%) (P<0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure and ultimate tensile strength (UTS). In all cases, vapor-phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor-phase approaches influenced drug delivery rates, resulting in decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical and drug delivery properties of protein polymers. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Jin Lee, Su; Kim, Yong-Jae; Young Yeo, So; Lee, Eunji; Sun Lim, Ho; Kim, Min; Song, Yong-Won; Cho, Jinhan; Ah Lim, Jung
2015-01-01
Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step. PMID:26359068
Lee, Su Jin; Kim, Yong-Jae; Yeo, So Young; Lee, Eunji; Lim, Ho Sun; Kim, Min; Song, Yong-Won; Cho, Jinhan; Lim, Jung Ah
2015-09-11
Here we report the first demonstration for centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend. Key feature of this work is that organic semiconductor molecules were vertically segregated on top of the polymer phase and simultaneously crystallized at the center of the printed line pattern after solvent evaporation without an additive process. The thickness and width of the centro-apically segregated organic semiconductor crystalline stripe in the printed blend pattern were controlled by varying the relative content of the organic semiconductors, printing speed, and solution concentrations. The centro-apical self-organization of organic semiconductor molecules in a printed polymer blend may be attributed to the combination of an energetically favorable vertical phase-separation and hydrodynamic fluids inside the droplet during solvent evaporation. Finally, a centro-apically phase-separated bilayer structure of organic semiconductor: polymer blend was successfully demonstrated as a facile method to form the semiconductor and dielectric layer for OFETs in one- step.
Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köpplmayr, Thomas, E-mail: tkoepplmayr@gmail.com; Mayrhofer, Elias
In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscousmore » phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance.« less
Tian, Yiwei; Booth, Jonathan; Meehan, Elizabeth; Jones, David S; Li, Shu; Andrews, Gavin P
2013-01-07
Amorphous drug-polymer solid dispersions have the potential to enhance the dissolution performance and thus bioavailability of BCS class II drug compounds. The principle drawback of this approach is the limited physical stability of amorphous drug within the dispersion. Accurate determination of the solubility and miscibility of drug in the polymer matrix is the key to the successful design and development of such systems. In this paper, we propose a novel method, based on Flory-Huggins theory, to predict and compare the solubility and miscibility of drug in polymeric systems. The systems chosen for this study are (1) hydroxypropyl methylcellulose acetate succinate HF grade (HPMCAS-HF)-felodipine (FD) and (2) Soluplus (a graft copolymer of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol)-FD. Samples containing different drug compositions were mixed, ball milled, and then analyzed by differential scanning calorimetry (DSC). The value of the drug-polymer interaction parameter χ was calculated from the crystalline drug melting depression data and extrapolated to lower temperatures. The interaction parameter χ was also calculated at 25 °C for both systems using the van Krevelen solubility parameter method. The rank order of interaction parameters of the two systems obtained at this temperature was comparable. Diagrams of drug-polymer temperature-composition and free energy of mixing (ΔG(mix)) were constructed for both systems. The maximum crystalline drug solubility and amorphous drug miscibility may be predicted based on the phase diagrams. Hyper-DSC was used to assess the validity of constructed phase diagrams by annealing solid dispersions at specific drug loadings. Three different samples for each polymer were selected to represent different regions within the phase diagram.
Characterization of Nonlinear Rate Dependent Response of Shape Memory Polymers
NASA Technical Reports Server (NTRS)
Volk, Brent; Lagoudas, Dimitris C.; Chen, Yi-Chao; Whitley, Karen S.
2007-01-01
Shape Memory Polymers (SMPs) are a class of polymers, which can undergo deformation in a flexible state at elevated temperatures, and when cooled below the glass transition temperature, while retaining their deformed shape, will enter and remain in a rigid state. Upon heating above the glass transition temperature, the shape memory polymer will return to its original, unaltered shape. SMPs have been reported to recover strains of over 400%. It is important to understand the stress and strain recovery behavior of SMPs to better develop constitutive models which predict material behavior. Initial modeling efforts did not account for large deformations beyond 25% strain. However, a model under current development is capable of describing large deformations of the material. This model considers the coexisting active (rubber) and frozen (glass) phases of the polymer, as well as the transitions between the material phases. The constitutive equations at the continuum level are established with internal state variables to describe the microstructural changes associated with the phase transitions. For small deformations, the model reduces to a linear model that agrees with those reported in the literature. Thermomechanical characterization is necessary for the development, calibration, and validation of a constitutive model. The experimental data reported in this paper will assist in model development by providing a better understanding of the stress and strain recovery behavior of the material. This paper presents the testing techniques used to characterize the thermomechanical material properties of a shape memory polymer (SMP) and also presents the resulting data. An innovative visual-photographic apparatus, known as a Vision Image Correlation (VIC) system was used to measure the strain. The details of this technique will also be presented in this paper. A series of tensile tests were performed on specimens such that strain levels of 10, 25, 50, and 100% were applied to the material while it was above its glass transition temperature. After deforming the material to a specified applied strain, the material was then cooled to below the glass transition temperature (Tg) while retaining the deformed shape. Finally, the specimen was heated again to above the transition temperature, and the resulting shape recovery profile was measured. Results show that strain recovery occurs at a nonlinear rate with respect to time. Results also indicate that the ratio of recoverable strain/applied strain increases as the applied strain increases.
Constitutive equations for an electroactive polymer
NASA Astrophysics Data System (ADS)
Tixier, Mireille; Pouget, Joël
2016-07-01
Ionic electroactive polymers can be used as sensors or actuators. For this purpose, a thin film of polyelectrolyte is saturated with a solvent and sandwiched between two platinum electrodes. The solvent causes a complete dissociation of the polymer and the release of small cations. The application of an electric field across the thickness results in the bending of the strip and vice versa. The material is modeled by a two-phase continuous medium. The solid phase, constituted by the polymer backbone inlaid with anions, is depicted as a deformable porous media. The liquid phase is composed of the free cations and the solvent (usually water). We used a coarse grain model. The conservation laws of this system have been established in a previous work. The entropy balance law and the thermodynamic relations are first written for each phase and then for the complete material using a statistical average technique and the material derivative concept. One deduces the entropy production. Identifying generalized forces and fluxes provides the constitutive equations of the whole system: the stress-strain relations which satisfy a Kelvin-Voigt model, generalized Fourier's and Darcy's laws and the Nernst-Planck equation.
Ng, K L; Chan, H L; Choy, C L
2000-01-01
Composites of lead zirconate titanate (PZT) powder dispersed in a vinylidene fluoride-trifluoroethylene copolymer [P(VDF-TrFE)] matrix have been prepared by compression molding. Three groups of polarized samples have been prepared by poling: only the ceramic phase, the ceramic and polymer phases in parallel directions, and the two phases in antiparallel directions. The measured permittivities of the unpoled composites are consistent with the predictions of the Bruggeman model. The changes in the pyroelectric and piezoelectric coefficients of the poled composites with increasing ceramic volume fraction can be described by modified linear mixture rules. When the ceramic and copolymer phases are poled in the same direction, their pyroelectric activities reinforce while their piezoelectric activities partially cancel. However, when the ceramic and copolymer phases are poled in opposite directions, their piezoelectric activities reinforce while their pyroelectric activities partially cancel.
Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V; Alshetaili, Abdullah S; Pimparade, Manjeet B; Repka, Michael A
2016-05-01
The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing the hot melt extrusion technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the dynamic vapour sorption system, and the effects of polymer hydrophobicity, hygroscopicity, molecular weight and the hot melt extrusion process were investigated. Fourier transform infrared (FTIR) imaging was performed to understand the phase separation driven by the moisture. Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity and higher molecular weight could sorb less moisture under the high relative humidity (RH) conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared with the physical mixture after hot melt extrusion, which might be due to the decreased surface area and porosity. The FTIR imaging indicated that the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. © 2015 Royal Pharmaceutical Society.
Fractography of poly(methyl methacrylates).
Kusy, R P; Turner, D T
1975-07-01
For convenience in clinical manipulation, it is the practice to fabricate PMMA protheses from mixtures of powder and monomer. When the monomer is subsequently polymerized an unusual 2-phase polymeric material results in which grains of PMMA are dispersed in a matrix of the same polymer. The mechanical properties of the 2-phase materials are inferior in certain respects relative to 1-phase polymers. The purpose of the present work is to evaluate the failure of 2-phase materials by microscopical examination of their fracture surfaces. A granular microstructure was clearly distinguishable and a distinction made between materials which fail exclusively by transgranular fracture and others which additionally exhibit intergranular fracture. In order to interpret markings observed on the fracture surfaces of the complex 2-phase systems a study was made of the influence of molecular weight on the fractography of 1-phase PMMA. Molecular weight was reduced by degradation of samples by exposure to gamma-rays. The spacing of periodic rib markings on fracture surfaces was found to decrease with molecular weight and this relationship used to provide an estimate of the molecular weight of polymer in the matrix of 2-phase materials.
Constitutive Modeling of the Dynamic-Tensile-Extrusion Test of PTFE
NASA Astrophysics Data System (ADS)
Resnyansky, Anatoly; Brown, Eric; Trujillo, Carl; Gray, George
2015-06-01
Use of polymers in the defence, aerospace and industrial application at extreme conditions makes prediction of behaviour of these materials very important. Crucial to this is knowledge of the physical damage response in association with the phase transformations during the loading and the ability to predict this via multi-phase simulation taking the thermodynamical non-equilibrium and strain rate sensitivity into account. The current work analyses Dynamic-Tensile-Extrusion (DTE) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during the loading with subsequent tension are analysed using a two-phase rate sensitive material model implemented in the CTH hydrocode and the calculations are compared with experimental high-speed photography. The damage patterns and their link with the change of loading modes are analysed numerically and are correlated to the test observations.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.
Abraham, Alex; Chatterji, Apratim
2018-04-21
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions
NASA Astrophysics Data System (ADS)
Abraham, Alex; Chatterji, Apratim
2018-04-01
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando
2018-01-26
The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Processing and properties of ceramic matrix-polymer composites for dental applications
NASA Astrophysics Data System (ADS)
Huang, Hsuan Yao
The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored. Strengths and toughnesses were not severely degraded by immersion in simulated body fluids up to 30 days. The composite elastic modulus approached that of hard tissues and its wear behavior with opposing tooth was excellent. Growth of apatite over the entire composite surface was achieved in SBF. Growth of apatite in human whole saliva was achieved on the bioactive glass surface, but not on the composite surface.
NASA Astrophysics Data System (ADS)
de Lannoy, Charles-Francois Pedro Claude Karolek Ghislain
Membrane technologies represent an energy efficient, effective solution for treating municipal and commercial waters/wastewaters. Membranes are predominantly polymer-based and despite steady advances in polymeric materials, they continue to suffer from operational problems including biofouling and breakages. This work addresses these two disparate problems by developing novel CNT-polymer nanocomposite materials that contain variously functionalized carbon nanotubes (fCNTs) in low quantities (<0.5wt%). Several strategies have been employed to achieve highly functional CNT-polymer nanocomposite membranes including blend mixing, ionic charge association, and covalent cross-linking with monomer and oligomer constituents. These CNT-polymer nanocomposite membranes were compared to traditional polymer membranes across various properties including increased Young's Modulus, changes in surface hydrophilicity, fine control over molecular weight cut-off and flux, and surface electrical conductivity. Membranes with high surface electrical conductivity were further tested for their anti-biofouling properties. Finally, CNT stability and polymer compatibility were evaluated throughout membrane manufacture, use, and cleaning. The incorporation of CNTs mixed in bulk phase and linked through ionic associations in polymer matrices showed significant (50%) increases in Young's modulus for certain CNT functionalizations and derivatization percent. Membranes formed with high surface electrical conductivity demonstrated almost complete resistance to biofouling (> 95%) in long-term bacterially challenged experiments. CNTs and polymer mixtures that lacked covalent or ionic bonds were susceptible to significant (up to 10%) loss of CNTs during membrane non-solvent gelation and aggressive chemical cleaning treatment. Functionalized carbon nanotubes endow polymer membranes with their unique strength and electrically conductive properties. These added properties were demonstrated to greatly improve membrane operational efficiency and membrane longevity. CNT-polymer nanocomposite membranes offer low-energy, high-efficiency, and long-lifetime alternatives to traditional polymer membranes. With further advances in polymeric nanomaterials, membrane technology has the potential for wide applicability across many fields outside of water filtration and desalination.
NASA Astrophysics Data System (ADS)
Young, Nicholas Philip
The design of environmentally-benign polymer processing techniques is an area of growing interest, motivated by the desire to reduce the emission of volatile organic compounds. Recently, supercritical carbon dioxide (scCO 2) has gained traction as a viable candidate to process polymers both as a solvent and diluent. The focus of this work was to elucidate the nature of the interactions between scCO2 and polymers in order to provide rational insight into the molecular interactions which result in the unexpected mixing thermodynamics in one such system. The work also provides insight into the nature of pairwise thermodynamic interactions in multicomponent polymer-polymer-diluent blends, and the effect of these interactions on the phase behavior of the mixture. In order to quantify the strength of interactions in the multicomponent system, the binary mixtures were characterized individually in addition to the ternary blend. Quantitative analysis of was made tractable through the use of a model miscible polymer blend containing styrene-acrylonitrile copolymer (SAN) and poly(methyl methacrylate) (dPMMA), a mixture which has been considered for a variety of practical applications. In the case of both individual polymers, scCO2 is known to behave as a diluent, wherein the extent of polymer swelling depends on both temperature and pressure. The solubility of scCO 2 in each polymer as a function of temperature and pressure was characterized elsewhere. The SAN-dPMMA blend clearly exhibited lower critical solution temperature behavior, forming homogeneous mixtures at low temperatures and phase separating at elevated temperature. These measurements allowed the determination of the Flory-Huggins interaction parameter chi23 for SAN (species 2) and dPMMA (species 3) as a function of temperature at ambient pressure, in the absence of scCO2 (species 1). Characterization of the phase behavior of the multicomponent (ternary) mixture was also carried out by SANS. An in situ SANS environment was developed to allow measurement of blend miscibility in the presence of scCO2. The pressure-temperature phase behavior of the system could be mapped by approaching the point of phase separation by spinodal decomposition through pressure increases at constant temperature. For a roughly symmetric mixture of SAN and dPMMA, the temperature at which phase separation occurred could be decreased by over 125 °C. The extent to which the phase behavior of the multicomponent system could be tuned motivated further investigation into the interactions present within the homogeneous mixtures. Analysis of the SANS results for homogeneous mixtures was undertaken using a new multicomponent formalism of the random phase approximation theory. The scattering profiles obtained from the scCO2-SAN-dPMMA system could be predicted with reasonable success. The success of the theoretical predictions was facilitated by directly employing the interactions found in the binary experiments. Exploitation of the condition of homogeneity with respect to chemical potential allowed determination of interaction parameters for scCO2-SAN and 2-dPMMA within the multicomponent mixture (chi12 and chi13, respectively). Studying this system over a large range of the supercritical regime yielded insight on the nature of interactions in the system. Near the critical point of scCO 2, chi12 and chi13 increase monotonically as a function of pressure. Conversely, at elevated temperature away from the critical point, the interaction parameters are found to go through a minimum as a pressure increases. Analysis of the critical phenomenon associated with scCO2 suggests that the observed dependence of chi12 and chi13 on pressure are related to the magnitude of scCO 2 density fluctuations and the proximity of the system to the so-called density fluctuation ridge. By tuning the system parameters of the multicomponent mixture, the phase behavior can be altered through the balance of pairwise interactions been the constituent species. The presence of scCO2 in the mixtures appears to eliminate the existence of the metastable state that epitomizes most polymer-polymer mixtures. Thus it is shown that knowledge of the individual pairwise interactions in such multicomponent mixtures can greatly influence the resulting phase behavior, and provide insight into the design of improved functional materials with decreased environmental impacts.
Thermodynamics of the adsorption of flexible polymers on nanowires
Vogel, Thomas; Gross, Jonathan; Bachmann, Michael
2015-03-09
Generalized-ensemble simulations enable the study of complex adsorption scenarios of a coarse-grained model polymer near an attractive nanostring, representing an ultrathin nanowire. We perform canonical and microcanonical statistical analyses to investigate structural transitions of the polymer and discuss their dependence on the temperature and on model parameters such as effective wire thickness and attraction strength. The result is a complete hyperphase diagram of the polymer phases, whose locations and stability are influenced by the effective material properties of the nanowire and the strength of the thermal fluctuations. Major structural polymer phases in the adsorbed state include compact droplets attached tomore » or wrapping around the wire, and tubelike conformations with triangular pattern that resemble ideal boron nanotubes. In conclusion, the classification of the transitions is performed by microcanonical inflection-point analysis.« less
Effects of rotational symmetry breaking in polymer-coated nanopores
NASA Astrophysics Data System (ADS)
Osmanović, D.; Kerr-Winter, M.; Eccleston, R. C.; Hoogenboom, B. W.; Ford, I. J.
2015-01-01
The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.
Effects of rotational symmetry breaking in polymer-coated nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanović, D.; Hoogenboom, B. W.; Ford, I. J.
2015-01-21
The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetricmore » case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.« less
Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing
2016-04-01
We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
Kang, Minjee; Lee, Byeongdu; Leal, Cecilia
2017-10-20
Here, we present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidencemore » that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid–polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid–polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications« less
NASA Astrophysics Data System (ADS)
Zhang, W. X.; Zhao, S. R.; Sun, C. P.
1997-02-01
A general self-consistent field (SCF) for the mixture of polymer and low molecular weight (LMW) molecules has been derived by variation principle. Considering a Maier-Saupe type of interaction, the analytical expressions of the SCF for polymer liquid crystals (PLCs) and the mixture of PLCs and LMW liquid crystals are obtained, from which the phase behaviors of PLCs as well as the mixture are studied. The theoretical results are in agreement with experimental results by adjusting a parameter.
Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control
Seeboth, Arno; Ruhmann, Ralf; Mühling, Olaf
2010-01-01
The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field. PMID:28883374
Study of translational dynamics in molten polymer by variation of gradient pulse-width of PGSE.
Stepišnik, Janez; Lahajnar, Gojmir; Zupančič, Ivan; Mohorič, Aleš
2013-11-01
Pulsed gradient spin echo is a method of measuring molecular translation. Changing Δ makes it sensitive to diffusion spectrum. Spin translation effects the buildup of phase structure during the application of gradient pulses as well. The time scale of the self-diffusion measurement shortens if this is taken into account. The method of diffusion spectrometry with variable δ is also less sensitive to artifacts caused by spin relaxation and internal gradient fields. Here the method is demonstrated in the case of diffusion spectrometry of molten polyethylene. The results confirm a model of constraint release in a system of entangled polymer chains as a sort of tube Rouse motion. Copyright © 2013 Elsevier Inc. All rights reserved.
Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J
2017-10-11
In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.
Binodal Colloidal Aggregation Test - 4: Polydispersion
NASA Technical Reports Server (NTRS)
Chaikin, Paul M.
2008-01-01
Binodal Colloidal Aggregation Test - 4: Polydispersion (BCAT-4-Poly) will use model hard-spheres to explore seeded colloidal crystal nucleation and the effects of polydispersity, providing insight into how nature brings order out of disorder. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.
Kawakami, Masatoshi; Metzler, Dominik; Li, Chen; Oehrlein, Gottlieb S.
2016-01-01
The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO2 using a steady-state Ar plasma, periodic injection of a defined number of C4F8 molecules, and synchronized plasma-based Ar+ ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C4F8 injection. The C4F8 and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number. PMID:27375342
Hasanovic, Amra; Hollick, Caroline; Fischinger, Kerstin; Valenta, Claudia
2010-06-01
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes were prepared by high-pressure homogeniser and coated with two cationic polymers, chitosan (CS) and for the first time Eudragit EPO (EU), respectively. Compared to the control liposomes, the polymeric liposomes showed greater physicochemical stability in terms of mean particle size and zeta potential at room temperature. In the present study, aciclovir and minoxidil have been used as hydrophilic and hydrophobic candidates. In the presence of the drugs, the polymeric liposomes still showed constant particle size and zeta potential. Influences of polymers and model drugs on thermotropic phase transition of DPPC liposomes were studied by micro-differential scanning calorimetry (microDSC). The influences on configuration of DPPC liposomes were investigated by Fourier transform infrared spectroscopy (FTIR). According to DSC results, cationic polymers had a stabilising effect, whereas aciclovir and minoxidil changed the physical properties of the DPPC bilayers by influencing the main phase transition temperature and erasing the pre-transition. The investigation of CO stretching bands of DPPC at 1736 cm(-1) in FTIR spectra showed that aciclovir has strong hydrogen bonding with CO groups of DPPC, whereas carbonyl groups were free in minoxidil presence. Moreover, the coating of liposomes with CS or EU led to higher skin diffusion for both drugs. This could be explained as an effect of positively charged liposomes to interact stronger with skin negatively charged surface and their possible interactions with structures below the stratum corneum. Copyright 2010 Elsevier B.V. All rights reserved.
Rotationally Molded Liquid Crystalline Polymers
NASA Technical Reports Server (NTRS)
Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce
2002-01-01
Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.
Phases of polymer systems in solution studied via molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Joshua Allen
2009-05-01
Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field inmore » basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.« less
Bai, Guangyue; Wu, Hui; Lou, Pengxiao; Wang, Yujie; Nichifor, Marieta; Zhuo, Kelei; Wang, Jianji; Bastos, Margarida
2017-01-04
Understanding the thermodynamics of formation of biocompatible aggregates is a key factor in the bottom up approach to the development of novel types of drug carriers and their structural tuning using small amphiphilic molecules. We chose an anionic amphiphilic and biocompatible polymer that consists of a dextran and grafted cholic acid pendants, randomly distributed along the dextran backbone, with a degree of substitution (DS) of 15 mol% (designated Dex-15CACOONa). The thermodynamics of interaction and phase behavior of mixtures of this polyelectrolyte and a cationic gemini surfactant hexanediyl-α,ω-bis(dodecyldimethylammonium bromide) (C 12 C 6 C 12 Br 2 ) or its monomer surfactant dodecyltrimethylammonium bromide (DTAB) in aqueous solution were characterized by isothermal titration calorimetry (ITC) and turbidity, together with cryogenic transmission electron microscopy (Cryo-TEM). The various critical concentrations and the enthalpy changes of the corresponding phase transitions for the oppositely charged system were obtained from the plots of the observed enthalpy change (ΔH obs ) and turbidity measurements as a function of gemini concentration. The morphologies of the aggregates in various phases were observed by Cryo-TEM. Altogether these results suggest the critical role of gemini as a dual linker. At the concentrations where the crosslink between the pendant aggregates happens, the free gemini concentration is proximately zero and the aggregate retains its negative charge. The analysis of various factors involved in the interaction allowed a rationalization of the driving forces for mixed aggregate formation, which will contribute to a subsequent rational design of drug delivery systems based on this polymer/surfactant system.
Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels
NASA Technical Reports Server (NTRS)
Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun
2010-01-01
Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the carboxyl groups of the organic phase. The polymerization process has been adapted to create interpenetrating PMA and silica-gel networks from monomers and prevent any phase separations that could otherwise be caused by an overgrowth of either phase. Typically, the resulting PMA/silica aerogel, without or with fiber reinforcement, has a density and a thermal conductivity similar to those of pure silica aerogels. However, the PMA enhances mechanical properties. Specifically, flexural strength at rupture is increased to 102 psi (=0.7 MPa), about 50 times the flexural strength of typical pure silica aerogels. Resistance to compression is also increased: Applied pressure of 17.5 psi (=0.12 MPa) was found to reduce the thicknesses of several composite PMA/silica aerogels by only about 10 percent.
Nanoparticles in Mesostructured Polymers: Stabilizations and Morphology Selection
NASA Astrophysics Data System (ADS)
Kim, Jaeup; O'Shaughnessy, Ben
2002-03-01
A major challenge in the rapidly developing field of nano-materials is finding ways to create delicate spatial arrangements of nano-sized particles. Nanostructured polymer phases and ultrathin polymer films offer potential templates to spontaneously generate this spatial organization. Here we present theory of such systems. Our conclusions are as follows. (1) Nanoparticles tending to aggregate into clusters under van der Waals attractions may be stabilized in a stretched polymer environment as offered by tethered thin film brushes or lamellar diblock phases. By extending the hydrodynamic analogy of Williams and Pincus to the real case of the end-annealed Semenov brush, we show cluster formation is strongly influenced: disc-shaped clusters are suppressed in favor of extended cylindrical forms. (2) The final morphology of extended nanoparticle aggregates depends on the polymer environment. If the nanoparticle/air/polymer surface tensions and the degree of chain stretching satisfy certain conditions, the polymer media selects the length scale of nanoparticle clusters. This offers the possibility of tuning nanoparticle aggregate morphology by suitable choice of polymeric media. Our predictions are consistent with experiments at Columbia by Levicky, Durning, Cerise and Liu demonstrating nanoparticle stabilization and morphology selection in ultrathin end-tethered polymer films.
Monolithic microfluidic concentrators and mixers
Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas
2005-05-03
Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.
Polymer Principles in the Undergraduate Physical Chemistry Course. Part 2.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1985
1985-01-01
Part l (SE 538 305) covered application of classical thermodynamics, polymer crystallinity, and phase diagrams to teaching physical chemistry. This part covers statistical thermodynamics, conformation, molecular weights, rubber elasticity and viscoelasticity, and kinetics of polymerization. Eight polymer-oriented, multiple-choice test questions…
NASA Astrophysics Data System (ADS)
Warriner, Heidi E.; Davidson, Patrick; Slack, Nelle L.; Schellhorn, Matthias; Eiselt, Petra; Idziak, Stefan H. J.; Schmidt, Hans-Werner; Safinya, Cyrus R.
1997-09-01
A series of four polymer-surfactant macromolecules, each consisting of a double-chain hydrophobic moiety attached onto a monofunctional polyethylene glycol (PEG) polymer chain, were synthesized in order to study their effect upon the fluid lamellar liquid crystalline (Lα) phase of the dimyristoylphosphatidylcholine/pentanol/water system. The main finding of this study is that the addition of these compounds induces a new lamellar gel, called Lα,g. We have determined the phase diagrams as a function of PEG-surfactant concentration, cPEG, and weight fraction water, ΦW. All phase diagrams are qualitatively similar and show the existence of the gel. Unlike more common polymer physical gels, this gel can be induced either by increasing cPEG or by adding water at constant cPEG. In particular, less polymer is required for gelation as water concentration increases. Moreover, the gel phase is attained at concentrations of PEG-surfactant far below that required for classical polymer gels and is stable at temperatures comparable to the lower critical solution temperature of free PEG-water mixtures. Small angle x-ray experiments demonstrate the lamellar structure of the gel phase, while wide angle x-ray scattering experiments prove that the structure is Lα, not Lβ' (a common chain-ordered phase which is also a gel). The rheological behavior of the Lα,g phase demonstrates the existence of three dimensional elastic properties. Polarized light microscopy of Lα,g samples reveals that the Lα,g is induced by a proliferation of defect structures, including whispy lines, spherulitic defects, and a nematiclike Schlieren texture. We propose a model of topological defects created by the aggregation of PEG-surfactant into highly curved regions within the membranes. This model accounts for both the inverse relationship between ΦW and cPEG observed along the gel transition line and the scaling dependence of the interlayer spacing at the gel transition with the PEG molecular weight. These Lα hydrogels could serve as the matrix for membrane-anchored peptides, proteins or other drug molecules, creating a "bioactive gel" with mechanical stability deriving from the polymer-lipid minority component.
Yang, Nan; You, Ting-Ting; Gao, Yu-Kun; Zhang, Chen-Meng; Yin, Penggang
2018-06-08
Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on polymer immobilized gold nanorods polymer metafilm. Polystyrene-polyisoprene-polystyrene (SIS), a transparent and flexible along with excellent elasticity polymer was chosen as main support of gold nanorods. A simple phase transfer progress was adopted to mix the gold nanorods with polymer which can further used in most water-insoluble polymers. The SERS film performed satisfactorily while tested in a series of standard Raman probes like crystal violet (CV) and malachite green (MG). Moreover, the excellent reproducibility and elastic properties make the film promising substrates in practical detection. Hence, the MG detection on fish surface and trace thiram detection on orange pericarp were inspected with the detection result of 1 × 10-10 M and 1 × 10-6 M which below the demand of National standard of China, exactly matching the realistic application requirements.
Purification of biomaterials by phase partitioning
NASA Technical Reports Server (NTRS)
Harris, J. M.
1984-01-01
A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zauzolkova, Natalya, E-mail: zauzolkova@igic.ras.ru; Dobrokhotova, Zhanna; Lermontov, Anatoly
The reactions of CuSO{sub 4}{center_dot}5H{sub 2}O, dimethylmalonic acid and Ba(OH){sub 2}{center_dot}H{sub 2}O (Cu: H{sub 2}Me{sub 2}mal: Ba=1: 2: 2) in aqueous and aqueous-ethanol solutions (H{sub 2}O: EtOH=1: 1) resulted in formation of 3D-porous coordination polymers [(H{sub 2}O){sub 3}({mu}-H{sub 2}O){sub 2}CuBa({mu}{sub 3}-Me{sub 2}mal)(Me{sub 2}mal)]{sub n} (1) and [({mu}-H{sub 2}O)CuBa({mu}{sub 3}-Me{sub 2}mal)({mu}{sub 4}-Me{sub 2}mal)]{sub n} (2), respectively. It has been shown that compound 2 was an intermediate in the thermal degradation of compound 1. Thorough studies of solid-state thermolysis of 1 and 2 allowed to detect formation of coordination polymer [CuBa({mu}{sub 4}-Me{sub 2}mal)({mu}{sub 5}-Me{sub 2}mal)]{sub n} (3), structure of which was determinedmore » by X-ray powder diffraction. It has been found that the channels in polymer 3 were accessible for guest molecules (MeOH). Theoretical estimation of methanol diffusion barrier was carried out. Complete solid-phase thermolysis of 1 and 2 leads to a mixture of BaCuO{sub 2}, BaCO{sub 3}, and CuO. Special conditions for obtaining of a crystalline phase of pure cubic BaCuO{sub 2} were determined. - Graphical abstract: Step-by-step transformation of new coordination polymer [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} to [(H{sub 2}O)CuBa(Me{sub 2}mal){sub 2}]{sub n} and [CuBa(Me{sub 2}mal){sub 2}]{sub n} were performed. Dehydration of initial compound leads to structural changes of 12-membered ring fragment. All compounds have porous structure. The final product of thermal decomposition is crystalline phase of individual cubic BaCuO{sub 2}. Highlights: Black-Right-Pointing-Pointer New 3D-polymers [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n} and [(H{sub 2}O)CuBa(Me{sub 2}mal){sub 2}]{sub n} were synthesized. Black-Right-Pointing-Pointer Thermal analysis showed step-by-step transformations of [(H{sub 2}O){sub 5}CuBa(Me{sub 2}mal){sub 2}]{sub n}. Black-Right-Pointing-Pointer Crystalline phase of pure cubic BaCuO{sub 2} is the product solid-phase thermolysis.« less
Green polymer chemistry: Synthesis of poly(disulfide) polymers and networks
NASA Astrophysics Data System (ADS)
Rosenthal-Kim, Emily Quinn
The disulfide group is unique in that it presents a covalent bond that is easily formed and cleaved under certain biological conditions. While the ease of disulfide bond cleavage is often harnessed as a method of biodegradation, the ease of disulfide bond formation as a synthetic strategy is often overlooked. The objective this research was to synthesize poly(disulfide) polymers and disulfide crosslinked networks from a green chemistry approach. The intent of the green chemistry approach was to take advantage of the mild conditions applicable to disulfide bond synthesis from thiols. With anticipated use as biomaterials, it was also desired that the polymer materials could be degraded under biological conditions. Here, a new method of poly(disulfide) polymer synthesis is introduced which was inspired by the reaction conditions and reagents found in Nature. Ambient temperatures and aqueous mixtures were used in the new method. Hydrogen peroxide, one of the Nature's most powerful oxidizing species was used as the oxidant in the new polymerization reaction. The dithiol monomer, 3,6-dioxa-1,8-octanedithiol was first solubilized in triethylamine, which activated the thiol groups and made the monomer water soluble. At room temperature, the organic dithiol/amine solution was then mixed with dilute aqueous hydrogen peroxide (3% by weight) to make the poly(disulfide) polymers. The presence of a two phase system (organic and aqueous phases) was critical to the polymerization reaction. As the reaction progresses, a third, polymer phase appeared. At ambient temperatures and above, this phase separated from the reaction mixture and the polymer product was easily removed from the reaction solution. These polymers reach Mn > 250,000 g/mol in under two hours. Molecular weight distributions were between 1.5 and 2.0. Reactions performed in an ice bath which remain below room temperature contain high molecular weight polymers with Mn ≈ 120,000 g/mol and have a molecular weight distribution of around 1.15. However, the majority of the product consists of low molecular weight cyclic poly(disulfide) oligomers. In reactions maintained below 18°C, the organic components were miscible in the aqueous hydrogen peroxide and a milky emulsion was produced. The polymers were degraded using the disulfide-specific reducing agent, dithiothreitol. Poly(disulfide) polymer networks were also synthesized in a two-phase system. Due to the poor solubility of the crosslinker, trimethylolpropane tris(2-mercaptopropionate, organic solvents were required to obtain consistent networks. The networks were degraded using dithiothreitol in tetrahydrofuran. The networks were stable under aqueous reducing conditions. The disulfide-bearing biochemical, alpha-lipoic acid, was investigated as monomer for the new method of poly(disulfide) polymer synthesis. It was also polymerized thermally and by a new interfacial method that proceeds at the air-water interface. Polymer products were often too large to be characterized by SEC (Mn > 1,000,000 g/mol). A poly(alpha-LA) polymer sample showed mass loss in aqueous solutions of glutathione at pH = 5.2 which was used to model cytosolic conditions. Poly(alpha-LA) was decorated with PEG (2,000 g/mol) in an esterification reaction catalyzed by Candida antarctica lipase B (CALB). The decorated polymers were imaged using AFM which revealed branch-like structures. To make new alpha-lipoic acid based monomers and macromonomers, CALB-catalyzed esterification, was used to conjugate alpha-lipoic acid to a variety of glycols including: diethylene glycol monomethyl ether, tetraethylene glycol, hexaethylene glycol, and poly(ethylene glycol). The products were verified using NMR spectroscopy and mass spectrometry.
Slepecky, Ralph A.; Law, John H.
1961-01-01
Slepecky, Ralph A. (Northwestern University, Evanston, Ill.), and John H. Law. Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J. Bacteriol. 82:37–42. 1961.—The production of poly-β-hydroxybutyrate has been followed in Bacillus megaterium, a sporulating strain, and B. megaterium strain KM, a nonsporulating strain, by an improved assay procedure and by the use of C14-acetate. The production of polymer in the KM strain follows the growth curve very slowly and reaches a peak at the time the cells are entering the stationary phase of growth. Slow utilization of polymer follows. When the sporulating strain is grown under conditions favorable for polymer production, no spores are formed; polymer production and utilization follow kinetics similar to those observed with asporogenous strains. When the sporulating strain is grown under conditions unfavorable for polymer production but favorable for sporulation, less polymer is produced and peak production occurs during the log phase of growth. Rapid utilization of the polymer precedes sporulation. If the medium is made favorable for polymer production by the addition of glucose and acetate and vigorous aeration conditions are used, sporulation can be obtained after good polymer production and subsequent utilization. PMID:16561914
Frequency doubling in poled polymers using anomalous dispersion phase-matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalczyk, T.C.; Singer, K.D.; Cahill, P.A.
1995-10-01
The authors report on a second harmonic generation in a poled polymer waveguide using anomalous dispersion phase-matching. Blue light ({lambda} = 407 nm) was produced by phase-matching the lowest order fundamental and harmonic modes over a distance of 32 {micro}m. The experimental conversion efficiency was {eta} = 1.2 {times} 10{sup {minus}4}, in agreement with theory. Additionally, they discuss a method of enhancing the conversion efficiency for second harmonic generation using anomalous dispersion phase-matching to optimize Cerenkov second harmonic generation. The modeling shows that a combination of phase-matching techniques creates larger conversion efficiencies and reduces critical fabrication requirements of the individualmore » phase-matching techniques.« less
NASA Astrophysics Data System (ADS)
Jiang, Ying; Chen, Jeff Z. Y.
2013-10-01
This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.
Roeleveld, Kevin; David, Frank; Lynen, Frédéric
2016-06-17
In this study the merits of polymerized imidazolium based ionic liquid (PIL) stationary phases obtained via condensation and free radical polymerizations are compared as stationary phases in gas chromatography (GC). Poly(1-vinyl-3-butyl-imidazolium - bis(trifluoromethane)sulfonamide) (poly(ViC4Im(+) NTf2(-))) was obtained via a chain-growth mechanism while poly(propylimidazolium-NTf2) (poly(C3Im(+) NTf2(-))) was synthesized via a step-growth polymerization. The thermal stability of both polymers was assessed using thermal gravimetric analysis and compared with bleeding profiles obtained from the statically coated GC columns (30m×0.25mm×0.25μm). The performance was compared to what could be obtained on commercially available 1,5-di(2,3-dimethylimidazolium)pentane(2+) 2NTf2(-) (SLB-IL111) ionic liquid based columns. It was observed that the step-growth polymer was more thermally stable, up to 325°C, while the chain-growth polymer showed initial degradation at 250°C. Both polymers allowed reaching minimal plate heights of 0.400-0.500mm for retained solutes such as benzaldehyde, acetophenone, 1-methylnaphthalene and aniline. Assessment of the McReynolds constants illustrated that the polarity of the step-growth polymer was similar to the SLB-IL111 column, while displaying improved column stability. The PIL phases and particularly the so far little studied condensation based polymer shows particular retention and satisfactory column performance for polar moieties such as esters, amine and carbonyl functionalities. Copyright © 2016 Elsevier B.V. All rights reserved.
Fast response liquid crystal devices
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsun
Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. The response time of a LC device depends on the visco-elastic coefficient (gamma1/K11), LC cell gap (d), and applied voltage. Hence, low visco-elastic coefficient LC materials and thinner cell gap are favorable for reducing the response time. However, low visco-elastic coefficient LCs are usually associated with a low birefringence because of shorter molecular conjugation. For display applications, such as LCD TVs, low birefringence (Deltan<0.1) LCs are commonly used. However, for optical communications at 1550 nm, low birefringence requires to a thick cell gap which, in turn, increases the response time. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. Moreover, this response time is insensitive to the LC cell gap. This is the first LC device exhibiting such an interesting property. Chapters 1 and 2 describe the motivation and background of this dissertation. From chapter 3 to chapter 6, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial LC-based VOA. In Chapter 7, we report a new device called axially-symmetric sheared polymer network liquid crystals (AS-SPNLC) and use it as LC devices. Through analyzing the structure of this axially-symmetric SPNLC, we construct a 3-D model to explain the observed phenomena. An axially-symmetric sheared polymer network liquid crystal has several attractive features: (1) it is polarization independent, (2) it has gradient phase change, and (3) its response time is fast. It can be used for polarization converter and divergent LC lens. In addition, a new method for simultaneously measuring the phase retardation and optic axis of a compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal. By overlaying a tested compensation film with a calibrated SPNLC cell between crossed polarizers, the optic axis and phase retardation value of the compensation film can be determined. This simple technique can be used for simultaneously measuring the optic axis and phase retardations of both A- and C-plates. These compensation films have been used extensively in wide-view LCD industry. Therefore, this method will make an important impact to the LCD industry.
Tiwari, Vimal K; Shripathi, T; Lalla, N P; Maiti, Pralay
2012-01-07
We have developed multifunctional nanohybrids of poly(vinylidene fluoride-co-chlorotrifluoroethylene) (CTFE) with a small percentage of surface modified inorganic layered silicate showing dramatic improvement in toughness, radiation resistant and piezoelectric properties vis-à-vis pristine polymer. Massive intercalation (d(001) 1.8 → 3.9 nm) of polymer inside the nanoclay galleries and unique crystallization behavior of the fluoropolymer on the surface of individual silicate layer has been reported. Toughness in the nanohybrid increases more than three orders of magnitude as compared to pure CTFE. High energy radiation (80 MeV Si(+7)) causes chain session, amorphization and creates olefinic bonds in the pure polymer while the nanohybrids are radiation resistant at a similar dose. Nanoclay induces the metastable piezoelectric β-phase in CTFE, suitable for sensor and actuator application. Molecular level changes after irradiation and controlled morphology for smart membrane have been confirmed by using spectroscopy, sol-gel technique, surface morphology studies and in situ residual gas analysis.
Smart membranes: Hydroxypropyl cellulose for flavor delivery
NASA Astrophysics Data System (ADS)
Heitfeld, Kevin A.
2007-12-01
This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. An encapsulation system was designed to utilize the solution (phase separation) behavior of a temperature responsive gel. The gel morphology was understood and diffusive properties were tailored through morphology manipulation. Heterogeneous and homogeneous gels were processed by understanding the effect of temperature on gel morphology. A morphology model was developed linking bulk diffusive properties to molecular morphology. Flavor was encapsulated within the gel and the emulsifying capability was determined. The capsules responded to temperature similarly to the pure polymer. The release kinetcs were compared to commercial gelatin capsules and the temperature responsive polymer took longer to release.
NASA Astrophysics Data System (ADS)
Haler, Jean R. N.; Massonnet, Philippe; Chirot, Fabien; Kune, Christopher; Comby-Zerbino, Clothilde; Jordens, Jan; Honing, Maarten; Mengerink, Ynze; Far, Johann; Dugourd, Philippe; De Pauw, Edwin
2018-01-01
Over the years, polymer analyses using ion mobility-mass spectrometry (IM-MS) measurements have been performed on different ion mobility spectrometry (IMS) setups. In order to be able to compare literature data taken on different IM(-MS) instruments, ion heating and ion temperature evaluations have already been explored. Nevertheless, extrapolations to other analytes are difficult and thus straightforward same-sample instrument comparisons seem to be the only reliable way to make sure that the different IM(-MS) setups do not greatly change the gas-phase behavior. We used a large range of degrees of polymerization (DP) of poly(ethylene oxide) PEO homopolymers to measure IMS drift times on three different IM-MS setups: a homemade drift tube (DT), a trapped (TIMS), and a traveling wave (T-Wave) IMS setup. The drift time evolutions were followed for increasing polymer DPs (masses) and charge states, and they are found to be comparable and reproducible on the three instruments. [Figure not available: see fulltext.
Influence of humidity on the phase behavior of API/polymer formulations.
Prudic, Anke; Ji, Yuanhui; Luebbert, Christian; Sadowski, Gabriele
2015-08-01
Amorphous formulations of APIs in polymers tend to absorb water from the atmosphere. This absorption of water can induce API recrystallization, leading to reduced long-term stability during storage. In this work, the phase behavior of different formulations was investigated as a function of relative humidity. Indomethacin and naproxen were chosen as model APIs and poly(vinyl pyrrolidone) (PVP) and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA64) as excipients. The formulations were prepared by spray drying. The water sorption in pure polymers and in formulations was measured at 25°C and at different values of relative humidity (RH=25%, 50% and 75%). Most water was absorbed in PVP-containing systems, and water sorption was decreasing with increasing API content. These trends could also be predicted in good agreement with the experimental data using the thermodynamic model PC-SAFT. Furthermore, the effect of absorbed water on API solubility in the polymer and on the glass-transition temperature of the formulations was predicted with PC-SAFT and the Gordon-Taylor equation, respectively. The absorbed water was found to significantly decrease the API solubility in the polymer as well as the glass-transition temperature of the formulation. Based on a quantitative modeling of the API/polymer phase diagrams as a function of relative humidity, appropriate API/polymer compositions can now be selected to ensure long-term stable amorphous formulations at given storage conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Massive Fabrication of Polymer Microdiscs by Phase Separation and Freestanding Process.
Zhang, Hong; Fujii, Mao; Okamura, Yosuke; Zhang, Li; Takeoka, Shinji
2016-06-29
We present a facile method to fabricate polymer thin films with tens of nanometers thickness and several micrometers size (also called "microdiscs" herein) by applying phase separation of polymer blend. A water-soluble supporting layer is employed to obtain a freestanding microdisc suspension. Owing to their miniaturized size, microdiscs can be injected through a syringe needle. Herein, poly(d,l-lactic acid) microdiscs were fabricated with various thicknesses and sizes, in the range from ca. 10 to 60 nm and from ca. 1.0 to 10.0 μm, respectively. Magnetic nanoparticles were deposited on polymer microdiscs with a surface coating method. The magnetic manipulation of microdiscs in a liquid environment under an external magnetic field was achieved with controllable velocity by adjusting the microdisc dimensions and the loading amount of magnetic components. Such biocompatible polymer microdiscs are expected to serve as injectable vehicles for targeted drug delivery.
Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng
2017-08-17
A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.
Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei
2011-09-01
Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.
The importance of new processing techniques in tissue engineering
NASA Technical Reports Server (NTRS)
Lu, L.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)
1996-01-01
The use of polymer scaffolds in tissue engineering is reviewed and processing techniques are examined. The discussion of polymer-scaffold processing explains fiber bonding, solvent casting and particulate leaching, membrane lamination, melt molding, polymer/ceramic fiber composite-foam processing, phase separation, and high-pressure processing.
Application of partition technology to particle electrophoresis
NASA Technical Reports Server (NTRS)
Van Alstine, James M.; Harris, J. Milton; Karr, Laurel J.; Bamberger, Stephan; Matsos, Helen C.; Snyder, Robert S.
1989-01-01
The effects of polymer-ligand concentration on particle electrophoretic mobility and partition in aqueous polymer two-phase systems are investigated. Polymer coating chemistry and affinity ligand synthesis, purification, and analysis are conducted. It is observed that poly (ethylene glycol)-ligands are effective for controlling particle electrophoretic mobility.
Cobb, Zoe; Sellergren, Börje; Andersson, Lars I
2007-12-01
Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.
Palencia, Manuel; Rivas, Bernabé L
2011-11-15
Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.
Phase-Equilibria and Nanostructure Formation in Charged Rigid-Rod Polymers and Carbon Nanotubes
2002-11-10
or liquid crystalline) and the crystalline polymer state. The form-I crystal solvate, identi- fied as a cocrystal of the protonated polymer and the...dissolution temperature, below 100 °C.12,13 The form-II crystal solvate, considered a polymer-solvent cocrystal in which the polymer is deprotonated,11,12...solvate that is a cocrystal of protonated PBZT and PPA anions. As previously mentioned, the fact that these two extreme cases result in similar
Constitutive modeling of the dynamic-tensile-extrusion test of PTFE
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Brown, E. N.; Trujillo, C. P.; Gray, G. T.
2017-01-01
Use of polymers in defense, aerospace and industrial applications under extreme loading conditions makes prediction of the behavior of these materials very important. Crucial to this is knowledge of the physical damage response in association with phase transformations during loading and the ability to predict this via multi-phase simulation accounting for thermodynamical non-equilibrium and strain rate sensitivity. The current work analyzes Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during loading and subsequent tension are analyzed using a two-phase rate sensitive material model implemented in the CTH hydrocode. The calculations are compared with experimental high-speed photography. Deformation patterns and their link with changing loading modes are analyzed numerically and correlated to the test observations. It is concluded that the phase transformation is not as critical to the response of PTFE under Dyn-Ten-Ext loading as it is during the Taylor rod impact testing.
NASA Astrophysics Data System (ADS)
Lakhera, Nishant
Several types of insects and animals such as spiders and geckos are inherently able to climb along vertical walls and ceilings. This remarkable switchable adhesive behavior has been attributed to the fibrillar structures on their feet, with size ranging from few nanometers to a few micrometers depending on the species. Several studies have attempted to create synthetic micro-patterned surfaces trying to imitate this adhesive behavior seen in nature. The experimental procedures are scattered, with sole purpose of trying to increase adhesion, thereby making direct comparison between studies very difficult. There is a lack of fundamental understanding on adhesion of patterned surfaces. The influence of critical parameters like material modulus, glass transition temperature, viscoelastic effects, temperature and water absorption on adhesion is not fully explored and characterized. These parameters are expected to have a decisive influence on adhesion behavior of the polymer. Previous studies have utilized conventional "off-the-shelf" materials like epoxy, polyurethanes etc. It is however, impossible to change the material modulus, glass transition temperature etc. of these polymer systems without changing the base constituents itself, thereby explaining the gaps in the current research landscape. The purpose of this study was to use acrylate shape-memory polymers (SMPs) for their ability to be tailored to specific mechanical properties by control of polymer chemistry, without changing the base constituents. Polymer networks with tailorable glass transition, material modulus, water absorption etc. were developed and adhesion studies were performed to investigate the influence of temperature, viscoelastic effects, material modulus on the adhesion behavior of flat acrylate polymer surfaces. The knowledge base gained from these studies was utilized to better understand the fundamental mechanisms associated with adhesion behavior of patterned acrylate surfaces. Thermally induced switchable adhesion and water induced switchable adhesion of patterned acrylate surfaces was investigated. The viscoelastic energy dissipation occurring during the detachment phase was shown to dramatically increase adhesion under both thermally induced and water induced conditions. This effect was most pre-dominant at the glass transition temperature of the material. Increase in pre-load force and unloading velocity were also shown to increase the adhesive capability of the patterned acrylate SMPs.
Characterization of Homopolymer and Polymer Blend Films by Phase Sensitive Acoustic Microscopy
NASA Astrophysics Data System (ADS)
Ngwa, Wilfred; Wannemacher, Reinhold; Grill, Wolfgang
2003-03-01
CHARACTERIZATION OF HOMOPOLYMER AND POLYMER BLEND FILMS BY PHASE SENSITIVE ACOUSTIC MICROSCOPY W Ngwa, R Wannemacher, W Grill Institute of Experimental Physics II, University of Leipzig, 04103 Leipzig, Germany Abstract We have used phase sensitive acoustic microscopy (PSAM) to study homopolymer thin films of polystyrene (PS) and poly (methyl methacrylate) (PMMA), as well as PS/PMMA blend films. We show from our results that PSAM can be used as a complementary and highly valuable technique for elucidating the three-dimensional (3D) morphology and micromechanical properties of thin films. Three-dimensional image acquisition with vector contrast provides the basis for: complex V(z) analysis (per image pixel), 3D image processing, height profiling, and subsurface image analysis of the polymer films. Results show good agreement with previous studies. In addition, important new information on the three dimensional structure and properties of polymer films is obtained. Homopolymer film structure analysis reveals (pseudo-) dewetting by retraction of droplets, resulting in a morphology that can serve as a starting point for the analysis of polymer blend thin films. The outcome of confocal laser scanning microscopy studies, performed on the same samples are correlated with the obtained results. Advantages and limitations of PSAM are discussed.
Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends
Schmitt, Michael; Zhang, Jianan; Lee, Jaejun; ...
2016-12-23
The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. Here, we demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomainmore » structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies.« less
Polymer ligand–induced autonomous sorting and reversible phase separation in binary particle blends
Schmitt, Michael; Zhang, Jianan; Lee, Jaejun; Lee, Bongjoon; Ning, Xin; Zhang, Ren; Karim, Alamgir; Davis, Robert F.; Matyjaszewski, Krzysztof; Bockstaller, Michael R.
2016-01-01
The tethering of ligands to nanoparticles has emerged as an important strategy to control interactions and organization in particle assembly structures. We demonstrate that ligand interactions in mixtures of polymer-tethered nanoparticles (which are modified with distinct types of polymer chains) can impart upper or lower critical solution temperature (UCST/LCST)–type phase behavior on binary particle mixtures in analogy to the phase behavior of the corresponding linear polymer blends. Therefore, cooling (or heating) of polymer-tethered particle blends with appropriate architecture to temperatures below (or above) the UCST (or LCST) results in the organization of the individual particle constituents into monotype microdomain structures. The shape (bicontinuous or island-type) and lengthscale of particle microdomains can be tuned by variation of the composition and thermal process conditions. Thermal cycling of LCST particle brush blends through the critical temperature enables the reversible growth and dissolution of monoparticle domain structures. The ability to autonomously and reversibly organize multicomponent particle mixtures into monotype microdomain structures could enable transformative advances in the high-throughput fabrication of solid films with tailored and mutable structures and properties that play an important role in a range of nanoparticle-based material technologies. PMID:28028538
NASA Astrophysics Data System (ADS)
Ballone, P.; Jones, R. O.
2002-10-01
Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.
Modification of polymers by polymeric additives
NASA Astrophysics Data System (ADS)
Nesterov, A. E.; Lebedev, E. V.
1989-08-01
The conditions for the thermodynamic compatibility of polymers and methods for its enhancement are examined. The study of the influence of various factors on the concentration-temperature limits of compatibility, dispersion stabilisation processes, and methods for the improvement of adhesion between phases in mixtures of thermodynamically incompatible polymers is described. Questions concerning the improvement of the physicomechanical characteristics of polymer dispersions are considered. The bibliography includes 200 references.
Thermoset molecular composites
Benicewicz, Brian C.; Douglas, Elliot P.; Hjelm, Jr., Rex P.
1996-01-01
A polymeric composition including a liquid crystalline polymer and a thermosettable liquid crystalline monomer matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms and a polymeric composition including a liquid crystalline polymer and a liquid crystalline thermoset matrix, said polymeric composition characterized by a phase separation on the scale of less than about 500 Angstroms are disclosed.
ESR Measurement Of Crystallinity In Semicrystalline Polymers
NASA Technical Reports Server (NTRS)
Kim, Soon Sam; Tsay, Fun-Dow
1989-01-01
Photogenerated free radicals decay at different rates in crystalline and amorphous phases. Degree of crystallinity in polymer having both crystalline and amorphous phases measured indirectly by technique based in part on electron-spin-resonance (ESR) spectroscopy. Accuracy of crystallinity determined by new technique equals or exceeds similar determinations by differential scanning calorimetry, wide-angle x-ray scattering, or measurement of density.
Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw; ...
2017-02-22
Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw
Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less
Porous fiber formation in polymer-solvent system undergoing solvent evaporation
NASA Astrophysics Data System (ADS)
Dayal, Pratyush; Kyu, Thein
2006-08-01
Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.
Templated Sphere Phase Liquid Crystals for Tunable Random Lasing
Chen, Ziping; Hu, Dechun; Chen, Xingwu; Zeng, Deren; Lee, Yungjui; Chen, Xiaoxian; Lu, Jiangang
2017-01-01
A sphere phase liquid crystal (SPLC) composed of three-dimensional twist structures with disclinations among them exists between isotropic phase and blue phase in a very narrow temperature range, about several degrees centigrade. A low concentration polymer template is applied to improve the thermal stability of SPLCs and broadens the temperature range to more than 448 K. By template processing, a wavelength tunable random lasing is demonstrated with dye doped SPLC. With different polymer concentrations, the reconstructed SPLC random lasing may achieve more than 40 nm wavelength continuous shifting by electric field modulation. PMID:29140283
Mondal, Titash; Ashkar, Rana; Butler, Paul; ...
2016-02-08
Grafting of high molecular weight polymers to graphitic nanoplatelets is a critical step toward the development of high performance graphene nanocomposites. However, designing such a grafting route has remained a major impediment. Herein, we report a "grafting to" synthetic pathway by which high molecular weight polymer, poly(e-caprolactone) (PCL), is tethered, at high grafting density, to highly anisotropic graphitic nanoplatelets. The efficacy of this tethering route and the resultant structural arrangements within the composite are confirmed by neutron and X-ray scattering measurements in the melt and solution phase. In the semicrystalline state, Xray analysis indicates that chain tethering onto the graphiticmore » nanoplatelets results in conformational changes of the polymer chains, which enhance the nucleation process and aid formation of PCL crystallites. This is corroborated by the superior thermal properties of the composite, manifested in accelerated crystallization kinetics and a significant increase in the thermal degradation temperature. Lastly, in principle, this synthesis route can be extended to a variety of high molecular weight polymers, which can open new avenues to solution-based processing of graphitic nanomaterials and the fabrication of complex 3D patterned graphitic nanocomposites.« less
Characterization of temperature-dependent optical material properties of polymer powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laumer, Tobias; SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen; CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen
2015-05-22
In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystallinemore » thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.« less
NASA Astrophysics Data System (ADS)
Liu, Y.; Welzel, S.; Starostin, S. A.; van de Sanden, M. C. M.; Engeln, R.; de Vries, H. W.
2017-06-01
A roll-to-roll high-current diffuse dielectric barrier discharge at atmospheric pressure was operated in air and Ar/N2/O2 gas mixtures. The exhaust gas from the discharge was studied using a high-resolution Fourier-transform infrared spectrometer in the range from 3000 to 750 cm-1 to unravel the plasma-polymer interactions. The absorption features of HxNyOz, COx, and HCOOH (formic acid) were identified, and the relative densities were deduced by fitting the absorption bands of the detected molecules. Strong interactions between plasma and polymer (Polyethylene-2,6-naphthalate, or PEN) in precursor-free oxygen-containing gas mixtures were observed as evidenced by a high COx production. The presence of HCOOH in the gas effluent, formed through plasma-chemical synthesis of COx, turns out to be a sensitive indicator for etching. By adding tetraethylorthosilicate precursor in the plasma, dramatic changes in the COx production were measured, and two distinct deposition regimes were identified. At high precursor flows, a good agreement with the precursor combustion and the COx production was observed, whereas at low precursor flows an etching-deposition regime transpires, and the COx production is dominated by polymer etching.
Research on Hydrophilic Nature of Polyvinylpyrrolidone on Polysulfone Membrane Filtration
NASA Astrophysics Data System (ADS)
Tiron, L. G.; Vlad, M.; Baltă, Ş.
2018-06-01
The membranes used in wastewater filtration are obtained from polymers, this technique is widely applied because of the small installations and low costs as against conventional systems. The polymeric membranes have high mechanical strength and flexibility, but is a challenge to improve in the same time the permeability and retention capacity of the membranes. A process that can improve the membrane properties is the addition of additives to the polymer solution, resulting in noticeable changes in the resulting membrane structure. Polyvinylpyrrolidone (PVP) is a highly hydrophilic polymer, used as a food additive that acts as stabilizer and thickening agent, which brings improvements in membrane properties. This study analyses the effect of polyvinylpyrrolidone (PVP) on the casting solution of the prepared membranes. The polymer solution was prepared from polysulfone (PSf) and N-methyl-2-pyrrolidone (NMP) at different concentrations. The membranes were obtained by phase inversion method. The PSf/PVP/NMP membranes with different concentrations were characterized by contact angle measurements, surface roughness, morphological structure and permeation tests. The results show that the hydrophilic nature of PVP improve the pure water flux, the contact angle and exhibit a higher anti-fouling property.
NASA Astrophysics Data System (ADS)
Stephens, Jean S.
Electrospinning is a fiber formation technique that uses electrostatic forces to create continuous, nanometer diameter fibers. The work presented here focuses on the continuing efforts to build a stronger fundamental understanding of electrospinning by exploring structure/property/process relationships by investigating the effects of process protocols on fiber surface morphology and polymer chain conformation. By varying the processing parameters it has been possible to produce fibers with unique surface features, microtextured/nanoporous fibers and nanowebs. In the microtextured/nanoporous fiber studies, changing the solution concentration, solvent volatility, and relative humidity was found to alter the size, shape, and distribution of pores on the fiber surface. The mechanisms that can explain the pore formation and texturing on the surface of the fibers are phase separation (aggregation into polymer rich and polymer lean regions) and breath figures (evaporative cooling and vapor condensation). Through a judicious choice of the electrospinning processing parameters we have also been able to create "web" like structures of nanofibers (5--25 nm) from collagen, dragline silk analog, nylon, and denatured collagen. Electrostatic repulsion and thin film dewetting are thought to be responsible for the formation of the nanowebs. These unique structures were characterized using FESEM, TEM, OM, and AFM. Raman spectroscopy, initially developed as a "real time" characterization technique to study electrospun fiber formation, has also been used to investigate the effect of electrospinning on the chain conformation of bioinspired polymers. Comparing the spectrum of the bulk material to that of the electrospun material identified conformational changes in nylon 6 and dragline silk analog. The conformational change in nylon 6 (alpha-form to gamma-form) results from the stresses induced on the electrospinning jet during fiber formation, whereas the conformational change in the silk analog (beta-sheet to alpha-helical) result from electric field assembling of the charged a-helical segments of the protein polymer in solution. The investigations described here have allowed us to build a virtual database of the processing conditions needed to create materials for tissue engineering constructs. Electrospun collagen membranes have been used in preliminary cell attachment studies. From the trials it was observed that the cells migrated into the membranes indicating that the membranes are suitable for tissue engineering scaffolds.
Determination of fusaric acid in maize using molecularly imprinted SPE clean-up
USDA-ARS?s Scientific Manuscript database
A new liquid chromatography method to detect fusaric acid in maize is reported based on molecularly imprinted polymer solid phase extraction clean-up (MISPE) using mimic-templated molecularly-imprinted polymers. Picolinic acid was used as a toxin analog for imprinting polymers during a thermolytic s...
Soft-matter composites with electrically tunable elastic rigidity
NASA Astrophysics Data System (ADS)
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-08-01
We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.
Diffuse polymer interfaces in lobed nanoemulsions preserved in aqueous media.
Kim, Ginam; Sousa, Alioscka; Meyers, Deborah; Shope, Marilyn; Libera, Matthew
2006-05-24
Using valence electron energy loss spectroscopy (EELS) in the cryo-scanning transmission electron microscopy (STEM), we found that the polymer-polymer interface in two-phase nanocolloids of polydimethyl siloxane (PDMS) and copolymer (methyl acrylate (MA)-methyl methacrylate (MMA)-vinyl acetate (VA)) preserved in water was diffuse despite the fact that equilibrium thermodynamics indicates it should only be on the order of a few nanometers. The diffuse interface is a result of the kinetic trapping of the copolymer within the PDMS phase, and this finding suggests new nonequilibrium pathways to control interfaces during the synthesis of multicomponent polymeric nanostructures.
NASA Astrophysics Data System (ADS)
Kowarsch, Robert; Zhang, Jiajun; Sguazzo, Carmen; Hartmann, Stefan; Rembe, Christian
2017-06-01
The analysis of materials and geometries in tensile tests and the extraction of mechanic parameters is an important field in solid mechanics. Especially the measurement of thickness changes is important to obtain accurate strain information of specimens under tensile loads. Current optical measurement methods comprising 3D digital image correlation enable thickness-change measurement only with nm-resolution. We present a phase-shifting electronic speckle-pattern interferometer in combination with speckle-correlation technique to measure the 3D deformation. The phase-shift for the interferometer is introduced by fast wavelength tuning of a visible diode laser by injection current. In a post-processing step, both measurements can be combined to reconstruct the 3D deformation. In this contribution, results of a 3Ddeformation measurement for a polymer membrane are presented. These measurements show sufficient resolution for the detection of 3D deformations of thin specimen in tensile test. In future work we address the thickness changes of thin specimen under tensile loads.
Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A. Levent; Kizilel, Seda
2014-01-01
Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite. PMID:24516593
Quintanar-Guerrero, D; Allémann, E; Fessi, H; Doelker, E
1999-10-25
Pseudolatexes were obtained by a new process based on an emulsification-diffusion technique involving partially water-miscible solvents. The preparation method consisted of emulsifying an organic solution of polymer (saturated with water) in an aqueous solution of a stabilizing agent (saturated with solvent) using conventional stirrers, followed by direct solvent distillation. The technique relies on the rapid displacement of the solvent from the internal into the external phase which thereby provokes polymer aggregation. Nanoparticle formation is believed to occur because rapid solvent diffusion produces regions of local supersaturation near the interface, and nanoparticles are formed due to the ensuing interfacial phase transformations and polymer aggregation that occur in these interfacial domains. Using this method, it was possible to prepare pseudolatexes of biodegradable and non-biodegradable polymers such as poly(D,L-lactic acid) and poly(epsilon-caprolactone), Eudragit E, cellulose acetate phthalate, cellulose acetate trimellitate using ethyl acetate or 2-butanone as partially water-miscible solvents and poly(vinyl alcohol) or poloxamer 407 as stabilizing agent. A transition from nano- to microparticles was observed at high polymer concentrations. At concentrations above 30% w/v of Eudragit E in ethyl acetate or cellulose acetate phthalate in 2-butanone only microparticles were obtained. This behaviour was attributed to decreased transport of polymer molecules into the aqueous phase.
Liu, Jiang; Zhang, Lu; Li Han Song, Le; Liu, Yuan; Tang, Hui; Li, Yingchun
2015-04-01
Metronidazole-imprinted polymers with superior recognition properties were prepared by a novel strategy called distillation-precipitation polymerization. The as-obtained polymers were characterized by Fourier-transform infrared spectroscopy, laser particle size determination and scanning electron microscopy, and their binding performances were evaluated in detail by static, kinetic and dynamic rebinding tests, and Scatchard analysis. The results showed that when the fraction of the monomers was 5 vol% in the whole reaction system, the prepared polymers afforded good morphology, monodispersity, and high adsorption capacity and excellent selectivity to the target molecule, metronidazole. The optimal binding performance is 12.41 mg/g for metronidazole just before leakage occurred and 38.51 mg/g at saturation in dynamic rebinding tests. Metronidazole-imprinted polymers were further applied as packing agents in solid-phase extraction and as chromatographic filler, both of which served for the detection of metronidazole in fish tissue. The results illustrated the recoveries of spiked samples ranged from 82.97 to 87.83% by using molecularly imprinted solid-phase extraction combined with a C18 commercial column and 93.7 to 101.2% by directly using the polymer-packed chromatographic column. The relative standard deviation of both methods was less than 6%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Khoryani, Zahra; Seyfi, Javad; Nekoei, Mehdi
2018-01-01
The main aim of this research is to study the effects of polymer molecular weight as well as non-solvent concentration on the phase separation, surface morphology and wettability of polyvinyl chloride (PVC) films. Gel permeation chromatography (GPC) results showed that the Mn of the used PVC grades is 6 × 104, 8.7 × 104 and 1.26 × 105 g/mol. It was found that a proper combination of polymer molecular weight and non-solvent content could result in superhydrophobic and self-cleaning behaviors. Scanning electron microscopy (SEM) results demonstrated that addition of ethanol causes the polymer chains to be severely aggregated at the films' surface forming strand-like structures decorated by nano-scale polymer spheres. The polymer molecular weight was found to affect the degree of porosity which is highly influential on the hydrophobicity of the films. The mechanism of phase separation process was also discussed and it was found that the instantaneous demixing is the dominant mechanism once higher contents of non-solvent were used. However, a delayed demixing mechanism was detected when the lower molecular weight PVC has been used which resulted in a pore-less and dense skin layer. Differential scanning calorimetry was also utilized to study the crystallization and glass transition behavior of samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Bonnie; Hitchcock, Adam; Brash, John
Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. Amore » phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.« less
NASA Astrophysics Data System (ADS)
Floros, Michael Christopher
Vegetable oils represent an ideal and renewable feedstock for the synthesis of a variety of functional materials. However, without financial incentive or unique applications motivating a switch, commercial products continue to be manufactured from petrochemical resources. Two different families of high value, functional materials synthesized from vegetable oils were studied. These materials demonstrate superior and unique performance to comparable petrochemical analogues currently on the market. In the first approach, 3 amphiphilic thermoplastic polytriazoles with differing lipophilic segment lengths were synthesized in a polymerization process without solvents or catalysts. Investigation of monomer structure influence on the resultant functional behaviour of these polymers found distinctive odd/even behaviour reliant on the number of carbon atoms in the monomers. Higher concentrations of triazole groups, due to shorter CH2 chains in the monomeric dialkynes, resulted in more brittle polymers, displaying higher tensile strengths but reduced elongation to break characteristics. These polymers had similar properties to commercial petroleum derived thermoplastics. One polymer demonstrated self-assembled surface microstructuring, and displayed hydrophobic properties. Antimicrobial efficacy of the polymers were tested by applying concentrated bacterial solutions to the surfaces, and near complete inhibition was demonstrated after 4 hours. Scanning electron microscope images of killed bacteria showed extensive membrane damage, consistent with the observed impact of other amphiphilic compounds in literature. These polytriazoles are suited for applications in medical devices and implants, where major concerns over antibiotic resistance are prevalent. In the second approach, a series of symmetric, saturated diester phase change materials (PCMs) were also synthesized with superior latent heat values compared to commercial petrochemical analogues. These diesters exhibit melting temperatures between 39 °C and 77 °C, with latent heats greater than 220 J/g; much greater than paraffin waxes, which are currently the industry standard. Assessment of the trends between differing monomer lengths, in terms of number of CH2 groups of the 24 diesters synthesized exhibited structure/function dependencies in latent heat values and phase change temperatures, providing an understanding of the influence of each monomer on PCM thermal properties. A synthetic procedure was developed to produce these PCMs from a low value biodiesel feedstock. Application of these PCMs in the thermoregulation of hot beverages was demonstrated using a representative diester. This PCM cooled a freshly brewed hot beverage to a desired temperature within 1 minute, compared to 18 minutes required for the control. Furthermore, the PCM kept the beverage within the desired temperature range for 235 minutes, 40 % longer than the control.
Xue, Junhui; Xu, Yizhuang; Jin, Zhaoxia
2016-03-08
Here, we demonstrated that, when the precipitation process of polyamide-6 (PA6) solution happens in cylindrical channels of an anodized aluminum oxide membrane (AAO), interface interactions between a solid surface, solvent, non-solvent, and PA6 will influence the obtained polymer nanostructures, resulting in complex morphologies, increased surface area, and crystallization changes. With the enhancing interaction of PA6 and the AAO surface, the morphology of PA6 nanostructures changes from solid nanofibers, mesoporous, to bamboo-like, while at the same time, metastable γ-phase domains increase in these PA6 nanostructures. Brunauer-Emmett-Teller (BET) surface areas of solid, bamboo-like, and mesoporous PA6 nanofibers rise from 16, 20.9, to 25 m(2)/g. This study shows that interfacial interaction in AAO template fabrication can be used in manipulating the morphology and crystallization of one-dimensional polymer nanostructures. It also provides us a simple and novel method to create porous PA6 nanofibers with a large surface area.
Intermolecular Structural Change for Thermoswitchable Polymeric Photosensitizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Wooram; Park, Sin-Jung; Cho, Soojeong
2016-08-17
A switchable photosensitizer (PS), which can be activated at a spe-cific condition beside light, has tremendous advantages for photo-dynamic therapy (PDT). Herein, we developed a thermo-switchable polymeric photosensitizer (T-PPS) by conjugating PS (Pheophor-bide-a, PPb-a) to a temperature-responsive polymer backbone of biocompatible hydroxypropyl cellulose (HPC). Self-quenched PS molecules linked in close proximity by pi-pi stacking in T-PPS were easily transited to an active monomeric state by the tempera-ture induced phase transition of polymer backbones. The tempera-ture responsive inter-molecular interaction changes of PS molecules in T-PPS were demonstrated in synchrotron small-angle X-ray scattering (SAXS) and UV-Vis spectrophotometer analysis. The T-PPS allowed switchablemore » activation and synergistically enhanced cancer cell killing effect at the hyperthermia temperature (45 °C). Our developed T-PPS has the considerable potential not only as a new class of photomedicine in clinics but also as a biosensor based on temperature responsiveness.« less
Halligan, Shane C; Dalton, Maurice B; Murray, Kieran A; Dong, Yixiao; Wang, Wenxin; Lyons, John G; Geever, Luke M
2017-10-01
Poly (N-vinylcaprolactam) (PNVCL) is a polymer which offers superior characteristics for various potential medical device applications. In particular it offers unique thermoresponsive capabilities, which fulfils the material technology constraints required in targeted drug delivery applications. PNVCL phase transitions can be tailored in order to suit the requirements of current and next generation devices, by modifying the contents with regard to the material composition and aqueous polymer concentration. In this study, physically crosslinked Poly (N-vinylcaprolactam)-Vinyl acetate (PNVCL-VAc) copolymers were prepared by photopolymerisation. The structure of the polymers was established by Fourier transform infrared spectroscopy, nuclear magnetic resonance and gel permeation chromatography. The polymers were further characterised using differential scanning calorimetry and swelling studies. Determination of the LCST of the polymers in aqueous solution was achieved by employing four techniques; cloud point, UV-spectrometry, differential scanning calorimetry and rheometry. Sol-gel transition was established using tube inversion method and rheological analysis. This study was conducted to determine the characteristics of PNVCL with the addition of VAc, and to establish the effects on the phase transition. The PNVCL based polymers exhibited a decrease in the LCST as the composition of VAc increased. Sol-gel transition could be controlled by altering the monomeric feed ratio and polymer concentration in aqueous milieu. Importantly all copolymers (10wt% in solution) underwent gelation between 33.6 and 35.9°C, and based on this and the other materials properties recorded in this study, these novel copolymers have potential for use as injectable in situ forming drug delivery systems for targeted drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Mineralized polymer composites as biogenic bone substitute material
NASA Astrophysics Data System (ADS)
Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr
2015-05-01
Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.
Nanoscale morphogenesis of nylon-sputtered plasma polymer particles
NASA Astrophysics Data System (ADS)
Choukourov, Andrei; Shelemin, Artem; Pleskunov, Pavel; Nikitin, Daniil; Khalakhan, Ivan; Hanuš, Jan
2018-05-01
Sub-micron polymer particles are highly important in various fields including astrophysics, thermonuclear fusion and nanomedicine. Plasma polymerization offers the possibility to produce particles with tailor-made size, crosslink density and chemical composition to meet the requirements of a particular application. However, the mechanism of nucleation and growth of plasma polymer particles as well as diversity of their morphology remain far from being clear. Here, we prepared nitrogen-containing plasma polymer particles by rf magnetron sputtering of nylon in a gas aggregation cluster source with variable length. The method allowed the production of particles with roughly constant chemical composition and number density but with the mean size changing from 80 to 320 nm. Atomic Force Microscopy with super-sharp probes was applied to study the evolution of the particle surface topography as they grow in size. Height–height correlation and power spectral density functions were obtained to quantify the roughness exponent α = 0.78, the growth exponent β = 0.35, and the dynamic exponent 1/z = 0.50. The set of critical exponents indicates that the particle surface evolves in a self-affine mode and the overall particle growth is caused by the accretion of polymer-forming species from the gas phase and not by coagulation. Redistribution of the incoming material over the surface coupled with the inhomogeneous distribution of inner stress is suggested as the main factor that determines the morphogenesis of the plasma polymer particles.
Chen, Wenduo; Zhu, Youliang; Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi
2016-01-01
Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures.
Cui, Fengchao; Liu, Lunyang; Sun, Zhaoyan; Chen, Jizhong; Li, Yunqi
2016-01-01
Gay-Berne (GB) potential is regarded as an accurate model in the simulation of anisotropic particles, especially for liquid crystal (LC) mesogens. However, its computational complexity leads to an extremely time-consuming process for large systems. Here, we developed a GPU-accelerated molecular dynamics (MD) simulation with coarse-grained GB potential implemented in GALAMOST package to investigate the LC phase transitions for mesogens in small molecules, main-chain or side-chain polymers. For identical mesogens in three different molecules, on cooling from fully isotropic melts, the small molecules form a single-domain smectic-B phase, while the main-chain LC polymers prefer a single-domain nematic phase as a result of connective restraints in neighboring mesogens. The phase transition of side-chain LC polymers undergoes a two-step process: nucleation of nematic islands and formation of multi-domain nematic texture. The particular behavior originates in the fact that the rotational orientation of the mesogenes is hindered by the polymer backbones. Both the global distribution and the local orientation of mesogens are critical for the phase transition of anisotropic particles. Furthermore, compared with the MD simulation in LAMMPS, our GPU-accelerated code is about 4 times faster than the GPU version of LAMMPS and at least 200 times faster than the CPU version of LAMMPS. This study clearly shows that GPU-accelerated MD simulation with GB potential in GALAMOST can efficiently handle systems with anisotropic particles and interactions, and accurately explore phase differences originated from molecular structures. PMID:26986851
Bottoli, Carla B G; Vigna, Camila R M; Fischer, Gerd; Albert, Klaus; Collins, Kenneth E; Collins, Carol H
2004-03-19
Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by the deposition of PMOS, into the pores of HPLC silica. Portions of PMOS-loaded silica were allowed to remain at ambient temperature, without further treatment for 2, 9, 20, 31, 51, 105 and 184 days after preparation to undergo self-immobilization (irreversible adsorption of a layer of polymer on silica at ambient temperature in the absence of initiators). Other portions were subjected to a thermal treatment (100 degrees C for 4h) after 1, 2, 5, 7, 9, 15, 20, 25, 70, 111 and 184 days. Self-immobilized and thermally treated samples were characterized by % C, 29Si cross-polarization magic angle spinning (CP/MAS) NMR spectroscopy and reversed-phase column performance. The results show that thermal immobilization accelerates the distribution and rearrangement of the polymer on the silica surface. However, from the time that a monolayer has been formed by self-immobilization (approximately 100 days for PMOS on Kromasil silica), the thermal treatment does not alter this configuration and, thus, does not change the resulting chromatographic parameters.
Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan
2014-08-12
Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior.
NASA Astrophysics Data System (ADS)
Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan
2014-08-01
Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior.
Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan
2014-01-01
Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior. PMID:25113225
NASA Astrophysics Data System (ADS)
Jha, Praveen Kumar; Mahto, Vikas; Saxena, Vinod Kumar
2018-05-01
A new type of oil-in-water (O/W) Pickering emulsion systems, which were prepared by polymers such as xanthan gum, carboxymethyl cellulose (CMC), and sodium lignosulfonate have been investigated for their properties as multifunctional emulsion muds with respect to rheological control and filtration control properties. Diesel oil was used as dispersed phase and KCl-brine as continuous phase in the developed emulsions. Initially, rheological parameters like apparent viscosity, plastic viscosity, gel strength, and filtration control properties were measured using recommended practices. Emulsion stability was analyzed using steady state shear stress-shear rate and oscillatory (dynamic) rheological measurement techniques. The emulsions were found to exhibit shear-thinning (pseudoplastic) behavior. Experiments conducted for oscillatory rheological measurements have shown that emulsions are stable as per the stability criteria G' (elastic modulus) > G'' (loss modulus) and both are independent of changing ω (Frequency). These fluids have shown stable properties upto 70°C which shows that they can be used as drilling muds for drilling oil and gas wells.
Functional and Multifunctional Polymers: Materials for Smart Structures
NASA Technical Reports Server (NTRS)
Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.
1996-01-01
The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three examples of multifunctional polymers developed in our labs will be reported. The first class of multifunctional polymers are the microphase separated mixed (ionic and electronic) conducting or MIEC block copolymers. The second class being developed in our labs are the biocompatible conductive materials and the conductive fluids. The final class may be considered microwave active smart polymers.
Structure/property development in aPET during large strain, solid phase polymer processing
NASA Astrophysics Data System (ADS)
Martin, Peter; Mohamed, Raja Roslan Raja
2015-12-01
Amorphous Polyethylene terephthalate (aPET) is increasingly of interest for the polymer packaging industry due to its blend of excellent mechanical properties and most importantly its ease of recyclability. Among the major commercial polymers it is almost unique in the degree of improvement in mechanical properties that can be obtained through process-induced strain. For many years these unique properties have been very successfully exploited in the injection stretch blow molding process, where it is deliberately stretched to very large strains using extremely high pressures. However, the material is now also being used in much lower pressure processes such as thermoforming where its properties are often not fully exploited. In this work the change in structure and properties of aPET with strain is systematically investigated using a high speed biaxial stretching machine. The aim was to demonstrate how the properties of the material could be controlled by large strain, high temperature biaxial stretching processes such as thermoforming and blow molding. The results show that property changes in the material are driven by orientation and the onset of rapid strain hardening at large strains. This in turn is shown to vary strongly with process-induced parameters such as the strain rate and the mode and magnitude of biaxial deformation.
Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’
2015-01-01
Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117
NASA Astrophysics Data System (ADS)
Dinesh, Meghala; Chikkakuntappa, Ranganathaiah
2013-09-01
Ternary polymer blends of poly(styrene-co-acrylonitrile)/poly(ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and poly(vinyl acetate)/bisphenol A/polyvinylpyrrolidone (PVAc/BPA/PVP) with different compositions have been prepared by solvent casting method and characterized by positron lifetime spectroscopy and differential scanning calorimetry DSC. Phase modifications have been induced by irradiating the blends with microwave radiation. These changes have been monitored by measuring the free-volume content in the blends. The results clearly show improved interactions between the constituent polymers of the blends upon microwave irradiation. However, the free-volume data and DSC measurements are found to be inadequate to reveal the changes at the interfaces and the interfaces determine the final properties of the blend. For this we have used hydrodynamic interaction (αij) approach developed by us to measure strength of hydrodynamic interaction at the interfaces. These results show that microwave irradiation stabilizes the interfaces if the blend contains strong polar groups. SAN/EVA/PVC blend shows an increased effective hydrodynamic interaction from -3.18 to -4.85 at composition 50/35/15 upon microwave irradiation and PVAc/BPA/PVP blend shows an increased effective hydrodynamic interaction from -3.81 to -7.57 at composition 20/50/30 after irradiation.
NASA Astrophysics Data System (ADS)
Munusamy, Y.; Shanmugam, S.; Shi-Ying, Kee
2018-04-01
Phase change material (PCM) is one of the most popular and widely used thermal energy storage material in solar water heater because it able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. However the practical application of PCM is limited by two major issues; 1) leakage which leads to material loss and corrosion of tank and 2) large volume change during phase change process which cause pressure build up in the tank. In this work, form-stable PCM was prepared by coating myristic acid with Poly(methyl methacrylate) (PMMA) to prevent leakage of PCM. PMMA was mixed with different weight percentage (0.1, 0.2, 0.3, 0.4 and 0.5 wt%) of dicumyl peroxide (DCP). The purpose of adding DCP to PMMA is to crosslink the polymer and to increase the mechanical strength of PMMA to hold the myristic acid content inside the coating during the phase change process. Leakage test results showed that PMMA mixed with 0.1% DCP exhibit 0% leakage. This result is further supported by Field Emission Scanning Electron Microscopy (FESEM) images and Fourier transform infrared spectroscopy (FTIR) analysis results, where a compact and uniform coating without cracks were formed for PCM coated with PMMA with 0.1% DCP. Differential scanning calorimetry (DSC) results shows that the melting point of form-stable PCM is 55°C, freezing point is 50°C, the latent heat of melting and freezing is 67.59 J/g.
Meeus, Joke; Chen, Xinyong; Scurr, David J; Ciarnelli, Valeria; Amssoms, Katie; Roberts, Clive J; Davies, Martyn C; van Den Mooter, Guy
2012-09-01
Injectable controlled-release formulations are of increasing interest for the treatment of chronic diseases. This study aims to develop and characterize a polymeric matrix for intramuscular or subcutaneous injection, consisting of two biocompatible polymers, particularly suitable for formulating poorly soluble drugs. For this matrix, the water-insoluble polymer poly(lactic-co-glycolic acid) (PLGA) is combined with the water-soluble polymer polyvinylpyrrolidone (PVP). Microparticles of these two polymers were prepared by spray drying. The phase behavior of the samples was studied by means of modulated differential scanning calorimetry and the results showed that phase separation occurred in the bulk sample through evidence of two mixed amorphous phases, namely, a PLGA-rich phase and a PVP-rich phase. Characterization of the samples by scanning electron microscopy demonstrated that the spray-dried particles were hollow with a thin shell. Because of the importance in relation to stability and drug release, information about the surface of the microparticles was collected by different complementary surface analysis techniques. Atomic force microscopy gathered information about the morphology and phase behavior of the microparticle surface. Time-of-flight secondary ion mass spectrometry analysis of the particles revealed that the surface consisted mainly of the PLGA-rich phase. This was confirmed by X-ray photoelectron spectroscopy at an increased sampling depth (≈ 10 nm). Nanothermal analysis proved to be an innovative way to thermally detect the presence of the PLGA-dominated surface layer and the underlying PVP phase. Taken together, this information provides a rational basis for predicting the likely drug release behavior this formulation will display. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Eunhee; Peterson, Kelly A.; Su, Gregory M.
Doping of thin films of semiconducting polymers provides control of their electrical conductivity and thermopower. The electrical conductivity of semiconducting polymers rises nonlinearly with the carrier concentration, and there is a lack of understanding of the detailed factors that lead to this behavior. Here, we report a study of the morphological effects of doping on the electrical conductivity of poly(3-hexylthiophene) (P3HT) thin films doped with small molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4TCNQ). Resonant soft X-ray scattering shows that the morphology of films of P3HT is not strongly changed by infiltration of F 4TCNQ from the vapor phase. We show that the localmore » ordering of P3HT, the texture and form factor of crystallites, and the long-range connectivity of crystalline domains contribute to the electrical conductivity in thin films. The thermopower of films of P3HT doped with F 4TCNQ from the vapor phase is not strongly enhanced relative to films doped from solution, but the electrical conductivity is significantly higher, improving the thermoelectric power factor.« less
Lim, Eunhee; Peterson, Kelly A.; Su, Gregory M.; ...
2018-01-29
Doping of thin films of semiconducting polymers provides control of their electrical conductivity and thermopower. The electrical conductivity of semiconducting polymers rises nonlinearly with the carrier concentration, and there is a lack of understanding of the detailed factors that lead to this behavior. Here, we report a study of the morphological effects of doping on the electrical conductivity of poly(3-hexylthiophene) (P3HT) thin films doped with small molecule 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4TCNQ). Resonant soft X-ray scattering shows that the morphology of films of P3HT is not strongly changed by infiltration of F 4TCNQ from the vapor phase. We show that the localmore » ordering of P3HT, the texture and form factor of crystallites, and the long-range connectivity of crystalline domains contribute to the electrical conductivity in thin films. The thermopower of films of P3HT doped with F 4TCNQ from the vapor phase is not strongly enhanced relative to films doped from solution, but the electrical conductivity is significantly higher, improving the thermoelectric power factor.« less
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J; Piletska, Elena V; Turner, Anthony P F; Piletsky, Sergey A
2013-06-13
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, K d = 6.3 × 10 -8 m), vancomycin (d = 250 nm, K d = 3.4 × 10 -9 m), a peptide (d = 350 nm, K d = 4.8 × 10 -8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium.
Poma, Alessandro; Guerreiro, Antonio; Whitcombe, Michael J.; Piletska, Elena V.; Turner, Anthony P.F.; Piletsky, Sergey A.
2016-01-01
Molecularly Imprinted Polymers (MIPs) are generic alternatives to antibodies in sensors, diagnostics and separations. To displace biomolecules without radical changes in infrastructure in device manufacture, MIPs should share their characteristics (solubility, size, specificity and affinity, localized binding domain) whilst maintaining the advantages of MIPs (low-cost, short development time and high stability) hence the interest in MIP nanoparticles. Herein we report a reusable solid-phase template approach (fully compatible with automation) for the synthesis of MIP nanoparticles and their precise manufacture using a prototype automated UV photochemical reactor. Batches of nanoparticles (30-400 nm) with narrow size distributions imprinted with: melamine (d = 60 nm, Kd = 6.3 × 10−8 m), vancomycin (d = 250 nm, Kd = 3.4 × 10−9 m), a peptide (d = 350 nm, Kd = 4.8 × 10−8 m) and proteins have been produced. Our instrument uses a column packed with glass beads, bearing the template. Process parameters are under computer control, requiring minimal manual intervention. For the first time we demonstrate the reliable re-use of molecular templates in the synthesis of MIPs (≥ 30 batches of nanoMIPs without loss of performance). NanoMIPs are produced template-free and the solid-phase acts both as template and affinity separation medium. PMID:26869870
High precision slotted cavity measurement of a novel ceramic state polymer electrolyte
NASA Astrophysics Data System (ADS)
Quan, Wei; NurulAfsar, Mohammed
2018-01-01
Thin film materials are already used in a variety of microwave and higher frequency applications such as electrically tunable microwave devices, integrated circuits like MMICs, radomes, and radar absorbing coating. The determination of the dielectric properties of these films is thus of significant importance. The measurement of complex dielectric permittivity of thin films is very difficult at microwave, millimeter, and THz frequencies because both the amplitude change and phase shift are not large enough to evaluate the real part of the dielectric permittivity. A specially designed transverse slotted cavity for X-band microwave measurement has been designed and constructed to employ with a vector network analyzer to evaluate the real part of dielectric permittivity of thin films accurately and conveniently. Commercially available polymer thin films are measured to validate the methods.
Liquid filament instability due to stretch-induced phase separation in polymer solutions
NASA Astrophysics Data System (ADS)
Arinstein, Arkadii; Kulichikhin, Valery; Malkin, Alexander; Technion-Israel Institute of Technology Collaboration; Institute of Petrochemical Synthesis, Russian Academy of Sciences Team
2015-03-01
The instability in a jet of a viscoelastic semi-dilute entangled polymer solution under high stretching is discussed. Initially, the variation in osmotic pressure can compensate for decrease in the capillary force, and the jet is stable. The further evolution of the polymer solution along the jet results in formation of a filament in the jet center and of a near-surface solvent layer. Such a redistribution of polymer seems like a ``phase separation'', but it is related to stretching of the jet. The viscous liquid shell demonstrates Raleigh-type instability resulting in the formation of individual droplets on the oriented filament. Experimental observations showed that this separation is starting during few first seconds, and continues of about 10 -15 seconds. The modeling shows that a jet stretching results in a radial gradient in the polymer distribution: the polymer is concentrated in the jet center, whereas the solvent is remaining near the surface. The key point of this model is that a large longitudinal stretching of a polymer network results in its lateral contraction, so a solvent is pressed out of this polymer network because of the decrease in its volume. V.K. and A.M. acknowledge the financial support of the Russian Scientific Foundation (Grant 4-23-00003).
Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties
NASA Technical Reports Server (NTRS)
Campbell, Sandi G.
2001-01-01
The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures.
Rotationally Molded Liquid Crystalline Polymers
NASA Technical Reports Server (NTRS)
Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce
2002-01-01
Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.
Prateek; Thakur, Vijay Kumar; Gupta, Raju Kumar
2016-04-13
Dielectric polymer nanocomposites are rapidly emerging as novel materials for a number of advanced engineering applications. In this Review, we present a comprehensive review of the use of ferroelectric polymers, especially PVDF and PVDF-based copolymers/blends as potential components in dielectric nanocomposite materials for high energy density capacitor applications. Various parameters like dielectric constant, dielectric loss, breakdown strength, energy density, and flexibility of the polymer nanocomposites have been thoroughly investigated. Fillers with different shapes have been found to cause significant variation in the physical and electrical properties. Generally, one-dimensional and two-dimensional nanofillers with large aspect ratios provide enhanced flexibility versus zero-dimensional fillers. Surface modification of nanomaterials as well as polymers adds flavor to the dielectric properties of the resulting nanocomposites. Nowadays, three-phase nanocomposites with either combination of fillers or polymer matrix help in further improving the dielectric properties as compared to two-phase nanocomposites. Recent research has been focused on altering the dielectric properties of different materials while also maintaining their superior flexibility. Flexible polymer nanocomposites are the best candidates for application in various fields. However, certain challenges still present, which can be solved only by extensive research in this field.
Externally triggered microcapsules
NASA Technical Reports Server (NTRS)
Mosier, Benjamin (Inventor); Morrison, Dennis R. (Inventor)
2011-01-01
Disclosed are microcapsules comprising a polymer shell enclosing one or more immiscible liquid phases in which a drug or drug precursor are contained in a liquid phase. The microparticles also contain magnetic particles that can be heated by application of an external magnetic field and thus heated to a predetermined Curie temperature. Heating of the particles melts the polymer shell and releases the drug without causing heating of surrounding tissues.
Long-lasting solid-polymer electrolytic hygrometer
NASA Technical Reports Server (NTRS)
Lawson, D. D.
1978-01-01
Device consists of hollow tube node of oxidation-resistant sulfonated fluorocarbon polymer. Tube absorbs moisture from air passing across inner and outer surfaces, causing change in polymer conductance. Change is related to change in water content in gas sample.
Controlling the surface‐mediated release of DNA using ‘mixed multilayers’
Appadoo, Visham; Carter, Matthew C. D.
2016-01-01
Abstract We report the design of erodible ‘mixed multilayer’ coatings fabricated using plasmid DNA and combinations of both hydrolytically degradable and charge‐shifting cationic polymer building blocks. Films fabricated layer‐by‐layer using combinations of a model poly(β‐amino ester) (polymer 1) and a model charge‐shifting polymer (polymer 2) exhibited DNA release profiles that were substantially different than those assembled using DNA and either polymer 1 or polymer 2 alone. In addition, the order in which layers of these two cationic polymers were deposited during assembly had a profound impact on DNA release profiles when these materials were incubated in physiological buffer. Mixed multilayers ∼225 nm thick fabricated by depositing layers of polymer 1/DNA onto films composed of polymer 2/DNA released DNA into solution over ∼60 days, with multi‐phase release profiles intermediate to and exhibiting some general features of polymer 1/DNA or polymer 2/DNA films (e.g., a period of rapid release, followed by a more extended phase). In sharp contrast, ‘inverted’ mixed multilayers fabricated by depositing layers of polymer 2/DNA onto films composed of polymer 1/DNA exhibited release profiles that were almost completely linear over ∼60‐80 days. These and other results are consistent with substantial interdiffusion and commingling (or mixing) among the individual components of these compound materials. Our results reveal this mixing to lead to new, unanticipated, and useful release profiles and provide guidance for the design of polymer‐based coatings for the local, surface‐mediated delivery of DNA from the surfaces of topologically complex interventional devices, such as intravascular stents, with predictable long‐term release profiles. PMID:27981243
Taylor, P H; Yamada, T; Striebich, R C; Graham, J L; Giraud, R J
2014-09-01
In light of the widespread presence of perfluorooctanoic acid (PFOA) in the environment, a comprehensive laboratory-scale study has developed data requested by the U.S. Environmental Protection Agency (EPA) to determine whether municipal and/or medical waste incineration of commercial fluorotelomer-based polymers (FTBPs) at end of life is a potential source of PFOA that may contribute to environmental and human exposures. The study was divided into two phases (I and II) and conducted in accordance with EPA Good Laboratory Practices (GLPs) as described in the quality assurance project plan (QAPP) for each phase. Phase I testing determined that the PFOA transport efficiency across the thermal reactor system to be used in Phase II was greater than 90%. Operating at 1000°C over 2s residence time with 3.2-6.6mgdscm(-1) hydrogen fluoride (HF), corrected to 7% oxygen (O2), and continuously monitored exhaust oxygen of 13%, Phase II testing of the FTBP composites in this thermal reactor system yielded results demonstrating that waste incineration of fluorotelomer-based polymers does not result in the formation of detectable levels of PFOA under conditions representative of typical municipal waste combustor (MWC) and medical waste incinerator (MWI) operations in the U.S. Therefore, waste incineration of these polymers is not expected to be a source of PFOA in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
A facile synthesis of dynamic, shape-changing polymer particles.
Klinger, Daniel; Wang, Cynthia X; Connal, Luke A; Audus, Debra J; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L; Fredrickson, Glenn H; Kramer, Edward J; Hawker, Craig J
2014-07-01
We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles that exhibit a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) in dispersed droplets. In a second step, the dynamic shape change is realized by cross-linking the P2VP domains, thereby connecting glassy PS discs with pH-sensitive hydrogel actuators. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOT National Transportation Integrated Search
2005-05-01
This report provides an overview of polymer flammability from a material science perspective and describes currently accepted test methods to quantify burning behavior. Simplifying assumptions about the gas and condensed phase processes of flaming co...
Role of the polymer phase in the mechanics of nacre-like composites
NASA Astrophysics Data System (ADS)
Niebel, Tobias P.; Bouville, Florian; Kokkinis, Dimitri; Studart, André R.
2016-11-01
Although strength and toughness are often mutually exclusive properties in man-made structural materials, nature is full of examples of composite materials that combine these properties in a remarkable way through sophisticated multiscale architectures. Understanding the contributions of the different constituents to the energy dissipating toughening mechanisms active in these natural materials is crucial for the development of strong artificial composites with a high resistance to fracture. Here, we systematically study the influence of the polymer properties on the mechanics of nacre-like composites containing an intermediate fraction of mineral phase (57 vol%). To this end, we infiltrate ceramic scaffolds prepared by magnetically assisted slip casting (MASC) with monomers that are subsequently cured to yield three drastically different polymers: (i) poly(lauryl methacrylate) (PLMA), a soft and weak elastomer; (ii) poly(methyl methacrylate) (PMMA), a strong, stiff and brittle thermoplastic; and (iii) polyether urethane diacrylate-co-poly(2-hydroxyethyl methacrylate) (PUA-PHEMA), a tough polymer of intermediate strength and stiffness. By combining our experimental data with finite element modeling, we find that stiffer polymers can increase the strength of the composite by reducing stress concentrations in the inorganic scaffold. Moreover, infiltrating the scaffolds with tough polymers leads to composites with high crack initiation toughness KIC. An organic phase with a minimum strength and toughness is also required to fully activate the mechanisms programmed within the ceramic structure for a rising R-curve behavior. Our results indicate that a high modulus of toughness is a key parameter for the selection of polymers leading to strong and tough bioinspired nacre-like composites.
Synthesis and Characterization of High Energy Polymers.
1980-03-31
2291 PERIOD COVERED: 9 March 1979 - 8 March 1980 PERSONNEL: Postdoctoral Assoc. T. Kohara Doctoral Candidates B.-H. Su T. Sarubbi Approved for public... Kohara , C.P. Lillya, T. Sarubbi, B-H. Su, and R. Miller, "Phase Transfer Catalyzed Nitromercura- tion of Diene Polymers", accepted for publication in J. Polymer Sci.
Effects of processing on the release profiles of matrix systems containing 5-aminosalicylic acid.
Korbely, Anita; Kelemen, András; Kása, Péter; Pintye-Hódi, Klára
2012-12-01
The aim of this study was to investigate the influence of different processing methods on the profiles of 5-aminosalicylic acid dissolution from controlled-release matrix systems based on Eudragit® RL and Eudragit® RS water-insoluble polymers. The pure polymers and their mixtures were studied as matrix formers using different processing methods, i.e., direct compression, wet granulation of the active ingredient with the addition of polymer(s) to the external phase, wet granulation with water, and wet granulation with aqueous dispersions. In comparison with the directly compressed tablets, tablets made by wet granulation with water demonstrated a 6-19% increase in final drug dissolution, whereas when polymers were applied in the external phase during compression, a 0-13% decrease was observed in the amount of drug released. Wet granulation with aqueous polymer dispersions delayed the release of the drug; this was especially marked (a 54-56% decrease in drug release) in compositions, which contained a high amount of Eudragit RL 30D. The release profiles were mostly described by the Korsmeyer-Peppas model or the Hopfenberg model.
Polymer as permeability modifier in porous media for enhanced oil recovery
NASA Astrophysics Data System (ADS)
Parsa, Shima; Weitz, David
2017-11-01
We use confocal microscopy to directly visualize the changes in morphology and mobilization of trapped oil ganglia within a 3D micromodel of porous media upon polymer flooding. Enhanced oil recovery is achieved in polymer flooding with large molecular weight at concentrations close or higher than a critical concentration of polymer. We also measure the fluctuations of the velocity of the displacing fluid and show that the velocities change upon polymer flooding in the whole medium. The changes in the fluid velocities are heterogeneous and vary in different pores, hence only providing enough pressure gradient across a few of the trapped oil ganglia and mobilize them. Our measurements show that polymer flooding is an effective method for enhancing oil recovery due to retention of polymer on the solid surfaces and changing the resistances of the available paths to water.
Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: Characterization
NASA Astrophysics Data System (ADS)
Mikutta, Christian; Mikutta, Robert; Bonneville, Steeve; Wagner, Friedrich; Voegelin, Andreas; Christl, Iso; Kretzschmar, Ruben
2008-02-01
Iron(III) (hydr)oxides formed at extracellular biosurfaces or in the presence of exopolymeric substances of microbes and plants may significantly differ in their structural and physical properties from their inorganic counterparts. We synthesized ferrihydrite (Fh) in solutions containing acid polysaccharides [polygalacturonic acid (PGA), alginate, xanthan] and compared its properties with that of an abiotic reference by means of X-ray diffraction, transmission electron microscopy, gas adsorption (N 2, CO 2), X-ray absorption spectroscopy, 57Fe Mössbauer spectroscopy, and electrophoretic mobility measurements. The coprecipitates formed contained up to 37 wt% polymer. Two-line Fh was the dominant mineral phase in all precipitates. The efficacy of polymers to precipitate Fh at neutral pH was higher for polymers with more carboxyl C (PGA ˜ alginate > xanthan). Pure Fh had a specific surface area of 300 m 2/g; coprecipitation of Fh with polymers reduced the detectable mineral surface area by up to 87%. Likewise, mineral micro- (<2 nm) and mesoporosity (2-10 nm) decreased by up to 85% with respect to pure Fh, indicative of a strong aggregation of Fh particles by polymers in freeze-dried state. C-1s STXM images showed the embedding of Fh particles in polymer matrices on the micrometer scale. Iron EXAFS spectroscopy revealed no significant changes in the local coordination of Fe(III) between pure Fh and Fh contained in PGA coprecipitates. 57Fe Mössbauer spectra of coprecipitates confirmed Fh as dominant mineral phase with a slightly reduced particle size and crystallinity of coprecipitate-Fh compared to pure Fh and/or a limited magnetic super-exchange between Fh particles in the coprecipitates due to magnetic dilution by the polysaccharides. The pH iep of pure Fh in 0.01 M NaClO 4 was 7.1. In contrast, coprecipitates of PGA and alginate had a pH iep < 2. Considering the differences in specific surface area, porosity, and net charge between the coprecipitates and pure Fh, composites of exopolysaccharides and Fe(III) (hydr)oxides are expected to differ in their geochemical reactivity from pure Fe(III) (hydr)oxides, even if the minerals have a similar crystallinity.
Chemical speciation of polyurethane polymers by soft-x-ray spectromicroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rightor, E.G.; Hitchcock, A.P.; Urquhart, S.G.
1997-04-01
Polyurethane polymers are a versatile class of materials which have numerous applications in modern life, from automotive body panels, to insulation, to household furnishings. Phase segregation helps to determine the physical properties of several types of polyurethanes. Polymer scientists believe that understanding the connections between formulation chemistry, the chemical nature of the segregated phases, and the physical properties of the resulting polymer, would greatly advance development of improved polyurethane materials. However, the sub-micron size of segregated features precludes their chemical analysis by existing methods, leaving only indirect means of characterizing these features. For the past several years the authors havemore » been developing near edge X-ray absorption spectromicroscopy to study the chemical nature of individual segregated phases. Part of this work has involved studies of molecular analogues and model polymers, in conjunction with quantum calculations, in order to identify the characteristic near edge spectral transitions of important chemical groups. This spectroscopic base is allowing the authors to study phase segregation in polyurethanes by taking advantage of several unique capabilities of scanning transmission x-ray microscopy (STXM) - high spatial resolution ({approximately} 0.1 {mu}m), high spectral resolution ({approximately}0.1 eV at the C 1s edge), and the ability to record images and spectra with relatively low radiation damage. The beamline 7.0 STXM at ALS is being used to study microtomed sections or cast films of polyurethanes. Based on the pioneering work of Ade, Kirz and collaborators at the NSLS X-1A STXM, it is clear that scanning X-ray transmission microscopy using soft X-rays can provide information about the chemical origin of phase segregation in radiation-sensitive materials on a sub-micron scale. This information is difficult or impossible to obtain by other means.« less
Fabrication of submicron metallic grids with interference and phase-mask holography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Joong-Mok; Kim, Tae-Geun; Constant, Kristen
2011-01-25
Complex, submicron Cu metallic mesh nanostructures are made by electrochemical deposition using polymer templates made from photoresist. The polymer templates are fabricated with photoresist using two-beam interference holography and phase mask holography with three diffracted beams. Freestanding metallic mesh structures are made in two separate electrodepositions with perpendicular photoresist grating templates. Cu mesh square nanostructures having large (52.6%) open areas are also made by single electrodeposition with a photoresist template made with a phase mask. These structures have potential as electrodes in photonic devices.
Effects of the interaction range on structural phases of flexible polymers.
Gross, J; Neuhaus, T; Vogel, T; Bachmann, M
2013-02-21
We systematically investigate how the range of interaction between non-bonded monomers influences the formation of structural phases of elastic, flexible polymers. Massively parallel replica-exchange simulations of a generic, coarse-grained model, performed partly on graphics processing units and in multiple-gaussian modified ensembles, pave the way for the construction of the structural phase diagram, parametrized by interaction range and temperature. Conformational transitions between gas-like, liquid, and diverse solid (pseudo) phases are identified by microcanonical statistical inflection-point analysis. We find evidence for finite-size effects that cause the crossover of "collapse" and "freezing" transitions for very short interaction ranges.
Structure and phase behavior of a confined nanodroplet composed of the flexible chain molecules.
Kim, Soon-Chul; Kim, Eun-Young; Seong, Baek-Seok
2011-04-28
A polymer density functional theory has been employed for investigating the structure and phase behaviors of the chain polymer, which is modelled as the tangentially connected sphere chain with an attractive interaction, inside the nanosized pores. The excess free energy of the chain polymer has been approximated as the modified fundamental measure-theory for the hard spheres, the Wertheim's first-order perturbation for the chain connectivity, and the mean-field approximation for the van der Waals contribution. For the value of the chemical potential corresponding to a stable liquid phase in the bulk system and a metastable vapor phase, the flexible chain molecules undergo the liquid-vapor transition as the pore size is reduced; the vapor is the stable phase at small volume, whereas the liquid is the stable phase at large volume. The wide liquid-vapor coexistence curve, which explains the wide range of metastable liquid-vapor states, is observed at low temperature. The increase of temperature and decrease of pore size result in a narrowing of liquid-vapor coexistence curves. The increase of chain length leads to a shift of the liquid-vapor coexistence curve towards lower values of chemical potential. The coexistence curves for the confined phase diagram are contained within the corresponding bulk liquid-vapor coexistence curve. The equilibrium capillary phase transition occurs at a higher chemical potential than in the bulk phase.
NASA Astrophysics Data System (ADS)
Matsuo, Eriko Sato; Tanaka, Toyoichi
1992-08-01
POLYMER gels can undergo a volume phase transition (either continuous or discontinuous) when an external condition, such as temperature or solvent composition, is altered1-3. During this transition, the volume may change by a factor of several thousand, and various patterns develop in the gel. The patterns arising from swelling and shrinking differ in both their appearance and their physical mechanisms. The mechanism for the formation and evolution of patterns on swelling gels has been established as being due to a single kind of mechanical instability4-7 in contrast, the shrinking patterns seem to be sensitive to both the initial and final states of the transition. Here we classify the various shrinking patterns in the form of a phase diagram, and explain the poly-morphism in terms of macroscopic phase separation.
Influence of disorder on the photoinduced excitations in phenyl substituted polythiophenes
NASA Astrophysics Data System (ADS)
Brabec, Christoph J.; Winder, Christoph; Scharber, Markus C.; Sariciftci, N. Serdar; Hummelen, Jan C.; Svensson, Mattias; Andersson, Mats R.
2001-10-01
Regioregular poly(3-(4'-(1″,4″,7″-trioxaoctyl)phenyl)thiophenes) (PEOPTs) exhibit interesting properties for the use in polymer electronics. Exposing thin films of the amorphous, disordered phase (orange phase) of the "as prepared" polymer to chloroform vapor or annealing them by heat treatment results in a redshift of the absorption maximum due to the formation of nanocrystals in an ordered phase (blue phase). As such, PEOPT thus is a very interesting conjugated polymeric material, which exhibits two different phases with well-defined order/disorder characters on one-and-the-same material. This property opens up the unique possibility to investigate the role of order/disorder on the photoexcited pattern without being obscured by the differences in chemical structure by using different materials with different crystallinity. The fact, that blue phase PEOPT exhibits absorption edges at relatively low energies around 1.8 eV, thereby demonstrating an enhanced spectral absorption range as compared to the orange phase, makes them attractive for use in photodiodes and solar cells as well. The photoinduced charge generation efficiency in both phases of PEOPT is significantly enhanced by the addition of a strong electron acceptor such as fullerene C60, as observed by quenching of the luminescence and by photoinduced absorption measurements in the infrared and uv-visible regime. The average number and the lifetime of photoinduced carriers in composites of PEOPT with a methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are found to depend on the crystallinity of PEOPT in thin films, which gives rise to charged photoexcitations delocalized between polymer chains. Stronger bimolecular recombination in composites of the blue phase PEOPT with PCBM is observed as compared to the orange phase PEOPT/PCBM films. The origin of this enhanced recombination is found to be related to the hole mobility of the polymer.
Phthalimide Copolymer Solar Cells
NASA Astrophysics Data System (ADS)
Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson
2010-03-01
Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Masatoshi; Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu
2016-07-15
The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO{sub 2} using a steady-state Ar plasma, periodic injection of a defined number of C{sub 4}F{sub 8} molecules, and synchronized plasma-based Ar{sup +} ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change inmore » the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C{sub 4}F{sub 8} injection. The C{sub 4}F{sub 8} and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number.« less
Vapor deposition routes to conformal polymer thin films
Moni, Priya; Al-Obeidi, Ahmed
2017-01-01
Vapor phase syntheses, including parylene chemical vapor deposition (CVD) and initiated CVD, enable the deposition of conformal polymer thin films to benefit a diverse array of applications. This short review for nanotechnologists, including those new to vapor deposition methods, covers the basic theory in designing a conformal polymer film vapor deposition, sample preparation and imaging techniques to assess film conformality, and several applications that have benefited from vapor deposited, conformal polymer thin films. PMID:28487816
High temperature lithium cells with solid polymer electrolytes
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2017-03-07
Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.
Investigations on gel forming media use in low gravity bioseparations research
NASA Technical Reports Server (NTRS)
Todd, Paul; Szlag, David C.; Plank, Lindsay D.; Delcourt, Scott G.; Kunze, M. Elaine
1989-01-01
Research on gelling media and conditions suitable for the preservation of the spatial configuration of cell suspensions and macromolecular solutions after separation in free fluid during low gravity experiments is presented. The examples studied included free electrophoresis of cells in a cylindrical column and two-phase aqueous polymer separation. Microgravity electrophoresis experiments were simulated by separating model cell types (animal or human) in a vertical density gradient containing low-conductivity buffer, 1.7-6.5 percent Ficoll, 6.8-5.0 percent sucrose, and 1 percent SeaPrep low-melting temperature agarose. Upon cooling, a gel formed in the column and cells could be captured at the forming locations. Two-phase extraction experiments were simulated using two-polymer solutions in which phase separation occurs in normal saline at temperatures compatible with cell viability and in which one or both phases form a gel upon cooling. Suitable polymers included commercial agaroses (1-2 percent), maltodextrin (5-7 percent), and gelatin (5-20 percent).
Yin, Ming; Zhang, Xin-Ping; Liu, Hong-Mei
2012-11-01
The crystallization properties of the perylene (EPPTC) molecules doped in the solid film of the derivative of polyfluorene (F8BT) at different annealing temperatures, as well as the consequently induced spectroscopic response of the exciplex emission in the heterojunction structures, were studied in the present paper. Experimental results showed that the phase separation between the small and the polymer molecules in the blend film is enhanced with increasing the annealing temperature, which leads to the crystallization of the EPPTC molecules due to the strong pi-pi stacking. The size of the crystal phase increases with increasing the annealing temperature. However, this process weakens the mechanisms of the heterojunction configuration, thus, the total interfacial area between the small and the polymer molecules and the amount of exciplex are reduced significantly in the blend film. Meanwhile, the energy transfer from the polymer to the small molecules is also reduced. As a result, the emission from the exciplex becomes weaker with increasing the annealing temperature, whereas the stronger emission from the polymer molecules and from the crystal phase of the small molecules can be observed. These experimental results are very important for understanding and tailoring the organic heterojunction structures. Furthermore, this provides photophysics for improving the performance of photovoltaic or solar cell devices.
Microbubble Fabrication of Concave-porosity PDMS Beads
Bertram, John R.; Nee, Matthew J.
2015-01-01
Microbubble fabrication (by use of a fine emulsion) provides a means of increasing the surface-area-to-volume (SAV) ratio of polymer materials, which is particularly useful for separations applications. Porous polydimethylsiloxane (PDMS) beads can be produced by heat-curing such an emulsion, allowing the interface between the aqueous and aliphatic phases to mold the morphology of the polymer. In the procedures described here, both polymer and crosslinker (triethoxysilane) are sonicated together in a cold-bath sonicator. Following a period of cross-linking, emulsions are added dropwise to a hot surfactant solution, allowing the aqueous phase of the emulsion to separate, and forming porous polymer beads. We demonstrate that this method can be tuned, and the SAV ratio optimized, by adjusting the electrolyte content of the aqueous phase in the emulsion. Beads produced in this way are imaged with scanning electron microscopy, and representative SAV ratios are determined using Brunauer–Emmett–Teller (BET) analysis. Considerable variability with the electrolyte identity is observed, but the general trend is consistent: there is a maximum in SAV obtained at a specific concentration, after which porosity decreases markedly. PMID:26709997
Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly
NASA Astrophysics Data System (ADS)
Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn
To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.
Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less
Lee, Franklin L.; Farimani, Amir Barati; Gu, Kevin L.; ...
2017-10-25
Conjugated polymers are the key material in thin-film organic optoelectronic devices due to the versatility of these molecules combined with their semiconducting properties. A molecular-scale understanding of conjugated polymers is important to the optimization of the thin-film morphology. We examine the solution-phase behavior of conjugated isoindigo-based donor–acceptor polymer single chains of various chain lengths using atomistic molecular dynamics simulations. Our simulations elucidate the transition from a rod-like to a coil-like conformation from an analysis of normal modes and persistence length. In addition, we find another transition based on the solvent environment, contrasting the coil-like conformation in a good solvent withmore » a globule-like conformation in a poor solvent. Altogether, our results provide valuable insights into the transition between conformational regimes for conjugated polymers as a function of both the chain length and the solvent environment, which will help to accurately parametrize higher level models.« less