Sample records for phase doppler anemometry

  1. Phase Doppler Anemometry as an Ejecta Diagnostic

    NASA Astrophysics Data System (ADS)

    Bell, David; Chapman, David

    2015-06-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from the surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the size and velocity of the individual shock induced ejecta particles. The measurements will provide an insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. The experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and the current state of the art of the technique are discussed along with the future improvements required to further improve performance and increase usability.

  2. Phase Doppler anemometry as an ejecta diagnostic

    NASA Astrophysics Data System (ADS)

    Bell, D. J.; Chapman, D. J.

    2017-01-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from that surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the sizes and velocities of the individual shock induced ejecta particles; providing an important insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. These experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and current state of the art of the technique are discussed along with the future improvements required to optimise performance and increase usability.

  3. Dual beam translator for use in Laser Doppler anemometry

    DOEpatents

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  4. Dual beam translator for use in Laser Doppler anemometry

    DOEpatents

    Brudnoy, D.M.

    1984-04-12

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  5. Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2013-11-01

    Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.

  6. A microcomputer based frequency-domain processor for laser Doppler anemometry

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Adair, Desmond

    1988-01-01

    A prototype multi-channel laser Doppler anemometry (LDA) processor was assembled using a wideband transient recorder and a microcomputer with an array processor for fast Fourier transform (FFT) computations. The prototype instrument was used to acquire, process, and record signals from a three-component wind tunnel LDA system subject to various conditions of noise and flow turbulence. The recorded data was used to evaluate the effectiveness of burst acceptance criteria, processing algorithms, and selection of processing parameters such as record length. The recorded signals were also used to obtain comparative estimates of signal-to-noise ratio between time-domain and frequency-domain signal detection schemes. These comparisons show that the FFT processing scheme allows accurate processing of signals for which the signal-to-noise ratio is 10 to 15 dB less than is practical using counter processors.

  7. An LDA (Laser-Doppler Anemometry) investigation of three-dimensional normal shock wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.

    1989-01-01

    Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.

  8. Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves

    PubMed Central

    Bazan, Ovandir; Ortiz, Jayme Pinto; Vieira Junior, Francisco Ubaldo; Vieira, Reinaldo Wilson; Antunes, Nilson; Tabacow, Fabio Bittencourt Dutra; Costa, Eduardo Tavares; Petrucci Junior, Orlando

    2013-01-01

    Introduction In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. Objective To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models) exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. Methods To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. ) and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. Results It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. Conclusions Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM) is superior to the 21 AJ - 501 model (Master Series). Based on the results, future studies can choose to focus on specific regions of the these valves. PMID:24598950

  9. Potential accuracy of methods of laser Doppler anemometry in the single-particle scattering mode

    NASA Astrophysics Data System (ADS)

    Sobolev, V. S.; Kashcheeva, G. A.

    2017-05-01

    Potential accuracy of methods of laser Doppler anemometry is determined for the singleparticle scattering mode where the only disturbing factor is shot noise generated by the optical signal itself. The problem is solved by means of computer simulations with the maximum likelihood method. The initial parameters of simulations are chosen to be the number of real or virtual interference fringes in the measurement volume of the anemometer, the signal discretization frequency, and some typical values of the signal/shot noise ratio. The parameters to be estimated are the Doppler frequency as the basic parameter carrying information about the process velocity, the signal amplitude containing information about the size and concentration of scattering particles, and the instant when the particles arrive at the center of the measurement volume of the anemometer, which is needed for reconstruction of the examined flow velocity as a function of time. The estimates obtained in this study show that shot noise produces a minor effect (0.004-0.04%) on the frequency determination accuracy in the entire range of chosen values of the initial parameters. For the signal amplitude and the instant when the particles arrive at the center of the measurement volume of the anemometer, the errors induced by shot noise are in the interval of 0.2-3.5%; if the number of interference fringes is sufficiently large (more than 20), the errors do not exceed 0.2% regardless of the shot noise level.

  10. Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry

    NASA Astrophysics Data System (ADS)

    Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.

    2016-11-01

    To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.

  11. Development of a New Fundamental Measuring Technique for the Accurate Measurement of Gas Flowrates by Means of Laser Doppler Anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Krey, E.-A.

    1990-01-01

    In the Physikalisch-Technische Bundesanstalt (PTB), a research test facility for the accurate measurement of gas (volume and mass) flowrates has been set up in the last few years on the basis of a laser Doppler anemometer (LDA) with a view to directly measuring gas flowrates with a relative uncertainty of only 0,1%. To achieve this, it was necessary to develop laser Doppler anemometry into a precision measuring technique and to carry out detailed investigations on stationary low-turbulence nozzle flow. The process-computer controlled test facility covers the flowrate range from 100 to 4000 m3/h (~0,03 - 1,0 m3/s), any flowrate being measured directly, immediately and without staggered arrangement of several flow meters. After the development was completed, several turbine-type gas meters were calibrated and international comparisons carried out. The article surveys the most significant aspects of the work and provides an outlook on future developments with regard to the miniaturization of optical flow and flowrate sensors for industrial applications.

  12. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  13. Simultaneous measurement of acoustic and streaming velocities in a standing wave using laser Doppler anemometry.

    PubMed

    Thompson, Michael W; Atchley, Anthony A

    2005-04-01

    Laser Doppler anemometry (LDA) with burst spectrum analysis (BSA) is used to study the acoustic streaming generated in a cylindrical standing-wave resonator filled with air. The air column is driven sinusoidally at a frequency of approximately 310 Hz and the resultant acoustic-velocity amplitudes are less than 1.3 m/s at the velocity antinodes. The axial component of fluid velocity is measured along the resonator axis, across the diameter, and as a function of acoustic amplitude. The velocity signals are postprocessed using the Fourier averaging method [Sonnenberger et al., Exp. Fluids 28, 217-224 (2000)]. Equations are derived for determining the uncertainties in the resultant Fourier coefficients. The time-averaged velocity-signal components are seen to be contaminated by significant errors due to the LDA/BSA system. In order to avoid these errors, the Lagrangian streaming velocities are determined using the time-harmonic signal components and the arrival times of the velocity samples. The observed Lagrangian streaming velocities are consistent with Rott's theory [N. Rott, Z. Angew. Math. Phys. 25, 417-421 (1974)], indicating that the dependence of viscosity on temperature is important. The onset of streaming is observed to occur within approximately 5 s after switching on the acoustic field.

  14. A Method of Estimating Low Turbulence Levels in Near Real Time Using Laser Anemometry

    NASA Technical Reports Server (NTRS)

    Goldman, Louis J.; Seasholtz, Richard G.

    2004-01-01

    Laser anemometry was used to make two independent measurements of the flow velocity by capturing individual Doppler signals with high-speed digitizing boards. The two independent measurements were cross-correlated to reduce the contribution of photo detector shot noise on the frequency determination and subsequently on the turbulence estimate. In addition, criteria were developed to eliminate "bad" Doppler bursts from the data set, which then allowed reasonable low turbulence estimates to be made. The laser anemometer measurements were obtained at the inlet of an annular cascade and at the exit of a flow calibration nozzle and were compared with hot-wire data.

  15. Laser Doppler semiconductor anemometry of vortex flow behind the vane wheel rotor of the water turbine

    NASA Astrophysics Data System (ADS)

    Meledin, V.; Anikin, Yu.; Bakakin, G.; Glavniy, V.; Dvoinishnikov, S.; Kulikov, D.; Naumov, I.; Okulov, V.; Pavlov, V.; Rakhmanov, V.; Sadbakov, O.; Mostovskiy, N.; Ilyin, S.

    2006-05-01

    For hydrodynamic examinations of the turbid three-phase streams with air bubbles and with a depth more than 500 mm for the first time it is developed 2D Laser Doppler Semiconductor Anemometer LADO5-LMZ. Anemometer signal processor base on <> and new procedure of adaptive selection of Doppler frequency. Complex testing of method and measuring tools have been done. Outcomes of full-scale experiments on diagnostic of nonstationary flow behind the vane wheel rotor in draught tube of the Frensis water turbine are presented from optimum regimes of activity to forced. Water discharge which has been calculated from water turbine universal performance model and calculated by measuring axial velocity profiles was compared. It is shown that the maximum aggregate error of definition of the consumption does not exceed 5%.

  16. Steady-state phase error for a phase-locked loop subjected to periodic Doppler inputs

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.; Win, M. Z.

    1991-01-01

    The performance of a carrier phase locked loop (PLL) driven by a periodic Doppler input is studied. By expanding the Doppler input into a Fourier series and applying the linearized PLL approximations, it is easy to show that, for periodic frequency disturbances, the resulting steady state phase error is also periodic. Compared to the method of expanding frequency excursion into a power series, the Fourier expansion method can be used to predict the maximum phase error excursion for a periodic Doppler input. For systems with a large Doppler rate fluctuation, such as an optical transponder aboard an Earth orbiting spacecraft, the method can be applied to test whether a lower order tracking loop can provide satisfactory tracking and thereby save the effect of a higher order loop design.

  17. Investigation of laser Doppler anemometry in developing a velocity-based measurement technique

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won

    2009-12-01

    Acoustic properties, such as the characteristic impedance and the complex propagation constant, of porous materials have been traditionally characterized based on pressure-based measurement techniques using microphones. Although the microphone techniques have evolved since their introduction, the most general form of the microphone technique employs two microphones in characterizing the acoustic field for one continuous medium. The shortcomings of determining the acoustic field based on only two microphones can be overcome by using numerous microphones. However, the use of a number of microphones requires a careful and intricate calibration procedure. This dissertation uses laser Doppler anemometry (LDA) to establish a new measurement technique which can resolve issues that microphone techniques have: First, it is based on a single sensor, thus the calibration is unnecessary when only overall ratio of the acoustic field is required for the characterization of a system. This includes the measurements of the characteristic impedance and the complex propagation constant of a system. Second, it can handle multiple positional measurements without calibrating the signal at each position. Third, it can measure three dimensional components of velocity even in a system with a complex geometry. Fourth, it has a flexible adaptability which is not restricted to a certain type of apparatus only if the apparatus is transparent. LDA is known to possess several disadvantages, such as the requirement of a transparent apparatus, high cost, and necessity of seeding particles. The technique based on LDA combined with a curvefitting algorithm is validated through measurements on three systems. First, the complex propagation constant of the air is measured in a rigidly terminated cylindrical pipe which has very low dissipation. Second, the radiation impedance of an open-ended pipe is measured. These two parameters can be characterized by the ratio of acoustic field measured at multiple

  18. Laser fringe anemometry for aero engine components

    NASA Technical Reports Server (NTRS)

    Strazisar, A. J.

    1986-01-01

    Advances in flow measurement techniques in turbomachinery continue to be paced by the need to obtain detailed data for use in validating numerical predictions of the flowfield and for use in the development of empirical models for those flow features which cannot be readily modelled numerically. The use of laser anemometry in turbomachinery research has grown over the last 14 years in response to these needs. Based on past applications and current developments, this paper reviews the key issues which are involved when considering the application of laser anemometry to the measurement of turbomachinery flowfields. Aspects of laser fringe anemometer optical design which are applicable to turbomachinery research are briefly reviewed. Application problems which are common to both laser fringe anemometry (LFA) and laser transit anemometry (LTA) such as seed particle injection, optical access to the flowfield, and measurement of rotor rotational position are covered. The efficiency of various data acquisition schemes is analyzed and issues related to data integrity and error estimation are addressed. Real-time data analysis techniques aimed at capturing flow physics in real time are discussed. Finally, data reduction and analysis techniques are discussed and illustrated using examples taken from several LFA turbomachinery applications.

  19. Investigation of the flow inside an urban canopy immersed into an atmospheric boundary layer using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Herpin, Sophie; Perret, Laurent; Mathis, Romain; Tanguy, Christian; Lasserre, Jean-Jacques

    2018-05-01

    Laser Doppler anemometry (LDA) is used to investigate the flow inside an idealized urban canopy consisting of a staggered array of cubes with a 25% density immersed into an atmospheric boundary layer with a Reynolds number of δ ^+=32{,}300. The boundary layer thickness to cube height ratio (δ /h=22.7) is large enough to be representative of atmospheric surface layer in neutral conditions. The LDA measurements give access to pointwise time-resolved data at several positions inside the canopy (z=h/4, h/2, and h). Synchronized hot-wire measurements above the canopy (inertial region and roughness sublayer) are also realized to get access to interactions between the different flow regions. The wall-normal mean velocity profile and Reynolds stresses show a good agreement with available data in the literature, although some differences are observed on the standard deviation of the spanwise component. A detailed spectral and integral time scale analysis inside the canopy is then carried out. No clear footprint of a periodic vortex shedding on the sides of the cubes could be identified on the power spectra, owing to the multiple cube-to-cube interactions occuring within a canopy with a building density in the wake interference regime. Results also suggest that interactions between the most energetics scales of the boundary layer and those related to the cube canopy take place, leading to a broadening of the energy peak in the spectra within the canopy. This is confirmed by the analysis of coherence results between the flow inside and above the canopy. It is shown that linear interactions mechanisms are significant, but reduced compared to smooth-wall boundary-layer flow. To our knowledge, this is the first time such results are shown on the dynamics of the flow inside an urban canopy.

  20. A new fringeline-tracking approach for color Doppler ultrasound imaging phase unwrapping

    NASA Astrophysics Data System (ADS)

    Saad, Ashraf A.; Shapiro, Linda G.

    2008-03-01

    Color Doppler ultrasound imaging is a powerful non-invasive diagnostic tool for many clinical applications that involve examining the anatomy and hemodynamics of human blood vessels. These clinical applications include cardio-vascular diseases, obstetrics, and abdominal diseases. Since its commercial introduction in the early eighties, color Doppler ultrasound imaging has been used mainly as a qualitative tool with very little attempts to quantify its images. Many imaging artifacts hinder the quantification of the color Doppler images, the most important of which is the aliasing artifact that distorts the blood flow velocities measured by the color Doppler technique. In this work we will address the color Doppler aliasing problem and present a recovery methodology for the true flow velocities from the aliased ones. The problem is formulated as a 2D phase-unwrapping problem, which is a well-defined problem with solid theoretical foundations for other imaging domains, including synthetic aperture radar and magnetic resonance imaging. This paper documents the need for a phase unwrapping algorithm for use in color Doppler ultrasound image analysis. It describes a new phase-unwrapping algorithm that relies on the recently developed cutline detection approaches. The algorithm is novel in its use of heuristic information provided by the ultrasound imaging modality to guide the phase unwrapping process. Experiments have been performed on both in-vitro flow-phantom data and in-vivo human blood flow data. Both data types were acquired under a controlled acquisition protocol developed to minimize the distortion of the color Doppler data and hence to simplify the phase-unwrapping task. In addition to the qualitative assessment of the results, a quantitative assessment approach was developed to measure the success of the results. The results of our new algorithm have been compared on ultrasound data to those from other well-known algorithms, and it outperforms all of them.

  1. Flow tilt angle measurements using lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, Ebba; Mann, Jakob

    2010-05-01

    A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over

  2. Measurement of average density and relative volumes in a dispersed two-phase fluid

    DOEpatents

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  3. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  4. New phase method of measuring particle size with laser Doppler radar

    NASA Astrophysics Data System (ADS)

    Zemlianskii, Vladimir M.

    1996-06-01

    A vast field of non-contact metrology, vibrometry, dynamics and microdynamics problems solved on the basis of laser Doppler method resulted in the development of great variety of laser Doppler radar (LDR). In coherent LDR few beams with various polarization are generally adopted, that are directed at the zone of measurement, through which the probing air stream moves. Studies of various coherent LDR demonstrated that polarization-phase effects of scattering can in some cases considerably effect on the signal-to-noise ratio of the Doppler signal. On the other side using phase effects can simultaneous measurement of size and velocity of spherical particles. New possibilities for improving the accuracy of measuring spherical particles' sizes come to light when application is made in coherent LDR of two waves- probing and one out of the types of symmetrical reception of scattered radiation, during which phase-conjugate signals are formed. The theoretical analysis on the basis of the scattering theory showed, that in symmetrical reception of scattered radiation with respect to the planes OXZ and OYZ output signal of the photoreceiver contains two high- frequency signal components, which in relation to parameters of the probing and size, can either be in phase or antiphase. Results of numerical modeling are presented: amplitude of high frequency signal, coefficient of phase and polarization matching of mixed waves, the depths of photocurrent modulation and also signal's phase in relation to the angle between the probing beams. Phase method of determining particle's sizes based on the use of two wavelengths probing and symmetrical reception of scattered radiation in which conditions for the formation of phase conjugated high-frequency signals are satisfied is presented.

  5. Viking S-band Doppler RMS phase fluctuations used to calibrate the mean 1976 equatorial corona

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Wackley, J. A.

    1977-01-01

    Viking S-band Doppler RMS phase fluctuations (noise) and comparisons of Viking Doppler noise to Viking differenced S-X range measurements are used to construct a mean equatorial electron density model for 1976. Using Pioneer Doppler noise results (at high heliographic latitudes, also from 1976), an equivalent nonequatorial electron density model is approximated.

  6. Flight Demonstration of a Shock Location Sensor Using Constant Voltage Hot-Film Anemometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Sarma, Garimella R.; Mangalam, Siva M.

    1997-01-01

    Flight tests have demonstrated the effectiveness of an array of hot-film sensors using constant voltage anemometry to determine shock position on a wing or aircraft surface at transonic speeds. Flights were conducted at the NASA Dryden Flight Research Center using the F-15B aircraft and Flight Test Fixture (FTF). A modified NACA 0021 airfoil was attached to the side of the FTF, and its upper surface was instrumented to correlate shock position with pressure and hot-film sensors. In the vicinity of the shock-induced pressure rise, test results consistently showed the presence of a minimum voltage in the hot-film anemometer outputs. Comparing these results with previous investigations indicate that hot-film anemometry can identify the location of the shock-induced boundary layer separation. The flow separation occurred slightly forward of the shock- induced pressure rise for a laminar boundary layer and slightly aft of the start of the pressure rise when the boundary layer was tripped near the airfoil leading edge. Both minimum mean output and phase reversal analyses were used to identify the shock location.

  7. Extension of sonic anemometry to high subsonic Mach number flows

    NASA Astrophysics Data System (ADS)

    Otero, R.; Lowe, K. T.; Ng, W. F.

    2017-03-01

    In the literature, the application of sonic anemometry has been limited to low subsonic Mach number, near-incompressible flow conditions. To the best of the authors’ knowledge, this paper represents the first time a sonic anemometry approach has been used to characterize flow velocity beyond Mach 0.3. Using a high speed jet, flow velocity was measured using a modified sonic anemometry technique in flow conditions up to Mach 0.83. A numerical study was conducted to identify the effects of microphone placement on the accuracy of the measured velocity. Based on estimated error strictly due to uncertainty in time-of-acoustic flight, a random error of +/- 4 m s-1 was identified for the configuration used in this experiment. Comparison with measurements from a Pitot probe indicated a velocity RMS error of +/- 9 m s-1. The discrepancy in error is attributed to a systematic error which may be calibrated out in future work. Overall, the experimental results from this preliminary study support the use of acoustics for high subsonic flow characterization.

  8. Doppler-corrected differential detection system

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1991-01-01

    Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.

  9. Application of laser anemometry in turbine engine research

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.

    1983-01-01

    The application of laser anemometry to the study of flow fields in turbine engine components is reviewed. Included are discussions of optical configurations, seeding requirements, electronic signal processing, and data processing. Some typical results are presented along with a discussion of ongoing work.

  10. Application of laser anemometry in turbine engine research

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.

    1982-01-01

    The application of laser anemometry to the study of flow fields in turbine engine components is reviewed. Included are discussions of optical configurations, seeding requirements, electronic signal processing, and data processing. Some typical results are presented along with a discussion of ongoing work.

  11. Hot-wire anemometry in hypersonic helium flow

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Weinstein, L. M.

    1974-01-01

    Hot-wire anemometry techniques are described that have been developed and used for hypersonic-helium-flow studies. The short run time available dictated certain innovations in applying conventional hot-wire techniques. Some examples are given to show the application of the techniques used. Modifications to conventional equipment are described, including probe modifications and probe heating controls.

  12. Laser anemometry for hot flows

    NASA Astrophysics Data System (ADS)

    Kugler, P.; Langer, G.

    1987-07-01

    The fundamental principles, instrumentation, and practical operation of LDA and laser-transit-anemometry systems for measuring velocity profiles and the degree of turbulence in high-temperature flows are reviewed and illustrated with diagrams, drawings and graphs of typical data. Consideration is given to counter, tracker, spectrum-analyzer and correlation methods of LDA signal processing; multichannel analyzer and cross correlation methods for LTA data; LTA results for a small liquid fuel rocket motor; and experiments demonstrating the feasibility of an optoacoustic demodulation scheme for LDA signals from unsteady flows.

  13. Flow tilt angles near forest edges - Part 2: Lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, E.; Mann, J.; Bingöl, F.

    2010-05-01

    A novel way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 min mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175 m a.g.l. (above ground level), (2) a reference site in flat agricultural terrain and (3) a second reference site in complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by assuming zero tilt angle at high altitudes. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are potentially slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct, and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. It is demonstrated that the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements

  14. Application of two-component phase Doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    NASA Technical Reports Server (NTRS)

    Mcdonell, V. G.; Samuelsen, G. S.

    1989-01-01

    Two-component phase Doppler interferometry is described, along with its application for the spatially-resolved measurements of particle size, velocity, and mass flux as well as continuous phase velocity. This technique measures single particle events at a point in the flow; droplet size is deduced from the spatial phase shift of the Doppler signal. Particle size influence and discrimination of continuous and discrete phases are among issues covered. Applications are presented for four cases: an example of the discrimination of two sizes of glass beads in a jet flow; a demonstration of the discrimination of phases in a spray field; an assessment of atomizer symmetry with respect to fuel distribution; and a characterization of a droplet field in a reacting spray. It is noted that the above technique is especially powerful in delineating droplet interactions in the swirling, complex flows typical of realistic systems.

  15. Sonic Anemometry to Measure Natural Ventilation in Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, uo ≥ 4 m s−1) reaching 36.3% when wind speed was lower (uo = 2 m s−1). PMID:22163728

  16. Sonic anemometry to measure natural ventilation in greenhouses.

    PubMed

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  17. Analysis of counting errors in the phase/Doppler particle analyzer

    NASA Technical Reports Server (NTRS)

    Oldenburg, John R.

    1987-01-01

    NASA is investigating the application of the Phase Doppler measurement technique to provide improved drop sizing and liquid water content measurements in icing research. The magnitude of counting errors were analyzed because these errors contribute to inaccurate liquid water content measurements. The Phase Doppler Particle Analyzer counting errors due to data transfer losses and coincidence losses were analyzed for data input rates from 10 samples/sec to 70,000 samples/sec. Coincidence losses were calculated by determining the Poisson probability of having more than one event occurring during the droplet signal time. The magnitude of the coincidence loss can be determined, and for less than a 15 percent loss, corrections can be made. The data transfer losses were estimated for representative data transfer rates. With direct memory access enabled, data transfer losses are less than 5 percent for input rates below 2000 samples/sec. With direct memory access disabled losses exceeded 20 percent at a rate of 50 samples/sec preventing accurate number density or mass flux measurements. The data transfer losses of a new signal processor were analyzed and found to be less than 1 percent for rates under 65,000 samples/sec.

  18. Constant temperature hot wire anemometry data reduction procedure

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.

    1974-01-01

    The theory and data reduction procedure for constant temperature hot wire anemometry are presented. The procedure is valid for all Mach and Prandtl numbers, but limited to Reynolds numbers based on wire diameter between 0.1 and 300. The fluids are limited to gases which approximate ideal gas behavior. Losses due to radiation, free convection and conduction are included.

  19. Wind Gust Measurement Techniques-From Traditional Anemometry to New Possibilities.

    PubMed

    Suomi, Irene; Vihma, Timo

    2018-04-23

    Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds) maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs) may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided.

  20. Wind Gust Measurement Techniques—From Traditional Anemometry to New Possibilities

    PubMed Central

    2018-01-01

    Information on wind gusts is needed for assessment of wind-induced damage and risks to safety. The measurement of wind gust speed requires a high temporal resolution of the anemometer system, because the gust is defined as a short-duration (seconds) maximum of the fluctuating wind speed. Until the digitalization of wind measurements in the 1990s, the wind gust measurements suffered from limited recording and data processing resources. Therefore, the majority of continuous wind gust records date back at most only by 30 years. Although the response characteristics of anemometer systems are good enough today, the traditional measurement techniques at weather stations based on cup and sonic anemometers are limited to heights and regions where the supporting structures can reach. Therefore, existing measurements are mainly concentrated over densely-populated land areas, whereas from remote locations, such as the marine Arctic, wind gust information is available only from sparse coastal locations. Recent developments of wind gust measurement techniques based on turbulence measurements from research aircraft and from Doppler lidar can potentially provide new information from heights and locations unreachable by traditional measurement techniques. Moreover, fast-developing measurement methods based on Unmanned Aircraft Systems (UASs) may add to better coverage of wind gust measurements in the future. In this paper, we provide an overview of the history and the current status of anemometry from the perspective of wind gusts. Furthermore, a discussion on the potential future directions of wind gust measurement techniques is provided. PMID:29690647

  1. Eyeballing oscillators for pulsed Doppler radar

    NASA Astrophysics Data System (ADS)

    Goldman, S.

    1985-03-01

    The visibility of small targets to a Doppler radar system in the presence of large targets is limited by phase noise. Such limitations occur when an airborne radar searches the ground for a mobile vehicle. Under these conditions, the performance of the Doppler radar depends greatly on the specifications of its phased-locked oscillator. Goldman (1984) has discussed the steps required to evaluate the noise resulting from a pulsed Doppler radar system. In the present investigation, these techniques are applied in reverse to determine system specifications for oscillator noise. A 95-GHz pulsed Doppler radar system is used as an example of specifying system phase noise.

  2. Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ahmad, A.; Bacha, B. A.; Khan, A. A.; Abdul Jabar, M. S.

    2017-12-01

    Surface Plasmon Polaritons (SPPs) are theoretically investigated at the interface of a dielectric metal and gold. The output pulse from the dielectric is used as the input pulse for the generation of SPPs. The SPPs show soliton-like behavior at the interface. The solitary form of a SPP is maintained under the effects of Kerr nonlinearity, Doppler broadening and Fresnel dragging whereas its phase shift is significantly modified. A 0.3radian phase shift is calculated in the presence of both Kerr nonlinearity and Fresnel dragging in the absence of plasma motion. The phase shift is enhanced to 60radian due to the combined effect of Doppler broadening, Kerr nonlinearity and Fresnel dragging. The results may have significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster and sensing technology.

  3. Depth-encoded dual beam phase-resolved Doppler OCT for Doppler-angle-independent flow velocity measurement

    NASA Astrophysics Data System (ADS)

    Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua

    2017-02-01

    Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.

  4. Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Ellerbee, Audrey K.; Yazdanfar, Siavash; Izatt, Joseph A.

    2006-03-01

    Spectral domain phase microscopy (SDPM) is a function extension of spectral domain optical coherence tomography. SDPM achieves exquisite levels of phase stability by employing common-path interferometry. We discuss the theory and limitations of Doppler flow imaging using SDPM, demonstrate monitoring the thermal contraction of a glass sample with nanometer per second velocity sensitivity, and apply this technique to measurement of cytoplasmic streaming in an Amoeba proteus pseudopod. We observe reversal of cytoplasmic flow induced by extracellular CaCl2, and report results that suggest parabolic flow of cytoplasm in the A. proteus pseudopod.

  5. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  6. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  7. Proceedings of Workshop on Laser Diagnostics in Fluid Mechanics and Combustion

    NASA Astrophysics Data System (ADS)

    1993-10-01

    Proceedings of the Workshop on Laser Diagnostics in Fluid Mechanics and Combustion are presented. Topics included are: Accuracy of Laser Doppler Anemometry; Applications of Raman-Rayleigh-LIF Diagnostics in Combustion Research; Phase Doppler Anemometer Technique Concepts and Applications; CARS; Particle Image Velocimetry; Practical Consideration in the Use and Design of Laser Velocimetry Systems in Turbomachinery Applications; Phase Doppler Measurements of Gas-Particle Flow Through a Tube Bank; Degenerate Four Wave Mixing for Shock Tunnel Studies of Supersonic Combustion; Laser Induced Photodissociation and Fluorescence (LIPF) of Sodium Species Present in Coal Combustion; 3D Holographic Measurements Inside a Spark Ignition Engine; Laser Doppler Velocimeter Measurements in Compressible Flow; Bursting in a Tornado Vortex; Quantitative Imaging of OH and Temperature Using a Single Laser Source and Single Intensified Camera; and Laser Doppler Measurements Inside an Artificial Heart Valve.

  8. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    NASA Astrophysics Data System (ADS)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  9. Exploiting Cloud Radar Doppler Spectra of Mixed-Phase Clouds during ACCEPT Field Experiment to Identify Microphysical Processes

    NASA Astrophysics Data System (ADS)

    Kalesse, H.; Myagkov, A.; Seifert, P.; Buehl, J.

    2015-12-01

    Cloud radar Doppler spectra offer much information about cloud processes. By analyzing millimeter radar Doppler spectra from cloud-top to -base in mixed-phase clouds in which super-cooled liquid-layers are present we try to tell the microphysical evolution story of particles that are present by disentangling the contributions of the solid and liquid particles to the total radar returns. Instead of considering vertical profiles, dynamical effects are taken into account by following the particle population evolution along slanted paths which are caused by horizontal advection of the cloud. The goal is to identify regions in which different microphysical processes such as new particle formation (nucleation), water vapor deposition, aggregation, riming, or sublimation occurr. Cloud radar measurements are supplemented by Doppler lidar and Raman lidar observations as well as observations with MWR, wind profiler, and radio sondes. The presence of super-cooled liquid layers is identified by positive liquid water paths in MWR measurements, the vertical location of liquid layers (in non-raining systems and below lidar extinction) is derived from regions of high-backscatter and low depolarization in Raman lidar observations. In collocated cloud radar measurements, we try to identify cloud phase in the cloud radar Doppler spectrum via location of the Doppler peak(s), the existence of multi-modalities or the spectral skewness. Additionally, within the super-cooled liquid layers, the radar-identified liquid droplets are used as air motion tracer to correct the radar Doppler spectrum for vertical air motion w. These radar-derived estimates of w are validated by independent estimates of w from collocated Doppler lidar measurements. A 35 GHz vertically pointing cloud Doppler radar (METEK MIRA-35) in linear depolarization (LDR) mode is used. Data is from the deployment of the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of

  10. An experimental study of a three-dimensional thrust augmenting ejector using laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Storms, Bruce Lowell

    1989-01-01

    Flow field measurements were obtained in a three-dimensional thrust augmenting ejector using laser Doppler velocimetry and hot wire anemometry. The primary nozzle, segmented into twelve slots of aspect ratio 3.0, was tested at a pressure ratio of 1.15. Results are presented on the mean velocity, turbulence intensity, and Reynolds stress progressions in the mixing chamber of the constant area ejector. The segmented nozzle was found to produce streamwise vortices that may increase the mixing efficiency of the ejector flow field. Compared to free jet results, the jet development is reduced by the presence of the ejector walls. The resulting thrust augmentation ratio of this ejector was also calculated to be 1.34.

  11. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  12. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  13. Basic ideas and concepts in hot wire anemometry: an experimental approach for introductory physics students

    NASA Astrophysics Data System (ADS)

    El Abed, Mohamed

    2016-01-01

    The purpose of hot wire anemometry is to measure the speed of an air stream. The classical method is based on the measure of the value of a temperature dependant resistor inserted in a Wheatstone bridge (Lomas 1986 Fundamentals of Hot Wire Anemometry (Cambridge: Cambridge University Press)). In this paper we exhibit the physics behind this method and show that by using a wire whose resistance does not vary on the field of temperature explored (from 20 °C to 200 °C), it is however possible to make accurate measurements. Finally, limitations of the method are discussed.

  14. Design of a Phase /Doppler Light-Scattering System for Measurement of Small-Diameter Glass Fibers During Fiberglass Manufacturing

    NASA Astrophysics Data System (ADS)

    Schaub, Scott A.; Naqwi, Amir A.; Harding, Foster L.

    1998-01-01

    We present fundamental studies examining the design of a phase /Doppler laser light-scattering system applicable to on-line measurements of small-diameter ( <15 m) fibers during fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase /Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase -diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase /Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.

  15. Design of a phase/doppler light-scattering system for measurement of small-diameter glass fibers during fiberglass manufacturing.

    PubMed

    Schaub, S A; Naqwi, A A; Harding, F L

    1998-01-20

    We present fundamental studies examining the design of a phase/Doppler laser light-scattering system applicable to on-line measurements of small-diameter (<15 mum) fibers during fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase/Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase-diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase/Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.

  16. Laser anemometry - Advances and applications 1991; Proceedings of the 4th International Conference, Cleveland, OH, Aug. 5-9, 1991. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Dybbs, Alexander (Editor); Ghorashi, Bahman (Editor)

    1991-01-01

    The papers presented in this volume provide an overview of the latest advances in laser anemometry and optical flow diagnostics. Topics discussed include turbulence, jets, and chaos; novel optical techniques for velocity measurements; chemical reactions and combusting flows; and LDA/CFD interface. Attention is also given to particle image velocimetry, high speed flows and aerodynamic flows, internal flows, particle sizing, optics and signal processing, two-phase flows, and general fluid mechanics applications.

  17. Interferometric millimeter wave and THz wave doppler radar

    DOEpatents

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  18. Validation of high temporal resolution spiral phase velocity mapping of temporal patterns of left and right coronary artery blood flow against Doppler guidewire.

    PubMed

    Keegan, Jennifer; Raphael, Claire E; Parker, Kim; Simpson, Robin M; Strain, Stephen; de Silva, Ranil; Di Mario, Carlo; Collinson, Julian; Stables, Rod H; Wage, Ricardo; Drivas, Peter; Sugathapala, Malindie; Prasad, Sanjay K; Firmin, David N

    2015-10-02

    Temporal patterns of coronary blood flow velocity can provide important information on disease state and are currently assessed invasively using a Doppler guidewire. A non-invasive alternative would be beneficial as it would allow study of a wider patient population and serial scanning. A retrospectively-gated breath-hold spiral phase velocity mapping sequence (TR 19 ms) was developed at 3 Tesla. Velocity maps were acquired in 8 proximal right and 15 proximal left coronary arteries of 18 subjects who had previously had a Doppler guidewire study at the time of coronary angiography. Cardiovascular magnetic resonance (CMR) velocity-time curves were processed semi-automatically and compared with corresponding invasive Doppler data. When corrected for differences in heart rate between the two studies, CMR mean velocity through the cardiac cycle, peak systolic velocity (PSV) and peak diastolic velocity (PDV) were approximately 40 % of the peak Doppler values with a moderate - good linear relationship between the two techniques (R(2): 0.57, 0.64 and 0.79 respectively). CMR values of PDV/PSV showed a strong linear relationship with Doppler values with a slope close to unity (0.89 and 0.90 for right and left arteries respectively). In individual vessels, plots of CMR velocities at all cardiac phases against corresponding Doppler velocities showed a consistent linear relationship between the two with high R(2) values (mean +/-SD: 0.79 +/-.13). High temporal resolution breath-hold spiral phase velocity mapping underestimates absolute values of coronary flow velocity but allows accurate assessment of the temporal patterns of blood flow.

  19. Turbulence measurements in hypersonic boundary layers using constant-temperature anemometry and Reynolds stress measurements in hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Spina, Eric F.

    1995-01-01

    The primary objective in the two research investigations performed under NASA Langley sponsorship (Turbulence measurements in hypersonic boundary layers using constant temperature anemometry and Reynolds stress measurements in hypersonic boundary layers) has been to increase the understanding of the physics of hypersonic turbulent boundary layers. The study began with an extension of constant-temperature thermal anemometry techniques to a Mach 11 helium flow, including careful examinations of hot-wire construction techniques, system response, and system calibration. This was followed by the application of these techniques to the exploration of a Mach 11 helium turbulent boundary layer (To approximately 290 K). The data that was acquired over the course of more than two years consists of instantaneous streamwise mass flux measurements at a frequency response of about 500 kHz. The data are of exceptional quality in both the time and frequency domain and possess a high degree of repeatability. The data analysis that has been performed to date has added significantly to the body of knowledge on hypersonic turbulence, and the data reduction is continuing. An attempt was then made to extend these thermal anemometry techniques to higher enthalpy flows, starting with a Mach 6 air flow with a stagnation temperature just above that needed to prevent liquefaction (To approximately 475 F). Conventional hot-wire anemometry proved to be inadequate for the selected high-temperature, high dynamic pressure flow, with frequent wire breakage and poor system frequency response. The use of hot-film anemometry has since been investigated for these higher-enthalpy, severe environment flows. The difficulty with using hot-film probes for dynamic (turbulence) measurements is associated with construction limitations and conduction of heat into the film substrate. Work continues under a NASA GSRP grant on the development of a hot film probe that overcomes these shortcomings for hypersonic

  20. Technical Training on High-Order Spectral Analysis and Thermal Anemometry Applications

    NASA Technical Reports Server (NTRS)

    Maslov, A. A.; Shiplyuk, A. N.; Sidirenko, A. A.; Bountin, D. A.

    2003-01-01

    The topics of thermal anemometry and high-order spectral analyses were the subject of the technical training. Specifically, the objective of the technical training was to study: (i) the recently introduced constant voltage anemometer (CVA) for high-speed boundary layer; and (ii) newly developed high-order spectral analysis techniques (HOSA). Both CVA and HOSA are relevant tools for studies of boundary layer transition and stability.

  1. Method and system of doppler correction for mobile communications systems

    NASA Technical Reports Server (NTRS)

    Georghiades, Costas N. (Inventor); Spasojevic, Predrag (Inventor)

    1999-01-01

    Doppler correction system and method comprising receiving a Doppler effected signal comprising a preamble signal (32). A delayed preamble signal (48) may be generated based on the preamble signal (32). The preamble signal (32) may be multiplied by the delayed preamble signal (48) to generate an in-phase preamble signal (60). The in-phase preamble signal (60) may be filtered to generate a substantially constant in-phase preamble signal (62). A plurality of samples of the substantially constant in-phase preamble signal (62) may be accumulated. A phase-shifted signal (76) may also be generated based on the preamble signal (32). The phase-shifted signal (76) may be multiplied by the delayed preamble signal (48) to generate an out-of-phase preamble signal (80). The out-of-phase preamble signal (80) may be filtered to generate a substantially constant out-of-phase preamble signal (82). A plurality of samples of the substantially constant out-of-phase signal (82) may be accumulated. A sum of the in-phase preamble samples and a sum of the out-of-phase preamble samples may be normalized relative to each other to generate an in-phase Doppler estimator (92) and an out-of-phase Doppler estimator (94).

  2. ICIASF '85 - International Congress on Instrumentation in Aerospace Simulation Facilities, 11th, Stanford University, CA, August 26-28, 1985, Record

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Developments related to laser Doppler velocimetry are discussed, taking into account a three-component dual beam laser-Doppler-anemometer to be operated in large wind tunnels, a new optical system for three-dimensional laser-Doppler-anemometry using an argon-ion and a dye laser, and a two-component laser Doppler velocimeter by switching fringe orientation. Other topics studied are concerned with facilities, instrumentation, control, hot wire/thin film measurements, optical diagnostic techniques, signal and data processing, facilities and adaptive wall test sections, data acquisition and processing, ballistic instrument systems, dynamic testing and material deformation measurements, optical flow measurements, test techniques, force measurement systems, and holography. Attention is given to nonlinear calibration of integral wind tunnel balances, a microcomputer system for real time digitized image compression, and two phase flow diagnostics in propulsion systems.

  3. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke,E.; Kollias, P.

    2007-08-06

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phasemore » cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their

  4. [Urodynamics foundations: contractile potency and urethral doppler].

    PubMed

    Benítez Navío, Julio; Caballero Gómez, Pilar; Delgado Elipe, Ildefonso

    2002-12-01

    To calculate the bladder softening factor, elastic constant and contractile potency. For the analysis we considered bladder behavior like that of a spring. See articles 1 and 2 published in this issue. Using flowmetry, Doppler ultrasound and abdominal pressure (Transrectal pressure register catheter) an analytical solution that permits calculation of factors defining bladder behavior was looked for. Doppler ultrasound allows us to know urine velocity through the prostatic urethra and, therefore, to calculate bladder contractile potency. Equations are solved reaching an analytical solution that allows calculating those factors that define bladder behavior: Bladder contractile potency, detrusor elastic constant, considering it behaves like a spring, and calculation of muscle resistance to movement. All thanks to Doppler ultrasound that allows to know urine speed. The bladder voiding phase is defined with the aforementioned factors; storage phase behavior can be indirectly inferred. Only uroflowmetry curves, Doppler ultrasound and abdominal pressure value are used. We comply with the so called non invasive urodynamics although for us it is just another phase in the biomechanical study of the detrusor muscle. Main conclusion is the addition of Doppler ultrasound to the urodynamist armamentarium as an essential instrument for the comprehension of bladder dynamics and calculation of bladder behavior defining factors. It is not a change in the focus but in the methods, gaining knowledge and diminishing invasion.

  5. A second-order frequency-aided digital phase-locked loop for Doppler rate tracking

    NASA Astrophysics Data System (ADS)

    Chie, C. M.

    1980-08-01

    A second-order digital phase-locked loop (DPLL) has a finite lock range which is a function of the frequency of the incoming signal to be tracked. For this reason, it is not capable of tracking an input with Doppler rate for an indefinite period of time. In this correspondence, an analytical expression for the hold-in time is derived. In addition, an all-digital scheme to alleviate this problem is proposed based on the information obtained from estimating the input signal frequency.

  6. Thermography and Sonic Anemometry to Analyze Air Heaters in Mediterranean Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego L.; Molina-Aiz, Francisco; Peña, Araceli

    2012-01-01

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W·m−2) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C. PMID:23202025

  7. Thermography and sonic anemometry to analyze air heaters in Mediterranean greenhouses.

    PubMed

    López, Alejandro; Valera, Diego L; Molina-Aiz, Francisco; Peña, Araceli

    2012-10-16

    The present work has developed a methodology based on thermography and sonic anemometry for studying the microclimate in Mediterranean greenhouses equipped with air heaters and polyethylene distribution ducts to distribute the warm air. Sonic anemometry allows us to identify the airflow pattern generated by the heaters and to analyze the temperature distribution inside the greenhouse, while thermography provides accurate crop temperature data. Air distribution by means of perforated polyethylene ducts at ground level, widely used in Mediterranean-type greenhouses, can generate heterogeneous temperature distributions inside the greenhouse when the system is not correctly designed. The system analyzed in this work used a polyethylene duct with a row of hot air outlet holes (all of equal diameter) that expel warm air toward the ground to avoid plant damage. We have observed that this design (the most widely used in Almería's greenhouses) produces stagnation of hot air in the highest part of the structure, reducing the heating of the crop zone. Using 88 kW heating power (146.7 W ∙ m(-2)) the temperature inside the greenhouse is maintained 7.2 to 11.2 °C above the outside temperature. The crop temperature (17.6 to 19.9 °C) was maintained above the minimum recommended value of 10 °C.

  8. Doppler Radar Profiler for Launch Winds at the Kennedy Space Center (Phase 1a)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) received a request from the, NASA Technical Fellow for Flight Mechanics at Langley Research Center (LaRC), to develop a database from multiple Doppler radar wind profiler (DRWP) sources and develop data processing algorithms to construct high temporal resolution DRWP wind profiles for day-of-launch (DOL) vehicle assessment. This document contains the outcome of Phase 1a of the assessment including Findings, Observations, NESC Recommendations, and Lessons Learned.

  9. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI.

    PubMed

    Dyverfeldt, Petter; Sigfridsson, Andreas; Kvitting, John-Peder Escobar; Ebbers, Tino

    2006-10-01

    Turbulent flow, characterized by velocity fluctuations, is a contributing factor to the pathogenesis of several cardiovascular diseases. A clinical noninvasive tool for assessing turbulence is lacking, however. It is well known that the occurrence of multiple spin velocities within a voxel during the influence of a magnetic gradient moment causes signal loss in phase-contrast magnetic resonance imaging (PC-MRI). In this paper a mathematical derivation of an expression for computing the standard deviation (SD) of the blood flow velocity distribution within a voxel is presented. The SD is obtained from the magnitude of PC-MRI signals acquired with different first gradient moments. By exploiting the relation between the SD and turbulence intensity (TI), this method allows for quantitative studies of turbulence. For validation, the TI in an in vitro flow phantom was quantified, and the results compared favorably with previously published laser Doppler anemometry (LDA) results. This method has the potential to become an important tool for the noninvasive assessment of turbulence in the arterial tree.

  10. Limitations of the ideal phase-Doppler system: Extension to spatially and temporally inhomogeneous particle flows with an application to diesel sprays

    NASA Astrophysics Data System (ADS)

    Marx, K. D.; Edwards, C. F.

    1992-12-01

    The effect of the single-particle constraint on the response of phase-Doppler instruments is determined for particle flows which are spatially nonuniform and time-dependent. Poisson statistics are applied to particle positions and arrival times within the phase-Doppler probe volume to determine the probability that a particle is measured successfully. It is shown that the single-particle constraint can be viewed as applying spatial and temporal filters to the particle flow. These filters have the same meaning as those that were defined previously for uniform, steady-state sprays, but in space- and time-dependent form. Criteria are developed for determining when a fully inhomogeneous analysis of a flow is required and when a quasi-steady analysis will suffice. A new bias due to particle arrival time displacement is identified and the conditions under which it must be considered are established. The present work provides the means to rigorously investigate the response of phase-Doppler measurement systems to transient sprays such as those which occur in diesel engines. To this end, the results are applied to a numerical simulation of a diesel spray. The calculated hypothetical response of the ideal instrument provides a quantitative demonstration of the regimes within which measurements can accurately be made in such sprays.

  11. Low Dimensional Modeling of Zero-Net Mass-Flux Actuators

    DTIC Science & Technology

    2004-07-01

    centerline deflection of the diaphragm is measured using a laser displacement sensor (Micro-Epsilon Model ILD2000-10). Both signals are acquired phase...the flowfield emanating from the ZNMF orifice are acquired using Laser Doppler Anemometry (LDA), the details of which are listed in Table 1. The...synthetic jet actuator is mounted to a three-axis traverse with sub-micron spatial resolution. The 488 and 514.5 nm lines of an argon-ion laser are

  12. Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry

    NASA Technical Reports Server (NTRS)

    El-Gabry, Lamyaa A.; Thurman, Douglas R.; Poinsatte, Philip E.

    2014-01-01

    Hotwire anemometers are used to measure instantaneous velocity from which the mean velocity and the velocity fluctuation can be determined. Using a hotwire system, it is possible to deduce not only the velocity components and their fluctuation but to also analyze the energy spectra and from that the turbulence length scales. In this experiment, hotwire anemometry is used to measure the flow field turbulence for an array of film cooling holes. The objective of this paper is to document the procedure that is used to reduce the instantaneous velocity measurements to determine the turbulence length scales using data from the film-cooling experiments to illustrate the procedure.

  13. Optimized doppler optical coherence tomography for choroidal capillary vasculature imaging

    NASA Astrophysics Data System (ADS)

    Liu, Gangjun; Qi, Wenjuan; Yu, Lingfeng; Chen, Zhongping

    2011-03-01

    In this paper, we analyzed the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images were compared. Blood vessels down to capillary level were able to be obtained with the optimized optical coherence color Doppler and Doppler variance method. For in-vivo imaging of human eyes, bulkmotion induced bulk phase must be identified and removed before using color Doppler method. It was found that the Doppler variance method is not sensitive to bulk motion and the method can be used without removing the bulk phase. A novel, simple and fast segmentation algorithm to indentify retinal pigment epithelium (RPE) was proposed and used to segment the retinal and choroidal layer. The algorithm was based on the detected OCT signal intensity difference between different layers. A spectrometer-based Fourier domain OCT system with a central wavelength of 890 nm and bandwidth of 150nm was used in this study. The 3-dimensional imaging volume contained 120 sequential two dimensional images with 2048 A-lines per image. The total imaging time was 12 seconds and the imaging area was 5x5 mm2.

  14. Doppler color imaging. Principles and instrumentation.

    PubMed

    Kremkau, F W

    1992-01-01

    DCI acquires Doppler-shifted echoes from a cross-section of tissue scanned by an ultrasound beam. These echoes are then presented in color and superimposed on the gray-scale anatomic image of non-Doppler-shifted echoes received during the scan. The flow echoes are assigned colors according to the color map chosen. Usually red, yellow, or white indicates positive Doppler shifts (approaching flow) and blue, cyan, or white indicates negative shifts (receding flow). Green is added to indicate variance (disturbed or turbulent flow). Several pulses (the number is called the ensemble length) are needed to generate a color scan line. Linear, convex, phased, and annular arrays are used to acquire the gray-scale and color-flow information. Doppler color-flow instruments are pulsed-Doppler instruments and are subject to the same limitations, such as Doppler angle dependence and aliasing, as other Doppler instruments. Color controls include gain, TGC, map selection, variance on/off, persistence, ensemble length, color/gray priority. Nyquist limit (PRF), baseline shift, wall filter, and color window angle, location, and size. Doppler color-flow instruments generally have output intensities intermediate between those of gray-scale imaging and pulsed-Doppler duplex instruments. Although there is no known risk with the use of color-flow instruments, prudent practice dictates that they be used for medical indications and with the minimum exposure time and instrument output required to obtain the needed diagnostic information.

  15. Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Rolland, Jannick P.

    2010-01-01

    Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) allows visualization and characterization of the location, direction, velocity, and profile of flow activity embedded in a static sample structure. The detectable Velocity Dynamic Range (VDR) of each particular PR-DOCT system is governed by a detectable Doppler phase shift, a flow angle, and an acquisition time interval used to determine the Doppler phase shift. In general, the lower boundary of the detectable Doppler phase shift is limited by the phase stability of the system, while the upper boundary is limited by the π phase ambiguity. For a given range of detectable Doppler phase shift, shortening the acquisition duration will increase not only the maximum detectable velocity but unfortunately also the minimum detectable velocity, which may lead to the invisibility of a slow flow. In this paper, we present an alternative acquisition scheme for PR-DOCT that extends the lower limit of the velocity dynamic range, while maintaining the maximum detectable velocity, hence increasing the overall VDR of PR-DOCT system. The essence of the approach is to implement a technique of multi-scale measurement to simultaneously acquire multiple VDRs in a single measurement. We demonstrate an example of implementation of the technique in a dual VDR DOCT, where two Doppler maps having different detectable VDRs were simultaneously detected, processed, and displayed in real time. One was a fixed VDR DOCT capable of measuring axial velocity of up to 10.9 mm/s without phase unwrapping. The other was a variable VDR DOCT capable of adjusting its detectable VDR to reveal slow flow information down to 11.3 μm/s. The technique is shown to effectively extend the overall detectable VDR of the PR-DOCT system. Examples of real time Doppler imaging of an African frog tadpole are demonstrated using the dual-VDR DOCT system. PMID:21258521

  16. Doppler synthetic aperture radar interferometry: a novel SAR interferometry for height mapping using ultra-narrowband waveforms

    NASA Astrophysics Data System (ADS)

    Yazıcı, Birsen; Son, Il-Young; Cagri Yanik, H.

    2018-05-01

    This paper introduces a new and novel radar interferometry based on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR interferometry relies on wideband transmitted waveforms to obtain high range resolution. Topography of a surface is directly related to the range difference between two antennas configured at different positions. Doppler-SAR is a novel imaging modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage of high resolution Doppler information provided by UNCWs to form high resolution SAR images. We introduce the theory of Doppler-SAR interferometry. We derive an interferometric phase model and develop the equations of height mapping. Unlike conventional SAR interferometry, we show that the topography of a scene is related to the difference in Doppler frequency between two antennas configured at different velocities. While the conventional SAR interferometry uses range, Doppler and Doppler due to interferometric phase in height mapping; Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We demonstrate our theory in numerical simulations. Doppler-SAR interferometry offers the advantages of long-range, robust, environmentally friendly operations; low-power, low-cost, lightweight systems suitable for low-payload platforms, such as micro-satellites; and passive applications using sources of opportunity transmitting UNCW.

  17. The EVE Doppler Sensitivity and Flare Observations

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Woods, T. N.; Chamberlin, P. C.; Didkovsky, L.; Del Zanna, G.

    2011-01-01

    The Extreme-ultraviolet Variability Experiment (EVE) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He II has a random Doppler error below 0.001 nm (1 pm, better than 10 km/s as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE's optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 +/- 5.9 km/s relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe XXIV 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.

  18. Investigations on the droplet distributions in the atomization of kerosene jets in supersonic crossflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liyin; Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Li, Qinglian

    2015-09-07

    Phase Doppler anemometry was applied to investigate the atomization processes of a kerosene jet injected into Ma = 1.86 crossflow. Physical behaviors, such as breakup and coalescence, are reproduced through the analysis of the spatial distribution of kerosene droplets' size. It is concluded that Sauter mean diameter distribution shape transforms into “I” type from “C” type as the atomization development. Simultaneously, the breakup of large droplets and the coalescence of small droplets can be observed throughout the whole atomization process.

  19. An audit of a hospital-based Doppler ultrasound quality control protocol using a commercial string Doppler phantom.

    PubMed

    Cournane, S; Fagan, A J; Browne, J E

    2014-05-01

    Results from a four-year audit of a Doppler quality assurance (QA) program using a commercially available Doppler string phantom are presented. The suitability of the phantom was firstly determined and modifications were made to improve the reliability and quality of the measurements. QA of Doppler ultrasound equipment is very important as data obtained from these systems is used in patient management. It was found that if the braided-silk filament of the Doppler phantom was exchanged with an O-ring rubber filament and the velocity range below 50 cm/s was avoided for Doppler quality control (QC) measurements, then the maximum velocity accuracy (MVA) error and intrinsic spectral broadening (ISB) results obtained using this device had a repeatability of 18 ± 3.3% and 19 ± 3.5%, respectively. A consistent overestimation of the MVA of between 12% and 56% was found for each of the tested ultrasound systems. Of more concern was the variation of the overestimation within each respective transducer category: MVA errors of the linear, curvilinear and phased array probes were in the range 12.3-20.8%, 32.3-53.8% and 27-40.7%, respectively. There is a dearth of QA data for Doppler ultrasound; it would be beneficial if a multicentre longitudinal study was carried out using the same Doppler ultrasound test object to evaluate sensitivity to deterioration in performance measurements. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.

    2010-01-01

    Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488

  1. MP3 compression of Doppler ultrasound signals.

    PubMed

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  2. Calibration, Data Acquisition, and Post Analysis of Turbulent Fluid Flow in a Calibration Jet Using Hot-wire Anemometry

    NASA Technical Reports Server (NTRS)

    Moreno, Michelle

    2004-01-01

    The Turbine Branch concentrates on the following areas: Computational Fluid Dynamics (CFD), and implementing experimental procedures to obtain physical modeling data. Hot-wire Anemometry is a valuable tool for obtaining physical modeling data. Hot-wire Anemometry is likely to remain the principal research tool for most turbulent air/gas flow studies. The Hot-wire anemometer consists of a fine wire heated by electric current. When placed in a fluid stream, the hot-wire loses heat to the fluid by forced convection. In forced convection, energy transfer is due to molecular motion imposed by an extraneous force moving fluid parcels. When the hot-wire is in "equilibrium", the rate of heat input to the wire is equal to the rate of heat loss at the wire ends. The equality between heat input and heat loss is the basis for King s equation, which relates the electrical parameters of the hot-wire to the flow parameters of the fluid. Hot-wire anemometry is based on convective heat transfer from a heated wire element placed in a fluid flow. Any change in the fluid flow condition that affects the heat transfer from the heated element will be detected virtually instantaneously by a constant-temperature Hot-wire anemometry system. The system implemented for this research is the IFA 300. The system is a fully-integrated, thermal anemometer-based system that measures mean and fluctuating velocity components in air, water, and other fluids. It also measures turbulence and makes localized temperature measurements. A constant-temperature anemometer is a bridge and amplifier circuit that controls a tiny wire at constant temperature. As a fluid flow passes over the heated sensor, the amplifier senses the bridge off-balance and adjusts the voltage to the top of the bridge, keeping the bridge in balance. The voltage on top of the bridge can then be related to the velocity of the flow. The bridge voltage is sensitive to temperature as well as velocity and so the built-in thermocouple

  3. Doppler imaging using spectrally-encoded endoscopy

    PubMed Central

    Yelin, Dvir; Bouma, B. E.; Rosowsky, J. J.; Tearney, G. J.

    2009-01-01

    The capability to image tissue motion such as blood flow through an endoscope could have many applications in medicine. Spectrally encoded endoscopy (SEE) is a recently introduced technique that utilizes a single optical fiber and miniature diffractive optics to obtain endoscopic images through small diameter probes. Using spectral-domain interferometry, SEE is furthermore capable of three-dimensional volume imaging at video rates. Here we show that by measuring relative spectral phases, this technology can additionally measure Doppler shifts. Doppler SEE is demonstrated in flowing Intralipid phantoms and vibrating middle ear ossicles. PMID:18795020

  4. Time-resolved flowmetering of gas-liquid two-phase pipe flow by ultrasound pulse Doppler method

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi

    2012-03-01

    Ultrasound pulse Doppler method is applied for componential volumetric flow rate measurement in multiphase pipe flow consisted of gas and liquid phases. The flowmetering is realized with integration of measured velocity profile over the cross section of the pipe within liquid phase. Spatio-temporal position of interface is detected also with the same ultrasound pulse, which further gives cross sectional void fraction. A series of experimental demonstration was shown by applying this principle of measurement to air-water two-phase flow in a horizontal tube of 40 mm in diameter, of which void fraction ranges from 0 to 90% at superficial velocity from 0 to 15 m/s. The measurement accuracy is verified with a volumetric type flowmeter. We also analyze the accuracy of area integration of liquid velocity distribution for many different patterns of ultrasound measurement lines assigned on the cross section of the tube. The present method is also identified to be pulsation sensor of flow rate that fluctuates with complex gas-liquid interface behavior.

  5. Complex regression Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Elahi, Sahar; Gu, Shi; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2018-04-01

    We introduce a new method to measure Doppler shifts more accurately and extend the dynamic range of Doppler optical coherence tomography (OCT). The two-point estimate of the conventional Doppler method is replaced with a regression that is applied to high-density B-scans in polar coordinates. We built a high-speed OCT system using a 1.68-MHz Fourier domain mode locked laser to acquire high-density B-scans (16,000 A-lines) at high enough frame rates (˜100 fps) to accurately capture the dynamics of the beating embryonic heart. Flow phantom experiments confirm that the complex regression lowers the minimum detectable velocity from 12.25 mm / s to 374 μm / s, whereas the maximum velocity of 400 mm / s is measured without phase wrapping. Complex regression Doppler OCT also demonstrates higher accuracy and precision compared with the conventional method, particularly when signal-to-noise ratio is low. The extended dynamic range allows monitoring of blood flow over several stages of development in embryos without adjusting the imaging parameters. In addition, applying complex averaging recovers hidden features in structural images.

  6. Blood flow velocity measurement by endovascular Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Nolte, Felix; Vuong, Barry; Cheng, Kyle H. Y.; Lee, Kenneth K. C.; Standish, Beau A.; Courtney, Brian; Marotta, Tom R.; Yang, Victor X. D.

    2013-03-01

    Blood flow velocity and volumetric flow measurements are important parameters for assessment of the severity of stenosis and the outcome of interventional therapy. However, feasibility of intravascular flow measurement using a rotational catheter based phase resolved Doppler optical coherence tomography (DOCT) is difficult. Motion artefacts induced by the rotating optical imaging catheter, and the radially dependent noise background of measured Doppler signals are the main challenges encountered. In this study, a custom-made data acquisition system and developed algorithms to remove non-uniform rotational distortion (NURD) induced phase shift artefact by tracking the phase shift observed on catheter sheath. The flow velocity is calculated from Doppler shift obtained by Kasai autocorrelation after motion artefact removal. Blood flow velocity profiles in porcine carotid arteries in vivo were obtained at 100 frames/s with 500 A-lines/frame and DOCT images were taken at 20 frames/s with 2500 A-lines/frame. Time-varying velocity profiles were obtained at an artery branch. Furthermore, the identification of a vein adjacent to the catheterized vessel based on the color Doppler signal was also observed. The absolute measurement of intravascular flow using a rotating fiber catheter can provide insights to different stages of interventional treatment of stenosis in carotid artery.

  7. Doppler Football

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Abee, Jeremy

    2006-10-01

    In this paper we present a design for a Doppler football. The classic Doppler ball uses a piezo buzzer and 9-V battery inside a foam ball. In our Doppler football, the sound level is enhanced by directing the 2.8-kHz tone of the buzzer through a hollow cylinder to one end of the football, with an on-off switch placed at the other end. We discuss our device within the historical context of Doppler demonstrations that have evolved over the many decades since Doppler's discovery.

  8. Application of non-coherent Doppler data types for deep space navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam

    1995-01-01

    Recent improvements in computational capability and Deep Space Network technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis is performed which analyzes the accuracy obtainable by combinations of one-way Doppler data and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data is capable of determining the angular position of the spacecraft to fairly high accuracy, but has relatively poor sensitivity to the range. When combined with single station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard data two-way types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.

  9. The application of noncoherent Doppler data types for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, S.

    1995-01-01

    Recent improvements in computational capability and DSN technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis, which analyzes the accuracy obtainable by combinations of one-way Doppler data, is performed and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data are capable of determining the angular position of the spacecraft to fairly high accuracy, but have relatively poor sensitivity to the range. When combined with single-station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard two-way data types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.

  10. The Effect of Doppler Frequency Shift, Frequency Offset of the Local Oscillators, and Phase Noise on the Performance of Coherent OFDM Receivers

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Andro, Monty

    2001-01-01

    This paper first shows that the Doppler frequency shift affects the frequencies of the RF carrier, subcarriers, envelope, and symbol timing by the same percentage in an Orthogonal Frequency Division Multiplexing (OFDM) signal or any other modulated signals. Then the SNR degradation of an OFDM system due to Doppler frequency shift, frequency offset of the local oscillators and phase noise is analyzed. Expressions are given and values for 4-, 16-, 64-, and 256-QAM OFDM systems are calculated and plotted. The calculations show that the Doppler shift of the D3 project is about 305 kHz, and the degradation due to it is about 0.01 to 0.04 dB, which is negligible. The degradation due to frequency offset and phase noise of local oscillators will be the main source of degradation. To keep the SNR degradation under 0.1 dB, the relative frequency offset due to local oscillators must be below 0.01 for the 16 QAM-OFDM. This translates to an offset of 1.55 MHz (0.01 x 155 MHz) or a stability of 77.5 ppm (0.01 x 155 MHz/20 GHz) for the DI project. To keep the SNR degradation under 0.1 dB, the relative linewidth (0) due to phase noise of the local oscillators must be below 0.0004 for the 16 QAM-OFDM. This translates to a linewidth of 0.062 MHz (0.0004 x 155 MHz) of the 20 GHz RIF carrier. For a degradation of 1 dB, beta = 0.04, and the linewidth can be relaxed to 6.2 MHz.

  11. A case study of microphysical structures and hydrometeor phase in convection using radar Doppler spectra at Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Riihimaki, L. D.; Comstock, J. M.; Luke, E.; Thorsen, T. J.; Fu, Q.

    2017-07-01

    To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.

  12. A case study of microphysical structures and hydrometeor phase in convection using radar Doppler spectra at Darwin, Australia

    DOE PAGES

    Riihimaki, Laura D.; Comstock, J. M.; Luke, E.; ...

    2017-07-12

    To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. Furthermore, thismore » approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.« less

  13. A case study of microphysical structures and hydrometeor phase in convection using radar Doppler spectra at Darwin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; Comstock, J. M.; Luke, E.

    To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, ground-based vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement site are used to classify cloud phase within a deep convective cloud. The cloud cannot be fully observed by a lidar due to signal attenuation. Therefore, we developed an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectra from vertically pointing Ka-band cloud radar. Furthermore, thismore » approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid. Diffusional growth calculations show that the conditions for the Wegener-Bergeron-Findeisen process exist within one of these mixed-phase microstructures.« less

  14. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  15. The Pathophysiology of Decompression Sickness and the Effects of Doppler Detectable Bubbles.

    DTIC Science & Technology

    1980-12-18

    Doppler Ultrasound and a calibrated 6 1 Venous Gas Embol i Scale. C. Electronic Counting of Doppler Bubble Signals 72 £ III. Pulmonary Embolism Studies...IA. Background 75 B. Right Ventricular Systolic Pressure following Gas 81 Embolization and Venous Gas Phase Content IC. Effects of Pulmonary Gas... Embolism on the Development 9 of Limb-Bend Decompression Sickness 1 IV. Gas Phase Formation in Highly Perfused Tissues IA. Renal 9 B. Cerebral 9 1 I I V

  16. Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy

    NASA Technical Reports Server (NTRS)

    Mcnicholl, P.; Alejandro, S.

    1992-01-01

    The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a

  17. Laser Doppler measurement techniques for spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1986-01-01

    Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.

  18. Imaging shear wave propagation for elastic measurement using OCT Doppler variance method

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Miao, Yusi; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2016-03-01

    In this study, we have developed an acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) method for the visualization of the shear wave and the calculation of the shear modulus based on the OCT Doppler variance method. The vibration perpendicular to the OCT detection direction is induced by the remote acoustic radiation force (ARF) and the shear wave propagating along the OCT beam is visualized by the OCT M-scan. The homogeneous agar phantom and two-layer agar phantom are measured using the ARFOE-OCE system. The results show that the ARFOE-OCE system has the ability to measure the shear modulus beyond the OCT imaging depth. The OCT Doppler variance method, instead of the OCT Doppler phase method, is used for vibration detection without the need of high phase stability and phase wrapping correction. An M-scan instead of the B-scan for the visualization of the shear wave also simplifies the data processing.

  19. Transthoracic Ultrafast Doppler Imaging of Human Left Ventricular Hemodynamic Function

    PubMed Central

    Osmanski, Bruno-Félix; Maresca, David; Messas, Emmanuel; Tanter, Mickael; Pernot, Mathieu

    2016-01-01

    Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits to rely on a much more effective wall filtering and to increase sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function. PMID:25073134

  20. Digital second-order phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Carl, C. C.; Tagnelia, C. R.

    1975-01-01

    Actual tests with second-order digital phase-locked loop at simulated relative Doppler shift of 1x0.0001 produced phase lock with timing error of 6.5 deg and no appreciable Doppler bias. Loop thus appears to achieve subcarrier synchronization and to remove bias due to Doppler shift in range of interest.

  1. One way Doppler Extractor. Volume 2: Digital VCO technique

    NASA Technical Reports Server (NTRS)

    Nossen, E. J.; Starner, E. R.

    1974-01-01

    A feasibility analysis and trade-offs for a one-way Doppler extractor using digital VCO techniques is presented. The method of Doppler measurement involves the use of a digital phase lock loop; once this loop is locked to the incoming signal, the precise frequency and hence the Doppler component can be determined directly from the contents of the digital control register. The only serious error source is due to internally generated noise. Techniques are presented for minimizing this error source and achieving an accuracy of 0.01 Hz in a one second averaging period. A number of digitally controlled oscillators were analyzed from a performance and complexity point of view. The most promising technique uses an arithmetic synthesizer as a digital waveform generator.

  2. [The application of Doppler broadening and Doppler shift to spectral analysis].

    PubMed

    Xu, Wei; Fang, Zi-shen

    2002-08-01

    The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.

  3. Apparatus and method for noninvasive particle detection using doppler spectroscopy

    DOEpatents

    Sinha, Dipen N.

    2016-05-31

    An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.

  4. A case study of microphysical structures and hydrometeor phase in convection using radar Doppler spectra at Darwin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; Comstock, Jennifer M.; Luke, Edward

    To understand the microphysical processes that impact diabatic heating and cloud lifetimes in convection, we need to characterize the spatial distribution of supercooled liquid water. To address this observational challenge, vertically pointing active sensors at the Darwin Atmospheric Radiation Measurement (ARM) site are used to classify cloud phase within a deep convective cloud in a shallow to deep convection transitional case. The cloud cannot be fully observed by a lidar due to signal attenuation. Thus we develop an objective method for identifying hydrometeor classes, including mixed-phase conditions, using k-means clustering on parameters that describe the shape of the Doppler spectramore » from vertically pointing Ka band cloud radar. This approach shows that multiple, overlapping mixed-phase layers exist within the cloud, rather than a single region of supercooled liquid, indicating complexity to how ice growth and diabatic heating occurs in the vertical structure of the cloud.« less

  5. Doppler indices of gas phase formation in hypobaric environments: Time-intensity analysis

    NASA Technical Reports Server (NTRS)

    Powell, Michael R.

    1991-01-01

    A semi-quantitative method to analyze decompression data is described. It possesses the advantage that it allows a graded response to decompression rather than the dichotomous response generally employed. A generalized critical volume (C-V), or stoichiometric time-dependent equilibrium model is examined that relates the constant of the equation P sub i equals m P sub f plus b to variable tissue supersaturation and gas washout terms. The effects of the tissue ratio on gas phase formation indicate that a decreased ratio yields fewer individuals with Doppler detectable gas bubbles, but those individuals still present with Spencer Grade 3 or 4. This might indicate a local collapse of tissue saturation. The individuals with Grade 3 or 4 could be at risk for type 2 decompression sickness by transpulmonic arterialization. The primary regulator of the problems of decompression sickness is the reduction of local supersaturation, presumably governed by the presence and number of gas micronuclei. It is postulated that a reduction in these nuclei will favor a low incidence of decompression sickness in microgravity secondary to hypokinesia and adynamia.

  6. High-speed laser anemometry based on spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1991-01-01

    Laser anemometry in unseeded flows based on the measurement of the spectrum of Rayleigh scattered laser light is reviewed. The use of molecular scattering avoids the well known problems (particle lag, biasing effects, seed generation, seed injection) of seeded flows. The fundamental limits on velocity measurement accuracy are determined using maximum likelihood methods. Measurement of the Rayleigh spectrum with scanning Fabry-Perot interferometers is analyzed and accuracy limits are established for both single pass and multipass configurations. Multipass configurations have much higher selectivity and are needed for measurements where there is a large amount of excess noise caused by stray laser light. It is shown that Rayleigh scattering is particularly useful for supersonic and hypersonic flows. The results of the analysis are compared with measurements obtained with a Rayleigh scattering diagnostic developed for study of the exhaust plume of a small hydrogen-oxygen rocket, where the velocities are in the range of 1000 to 5000 m/sec.

  7. Tricuspid and mitral regurgitation detected by color flow Doppler in the acute phase of Kawasaki disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, A.; Kamiya, T.; Tsuchiya, K.

    Valvular lesions in the acute phase of Kawasaki disease were studied in 19 children. The patients were intensively observed by color flow Doppler every day from the day of hospitalization up to 12 days after the onset of the disease and 2 or more times a week thereafter, for up to 28 days. Mitral regurgitation (MR) was found in 9 patients (47%) and tricuspid regurgitation (TR) in 10 (53%). MRs were of transient type and confirmed from 7.5 +/- 1.6 (mean +/- standard deviation) to 13.1 +/- 6.5 days after the onset of the disease. Both types of valvular regurgitationmore » were mild. The direction of regurgitation was from the center of valvular coaptation toward the posterior wall of the atrium. Neither valvular prolapse nor valvular deformity was noted. In patients with MR, left ventricular ejection fraction on M-mode echocardiography was significantly lower in the acute phase than in the convalescent phase of the disease (p less than 0.05). Using gallium-67 scintigram, the positive uptake of the isotope was noted in 7 (88%) of 8 patients with MR, but not found at all in 8 patients free of MR. These results suggest that MR and TR are often transient in the acute phase of Kawasaki disease and could be attributed to myocarditis.« less

  8. 3D turbulence measurements using three intersecting Doppler LiDAR beams: validation against sonic anemometry

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2013-04-01

    Nowadays communities of researchers and industry in the wind engineering and meteorology sectors demand extensive and accurate measurements of atmospheric boundary layer turbulence for a better understanding of its role in a wide range of onshore and offshore applications: wind resource evaluation, wind turbine wakes, meteorology forecast, pollution and urban climate studies, etc. Atmospheric turbulence has been traditionally investigated through sonic anemometers installed on meteorological masts. However, the setup and maintenance of instrumented masts is generally very costly and the available location for the measurements is limited by the fixed position and height of the facility. In order to overcome the above-mentioned shortcomings, a measurement technique is proposed, based on the reconstruction of the three-dimensional velocity vector from simultaneous measurements of three intersecting Doppler wind LiDARs. This measuring technique presents the main advantage of being able to measure the wind velocity at any point in space inside a very large volume, which can be set and optimized for each test. Furthermore, it is very flexible regarding its transportation, installation and operation in any type of terrain. On the other hand, LiDAR measurements are strongly affected by the aerosol concentration in the air, precipitation, and the spatial and temporal resolution is poorer than that of a sonic anemometer. All this makes the comparison between these two kinds of measurements a complex task. The accuracy of the technique has been assessed by this study against sonic anemometer measurements carried out at different heights on the KNMI's meteorological mast at Cabauw's experimental site for atmospheric research (CESAR) in the Netherlands. An early uncertainty analysis shows that one of the most important parameters to be taken into account is the relative angles between the intersecting laser beams, i.e., the position of each LiDAR on the terrain and their

  9. The Multiple Doppler Radar Workshop, November 1979.

    NASA Astrophysics Data System (ADS)

    Carbone, R. E.; Harris, F. I.; Hildebrand, P. H.; Kropfli, R. A.; Miller, L. J.; Moninger, W.; Strauch, R. G.; Doviak, R. J.; Johnson, K. W.; Nelson, S. P.; Ray, P. S.; Gilet, M.

    1980-10-01

    The findings of the Multiple Doppler Radar Workshop are summarized by a series of six papers. Part I of this series briefly reviews the history of multiple Doppler experimentation, fundamental concepts of Doppler signal theory, and organization and objectives of the Workshop. Invited presentations by dynamicists and cloud physicists are also summarized.Experimental design and procedures (Part II) are shown to be of critical importance. Well-defined and limited experimental objectives are necessary in view of technological limitations. Specified radar scanning procedures that balance temporal and spatial resolution considerations are discussed in detail. Improved siting for suppression of ground clutter as well as scanning procedures to minimize errors at echo boundaries are discussed. The need for accelerated research using numerically simulated proxy data sets is emphasized.New technology to eliminate various sampling limitations is cited as an eventual solution to many current problems in Part III. Ground clutter contamination may be curtailed by means of full spectral processing, digital filters in real time, and/or variable pulse repetition frequency. Range and velocity ambiguities also may be minimized by various pulsing options as well as random phase transmission. Sidelobe contamination can be reduced through improvements in radomes, illumination patterns, and antenna feed types. Radar volume-scan time can be sharply reduced by means of wideband transmission, phased array antennas, multiple beam antennas, and frequency agility.Part IV deals with synthesis of data from several radars in the context of scientific requirements in cumulus clouds, widespread precipitation, and severe convective storms. The important temporal and spatial scales are examined together with the accuracy required for vertical air motion in each phenomenon. Factors that introduce errors in the vertical velocity field are identified and synthesis techniques are discussed separately for

  10. The Feasibility of Performing Particle Tracking Based Flow Measurements with Acoustic Cameras

    DTIC Science & Technology

    2017-08-01

    particles that cannot be assumed to follow the fluid motion) affected by grid-generated turbulent flow in a wind tunnel to compare the particle...over other flow measurements systems, such as hot- wire anemometry, laser Doppler velocimetry, or acoustic Doppler velocimetry, is that PIV produces...Velocimetry Measurements of the Flow around a Rushton Turbine .” Experiments in Fluids 29(5): 478–485. doi:10.1007/s003480000116. Hjemfelt, A. T., and L. F

  11. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  12. Multipath induced errors in meteorological Doppler/interferometer location systems

    NASA Technical Reports Server (NTRS)

    Wallace, R. G.

    1984-01-01

    One application of an RF interferometer aboard a low-orbiting spacecraft to determine the location of ground-based transmitters is in tracking high-altitude balloons for meteorological studies. A source of error in this application is reflection of the signal from the sea surface. Through propagating and signal analysis, the magnitude of the reflection-induced error in both Doppler frequency measurements and interferometer phase measurements was estimated. The theory of diffuse scattering from random surfaces was applied to obtain the power spectral density of the reflected signal. The processing of the combined direct and reflected signals was then analyzed to find the statistics of the measurement error. It was found that the error varies greatly during the satellite overpass and attains its maximum value at closest approach. The maximum values of interferometer phase error and Doppler frequency error found for the system configuration considered were comparable to thermal noise-induced error.

  13. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  14. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    NASA Astrophysics Data System (ADS)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document

  15. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    PubMed Central

    Goel, Sumit; Nagendrareddy, Suma Gundareddy; Raju, Manthena Srinivasa; Krishnojirao, Dayashankara Rao Jingade; Rastogi, Rajul; Mohan, Ravi Prakash Sasankoti; Gupta, Swati

    2011-01-01

    Aim: To evaluate the efficacy of ultrasonography (USG) with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Materials and Methods: Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. Results: USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas) of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas). There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. Conclusions: USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions. PMID:22223940

  16. Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic

    NASA Astrophysics Data System (ADS)

    Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander; Luke, Edward P.

    2018-03-01

    The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populations in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (ZDR), while an enhanced specific differential phase (KDP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce ZDR and KDP values close to 0, suggesting the occurrence of a riming process. Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and ZDR.

  17. Proceedings of the XXII A.I.VE.LA. National Meeting

    NASA Astrophysics Data System (ADS)

    Primo Tomasini, Enrico

    2015-11-01

    A.I.VE.LA. - the Italian Association of Laser Velocimetry and non-invasive diagnostics - is a non-profit cultural association whose objective is to promote and support research in the field of non-contact or minimally invasive measurement techniques, particularly electromagnetic-based techniques and optical techniques. Through its Annual Meeting, AIVELA aims to create an active and stimulating forum where current research results and technical advances can be exchanged and the development of new systems for laboratory use, field testing and industrial application can be promoted. The techniques covered include Laser Doppler Anemometry - LDA, Phase Doppler Anemometry - PDA, Image Velocimetry - PIV, Flow visualization techniques, Spectroscopic measurement techniques (LIF, Raman, etc.), Laser Doppler Vibrometry - LDV, Speckle Pattern Interferometry - ESPI, Holographic techniques, Shearography, Digital Image Correlation - DIC, Moiré techniques, Structured light techniques, Infrared imaging, Photoelasticity, Image based measurement techniques, Ultrasonic sensing, Acoustic and Aeroacoustic measurements, etc. The first Annual Meeting was held back in October 1992 and since then there has been a large consensus among the research and scientific communities that the papers presented at the event are of a high scientific interest. The XXII AIVELA Annual Meeting was held at the Faculty of Engineering of University of Rome Tor Vergata on 15-16 December 2014 and was organised in collaboration with the International Master Courses in "Protection Against CBRNe Events". This volume contains a selection of the papers presented at the event. The detailed Programme of the Meeting can be found at: http://www.aivela.org/XXII_Convegno/index.html Trusting our Association and its initiatives will meet your interest, I wish to thank you in advance for your kind attention and hope to meet you soon at one of our events.

  18. Fringe chasing by three-point spatial phase shifting for discrimination of the motion direction in the long-range homodyne laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Daemi, Mohammad Hossein; Rasouli, Saifollah

    2018-07-01

    In this work, a three-point spatial phase shifting (SPS) method is implemented for chasing of the moving interference fringes in the homodyne laser Doppler vibrometry (HoLDV). By the use of SPS method, we remove disability of the HoLDV in the discrimination of the motion direction for long-range displacements. From the phase increments histogram, phase unwrapping tolerance value is selected, and adequacy of the data acquisition rate and required bandwidth limit are determined. Also in this paper, a detailed investigation on the effect of detectors positioning errors and influence of the Gaussian profile of the interfering beams on the measurements are presented. Performance of the method is verified by measuring a given harmonic vibration produced by a loudspeaker. Also, by the proposed method, vibration of mounting system of a disk laser gain medium is characterized.

  19. A Ground-Based Doppler Radar and Micropulse Lidar Forward Simulator for GCM Evaluation of Arctic Mixed-Phase Clouds: Moving Forward Towards an Apples-to-apples Comparison of Hydrometeor Phase

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Fridlind, A. M.; Ackerman, A. S.; Kollias, P.; Clothiaux, E. E.

    2017-12-01

    An important aspect of evaluating Artic cloud representation in a general circulation model (GCM) consists of using observational benchmarks which are as equivalent as possible to model output in order to avoid methodological bias and focus on correctly diagnosing model dynamical and microphysical misrepresentations. However, current cloud observing systems are known to suffer from biases such as limited sensitivity, and stronger response to large or small hydrometeors. Fortunately, while these observational biases cannot be corrected, they are often well understood and can be reproduced in forward simulations. Here a ground-based millimeter wavelength Doppler radar and micropulse lidar forward simulator able to interface with output from the Goddard Institute for Space Studies (GISS) ModelE GCM is presented. ModelE stratiform hydrometeor fraction, mixing ratio, mass-weighted fall speed and effective radius are forward simulated to vertically-resolved profiles of radar reflectivity, Doppler velocity and spectrum width as well as lidar backscatter and depolarization ratio. These forward simulated fields are then compared to Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) ground-based observations to assess cloud vertical structure (CVS). Model evalution of Arctic mixed-phase cloud would also benefit from hydrometeor phase evaluation. While phase retrieval from synergetic observations often generates large uncertainties, the same retrieval algorithm can be applied to observed and forward-simulated radar-lidar fields, thereby producing retrieved hydrometeor properties with potentially the same uncertainties. Comparing hydrometeor properties retrieved in exactly the same way aims to produce the best apples-to-apples comparisons between GCM ouputs and observations. The use of a comprenhensive ground-based forward simulator coupled with a hydrometeor classification retrieval algorithm provides a new perspective for GCM evaluation of Arctic mixed-phase

  20. Real-time high-velocity resolution color Doppler OCT

    NASA Astrophysics Data System (ADS)

    Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2001-05-01

    Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.

  1. Vascularization of liver tumors - preliminary results with Coded Harmonic Angio (CHA), phase inversion imaging, 3D power Doppler and contrast medium-enhanced B-flow with second generation contrast agent (Optison).

    PubMed

    Jung, E M; Kubale, R; Jungius, K-P; Jung, W; Lenhart, M; Clevert, D-A

    2006-01-01

    To investigate the dynamic value of contrast medium-enhanced ultrasonography with Optison for appraisal of the vascularization of hepatic tumors using harmonic imaging, 3D-/power Doppler and B-flow. 60 patients with a mean age of 56 years (range 35-76 years) with 93 liver tumors, including histopathologically proven hepatocellular carcinoma (HCC) [15 cases with 20 lesions], liver metastases of colorectal tumors [17 cases with 33 lesions], metastases of breast cancer [10 cases with 21 lesions] and hemangiomas [10 cases with 19 lesions] were prospectively investigated by means of multislice CT as well as native and contrast medium-enhanced ultrasound using a multifrequency transducer (2.5-4 MHz, Logig 9, GE). B scan was performed with additional color and power Doppler, followed by a bolus injection of 0.5 ml Optison. Tumor vascularization was evaluated with coded harmonic angio (CHA), pulse inversion imaging with power Doppler, 3D power Doppler and in the late phase (>5 min) with B-flow. In 15 cases with HCC, i.a. DSA was performed in addition. The results were also correlated with MRT and histological findings. Compared to spiral-CT/MRT, only 72/93 (77%) of the lesions could be detected in the B scan, 75/93 (81%) with CHA and 93/93 (100%) in the pulse inversion mode. Tumor vascularization was detectable in 43/93 (46%) of lesions with native power Doppler, in 75/93 (81%) of lesions after administering contrast medium in the CHA mode, in 81/93 (87%) of lesions in the pulse inversion mode with power Doppler and in 77/93 (83%) of lesions with contrast-enhanced B-flow. Early arterial and capillary perfusion was best detected with CHA, particularly in 20/20 (100%) of the HCC lesions, allowing a 3D reconstruction. 3D power Doppler was especially useful in investigating the tumor margins. Up to 20 min after contrast medium injection, B-flow was capable of detecting increased metastatic tumor vascularization in 42/54 (78%) of cases and intratumoral perfusion in 17/20 (85

  2. High-frequency ultrasound Doppler system for biomedical applications with a 30-MHz linear array.

    PubMed

    Xu, Xiaochen; Sun, Lei; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2008-04-01

    In this paper, we report the development of the first high-frequency (HF) pulsed-wave Doppler system using a 30-MHz linear array transducer to assess the cardiovascular functions in small animals. This array-based pulsed-wave Doppler system included a 16-channel HF analog beamformer, a HF pulsed-wave Doppler module, timing circuits, HF bipolar pulsers and analog front ends. The beamformed echoes acquired by the 16-channel analog beamformer were fed directly to the HF pulsed-wave Doppler module. Then the in-phase and quadrature-phase (IQ) audio Doppler signals were digitized by either a sound card or a Gage digitizer and stored in a personal computer. The Doppler spectrogram was displayed on a personal computer in real time. The two-way beamwidths were determined to be 160 microm to 320 microm when the array was electronically focused at different focal points at depths from 5 to 10 mm. A micro-flow phantom, consisting of a polyimide tube with an inner diameter of 127 microm and the wire phantom were used to evaluate and calibrate the system. The results show that the system is capable of detecting motion velocity of the wire phantom as low as 0.1 mm/s, and detecting blood-mimicking flow velocity in the 127-microm tube lower than 7 mm/s. The system was subsequently used to measure the blood flow in vivo in two mouse abdominal superficial vessels, with diameters of approximately 200 microm, and a mouse aorta close to the heart. These results demonstrated that this system may become an indispensable part of the current HF array-based imaging systems for small animal studies.

  3. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  4. COBE navigation with one-way return-link Doppler in the post-helium-venting phase

    NASA Technical Reports Server (NTRS)

    Dunham, Joan; Nemesure, M.; Samii, M. V.; Maher, M.; Teles, Jerome; Jackson, J.

    1991-01-01

    The results of a navigation experiment with one way return link Doppler tracking measurements for operational orbit determination of the Cosmic Background Explorer (COBE) spacecraft are presented. The frequency of the tracking signal for the one way measurements was stabilized with an Ultrastable Oscillator (USO), and the signal was relayed by the Tracking and Data Relay Satellite System (TDRSS). The study achieved three objectives: space qualification of TDRSS noncoherent one way return link Doppler tracking; determination of flight performance of the USO coupled to the second generation TDRSS compatible user transponder; and verification of algorithms for navigation using actual one way tracking data. Orbit determination and the inflight USO performance evaluation results are presented.

  5. Turbulent Channel Flow Measurements with a Nano-scale Thermal Anemometry Probe

    NASA Astrophysics Data System (ADS)

    Bailey, Sean; Witte, Brandon

    2014-11-01

    Using a Nano-scale Thermal Anemometry Probe (NSTAP), streamwise velocity was measured in a turbulent channel flow wind tunnel at Reynolds numbers ranging from Reτ = 500 to Reτ = 4000 . Use of these probes results in the a sensing-length-to-viscous-length-scale ratio of just 5 at the highest Reynolds number measured. Thus measured results can be considered free of spatial filtering effects. Point statistics are compared to recently published DNS and LDV data at similar Reynolds numbers and the results are found to be in good agreement. However, comparison of the measured spectra provide further evidence of aliasing at long wavelengths due to application of Taylor's frozen flow hypothesis, with increased aliasing evident with increasing Reynolds numbers. In addition to conventional point statistics, the dissipative scales of turbulence are investigated with focus on the wall-dependent scaling. Results support the existence of a universal pdf distribution of these scales once scaled to account for large-scale anisotropy. This research is supported by KSEF Award KSEF-2685-RDE-015.

  6. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize…

  7. Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander

    The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populationsmore » in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (Z DR), while an enhanced specific differential phase (K DP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce Z DR and K DP values close to 0, suggesting the occurrence of a riming process. A Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and Z DR.« less

  8. Toward Exploring the Synergy Between Cloud Radar Polarimetry and Doppler Spectral Analysis in Deep Cold Precipitating Systems in the Arctic

    DOE PAGES

    Oue, Mariko; Kollias, Pavlos; Ryzhkov, Alexander; ...

    2018-03-16

    The study of Arctic ice and mixed-phase clouds, which are characterized by a variety of ice particle types in the same cloudy volume, is challenging research. This study illustrates a new approach to qualitative and quantitative analysis of the complexity of ice and mixed-phase microphysical processes in Arctic deep precipitating systems using the combination of Ka-band zenith-pointing radar Doppler spectra and quasi-vertical profiles of polarimetric radar variables measured by a Ka/W-band scanning radar. The results illustrate the frequent occurrence of multimodal Doppler spectra in the dendritic/planar growth layer, where locally generated, slower-falling particle populations are well separated from faster-falling populationsmore » in terms of Doppler velocity. The slower-falling particle populations contribute to an increase of differential reflectivity (Z DR), while an enhanced specific differential phase (K DP) in this dendritic growth temperature range is caused by both the slower and faster-falling particle populations. Another area with frequent occurrence of multimodal Doppler spectra is in mixed-phase layers, where both populations produce Z DR and K DP values close to 0, suggesting the occurrence of a riming process. A Joint analysis of the Doppler spectra and the polarimetric radar variables provides important insight into the microphysics of snow formation and allows the separation of the contributions of ice of different habits to the values of reflectivity and Z DR.« less

  9. Fixed Delay Interferometry for Doppler Extrasolar Planet Detection

    NASA Astrophysics Data System (ADS)

    Ge, Jian

    2002-06-01

    We present a new technique based on fixed delay interferometry for high-throughput, high-precision, and multiobject Doppler radial velocity (RV) surveys for extrasolar planets. The Doppler measurements are conducted by monitoring the stellar fringe phase shifts of the interferometer instead of absorption-line centroid shifts as in state-of-the-art echelle spectroscopy. High Doppler sensitivity is achieved through optimizing the optical delay in the interferometer and reducing photon noise by measuring multiple fringes over a broad band. This broadband operation is performed by coupling the interferometer with a low- to medium-resolution postdisperser. The resulting fringing spectra over the bandpass are recorded on a two-dimensional detector, with fringes sampled in the slit spatial direction and the spectrum sampled in the dispersion direction. The resulting total Doppler sensitivity is, in theory, independent of the dispersing power of the postdisperser, which allows for the development of new-generation RV machines with much reduced size, high stability, and low cost compared to echelles. This technique has the potential to improve RV survey efficiency by 2-3 orders of magnitude over the cross-dispersed echelle spectroscopy approach, which would allow a full-sky RV survey of hundreds of thousands of stars for planets, brown dwarfs, and stellar companions once the instrument is operated as a multiobject instrument and is optimized for high throughput. The simple interferometer response potentially allows this technique to be operated at other wavelengths independent of popular iodine reference sources, being actively used in most of the current echelles for Doppler planet searches, to search for planets around early-type stars, white dwarfs, and M, L, and T dwarfs for the first time. The high throughput of this instrument could also allow investigation of extragalactic objects for RV variations at high precision.

  10. Doppler flowmetry in preeclampsia.

    PubMed

    Zahumensky, J

    2009-01-01

    The purpose of this study was to summarize the new published data on the Doppler flowmetry in preeclampsia. We summarize the new published data on the Doppler flowmetry in uteroplacental, fetoplacental and fetal circulation in preeclampsia. The present review summarized the results of clinical research on the Doppler flowmetry in the screening of risk of preclampsia, in the diagnosis of preclampsia and in the fetal risk in preclampsia (Ref. 19). Full Text (Free, PDF) www.bmj.sk.

  11. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  12. Field trial of a Doppler sonar system for fisheries applications

    NASA Astrophysics Data System (ADS)

    Tollefsen, Cristina D. S.; Zedel, Len

    2003-10-01

    Various deployments of commercial Doppler current profiling systems have demonstrated that these instruments can detect fish and measure their swimming speeds. However, research into the possible application of Doppler sonar to fisheries problems is limited and has not taken advantage of coherent signal processing schemes. A field trial was undertaken in August 2002 to explore the capabilities of a coherent Doppler sonar when applied to detecting discrete targets. The passage of migrating salmon on the Fraser River in British Columbia provided an ideal test opportunity with fish of well-defined swimming behavior and allowed for comparisons with conventional fisheries acoustics techniques. The instrument tested was a 250-kHz sonar which provided for phase coding of transmit pulses and coherent sampling of successive acoustic returns. The field trial resulted in 11 consecutive days of Doppler sonar data acquired during the peak of the sockeye salmon (Oncorhynchus nerka) migration. A total of 7425 individual fish were identified and their swimming speed was measured with an accuracy of between 10 cms-1 and 20 cms-1, which depended on pulse length, pulse spacing, and target range. By comparison, water velocity measurements made with the same instrument can only achieve a theoretical accuracy of 60 cms-1.

  13. Finnish Meteorological Institute Doppler Lidar

    DOE Data Explorer

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  14. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  15. Laser Doppler Velocimetry Workshop

    NASA Technical Reports Server (NTRS)

    Owen, R. B.

    1979-01-01

    The potential of laser Doppler velocimetry as a technique for use in mapping flows in the several fluid systems under development for doing research on low-gravity processes, is investigated. Laser Doppler velocimetry techniques, equipment, and applications are summarized.

  16. Noise considerations for remote detection of life signs with microwave Doppler radar.

    PubMed

    Nguyen, Dung; Yamada, Shuhei; Park, Byung-Kwon; Lubecke, Victor; Boric-Lubecke, Olga; Host-Madsen, Anders

    2007-01-01

    This paper describes and quantifies three main sources of baseband noise affecting physiological signals in a direct conversion microwave Doppler radar for life signs detection. They are thermal noise, residual phase noise, and Flicker noise. In order to increase the SNR of physiological signals at baseband, the noise floor, in which the Flicker noise is the most dominant factor, needs to be minimized. This paper shows that with the consideration of the noise factor in our Doppler radar, Flicker noise canceling techniques may drastically reduce the power requirement for heart rate signal detection by as much as a factor of 100.

  17. Proportionality between Doppler noise and integrated signal path electron density validated by differenced S-X range

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.

  18. Doppler ultrasound monitoring technology.

    PubMed

    Docker, M F

    1993-03-01

    Developments in the signal processing of Doppler ultrasound used for the detection of fetal heart rate (FHR) have improved the operation of cardiotocographs. These developments are reviewed and the advantages and disadvantages of the various Doppler and signal processing methods are compared.

  19. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  20. Experimental Study and Numerical Modeling of Gas Flow in Microchannels and Micronozzles

    DTIC Science & Technology

    2005-12-01

    built and used to study gas flows in microscale. Gas velocity measurements in microscale were conducted using both Laser Induced Fluorescence...velocity measurements in microscale were conducted using both Laser Induced Fluorescence technique (LIF) in conjunction with Image Correlation...micronozzles, several velocity measurement techniques have been used, such as laser doppler anemometry (LDA), particle image velocimetry (PIV), molecular

  1. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  2. Doppler radar with multiphase modulation of transmitted and reflected signal

    NASA Technical Reports Server (NTRS)

    Shores, Paul W. (Inventor); Griffin, John W. (Inventor); Kobayashi, Herbert S. (Inventor)

    1989-01-01

    A microwave radar signal is generated and split by a circulator. A phase shifter introduces a series of phase shifts into a first part of the split signal which is then transmitted by antenna. A like number of phase shifts is introduced by the phase shifter into the return signal from the target. The circulator delivers the phase shifted return signal and the leakage signal from the circulator to a mixer which generates an IF signal output at the Doppler frequency. The IF signal is amplified, filtered, counted per unit of time, and the result displayed to provide indications of target sense and range rate. An oscillator controls rate of phase shift in the transmitted and received radar signals and provides a time base for the counter. The phase shift magnitude increases may be continuous and linear or discrete functions of time.

  3. Doppler-guided retrograde catheterization system

    NASA Astrophysics Data System (ADS)

    Frazin, Leon J.; Vonesh, Michael J.; Chandran, Krishnan B.; Khasho, Fouad; Lanza, George M.; Talano, James V.; McPherson, David D.

    1991-05-01

    The purpose of this study was to investigate a Doppler guided catheterization system as an adjunctive or alternative methodology to overcome the disadvantages of left heart catheterization and angiography. These disadvantages include the biological effects of radiation and the toxic and volume effects of iodine contrast. Doppler retrograde guidance uses a 20 MHz circular pulsed Doppler crystal incorporated into the tip of a triple lumen multipurpose catheter and is advanced retrogradely using the directional flow information provided by the Doppler waveform. The velocity detection limits are either 1 m/second or 4 m/second depending upon the instrumentation. In a physiologic flow model of the human aortic arch, multiple data points revealed a positive wave form when flow was traveling toward the catheter tip indicating proper alignment for retrograde advancement. There was a negative wave form when flow was traveling away from the catheter tip if the catheter was in a branch or bent upon itself indicating improper catheter tip position for retrograde advancement. In a series of six dogs, the catheter was able to be accurately advanced from the femoral artery to the left ventricular chamber under Doppler signal guidance without the use of x-ray. The potential applications of a Doppler guided retrograde catheterization system include decreasing time requirements and allowing safer catheter guidance in patients with atherosclerotic vascular disease and suspected aortic dissection. The Doppler system may allow left ventricular pressure monitoring in the intensive care unit without the need for x-ray and it may allow left sided contrast echocardiography. With pulse velocity detection limits of 4 m/second, this system may allow catheter direction and passage into the aortic root and left ventricle in patients with aortic stenosis. A modification of the Doppler catheter may include transponder technology which would allow precise catheter tip localization once the

  4. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design

    PubMed Central

    Hall, Travis; Nguyen, Tam Q.; Mayeda, Jill C.; Lie, Paul E.; Lopez, Jerry; Banister, Ron E.

    2017-01-01

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients’ long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient’s vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is

  5. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design.

    PubMed

    Hall, Travis; Lie, Donald Y C; Nguyen, Tam Q; Mayeda, Jill C; Lie, Paul E; Lopez, Jerry; Banister, Ron E

    2017-11-15

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients' long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient's vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is sleeping

  6. Calibration of echocardiographic tissue doppler velocity, using simple universally applicable methods

    NASA Astrophysics Data System (ADS)

    Dhutia, Niti M.; Zolgharni, Massoud; Willson, Keith; Cole, Graham; Nowbar, Alexandra N.; Manisty, Charlotte H.; Francis, Darrel P.

    2014-03-01

    Some of the challenges with tissue Doppler measurement include: apparent inconsistency between manufacturers, uncertainty over which part of the trace to make measurements and a lack of calibration of measurements. We develop and test tools to solve these problems in echocardiography laboratories. We designed and constructed an actuator and phantom setup to produce automatic reproducible motion, and used it to compare velocities measured using 3 echocardiographic modalities: M-mode, speckle tracking, and tissue Doppler, against a non-ultrasound, optical gold standard. In the clinical phase, 25 patients underwent M-mode, speckle tracking and tissue Doppler measurements of tissue velocities. In-vitro, the M-mode and speckle tracking velocities were concordant with optical assessment. Of the three possible tissue Doppler measurement conventions (outer, middle and inner line) only the middle line agreed with the optical assessment (discrepancy -0.20 (95% confidence interval -0.44 to 0.03)cm/s, p=0.11, outer +5.19(4.65 to 5.73)cm/s, p<0.0001, inner -6.26(-6.87 to -5.65)cm/s, p<0.0001). All 4 studied manufacturers showed a similar pattern. M-mode was therefore chosen as the in-vivo gold standard. Clinical measurements of tissue velocities by speckle tracking and the middle line of the tissue Doppler were concordant with M-mode, while the outer line significantly overestimated (+1.27(0.96 to 1.59)cm/s, p<0.0001) and the inner line underestimated (-1.81(-2.11 to -1.52)cm/s, p<0.0001). Echocardiographic velocity measurements can be calibrated by simple, inexpensive tools. We found that the middle of the tissue Doppler trace represents velocity correctly. Echocardiographers requiring velocities to match between different equipment, settings or modalities should use the middle line as the "guideline".

  7. TiCl4 as a source of TiO2 particles for laser anemometry measurements in hot gas

    NASA Technical Reports Server (NTRS)

    Weikle, Donald H.; Seasholtz, Richard G.; Oberle, Lawrence G.

    1990-01-01

    A method of reacting TiCl4 with water saturated gaseous nitrogen (GN2) at the entrance into a high temperature gas flow is described. The TiO2 particles formed are then entrained in the gas flow and used as seed particles for making laser anemometry (LA) measurements of the flow velocity distribution in the hot gas. Scanning electron microscope photographs of the TiO2 particles are shown. Data rate of the LA processor was measured to determine the amount of TiO2 formed. The TiCl4 and mixing gas flow diagram is shown. This work was performed in an open jet burner.

  8. NASA LaRC FIB Multi-Channel Anemometry Recording System-User's Manual. [conducted at the Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Sherylene (Compiler); Bertelrud, Arild (Compiler); Anders, J. B. (Technical Monitor)

    2002-01-01

    This report is part of a series of reports describing a flow physics high-lift experiment conducted in NASA Langley Research Center's Low-Turbulence Pressure Tunnel (LTPT) in 1996. The anemometry system used in the experiment was originally designed for and used in flight tests with NASA's Boeing 737 airplane. Information that may be useful in the evaluation or use of the experimental data has been compiled. The report also contains details regarding record structure, how to read the embedded time code, as well as the output file formats used in the code reading the binary data.

  9. Developments in hot-film anemometry measurements of hydroacoustic particle motion

    NASA Astrophysics Data System (ADS)

    Dubbelday, Pieter S.; Apostolico, Virgil V.; Diebel, Dean L.

    1988-08-01

    Hot film anemometry may be used to measure particle motion in hydroacoustic fields. Since the cylindrical sensors used thus far are very fragile, the method is little suited for use outside the laboratory. The measurement of the response of a more rugged conical sensor is reported here. Another way of protecting the sensor consists of packaging the sensor in a rubber liquid filled boot. This also prevents fouling and bubble formation on the heated film. The response shows a resonance at low frequency, ascribed to the liquid filled boot, which may be used for enhanced response in a limited frequency region. The response of a hot film anemometer to vertical hydroacoustic particle motion is influenced by free convection, which acts as a bias flow. The output was shown to be proportional to particle displacement for a wide range of parameters. It was expected that an imposed bias flow would increase the output and remove the dependence on the direction of gravity. Therefore, a hot-film sensor (diameter d) was subjected to an underwater jet from a nozzle. The output showed a transition from being proportional to particle speed, to being proportional to particle displacement, depending on the angular frequency omega and imposed flow speed omega. The transition takes place when a dimensionless number omega, defined as omega = omega/nu is of order 1.

  10. The mobile Sousy-Doppler radar: Technical design and first results

    NASA Technical Reports Server (NTRS)

    Czechowsky, P.; Schmidt, G.; Ruster, R.

    1983-01-01

    A mobile VHF Doppler system was developed. The electronic part is installed in a 20 ft container and tested using a special log periodic aerial to illuminate the 300 m dish. The system was extended by designing a mobile phased antenna array with finally 576 Yagi elements. The grouping of the single Yagis, the system of transmission lines, the phase shifters, the power splitters and the T/R switch are described. Results from the first two campaigns and a survey of future programs demonstrating the flexibility of this mobile system are summarized.

  11. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  12. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  13. An Externally Dispersed Interferometer for Sensitive Doppler Extrasolar Planet Searches

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Erskine, David J.; Rushford, Mike

    2002-09-01

    A new kind of instrument for sensitive Doppler extrasolar planet searches, called an externally dispersed interferometer, is described in this paper. It is a combination of an optical Michelson-type interferometer and an intermediate-resolution grating spectrometer. The interferometer measures Doppler radial velocity (RV) variations of starlight through the phase shifts of moiré fringes, created by multiplication of the interferometer fringes with stellar absorption lines. The intermediate-resolution spectrograph disperses the moiré fringes into thousands of parallel-wavelength channels. This increases the instrument bandwidth and fringe visibility by preventing fringe cross-talk between neighboring spectral lines. This results in a net increase in the signal-to-noise ratio over an interferometer used alone with broadband light. Compared to current echelle spectrometers for extrasolar planet searches, this instrument offers two unique instrument properties: a simple, stable, well-defined sinusoidal instrument response function (point-spread function) and magnification of Doppler motion through moiré fringe techniques. Since instrument noise is chiefly limited by the ability to characterize the instrument response, this new technique provides unprecedented low instrumental noise in an economical compact apparatus, enabling higher precision for Doppler RV measurements. In practice, the moiré magnification can be 5-10 times depending on the interferometer comb angle. This instrument has better sensitivity for smaller Doppler shifts than echelle spectrometers. The instrument can be designed with much lower spectral resolving power without losing Doppler sensitivity and optimized for higher throughput than echelle spectrometers to allow a potential survey for planets around fainter stars than current magnitude limits. Lab-based experiments with a prototype instrument with a spectral resolution of R~20,000 demonstrated ~0.7 m s-1 precision for short-term RV

  14. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  15. A pseudo-dual-Doppler analysis of cyclic tornadogenesis

    NASA Astrophysics Data System (ADS)

    Dowell, David Collin

    2000-06-01

    Several tornadic storms formed in the Texas Panhandle on 8 June 1995, the date of the last mission of VORTEX (Verification of the Origins of Rotation in Tornadoes EXperiment). The southernmost storm in this severe weather outbreak produced a family of at least five tornadoes near the town of McLean. Airborne Doppler radar scans of this storm by the ELDORA (ELectra DOppler RAdar) offer the most detailed look to date at a storm producing a family of tornadoes. The goals of this study were twofold. The first was to determine a pseudo-dual-Doppler wind synthesis method in Cartesian coordinates appropriate for the analysis of the ELDORA data. Unique aspects of this part of the study include a comparison of wind synthesis methods based on variational formulations and the use of a non-uniform moving reference frame for the syntheses. A dual-Doppler formulation in which the radial velocity and continuity equations are all satisfied as weak constraints (Gamache 1997, Shapiro and Mewes 1999) yields a more accurate wind field than traditional (and variational) methods in which the radial velocity equations are satisfied exactly. The second goal of this study was to diagnose both the cyclic process and the formation of individual tornadoes. The McLean storm produced three large tornadoes at 18 min intervals. The last of these then lasted much longer (over one hour) and was stronger than the previous tornadoes. New pre-tornadic vortices formed on the east side of the updraft by tilting of strong environmental low-level horizontal vorticity into the vertical and then stretching of the vertical vorticity within the updraft. The vortices did not mature at low levels until they migrated to the west side of the updraft. Indirect evidence indicates that both baroclinic generation of horizontal vorticity and the rear downdraft may have played roles in tornado formation at this stage. The tornadic potential of a storm appears-to be related to the relative strength of low-level storm

  16. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    NASA Astrophysics Data System (ADS)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles (< 0.5 m s-1) coexisted with faster-falling particles (> 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD

  17. Doppler characteristics of sea clutter.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristicsmore » of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.« less

  18. The relationship between VHF radar auroral backscatter amplitude and Doppler velocity: a statistical study

    NASA Astrophysics Data System (ADS)

    Shand, B. A.; Lester, M.; Yeoman, T. K.

    1996-08-01

    A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities <200 m s-1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s-1 and 700 m s-1. At velocities greater than 700 m s-1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.

  19. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  20. A demonstrator for an incoherent Doppler wind lidar receiver

    NASA Astrophysics Data System (ADS)

    Fabre, F.; Marini, A.; Sidler, Thomas C.; Morancais, Didier; Fongy, G.; Vidal, Ph.

    2018-04-01

    The knowledge of wind fields for a global terrestrial coverage and accurate altitude sampling is one of the main keys for improvement of meteorological predictions and general understanding of atmosphere behaviour. The best way to recover this information is remote sensing from space using low Earth orbit satellites. The measurement principle is to analyse the Doppler shift of the flux emitted by the space instrument and backscattered by the atmosphere. One of the most promising principle for Doppler shift measurement is the direct detection which does not need local oscillators. what significantly simplifies the design of such a space-borne receiver. ESA-ESTEC initiated at early 95' a programme called "lncoherent Doppler Wind Lidar (IDWL) technologies" for the study and bread-boarding phase. MMS won this contract proposing an original concept based on the use of a Fizeau high resolution interferometer working in the UV band. coupled with an intensified CCD. This concept is patented by MMS, as well as the special CCD timing sequence that will be depicted below. The programme begun by a study of the space-borne instrument in order to identify main constraints and define the receiver as could be for a flight model. A detailed performance model was established and parametric analysis allowed to optimise the concept in order to reach required performances. This study phase finally provided the definition of a bread-board for expected performances demonstration. Moreover, the Laser Signal Simulator (LSS) which is used to simulate the Lidar echo in term of amplitude as well as frequency modulation was defined at this step. The performances of this test support equipment are of main importance for the validation of the demonstrator design and performances. The second part of the study aimed at defining the derailed design of the demonstrator and associated test support equipment as well as initiating preliminary validation experiments on most critical technologies, like

  1. Applications of Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang

    longitudinal resolution and the imaging depth for OCT imaging. Doppler OCT is becoming an increasingly popular field of investigation within optical coherence tomography with potentially important applications in cardiovascular and microfluidic research. We have spent some of the effort on searching for accurate and efficient methods for processing the experimental data. We applied the pseudo Wigner time-frequency distribution method to the data processing of Doppler OCT and compared its performance to that of the short-time Fourier transform method, the Hilbert-based phase-resolved method and the autocorrelation method. We concluded that the pseudo Wigner-distribution signal processing method is overall more precise than other often-used methods in Doppler OCT for the analysis of cross-sectional velocity distributions, especially in the high velocity regime. We also discovered the advantage of using the time-domain instead of the frequency domain for Doppler OCT for some applications where precise Doppler-speed metrology is essential. Based on the fact that the obtained local OCT interference signal is almost a single periodic waveform, we have developed a novel, simple and less time-consuming processing method based on the zero-crossing points in an OCT signal for the measurement of the Doppler frequency in a laminar flow. This method was compared to other processing approaches currently used in Doppler OCT. The results show that in the case of laminar flow, the zero-crossing method gives the more precise results, especially in the higher velocity regime with a substantial economy in processing time and an increase in dynamic range which can reach 70 dB. This feature becomes a major advantage in metrology if one wants to measure velocities over several orders of magnitude. We have applied this technique to some real flow models and the preliminary results on flow velocity distributions obtained in the case of a microfluidic circuit and in that of a phantom of a blood vessel

  2. The medical Doppler in hand surgery: its scientific basis, applications, and the history of its namesake, Christian Johann Doppler.

    PubMed

    Ghori, Ahmer K; Chung, Kevin C

    2007-12-01

    The word Doppler is used synonymously in hand surgery for evaluating patency of vascular structures; however, the science and history behind the Doppler effect are not as well-known. We will present the theories behind the Doppler effect and the history of the person who made this discovery.

  3. Noncoherent Doppler tracking: first flight results

    NASA Astrophysics Data System (ADS)

    DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.

    2005-01-01

    Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.

  4. Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    NASA Technical Reports Server (NTRS)

    Lee, Jonggil

    1990-01-01

    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.

  5. Laser Doppler flowmetry, transcutaneous oxygen tension measurements and Doppler pressure compared in patients undergoing amputation.

    PubMed

    Lantsberg, L; Goldman, M

    1991-04-01

    The level of amputation continues to present a challenge for surgeons. In view of this, 24 patients who required an amputation of their ischaemic leg were studied prospectively using Laser Doppler flowmetry (LDF), TcpO2 measurements and Doppler ultrasound to assess the best level for amputation. In all patients gangrene of the leg and rest pain were the indication for an amputation. Skin oxygen tension (TcpO2) and skin blood flow (LDF) measurements were obtained the day before surgery on the proposed anterior and posterior skin flaps for below knee amputation and the maximum Doppler systolic pressure was measured. The level of amputation was chosen at surgery by clinical judgement without reference to the measurements mentioned above. A below knee amputation was performed in 17 patients and an above knee in seven. All amputations healed by primary intention. Doppler pressures showed poor discrimination with a median value of 10 mmHg (0-25) in AK patients and 35 mmHg (0-85) in the BK group (p greater than 0.05). In contrast TcpO2 showed a trend. In the BK group the median value was 20 mmHg (4-50) on the anterior and 22 mmHg (2-60) on the posterior flap compared to above knee amputees with median values of 6 mmHg (2-11) and 8 mmHg (3-38), respectively (p greater than 0.05). Laser Doppler seemed more useful. In BK patients the median LDF values were 36 mV (20-85) on the anterior and 34 mV (20-80) on the posterior flap with median LDF values of 10 mV (10-18) on the anterior and 11 mV (8-38) on the posterior flap in the above knee group (p less than 0.01). Laser Doppler flowmetry is a simple objective test, which is a better discriminator of skin flap perfusion than either TcpO2 or Doppler ankle pressures.

  6. Performance of the Phase Doppler Particle Analyzer icing cloud droplet sizing probe in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Rudoff, R. C.; Bachalo, E. J.; Bachalo, W. D.; Oldenburg, J. R.

    1992-01-01

    The design, development, and testing of an icing cloud droplet sizing probe based upon the Phase Doppler Particle Analyzer (PDPA) are discussed. This probe is an in-situ laser interferometry based single particle measuring device capable of determining size distributions. The probe is designed for use in harsh environments such as icing tunnels and natural icing clouds. From the measured size distribution, Median Volume Diameter (MVD) and Liquid Water Content (LWC) may be determined. Both the theory of measurement and the mechanical aspects of the probe design and development are discussed. The MVD results from the probe are compared to an existing calibration based upon different instruments in a series of tests in the NASA Lewis Icing Research Tunnel. Agreement between the PDPA probe and the existing calibration is close for MVDs between 15 to 30 microns, but the PDPA results are considerably smaller for MVDs under 15 microns.

  7. [Orthogonal experiments for optimizing the formulation and preparation conditions of temozolomide solid lipid nanoparticles].

    PubMed

    Dou, Mingjin; Huang, Guihua; Xi, Yanwei; Zhang, Na

    2008-10-01

    TMZ-SLN were prepared by emulsification-low temperature solidification method with stearic acid. The formulation and the preparation conditions were optimized by orthogonal experiments using entrapment efficiency as the evaluation index. The morphology was detected by transmission electron microscope. The Zeta potentials and the particle size distribution were evaluated by Laser Doppler Anemometry. The entrapment efficiencies and the drug release characteristics in vitro were assessed. The result showed that TMZ-SLN were concinnous and spherical in shape. The mean diameter (d(av) ) was 65.0 +/- 6.2 nm and the Zeta potential was -37.2 mV. The average entrapment efficiency was 58.9% +/- 1.21 %. The drug release behavior in vitro conformed to Higuchi Equation. The formation of a new material phase was testified by analysis of differential scanning calorimetry.

  8. Detection of Traveling Ionospheric Disturbances by Medium Frequency Doppler Sounding Using AM Radio Transmissions

    NASA Astrophysics Data System (ADS)

    Chilcote, M. A.; Labelle, J. W.; Lind, F. D.; Coster, A. J.; Galkin, I. A.; Miller, E.; Weatherwax, A. T.

    2013-12-01

    Nighttime traveling ionosphere disturbances (TIDs) propagating in the lower F region of the ionosphere were detected from time variations in the Doppler shifts of commercial AM radio broadcast stations. Three separately deployed receivers, components of the Intercepted Signals for Ionospheric Science (ISIS) Array software radio instrumentation network, recorded signals from two radio stations during eleven nights in March-April, 2012. Combining these measurements established that variations in the frequencies of the received signals, with amplitudes up to a few tenths of a Hertz, resulted from Doppler shifts produced by the ionosphere. At times, TIDs were detected as large amplitude variations in the Doppler shift with approximately 40-minute period correlated across the array. For one study interval, 0000-0400 UT on April 13, 2012, simultaneous GPS-TEC, digisonde, and superDARN coherent backscatter radar measurements confirmed the detection of TIDs with the same period. Detection of the AM signals at widely spaced receivers allowed the phase velocity and wavelength of the TIDs to be inferred, with some limitations due to differing reflection heights for the different frequencies. These measurements will be compared to phase velocities and wavelengths determined from combining an array of GPS receivers; discrepancies due to the altitude sensitivity of the techniques or other effects will be discussed. These results demonstrate that AM radio signals can be used for detection of nighttime TIDs.

  9. Improved performance of a digital phase-locked loop combined with a frequency/frequency-rate estimator

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Simon, M.

    1986-01-01

    When a digital phase-locked loop with a long loop update time tracks a signal with high Doppler, the demodualtion losses due to frequency mismatch can become very significant. One way of reducing these Doppler-related losses is to compensate for the Doppler effect using some kind of frequency-rate estimator. The performance of the fixed-window least-squares estimator and the Kalman filter is investigated; several Doppler compensating techniques are proposed. It is shown that the variance of the frequency estimator can be made as small as desired, and with this, the Doppler effect can be effectively compensated. The remaining demodulation losses due to phase jitter in the loop can be less than 0.1 dB.

  10. De-Dopplerization of Acoustic Measurements

    DTIC Science & Technology

    2017-08-10

    band energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An...energy obtained from fractional octave band digital filters generates a de-Dopplerized spectrum without complex resampling algorithms. An equation...fractional octave representation and smearing that occurs within the spectrum11, digital filtering techniques were not considered by these earlier

  11. Analysis and prediction of Doppler noise during solar conjunctions

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Rockwell, S. T.

    1975-01-01

    The results of a study of Doppler data noise during solar conjunctions were presented. During the first half of 1975, a sizeable data base of Doppler data noise (estimates) for the Pioneer 10, Pioneer 11, and Helios 1 solar conjunctions was accumulated. To analyze this data, certain physical assumptions are made, leading to the development of a geometric parameter ("ISI") which correlates strongly with Doppler data noise under varying sun-earth-spacecraft geometries. Doppler noise models are then constructed from this parameter, resulting in the newfound ability to predict Doppler data noise during solar conjunctions, and hence to additionally be in a position to validate Doppler data acquired during solar conjunctions.

  12. Orbit-determination performance of Doppler data for interplanetary cruise trajectories. Part 1: Error analysis methodology

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Thurman, S. W.

    1992-01-01

    An error covariance analysis methodology is used to investigate different weighting schemes for two-way (coherent) Doppler data in the presence of transmission-media and observing-platform calibration errors. The analysis focuses on orbit-determination performance in the interplanetary cruise phase of deep-space missions. Analytical models for the Doppler observable and for transmission-media and observing-platform calibration errors are presented, drawn primarily from previous work. Previously published analytical models were improved upon by the following: (1) considering the effects of errors in the calibration of radio signal propagation through the troposphere and ionosphere as well as station-location errors; (2) modelling the spacecraft state transition matrix using a more accurate piecewise-linear approximation to represent the evolution of the spacecraft trajectory; and (3) incorporating Doppler data weighting functions that are functions of elevation angle, which reduce the sensitivity of the estimated spacecraft trajectory to troposphere and ionosphere calibration errors. The analysis is motivated by the need to develop suitable weighting functions for two-way Doppler data acquired at 8.4 GHz (X-band) and 32 GHz (Ka-band). This weighting is likely to be different from that in the weighting functions currently in use; the current functions were constructed originally for use with 2.3 GHz (S-band) Doppler data, which are affected much more strongly by the ionosphere than are the higher frequency data.

  13. Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar

    NASA Astrophysics Data System (ADS)

    Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan

    2016-09-01

    A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.

  14. Application of vector analysis on study of illuminated area and Doppler characteristics of airborne pulse radar

    NASA Astrophysics Data System (ADS)

    Wang, Haijiang; Yang, Ling

    2014-12-01

    In this paper, the application of vector analysis tool in the illuminated area and the Doppler frequency distribution research for the airborne pulse radar is studied. An important feature of vector analysis is that it can closely combine the geometric ideas with algebraic calculations. Through coordinate transform, the relationship between the frame of radar antenna and the ground, under aircraft motion attitude, is derived. Under the time-space analysis, the overlap area between the footprint of radar beam and the pulse-illuminated zone is obtained. Furthermore, the Doppler frequency expression is successfully deduced. In addition, the Doppler frequency distribution is plotted finally. Using the time-space analysis results, some important parameters of a specified airborne radar system are obtained. Simultaneously, the results are applied to correct the phase error brought by attitude change in airborne synthetic aperture radar (SAR) imaging.

  15. In vivo photoacoustic tomography of total blood flow and Doppler angle

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.

    2012-02-01

    As two hallmarks of cancer, angiogenesis and hypermetabolism are closely related to increased blood flow. Volumetric blood flow measurement is important to understanding the tumor microenvironment and developing new means to treat cancer. Current photoacoustic blood flow estimation methods focus on either the axial or transverse component of the flow vector. Here, we propose a method to compute the total flow speed and Doppler angle by combining the axial and transverse flow measurements. Both the components are measured in M-mode. Collating the A-lines side by side yields a 2D matrix. The columns are Hilbert transformed to compare the phases for the computation of the axial flow. The rows are Fourier transformed to quantify the bandwidth for the computation of the transverse flow. From the axial and transverse flow components, the total flow speed and Doppler angle can be derived. The method has been verified by flowing bovine blood in a plastic tube at various speeds from 0 to 7.5 mm/s and at Doppler angles from 30 to 330°. The measurement error for total flow speed was experimentally determined to be less than 0.3 mm/s; for the Doppler angle, it was less than 15°. In addition, the method was tested in vivo on a mouse ear. The advantage of this method is simplicity: No system modification or additional data acquisition is required to use our existing system. We believe that the proposed method has the potential to be used for cancer angiogenesis and hypermetabolism imaging.

  16. The effect of blood acceleration on the ultrasound power Doppler spectrum

    NASA Astrophysics Data System (ADS)

    Matchenko, O. S.; Barannik, E. A.

    2017-09-01

    The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal-noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.

  17. Validation of continuous-wave Doppler echocardiographic measurements of mitral and tricuspid prosthetic valve gradients: a simultaneous Doppler-catheter study.

    PubMed

    Wilkins, G T; Gillam, L D; Kritzer, G L; Levine, R A; Palacios, I F; Weyman, A E

    1986-10-01

    For patients with stenotic native valves, the modified Bernoulli equation (delta P = 4V2) may be applied to Doppler-measured transvalvular velocities to yield an accurate estimate of transvalvular gradients. Although it would be useful if the same approach could be used for those with stenotic prosthetic valves, no previous study has validated the Doppler technique in this setting. We therefore recorded simultaneous continuous-wave Doppler flow profiles and transvalvular manometric gradients in 12 catheterized patients in whom all atrial and ventricular pressures were directly measured (transseptal left atrial catheterization and transthoracic ventricular puncture were performed where necessary). A total of 13 prostheses were studied: 11 mitral (seven porcine, three Starr-Edwards, and one Björk-Shiley) and two tricuspid (one porcine and one Björk-Shiley). The Doppler-determined mean gradient was calculated as the mean of the instantaneous gradients (delta P = 4V2) at 10 msec intervals throughout diastole. The correlation of simultaneous Doppler (DMG) and manometric mean gradients (MG) for the whole group (n = 13) demonstrated a highly significant relationship (MG = 1.07 DMG + 0.28; r = .96, p = .0001). The correlation was equally good for porcine valves alone (n = 8) (MG = 1.06 DMG + 0.55; r = .96, p = .001) and for mechanical valves alone (n = 5) (MG = 1.06 DMG - 0.04; r = .93, p = .02). In a subset of patients without regurgitation (n = 8), prosthetic valve areas were estimated by two Doppler methods originally described by Holen and Hatle, as well as by the invasive Gorlin method. As expected from theoretical considerations, a close correlation was not demonstrated between results of the Gorlin method and those of either Hatle's Doppler method (r = .65, fp = NS) or Holen's method (r = .14, p = NS). Comparison of the results of the two Doppler methods yielded a somewhat closer correlation (r = .73, p less than or equal to .05). These results suggest that in

  18. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    PubMed Central

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  19. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  20. Evaluation of joint effusion in rabbits by color Doppler, power Doppler, and contrast-enhanced power Doppler ultrasonography.

    PubMed

    Lim, Gye-Yeon; Im, Soo Ah; Jung, Won Sang; Lee, Jae Mun; Lee, Ah Won

    2005-09-01

    The aim of this prospective study was to evaluate the diagnostic value of power Doppler ultrasonography (PDUS) and contrast-enhanced PDUS (CEPDUS) in the depiction and characterization of experimentally induced arthritis in the rabbit. Thirty rabbits were divided into three groups consisting of one control group (saline injection group) and two experimental groups: a suppurative arthritis group and a chemically induced synovitis group. The same amount (1 ml) of each agent was directly injected into the right hip joint. Serial color Doppler ultrasound (CDUS), PDUS, and CEPDUS images were obtained before and after injection. We observed that all of the infected knees in the suppurative arthritis group with Staphylococcus aureus demonstrated an increased signal on PDUS after inoculation. A minimal power Doppler signal was presented in the chemically induced synovitis group with talc injection, but none of the control knees demonstrated any increased signals. CEPDUS was the most sensitive imaging modality for evaluating the increase of blood flows in suppurative arthritis and was subsequently followed by PDUS and CDUS. The increased signals obtained with PDUS represent increased local blood flows; therefore, this technique can be used for evaluating the degree of inflammation. Furthermore, using the contrast agent enhances the sensitivity of PDUS, and it can even be useful for differentiating borderline cases. Copyright 2005 Wiley Periodicals, Inc

  1. Doppler term in the galaxy two-point correlation function: Wide-angle, velocity, Doppler lensing and cosmic acceleration effects

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Bertacca, Daniele; Jeong, Donghui; Neyrinck, Mark C.; Szalay, Alexander S.

    2018-03-01

    We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys, however, we show that the Doppler term must be included. The effect of these terms is dominated by the magnification due to relativistic aberration effects and the slope of the galaxy redshift distribution and it generally mimics the effect of the local type primordial non-Gaussianity with the effective nonlinearity parameter fNLeff of a few; we show that this would affect forecasts on measurements of fNL at low-redshift. Our results show that a survey at low redshift with large number density over a wide area of the sky could detect the Doppler term with a signal-to-noise ratio of ∼ 1 - 20, depending on survey specifications.

  2. Micro-Doppler analysis of multiple frequency continuous wave radar signatures

    NASA Astrophysics Data System (ADS)

    Anderson, Michael G.; Rogers, Robert L.

    2007-04-01

    Micro-Doppler refers to Doppler scattering returns produced by non rigid-body motion. Micro-Doppler gives rise to many detailed radar image features in addition to those associated with bulk target motion. Targets of different classes (for example, humans, animals, and vehicles) produce micro-Doppler images that are often distinguishable even by nonexpert observers. Micro-Doppler features have great potential for use in automatic target classification algorithms. Although the potential benefit of using micro-Doppler in classification algorithms is high, relatively little experimental (non-synthetic) micro-Doppler data exists. Much of the existing experimental data comes from highly cooperative targets (human or vehicle targets directly approaching the radar). This research involved field data collection and analysis of micro-Doppler radar signatures from non-cooperative targets. The data was collected using a low cost Xband multiple frequency continuous wave (MFCW) radar with three transmit frequencies. The collected MFCW radar signatures contain data from humans, vehicles, and animals. The presented data includes micro-Doppler signatures previously unavailable in the literature such as crawling humans and various animal species. The animal micro-Doppler signatures include deer, dog, and goat datasets. This research focuses on the analysis of micro-Doppler from noncooperative targets approaching the radar at various angles, maneuvers, and postures.

  3. [Venous Doppler color echography: importance and inconveniences].

    PubMed

    Laroche, J P; Dauzat, M; Muller, G; Janbon, C

    1993-01-01

    Color Doppler is a technique which performs a real-time opacification of the vascular system with blue indicating reverse flow and red indicating forward flow (directional color coding). In venous pathology, the use of color Doppler improves significantly the anatomical evaluation of the inferior vena cava, the iliac vein, the deep femoral vein, and the sural system. Color Doppler facilitates the study of deep venous thrombosis (providing useful information to differentiate ancient from most recent thrombus) and also the study of post-thrombotic conditions (assessment of reverse flow, repermeation phenomena). Finally, color Doppler produces a better insight for the study of varicose veins, especially with regard to mapping, identification of communicante veins, and study of the external saphenous vein.

  4. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    PubMed

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-12-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: "Gestational trophoblastic disease AND Ultrasonography, Doppler." Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. (1) Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. (2) There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. (3) Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. (4) Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia.

  5. Spatiotemporal image correlation-derived volumetric Doppler impedance indices from spherical samples of the placenta: intraobserver reliability and correlation with conventional umbilical artery Doppler indices.

    PubMed

    Welsh, A W; Hou, M; Meriki, N; Martins, W P

    2012-10-01

    Volumetric impedance indices derived from spatiotemporal image correlation (STIC) power Doppler ultrasound (PDU) might overcome the influence of machine settings and attenuation. We examined the feasibility of obtaining these indices from spherical samples of anterior placentas in healthy pregnancies, and assessed intraobserver reliability and correlation with conventional umbilical artery (UA) impedance indices. Uncomplicated singleton pregnancies with anterior placenta were included in the study. A single observer evaluated UA pulsatility index (PI), resistance index (RI) and systolic/diastolic ratio (S/D) and acquired three STIC-PDU datasets from the placenta just above the placental cord insertion. Another observer analyzed the STIC-PDU datasets using Virtual Organ Computer-aided AnaLysis (VOCAL) spherical samples from every frame to determine the vascularization index (VI) and vascularization flow index (VFI); maximum, minimum and average values were used to determine the three volumetric impedance indices (vPI, vRI, vS/D). Intraobserver reliability was examined by intraclass correlation coefficients (ICC) and association between volumetric indices from placenta, and UA Doppler indices were assessed by Pearson's correlation coefficient. A total of 25 pregnant women were evaluated but five were excluded because of artifacts observed during analysis. The reliability of measurement of volumetric indices of both VI and VFI from three STIC-PDU datasets was similar, with all ICCs ≥ 0.78. Pearson's r values showed a weak and non-significant correlation between UA pulsed-wave Doppler indices and their respective volumetric indices from spherical samples of placenta (all r ≥ 0.23). VOCAL indices from specific phases of the cardiac cycle showed good repeatability (ICC ≥ 0.92). Volumetric impedance indices determined from spherical samples of placenta are sufficiently reliable but do not correlate with UA Doppler indices in healthy pregnancies. Copyright © 2012

  6. Velocity measurement by vibro-acoustic Doppler.

    PubMed

    Nabavizadeh, Alireza; Urban, Matthew W; Kinnick, Randall R; Fatemi, Mostafa

    2012-04-01

    We describe the theoretical principles of a new Doppler method, which uses the acoustic response of a moving object to a highly localized dynamic radiation force of the ultrasound field to calculate the velocity of the moving object according to Doppler frequency shift. This method, named vibro-acoustic Doppler (VAD), employs two ultrasound beams separated by a slight frequency difference, Δf, transmitting in an X-focal configuration. Both ultrasound beams experience a frequency shift because of the moving objects and their interaction at the joint focal zone produces an acoustic frequency shift occurring around the low-frequency (Δf) acoustic emission signal. The acoustic emission field resulting from the vibration of the moving object is detected and used to calculate its velocity. We report the formula that describes the relation between Doppler frequency shift of the emitted acoustic field and the velocity of the moving object. To verify the theory, we used a string phantom. We also tested our method by measuring fluid velocity in a tube. The results show that the error calculated for both string and fluid velocities is less than 9.1%. Our theory shows that in the worst case, the error is 0.54% for a 25° angle variation for the VAD method compared with an error of -82.6% for a 25° angle variation for a conventional continuous wave Doppler method. An advantage of this method is that, unlike conventional Doppler, it is not sensitive to angles between the ultrasound beams and direction of motion.

  7. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  8. Coherent Doppler lidar for measurements of wind fields

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Hardesty, R. Michael

    1989-01-01

    The signal-processing techniques for obtaining the velocity estimates and the fundamental factors that influence coherent lidar performance are considered. The similarities and distinctions between Doppler lidar and Doppler radars are discussed. The capability of coherent Doppler lidars for mapping wind fields over selected regions in the lower atmosphere and greatly enhancing the capability to visualize flow patterns in real time is discussed, and examples are given. Salient features of a concept for an earth-orbiting Doppler lidar to be launched in the late 1990s are examined.

  9. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  10. L wave in echo Doppler.

    PubMed

    Kumar, Vipin; Jose, John; Jose, V Jacob

    2014-01-01

    62-year-old female presented with progressive dyspnea NYHA class III for six months. Echocardiography showed normal left ventricular (LV) systolic function, mild biatrial enlargement, an L wave in pulse wave Doppler at mitral inflow and in M mode echocardiography across mitral valve. Tissue Doppler imaging at medial mitral annulus showed an L' wave in mid diastole in addition to E' and A' wave. An L wave in pulse wave Doppler and M mode echocardiography represents continued pulmonary vein mid diastolic flow through the left atrium in to LV across mitral valve after early rapid filling. Presence of an L' wave in these patients associated with higher E/E' is indicative of advance diastolic dysfunction with elevated filling pressures. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  11. Molecular filter based planar Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Elliott, Gregory S.; Beutner, Thomas J.

    1999-11-01

    Molecular filter based diagnostics are continuing to gain popularity as a research tool for investigations in areas of aerodynamics, fluid mechanics, and combustion. This class of diagnostics has gone by many terms including Filtered Rayleigh Scattering, Doppler Global Velocimetry, and Planar Doppler Velocimetry. The majority of this article reviews recent advances in Planar Doppler Velocimetry in measuring up to three velocity components over a planar region in a flowfield. The history of the development of these techniques is given with a description of typical systems, components, and levels of uncertainty in the measurement. Current trends indicate that uncertainties on the order of 1 m/s are possible with these techniques. A comprehensive review is also given on the application of Planar Doppler Velocimetry to laboratory flows, supersonic flows, and large scale subsonic wind tunnels. The article concludes with a description of future trends, which may simplify the technique, followed by a description of techniques which allow multi-property measurements (i.e. velocity, density, temperature, and pressure) simultaneously.

  12. A low cost Doppler system for vascular dialysis access surveillance.

    PubMed

    Molina, P S C; Moraes, R; Baggio, J F R; Tognon, E A

    2004-01-01

    The National Kidney Foundation guidelines for vascular access recommend access surveillance to avoid morbidity among patients undergoing hemodialysis. Methods to detect access failure based on CW Doppler system are being proposed to implement surveillance programs at lower cost. This work describes a low cost Doppler system implemented in a PC notebook designed to carry out this task. A Doppler board samples the blood flow velocity and delivers demodulated quadrature Doppler signals. These signals are sampled by a notebook sound card. Software for Windows OS (running at the notebook) applies CFFT to consecutive 11.6 ms intervals of Doppler signals. The sonogram is presented on the screen in real time. The software also calculates the maximum and the intensity weighted mean frequency envelopes. Since similar systems employ DSP boards to process the Doppler signals, cost reduction was achieved. The Doppler board electronic circuits and routines to process the Doppler signals are presented.

  13. Renewed interest in preejectional isovolumic phase: new applications of tissue Doppler indexes: implications to ventricular dyssynchrony.

    PubMed

    Veyrat, Colette; Larrazet, Fabrice; Pellerin, Denis

    2005-10-01

    There is renewed interest in isovolumic contraction (IC) in tissue Doppler echocardiography of the myocardial walls, which is revisited in this editorial with new regional velocity data. The aims are to recall traditional background information and to emphasize the need to master the rapidly evolving tissue Doppler procedures for the accurate display of brief IC. IC, a preejectional component of great physiologic interest, is very demanding in terms of ultrasound technology. The onset and end of its motion velocities should be unambiguously defined versus the QRS complex and ejection wall motion. This is a prerequisite for exploiting the new information as guidance toward new therapeutic strategies from a practical viewpoint. However, IC preload dependence should be kept in mind, because of its limited potential for contractility studies. Finally, when only duration measurements are made in the assessment of ventricular dyssynchrony, regional preejectional duration is the pertinent tool to single out the onset of ejection local wall motion.

  14. Spacecraft Doppler Tracking as a Xylophone Detector

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    1996-01-01

    We discuss spacecraft Doppler tracking in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we derive a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. Our method provides also for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by non-gravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector. Estimates of the sensitivities achievable by this xylophone are presented for two tests of Einstein's theory of relativity: searches for gravitational waves and measurements of the gravitational red shift. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.

  15. Doppler spectra of airborne sound backscattered by the free surface of a shallow turbulent water flow.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton; Horoshenkov, Kirill V

    2017-12-01

    Measurements of the Doppler spectra of airborne ultrasound backscattered by the rough dynamic surface of a shallow turbulent flow are presented in this paper. The interpretation of the observed acoustic signal behavior is provided by means of a Monte Carlo simulation based on the Kirchhoff approximation and on a linear random-phase model of the water surface elevation. Results suggest that the main scattering mechanism is from capillary waves with small amplitude. Waves that travel at the same velocity of the flow, as well as dispersive waves that travel at a range of velocities, are detected, studied, and used in the acoustic Doppler analysis. The dispersive surface waves are not observed when the flow velocity is slow compared to their characteristic velocity. Relatively wide peaks in the experimental spectra also suggest the existence of nonlinear modulations of the short capillary waves, or their propagation in a wide range of directions. The variability of the Doppler spectra with the conditions of the flow can affect the accuracy of the flow velocity estimations based on backscattering Doppler. A set of different methods to estimate this velocity accurately and remotely at different ranges of flow conditions is suggested.

  16. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology.

    PubMed

    Li, Yanlu; Zhu, Jinghao; Duperron, Matthieu; O'Brien, Peter; Schüler, Ralf; Aasmul, Soren; de Melis, Mirko; Kersemans, Mathias; Baets, Roel

    2018-02-05

    This paper describes an integrated six-beam homodyne laser Doppler vibrometry (LDV) system based on a silicon-on-insulator (SOI) full platform technology, with on-chip photo-diodes and phase modulators. Electronics and optics are also implemented around the integrated photonic circuit (PIC) to enable a simultaneous six-beam measurement. Measurement of a propagating guided elastic wave in an aluminum plate (speed ≈ 909 m/s @ 61.5 kHz) is demonstrated.

  17. One way Doppler extractor. Volume 1: Vernier technique

    NASA Technical Reports Server (NTRS)

    Blasco, R. W.; Klein, S.; Nossen, E. J.; Starner, E. R.; Yanosov, J. A.

    1974-01-01

    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second.

  18. Variation of safety indices during in the learning curve for color Doppler assessment of the fetal heart at 11+0 to 13+6 weeks' gestation.

    PubMed

    Nemescu, Dragos; Berescu, Anca; Rotariu, Cristian

    2015-12-01

    The aim of our study was to analyze the variation of acoustic output, as expressed by the thermal (TI) and mechanical index (MI), during the learning curve for a fetal heart scan at 11-13 gestational weeks, with the introduction of a new ultrasound system. This was a prospective, observational study on 303 normal fetuses. The fetal heart was examined transabdominally using B-Mode and high definition (HD) color Doppler to obtain standard parameters: four-chamber, outflow tracts and three-vessel-trachea views. Data were analyzed in groups of 20 consecutive examinations and the percentage of successful examinations was calculated. TI and MI were retrieved from HD color Doppler examinations of the fetal heart and from pulsed-wave Doppler assessment of the tricuspid flow and ductus venosus. MI values from the color Doppler examination of the fetal heart showed a continuous decrease (0.81 to 0.75, p<0.001), along the learning phase. TI and MI indices from pulsed-wave Doppler evaluation of the tricuspid flow increased at the beginning of the learning phase and stabilized afterwards (0.34 to 0.36, p<0.05 and 0.37 to 0.4, p<0.001, respectively). TI from color Doppler exam of the heart and indices from ductus venosus assessment were very constant and did not change along the studied periods. The length of Doppler examination of the heart increased after about 80 cases by 25%, to a mean of 4 minutes (p<0.05). Safety indices from Doppler evaluation of the fetal heart and tricuspid flow vary during the learning curve for fetal heart assessment. Also, the occurrence of constant values suggests the potential for their supplementary active reduction. For a better adaptation to a new ultrasound technology, the sonographer should scan the fetal heart longer in the first trimester and follow displayed safety indices along the first 80 cases.

  19. Photoacoustic Doppler effect from flowing small light-absorbing particles.

    PubMed

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V

    2007-11-02

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  20. Measurement of ciliary beat frequency using Doppler optical coherence tomography.

    PubMed

    Lemieux, Bryan T; Chen, Jason J; Jing, Joseph; Chen, Zhongping; Wong, Brian J F

    2015-11-01

    Measuring ciliary beat frequency (CBF) is a technical challenge and difficult to perform in vivo. Doppler optical coherence tomography (D-OCT) is a mesoscopic noncontact imaging modality that provides high-resolution tomographic images and detects micromotion simultaneously in living tissues. In this work we used D-OCT to measure CBF in ex vivo tissue as the first step toward translating this technology to clinical use. Fresh ex vivo samples of rabbit tracheal mucosa were imaged using both D-OCT and phase-contrast microscopy (n = 5). The D-OCT system was designed and built to specification in our lab (1310-nm swept source vertical-cavity surface-emitting laser [VCSEL], 6-μm axial resolution). The samples were placed in culture and incubated at 37°C. A fast Fourier transform was performed on the D-OCT signal recorded on the surface of the samples to gauge CBF. High-speed digital video of the epithelium recorded via phase-contrast microscopy was analyzed to confirm the CBF measurements. The D-OCT system detected Doppler signal at the epithelial layer of ex vivo rabbit tracheal samples suggestive of ciliary motion. CBF was measured at 9.36 ± 1.22 Hz using D-OCT and 9.08 ± 0.48 Hz using phase-contrast microscopy. No significant differences were found between the 2 methods (p > 0.05). D-OCT allows for the quantitative measurement of CBF without the need to resolve individual cilia. Furthermore, D-OCT technology can be incorporated into endoscopic platforms that allow clinicians to readily measure CBF in the office and provide a direct measurement of mucosal health. © 2015 ARS-AAOA, LLC.

  1. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Movahednejad, E.; Ommi, F.; Nekofar, K.

    2013-04-01

    The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  2. New Doppler echocardiographic applications for the study of diastolic function

    NASA Technical Reports Server (NTRS)

    Garcia, M. J.; Thomas, J. D.; Klein, A. L.

    1998-01-01

    Doppler echocardiography is one of the most useful clinical tools for the assessment of left ventricular (LV) diastolic function. Doppler indices of LV filling and pulmonary venous (PV) flow are used not only for diagnostic purposes but also for establishing prognosis and evaluating the effect of therapeutic interventions. The utility of these indices is limited, however, by the confounding effects of different physiologic variables such as LV relaxation, compliance and filling pressure. Since alterations in these variables result in changes in Doppler indices of opposite direction, it is often difficult to determine the status of a given variable when a specific Doppler filling pattern is observed. Recently, color M-mode and tissue Doppler have provided useful insights in the study of diastolic function. These new Doppler applications have been shown to provide an accurate estimate of LV relaxation and appear to be relatively insensitive to the effects of preload compensation. This review will focus on the complementary role of color M-mode and tissue Doppler echocardiography and traditional Doppler indices of LV filling and PV flow in the assessment of diastolic function.

  3. Cross-correlation Doppler global velocimetry (CC-DGV)

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel R.; Lowe, K. Todd

    2015-08-01

    A flow velocimetry method, cross-correlation Doppler global velocimetry (CC-DGV), is presented as a robust, simplified, and high dynamic range implementation of the Doppler global/planar Doppler velocimetry technique. A sweep of several gigahertz of the vapor absorption spectrum is used for each velocity sample, with signals acquired from both Doppler-shifted scattered light within the flow and a non-Doppler shifted reference beam. Cross-correlation of these signals yields the Doppler shift between them, averaged over the duration of the scan. With presently available equipment, velocities from 0 ms-1 to over 3000 ms-1 can notionally be measured simultaneously, making the technique ideal for high speed flows. The processing routine is shown to be robust against large changes in the vapor pressure of the iodine cell, benefiting performance of the system in facilities where ambient conditions cannot be easily regulated. Validation of the system was performed with measurements of a model wind turbine blade boundary layer made in a 1.83 m by 1.83 m subsonic wind tunnel for which laser Doppler velocimetry (LDV) measurements were acquired alongside the CC-DGV results. CC-DGV uncertainties of ±1.30 ms-1, ±0.64 ms-1, and ±1.11 ms-1 were determined for the orthogonal stream-wise, transverse-horizontal, and transverse-vertical velocity components, and root-mean-square deviations of 2.77 ms-1 and 1.34 ms-1 from the LDV validation results were observed for Reynolds numbers of 1.5 million and 2 million, respectively. Volumetric mean velocity measurements are also presented for a supersonic jet, with velocity uncertainties of ±4.48 ms-1, ±16.93 ms-1, and ±0.50 ms-1 for the orthogonal components, and self-validation done by collapsing the data with a physical scaling.

  4. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Garcia, Kathleen M.; Hamilton, Douglas R.; Sargsyan, Ashot E.; Ebert, Douglas; Martin, David S.; Barratt, Michael R.; Martin, David S.; Bogomolov, Valery V.; Dulchavsky, Scott A.; Duncan, J. Michael

    2010-01-01

    The presentation slides review normal physiology of the right ventricle in space, general physiology of the right ventricle; difficulties in imaging the heart in space, imaging methods, tissue Doppler spectrum, right ventricle tissue Doppler, and Rt Tei Index.

  5. Editorial special issue on "Laser Doppler vibrometry"

    NASA Astrophysics Data System (ADS)

    Vanlanduit, Steve; Dirckx, Joris

    2017-12-01

    The invention of the laser in 1960 has opened up many opportunities in the field of measurement science and technology. Just a few years after the invention of the laser, a novel fluid flow measurement technique based on the Doppler effect was introduced: at that moment the laser Doppler anemometer or shortly LDA [1] was born. The technique enabled fluid velocity measurement by using the light of a He-Ne beam which was scattered by very small polystyrene spheres entrained in the fluid. Later on, in the late nineteen seventees it was recognized that the detection of the Doppler frequency shift that occurs when light is scattered by a moving surface can also be used to measure the vibration velocity of an object. The instrument to perform these vibration measurements was called the laser Doppler vibrometer or LDV [2]. In the last decades several technological advances were made in the field of laser Doppler vibrometry. The result is that nowadays, velocity measurements of fluids (using LDA) and vibrating objects (using LDV) are performed in many challenging applications in different fields (microelectronics, civil structures, biomedical engineering, material science, etc.).

  6. Doppler Imaging of Exoplanets and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Crossfield, I.; Biller, B.; Schlieder, J.; Deacon, N.; Bonnefoy, M.; Homeier, D.; Allard, F.; Buenzli, E.; Henning, T.; Brandner, W.; Goldman, Bertr; Kopytova, T.

    2014-03-01

    Doppler Imaging produces 2D global maps. When applied to cool planets or more massive brown dwarfs, it can map atmospheric features and track global weather patterns. The first substellar map, of the 2pc-distant brown dwarf Luhman 16B (Crossfeld et al. 2014), revealed patchy regions of thin & thick clouds. Here, I investigate the feasibility of future Doppler Imaging of additional objects. Searching the literature, I find that all 3 of P, v sin i, and variability are published for 22 brown dwarfs. At least one datum exists for 333 targets. The sample is very incomplete below ~L5; we need more surveys to find the best targets for Doppler Imaging! I estimate limiting magnitudes for Doppler Imaging with various hi-resolution near-infrared spectrographs. Only a handful of objects - at the M/L and L/T transitions - can be mapped with current tools. Large telescopes such as TMT and GMT will allow Doppler Imaging of many dozens of brown dwarfs and the brightest exoplanets. More targets beyond type L5 likely remain to be found. Future observations will let us probe the global atmospheric dynamics of many diverse objects.

  7. Radar Doppler Processing with Nonuniform Sampling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.

    2017-07-01

    Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.

  8. Description and availability of airborne Doppler radar data

    NASA Technical Reports Server (NTRS)

    Harrah, S. D.; Bracalente, E. M.; Schaffner, P. R.; Baxa, E. G.

    1993-01-01

    An airborne, forward-looking, pulse, Doppler radar has been developed in conjunction with the joint FAA/NASA Wind Shear Program. This radar represents a first in an emerging technology. The radar was developed to assess the applicability of an airborne radar to detect low altitude hazardous wind shears for civil aviation applications. Such a radar must be capable of looking down into the ground clutter environment and extracting wind estimates from relatively low reflectivity weather targets. These weather targets often have reflectivities several orders of magnitude lower than the surrounding ground clutter. The NASA radar design incorporates numerous technological and engineering achievements in order to accomplish this task. The basic R/T unit evolved from a standard Collins 708 weather radar, which supports specific pulse widths of 1-7 microns and Pulse Repetition Frequencies (PRF) of less than 1-10 kHz. It was modified to allow for the output of the first IF signal, which fed a NASA developed receiver/detector subsystem. The NASA receiver incorporated a distributed, high-speed digital attenuator, producing a range bin to range bin automatic gain control system with 65 dB of dynamic range. Using group speed information supplied by the aircraft's navigation system, the radar signal is frequency demodulated back to base band (zero Doppler relative to stationary ground). The In-phase & Quadrature-phase (I/Q) components of the measured voltage signal are then digitized by a 12-bit A-D converter (producing an additional 36 dB of dynamic range). The raw I/Q signal for each range bin is then recorded (along with the current radar & aircraft state parameters) by a high-speed Kodak tape recorder.

  9. Overnight non-contact continuous vital signs monitoring using an intelligent automatic beam-steering Doppler sensor at 2.4 GHz.

    PubMed

    Batchu, S; Narasimhachar, H; Mayeda, J C; Hall, T; Lopez, J; Nguyen, T; Banister, R E; Lie, D Y C

    2017-07-01

    Doppler-based non-contact vital signs (NCVS) sensors can monitor heart rates, respiration rates, and motions of patients without physically touching them. We have developed a novel single-board Doppler-based phased-array antenna NCVS biosensor system that can perform robust overnight continuous NCVS monitoring with intelligent automatic subject tracking and optimal beam steering algorithms. Our NCVS sensor achieved overnight continuous vital signs monitoring with an impressive heart-rate monitoring accuracy of over 94% (i.e., within ±5 Beats-Per-Minute vs. a reference sensor), analyzed from over 400,000 data points collected during each overnight monitoring period of ~ 6 hours at a distance of 1.75 meters. The data suggests our intelligent phased-array NCVS sensor can be very attractive for continuous monitoring of low-acuity patients.

  10. Airflow Measurement of the Car HVAC Unit Using Hot-wire Anemometry

    NASA Astrophysics Data System (ADS)

    Fojtlín, Miloš; Planka, Michal; Fišer, Jan; Pokorný, Jan; Jícha, Miroslav

    2016-03-01

    Thermal environment in a vehicular cabin significantly influence drivers' fatigue and passengers' thermal comfort. This environment is traditionally managed by HVAC cabin system that distributes air and modifies its properties. In order to simulate cabin thermal behaviour, amount of the air led through car vents must be determined. The aim of this study was to develop methodology to measure airflow from the vents, and consequently calculate corresponding air distribution coefficients. Three climatic cases were selected to match European winter, summer, and spring / fall conditions. Experiments were conducted on a test vehicle in a climatic chamber. The car HVAC system was set to automatic control mode, and the measurements were executed after the system stabilisation—each case was independently measured three times. To be able to evaluate precision of the method, the airflow was determined at the system inlet (HVAC suction) and outlet (each vent), and the total airflow values were compared. The airflow was calculated by determining a mean value of the air velocity multiplied by an area of inlet / outlet cross-section. Hot-wire anemometry was involved to measure the air velocity. Regarding the summer case, total airflow entering the cabin was around 57 l s-1 with 60 % of the air entering the cabin through dashboard vents; no air was supplied to the feet compartment. The remaining cases had the same total airflow of around 42 l s-1, and the air distribution was focused mainly on feet and windows. The inlet and outlet airflow values show a good match with a maximum mass differential of 8.3 %.

  11. Temporal enhancement of two-dimensional color doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Terentjev, Alexey B.; Settlemier, Scott H.; Perrin, Douglas P.; del Nido, Pedro J.; Shturts, Igor V.; Vasilyev, Nikolay V.

    2016-03-01

    Two-dimensional color Doppler echocardiography is widely used for assessing blood flow inside the heart and blood vessels. Currently, frame acquisition time for this method varies from tens to hundreds of milliseconds, depending on Doppler sector parameters. This leads to low frame rates of resulting video sequences equal to tens of Hz, which is insufficient for some diagnostic purposes, especially in pediatrics. In this paper, we present a new approach for reconstruction of 2D color Doppler cardiac images, which results in the frame rate being increased to hundreds of Hz. This approach relies on a modified method of frame reordering originally applied to real-time 3D echocardiography. There are no previous publications describing application of this method to 2D Color Doppler data. The approach has been tested on several in-vivo cardiac 2D color Doppler datasets with approximate duration of 30 sec and native frame rate of 15 Hz. The resulting image sequences had equivalent frame rates to 500Hz.

  12. Microwave and millimeter-wave Doppler radar heart sensing

    NASA Astrophysics Data System (ADS)

    Boric-Lubecke, Olga; Lin, Jenshan; Lubecke, Victor M.; Host-Madsen, Anders; Sizer, Tod

    2007-04-01

    Technology that can be used to unobtrusively detect and monitor the presence of human subjects from a distance and through barriers can be a powerful tool for meeting new security challenges, including asymmetric battlefield threats abroad and defense infrastructure needs back home. Our team is developing mobile remote sensing technology for battle-space awareness and warfighter protection, based on microwave and millimeter-wave Doppler radar motion sensing devices that detect human presence. This technology will help overcome a shortfall of current see-through-thewall (STTW) systems, which is, the poor detection of stationary personnel. By detecting the minute Doppler shifts induced by a subject's cardiopulmonary related chest motion, the technology will allow users to detect personnel that are completely stationary more effectively. This personnel detection technique can also have an extremely low probability of intercept since the signals used can be those from everyday communications. The software and hardware developments and challenges for personnel detection and count at a distance will be discussed, including a 2.4 GHz quadrature radar single-chip silicon CMOS implementation, a low-power double side-band Ka-band transmission radar, and phase demodulation and heart rate extraction algorithms. In addition, the application of MIMO techniques for determining the number of subjects will be discussed.

  13. Causes of Ultrasound Doppler Twinkling Artifact

    NASA Astrophysics Data System (ADS)

    Leonov, D. V.; Kulberg, N. S.; Gromov, A. I.; Morozov, S. P.; Kim, S. Yu.

    2018-01-01

    Ultrasound Doppler twinkling artifact is analyzed. It usually appears as a frequent color alteration in the region of hyperechoic objects. Its noiselike spectrum can also be seen in spectral Doppler mode. Physicians use twinkling artifact as a clinical sign for kidney-stone and soft-tissue calculi detection. The advantageous peculiarity of this study is that the experiments were conducted utilizing raw signals obtained from a custom ultrasonic machine and a specially developed phantom. The phantom contained specimens with known qualities, allowing for reproducible and predictable results. The experiments revealed evidence for two physical causes of twinkling artifact, which were associated with two unique Doppler signals. The research laid the foundation for the new reflected-signal model introduced and used throughout this paper.

  14. Doppler flowmeter

    DOEpatents

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  15. Doppler flowmeter

    DOEpatents

    Karplus, Henry H. B.; Raptis, Apostolos C.

    1983-01-01

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  16. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  17. Use of global ionospheric maps for HF Doppler measurements interpretation

    NASA Astrophysics Data System (ADS)

    Petrova, I. R.; Bochkarev, V. V.; Latypov, R. R.

    2018-04-01

    The HF Doppler technique, a method of measurement of Doppler frequency shift of ionospheric signal, is one of the well-known and widely used techniques of ionosphere research. It allows investigation of various disturbances in the ionosphere. There are different sources of disturbances in the ionosphere such as geomagnetic storms, solar flashes, meteorological effects and atmospheric waves. The HF Doppler technique allows us to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occurs near the Earth. HF Doppler technique has high sensitivity to small frequency variations and high time resolution but interpretation of results is difficult. In this paper, we attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows separation of ionosphere disturbances of medium scale.

  18. Contrast-enhanced power Doppler endosonography and pathological assessment of vascularization in advanced gastric carcinomas--a feasibility study.

    PubMed

    Iordache, Sevastiţa; Filip, Maria-Monalisa; Georgescu, Claudia-Valentina; Angelescu, Cristina; Ciurea, Tudorel; Săftoiu, Adrian

    2012-06-01

    Besides representing angiogenesis markers, microvascular density (MVD) and vascular endothelial growth factor (VEGF) are two important tools for the assessment of prognosis in patients with gastric cancer. The aim of our study was to assess the Doppler parameters (resistivity and pulsatility indexes) and vascularity index (VI) calculated by contrast-enhanced power Doppler endoscopic ultrasound (CEPD-EUS) in correlation with the expression of intra-tumoral MVD and VEGF in patients with gastric cancer. The study included 20 consecutive patients with advanced gastric carcinoma, but without distant metastasis at initial assessment. All the patients were assessed by contrast-enhanced power Doppler endoscopic ultrasound (EUS) combined with pulsed Doppler examinations in the late venous phase. The vascularity index (VI) was calculated before and after injection of second generation microbubble contrast specific agent (SonoVue 2.4 mL), used as a Doppler signal enhancer. Moreover, pulsed Doppler parameters (resistivity and pulsatility indexes) were further calculated. The correlation between power Doppler parameters and pathological/molecular parameters (MVD assessed through immunohistochemistry with CD31 and CD34, as well as VEGF assessed through real-time PCR) was assessed. Kaplan-Meier survival analysis was used for the assessment of prognosis. Significantly statistical correlations were found between post-contrast VI and CD34 (p=0.0226), VEGF (p=0.0231), VEGF-A (p=0.0464) and VEGF-B (p=0.0022) while pre-contrast VI was correlated only with CD34 expression. Pulsatility index and resistivity index were not correlated with MVD or VEGF expression. Survival analysis demonstrated that VEGF-A is an accurate parameter for survival rate (p=0.045), as compared to VEGF (p=0.085) and VEGF-B (p=0.230). We did not find any correlation between the survival rate and ultrasound parameters (RI, PI, pre-contrast VI or post-contrast VI). Assessment of tumor vascularity using contrast

  19. The 1976 Helios and Pioneer solar conjunctions-continuing corroboration of the link between Doppler noise and integrated signal path electron density

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Wackley, J. A.; Rockwell, S. T.

    1976-01-01

    Observed Doppler noise (rms phase jitter) from the 1976 solar conjunctions of the Helios 1 and 2 and the Pioneer 10 and 11 spacecraft was processed with a recently developed Doppler noise model ISEDB. Good agreement is obtained between the observed data and the model. Correlation is shown between deviations from the ISEDB model and sunspot activity, but it is insufficient to be modeled. Correlation is also shown between ISEDB model deviations for (spacecraft) signal paths on the same side of the sun.

  20. Effects of the gaseous and liquid water content of the atmosphere on range delay and Doppler frequency

    NASA Technical Reports Server (NTRS)

    Flock, W. L.

    1981-01-01

    When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.

  1. Simulation of a Doppler lidar system for autonomous navigation and hazard avoidance during planetary landing

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Chester, David B.

    2016-05-01

    The latest mission proposals for exploration of solar system bodies require accurate position and velocity data during the descent phase in order to ensure safe, soft landing at the pre-designated sites. During landing maneuvers, the accuracy of the on-board inertial measurement unit (IMU) may not be reliable due to drift over extended travel times to destinations. NASA has proposed an advanced Doppler lidar system with multiple beams that can be used to accurately determine attitude and position of the landing vehicle during descent, and to detect hazards that might exist in the landing area. In order to assess the effectiveness of such a Doppler lidar landing system, it is valuable to simulate the system with different beam numbers and configurations. In addition, the effectiveness of the system to detect and map potential landing hazards must be understood. This paper reports the simulated system performance for a proposed multi-beam Doppler lidar using the LadarSIM system simulation software. Details of the simulation methods are given, as well as lidar performance parameters such as range and velocity accuracy, detection and false alarm rates, and examples of the Doppler lidars ability to detect and characterize simulated hazards in the landing site. The simulation includes modulated pulse generation and coherent detection methods, beam footprint simulation, beam scanning, and interaction with terrain.

  2. Corruption of radio metric Doppler due to solar plasma dynamics: S/X dual-frequency Doppler calibration for these effects

    NASA Technical Reports Server (NTRS)

    Winn, F. B.; Reinbold, S. R.; Yip, K. W.; Koch, R. E.; Lubeley, A.

    1975-01-01

    Doppler data from Mariner 6, 7, 9, and 10 and Pioneer 10 and 11 were discussed and the rms noise level for various sun-earth-probe angles were shown. The noise levels of both S- and X-band Doppler data for sun-earth-probe angles smaller than 20 deg were observed to be orders of magnitude greater than nominal. Such solar plasma-related Doppler degradation reduced the Mariner 10-Mercury 11 encounter navigation accuracy by nearly a factor of 10. Furthermore, this degradation was shown to be indirectly related to plasma dynamics and not a direct measure of the dynamics.

  3. Doppler and speckle methods for diagnostics in dentistry

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey S.; Lepilin, Alexander V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Kharish, Natalia A.; Osipova, Yulia; Karpovich, Alexander

    2002-02-01

    The results of statistical analysis of Doppler spectra of scattered intensity, obtained from tissues of oral cavity membrane of healthy volunteers, are presented. The dependence of the spectral moments of Doppler signal on cutoff frequency is investigated. Some results of statistical analysis of Doppler spectra, obtained from tooth pulp of patients, are presented. New approach for monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of measuring system on formation of speckle-interferometric signal is studied.

  4. Doppler optical coherence tomography of retinal circulation.

    PubMed

    Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David

    2012-09-18

    Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the

  5. Power Doppler evaluation of joint effusions: investigation in a rabbit model.

    PubMed

    Strouse, P J; DiPietro, M A; Teo, E L; Doi, K; Chrisp, C E

    1999-08-01

    To study the power Doppler findings of septic arthritis and noninfectious synovitis in an animal model. The right knees of 10 rabbits were inoculated with an aqueous suspension of Staphylococcus aureus. The right knees of 5 rabbits were injected with talc suspension. The right knees of 5 rabbits were injected with saline. All 20 left knees were injected with saline. Serial power Doppler images were obtained using constant-imaging parameters. Images were reviewed by blinded observers who assessed for increased power Doppler signal. All 10 knees inoculated with S. aureus developed septic arthritis. Each infected rabbit knee demonstrated increased signal on power Doppler on at least one examination, ranging from 1-6 days after inoculation. Only 23 of 45 examinations of infected knees were unequivocally positive by power Doppler on examinations performed 1 to 6 days after inoculation. No knee with talc synovitis demonstrated increased power Doppler signal. No control knee demonstrated increased power Doppler signal. Increased power Doppler signal may be seen with septic arthritis; however, its intensity and timing may vary from subject to subject. A normal power Doppler examination does not exclude septic arthritis.

  6. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    PubMed

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  7. Microvascular anastomosis in rodent model evaluated by Fourier domain Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Tong, Dedi; Zhu, Shan; Wu, Lehao; Ibrahim, Zuhaib; Lee, WP Andrew; Brandacher, Gerald; Kang, Jin U.

    2014-03-01

    Vascular and microvascular anastomosis are critical components of reconstructive microsurgery, vascular surgery and transplant surgery. Imaging modality that provides immediate, real-time in-depth view and 3D structure and flow information of the surgical site can be a great valuable tool for the surgeon to evaluate surgical outcome following both conventional and innovative anastomosis techniques, thus potentially increase the surgical success rate. Microvascular anastomosis for vessels with outer diameter smaller than 1.0 mm is extremely challenging and effective evaluation of the outcome is very difficult if not impossible using computed tomography (CT) angiograms, magnetic resonance (MR) angiograms and ultrasound Doppler. Optical coherence tomography (OCT) is a non-invasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. Phaseresolved Doppler OCT that explores the phase information of OCT signals has been shown to be capable of characterizing dynamic blood flow clinically. In this work, we explore the capability of Fourier domain Doppler OCT as an evaluation tool to detect commonly encountered post-operative complications that will cause surgical failure and to confirm positive result with surgeon's observation. Both suture and cuff based techniques were evaluated on the femoral artery and vein in the rodent model.

  8. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  9. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  10. Optically Phase-Locked Electronic Speckle Pattern Interferometer (OPL-ESPI)

    NASA Astrophysics Data System (ADS)

    Moran, Steven E.; Law, Robert L.; Craig, Peter N.; Goldberg, Warren M.

    1986-10-01

    This report describes the design, theory, operation, and characteristics of the OPL-ESPI, which generates real time equal Doppler speckle contours of vibrating objects from unstable sensor platforms with a Doppler resolution of 30 Hz and a maximum tracking range of + or - 5 HMz. The optical phase locked loop compensates for the deleterious effects of ambient background vibration and provides the bases for a new ESPI video signal processing technique, which produces high contrast speckle contours. The OPL-ESPI system has local oscillator phase modulation capability, offering the potential for detection of vibrations with the amplitudes less than lambda/100.

  11. Optimization of cw-QC lasers for Doppler and sub-Doppler molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Kelly, James F.; Disselkamp, Robert S.; Sams, Robert L.; Blake, Thomas A.; Sharpe, Steven W.; Richter, Dirk A.; Fried, Alan

    2002-09-01

    Inter-subband (Type I) quantum-cascade (QC) lasers have shown the potential to generate tunable mid-IR radiation with narrow intrinsic linewidths (< 160 KHz in 15 mSec sweeps) and excellent amplitude stability (< 3 ppm averaged over minutes). Our bench-scale efforts to develop the Type I distributed feedback (DFB)-QC lasers for fieldable atmospheric chemistry campaigns, where multipass (Herriot or White) cells are used to enhance path-length, have not yet realized performance to the low intrinsic noise levels seen in these devices. By comparison, many operational systems' levels of noise-equivalent-absorbance (NEA) using Pb-salt lasers can routinely achieve at least one-order of magnitude better cw-performance, and with much lower powers. We have found that instability effets from weak back-scattered laser light -primarily from the Herriot cell- results in feedback-implicated technical noise well above the thermal and shot-noise of standard IR detectors. Of more fundamental concern is the fact that planar-stripe DFB-QC lasers undergo beam steering and transverse spatial-mode competitions during current tuning. It is the development of fully automated sub-ppbV sensitive IR chem-sensors. It is possible to reach low-ppm levels of absorptance change-detection (ΔI/I0) over small wavelength regions with careful alignment to 100 M Herriott cells, but extreme care in spatial filtering is critical. However in the case of optical configurations which preclude significant optical feedback and need for stringent mode coupling alignments, the cw-DFB-QC lasers show great promise to do high resolution sub-Doppler spectroscopy. By serendipitous events, a varient of 'mode- or level-crossing' spectroscopy was probably rediscovered, which may allow very high resolution, sub-Doppler features and/or hyperfine alignments to be probed with 'uni-directional' topologies. We will primarily discuss the basic features of the 'uni-directional' sub-Doppler spectroscopy concept in this report

  12. Speed of light demonstration using Doppler beat

    NASA Astrophysics Data System (ADS)

    Bernal, Luis; Bilbao, Luis

    2018-05-01

    From an apparatus previously designed for measuring the Doppler shift using a rotating mirror, an improved, versatile version was developed for speed of light demonstrations in a classroom or a teaching laboratory. By adding a second detector and adequate beam-splitter and mirrors, three different configurations are easily assembled. One configuration is used for time-of-flight measurements between a near and a far detector, allowing one to measure the speed of light provided that the path length between detectors is known. Another variation is the interferometric method obtained by superposing the far and near signals in such a way that a minimum of the combined signal is obtained when the time delay makes the signals arrive out of phase by π radians. Finally, the standard Doppler configuration allows the measurement of the frequency beat as a function of the rotation frequency. The main advantages of the apparatus are (a) the experimental setup is simple and completely accessible to undergraduate students, (b) the light is visible, students can see the rays, which, with the use of appropriate screens, can be blocked at any point along their paths, (c) the experiment can take place entirely within the teaching laboratory or demonstration room (using the interferometric method, the shortest distance to the far mirror was as small as 0.5 m), and (d) different configurations can be built, including some economical setups within the budget of teaching laboratories.

  13. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work.

  14. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    NASA Astrophysics Data System (ADS)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  15. High-resolution Doppler model of the human gait

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.

    2002-07-01

    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  16. Temporal Doppler Effect and Future Orientation: Adaptive Function and Moderating Conditions.

    PubMed

    Gan, Yiqun; Miao, Miao; Zheng, Lei; Liu, Haihua

    2017-06-01

    The objectives of this study were to examine whether the temporal Doppler effect exists in different time intervals and whether certain individual and environmental factors act as moderators of the effect. Using hierarchical linear modeling, we examined the existence of the temporal Doppler effect and the moderating effect of future orientation among 139 university students (Study 1), and then the moderating conditions of the temporal Doppler effect using two independent samples of 143 and 147 university students (Studies 2 and 3). Results indicated that the temporal Doppler effect existed in all of our studies, and that future orientation moderated the temporal Doppler effect. Further, time interval perception mediated the relationship between future orientation and the motivation to cope at long time intervals. Finally, positive affect was found to enhance the temporal Doppler effect, whereas control deprivation did not influence the effect. The temporal Doppler effect is moderated by the personality trait of future orientation and by the situational variable of experimentally manipulated positive affect. We have identified personality and environmental processes that could enhance the temporal Doppler effect, which could be valuable in cases where attention to a future task is necessary. © 2016 Wiley Periodicals, Inc.

  17. The first Doppler images of the eclipsing binary SZ Piscium

    NASA Astrophysics Data System (ADS)

    Xiang, Yue; Gu, Shenghong; Cameron, A. Collier; Barnes, J. R.; Zhang, Liyun

    2016-02-01

    We present the first Doppler images of the active eclipsing binary system SZ Psc, based on the high-resolution spectral data sets obtained in 2004 November and 2006 September-December. The least-squares deconvolution technique was applied to derive high signal-to-noise profiles from the observed spectra of SZ Psc. Absorption features contributed by a third component of the system were detected in the LSD profiles at all observed phases. We estimated the mass and period of the third component to be about 0.9 M⊙ and 1283 ± 10 d, respectively. After removing the contribution of the third body from the least-squares deconvolved profiles, we derived the surface maps of SZ Psc. The resulting Doppler images indicate significant star-spot activities on the surface of the K subgiant component. The distributions of star-spots are more complex than that revealed by previous photometric studies. The cooler K component exhibited pronounced high-latitude spots as well as numerous low- and intermediate-latitude spot groups during the entire observing seasons, but did not show any large, stable polar cap, different from many other active RS CVn-type binaries.

  18. Coherent Doppler lidar signal covariance including wind shear and wind turbulence

    NASA Technical Reports Server (NTRS)

    Frehlich, R. G.

    1993-01-01

    The performance of coherent Doppler lidar is determined by the statistics of the coherent Doppler signal. The derivation and calculation of the covariance of the Doppler lidar signal is presented for random atmospheric wind fields with wind shear. The random component is described by a Kolmogorov turbulence spectrum. The signal parameters are clarified for a general coherent Doppler lidar system. There are two distinct physical regimes: one where the transmitted pulse determines the signal statistics and the other where the wind field dominates the signal statistics. The Doppler shift of the signal is identified in terms of the wind field and system parameters.

  19. Review—Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems

    PubMed Central

    Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram

    2018-01-01

    Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself. PMID:29731515

  20. Review-Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems.

    PubMed

    Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram

    2017-01-01

    Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself.

  1. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    NASA Astrophysics Data System (ADS)

    Pfister, T.; Günther, P.; Nöthen, M.; Czarske, J.

    2010-02-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained.

  2. Doppler Feature Based Classification of Wind Profiler Data

    NASA Astrophysics Data System (ADS)

    Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary

    2017-01-01

    Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.

  3. Doppler effect of subluminal and superluminal sources in eight dimensions

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Rajput, B. S.

    1984-06-01

    The study of the relativistic Doppler effect of subliminal and superluminal sources has been undertaken in the eight-dimensional space. It has been shown that correct Doppler shifts are obtained in the external spaces of these sources and the conformal correspondence between Doppler effect curves holds in case of approaching and receeding sources but not in the transverse case.

  4. MicroV Technology to Improve Transcranial Color Coded Doppler Examinations.

    PubMed

    Malferrari, Giovanni; Pulito, Giuseppe; Pizzini, Attilia Maria; Carraro, Nicola; Meneghetti, Giorgio; Sanzaro, Enzo; Prati, Patrizio; Siniscalchi, Antonio; Monaco, Daniela

    2018-05-04

    The purpose of this review is to provide an update on technology related to Transcranial Color Coded Doppler Examinations. Microvascularization (MicroV) is an emerging Power Doppler technology which can allow visualization of low and weak blood flows even at high depths, thus providing a suitable technique for transcranial ultrasound analysis. With MicroV, reconstruction of the vessel shape can be improved, without any overestimation. Furthermore, by analyzing the Doppler signal, MicroV allows a global image of the Circle of Willis. Transcranial Doppler was originally developed for the velocimetric analysis of intracranial vessels, in particular to detect stenoses and the assessment of collateral circulation. Doppler velocimetric analysis was then compared to other neuroimaging techniques, thus providing a cut-off threshold. Transcranial Color Coded Doppler sonography allowed the characterization of vessel morphology. In both Color Doppler and Power Doppler, the signal overestimated the shape of the intracranial vessels, mostly in the presence of thin vessels and high depths of study. In further neurosonology technology development efforts, attempts have been made to address morphology issues and overcome technical limitations. The use of contrast agents has helped in this regard by introducing harmonics and subtraction software, which allowed better morphological studies of vessels, due to their increased signal-to-noise ratio. Having no limitations in the learning curve, in time and contrast agent techniques, and due to its high signal-to-noise ratio, MicroV has shown great potential to obtain the best morphological definition. Copyright © 2018 by the American Society of Neuroimaging.

  5. Automated assessment of blood flow in developing embryonic hearts by extending dynamic range of Doppler OCT using a MHz FDML swept laser source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Elahi, Sahar; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2017-02-01

    Altered hemodynamics in developing embryonic hearts lead to congenital heart diseases, motivating close monitoring of blood flow over several stages of development. Doppler OCT can assess blood flow in tubular hearts, but the maximum velocity increases drastically during the period of cardiac cushion (valve precursors) formation. Therefore, the limited dynamic range of Doppler OCT velocity measurement makes it difficult to conduct longitudinal studies without phase wrapping at high velocities or loss of sensitivity to slow velocities. We have built a high-speed OCT system using an FDML laser (Optores GmbH, Germany) at a sweep rate of 1.68 MHz (axial resolution - 12 μm, sensitivity - 105 dB, phase stability - 17 mrad). The speed of this OCT system allows us to acquire high-density B-scans to obtain an extended velocity dynamic range without sacrificing the frame rate. The extended dynamic range within a frame is achieved by varying the A-scan interval at which the phase difference is found, enabling detection of velocities ranging from tens of microns per second to hundreds of mm per second. The extra lines in a frame can also be utilized to improve the structural and Doppler images via complex averaging. In structural images where presence of blood causes additional scattering, complex averaging helps retrieve features located deeper in the tissue. Moreover, high-density frames can be registered to 4D volumes to determine the orthogonal direction of flow and calculate shear stress. In conclusion, our high-speed OCT system will enable automated Doppler imaging of embryonic hearts in cohort studies.

  6. Quantitative imaging of red blood cell velocity invivo using optical coherence Doppler tomography

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Du, Congwu; Park, Kicheon; Volkow, Nora D.; Pan, Yingtian

    2012-06-01

    We present particle counting ultrahigh-resolution optical Doppler tomography (pc-μODT) that enables accurate imaging of red blood cell velocities (νRBC) of cerebrovascular networks by detecting the Doppler phase transients induced by the passage of a RBC through a capillary. We apply pc-μODT to image the response of capillary νRBC to mild hypercapnia in mouse cortex. The results show that νRBC in normocapnia (νN = 0.72 ± 0.15 mm/s) increased 36.1% ± 5.3% (νH = 0.98 ± 0.29 mm/s) in response to hypercapnia. Due to uncorrected angle effect and low hematocrit (e.g., ˜10%), νRBC directly measured by μODT were markedly underestimated (νN ≈ 0.27 ± 0.03 mm/s, νH ≈ 0.37± 0.05 mm/s). Nevertheless, the measured νRBC increase (35.3%) matched that (36.1% ± 5.3%) by pc-μODT.

  7. Millimeter-wave micro-Doppler measurements of small UAVs

    NASA Astrophysics Data System (ADS)

    Rahman, Samiur; Robertson, Duncan A.

    2017-05-01

    This paper discusses the micro-Doppler signatures of small UAVs obtained from a millimeter-wave radar system. At first, simulation results are shown to demonstrate the theoretical concept. It is illustrated that whilst the propeller rotation rate of the small UAVs is quite high, millimeter-wave radar systems are capable of capturing the full micro-Doppler spread. Measurements of small UAVs have been performed with both CW and FMCW radars operating at 94 GHz. The CW radar was used for obtaining micro-Doppler signatures of individual propellers. The field test data of a flying small UAV was collected with the FMCW radar and was processed to extract micro-Doppler signatures. The high fidelity results clearly reveal features such as blade flashes and propeller rotation modulation lines which can be used to classify targets. This work confirms that millimeter-wave radar is suitable for the detection and classification of small UAVs at usefully long ranges.

  8. Design Tools for Zero-Net Mass-Flux Separation Control Devices

    DTIC Science & Technology

    2004-12-01

    experimental data. Most of the experimental studies employed either Hot Wire Anemometry (HWA), Particle Image Velocimetry (PIV) or Laser Doppler...To61 View traverse Y Z z to procdspor X * ’ probe I,it, I from laser Sbellows synthetic PMTs extender jet,,, olor i 200 mm 2 ", separator micro...measured using a laser displacement sensor Micro-Epsilon Model ILD2000-10. The sensitivity is 1 V/mm, with a full-scale range of 10 mm and a resolution of

  9. Hyperemia in plantar fasciitis determined by power Doppler ultrasound.

    PubMed

    McMillan, Andrew M; Landorf, Karl B; Gregg, Julie M; De Luca, Jason; Cotchett, Matthew P; Menz, Hylton B

    2013-12-01

    Cross-sectional observational study. To investigate the presence of soft tissue hyperemia in plantar fasciitis with power Doppler ultrasound. Localized hyperemia is an established feature of tendinopathy, suggesting that neurovascular in-growth may contribute to tendon-associated pain in some patients. The presence of abnormal soft tissue vascularity can be assessed with Doppler ultrasound, and a positive finding can assist with targeted treatment plans. However, very little is known regarding the presence of hyperemia in plantar fasciitis and the ability of routine Doppler ultrasound to identify vascular in-growth in the plantar fascia near its proximal insertion. This observational study included 30 participants with plantar fasciitis unrelated to systemic disease and 30 age- and sex-matched controls. Ultrasound examination was performed with a 13- to 5-MHz linear transducer, and power Doppler images were assessed by 2 blinded investigators. Hyperemia of the plantar fascia was present in 8 of 30 participants with plantar fasciitis and in 2 of 30 controls. The between-group difference for hyperemia, using a 4-point scale, was statistically significant, with participants with plantar fasciitis showing increased Doppler ultrasound signal compared to controls (Mann-Whitney U, P = .03). However, the majority of participants with plantar fasciitis with evidence of hyperemia demonstrated very mild color changes, and only 3 were found to have moderate or marked hyperemia. Mild hyperemia can occur with plantar fasciitis, but most individuals will not exhibit greater soft tissue vascularity when assessed with routine Doppler ultrasound. Clinicians treating plantar fasciitis should not consider a positive Doppler signal as essential for diagnosis of the condition but, rather, as a feature that may help to refine the treatment plan for an individual patient.

  10. Orbit determination singularities in the Doppler tracking of a planetary orbiter

    NASA Technical Reports Server (NTRS)

    Wood, L. J.

    1985-01-01

    On a number of occasions, spacecraft launched by the U.S. have been placed into orbit about the moon, Venus, or Mars. It is pointed out that, in particular, in planetary orbiter missions two-way coherent Doppler data have provided the principal data type for orbit determination applications. The present investigation is concerned with the problem of orbit determination on the basis of Doppler tracking data in the case of a spacecraft in orbit about a natural body other than the earth or the sun. Attention is given to Doppler shift associated with a planetary orbiter, orbit determination using a zeroth-order model for the Doppler shift, and orbit determination using a first-order model for the Doppler shift.

  11. Is Doppler tissue velocity during early left ventricular filling preload independent?

    NASA Technical Reports Server (NTRS)

    Yalcin, F.; Kaftan, A.; Muderrisoglu, H.; Korkmaz, M. E.; Flachskampf, F.; Garcia, M.; Thomas, J. D.

    2002-01-01

    BACKGROUND: Transmitral Doppler flow indices are used to evaluate diastolic function. Recently, velocities measured by Doppler tissue imaging have been used as an index of left ventricular relaxation. OBJECTIVE: To determine whether Doppler tissue velocities are influenced by alterations in preload. METHODS: Left ventricular preload was altered in 17 patients (all men, mean (SD) age, 49 (8) years) during echocardiographic measurements of left ventricular end diastolic volume, maximum left atrial area, peak early Doppler filling velocity, and left ventricular myocardial velocities during early filling. Preload altering manoeuvres included Trendelenberg (stage 1), reverse Trendelenberg (stage 2), and amyl nitrate (stage 3). Systolic blood pressure was measured at each stage. RESULTS: In comparison with baseline, left ventricular end diastolic volume (p = 0.001), left atrial area (p = 0.003), peak early mitral Doppler filling velocity (p = 0.01), and systolic blood pressures (p = 0.001) were all changed by preload altering manoeuvres. Only left ventricular myocardial velocity during early filling remained unchanged by these manoeuvres. CONCLUSIONS: In contrast to standard transmitral Doppler filling indices, Doppler tissue early diastolic velocities are not significantly affected by physiological manoeuvres that alter preload. Thus Doppler tissue velocities during early left ventricular diastole may provide a better index of diastolic function in cardiac patients by providing a preload independent assessment of left ventricular filling.

  12. Advanced Receiver For Phase-Shift-Keyed Signals

    NASA Technical Reports Server (NTRS)

    Hinedi, Sami M.

    1992-01-01

    ARX II is second "breadboard" version of advanced receiver, a hybrid digital/analog receiving subsystem, extracting symbols and Doppler shifts from weak phase-shift-keyed signals. Useful in terrestrial digital communication systems.

  13. Laser Doppler technology applied to atmospheric environmental operating problems

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.

    1976-01-01

    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.

  14. The application of coded excitation technology in medical ultrasonic Doppler imaging

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin

    2008-03-01

    Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.

  15. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  16. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  17. An interactive Doppler velocity dealiasing scheme

    NASA Astrophysics Data System (ADS)

    Pan, Jiawen; Chen, Qi; Wei, Ming; Gao, Li

    2009-10-01

    Doppler weather radars are capable of providing high quality wind data at a high spatial and temporal resolution. However, operational application of Doppler velocity data from weather radars is hampered by the infamous limitation of the velocity ambiguity. This paper reviews the cause of velocity folding and presents the unfolding method recently implemented for the CINRAD systems. A simple interactive method for velocity data, which corrects de-aliasing errors, has been developed and tested. It is concluded that the algorithm is very efficient and produces high quality velocity data.

  18. Spacecraft Doppler tracking with a VLBI antenna

    NASA Technical Reports Server (NTRS)

    Comoretto, G.; Iess, L.; Bertotti, B.; Brenkle, J. P.; Horton, T.

    1990-01-01

    Preliminary results are reported from Doppler-shift measurements to the Voyager-2 spacecraft at a distance of 26 AU, obtained using the 32-m VLBI antenna at Medicina (Italy) during July and August 1988. The apparatus comprises the el-az antenna, an S-X-band receiver, a hydrogen maser to generate the reference signal, a Mark III VLBI terminal, and a digital tone extractor capable of isolating a tone of known frequency from a noisy signal and giving its phase and amplitude. A signal transmitted in S-band from the NASA Deep Space Network (DSN) station in Australia and retransmitted coherently in X-band by Voyager, was received 7 h 6 min later at Medicina and at the DSN station in Madrid. Sample data are presented graphically and shown to be of generally high quality; further in-depth analysis is under way.

  19. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    PubMed

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  20. Optically phase-locked electronic speckle pattern interferometer

    NASA Astrophysics Data System (ADS)

    Moran, Steven E.; Law, Robert; Craig, Peter N.; Goldberg, Warren M.

    1987-02-01

    The design, theory, operation, and characteristics of an optically phase-locked electronic speckle pattern interferometer (OPL-ESPI) are described. The OPL-ESPI system couples an optical phase-locked loop with an ESPI system to generate real-time equal Doppler speckle contours of moving objects from unstable sensor platforms. In addition, the optical phase-locked loop provides the basis for a new ESPI video signal processing technique which incorporates local oscillator phase shifting coupled with video sequential frame subtraction.

  1. Accuracy of three-dimensional multislice view Doppler in diagnosis of morbid adherent placenta

    PubMed Central

    Abdel Moniem, Alaa M.; Ibrahim, Ahmed; Akl, Sherif A.; Aboul-Enen, Loay; Abdelazim, Ibrahim A.

    2015-01-01

    Objective To detect the accuracy of the three-dimensional multislice view (3D MSV) Doppler in the diagnosis of morbid adherent placenta (MAP). Material and Methods Fifty pregnant women at ≥28 weeks gestation with suspected MAP were included in this prospective study. Two dimensional (2D) trans-abdominal gray-scale ultrasound scan was performed for the subjects to confirm the gestational age, placental location, and findings suggestive of MAP, followed by the 3D power Doppler and then the 3D MSV Doppler to confirm the diagnosis of MAP. Intraoperative findings and histopathology results of removed uteri in cases managed by emergency hysterectomy were compared with preoperative sonographic findings to detect the accuracy of the 3D MSV Doppler in the diagnosis of MAP. Results The 3D MSV Doppler increased the accuracy and predictive values of the diagnostic criteria of MAP compared with the 3D power Doppler. The sensitivity and negative predictive value (NPV) (79.6% and 82.2%, respectively) of crowded vessels over the peripheral sub-placental zone to detect difficult placental separation and considerable intraoperative blood loss in cases of MAP using the 3D power Doppler was increased to 82.6% and 84%, respectively, using the 3D MSV Doppler. In addition, the sensitivity, specificity, and positive predictive value (PPV) (90.9%, 68.8%, and 47%, respectively) of the disruption of the uterine serosa-bladder interface for the detection of emergency hysterectomy in cases of MAP using the 3D power Doppler was increased to 100%, 71.8%, and 50%, respectively, using the 3D MSV Doppler. Conclusion The 3D MSV Doppler is a useful adjunctive tool to the 3D power Doppler or color Doppler to refine the diagnosis of MAP. PMID:26401104

  2. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows towardmore » Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.« less

  3. Trans-skull ultrasonic Doppler system aided by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Nakamura, Masato; Yagi, Naomi; Ishikawa, Tomomoto

    2012-06-01

    This paper describes a trans-skull ultrasonic Doppler system for measuring the blood flow direction in brain under skull. In this system, we use an ultrasonic array probe with the center frequency of 1.0 MHz. The system determines the fuzzy degree of blood flow by Doppler Effect, thereby it locates blood vessel. This Doppler Effect is examined by the center of gravity shift of the frequency magnitudes. In in-vitro experiment, a cow bone was employed as the skull, and three silicon tubes were done as blood vessels, and bubble in water as blood. We received the ultrasonic waves through a protein, the skull and silicon tubes in order. In the system, fuzzy degrees are determined with respect to the Doppler shift, amplitude of the waves and attenuation of the tissues. The fuzzy degrees of bone and blood direction are calculated by them. The experimental results showed that the system successfully visualized the skull and flow direction, compared with the location and flow direction of the phantom. Thus, it detected the flow direction by Doppler Effect under skull, and automatically extracted the region of skull and blood vessel.

  4. Designing clutter rejection filters with complex coefficients for airborne pulsed Doppler weather radar

    NASA Technical Reports Server (NTRS)

    Jamora, Dennis A.

    1993-01-01

    Ground clutter interference is a major problem for airborne pulse Doppler radar operating at low altitudes in a look-down mode. With Doppler zero set at the aircraft ground speed, ground clutter rejection filtering is typically accomplished using a high-pass filter with real valued coefficients and a stopband notch centered at zero Doppler. Clutter spectra from the NASA Wind Shear Flight Experiments of l991-1992 show that the dominant clutter mode can be located away from zero Doppler, particularly at short ranges dominated by sidelobe returns. Use of digital notch filters with complex valued coefficients so that the stopband notch can be located at any Doppler frequency is investigated. Several clutter mode tracking algorithms are considered to estimate the Doppler frequency location of the dominant clutter mode. From the examination of night data, when a dominant clutter mode away from zero Doppler is present, complex filtering is able to significantly increase clutter rejection over use of a notch filter centered at zero Doppler.

  5. Comments on Doppler radar applications

    NASA Technical Reports Server (NTRS)

    Kessler, E.

    1969-01-01

    The application of Doppler methods to theoretical or meteorological problems is discussed. Research for using radar to study and monitor severe thunderstorms, turbulence, and tornadoes is recommended.

  6. Clinical Tests Combined with Color Doppler Versus Color Doppler Alone in Identifying Incompetent Perforator Veins of the Lower Limb: A Prospective Analytical Study.

    PubMed

    Sureshkumar, Sathasivam; Vignesh, Narayan; Venkatachalam, J; Vijayakumar, Chellappa; Sudharsanan, Sundaramurthi

    2018-01-05

    Background The color Doppler, a better investigation to identify the perforators objectively has replaced the clinical examination for the same. However, this has led to a significant number of negative explorations and cosmetic disfigurement. Objective To compare the efficacy of the clinical tests combined with the color Doppler versus color Doppler alone to identify the perforator incompetence during the surgery for primary varicose veins of the lower limb. Methods This was a prospective analytical study, including 61 lower limb varicose vein patients who belonged to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP) class four-six, planned for the surgical treatment for perforator incompetence, excluding those requiring additional vascular or nonvascular procedure, recurrent varicose veins and those who had injection sclerotherapy prior to the surgery. The clinical tests, including Trendelenburg's test, multiple tourniquet tests and, the Fegan's tests were performed and incompetent perforators were marked on a template as 'C' to indicate the clinically positive perforator incompetence. The patients were then examined with the color Doppler ultrasound and the pathological incompetent perforators were marked as 'D'. The surgical management of the perforator incompetence was done by stab ligation. The incision was made in the color Doppler 'D' marked sites as it has been the standard protocol. The number of incompetent perforators identified during the surgical exploration were categorized as 'D' positive or 'C' and 'D' positive and were recorded in the specified proforma. Results It was found that the mean number of the perforator incompetence identified by the color Doppler alone was 8.2 whereas during the surgery, only a mean of six perforators was identified, leading to 20 unnecessary explorations per 10 patients (8.2 vs. 6; mean difference 2.229; P <0.001). The mean number of the perforator incompetence identified by the color Doppler combined with the

  7. Clinical Tests Combined with Color Doppler Versus Color Doppler Alone in Identifying Incompetent Perforator Veins of the Lower Limb: A Prospective Analytical Study

    PubMed Central

    Vignesh, Narayan; Venkatachalam, J; Vijayakumar, Chellappa; Sudharsanan, Sundaramurthi

    2018-01-01

    Background The color Doppler, a better investigation to identify the perforators objectively has replaced the clinical examination for the same. However, this has led to a significant number of negative explorations and cosmetic disfigurement. Objective To compare the efficacy of the clinical tests combined with the color Doppler versus color Doppler alone to identify the perforator incompetence during the surgery for primary varicose veins of the lower limb. Methods This was a prospective analytical study, including 61 lower limb varicose vein patients who belonged to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP) class four-six, planned for the surgical treatment for perforator incompetence, excluding those requiring additional vascular or nonvascular procedure, recurrent varicose veins and those who had injection sclerotherapy prior to the surgery. The clinical tests, including Trendelenburg’s test, multiple tourniquet tests and, the Fegan’s tests were performed and incompetent perforators were marked on a template as ‘C’ to indicate the clinically positive perforator incompetence. The patients were then examined with the color Doppler ultrasound and the pathological incompetent perforators were marked as ‘D’. The surgical management of the perforator incompetence was done by stab ligation. The incision was made in the color Doppler ‘D’ marked sites as it has been the standard protocol. The number of incompetent perforators identified during the surgical exploration were categorized as ‘D’ positive or ’C’ and ‘D’ positive and were recorded in the specified proforma. Results It was found that the mean number of the perforator incompetence identified by the color Doppler alone was 8.2 whereas during the surgery, only a mean of six perforators was identified, leading to 20 unnecessary explorations per 10 patients (8.2 vs. 6; mean difference 2.229; P <0.001). The mean number of the perforator incompetence identified by the color

  8. Doppler ultrasonography and single-fiber laser Doppler flowmetry for measurement of hind limb blood flow in anesthetized horses.

    PubMed

    Raisis, A L; Young, L E; Taylor, P M; Walsh, K P; Lekeux, P

    2000-03-01

    To use Doppler ultrasonography and single-fiber laser Doppler flowmetry (LDF) to evaluate blood flow in the dependent and nondependent hind limbs of anesthetized horses and to evaluate changes in femoral arterial blood flow and microvascular skeletal muscle perfusion in response to administration of phenylephrine hydrochloride or dobutamine hydrochloride. 6 healthy adult horses. Horses were anesthetized and positioned in left lateral recumbency. Doppler ultrasonography was used to measure velocity and volumetric flow in the femoral vessels. Single-fiber LDF was used to measure relative microvascular perfusion at a single site in the semimembranosus muscles. Phenylephrine or dobutamine was then administered to decrease or increase femoral arterial blood flow, and changes in blood flow and microvascular perfusion were recorded. Administration of phenylephrine resulted in significant decreases in femoral arterial and venous blood flows and cardiac output and significant increases in mean aortic blood pressure, systemic vascular resistance, and PCV. Administration of dobutamine resulted in significant increases in femoral arterial blood flow, mean aortic blood pressure, and PCV. Significant changes in microvascular perfusion were not detected. Results suggest that Doppler ultrasonography and single-fiber LDF can be used to study blood flows in the hind limbs of anesthetized horses. However, further studies are required to determine why changes in femoral arterial blood flows were not associated with changes in microvascular perfusion.

  9. Non-intrusive Shock Measurements Using Laser Doppler Vibrometers

    NASA Technical Reports Server (NTRS)

    Statham, Shannon M.; Kolaini, Ali R.

    2012-01-01

    Stud mount accelerometers are widely used by the aerospace industry to measure shock environments during hardware qualification. The commonly used contact-based sensors, however, interfere with the shock waves and distort the acquired signature, which is a concern not actively discussed in the community. To alleviate these interference issues, engineers at the Jet Propulsion Laboratory are investigating the use of non-intrusive sensors, specifically Laser Doppler Vibrometers, as alternatives to the stud mounted accelerometers. This paper will describe shock simulation tests completed at the Jet Propulsion Laboratory, compare the measurements from stud mounted accelerometers and Laser Doppler Vibrometers, and discuss the advantages and disadvantages of introducing Laser Doppler Vibrometers as alternative sensors for measuring shock environments.

  10. Laser Doppler systems in pollution monitoring

    NASA Technical Reports Server (NTRS)

    Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.

    1976-01-01

    The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.

  11. Evaluation of transcatheter arterial embolization therapy on hepatocellular carcinomas using contrast-enhanced harmonic power Doppler sonography: comparison with CT, power Doppler sonography, and dynamic MRI.

    PubMed

    Shima, Toshihide; Mizuno, Masayuki; Otsuji, Hideaki; Mizuno, Chiemi; Obata, Hirozumi; Park, Hyohun; Nakajo, Shinobu; Okanoue, Takeshi

    2005-09-01

    The aim of this study was to assess and compare the sensitivity of power Doppler sonography, contrast-enhanced sonography, plain computed tomography (CT), and dynamic magnetic resonance imaging (MRI) for detecting hepatocellular carcinoma (HCC) nodules incompletely treated with transcatheter arterial embolization (TAE). A total of 63 unresectable HCC nodules were examined in this study. The HCCs were treated with TAE. All patients underwent plain CT, power Doppler sonography, contrast-enhanced harmonic power Doppler sonography, and dynamic MRI 1 week after TAE. The sensitivity of each modality to incompletely treated HCC nodules was compared. Detection of the residual viable HCC on angiography or tumor biopsy was regarded as the gold standard for the diagnosis of incomplete treatment. Twenty-four nodules (38%) were diagnosed as incompletely treated. The sensitivities of plain CT, power Doppler sonography, contrast-enhanced harmonic power Doppler sonography, and dynamic MRI to these incompletely treated nodules were 42% (10/24), 46% (11/24), 88% (21/24), and 79% (19/24), respectively. Eighty percent (19 nodules) of the 24 incompletely treated nodules were located within a depth of less than 8 cm. The sensitivities of plain CT, power Doppler sonography, contrast-enhanced harmonic power Doppler sonography, and dynamic MRI to these superficial incompletely treated nodules were 37% (7/19), 53% (10/19), 100% (19/19), and 74% (14/19), respectively. In contrast, the sensitivities of each modality to deeply located nodules were 60% (3/5), 20% (1/5), 40% (2/5), and 100% (5/5), respectively. Plain CT and power Doppler sonography had a low sensitivity to HCC nodules incompletely treated with TAE. Except for those that were deeply located, contrast-enhanced harmonic sonography showed the highest sensitivity in detecting incompletely treated HCC nodules.

  12. Three-dimensional power Doppler sonography in screening for carotid artery disease.

    PubMed

    Keberle, M; Jenett, M; Beissert, M; Jahns, R; Haerten, R; Hahn, D

    2000-01-01

    Color Doppler sonography has gained considerable recognition as a noninvasive method to detect carotid artery disease and to assess the degree of carotid artery stenosis. However, results are highly operator-dependent and cannot be presented as survey images. The purpose of this study was to evaluate real-time 3-dimensional (3D) power Doppler sonography as a method for screening for atherosclerosis in the carotid arteries. We prospectively screened 75 patients for carotid artery disease using both conventional color Doppler sonography and 3D power Doppler sonography, and the results from the 2 modalities were compared. A total of 150 common carotid arteries, 150 internal carotid arteries, and 150 external carotid arteries were examined utilizing a 7.5-MHz linear-array transducer combined with tissue harmonic imaging. Color Doppler sonography detected 297 normal or atherosclerotic arteries without stenosis, 57 arteries with mild (1-49%) stenosis, 41 with moderate (50-69%) stenosis, 32 with severe (70-99%) stenosis, and 9 with occlusions. The degree of stenosis determined by color Doppler sonography correlated with that determined by 3D power Doppler sonography (r = 0.982-0.998). Moreover, there was a good correlation between the measurements for both the length of the lesion and its distance from the bulb as determined by the 3D volume surveys and by color Doppler sonography (r = 0.986). The interobserver variability rate was 3.7% +/- 0.5%. Generally, the acquisition and reconstruction of the 3D data took less than 5 minutes. 3D power Doppler sonography is easy to perform and is an accurate method in screening for atherosclerotic lesions of the carotid arteries. Moreover, it provides excellent 3D volume surveys that may be helpful in the planning of surgical treatment. Copyright 2000 John Wiley & Sons, Inc.

  13. Understanding the effects of Doppler phenomena in white light Fabry-Perot interferometers for simultaneous position and velocity measurement.

    PubMed

    Moro, Erik A; Todd, Michael D; Puckett, Anthony D

    2012-09-20

    In static tests, low-power (<5 mW) white light extrinsic Fabry-Perot interferometric position sensors offer high-accuracy (μm) absolute measurements of a target's position over large (cm) axial-position ranges, and since position is demodulated directly from phase in the interferogram, these sensors are robust to fluctuations in measured power levels. However, target surface dynamics distort the interferogram via Doppler shifting, introducing a bias in the demodulation process. With typical commercial off-the-shelf hardware, a broadband source centered near 1550 nm, and an otherwise typical setup, the bias may be as large as 50-100 μm for target surface velocities as low as 0.1 mm/s. In this paper, the authors derive a model for this Doppler-induced position bias, relating its magnitude to three swept-filter tuning parameters. Target velocity (magnitude and direction) is calculated using this relationship in conjunction with a phase-diversity approach, and knowledge of the target's velocity is then used to compensate exactly for the position bias. The phase-diversity approach exploits side-by-side measurement signals, transmitted through separate swept filters with distinct tuning parameters, and permits simultaneous measurement of target velocity and target position, thereby mitigating the most fundamental performance limitation that exists on dynamic white light interferometric position sensors.

  14. Doppler Tomography and Photometry of the Cataclysmic Variable 1RXS J064434.5+334451

    NASA Astrophysics Data System (ADS)

    Echevarria, Juan

    2015-08-01

    We have obtained simultaneous photometric and spectroscopic observations of the cataclysmic variable 1RXS J064434.5+334451. We have calibrated the spectra for slit losses using the simultaneous photometry. This has been used to construct reliable Doppler images from Hα, Hβ and He II 4686 Å emission lines. We have also analyzed the radial velocity curve of the emission lines to derive its semi-amplitude, and used a co-phasing method to determine the semi-amplitude of the secondary. We have improved the ephemeris of the object based on new photometric eclipse timings to obtain HJD = 2453403.759533 + 0.26937446E. Some eclipses present a clear internal structure which we attribute to a central blob of He II emission surrounding the white dwarf, a finding supported by the Doppler Tomography. This indicates that the system has a large inclination angle i = 78o ± 2. We discuss which radial velocity semi-amplitudes indicator yields a better result for the mass ratio of the system. We derive the masses of the components: M1 = 0.76 ± 0.04 M⊙, M2 = 0.57 ± 0.04 M⊙ and their separation a = 1.92 ± 0.04R⊙ . The Doppler tomography and other observed features in this nova-like system strongly suggests that this is an SW Sex type system.

  15. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos Flyby. II. Doppler tracking: Formulation of observed and computed values, and noise budget

    NASA Astrophysics Data System (ADS)

    Bocanegra-Bahamón, T. M.; Molera Calvés, G.; Gurvits, L. I.; Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Dirkx, D.; Rosenblatt, P.

    2018-01-01

    Context. Closed-loop Doppler data obtained by deep space tracking networks, such as the NASA Deep Space Network (DSN) and the ESA tracking station network (Estrack), are routinely used for navigation and science applications. By shadow tracking the spacecraft signal, Earth-based radio telescopes involved in the Planetary Radio Interferometry and Doppler Experiment (PRIDE) can provide open-loop Doppler tracking data only when the dedicated deep space tracking facilities are operating in closed-loop mode. Aims: We explain the data processing pipeline in detail and discuss the capabilities of the technique and its potential applications in planetary science. Methods: We provide the formulation of the observed and computed values of the Doppler data in PRIDE tracking of spacecraft and demonstrate the quality of the results using an experiment with the ESA Mars Express spacecraft as a test case. Results: We find that the Doppler residuals and the corresponding noise budget of the open-loop Doppler detections obtained with the PRIDE stations compare to the closed-loop Doppler detections obtained with dedicated deep space tracking facilities.

  16. Color doppler in clinical cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, W.J.

    1987-01-01

    A presentation of color doppler, which enables physicians to pinpoint problems and develop effective treatment. State-of-the-art illustrations and layout, with color images and explanatory text are included.

  17. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  18. Long-range, noncoherent laser Doppler velocimeter.

    PubMed

    Bloom, S H; Kremer, R; Searcy, P A; Rivers, M; Menders, J; Korevaar, E

    1991-11-15

    An experimental demonstration of a long-range, noncoherent laser Doppler velocimeter (LDV) is presented. The LDV detects incoming Doppler-shifted signal photons by using the sharp spectral absorption features in atomic or molecular vapors. The edge of the absorption feature is used to convert changes in frequency to large changes in transmission. Preliminary measurements of wind velocity using seeded aerosols showed that the LDV results agreed with mechanical anemometer measurements to within the accuracy of the LDV measurements. With optimization the LDV will provide accurate range-resolved and vibration-tolerant wind-speed measurements at large distances.

  19. Investigation of inner aerodynamics of the four-vortex furnace model

    NASA Astrophysics Data System (ADS)

    Anufriev, I. S.; Shadrin, E. Yu; Sharypov, O. V.

    2018-03-01

    The internal aerodynamics of a perspective vortex furnace chamber of a pulverized coal boiler with a diagonal arrangement of burners is studied using the non-contact optical method of flow diagnostics. The results of laser Doppler anemometry, characterizing the complex spatial structure of a swirling flow in an isothermal laboratory model of the furnace device, are presented. The velocity distribution in the vortex chamber volume is obtained, and the flow structure in the form of four conjugate closed vortices with curved axes is visualized.

  20. Software For Clear-Air Doppler-Radar Display

    NASA Technical Reports Server (NTRS)

    Johnston, Bruce W.

    1990-01-01

    System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.

  1. Magnetic Doppler imaging of the chemically peculiar star HD 125248

    NASA Astrophysics Data System (ADS)

    Rusomarov, N.; Kochukhov, O.; Ryabchikova, T.; Ilyin, I.

    2016-04-01

    Context. Intermediate-mass, chemically peculiar stars with strong magnetic fields provide an excellent opportunity to study the topology of their surface magnetic fields and the interplay between magnetic geometries and abundance inhomogeneities in the atmospheres of these stars. Aims: We reconstruct detailed maps of the surface magnetic field and abundance distributions for the magnetic Ap star HD 125248. Methods: We performed the analysis based on phase-resolved, four Stokes parameter spectropolarimetric observations obtained with the HARPSpol instrument. These data were interpreted with the help of magnetic Doppler imaging techniques and model atmospheres taking the effects of strong magnetic fields and nonsolar chemical composition into account. Results: We improved the atmospheric parameters of the star, Teff = 9850 ± 250 K and log g = 4.05 ± 0.10. We performed detailed abundance analysis, which confirmed that HD 125248 has abundances typical of other Ap stars, and discovered significant vertical stratification effects for the Fe II and Cr II ions. We computed LSD Stokes profiles using several line masks corresponding to Fe-peak and rare earth elements, and studied their behavior with rotational phase. Combining previous longitudinal field measurements with our own observations, we improved the rotational period of the star Prot = 9.29558 ± 0.00006 d. Magnetic Doppler imaging of HD 125248 showed that its magnetic field is mostly poloidal and quasi-dipolar with two large spots of different polarity and field strength. The chemical maps of Fe, Cr, Ce, Nd, Gd, and Ti show abundance contrasts of 0.9-3.5 dex. Among these elements, the Fe abundance map does not show high-contrast features. Cr is overabundant around the negative magnetic pole and has 3.5 dex abundance range. The rare earth elements and Ti are overabundant near the positive magnetic pole. Conclusions: The magnetic field of HD 125248 has strong deviations from the classical oblique dipole field

  2. Investigation of Cooling Water Injection into Supersonic Rocket Engine Exhaust

    NASA Astrophysics Data System (ADS)

    Jones, Hansen; Jeansonne, Christopher; Menon, Shyam

    2017-11-01

    Water spray cooling of the exhaust plume from a rocket undergoing static testing is critical in preventing thermal wear of the test stand structure, and suppressing the acoustic noise signature. A scaled test facility has been developed that utilizes non-intrusive diagnostic techniques including Focusing Color Schlieren (FCS) and Phase Doppler Particle Anemometry (PDPA) to examine the interaction of a pressure-fed water jet with a supersonic flow of compressed air. FCS is used to visually assess the interaction of the water jet with the strong density gradients in the supersonic air flow. PDPA is used in conjunction to gain statistical information regarding water droplet size and velocity as the jet is broken up. Measurement results, along with numerical simulations and jet penetration models are used to explain the observed phenomena. Following the cold flow testing campaign a scaled hybrid rocket engine will be constructed to continue tests in a combusting flow environment similar to that generated by the rocket engines tested at NASA facilities. LaSPACE.

  3. Investigation of the performance characteristics of Doppler radar technique for aircraft collision hazard warning, phase 3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    System studies, equipment simulation, hardware development and flight tests which were conducted during the development of aircraft collision hazard warning system are discussed. The system uses a cooperative, continuous wave Doppler radar principle with pseudo-random frequency modulation. The report presents a description of the system operation and deals at length with the use of pseudo-random coding techniques. In addition, the use of mathematical modeling and computer simulation to determine the alarm statistics and system saturation characteristics in terminal area traffic of variable density is discussed.

  4. Micro-Doppler classification of riders and riderless horses

    NASA Astrophysics Data System (ADS)

    Tahmoush, David

    2014-05-01

    Micro-range Micro-Doppler can be used to isolate particular parts of the radar signature, and in this case we demonstrate the differences in the signature between a walking horse versus a walking horse with a rider. Using micro-range micro-Doppler, we can distinguish the radar returns from the rider as separate from the radar returns of the horse.

  5. Multigigahertz range-Doppler correlative processing in crystals

    NASA Astrophysics Data System (ADS)

    Harris, Todd L.; Babbitt, Wm. R.; Merkel, Kristian D.; Mohan, R. Krishna; Cole, Zachary; Olson, Andy

    2004-06-01

    Spectral-spatial holographic crystals have the unique ability to resolve fine spectral features (down to kilohertz) in an optical waveform over a broad bandwidth (over 10 gigahertz). This ability allows these crystals to record the spectral interference between spread spectrum waveforms that are temporally separated by up to several microseconds. Such crystals can be used for performing radar range-Doppler processing with fine temporal resolution. An added feature of these crystals is the long upper state lifetime of the absorbing rare earth ions, which allows the coherent integration of multiple recorded spectra, yielding integration gain and significant processing gain enhancement for selected code sets, as well as high resolution Doppler processing. Parallel processing of over 10,000 beams could be achieved with a crystal the size of a sugar cube. Spectral-spatial holographic processing and coherent integration of up to 2.5 Gigabit per second coded waveforms and of lengths up to 2047 bits has previously been reported. In this paper, we present the first demonstration of Doppler processing with these crystals. Doppler resolution down to a few hundred Hz for broadband radar signals can be achieved. The processing can be performed directly on signals modulated onto IF carriers (up to several gigahertz) without having to mix the signals down to baseband and without having to employ broadband analog to digital conversion.

  6. Comparison of the Diagnostic Performance of Power Doppler Ultrasound and a New Microvascular Doppler Ultrasound Technique (AngioPLUS) for Differentiating Benign and Malignant Breast Masses.

    PubMed

    Jung, Hae Kyoung; Park, Ah Young; Ko, Kyung Hee; Koh, Jieun

    2018-03-12

    This study was performed to compare the diagnostic performance of power Doppler ultrasound (US) and a new microvascular Doppler US technique (AngioPLUS; SuperSonic Imagine, Aix-en-Provence, France) for differentiating benign and malignant breast masses. Power Doppler US and AngioPLUS findings were available in 124 breast masses with confirmed pathologic results (benign, 80 [64.5%]; malignant, 44 [35.5%]). The diagnostic performance of each tool was calculated to distinguish benign from malignant masses using a receiver operating characteristic curve analysis and compared. The area under the curve showed that AngioPLUS was superior to power Doppler US in differentiating benign from malignant breast masses, but the difference was not statistically significant. © 2018 by the American Institute of Ultrasound in Medicine.

  7. Doppler electron velocimetry : notes on creating a practical tool.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reu, Phillip L.; Milster, Tom

    2008-11-01

    The Doppler electron velocimeter (DEV) has been shown to be theoretically possible. This report attempts to answer the next logical question: Is it a practical instrument? The answer hinges upon whether enough electrons are available to create a time-varying Doppler current to be measured by a detector with enough sensitivity and bandwidth. The answer to both of these questions is a qualified yes. A target Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron holography equipment. A detector is alsomore » demonstrated with a bandwidth of 1-MHz at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase the available beam current is shown that would offer a more flexible arrangement for Doppler electron measurements over the traditional biprism.« less

  8. Space-based detection of spoofing AIS signals using Doppler frequency

    NASA Astrophysics Data System (ADS)

    Guo, Shanzeng

    2014-05-01

    The Automatic Identification System (AIS) is a self-reporting system based on VHF radio to transmit a vessel's identity, position, speed, heading and other parameters to improve maritime domain awareness. However, AIS information can be programmatically spoofed by terrorists or other criminals, who often choose to masquerade as innocent civilians and exploit the vulnerabilities of military and civilian infrastructures for their purposes. Therefore, detecting and localizing a spoofing AIS ship become a critical and challenging issue for maritime security. This paper presents an algorithm to detect and geolocalize a spoofing AIS emitter using space-based AIS signals with its Doppler frequency. With an AIS signal sensor on a fast orbiting satellite, the measured AIS Doppler frequency of an AIS emitter can be used to define a double-napped cone of which the satellite is at its vertex and satellite velocity coincides with its axis, such that the theoretical Doppler frequency derived from the radial velocity to the AIS emitter matches the measured Doppler frequency. All such matches can only lie on either cone extending out from the satellite, which cuts the Earth's surface in two curves, so we know that the AIS emitter must lie somewhere on these curves. Two such AIS Doppler frequency measurements for the same stationary AIS emitter produce two valid curves which intersect at the position of the AIS emitter. Multiple Doppler frequency measurements can be used to better estimate the position fix of an AIS emitter, hence determine the spoofing AIS ship if the estimated position fix unreasonably differs from the position carried in its AIS message. A set of formulas are derived which relate an AIS emitter position to its Doppler frequency measurements.

  9. Orbit determination of highly elliptical Earth orbiters using improved Doppler data-processing modes

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.

    1995-01-01

    A navigation error covariance analysis of four highly elliptical Earth orbits is described, with apogee heights ranging from 20,000 to 76,800 km and perigee heights ranging from 1,000 to 5,000 km. This analysis differs from earlier studies in that improved navigation data-processing modes were used to reduce the radio metric data. For this study, X-band (8.4-GHz) Doppler data were assumed to be acquired from two Deep Space Network radio antennas and reconstructed orbit errors propagated over a single day. Doppler measurements were formulated as total-count phase measurements and compared to the traditional formulation of differenced-count frequency measurements. In addition, an enhanced data-filtering strategy was used, which treated the principal ground system calibration errors affecting the data as filter parameters. Results suggest that a 40- to 60-percent accuracy improvement may be achievable over traditional data-processing modes in reconstructed orbit errors, with a substantial reduction in reconstructed velocity errors at perigee. Historically, this has been a regime in which stringent navigation requirements have been difficult to meet by conventional methods.

  10. Doppler and range determination for deep space vehicles using active optical transponders.

    PubMed

    Kinman, P W; Gagliardi, R M

    1988-11-01

    This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.

  11. Doppler and range determination for deep space vehicles using active optical transponders

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1988-01-01

    This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.

  12. Christian Andreas Doppler--the man and his legacy.

    PubMed

    Coman, I M

    2005-01-01

    Reminding the life and legacy of the Austrian Scientist who discovered the famous 'Doppler Effect'. C.A. Doppler was born the 29th of November 1803 in Salzburg. After studies in Linz and Vienna, he graduated in mathematics, became assistant at the University and later worked as a professor in Prague. Back to Vienna, he was appointed as professor at the Polytechnic School and --in 1850--as first director of the new Institute of Physics. C.A. Doppler did publish on magnetism, electricity, optics, and astronomy. He remains in the history of science due to the discovery presented (May 25, 1842) at the Royal Bohemian Society of Science entitled "On the colored light of the double stars and certain other stars of the heavens"; the paper described (applied to light) the shift of frequency which bears nowadays his name. The theory was later experimentally proven and--extended for any electromagnetic and acoustic waves--got myriads if applications in astronomy, physics, aviation, meteorology, and health science. Satomura in Japan (1955) published it's first ultrasound vascular application--with successive achievements in the next decades. Doppler ultrasonagraphy became the main noninvasive instrument for functional assesment of heart and vessels.

  13. Differenced Range Versus Integrated Doppler (DRVID) ionospheric analysis of metric tracking in the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Doll, C. E.

    1995-01-01

    The Differenced Range (DR) Versus Integrated Doppler (ID) (DRVID) method exploits the opposition of high-frequency signal versus phase retardation by plasma media to obtain information about the plasma's corruption of simultaneous range and Doppler spacecraft tracking measurements. Thus, DR Plus ID (DRPID) is an observable independent of plasma refraction, while actual DRVID (DR minus ID) measures the time variation of the path electron content independently of spacecraft motion. The DRVID principle has been known since 1961. It has been used to observe interplanetary plasmas, is implemented in Deep Space Network tracking hardware, and has recently been applied to single-frequency Global Positioning System user navigation This paper discusses exploration at the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) of DRVID synthesized from simultaneous two-way range and Doppler tracking for low Earth-orbiting missions supported by the Tracking and Data Relay Satellite System (TDRSS) The paper presents comparisons of actual DR and ID residuals and relates those comparisons to predictions of the Bent model. The complications due to the pilot tone influence on relayed Doppler measurements are considered. Further use of DRVID to evaluate ionospheric models is discussed, as is use of DRPID in reducing dependence on ionospheric modeling in orbit determination.

  14. Wavelet analysis of the Laser Doppler signal to assess skin perfusion.

    PubMed

    Bagno, Andrea; Martini, Romeo

    2015-01-01

    The hemodynamics of skin microcirculation can be clinically assessed by means of Laser Doppler Fluxmetry. Laser Doppler signals show periodic oscillations because of fluctuations of microvascular perfusion (flowmotion), which are sustained by contractions and relaxations of arteriolar walls rhythmically changing vessels diameter (vasomotion). The wavelet analysis applied to Laser Doppler signals displays six characteristic frequency intervals, from 0.005 to 2 Hz. Each interval is assigned to a specific structure of the cardiovascular system: heart, respiration, vascular myocites, sympathetic terminations, and endothelial cells (dependent and independent on nitric oxide). Therefore, mechanisms of skin perfusion can be investigated through wavelet analysis. In the present work, examples of methods and results of wavelet analysis applied to Laser Doppler signals are reported. Laser Doppler signals were acquired in two groups of patients to check possible changes in vascular activities, before and after occlusive reactive hyperaemia, and before and after revascularization.

  15. Non-invasive classification of gas-liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    NASA Astrophysics Data System (ADS)

    Musa Abbagoni, Baba; Yeung, Hoi

    2016-08-01

    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas-liquid flow regimes objectively with the gas-liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the

  16. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... determine stationary body tissue characteristics, such as depth or location of tissue interfaces or dynamic...

  17. Estimation of physiological sub-millimeter displacement with CW Doppler radar.

    PubMed

    Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga

    2015-01-01

    Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.

  18. A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler

    PubMed Central

    Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew

    2015-01-01

    In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178

  19. An elementary approach to the gravitational Doppler shift

    NASA Astrophysics Data System (ADS)

    Wörner, C. H.; Rojas, Roberto

    2017-01-01

    In college physics courses, treatment of the Doppler effect is usually done far from the first introduction to kinematics. This paper aims to apply a graphical treatment to describe the gravitational redshift, by considering the Doppler effect in two accelerated reference frames and exercising the equivalence principle. This approach seems appropriate to discuss with beginner students and could serve to enrich the didactic processes.

  20. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    DTIC Science & Technology

    2018-01-01

    grating lobes as compared to the conventional Doppler processing counterpart. 15. SUBJECT TERMS Doppler radar, UWB radar, matched filter , ambiguity...maps by the matched filter method, illustrating the radar data support in (a) the frequency-slow time domain and (b) the ρ-u domain. The samples...example, obtained by the matched filter method, for a 1.2-s CPI centered at t = 1.5 s

  1. Sequential motion of the ossicular chain measured by laser Doppler vibrometry.

    PubMed

    Kunimoto, Yasuomi; Hasegawa, Kensaku; Arii, Shiro; Kataoka, Hideyuki; Yazama, Hiroaki; Kuya, Junko; Fujiwara, Kazunori; Takeuchi, Hiromi

    2017-12-01

    In order to help a surgeon make the best decision, a more objective method of measuring ossicular motion is required. A laser Doppler vibrometer was mounted on a surgical microscope. To measure ossicular chain vibrations, eight patients with cochlear implants were investigated. To assess the motions of the ossicular chain, velocities at five points were measured with tonal stimuli of 1 and 3 kHz, which yielded reproducible results. The sequential amplitude change at each point was calculated with phase shifting from the tonal stimulus. Motion of the ossicular chain was visualized from the averaged results using the graphics application. The head of the malleus and the body of the incus showed synchronized movement as one unit. In contrast, the stapes (incudostapedial joint and posterior crus) moved synchronously in opposite phase to the malleus and incus. The amplitudes at 1 kHz were almost twice those at 3 kHz. Our results show that the malleus and incus unit and the stapes move with a phase difference.

  2. Automatic extraction of disease-specific features from Doppler images

    NASA Astrophysics Data System (ADS)

    Negahdar, Mohammadreza; Moradi, Mehdi; Parajuli, Nripesh; Syeda-Mahmood, Tanveer

    2017-03-01

    Flow Doppler imaging is widely used by clinicians to detect diseases of the valves. In particular, continuous wave (CW) Doppler mode scan is routinely done during echocardiography and shows Doppler signal traces over multiple heart cycles. Traditionally, echocardiographers have manually traced such velocity envelopes to extract measurements such as decay time and pressure gradient which are then matched to normal and abnormal values based on clinical guidelines. In this paper, we present a fully automatic approach to deriving these measurements for aortic stenosis retrospectively from echocardiography videos. Comparison of our method with measurements made by echocardiographers shows large agreement as well as identification of new cases missed by echocardiographers.

  3. Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT.

    PubMed

    Wei, Xiang; Camino, Acner; Pi, Shaohua; Cepurna, William; Huang, David; Morrison, John C; Jia, Yali

    2018-05-01

    Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and human retinal images acquired by a commercial system. The image quality and computational speed were significantly improved, compared to two conventional phase compensation methods.

  4. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  5. Superharmonic microbubble Doppler effect in ultrasound therapy

    PubMed Central

    Pouliopoulos, Antonios N; Choi, James J

    2016-01-01

    Abstract The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml−1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s−1, prior to

  6. Technical Note: A new phantom design for routine testing of Doppler ultrasound.

    PubMed

    Grice, J V; Pickens, D R; Price, R R

    2016-07-01

    The objective of this project is to demonstrate the principle and operation for a simple, inexpensive, and highly portable Doppler ultrasound quality assurance (QA) phantom intended for routine QA testing. A prototype phantom has been designed, fabricated, and evaluated. The phantom described here is powered by gravity alone, requires no external equipment for operation, and produces a stable fluid velocity useful for quality assurance. Many commercially available Doppler ultrasound testing systems can suffer from issues such as a lengthy setup, prohibitive cost, nonportable size, or difficulty in use. This new phantom design aims to address some of these problems and create a phantom appropriate for assessing Doppler ultrasound stability. The phantom was fabricated using a 3D printer. The basic design of the phantom is to provide gravity-powered flow of a Doppler fluid between two reservoirs. The printed components were connected with latex tubing and then seated in a tissue mimicking gel. Spectral Doppler waveforms were sampled to evaluate variations in the data, and the phantom was evaluated using high frame rate video to find an alternate measure of mean fluid velocity flowing in the phantom. The current system design maintains stable flow from one reservoir to the other for approximately 7 s. Color Doppler imaging of the phantom was found to be qualitatively consistent with laminar flow. Using pulsed spectral Doppler, the average fluid velocity from a sample volume approximately centered in the synthetic vessel was measured to be 56 cm/s with a standard deviation of 3.2 cm/s across 118 measurements. An independent measure of the average fluid velocity was measured to be 51.9 cm/s with a standard deviation of 0.7 cm/s over 4 measurements. The developed phantom provides stable fluid flow useful for frequent clinical Doppler ultrasound testing and attempts to address several obstacles facing Doppler phantom testing. Such an ultrasound phantom can make routine

  7. A model for gravity-wave spectra observed by Doppler sounding systems

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.

    1986-01-01

    A model for Mesosphere - Stratosphere - Troposphere (MST) radar spectra is developed following the formalism presented by Pinkel (1981). Expressions for the one-dimensional spectra of radial velocity versus frequency and versus radial wave number are presented. Their dependence on the parameters of the gravity-wave spectrum and on the experimental parameters, radar zenith angle and averaging time are described and the conditions for critical tests of the gravity-wave hypothesis are discussed. The model spectra is compared with spectra observed in the Arctic summer mesosphere by the Poker Flat radar. This model applies to any monostatic Doppler sounding system, including MST radar, Doppler lidar and Doppler sonar in the atmosphere, and Doppler sonar in the ocean.

  8. Assessment of ureterovesical jet dynamics in obstructed ureter by urinary stone with color Doppler and duplex Doppler examinations.

    PubMed

    Jandaghi, Ali Babaei; Falahatkar, Siavash; Alizadeh, Ahmad; Kanafi, Alireza Rajabzadeh; Pourghorban, Ramin; Shekarchi, Babak; Zirak, Amin Keshavarz; Esmaeili, Samaneh

    2013-04-01

    This study was designed to evaluate ureterovesical jet dynamics in obstructed ureter and to compare it with those of contralateral unobstructed side. Forty-six patients with diagnosis of ureteral stone, based on imaging findings in computed tomography were enrolled in this study. The gray-scale ultrasound exam from both kidneys and urinary bladder was performed. Then, ureterovesical jet characteristics including ureteral jet frequency, duration and peak velocity were assessed by color Doppler and duplex Doppler studies in both obstructed and unobstructed ureters by a radiologist, 15-30 min after oral hydration with 750-1,000 mL of water. When compared with contralateral normal side, the ureterovesical jet in obstructed ureter showed less frequency (0.59 vs. 3.04 jets/min; P < 0.05), shorter duration (1.24 vs. 5.26 s; P < 0.05) and lower peak velocity (5.41 vs. 32.09 cm/s; P < 0.05). The cut-off points of 1.5 jets/min, 2.5 s and 19.5 cm/s for difference of ureteral jet frequency, duration and peak velocity between obstructed and contralateral normal ureters yielded sensitivities of 97.8, 95.6 and 100 % and specificities of 87, 87.9 and 97.8 %, respectively for diagnosis of ureteral obstruction. Given the safety of Doppler study and significant differences in flow dynamics of obstructed versus unobstructed ureters, our findings demonstrated the utility of Doppler ultrasound examination as a useful adjunct to gray-scale ultrasound by improving the accuracy of ultrasound exam in diagnosis of ureteral obstruction.

  9. A visual demo of the Doppler effect

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios

    2010-09-01

    Most physics teachers are familiar with the standard classroom demonstration of the Doppler effect. We invite students to explain the periodic variation of the pitch produced when we swirl a sounding buzzer over our heads. Students are quick to connect this phenomenon to everyday life experiences such as listening to the sound of the siren of a fast-approaching police car or the bell of an approaching train. In addition to these aural experiences, our understanding of the Doppler effect can be strengthened with a useful visual metaphor.

  10. [Contrast enhanced power Doppler and color Doppler ultrasound in breast masses: Efficiency in diagnosis and contributions to differential diagnosis].

    PubMed

    Algül, Ali; Balci, Pinar; Seçil, Mustafa; Canda, Tülay

    2003-06-01

    To compare ability of detection of vascular structures by utilizing ultrasonographic contrast agent (Levovist) prior to and following power Doppler ultrasound (PDUS) and colour Doppler ultrasound (CDUS) and to determine useful parameters in the differentiation of malignant and benign breast masses by means of verified data. Vascularisation characteristics of 38 breast masses (22 malignant, 16 benign) which were confirmed by mammography and B-mode sonography were evaluated by both CDUS and PDUS following and prior to intravenous contrast application. In addition, Vmax and RI values of vascular structures were calculated by Doppler spectral evaluation. Malignant lesions showed more vascularity than benign lesions both with and without contrast enhancement. With both methods, by utilizing contrast agent, central, penetrating and tortuous vascular structures became more significant in malignant lesions when compared with benign lesions. PDUS was able to detect vascular structures better than CDUS; however, the difference was not statistically significant. Presence of peripheral vascularity was not useful in differentiating malignant from benign lesions. Vmax and RI values were higher in malignant lesions and the difference was statistically significant. In both methods, Vmax > 15 cm/sec and RI > 0.80 (CDUS), and RI > 0.70 (PDUS) were accepted as malignancy parameters. Vascular patterns of breast masses as determined with PDUS and CDUS with contrast enhancement and Doppler spectral examinations enabled differentiation of malignant and benign breast lesions. Thus, it is possible to decrease the number of unnecessary surgical interventions.

  11. Three-dimensional laser cooling at the Doppler limit

    NASA Astrophysics Data System (ADS)

    Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.

    2014-12-01

    Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.

  12. Doppler Acoustic Vortex Sensing System

    DOT National Transportation Integrated Search

    1978-10-01

    This is the final report on the Doppler Acoustic Vortex Sensing System, (DAVSS) program carried out by Avco Corporation's Systems Division for the U.S. Department of Transportation, Transportation Systems Center. The objective of the program was the ...

  13. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rambukkange,M.; Verlinde, J.; Elorante, E.

    2006-07-10

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivitymore » of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.« less

  14. Doppler signals observed during high temperature thermal ablation are the result of boiling.

    PubMed

    Nahirnyak, Volodymyr M; Moros, Eduardo G; Novák, Petr; Suzanne Klimberg, V; Shafirstein, Gal

    2010-01-01

    To elucidate the causation mechanism of Spectral Doppler ultrasound signals (DUS) observed during high temperature thermal ablation and evaluate their potential for image-guidance. Sixteen ex vivo ablations were performed in fresh turkey breast muscle, eight with radiofrequency ablation (RFA) devices, and eight with a conductive interstitial thermal therapy (CITT) device. Temperature changes in the ablation zone were measured with thermocouples located at 1 to 10 mm away from the ablation probes. Concomitantly, DUS were recorded using a standard diagnostic ultrasound scanner. Retrospectively, sustained observations of DUS were correlated with measured temperatures. Sustained DUS was arbitrarily defined as the Doppler signals lasting more than 10 s as observed in the diagnostic ultrasound videos captured from the scanner. For RFA experiments, minimum average temperature (T1 +/- SD) at which sustained DUS were observed was 97.2 +/- 7.3 degrees C, while the maximum average temperature (T2 +/- SD) at which DUS were not seen was 74.3 +/- 9.1 degrees C. For CITT ablation, T1 and T2 were 95.7 +/- 5.9 degrees C and 91.6 +/- 7.2 degrees C, respectively. It was also observed, especially during CITT ablation, that temperatures remained relatively constant during Doppler activity. The value of T1 was near the standard boiling point of water (99.61 degrees C) while T2 was below it. Together, T1 and T2 support the conclusion that DUS during high temperature thermal ablation are the result of boiling (phase change). This conclusion is also supported by the nearly constant temperature histories maintained at locations from which DUS emanated.

  15. A miniaturized laser-Doppler-system in the ear canal

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Gerhardt, U.; Kupper, C.; Manske, E.; Witte, H.

    2013-03-01

    Gathering vibrational data from the human middle ear is quite difficult. To this date the well-known acoustic probe is used to estimate audiometric parameters, e.g. otoacoustic emissions, wideband reflectance and the measurement of the stapedius reflex. An acoustic probe contains at least one microphone and one loudspeaker. The acoustic parameter determination of the ear canal is essential for the comparability of test-retest measurement situations. Compared to acoustic tubes, the ear canal wall cannot be described as a sound hard boundary. Sound energy is partly absorbed by the ear canal wall. In addition the ear canal features a complex geometric shape (Stinson and Lawton1). Those conditions are one reason for the inter individual variability in input impedance measurement data of the tympanic membrane. The method of Laser-Doppler-Vibrometry is well described in literature. Using this method, the surface velocity of vibrating bodies can be determined contact-free. Conventional Laser-Doppler-Systems (LDS) for auditory research are mounted on a surgical microscope. Assuming a free line of view to the ear drum, the handling of those laser-systems is complicated. We introduce the concept of a miniaturized vibrometer which is supposed to be applied directly in the ear canal for contact-free measurement of the tympanic membrane surface vibration. The proposed interferometer is based on a Fabry-Perot etalon with a DFB laser diode as light source. The fiber-based Fabry-Perot-interferometer is characterized by a reduced size, compared to e.g. Michelson-, or Mach-Zehnder-Systems. For the determination of the phase difference in the interferometer, a phase generated carrier was used. To fit the sensor head in the ear canal, the required shape of the probe was generated by means of the geometrical data of 70 ear molds. The suggested prototype is built up by a singlemode optical fiber with a GRIN-lens, acting as a fiber collimator. The probe has a diameter of 1.8 mm and a

  16. Zero Autocorrelation Waveforms: A Doppler Statistic and Multifunction Problems

    DTIC Science & Technology

    2006-01-01

    by ANSI Std Z39-18 It is natural to refer to A as the ambiguity function of u, since in the usual setting on the real line R, the analogue ambiguity...Doppler statistic |Cu,uek(j)| is excellent and provable for detecting deodorized Doppler frequency shift [11] (see Fig. 2). Also, if one graphs only

  17. Analysing Simple Motions Using the Doppler Effect--"Seeing" Sound

    ERIC Educational Resources Information Center

    Stonawski, Tamás; Gálik, Tamás

    2017-01-01

    The Doppler effect has seen widespread use in the past hundred years. It is used for medical imaging, for measuring speed, temperature, direction, etc, and it makes the spatial relations of motion easy to map. The Doppler effect also allows GPS receivers to measure the speed of a vehicle significantly more accurately than dashboard speedometers.…

  18. Doppler ultrasound of the central retinal artery in microgravity.

    PubMed

    Sirek, Adam S; Garcia, Kathleen; Foy, Millennia; Ebert, Doug; Sargsyan, Ashot; Wu, Jimmy H; Dulchavsky, Scott A

    2014-01-01

    Ocular changes have been noted during long-duration spaceflight; we studied central retinal artery (CRA) blood flow using Doppler before, during, and after long-term microgravity exposure in astronauts compared with data from a control group of nonastronauts subjected to head-down tilt (HDT). Available Doppler spectra of International Space Station (ISS) crewmembers were obtained from the NASA Lifetime Surveillance of Astronaut Health database, along with 2D ultrasound-derived measurements of the optic nerve sheath diameter (ONSD). CRA Doppler spectra and optic nerve sheath images were also obtained from healthy test subjects in an acute HDT experiment at 20 min of exposure (the ground-based analogue). HDT CRA peak systolic velocity in the ground-based analogue group increased by an average of 3 cm -s(-1) (33%) relative to seated values. ONSD at 300 of HDT increased by 0.5 mm relative to supine values. CRA Doppler spectra obtained on orbit were of excellent quality and demonstrated in-flight changes of +5 cm x s(-1) (50%) compared to preflight. ONSD increased in ISS crewmembers during flight relative to before flight, with some reversal postflight. A significant ONSD response to acute postural change and to spaceflight was demonstrated in this preliminary study. Increases in Doppler peak flow velocities correlated with increases in ONSD. Further investigations are warranted to corroborate the relationship between ONSD, intracranial pressure, and central retinal blood flow for occupational surveillance and research purposes.

  19. A new Doppler-echo method to quantify regurgitant volume.

    PubMed

    Wang, S S; Rubenstein, J J; Goldman, M; Sidd, J J

    1992-01-01

    An in vitro technique using color flow imaging and continuous wave Doppler was developed to measure the initial regurgitant flow jet diameter and velocity integral to yield the parameters for a volume calculation. Jets were produced by volume-controlled injection through tubes of various diameters (1.3, 1.9, 2.8, and 3.5 mm) to deliver volumes from 1 to 7 ml over 100 to 300 msec at pressures from 40 to 200 mm Hg. One hundred forty-five samples were obtained. Flow jet diameter consistently overestimated tube diameter by 2 mm when injected volume was 1.5 to 7 ml and by 1.5 mm when injected volume was less than 1.5 ml. This offset was stable with various transducers (2.5, 3.5, 5.0 MHz) at normal gain setting (just under noise). Therefore, corrected flow jet diameter (FJD) = FJD - 2 mm, and Doppler volume = corrected flow jet area x velocity integral. A range of injectates from 1.1 to 7 ml generated Doppler volume of 1.0 to 8.2 ml. The relation between Doppler volume (DV) and injected volume (IV) was DV = 1.079 IV - 0.22, r2 = 0.945, p less than 0.01. This relation was not altered by tube diameter. Thus a method combining color flow imaging and continuous wave Doppler provides a reliable and accurate measure of in vitro flow volume.

  20. Acute Effects of Lateral Thigh Foam Rolling on Arterial Tissue Perfusion Determined by Spectral Doppler and Power Doppler Ultrasound.

    PubMed

    Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U

    2017-04-01

    Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p < 0.001), in TAMx of 53.2% (p < 0.001) and 38.3% (p = 0.002), and in TAMn of 84.4% (p < 0.001) and 68.2% (p < 0.001). Semiquantitative power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.

  1. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  2. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    DTIC Science & Technology

    2011-04-01

    two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the...Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to... coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall

  3. [Color Doppler ultrasonography--a new imaging procedure in maxillofacial surgery].

    PubMed

    Reinert, S; Lentrodt, J

    1991-01-01

    Colour Doppler ultrasonography shows blood flow in real time and colour by combining the features of real time B mode ultrasound and Doppler. At each point in the image the returning signal is interrogated for both amplitude and frequency information. The resulting image shows all non-moving structures in shades of gray and moving structures in shades of red or blue depending on direction and velocity. The technique of colour Doppler ultrasonography and our experiences in 63 examinations are described. The clinical application of this new simple non-invasive method in maxillo-facial surgery is discussed.

  4. Uterine Artery Doppler in Screening for Preeclampsia and Fetal Growth Restriction.

    PubMed

    Pedroso, Marianna Amaral; Palmer, Kirsten Rebecca; Hodges, Ryan James; Costa, Fabricio da Silva; Rolnik, Daniel Lorber

    2018-05-01

     To perform a comprehensive review of the current evidence on the role of uterine artery Doppler, isolated or in combination with other markers, in screening for preeclampsia (PE) and fetal growth restriction (FGR) in the general population. The review included recently published large cohort studies and randomized trials.  A search of the literature was conducted using Medline, PubMed, MeSH and ScienceDirect. Combinations of the search terms "preeclampsia," "screening," "prediction," "Doppler," "Doppler velocimetry," "fetal growth restriction," "small for gestational age" and "uterine artery" were used. Articles in English (excluding reviews) reporting the use of uterine artery Doppler in screening for PE and FGR were included.  Thirty articles were included. As a single predictor, uterine artery Doppler detects less than 50% of the cases of PE and no more than 40% of the pregnancies affected by FGR. Logistic regression-based models that allow calculation of individual risk based on the combination of multiple markers, in turn, is able to detect ∼ 75% of the cases of preterm PE and 55% of the pregnancies resulting in small for gestational age infants.  The use of uterine artery Doppler as a single predictive test for PE and FGR has poor accuracy. However, its combined use in predictive models is promising, being more accurate in detecting preterm PE than FGR. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.

  5. [Per partum acidosis: Interest and feasibility of cerebral Doppler during labor].

    PubMed

    Barrois, M; Chartier, M; Lecarpentier, E; Goffinet, F; Tsatsaris, V

    2016-09-01

    To evaluate feasibility and interest of fetal cerebral Doppler during labor and the link with fetal pH to predict perinatal fetal asphyxia. Our prospective study in a university perinatal center, included patients during labor. There were no risk factors during pregnancy and patients were included after 37 weeks of pregnancy. For each patient an ultrasound with cerebral Doppler was done concomitant to a fetal scalp blood sample. We collected maternal and fetal characteristics as well as cervix dilatation, fetal heart rate analysis and fetal presentation. Among 49 patients included over a period of 4 months, cerebral Doppler failed in 7 cases (11%). Majority of failure occurred at 10cm of dilatation (P=0.007, OR=14.1 [1.483; 709.1275]). Others factors like: maternal age, body mass index, parity, history of C-Section were not associated with higher rate of failure. We did not found either significant correlation between cerebral fetal Doppler and pH on fetal scalp blood sample (r=0.15) nor pH at cord blood sample (r=0.13). No threshold of cerebral Doppler is significant for fetal asphyxia prediction. Fetal cerebral Doppler is feasible during labor with a low rate of failure but not a good exam to predict fetal acidosis and asphyxia. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Separation of Doppler radar-based respiratory signatures.

    PubMed

    Lee, Yee Siong; Pathirana, Pubudu N; Evans, Robin J; Steinfort, Christopher L

    2016-08-01

    Respiration detection using microwave Doppler radar has attracted significant interest primarily due to its unobtrusive form of measurement. With less preparation in comparison with attaching physical sensors on the body or wearing special clothing, Doppler radar for respiration detection and monitoring is particularly useful for long-term monitoring applications such as sleep studies (i.e. sleep apnoea, SIDS). However, motion artefacts and interference from multiple sources limit the widespread use and the scope of potential applications of this technique. Utilising the recent advances in independent component analysis (ICA) and multiple antenna configuration schemes, this work investigates the feasibility of decomposing respiratory signatures into each subject from the Doppler-based measurements. Experimental results demonstrated that FastICA is capable of separating two distinct respiratory signatures from two subjects adjacent to each other even in the presence of apnoea. In each test scenario, the separated respiratory patterns correlate closely to the reference respiration strap readings. The effectiveness of FastICA in dealing with the mixed Doppler radar respiration signals confirms its applicability in healthcare applications, especially in long-term home-based monitoring as it usually involves at least two people in the same environment (i.e. two people sleeping next to each other). Further, the use of FastICA to separate involuntary movements such as the arm swing from the respiratory signatures of a single subject was explored in a multiple antenna environment. The separated respiratory signal indeed demonstrated a high correlation with the measurements made by a respiratory strap used currently in clinical settings.

  7. Power M-mode Doppler (PMD) for observing cerebral blood flow and tracking emboli.

    PubMed

    Moehring, Mark A; Spencer, Merrill P

    2002-01-01

    Difficulties in location of transcranial ultrasound (US) windows and blood flow in cerebral vessels, and unambiguous detection of microemboli, have limited expansion of transcranial Doppler US. We developed a new transcranial Doppler modality, power M-mode Doppler (PMD), for addressing these issues. A 2-MHz digital Doppler (Spencer Technologies TCD100M) having 33 sample gates placed with 2-mm spacing was configured to display Doppler signal power, colored red and blue for directionality, in an M-mode format. The spectrogram from a user-selected depth was displayed simultaneously. This system was then explored on healthy subjects and patients presenting with varying cerebrovascular pathology. PMD facilitated window location and alignment of the US beam to view blood flow from multiple vessels simultaneously, without sound or spectral clues. Microemboli appeared as characteristic sloping high-power tracks in the PMD image. Power M-mode Doppler is a new paradigm facilitating vessel location, diagnosis, monitoring and microembolus detection.

  8. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  9. Wave Field Characterization Using Dual-Polarized Pulse-Doppler X-Band Radar

    DTIC Science & Technology

    2012-06-01

    spectrum (frequencies higher than that associated with the wind wave peak) are similar for the buoy and Doppler, and likewise for the ultrasound array and...values of the RCS and ultrasound array relative to the buoy and Doppler are due to the formers’ larger energy levels at high frequencies. NSWCCD-50-TR...pp. 199- 203, 2008. [II] W. J. Plant, W. C. Keller, A. B. Reeves, E. A. Uliana, and J. W. Johnson, " Airborne microwave Doppler measurements of

  10. Doppler echocardiographic evaluation of midventricular obstruction in cats with hypertrophic cardiomyopathy.

    PubMed

    MacLea, H B; Boon, J A; Bright, J M

    2013-01-01

    Hypertrophic cardiomyopathy (HCM) is heterogeneous in both people and cats, with variability in the distribution of hypertrophy, hemodynamic characteristics, and Doppler echocardiographic findings. To document the Doppler echocardiographic characteristics of midventricular obstruction in some cats with HCM. Eight cats with hypertrophic cardiomyopathy. Retrospective case series. The medical records of cats presenting to the cardiology service at Colorado State University between February 2009 and January 2012 were reviewed. All cats had a physical examination; Doppler systolic blood pressure measurement; and transthoracic two-dimensional (2D), M-mode, and Doppler echocardiography were performed. A more thorough evaluation of the echocardiographic images and measurements was performed. Cats included in this study had echocardiograms of adequate quality to confirm the diagnosis of midventricular obstruction by documentation of left midventricular concentric hypertrophy; a midventricular turbulent Doppler color flow pattern; and high velocity, late-peaking flow at the area of turbulence. Cats with evidence of systemic hypertension defined as a systolic Doppler blood pressure of greater than 170 mmHg were excluded. All 8 cats had left ventricular hypertrophy at the level of the papillary muscles; left, midventricular hypertrophy; and in 4/8 cats there was apical hypertrophy or basilar hypertrophy of the interventricular septum. Color flow Doppler revealed turbulent flow in 8/8 cats and spectral Doppler (continuous and pulsed wave) revealed increased flow velocities and late-peaking flow profiles at the level of the left midventricle. Two of 8 cats had a bifid midventricular flow profile in which there was a midsystolic decline in left ventricular velocities with elevated velocities extending into early diastole. The peak left ventricular outflow velocity in all 8 cats was normal. A variant of HCM characterized by hypertrophy at the level of the papillary muscles with

  11. The Martian rotation from Doppler measurements: Simulations of future radioscience experiments

    NASA Astrophysics Data System (ADS)

    Péters, Marie-Julie; Yseboodt, Marie; Dehant, Véronique; Le Maistre, Sebastien; Marty, Jean-Charles

    2016-10-01

    The radioscience experiment onboard the future InSight and ExoMars missions consists in two-way Doppler shift measurement from a X-band radio link between a lander on Mars and the ground stations on Earth. The Doppler effect on the radio signal is related to the revolution of the planets around the Sun and to the variations of the orientation and the rotation of Mars. The variations of the orientation of the rotation axis are the precession and nutations, related to the deep interior of Mars and the variations of the rotation rate are the length-of-day variation, related to the dynamic of the atmosphere.We perform numerical simulations of the Doppler measurements in order to quantify the precision that can be achieved on the determination of the Mars rotation and orientation parameters (MOP). For this purpose, we use the GINS (Géodésie par Intégrations Numériques Simultanées) software developed by the CNES and further adapted at the Royal Observatory of Belgium for planetary geodesy applications. This software enables to simulate the relative motion of the lander at the surface of Mars relative to the ground stations and to compute the MOP signature on the Doppler shift. The signature is the difference between the Doppler observable estimated taking into account a MOP and the Doppler estimated without this parameter.The objective is to build a strategy to be applied to future data processing in order to improve our estimation of the MOP. We study the effect of the elevation of the Earth in the sky of the lander, of the tracking duration and number of pass per week, of the tracking time, of the lander position and of Doppler geometry on the signatures. Indeed, due to the geometry, the Doppler data are highly sensitive to the position variations along the line of sight.

  12. Clutter attenuation using the Doppler effect in standoff electromagnetic quantum sensing

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas, Salvador

    2016-05-01

    In the context of traditional radar systems, the Doppler effect is crucial to detect and track moving targets in the presence of clutter. In the quantum radar context, however, most theoretical performance analyses to date have assumed static targets. In this paper we consider the Doppler effect at the single photon level. In particular, we describe how the Doppler effect produced by clutter and moving targets modifies the quantum distinguishability and the quantum radar error detection probability equations. Furthermore, we show that Doppler-based delayline cancelers can reduce the effects of clutter in the context of quantum radar, but only in the low-brightness regime. Thus, quantum radar may prove to be an important technology if the electronic battlefield requires stealthy tracking and detection of moving targets in the presence of clutter.

  13. Clinical diagnosis by transcutaneous Doppler ultrasound

    PubMed Central

    Wyse, R. K. H.

    1982-01-01

    Transcutaneous Doppler ultrasound represents a convenient, reliable technique for the non-invasive diagnosis and assessment of a rapidly increasing number of diverse circulatory disorders. ImagesFig. 2Fig. 3 PMID:7050948

  14. A Doppler centroid estimation algorithm for SAR systems optimized for the quasi-homogeneous source

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1989-01-01

    Radar signal processing applications frequently require an estimate of the Doppler centroid of a received signal. The Doppler centroid estimate is required for synthetic aperture radar (SAR) processing. It is also required for some applications involving target motion estimation and antenna pointing direction estimation. In some cases, the Doppler centroid can be accurately estimated based on available information regarding the terrain topography, the relative motion between the sensor and the terrain, and the antenna pointing direction. Often, the accuracy of the Doppler centroid estimate can be improved by analyzing the characteristics of the received SAR signal. This kind of signal processing is also referred to as clutterlock processing. A Doppler centroid estimation (DCE) algorithm is described which contains a linear estimator optimized for the type of terrain surface that can be modeled by a quasi-homogeneous source (QHS). Information on the following topics is presented: (1) an introduction to the theory of Doppler centroid estimation; (2) analysis of the performance characteristics of previously reported DCE algorithms; (3) comparison of these analysis results with experimental results; (4) a description and performance analysis of a Doppler centroid estimator which is optimized for a QHS; and (5) comparison of the performance of the optimal QHS Doppler centroid estimator with that of previously reported methods.

  15. Diagnostic Accuracy of B-mode USG and Doppler Scan for Ovarian Lesions

    PubMed Central

    Agarwal, Vinish Kumar

    2016-01-01

    Introduction Ultrasonography (USG) is considered as the primary imaging modality for confirmation of ovarian mass and to differentiate them in to benign or malignant. Aim The present study was conducted with the aim to evaluate accuracy of B- mode USG and Doppler scan (Colour Doppler + Spectral Doppler) for ovarian lesions. Materials and Methods The patients included in the study were from those referred with either palpable adnexal mass or incidentally detected adnexal masses. Total 250 women were evaluated by USG, Doppler scan. Only fifty patients who had true ovarian mass intraoperatively and on histopathology were included in study, rest masses were excluded. Study parameters were morphological indexing on B- Mode USG, flow study, vessel arrangement, and vessel morphology and vessel location in Colour Doppler and resistive index and pulsatility index in spectral Doppler. Results Total 50 women were included in present study. Out of these 46% were pre-menopausal while 54% were menopaused women, 66.7% of post-menopausal women had malignant ovarian masses compared to 8.7% of premenopausal. Sensitivity, specificity, positive predictive value and negative predictive value of B-Mode USG for ovarian masses were 94.44%, 48.15%, 54.84% and 92.86% respectively, with p-value = 0.007, while sensitivity, specificity, positive predictive value and negative predictive value of Doppler scan were 85%, 90%, 85% and 90% respectively, with p-value = 0.0001. Conclusion USG and its different techniques are accepted as the primary imaging modality for early stage diagnosis of an ovarian malignancy. Statistical analysis suggests that Doppler Scan (Colour + Spectral) was more accurate (88%) than B-Mode USG (67%), but author is in view that both of these modalities should be used in conjunction to screen the ovarian lesions. PMID:27790544

  16. [Doppler echocardiography of tricuspid insufficiency. Methods of quantification].

    PubMed

    Loubeyre, C; Tribouilloy, C; Adam, M C; Mirode, A; Trojette, F; Lesbre, J P

    1994-01-01

    Evaluation of tricuspid incompetence has benefitted considerably from the development of Doppler ultrasound. In addition to direct analysis of the valves, which provides information about the mechanism involved, this method is able to provide an accurate evaluation, mainly through use of the Doppler mode. In addition to new criteria being evaluated (mainly the convergence zone of the regurgitant jet), some indices are recognised as good quantitative parameters: extension of the regurgitant jet into the right atrium, anterograde tricuspid flow, laminar nature of the regurgitant flow, analysis of the flow in the supra-hepatic veins, this is only semi-quantitative, since the calculation of the regurgitation fraction from the pulsed Doppler does not seem to be reliable; This accurate semi-quantitative evaluation is made possible by careful and consistent use of all the criteria available. The authors set out to discuss the value of the various evaluation criteria mentioned in the literature and try to define a practical approach.

  17. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference

    PubMed Central

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-01-01

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257

  18. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.

    PubMed

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-04-29

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.

  19. Imaging nanoparticle flow using magneto-motive optical Doppler tomography.

    PubMed

    Kim, Jeehyun; Oh, Junghwan; Milner, Thomas E; Nelson, J Stuart

    2007-01-24

    We introduce a novel approach for imaging solutions of superparamagnetic iron oxide (SPIO) nanoparticles using magneto-motive optical Doppler tomography (MM-ODT). MM-ODT combines an externally applied temporally oscillating high-strength magnetic field with ODT to detect nanoparticles flowing through a microfluidic channel. A solenoid with a cone-shaped ferrite core extensively increased the magnetic field strength (B(max) = 1 T, [Formula: see text]) at the tip of the core and also focused the magnetic field in microfluidic channels containing nanoparticle solutions. Nanoparticle contrast was demonstrated in a microfluidic channel filled with an SPIO solution by imaging the Doppler frequency shift which was observed independently of the nanoparticle flow rate and direction. Results suggest that MM-ODT may be applied to image Doppler shift of SPIO nanoparticles in microfluidic flows with high contrast.

  20. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    NASA Technical Reports Server (NTRS)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  1. Carotid Doppler ultrasound findings in patients with left ventricular assist devices.

    PubMed

    Cervini, Patrick; Park, Soon J; Shah, Dipesh K; Penev, Irina E; Lewis, Bradley D

    2010-12-01

    Left ventricular assist devices (LVADs) have been used to treat advanced heart failure refractory to medical management, as bridge therapy to myocardial recovery, as bridge therapy to cardiac transplantation, or as destination therapy for patients with unfavorable transplant candidacy. Neurologic complications are some of the most common and devastating complications in these patients. Preoperative carotid ultrasound is, therefore, a standard evaluation in patients at risk for cerebrovascular disease. Postoperative carotid artery Doppler sonography is performed in those patients with neurologic symptoms. It is likely, therefore, that sonographers, radiologists, and other physicians working in a center where LVADs are implanted will likely encounter a carotid artery Doppler study in this patient group. To our knowledge, the carotid Doppler findings in these patients have never been published. We review the Doppler ultrasound findings in 6 patients after LVAD insertion.

  2. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited).

    PubMed

    Martin, E H; Zafar, A; Caughman, J B O; Isler, R C; Bell, G L

    2016-11-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H δ spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  3. Assessment of left ventricular mechanical dyssynchrony by phase analysis of gated-SPECT myocardial perfusion imaging and tissue Doppler imaging: comparison between QGS and ECTb software packages.

    PubMed

    Rastgou, Fereydoon; Shojaeifard, Maryam; Amin, Ahmad; Ghaedian, Tahereh; Firoozabadi, Hasan; Malek, Hadi; Yaghoobi, Nahid; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amouzadeh, Hedieh; Barati, Hossein

    2014-12-01

    Recently, the phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has become feasible via several software packages for the evaluation of left ventricular mechanical dyssynchrony. We compared two quantitative software packages, quantitative gated SPECT (QGS) and Emory cardiac toolbox (ECTb), with tissue Doppler imaging (TDI) as the conventional method for the evaluation of left ventricular mechanical dyssynchrony. Thirty-one patients with severe heart failure (ejection fraction ≤35%) and regular heart rhythm, who referred for gated-SPECT MPI, were enrolled. TDI was performed within 3 days after MPI. Dyssynchrony parameters derived from gated-SPECT MPI were analyzed by QGS and ECTb and were compared with the Yu index and septal-lateral wall delay measured by TDI. QGS and ECTb showed a good correlation for assessment of phase histogram bandwidth (PHB) and phase standard deviation (PSD) (r = 0.664 and r = 0.731, P < .001, respectively). However, the mean value of PHB and PSD by ECTb was significantly higher than that of QGS. No significant correlation was found between ECTb and QGS and the Yu index. Nevertheless, PHB, PSD, and entropy derived from QGS revealed a significant (r = 0.424, r = 0.478, r = 0.543, respectively; P < .02) correlation with septal-lateral wall delay. Despite a good correlation between QGS and ECTb software packages, different normal cut-off values of PSD and PHB should be defined for each software package. There was only a modest correlation between phase analysis of gated-SPECT MPI and TDI data, especially in the population of heart failure patients with both narrow and wide QRS complex.

  4. Imaging doppler lidar for wind turbine wake profiling

    DOEpatents

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  5. Heat pipe dynamic behavior

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  6. Persistent Doppler Shift Oscillations Observed with HINODE-EIS in the Solar Corona: Spectroscopic Signatures of Alfvenic Waves and Recurring Upflows

    NASA Technical Reports Server (NTRS)

    Tian, Hui; McIntosh, Scott W.; Wang, Tongjiang; Offman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi

    2012-01-01

    Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfv´en waves rather than flows. In a few cases, there seems to be a p/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfv´enic oscillations. In this scenario, the intensity oscillations associated with Alfv´enic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.

  7. Doppler-multipath tolerant voice communication

    NASA Astrophysics Data System (ADS)

    Harris, R. M.

    Line of sight communication between high performance aircraft has been found to be subject to a peculiar form of multipath radio wave propagation - Doppler multipath. It degrades analogue voice reception on the standard fit ultrahigh frequency radio, producing low frequency random noise and warbling. Various modifications were carried out on the aircraft's communications system, but the problem remained. All the evidence points to a natural phenomenon. The reported observations are corroborated by theoretical studies and laboratory simulations of multipath radio wave propagation between two points moving relative to a diffusely scattering reflector. Theoretical predictions of Rician fading have explained the disruption of speech transmitted using conventional dsb(am) modulation. This also indicated suppressing the carrier as a radical cure. Double sideband suppressed carrier radios have been developed for airborne evaluation in comparison with standard dsb(am). The air to air flying trials proved the superior performance of the suppressed carrier system under conditions of Doppler multipath.

  8. Doppler lidar sensor for precision navigation in GPS-deprived environment

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-05-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  9. Doppler Lidar Sensor for Precision Navigation in GPS-Deprived Environment

    NASA Technical Reports Server (NTRS)

    Amzajerdian, F.; Pierrottet, D. F.; Hines, G. D.; Hines, G. D.; Petway, L. B.; Barnes, B. W.

    2013-01-01

    Landing mission concepts that are being developed for exploration of solar system bodies are increasingly ambitious in their implementations and objectives. Most of these missions require accurate position and velocity data during their descent phase in order to ensure safe, soft landing at the pre-designated sites. Data from the vehicle's Inertial Measurement Unit will not be sufficient due to significant drift error after extended travel time in space. Therefore, an onboard sensor is required to provide the necessary data for landing in the GPS-deprived environment of space. For this reason, NASA Langley Research Center has been developing an advanced Doppler lidar sensor capable of providing accurate and reliable data suitable for operation in the highly constrained environment of space. The Doppler lidar transmits three laser beams in different directions toward the ground. The signal from each beam provides the platform velocity and range to the ground along the laser line-of-sight (LOS). The six LOS measurements are then combined in order to determine the three components of the vehicle velocity vector, and to accurately measure altitude and attitude angles relative to the local ground. These measurements are used by an autonomous Guidance, Navigation, and Control system to accurately navigate the vehicle from a few kilometers above the ground to the designated location and to execute a gentle touchdown. A prototype version of our lidar sensor has been completed for a closed-loop demonstration onboard a rocket-powered terrestrial free-flyer vehicle.

  10. Turbulence as observed by concurrent measurements made at NSSL using weather radar, Doppler radar, Doppler lidar and aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Jean T.

    1987-01-01

    As air traffic increases and aircraft capability increases in range and operating altitude, the exposure to weather hazards increases. Turbulence and wind shears are two of the most important of these hazards that must be taken into account if safe flight operations are to be accomplished. Beginning in the early 1960's, Project Rough Rider began thunderstorm investigations. Past and present efforts at the National Severe Storm Laboratory (NSSL) to measure these flight safety hazards and to describe the use of Doppler radar to detect and qualify these hazards are summarized. In particular, the evolution of the Doppler-measured radial velocity spectrum width and its applicability to the problem of safe flight is presented.

  11. Multistage Estimation Of Frequency And Phase

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1991-01-01

    Conceptual two-stage software scheme serves as prototype of multistage scheme for digital estimation of phase, frequency, and rate of change of frequency ("Doppler rate") of possibly phase-modulated received sinusoidal signal in communication system in which transmitter and/or receiver traveling rapidly, accelerating, and/or jerking severely. Each additional stage of multistage scheme provides increasingly refined estimate of frequency and phase of signal. Conceived for use in estimating parameters of signals from spacecraft and high dynamic GPS signal parameters, also applicable, to terrestrial stationary/mobile (e.g., cellular radio) and land-mobile/satellite communication systems.

  12. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    PubMed Central

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length. PMID:26328984

  13. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    PubMed

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  14. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (smallmore » ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.« less

  15. Doppler compensation by shifting transmitted object frequency within limits

    NASA Technical Reports Server (NTRS)

    Laughlin, C. R., Jr.; Hollenbaugh, R. C.; Allen, W. K. (Inventor)

    1973-01-01

    A system and method are disclosed for position locating, deriving centralized air traffic control data, and communicating via voice and digital signals between a multiplicity of remote aircraft, including supersonic transports, and a central station. Such communication takes place through a synchronous satellite relay station. Side tone ranging patterns, as well as the digital and voice signals, are modulated on a carrier transmitted from the central station and received on all of the supersonic transports. Each aircraft communicates with the ground stations via a different frequency multiplexed spectrum. Supersonic transport position is derived from a computer at the central station and supplied to a local air traffic controller. Position is determined in response to variable phase information imposed on the side tones at the aircrafts. Common to all of the side tone techniques is Doppler compensation for the supersonic transport velocity.

  16. High-definition flow Doppler ultrasonographic technique to assess hepatic vasculature compared with color or power Doppler ultrasonography: preliminary experience.

    PubMed

    Kim, Se Hyung; Lee, Jeong Min; Kim, Young Jun; Lee, Jae Young; Han, Joon Koo; Choi, Byung Ihn

    2008-10-01

    The purpose of this study was to introduce a new high-definition flow (HDF) Doppler technique and to compare its performance with those of color Doppler ultrasonography (CDU) and power Doppler ultrasonography (PDU) for assessment of hepatic vasculature in native and transplanted livers. High-definition flow was invented as a high-resolution bidirectional PDU technique. We obtained CDU, PDU, and HDF images of the hepatic artery (HA), portal vein (PV), and hepatic vein from 60 patients. They were divided into 2 groups: a liver transplantation group (group 1, n = 10) and a native liver group (group 2, n = 50). Two radiologists independently reviewed the cine images and graded them using a 4-point scale in terms of the clarity of the vessel margin and degree of depiction of the HA, flow filling, and flash artifacts. The degree of differentiation between the HA and PV was also evaluated. Flow directionality was recorded, and interobserver agreement was finally analyzed. Moderate to almost perfect agreement was achieved between radiologists for all parameters of each ultrasonographic technique. High-definition flow was significantly superior to both CDU and PDU with respect to all analyzed items except the degree of flash artifacts (P < .05). With regard to flash artifacts, CDU was significantly better than either PDU or HDF. High-definition flow provided directional information, as did CDU. The HDF technique provides better resolution for depicting hepatic vessels as well as their margins with less blooming compared with conventional Doppler ultrasonography in both native and transplanted liver. It also provides solid directional flow information. One point of concern, however, is the frequency of flash artifacts compared with that on CDU.

  17. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    NASA Astrophysics Data System (ADS)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  18. Laser Doppler anemometer signal processing for blood flow velocity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borozdova, M A; Fedosov, I V; Tuchin, V V

    A new method for analysing the signal in a laser Doppler anemometer based on the differential scheme is proposed, which provides the flow velocity measurement in strongly scattering liquids, particularly, blood. A laser Doppler anemometer intended for measuring the absolute blood flow velocity in animal and human near-surface arterioles and venules is developed. The laser Doppler anemometer signal structure is experimentally studied for measuring the flow velocity in optically inhomogeneous media, such as blood and suspensions of scattering particles. The results of measuring the whole and diluted blood flow velocity in channels with a rectangular cross section are presented. (lasermore » applications and other topics in quantum electronics)« less

  19. Arterial and Venous Doppler in Evaluation of the "At-Risk" Fetus.

    PubMed

    Turan, Sifa; Turan, Ozhan M

    2017-09-01

    Our practice utilizes Doppler ultrasound as one of the most objective and effective methods to assess at-risk pregnancies. This review will discuss the application of arterial and venous Doppler techniques in assessing and managing various diseases and conditions for high-risk fetuses.

  20. Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks

    NASA Astrophysics Data System (ADS)

    Iwai, Hironori; Ishii, Shoken; Tsunematsu, Nobumitsu; Mizutani, Kohei; Murayama, Yasuhiro; Itabe, Toshikazu; Yamada, Izumi; Matayoshi, Naoki; Matsushima, Dai; Weiming, Sha; Yamazaki, Takeshi; Iwasaki, Toshiki

    2008-07-01

    Dual-Doppler lidar and heliborne sensors were used to investigate the three-dimensional (3D) structure of the wind field over Sendai Airport in June 2007. The 3D structures of several-hundred-meter-scale horizontal convective rolls (HCRs) in the sea-breeze layer were observed by the dual-Doppler lidar. The scale of the HCRs determined by the heliborne sensors roughly agreed with that determined by the dual-Doppler lidar. Analysis of the dual-Doppler lidar data showed that the region of upward flow in the HCRs originated in near-surface low-speed streaks. This structure is consistent with the results of large-eddy simulations of the atmospheric boundary layer. The aspect ratios of the HCRs were close to those predicted by linear theories.

  1. African Doppler Surveys (ADOS).

    DTIC Science & Technology

    1983-06-01

    UP TO 31 MARCH 1983 MAILING DATE: 11 APRIL 1983 SURVEY STATUS DATA STATUSDOPPLER STATION L1 OR1ATION - ______(hte 1,(Whether data dis- GEOD . TIES...SURVEY STATUS DTA STATUS DOPPLER STATION INFORMATION (Whet~her data dia- GEOD . TIES patched to...data dis- GEOD . TIES patched to COUNThY STATION NAME APPROXIMAT OPPLER designated CODE AND ADOS NO. SZION ()outh Comp. Center) COORDINATES fin- Yes

  2. Particle Streak Anemometry: A New Method for Proximal Flow Sensing from Aircraft

    NASA Astrophysics Data System (ADS)

    Nichols, T. W.

    Accurate sensing of relative air flow direction from fixed-wing small unmanned aircraft (sUAS) is challenging with existing multi-hole pitot-static and vane systems. Sub-degree direction accuracy is generally not available on such systems and disturbances to the local flow field, induced by the airframe, introduce an additional error source. An optical imaging approach to make a relative air velocity measurement with high-directional accuracy is presented. Optical methods offer the capability to make a proximal measurement in undisturbed air outside of the local flow field without the need to place sensors on vulnerable probes extended ahead of the aircraft. Current imaging flow analysis techniques for laboratory use rely on relatively thin imaged volumes and sophisticated hardware and intensity thresholding in low-background conditions. A new method is derived and assessed using a particle streak imaging technique that can be implemented with low-cost commercial cameras and illumination systems, and can function in imaged volumes of arbitrary depth with complex background signal. The new technique, referred to as particle streak anemometry (PSA) (to differentiate from particle streak velocimetry which makes a field measurement rather than a single bulk flow measurement) utilizes a modified Canny Edge detection algorithm with a connected component analysis and principle component analysis to detect streak ends in complex imaging conditions. A linear solution for the air velocity direction is then implemented with a random sample consensus (RANSAC) solution approach. A single DOF non-linear, non-convex optimization problem is then solved for the air speed through an iterative approach. The technique was tested through simulation and wind tunnel tests yielding angular accuracies under 0.2 degrees, superior to the performance of existing commercial systems. Air speed error standard deviations varied from 1.6 to 2.2 m/s depending on the techniques of implementation

  3. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  4. Reversal of orbital angular momentum arising from an extreme Doppler shift

    PubMed Central

    Toninelli, Ermes; Horsley, Simon A. R.; Hendry, Euan; Phillips, David B.; Padgett, Miles J.

    2018-01-01

    The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes “negative.” In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at ≈100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the “negative frequency” regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. PMID:29581257

  5. Prostate: techniques, results, and potential applications of color Doppler US scanning.

    PubMed

    Rifkin, M D; Sudakoff, G S; Alexander, A A

    1993-02-01

    Color Doppler ultrasound (US) scanning and conventional endorectal gray-scale US of the prostate were performed in 619 patients. Pathologic correlation was available in all cases after US-guided transrectal biopsy. There were 132 cancers in 121 men, 13 foci of atypia in 10 men, 33 foci of inflammation in 31 men, and 469 benign lesions in 457 men. Two hundred seventy patients with abnormal areas of flow identified at color Doppler scanning also underwent spectral waveform analysis of the area of potential concern. No statistical difference in the mean resistive indexes was identified in any patient (P = .25; Scheffe F test, analysis of variance). All malignant lesions had abnormalities demonstrated at gray-scale US and/or focal or diffuse abnormal flow demonstrated at color Doppler scanning. Of the 132 cancers, 123 (93%) had corresponding gray-scale abnormalities and 114 (86%) demonstrated abnormal flow at color Doppler imaging. Nine of the 132 cancers (7%) had no obviously identifiable abnormality at gray-scale scanning but had distinctly abnormal flow at color Doppler scanning. Abnormal findings at color scanning without abnormal findings at gray-scale scanning occurred in eight of the 33 cases of inflammatory foci (24%) and in 24 of the 469 (5%) benign lesions.

  6. Filter for third order phase locked loops

    NASA Technical Reports Server (NTRS)

    Crow, R. B.; Tausworthe, R. C. (Inventor)

    1973-01-01

    Filters for third-order phase-locked loops are used in receivers to acquire and track carrier signals, particularly signals subject to high doppler-rate changes in frequency. A loop filter with an open-loop transfer function and set of loop constants, setting the damping factor equal to unity are provided.

  7. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  8. Doppler sonography characteristics of vertebrobasilar circulation in patients with Parkinson's disease.

    PubMed

    Vidović, Mirjana; Sinanović, Osman; Smajlović, Dzevdet; Burina, Adnan; Hudić, Josip

    2008-08-01

    The objective of the study was to analyze the doppler sonography findings of vertebrobasilar circulation (VB) in patients with Parkinson's disease. 40 patients were analyzed (25 men's and 15 women) with Parkinson's disease, average age was 61.9 years (SD=11.43), treated at the Clinic for Neurology in Tuzla. Device for doppler sonography was Multidop x 4. Doppler sonography findings of VB circulation were analyzed in order to computerized tomography (CT) findings of the brain (with or without ischemic lacunar lesions) and in order to presence of postural disturbances as one of dominant Parkinson's disease symptoms during actual hospitalization. Our results suggest that vertebrobasilar insufficiency is more frequent in patients with Parkinson's disease (no matter of type) and postural disturbances as a dominant symptom comparing to group of Parkinson's disease patients without postural disturbances. These results implicate the importance of doppler sonography findings of vertebrobasilar circulation in patients with Parkinson's disease and possibility of considering role of vertebrobasilar insufficiency in development of postural disturbances.

  9. Doppler-corrected Balmer spectroscopy of Rydberg positronium

    NASA Astrophysics Data System (ADS)

    Jones, A. C. L.; Hisakado, T. H.; Goldman, H. J.; Tom, H. W. K.; Mills, A. P.; Cassidy, D. B.

    2014-07-01

    The production of long-lived Rydberg positronium (Ps) and correction for Doppler shifts in the excitation laser frequencies are crucial elements of proposed measurements of the gravitational freefall of antimatter and for precision measurements of the optical spectrum of Ps. Using a two-step optical transition via 2P levels, we have prepared Ps atoms in Rydberg states up to the term limit. The spectra are corrected for the first-order Doppler shift using measured velocities, and the Balmer transitions are resolved for 15≤n≤31. The excitation signal amplitude begins to decrease for n >50, consistent with the onset of motional electric field ionization in the 3.5-mT magnetic field at the Ps formation target.

  10. The Proposed Doppler Electron Velocimeter and the Need for Nanoscale Dynamics

    DOE PAGES

    Reu, Phillip L.

    2007-05-01

    As engineering challenges grow in the ever-shrinking world of nano-design, methods of making dynamic measurements of nano-materials and systems become more important. The Doppler electron velocimeter (DEV) is a new measurement concept motivated by the increasing importance of nano-dynamics. Nano-dynamics is defined in this context as any phenomenon that causes a dynamically changing phase in an electron beam, and includes traditional mechanical motion, as well as additional phenomena including changing magnetic and electric fields. The DEV is only a theoretical device at this point. Lastly, this article highlights the importance of pursuing nano-dynamics and presents a case that the electronmore » microscope and its associated optics are a viable test bed to develop this new measurement tool.« less

  11. Analysis of placenta vascularization in patients with uterine altered artery Doppler flow velocity exams.

    PubMed

    Gilio, Daniel Bruno; Miranda Corrêa, Rosana Rosa; Souza de Oliveira Guimarães, Camila; Peres, Luiz Cesar; Marques Salge, Ana Karina; Cavellani, Camila Lourencini; de Paula Antunes Teixeira, Vicente; Costa da Cunha Castro, Eumenia

    2009-08-01

    One of the frequent questions in obstetric practice is to determine placental vascular changes that may account for abnormal Doppler flow velocity alterations in maternal uterine vessels from women and fetuses without pregnancy pathology. A retrospective morphometric study was realized using 27 placentas from patients submitted for Doppler flow velocity exam during pregnancy. The placentas were morphologically examined using hematoxylin-eosin staining. Measurements of villi were made with the use of a video camera coupled to a common light microscope and a computer with automatic image analyzing software. Of the 27 placentas, 13 (48%) were of patients showing unaltered Doppler and 14 (52%) showing altered Doppler. The number of stem villi vessels was significantly larger in the placentas of patients with Doppler exam alterations (P = 0.003). This group also presented greater stem villi vessel thickness, although without significant difference. The number of intermediary and terminal villi vessels was greater in the placentas of patients with altered Doppler exams (P < 0.001), and a greater terminal villi area was observed in these cases (P < 0.001). The morphological proof that uterine artery Doppler flow velocity exam alterations are associated with placental vascular alterations demonstrates the importance of this exam during prenatal care, even in the absence of maternal-fetal alterations.

  12. Modeling and processing of laser Doppler reactive hyperaemia signals

    NASA Astrophysics Data System (ADS)

    Humeau, Anne; Saumet, Jean-Louis; L'Huiller, Jean-Pierre

    2003-07-01

    Laser Doppler flowmetry is a non-invasive method used in the medical domain to monitor the microvascular blood cell perfusion through tissue. Most commercial laser Doppler flowmeters use an algorithm calculating the first moment of the power spectral density to give the perfusion value. Many clinical applications measure the perfusion after a vascular provocation such as a vascular occlusion. The response obtained is then called reactive hyperaemia. Target pathologies include diabetes, hypertension and peripheral arterial occlusive diseases. In order to have a deeper knowledge on reactive hyperaemia acquired by the laser Doppler technique, the present work first proposes two models (one analytical and one numerical) of the observed phenomenon. Then, a study on the multiple scattering between photons and red blood cells occurring during reactive hyperaemia is carried out. Finally, a signal processing that improves the diagnosis of peripheral arterial occlusive diseases is presented.

  13. Coherent structures in axisymmetric jets

    NASA Astrophysics Data System (ADS)

    Durao, D. F. G.; Nina, M. N. R.; Pita, G.

    Laser Doppler anemometry has been used to measure the mean and rms values of the axial and radial velocity components in jets with Reynolds numbers of up to 28,700. It is shown that even in flows that are not excited externally, coherent structures with Strouhal numbers of about 0.33 and 0.55 can be detected. The coherent structures associated with the higher Strouhal number are shown to result from vorticity at the edge of the jet. The oscillation associated with the lower Strouhal number is related to eddy breakdown and to the preferred vibration mode of axisymmetric jets.

  14. Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography.

    PubMed

    Miura, Masahiro; Hong, Young-Joo; Yasuno, Yoshiaki; Muramatsu, Daisuke; Iwasaki, Takuya; Goto, Hiroshi

    2015-03-01

    To evaluate the 3-dimensional architecture of neovascularization in proliferative diabetic retinopathy using Doppler optical coherence tomography (OCT). Prospective, nonrandomized clinical trial. Seventeen eyes of 14 patients with proliferative diabetic retinopathy were prospectively studied. Prototype Doppler OCT was used to evaluate the 3-dimensional vascular architecture at vitreoretinal adhesions. Proliferative membranes were detected in all eyes with proliferative diabetic retinopathy by standard OCT images. Doppler OCT images detected blood flow by neovascularization of the disc in 12 eyes and neovascularization elsewhere in 11 eyes. Doppler OCT images showed the 3-dimensional extent of new vessels at various stages of neovascularization, and the extent of new vessels could be clearly confirmed at vitreoretinal adhesions. Doppler OCT is useful for the detection and evaluation of the 3-dimensional vascular structure of neovascularization, and can assist in the noninvasive assessment of proliferative diabetic retinopathy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of arteriovenous fistulas and pseudoaneurysms in renal allografts following percutaneous needle biopsy. Color-coded Doppler sonography versus duplex Doppler sonography.

    PubMed

    Hübsch, P J; Mostbeck, G; Barton, P P; Gritzmann, N; Fruehwald, F X; Schurawitzki, H; Kovarik, J

    1990-02-01

    One hundred one patients with renal allografts were studied by two independent observers using duplex Doppler sonography (DDS) and color-coded Doppler sonography (CCDS). In all patients, single or multiple percutaneous needle biopsies of the transplant had been performed 1 to 30 days before. In 6 patients CCDS following the biopsy demonstrated an area of combined red and blue color-coded blood flow within the renal parenchyma (n = 5) or within the sinus (n = 1); the Doppler waveform was abnormal in these areas with signals above and below the zero line indicating turbulent blood flow. Consecutive intraarterial digital subtraction angiography (DSA) revealed the presence of an arteriovenous fistula (n = 4) or of a pseudoaneurysm (n = 2). In one patient, gross hematuria with obstruction of the bladder occurred as a complication of a pseudoaneurysm within the renal sinus; the bleeding could not be stopped by embolization of the lesion and the kidney had to be removed. DDS demonstrated the lesion in only one of the six patients. Thus, CCDS is the method of choice for noninvasive detection of vascular lesions due to percutaneous biopsy.

  16. Test Bed Doppler Wind Lidar and Intercomparison Facility At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey; Amzajerdian, Farzin; Yu, Ji-Rong; Singh, Upendra N.

    2004-01-01

    State of the art 2-micron lasers and other lidar components under development by NASA are being demonstrated and validated in a mobile test bed Doppler wind lidar. A lidar intercomparison facility has been developed to ensure parallel alignment of up to 4 Doppler lidar systems while measuring wind. Investigations of the new components; their operation in a complete system; systematic and random errors; the hybrid (joint coherent and direct detection) approach to global wind measurement; and atmospheric wind behavior are planned. Future uses of the VALIDAR (VALIDation LIDAR) mobile lidar may include comparison with the data from an airborne Doppler wind lidar in preparation for validation by the airborne system of an earth orbiting Doppler wind lidar sensor.

  17. Tissue Doppler imaging and echo-Doppler findings associated with a mitral valve stenosis with an immobile posterior valve leaflet in a bull terrier.

    PubMed

    Tidholm, A; Nicolle, A P; Carlos, C; Gouni, V; Caruso, J L; Pouchelon, J L; Chetboul, V

    2004-04-01

    A mitral valve stenosis was diagnosed in a 2-year-old female Bull Terrier by use of two-dimensional (2-D) and M-mode echocardiography, colour-flow imaging and spectral Doppler examinations. Tissue Doppler Imaging was also performed to assess the segmental radial myocardial motion. The mitral valve stenosis was characterized by a decreased mitral orifice area/left ventricle area ratio (0.14), an increased early diastolic flow velocity (E wave = 1.9 m/s), a prolonged pressure half-time (106 ms) and a decreased E-F slope (4.5 cm/s) on pulsed-wave Doppler examination. This mitral stenosis was associated with an immobile posterior leaflet, as seen on 2-D and M-mode echocardiography. Immobility of the posterior mitral leaflet is considered to be a rare finding in humans and, to our knowledge, has not been precisely documented in dogs with mitral valve stenosis.

  18. [Spectral-Doppler-Sonography - Step by Step].

    PubMed

    Bönhof, Leoni; Steffgen, Ludwig; Bönhof, Jörg

    2018-06-07

    Step by step explanation and detailed overview of the correct approach to spectral-Doppler-sonography, including several practical examples. The article provides comprehensive explanations of the appropriate settings in different situations. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    PubMed

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Testing the relativistic Doppler boost hypothesis for supermassive black hole binary candidates

    NASA Astrophysics Data System (ADS)

    Charisi, Maria; Haiman, Zoltán; Schiminovich, David; D'Orazio, Daniel J.

    2018-06-01

    Supermassive black hole binaries (SMBHBs) should be common in galactic nuclei as a result of frequent galaxy mergers. Recently, a large sample of sub-parsec SMBHB candidates was identified as bright periodically variable quasars in optical surveys. If the observed periodicity corresponds to the redshifted binary orbital period, the inferred orbital velocities are relativistic (v/c ≈ 0.1). The optical and ultraviolet (UV) luminosities are expected to arise from gas bound to the individual BHs, and would be modulated by the relativistic Doppler effect. The optical and UV light curves should vary in tandem with relative amplitudes which depend on the respective spectral slopes. We constructed a control sample of 42 quasars with aperiodic variability, to test whether this Doppler colour signature can be distinguished from intrinsic chromatic variability. We found that the Doppler signature can arise by chance in ˜20 per cent (˜37 per cent) of quasars in the nUV (fUV) band. These probabilities reflect the limited quality of the control sample and represent upper limits on how frequently quasars mimic the Doppler brightness+colour variations. We performed separate tests on the periodic quasar candidates, and found that for the majority, the Doppler boost hypothesis requires an unusually steep UV spectrum or an unexpectedly large BH mass and orbital velocity. We conclude that at most approximately one-third of these periodic candidates can harbor Doppler-modulated SMBHBs.

  1. Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.

    2001-05-01

    The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.

  2. Observation of Doppler broadening in beta-delayed proton-gamma decay

    NASA Astrophysics Data System (ADS)

    Schwartz, Sarah

    The Doppler broadening of gamma-ray peaks due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. The purpose of this Thesis is to test and apply this Doppler broadening method using gamma-ray peaks from the 26P(betapgamma) 25Al decay sequence. A fast beam of 26P was implanted into a planar Ge detector, which was used as a 26P beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays from the 26P(betapgamma)25Al decay sequence. Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. The Doppler broadening analysis method was verified using the 1613 keV gamma-ray line for which the proton energies were previously known. The 1776 keV gamma ray de-exciting the 2720 keV 25Al level was observed in 26P(betapgamma) 25Al decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a 26Si excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.7 (syst.) MeV for the proton-emitting level. The Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.

  3. Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane; hide

    2010-01-01

    In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights

  4. Reversal of orbital angular momentum arising from an extreme Doppler shift.

    PubMed

    Gibson, Graham M; Toninelli, Ermes; Horsley, Simon A R; Spalding, Gabriel C; Hendry, Euan; Phillips, David B; Padgett, Miles J

    2018-04-10

    The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes "negative." In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at [Formula: see text]100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the "negative frequency" regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. Copyright © 2018 the Author(s). Published by PNAS.

  5. Ultrasonographic investigation of the Achilles tendon in elite badminton players using color Doppler.

    PubMed

    Boesen, Morten Ilum; Boesen, Anders; Koenig, Merete Juhl; Bliddal, Henning; Torp-Pedersen, Soren

    2006-12-01

    The most frequent injuries in badminton players are in the lower extremities, especially in the Achilles tendon. The game of badminton may be related to abnormal intratendinous flow in the Achilles tendon as detected by color Doppler ultrasound. To a certain extent, this blood flow might be physiological, especially when examined after match. Cohort study (prevalence); Level of evidence, 3. Seventy-two elite badminton players were interviewed regarding Achilles tendon pain (achillodynia) in the preceding 3 years. Color Doppler was used to examine the tendons of 64 players before their matches and 46 players after their matches. Intratendinous color Doppler flow was graded from 0 to 4. The Achilles tendon was divided into dominant (eg, right side for right-handed players and vice versa) and nondominant side and classified as midtendon, preinsertional, and calcaneal areas. Of 72 players, 26 had experienced achillodynia in 34 tendons, 18 on the dominant side and 16 on the nondominant side. In 62% of the players with achillodynia, the problems had begun slowly, and the median duration of symptoms was 4 months (range, 0-36 months). Thirty-five percent had ongoing pain in their tendons for a median duration of 12 months (range, 0-12 months). Achillodynia was not associated with the self-reported training load or with sex, age, weight, singles or doubles players, or racket side. Forty-six players were scanned before and after match. At baseline, color Doppler flow was present in the majority of players, and only 7 (16%) players had no color Doppler flow in either tendon. After match, all players had some color Doppler flow in 1 or both tendons. Achillodynia and color Doppler flow were related in the nondominant Achilles tendon (chi-square, P = .008). The grades of Doppler flow also increased significantly after match in the preinsertional area in both the nondominant (P = .0002) and dominant (P = .005) side tendons. A large proportion of the players had experienced

  6. Automated assessment of noninvasive filling pressure using color Doppler M-mode echocardiography

    NASA Technical Reports Server (NTRS)

    Greenberg, N. L.; Firstenberg, M. S.; Cardon, L. A.; Zuckerman, J.; Levine, B. D.; Garcia, M. J.; Thomas, J. D.

    2001-01-01

    Assessment of left ventricular filling pressure usually requires invasive hemodynamic monitoring to follow the progression of disease or the response to therapy. Previous investigations have shown accurate estimation of wedge pressure using noninvasive Doppler information obtained from the ratio of the wave propagation slope from color M-mode (CMM) images and the peak early diastolic filling velocity from transmitral Doppler images. This study reports an automated algorithm that derives an estimate of wedge pressure based on the spatiotemporal velocity distribution available from digital CMM Doppler images of LV filling.

  7. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    PubMed

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  8. Heat transfer between a heated plate and an impinging transient diesel spray

    NASA Astrophysics Data System (ADS)

    Arcoumanis, C.; Chang, J.-C.

    1993-12-01

    An experimental investigation was performed to determine the heat-transfer distribution in the vicinity of a transient diesel spray impinging on a heated flat plate. The spray prior to impingement was characterised in terms of simultaneous droplet sizes and velocities by phase-Doppler anemometry while during its impingement on the plate, which was heated at temperatures between 150 205°C, the instantaneous surface temperature and associated rates of wall heat transfer were monitored by fast response thermocouples. The parameters examined in this work included the distance between the nozzle and the wall surface, the radial distance from the impingement point, the injection frequency, the injected volume and the pre-impingement wall temperature. The results showed that the wall heat transfer rates are dependent on the spray characteristics prior to impingement; the higher the “velocity of arrival” of the droplet is, the higher the heat transfer. A correlation was thus developed for the instantaneous and spatially-resolved spray/wall heat transfer based on experimentally-determined Nusselt, Reynolds, Prandtl and Weber numbers over a wide range of test conditions.

  9. Development of Point Doppler Velocimetry for Flow Field Investigations

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.; Meyers, James F.; Lee, Joseph W.

    2006-01-01

    A Point Doppler Velocimeter (pDv) has been developed using a vapor-limited iodine cell as the sensing medium. The iodine cell is utilized to directly measure the Doppler shift frequency of laser light scattered from submicron particles suspended within a fluid flow. The measured Doppler shift can then be used to compute the velocity of the particles, and hence the fluid. Since this approach does not require resolution of scattered light from individual particles, the potential exists to obtain temporally continuous signals that could be uniformly sampled in the manner as a hot wire anemometer. This leads to the possibility of obtaining flow turbulence power spectra without the limitations of fringe-type laser velocimetry. The development program consisted of a methodical investigation of the technology coupled with the solution of practical engineering problems to produce a usable measurement system. The paper outlines this development along with the evaluation of the resulting system as compared to primary standards and other measurement technologies.

  10. Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.

    PubMed

    Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse

    2018-05-01

    Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.

  11. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.; ,

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  12. Transcranial Doppler Ultrasound in Peninsular Arab Patients With Sickle Cell Disease.

    PubMed

    Adekile, Adekunle; Hassan, Meaad; Asbeutah, Akram; Al-Hinai, Mohamed; Trad, Omar; Farhan, Nayef

    2018-05-06

    Transcranial Doppler ultrasound is used to identify patients with sickle cell disease (SCD) at risk for stroke. We performed transcranial Doppler studies in patients from 4 countries in the Arabian Peninsula (Kuwait, Oman, Iraq, and United Arab Emirates) to document the prevalence of abnormal transcranial Doppler findings. The patients were recruited from outpatient clinics and studied in a steady state. Transcranial Doppler examinations were performed with standard equipment by experienced operators. The time-averaged maximum mean velocity (TAMMV) was documented in the arteries of the circle of Willis. The hemoglobin (Hb) genotype was confirmed, and the fetal Hb level and complete blood counts were determined. There were 415 patients in the study, aged 2 to 18 years (mean ± SD, 8.6 ± 3.5 years). None of the patients had an abnormal TAMMV (ie, > 200 cm/s), whereas only 13 (3.1%), all from Iraq, had conditional values (170-200 cm/s) in the right middle cerebral artery and 7 (1.7%) in the left middle cerebral artery. There were no consistent TAMMV differences among male and female patients or in patients with different Hb genotypes (sickle cell anemia, sickle cell β 0- thalassemia, and sickle D). The use of hydroxyurea was associated with a lower TAMMV, whereas a blood transfusion history had no influence. Total hemoglobin, reticulocyte count, serum bilirubin, and fetal Hb values showed varying degrees of association with the TAMMV in the different vessels. This study has demonstrated the rarity of abnormal transcranial Doppler findings among Peninsular Arab patients with SCD. The guidelines for transcranial Doppler screening in this population need further studies and recommendations. © 2018 by the American Institute of Ultrasound in Medicine.

  13. The Cassini/Huygens Doppler Wind Experiment: Results from the Titan Descent

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Dutta-Roy, R.; Allison, M.; Asmar, S. W.; Atkinson, D. H.; Edenhofer, P.; Plettemeier, D.; Tyler, G. L.

    2005-01-01

    The primary objective of the Doppler Wind Experiment (DWE), one of the six scientific investigations comprising the payload of the ESA Huygens Probe, is a determination of the wind velocity in Titan's atmosphere. Measurements of the Doppler shift of the S-band (2040 MHz) carrier signal to the Cassini Orbiter and to Earth were recorded during the Probe descent in order to deduce wind-induced motion of the Probe to an accuracy better than 1 m s-1. An experiment with the same scientific goal was performed with the Galileo Probe at Jupiter. Analogous to the Galileo experience, it was anticipated that the frequency of the Huygens radio signal could be measured on Earth to obtain an additional component of the horizontal winds. Specific secondary science objectives of DWE include measurements of: (a) Doppler fluctuations to determine the turbulence spectrum and possible wave activity in the Titan atmosphere; (b) Doppler and signal level modulation to monitor Probe descent dynamics (e.g., spinrate/spinphase, parachute swing); (c) Probe coordinates and orientation during descent and after impact on Titan.

  14. Frequency-Tracking CW Doppler Radar Solving Small-Angle Approximation and Null Point Issues in Non-Contact Vital Signs Monitoring.

    PubMed

    Mercuri, Marco; Liu, Yao-Hong; Lorato, Ilde; Torfs, Tom; Bourdoux, Andre; Van Hoof, Chris

    2017-06-01

    A Doppler radar operating as a Phase-Locked-Loop (PLL) in frequency demodulator configuration is presented and discussed. The proposed radar presents a unique architecture, using a single channel mixer, and allows to detect contactless vital signs parameters while solving the null point issue and without requiring the small angle approximation condition. Spectral analysis, simulations, and experimental results are presented and detailed to demonstrate the feasibility and the operational principle of the proposed radar architecture.

  15. Airborne Doppler radar detection of low altitude windshear

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.; Jones, William R.; Britt, Charles L.

    1990-01-01

    As part of an integrated windshear program, the Federal Aviation Administration, jointly with NASA, is sponsoring a research effort to develop airborne sensor technology for the detection of low altitude windshear during aircraft take-off and landing. One sensor being considered is microwave Doppler radar operating at X-band or above. Using a Microburst/Clutter/Radar simulation program, a preliminary feasibility study was conducted to assess the performance of Doppler radars for this application. Preliminary results from this study are presented. Analysis show, that using bin-to-bin Automatic Gain Control (AGC), clutter filtering, limited detection range, and suitable antenna tilt management, windshear from a wet microburst can be accurately detected 10 to 65 seconds (.75 to 5 km) in front of the aircraft. Although a performance improvement can be obtained at higher frequency, the baseline X-band system that was simulated detected the presence of a windshear hazard for the dry microburst. Although this study indicates the feasibility of using an airborne Doppler radar to detect low altitude microburst windshear, further detailed studies, including future flight experiments, will be required to completely characterize the capabilities and limitations.

  16. Doppler ultrasound study of penis in men with systemic sclerosis: a correlation with Doppler indices of renal and digital arteries.

    PubMed

    Rosato, E; Barbano, B; Gigante, A; Cianci, R; Molinaro, I; Quarta, S; Digiulio, M A; Messineo, D; Pisarri, S; Salsano, F

    2013-01-01

    Erectile dysfunction (ED) prevalence in male systemic sclerosis (SSc) is high and its pathogenesis is unclear. The aim of the study is to assess correlation between Doppler ultrasound indices of penis and kidneys or digital arteries in male systemic sclerosis. Fourteen men with systemic sclerosis were enrolled in this study. Erectile function was investigated by the International Index of Erectile Function-5. Peak systolic velocity, end diastolic velocity, resistive index, pulsative index, and systolic/diastolic ratio were measured on the cavernous arteries at the peno-scrotal junction in the flaccid state, on the interlobar artery of both kidneys and all ten proper palmar digital arteries. Ten (71 percent) patients have an International Index of Erectile Function-5 less than 21. Reduction of penis peak systolic velocity was observed in all SSc subjects. Doppler indices of cavernous arteries correlate with the International Index of Erectile Function-5. The renal and digital arteries resistive index demonstrated a good correlation (p less than 0.0001) with International Index of Erectile Function-5. A positive correlation exists between penis and kidney arteries Doppler indices: end diastolic velocity (p less than 0.05, r=0.54), resistive index (p less than 0.0001, r=0.90), systolic/diastolic ratio (p less than 0.01, r=0.69). A positive correlation was observed between penis and digital arteries Doppler indices: peak systolic velocity (p less than 0.01, r=0.68), end diastolic velocity (p less than 0.01, r=0.75), resistive index (p less than 0.001, r=0.79), systolic/diastolic ratio (p less than 0.05, r=0.59). A correlation exists between arterial impairment of penis and renal or digital arteries.

  17. C-band radar pulse Doppler error: Its discovery, modeling, and elimination

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Dempsey, D. J.

    1978-01-01

    The discovery of a C Band radar pulse Doppler error is discussed and use of the GEOS 3 satellite's coherent transponder to isolate the error source is described. An analysis of the pulse Doppler tracking loop is presented and a mathematical model for the error was developed. Error correction techniques were developed and are described including implementation details.

  18. Photodetachment and Doppler laser cooling of anionic molecules

    NASA Astrophysics Data System (ADS)

    Gerber, Sebastian; Fesel, Julian; Doser, Michael; Comparat, Daniel

    2018-02-01

    We propose to extend laser-cooling techniques, so far only achieved for neutral molecules, to molecular anions. A detailed computational study is performed for {{{C}}}2- molecules stored in Penning traps using GPU based Monte Carlo simulations. Two cooling schemes—Doppler laser cooling and photodetachment cooling—are investigated. The sympathetic cooling of antiprotons is studied for the Doppler cooling scheme, where it is shown that cooling of antiprotons to subKelvin temperatures could becomes feasible, with impacts on the field of antimatter physics. The presented cooling schemes also have applications for the generation of cold, negatively charged particle sources and for the sympathetic cooling of other molecular anions.

  19. Asymmetric micro-Doppler frequency comb generation via magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Filonov, Dmitry; Steinberg, Ben Z.; Ginzburg, Pavel

    2017-06-01

    Electromagnetic scattering from moving bodies, being an inherently time-dependent phenomenon, gives rise to a generation of new frequencies, which can be used to characterize the motion. Whereas an ordinary motion along a linear path produces a constant Doppler shift, an accelerated scatterer can generate a micro-Doppler frequency comb. The spectra produced by rotating objects were studied and observed in a bistatic lock-in detection scheme. The internal geometry of a scatterer was shown to determine the spectrum, and the degree of structural asymmetry was suggested to be identified via signatures in the micro-Doppler comb. In particular, hybrid magnetoelectric particles, showing an ultimate degree of asymmetry in forward and backward scattering directions, were investigated. It was shown that the comb in the backward direction has signatures at the fundamental rotation frequency and its odd harmonics, whereas the comb of the forward scattered field has a prevailing peak at the doubled frequency and its multiples. Additional features of the comb were shown to be affected by the dimensions of the particle and by the strength of the magnetoelectric coupling. Experimental verification was performed with a printed circuit board antenna based on a wire and a split ring, while the structure was illuminated at a 2 GHz carrier frequency. Detailed analysis of micro-Doppler combs enables remote detection of asymmetric features of distant objects and could find use in a span of applications, including stellar radiometry and radio identification.

  20. Intrahepatic portosystemic venous shunt: diagnosis by color Doppler imaging.

    PubMed

    Kudo, M; Tomita, S; Tochio, H; Minowa, K; Todo, A

    1993-05-01

    Intrahepatic portosystemic venous shunt is a rare clinical entity; only 33 such cases have been reported. It may be congenital, or secondary to portal hypertension. Five patients with this disorder are presented, each of whom was diagnosed by color Doppler imaging, including waveform spectral analysis. One patient with clinical evidence of cirrhosis and portal hypertension had episodes of hepatic encephalopathy and elevated blood levels of ammonia. This patient had a large tubular shunt between the posterior branch of the portal vein and the inferior vena cava. Shunts of this type are considered to be collateral pathways which develop in the hepatic parenchyma as a result of portal hypertension. The other four patients had no evidence of liver disease, and all four evidenced an aneurysmal portohepatic venous shunt within the liver parenchyma. Shunts of this type are considered congenital. The diagnosis of intrahepatic portosystemic venous shunts was established by color Doppler imaging, which demonstrated a direct communication of color flow signals between the portal vein and hepatic vein, in addition to the characterization of the Doppler spectrum at each sampling point from a continuous waveform signal (portal vein) to a turbulent signal (aneurysmal cavity), and finally, to a biphasic waveform signal (hepatic vein). As demonstrated by the five patients, color Doppler imaging is useful in the diagnosis of an intrahepatic portosystemic hepatic venous shunt, and the measurement of shunt ratio may be useful in the follow-up and determining the therapeutic option.

  1. Three-dimensional color Doppler imaging of the carotid artery

    NASA Astrophysics Data System (ADS)

    Picot, Paul A.; Rickey, Daniel W.; Mitchell, Ross; Rankin, Richard N.; Fenster, Aaron

    1991-05-01

    Stroke is the third leading cause of death in the United States. It is caused by ischemic injury to the brain, usually resulting from emboli from atherosclerotic plaques. The carotid bifurcation in humans is prone to atherosclerotic disease and is a site where emboli may originate. Currently, carotid stenoses are evaluated by non-invasive duplex Doppler ultrasound, with preoperative verification by intra-arterial angiography. We have developed a system that uses a color Doppler ultrasound imaging system to acquire in-vivo 3-D color Doppler images of the human carotid artery, with the aim of increasing the diagnostic accuracy of ultrasound and decreasing the use of angiography for verification. A clinical TL Ultramark 9 color Doppler ultrasound system was modified by mounting the hand-held ultrasound scan head on a motor-driven translation stage. The stage allows planar ultrasound images to be acquired over 45 mm along the neck between the clavicle and the mandible. A 3- D image is acquired by digitizing, in synchrony with the cardiac cycle, successive color ultrasound video images as the scan head is stepped along the neck. A complete volume set of 64 frames, comprising some 15 megabytes of data, requires approximately 2 minutes to acquire. The volume image is reformatted and displayed on a Sun 4/360 workstation equipped with a TAAC-1 graphics accelerator. The 3-D image may be manipulated in real time to yield the best view of blood flow in the bifurcation.

  2. Single-photon superradiant beating from a Doppler-broadened ladder-type atomic ensemble

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Seok; Lee, Sang Min; Kim, Heonoh; Moon, Han Seb

    2017-12-01

    We report on heralded-single-photon superradiant beating in the spontaneous four-wave mixing process of Doppler-broadened ladder-type 87Rb atoms. When Doppler-broadened atoms contribute to two-photon coherence, the detection probability amplitudes of the heralded single photons are coherently superposed despite inhomogeneous broadened atomic media. Single-photon superradiant beating is observed, which constitutes evidence for the coherent superposition of two-photon amplitudes from different velocity classes in the Doppler-broadened atomic ensemble. We present a theoretical model in which the single-photon superradiant beating originates from the interference between wavelength-separated two-photon amplitudes via the reabsorption filtering effect.

  3. Laser Doppler Measurement of Atmopsheric Wind Velocity

    NASA Technical Reports Server (NTRS)

    Schwiesow, R. L.; Abshire, N. L.; Derr, V. E.

    1973-01-01

    Our presentation consists of two parts: (1) a summary review of laser Doppler principles and applications, and (2) operational design and preliminary laboratory tests of a CO2 laser system for NOAA applications.

  4. Phase-partitioning in mixed-phase clouds - An approach to characterize the entire vertical column

    NASA Astrophysics Data System (ADS)

    Kalesse, H.; Luke, E. P.; Seifert, P.

    2017-12-01

    The characterization of the entire vertical profile of phase-partitioning in mixed-phase clouds is a challenge which can be addressed by synergistic profiling measurements with ground-based polarization lidars and cloud radars. While lidars are sensitive to small particles and can thus detect supercooled liquid (SCL) layers, cloud radar returns are dominated by larger particles (like ice crystals). The maximum lidar observation height is determined by complete signal attenuation at a penetrated optical depth of about three. In contrast, cloud radars are able to penetrate multiple liquid layers and can thus be used to expand the identification of cloud phase to the entire vertical column beyond the lidar extinction height, if morphological features in the radar Doppler spectrum can be related to the existence of SCL. Relevant spectral signatures such as bimodalities and spectral skewness can be related to cloud phase by training a neural network appropriately in a supervised learning scheme, with lidar measurements functioning as supervisor. The neural network output (prediction of SCL location) derived using cloud radar Doppler spectra can be evaluated with several parameters such as liquid water path (LWP) detected by microwave radiometer (MWR) and (liquid) cloud base detected by ceilometer or Raman lidar. The technique has been previously tested on data from Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) instruments in Barrow, Alaska and is in this study utilized for observations from the Leipzig Aerosol and Cloud Remote Observations System (LACROS) during the Analysis of the Composition of Clouds with Extended Polarization Techniques (ACCEPT) field experiment in Cabauw, Netherlands in Fall 2014. Comparisons to supercooled-liquid layers as classified by CLOUDNET are provided.

  5. Method and apparatus for Doppler frequency modulation of radiation

    NASA Technical Reports Server (NTRS)

    Margolis, J. S.; Mccleese, D. J.; Shumate, M. S.; Seaman, C. H. (Inventor)

    1980-01-01

    A method and apparatus are described for frequency modulating radiation, such as from a laser, for optoacoustic detectors, interferometers, heterodyne spectrometers, and similar devices. Two oppositely reciprocating cats-eye retroreflectors are used to Doppler modulate the radiation. By reciprocally moving both retroreflectors, the center of mass is maintained constant to permit smooth operation at many Hertz. By slightly offsetting the axis of one retroreflector relative to the other, multiple passes of a light beam may be achieved for greater Doppler shifts with the same reciprocating motion of the retroreflectors.

  6. Feasibility assessment of Doppler radar long-term physiological measurements.

    PubMed

    Massagram, Wansuree; Lubecke, Victor M; Boric-Lubecke, Olga

    2011-01-01

    In this paper we examine the feasibility of applying doppler radar technique for a long-term health monitoring. Doppler radar was used to detect and eliminate periods of significant motion. This technique was verified using a human study on 17 subjects, and it was determined that for 15 out of 17 subjects there was no significant motion for over 85% of the measurement interval in supine positions. Majority of subjects exhibited significantly less motion in supine position, which is promising for sleep monitoring, and monitoring of hospitalized patients.

  7. Atmospheric laser Doppler velocimetry - An overview

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.

    1980-01-01

    Research, development, and application of atmospheric laser Doppler velocimetry are overviewed. Consideration is given to operation principles of CO2 heterodyne systems. Global wind, pollution, V/STOL flow, and true airspeed measurements are outlined. Wind energy, dust devils, water spouts, tornadoes, and aircraft wake vortices are covered.

  8. MEMS based Doppler velocity measurement system

    NASA Astrophysics Data System (ADS)

    Shin, Minchul

    The design, fabrication, modeling and characterization of a capacitive micromachined ultrasonic transducer (cMUT) based in-air Doppler velocity measurement system using a 1 cm2 planar array are described. Continuous wave operation in a narrowband was chosen in order to maximize range, as it allows for better rejection of broadband noise. The sensor array has a 160-185 kHz resonant frequency to achieve a 10 degree beamwidth. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, characterization of the cMUT sensor with a variety of testing procedures is provided. Laser Doppler vibrometry (LDV), beampattern, reflection, and velocity testing characterize the performance of the sensors. The sensor is capable of measuring the velocity of a moving specular reflector with a resolution of 5 cm/s, an update rate of 0.016 second, and a range of 1.5 m.

  9. Role of 3D Ultrasound and Doppler in Differentiating Clinically Suspected Cases of Leiomyoma and Adenomyosis of Uterus

    PubMed Central

    Sharma, Kaveri; Venkatesh, B.P; Barman, Partho; Roy, Sumit Kumar; Jayagurunathan, Usha; Sellamuthu, Eswaramoorthy; Moidu, Fazil

    2015-01-01

    Introduction Adenomyosis and Leiomyoma are common disorders affecting females in their reproductive age. They mimic each other in clinical presentation. Due to similarities in clinical symptoms and signs, missing one diagnosis in favour of the other is not very uncommon. Accurate diagnosis of these two conditions is important for their management. In this study we evaluated role of 3D Ultrasound and Doppler in differentiating clinically suspected cases of leiomyoma and adenomyosis of uterus. Materials and Methods A total of 100 patients with symptoms of abnormal uterine bleeding (with or without dysmenorrhoea), lump abdomen, chronic pelvic pain or dysparaunia who were clinically diagnosed as leiomyoma of uterus and/or adenomyosis were enrolled in to the study. These patients underwent transvaginal sonography (TVS), trans abdominal sonography (TAS) along with color and spectral Doppler sonography. Scanning was done in follicular phase of the menstrual cycle to avoid bias due high vascularity of endometrium in secretory phase. The morphology of the lesion, its vascularity, and Pulsality Index (PI), Resistive Index (RI) and Vmax (maximum velocity) were measured. Only those patients who were chosen for operative treatment were included in the study. Radiological diagnosis was then correlated with intra-operative and histopathological diagnosis. Results On imaging, while using morphological criteria and Doppler for diagnosing leiomyoma, it was found that “peripheral vascularity” was seen in 52 (89%) cases, which was the highest. Similarly while diagnosing adenomyosis it was, the criteria “central vascularity” was seen in 28 cases (93%) and “ill defined junctional zone in 3D ultrasound” was seen in 26 cases (86%), which was also observed to be highest. With the cut off values taken for PI,RI and Vmax, diagnosis of leiomyoma was found to be 93.4% sensitive, 95.6% specific and with a positive predictive value of 97.6% and negative predictive value of 88

  10. An airport wind shear detection and warning system using Doppler radar: A feasibility study

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Blick, E. F.; Elmore, K. L.

    1981-01-01

    A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path.

  11. Normal Doppler velocimetry of renal vasculature in Persian cats.

    PubMed

    Carvalho, Cibele F; Chammas, Maria C

    2011-06-01

    Renal diseases are common in older cats. Decreased renal blood flow may be the first sign of dysfunction and can be evaluated by Doppler ultrasound. But previous studies suggest that the resistive index (RI) has a low sensitivity for detecting renal disease. Doppler waveforms of renal and intrarenal arteries demonstrate decreased blood flow before there are any changes in the RI. The purpose of this study was to evaluate the normal Doppler flowmetrics parameters of renal arteries (RAs), interlobar arteries (IAs) and abdominal aorta (AO) in adult healthy, Persian cats. Twenty-five Persian cats (13 females and 12 males with mean age of 30 months and an age range 12-60 months) with normal clinical examinations and biochemical tests and normal systemic blood pressure were given B-mode ultrasonographies in order to exclude all nephropathies, including polycystic kidney disease. All measurements were performed on both kidneys. Both kidneys (n=50) were examined by color mapping of the renal vasculature. Pulsed Doppler was used to examine both RAs, the IAs at cranial, middle and caudal sites, and the AO. The RI was calculated for all of the vessels. Early systolic acceleration (ESA) of RA and IA was obtained with Doppler spectral analysis. Furthermore, the ratio indices between RA/AO, and IA/RA velocities were calculated. The mean values of peak systolic velocity (PSV) and the diameter for AO were 53.17±13.46 cm/s and 0.38±0.08 cm, respectively. The mean RA diameter for all 50 kidneys was 0.15±0.02 cm. Considering the velocimetric values in both RAs, the mean PSV and RI that were obtained were 41.17±9.40 cm/s and 0.54±0.07. The RA had a mean ESA of 1.12±1.14 m/s(2) and the calculated upper limit of the reference value was 3.40 m/s(2). The mean renal-aortic ratio was 0.828±0.296. The IA showed PSV and RI values of 32.16±9.33 cm/s and 0.52±0.06, respectively. The mean ESA of all IAs was 0.73±0.61 m/s(2). The calculated upper limit of the reference value was 2.0m

  12. Observations of tropospheric phase scintillations at 5 GHz on vertical paths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Sramek, R. A.

    1982-01-01

    The article presents observations of turbulence-induced tropospheric phase fluctuations measured at 5 GHz on the near-vertical paths relevant to many astronomical and geophysical measurements. The data are summarized as phase power spectra, structure functions, and Allan variances. Comparisons to other microwave observations indicate relatively good agreement in both the level and shape of the power spectrum of these tropospheric phase fluctuations. Implications for precision Doppler tracking of spacecraft and geodesy/radio interferometry are discussed.

  13. Low-frequency high-definition power Doppler in visualizing and defining fetal pulmonary venous connections.

    PubMed

    Liu, Lin; He, Yihua; Li, Zhian; Gu, Xiaoyan; Zhang, Ye; Zhang, Lianzhong

    2014-07-01

    The use of low-frequency high-definition power Doppler in assessing and defining pulmonary venous connections was investigated. Study A included 260 fetuses at gestational ages ranging from 18 to 36 weeks. Pulmonary veins were assessed by performing two-dimensional B-mode imaging, color Doppler flow imaging (CDFI), and low-frequency high-definition power Doppler. A score of 1 was assigned if one pulmonary vein was visualized, 2 if two pulmonary veins were visualized, 3 if three pulmonary veins were visualized, and 4 if four pulmonary veins were visualized. The detection rate between Exam-1 and Exam-2 (intra-observer variability) and between Exam-1 and Exam-3 (inter-observer variability) was compared. In study B, five cases with abnormal pulmonary venous connection were diagnosed and compared to their anatomical examination. In study A, there was a significant difference between CDFI and low-frequency high-definition power Doppler for the four pulmonary veins observed (P < 0.05). The detection rate of each pulmonary vein when employing low-frequency high-definition power Doppler was higher than that when employing two-dimensional B-mode imaging or CDFI. There was no significant difference between the intra- and inter-observer variabilities using low-frequency high-definition power Doppler display of pulmonary veins (P > 0.05). The coefficient correlation between Exam-1 and Exam-2 was 0.844, and the coefficient correlation between Exam-1 and Exam-3 was 0.821. In study B, one case of total anomalous pulmonary venous return and four cases of partial anomalous pulmonary venous return were diagnosed by low-frequency high-definition power Doppler and confirmed by autopsy. The assessment of pulmonary venous connections by low-frequency high-definition power Doppler is advantageous. Pulmonary venous anatomy can and should be monitored during fetal heart examination.

  14. Problem of the elimination of the refractional effects in Doppler positioning.

    NASA Astrophysics Data System (ADS)

    Gougoutoudis, I.

    The influence of the tropospheric refraction on the Doppler positioning is discussed. It is found that the differences of coordinates resulting from the use of standard atmospheric parameters instead of real ones could amount to 0.60 m for single point positioning and 0.20 m for multilocation. The necessity of registration of the real meteorologic parameters at the Doppler station is confirmed.

  15. Doppler Ultrasound: What Is It Used for?

    MedlinePlus

    ... During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses a small hand-held device (transducer), ... neurologic-disorders/neurologic-tests-and-procedures/other-neurologic-imaging-studies. Accessed Oct. 18, 2016. ... . Mayo Clinic Footer Legal ...

  16. Student Microwave Experiments Involving the Doppler Effect.

    ERIC Educational Resources Information Center

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  17. Analysing simple motions using the Doppler effect—‘seeing’ sound

    NASA Astrophysics Data System (ADS)

    Stonawski, Tamás; Gálik, Tamás

    2017-01-01

    The Doppler effect has seen widespread use in the past hundred years. It is used for medical imaging, for measuring speed, temperature, direction, etc, and it makes the spatial relations of motion easy to map. The Doppler effect also allows GPS receivers to measure the speed of a vehicle significantly more accurately than dashboard speedometers. Its diverse applications have prompted us to revisit the simple motions from kinematics with the help of everyday objects in our experiments.

  18. Brazilian Guidelines for transcranial doppler in children and adolescents with sickle cell disease

    PubMed Central

    Lobo, Clarisse Lopes de Castro; Cançado, Rodolfo Delfini; Leite, Ana Claudia Celestino Bezerra; dos Anjos, Ana Claudia Mendonça; Pinto, Ana Cristina Silva; Matta, Andre Palma da Cunha; Silva, Célia Maria; Silva, Gisele Sampaio; Friedrisch, João Ricardo; Braga, Josefina Aparecida Pellegrini; Lange, Marcos Christiano; Figueiredo, Maria Stella; Rugani, Marília Álvares; Veloso, Orlando; Moura, Patrícia Gomes; Cortez, Paulo Ivo; Adams, Robert; Gualandro, Sandra Fátima Menosi; de Castilho, Shirley Lopes; Thomé, Ursula; Zetola, Viviane Flumignan

    2011-01-01

    Background Sickle cell disease is the most common monogenic hereditary disease in Brazil. Although strokes are one of the main causes of morbidity and mortality in these patients, the use of transcranial Doppler to identify children at risk is not universally used. Objective To develop Brazilian guidelines for the use of transcranial Doppler in sickle cell disease children and adolescents, so that related health policies can be expanded, and thus contribute to reduce morbidity and mortality. Methods The guidelines were formulated in a consensus meeting of experts in transcranial Doppler and sickle cell disease. The issues discussed were previously formulated and scientific articles in databases (MEDLINE, SciELO and Cochrane) were carefully analyzed. The consensus for each question was obtained by a vote of experts on the specific theme. Results Recommendations were made, including indications for the use of transcranial Doppler according to the sickle cell disease genotype and patients age; the necessary conditions to perform the exam and its periodicity depending on exam results; the criteria for the indication of blood transfusions and iron chelation therapy; the indication of hydroxyurea; and the therapeutic approach in cases of conditional transcranial Doppler. Conclusion The Brazilian guidelines on the use of transcranial doppler in sickle cell disease patients may reduce the risk of strokes, and thus reduce the morbidity and mortality and improve the quality of life of sickle cell disease patients. PMID:23284243

  19. Airborne Doppler Wind Lidar Post Data Processing Software DAPS-LV

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J. (Inventor); Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable post processing of airborne Doppler wind LIDAR data. In an embodiment, airborne Doppler wind LIDAR data software written in LabVIEW may be provided and may run two versions of different airborne wind profiling algorithms. A first algorithm may be the Airborne Wind Profiling Algorithm for Doppler Wind LIDAR ("APOLO") using airborne wind LIDAR data from two orthogonal directions to estimate wind parameters, and a second algorithm may be a five direction based method using pseudo inverse functions to estimate wind parameters. The various embodiments may enable wind profiles to be compared using different algorithms, may enable wind profile data for long haul color displays to be generated, may display long haul color displays, and/or may enable archiving of data at user-selectable altitudes over a long observation period for data distribution and population.

  20. 3D atom microscopy in the presence of Doppler shift

    NASA Astrophysics Data System (ADS)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  1. Non-contact physiological signal detection using continuous wave Doppler radar.

    PubMed

    Qiao, Dengyu; He, Tan; Hu, Boping; Li, Ye

    2014-01-01

    The aim of this work is to show non-contact physiological signal monitoring system based on continuous-wave (CW) Doppler radar, which is becoming highly attractive in the field of health care monitoring of elderly people. Two radar signal processing methods were introduced in this paper: one to extract respiration and heart rates of a single person and the other to separate mixed respiration signals. To verify the validity of the methods, physiological signal is obtained from stationary human subjects using a CW Doppler radar unit. The sensor operating at 24 GHz is located 0.5 meter away from the subject. The simulation results show that the respiration and heart rates are clearly extracted, and the mixed respiration signals are successfully separated. Finally, reference respiration and heart rate signals are measured by an ECG monitor and compared with the results tracked by the CW Doppler radar monitoring system.

  2. On the role of mean flows in Doppler shifted frequencies

    NASA Astrophysics Data System (ADS)

    Gerkema, Theo; Maas, Leo R. M.; van Haren, Hans

    2013-04-01

    In the oceanographic literature, the term 'Doppler shift' often features in the context of mean flows and (internal) waves. Closer inspection reveals that the term is in fact used for two different things, which should be carefully distinguished, for their conflation results in incorrect interpretations. One refers to the difference in frequencies measured by two observers, one at a fixed position and one moving with the mean flow. The other definition is the one used in physics, where the frequency measured by an observer is compared to that of the source. In the latter sense, Doppler shifts occur only if the source and observer move with respect to each other; a steady mean flow cannot create a Doppler shift. We rehash the classical theory to straighten out some misconceptions and discuss how wave dispersion affects the classical relations and their application, for example on near-inertial internal waves.

  3. Verification of Wind Measurement to 450-Meter Altitude with Mobile Laser Doppler System

    DOT National Transportation Integrated Search

    1977-12-01

    The Lockheed mobile atmospheric unit is a laser Doppler velocimeter system designed for the remote sensing of winds. The capability of the laser Doppler velocimeter accurately to measure winds to 150-meter altitude has been previously demonstrated. T...

  4. Observation of Doppler broadening in β -delayed proton- γ decay

    DOE PAGES

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; ...

    2015-09-14

    Background: The Doppler broadening of gamma-ray peaks is due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using beta-delayed proton emission or applied to a recoil heavier than A = 10. Purpose: To test and apply this Doppler broadening method using gamma-ray peaks from the P-26(beta p gamma)Al-25 decay sequence. Methods: A fast beam of P-26 was implanted into a planar Ge detector, which was used as a P-26 beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays frommore » the P-26(beta p gamma)Al-25 decay sequence. Results: Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. Moreover, the Doppler broadening analysis method was verified using the 1613-keV gamma-ray line for which the proton energies were previously known. The 1776-keV gamma ray de-exciting the 2720 keV Al-25 level was observed in P-26(beta p gamma)Al-25 decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a Si-26 excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV for the proton-emitting level. Conclusions: Finally, the Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.« less

  5. [The use of intraoperative Doppler ultrasound in endoscopic transsphenoidal surgery].

    PubMed

    Sharipov, O I; Kutin, M A; Kalinin, P L; Fomichev, D V; Lukshin, V A; Kurnosov, A B

    2016-01-01

    Doppler ultrasound (DUS) has been widely used in neurosurgical practice to diagnose various cerebrovascular diseases. This technique is used in transsphenoidal surgery to identify the localization of intracranial arteries when making an approach or during tumor resection. To identify the cavernous segment of the internal carotid artery (ICA) and/or basilar artery during endoscopic transsphenoidal surgery, we used a combined device on the basis of a click line curette («Karl Storz») and a 16 MHz Doppler probe (Lassamed). The technique was used in 51 patients during both standard transsphenoidal surgery (23 cases) and transsphenoidal tumor resection through an extended approach (28 cases). Doppler ultrasound was used in different situations: to determine a trajectory of the endonasal transsphenoidal approach in the absence of the normal anatomical landmarks (16 cases), to define the limits of safe resection of a tumor located in the laterosellar region (7), and to implement an extended transsphenoidal endoscopic approach (28). Intraoperative Doppler ultrasound enabled identification of the cavernous segment of the internal carotid artery in 45 cases and the basilar artery in 2 cases; a blood vessel was not found in 4 cases. Injury to the cavernous segment of the internal carotid artery was observed only in 1 case. The use of the described combined device in transsphenoidal surgery turned Doppler ultrasound into an important and useful technique for visualization of the ICA within the tumor stroma as well as in the case of the changed skull base anatomy. Its use facilitates manipulations in a deep and narrow wound and enables inspection of the entire surface of the operative field in various planes, thereby surgery becomes safer due to the possibility of maximum investigation of the operative field.

  6. Observation of Doppler broadening in β -delayed proton-γ decay

    NASA Astrophysics Data System (ADS)

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Pérez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.

    2015-09-01

    Background: The Doppler broadening of γ -ray peaks due to nuclear recoil from β -delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using β -delayed proton emission or applied to a recoil heavier than A =10 . Purpose: To test and apply this Doppler broadening method using γ -ray peaks from the 26P(β p γ )25Al decay sequence. Methods: A fast beam of 26P was implanted into a planar Ge detector, which was used as a 26P β -decay trigger. The SeGA array of high-purity Ge detectors was used to detect γ rays from the 26P(β p γ )25Al decay sequence. Results: Radiative Doppler broadening in β -delayed proton-γ decay was observed for the first time. The Doppler broadening analysis method was verified using the 1613-keV γ -ray line for which the proton energies were previously known. The 1776-keV γ ray de-exciting the 2720 keV 25Al level was observed in 26P(β p γ )25Al decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 ±1.0 (stat.) ±0.6 (syst.) MeV, corresponding to a 26Si excitation energy of 13.3 ±1.0 (stat.) ±0.6 (syst.) MeV for the proton-emitting level. Conclusions: The Doppler broadening method has been demonstrated to provide practical measurements of the energies for β -delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A =25 .

  7. Application of complex discrete wavelet transform in classification of Doppler signals using complex-valued artificial neural network.

    PubMed

    Ceylan, Murat; Ceylan, Rahime; Ozbay, Yüksel; Kara, Sadik

    2008-09-01

    In biomedical signal classification, due to the huge amount of data, to compress the biomedical waveform data is vital. This paper presents two different structures formed using feature extraction algorithms to decrease size of feature set in training and test data. The proposed structures, named as wavelet transform-complex-valued artificial neural network (WT-CVANN) and complex wavelet transform-complex-valued artificial neural network (CWT-CVANN), use real and complex discrete wavelet transform for feature extraction. The aim of using wavelet transform is to compress data and to reduce training time of network without decreasing accuracy rate. In this study, the presented structures were applied to the problem of classification in carotid arterial Doppler ultrasound signals. Carotid arterial Doppler ultrasound signals were acquired from left carotid arteries of 38 patients and 40 healthy volunteers. The patient group included 22 males and 16 females with an established diagnosis of the early phase of atherosclerosis through coronary or aortofemoropopliteal (lower extremity) angiographies (mean age, 59 years; range, 48-72 years). Healthy volunteers were young non-smokers who seem to not bear any risk of atherosclerosis, including 28 males and 12 females (mean age, 23 years; range, 19-27 years). Sensitivity, specificity and average detection rate were calculated for comparison, after training and test phases of all structures finished. These parameters have demonstrated that training times of CVANN and real-valued artificial neural network (RVANN) were reduced using feature extraction algorithms without decreasing accuracy rate in accordance to our aim.

  8. Current Perspectives in Hyperbaric Physiology, Ultrasonic Doppler Bubble Detection, and Mass Spectrometry,

    DTIC Science & Technology

    1979-12-28

    Doppler sound made by a bubble passing through the inson- ified volume blood vessel resembles a very sharp truncated whistle , chirp or click depending...the Doppler ultrasound , suffered the "slings and arrows of outrageous criticism" to borrow and beat a phrase. It is not appropriate to go into this

  9. Laser Doppler velocimetry using a modified computer mouse

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.

    2016-10-01

    A computer mouse has been modified for use as a low-cost laser Doppler interferometer and used to measure the two-component fluid velocity of a flowing soap film. The mouse sensor contains two vertical cavity surface emitting lasers, photodiodes, and signal processing hardware integrated into a single package, approximately 1 cm2 in size, and interfaces to a host computer via a standard USB port. Using the principle of self-mixing interferometry, whereby laser light re-enters the laser cavity after being scattered from a moving target, the Doppler shift and velocity of scatterers dispersed in the flow are measured. Observations of the boundary layer in a turbulent soap film channel flow demonstrate the capabilities of the sensor.

  10. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Implantable pulsed Doppler ultrasonic flowmeter development has resulted in designs for application to the aortas of dogs and humans, and to human renal and coronary arteries. A figure of merit was derived for each design, indicating the degree of its precision. An H-array design for transcutaneous observation of blood flow was developed and tested in vitro. Two other simplified designs for the same purpose obviate the need to determine vessel orientation. One of these will be developed in the next time period. Techniques for intraoperative use and for implantation have had mixed success. While satisfactory on large vessels, higher ultrasonic frequencies and alteration of transducer design are required for satisfactory operation of pulsed Doppler flowmeters with small vessels.

  11. Doppler centroid estimation ambiguity for synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Curlander, J. C.

    1989-01-01

    A technique for estimation of the Doppler centroid of an SAR in the presence of large uncertainty in antenna boresight pointing is described. Also investigated is the image degradation resulting from data processing that uses an ambiguous centroid. Two approaches for resolving ambiguities in Doppler centroid estimation (DCE) are presented: the range cross-correlation technique and the multiple-PRF (pulse repetition frequency) technique. Because other design factors control the PRF selection for SAR, a generalized algorithm is derived for PRFs not containing a common divisor. An example using the SIR-C parameters illustrates that this algorithm is capable of resolving the C-band DCE ambiguities for antenna pointing uncertainties of about 2-3 deg.

  12. Feasibility of transabdominal Doppler sonography for studying uterine blood flow characteristics in cycling gilts.

    PubMed

    Herlta, Catherine; Starka, Rosa; Sigmarsson, Haukur L; Kauffold, Johannes

    2018-06-01

    To test for the feasibility of transabdominal Doppler sonography (color, power, pulse wave) to define uterine perfusion characteristics throughout the estrous cycle in gilts. A total of 15 gilts were synchronized for estrus and scanned in their following spontaneous cycle while being restrained in a purpose-designed mobile crate. To define uterine perfusion characteristics, vessels in between and within uterine cross-sections were imaged and recorded as video sequences to be analyzed by PixelFlux® software for perfused area (Amix), blood flow velocity (vmix) and intensity (Imix) as well as resistance (RIvmix) and pulsatility index (PIvmix). Color Doppler sonography proved to be the only feasible technique, as it was less affected by animal movements than power and pulse wave sonography. As determined by color Doppler sonography, all five parameters determined showed specific patterns through the estrous cycle, i. e. Amix, vmix, Imix were high in proestrus, decreased in estrus and remained low in midestrus and most parts of diestrus; RIvmix and PIvmix with inversely paralleled patterns. This study has demonstrated that transabdominal color Doppler but not power and pulse wave Doppler sonography is feasible to be performed in crate-restrained gilts for studying uterine perfusion characteristics during the estrous cycle, and that changes of uterine perfusion over the course of the estrous cycle can be clearly followed by color Doppler sonography. Results encourage the use of color Doppler sonography for studying i. e. uterine capacity or uterus related infertility such as for cases of clinically unapparent endometritis. Schattauer GmbH.

  13. Vertical Motion Characteristics of Tropical Cyclones Determined with Airborne Doppler Radial Velocities.

    NASA Astrophysics Data System (ADS)

    Black, Micheal L.; Burpee, Robert W.; Marks, Frank D., Jr.

    1996-07-01

    Vertical motions in seven Atlantic hurricanes are determined from data recorded by Doppler radars on research aircraft. The database consists of Doppler velocities and reflectivities from vertically pointing radar rays collected along radial flight legs through the hurricane centers. The vertical motions are estimated throughout the depth of the troposphere from the Doppler velocities and bulk estimates of particle fallspeeds.Portions of the flight tracks are subjectively divided into eyewall, rainband, stratiform, and `other' regions. Characteristics of the vertical velocity and radar structure are described as a function of altitude for the entire dataset and each of the four regions. In all of the regions, more than 70% of the vertical velocities range from 2 to 2 m s1. The broadest distribution of vertical motion is in the eyewall region where 5% of the vertical motions are >5 m s1. Averaged over the entire dataset, the mean vertical velocity is upward at all altitudes. Mean downward motion occurs only in the lower troposphere of the stratiform region. Significant vertical variations in the mean profiles of vertical velocity and reflectivity are discussed and related to microphysical processes.In the lower and middle troposphere, the characteristics of the Doppler-derived vertical motions are similar to those described in an earlier study using flight-level vertical velocities, even though the horizontal resolution of the Doppler data is 750 m compared to 125 m from the in situ flight-level measurements. The Doppler data are available at higher altitudes than those reached by turboprop aircraft and provide information on vertical as well as horizontal variations. In a vertical plane along the radial flight tracks, Doppler up- and downdrafts are defined at each 300-m altitude interval as vertical velocities whose absolute values continuously exceed 1.5 m s1, with at least one speed having an absolute value greater than 3.0 m s1. The properties of the Doppler

  14. Doppler ultrasound to detect pulpal blood flow changes during local anaesthesia.

    PubMed

    Yoon, M J; Lee, S J; Kim, E; Park, S H

    2012-01-01

      To examine whether Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia.   Changes in pulpal blood flow in maxillary central incisor teeth of 18 patients (mean age 26.7 years, 13 men, five women) after infiltration anaesthesia were examined. Before infiltration anaesthesia, the pulpal blood flow was measured using Doppler ultrasound. A local anaesthetic solution containing 2% lidocaine with 1:80,000 epinephrine was injected into the submucosa above the experimental tooth. The Doppler ultrasound test was carried out at 5, 10, 20, 30, 45 and 60 min after infiltration. The parameters were Vas (maximum linear velocity, cm s(-1) ), Vam (average linear velocity, cm s(-1) ) and Vakd (minimum linear velocity, cm s(-1) ), which are indicators of the level of blood flow. The mixed procedure at the 95% confidence interval was used to examine the changes in pulpal blood flow after the injection.   The linear velocity profiles (Vas, Vam, and Vakd) decreased sharply 5 min after anaesthesia and then reduced continuously for 30 min. The maximum degree of blood flow reduction in Vas, Vam and Vakd was 58%, 83% and 82%, respectively. After 30 min, the linear velocities increased gradually. The Vam returned to the pre-anaesthesia state at 60 minutes but the Vas and Vakd did not recover completely.   Doppler ultrasound can detect changes in pulpal blood flow after infiltration anaesthesia. In the future, Doppler ultrasound can be used as a tool for measuring pulpal blood flow. © 2011 International Endodontic Journal.

  15. DOPPLER CALCULATIONS FOR LARGE FAST CERAMIC REACTORS--EFFECTS OF IMPROVED METHODS AND RECENT CROSS SECTION INFORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greebler, P.; Goldman, E.

    1962-12-19

    Doppler calculations for large fast ceramic reactors (FCR), using recent cross section information and improved methods, are described. Cross sections of U/sup 238/, Pu/sup 239/, and Pu/sup 210/ with fuel temperature variations needed for perturbation calculations of Doppler reactivity changes are tabulated as a function of potential scattering cross section per absorber isotope at energies below 400 kev. These may be used in Doppler calculations for anv fast reactor. Results of Doppler calculations on a large fast ceramic reactor are given to show the effects of the improved calculation methods and of recent cross secrion data on the calculated Dopplermore » coefficient. The updated methods and cross sections used yield a somewhat harder spectrum and accordingly a somewhat smaller Doppler coefficient for a given FCR core size and composition than calculated in earlier work, but they support the essential conclusion derived earlier that the Doppler effect provides an important safety advantage in a large FCR. 28 references. (auth)« less

  16. Human middle-ear nonlinearity measurements using laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Gladiné, Kilian; Muyshondt, Pieter G. G.; Dirckx, Joris J. J.

    2017-12-01

    It has long been supposed that the middle-ear has near to perfect linear characteristics, and several attempts have been made to investigate this hypothesis. In conclusion, the middle-ear was regarded as a linear system at least up till sound pressure levels of 120 dB. Because of the linear relationship between Doppler shift of light and the vibration velocity of the object on which the light is reflected, laser Doppler vibrometry (LDV) is an intrinsically highly linear measurement technique. Therefore it allows straightforward detection of very small nonlinearities in a vibration response. In this paper, laser Doppler vibrometry and multisine stimulation are used to detect nonlinear distortions in the vibration response at the umbo of the tympanic membrane of seven human cadaver temporal bones. Nonlinear distortions were detected starting from sound pressure levels of 99 dB and measurements were performed up to 120 dB. These distortions can be subdivided into even degree (e.g. quadratic distortion tones) and odd degree nonlinear distortions (e.g. cubic distortion tones). We illustrate that with odd multisine stimulation the level of even and odd degree nonlinear distortions can be investigated separately. In conclusion, laser Doppler vibrometry is an adequate tool to detect nonlinear distortions in the middle-ear system and to quantify the level of such distortions even at 57 dB below the vibration response. The possibility to analyze even degree and odd degree nonlinear distortion levels separately can help in future work to pinpoint the source of the nonlinearity.

  17. Robust estimation of fetal heart rate from US Doppler signals

    NASA Astrophysics Data System (ADS)

    Voicu, Iulian; Girault, Jean-Marc; Roussel, Catherine; Decock, Aliette; Kouame, Denis

    2010-01-01

    Introduction: In utero, Monitoring of fetal wellbeing or suffering is today an open challenge, due to the high number of clinical parameters to be considered. An automatic monitoring of fetal activity, dedicated for quantifying fetal wellbeing, becomes necessary. For this purpose and in a view to supply an alternative for the Manning test, we used an ultrasound multitransducer multigate Doppler system. One important issue (and first step in our investigation) is the accurate estimation of fetal heart rate (FHR). An estimation of the FHR is obtained by evaluating the autocorrelation function of the Doppler signals for ills and healthiness foetus. However, this estimator is not enough robust since about 20% of FHR are not detected in comparison to a reference system. These non detections are principally due to the fact that the Doppler signal generated by the fetal moving is strongly disturbed by the presence of others several Doppler sources (mother' s moving, pseudo breathing, etc.). By modifying the existing method (autocorrelation method) and by proposing new time and frequency estimators used in the audio' s domain, we reduce to 5% the probability of non-detection of the fetal heart rate. These results are really encouraging and they enable us to plan the use of automatic classification techniques in order to discriminate between healthy and in suffering foetus.

  18. Extreme Doppler Shifting of Io's Neutral Jets

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl

    2017-08-01

    The dynamics and the extension of Jupiter's magnetosphere are determined by the massive internal plasma sources combined with the fast rotation. The vast majority of the plasma originates from the atmosphere of the moon Io, the most volcanically active body in our solar system. Here we propose to characterize the density and velocity of energetic neutral atoms escaping from Io's atmosphere. Exploiting the high resolution and sensitivity of the COS G130M spectral mode, we will measure the Doppler velocities of atomic O, S and Cl streams, which are energized through charge exchange and dissociative recombination of molecular ions. Prior COS observations of Io revealed a large number of emission lines from several ion and neutral species with excellent S/N, obtained over a single HST orbit. Those spectra were obtained surrounding eclipse geometry, where Doppler shifts are minimized and were restricted to Io itself rather than the stream region. Here we will target the extended clouds with only two orbits total when the moon is at eastern and western elongation for maximum Doppler shifts. The observations will provide new constraints on the diffuse large-scale cloud structures in the Jovian system and significantly improve our understanding of the transport of mass and energy within the Io-torus interaction. The absolute brightness, in combination with plasma parameters from line ratios/collision strengths, will allow us to quantify the outflow of energetic neutral atoms from Io's main sulfur-oxygen atmosphere for the first time.

  19. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  20. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  1. Installation and Test of Doppler Acoustic Sensor

    DOT National Transportation Integrated Search

    1977-12-01

    This report presents details of the installation of a Doppler acoustic vortex sensing system at JFK Runway 31R, the hardware and software improvements made since installation, vortex diagnostic and tracking data and analysis, and conclusions and reco...

  2. Using doppler radar images to estimate aircraft navigational heading error

    DOEpatents

    Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  3. Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Amzajerdian, Farzin; Koch, Grady J.

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  4. Doppler-guided transanal haemorrhoidal dearterialization for haemorrhoids: results from a multicentre trial.

    PubMed

    Ratto, C; Parello, A; Veronese, E; Cudazzo, E; D'Agostino, E; Pagano, C; Cavazzoni, E; Brugnano, L; Litta, F

    2015-01-01

    This multicentre study, based on the largest patient population ever published, aims to evaluate the efficacy of Doppler-guided transanal haemorrhoidal dearterialization (THD Doppler) in the treatment of symptomatic haemorrhoids and to identify the factors predicting failure for an effective mid-term outcome. Eight hundred and three patients affected by Grade II (137, 17.1%), III (548, 68.2%) and IV (118, 14.7%) symptomatic haemorrhoidal disease underwent THD Doppler, with a rectal mucopexy in patients with haemorrhoidal prolapse. The disease was assessed through a specifically designed symptom questionnaire and scoring system. A uni- and multivariate analyses of the potential predictive factors for failure were performed. The morbidity rate was 18.0%, represented mainly by pain or tenesmus (106 patients, 13.0%). Acute bleeding requiring surgical haemostasis occurred in seven patients (0.9%). No serious or life-threatening complications occurred. After a mean follow-up period of 11.1 ± 9.2 months, the overall success rate was 90.7% (728 patients), with a recurrence of haemorrhoidal prolapse, bleeding, and both symptoms in 51 (6.3%), 19 (2.4%) and 5 (0.6%) patients, respectively. Sixteen out of 47 patients undergoing re-operation had a conventional haemorrhoidectomy. All the symptoms were significantly improved in each domain of the score (P < 0.0001). At multivariate analysis the absence of morbidity and performance of a distal Doppler-guided dearterialization were associated with a better outcome. THD Doppler is a safe and effective therapy for haemorrhoidal disease. If this technique is to be employed, an accurate distal Doppler-guided dearterialization and a tailored mucopexy are mandatory to contain and reduce the symptoms. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  5. Doppler-free spectroscopy of the atomic rubidium fine structure using ultrafast spatial coherent control method

    NASA Astrophysics Data System (ADS)

    Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2017-04-01

    Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].

  6. Dipolar modulation in the size of galaxies: the effect of Doppler magnification

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Andrianomena, Sambatra; Bacon, David; Clarkson, Chris; Maartens, Roy; Moloi, Teboho; Bull, Philip

    2017-12-01

    Objects falling into an overdensity appear larger on its near side and smaller on its far side than other objects at the same redshift. This produces a dipolar pattern of magnification, primarily as a consequence of the Doppler effect. At low redshift, this Doppler magnification completely dominates the usual integrated gravitational lensing contribution to the lensing magnification. We show that one can optimally observe this pattern by extracting the dipole in the cross-correlation of number counts and galaxy sizes. This dipole allows us to almost completely remove the contribution from gravitational lensing up to redshift ≲0.5, and even at high redshift z ≃ 1, the dipole picks up the Doppler magnification predominantly. Doppler magnification should be easily detectable in current and upcoming optical and radio surveys; by forecasting for telescopes such as the SKA, we show that this technique is competitive with using peculiar velocities via redshift-space distortions to constrain dark energy. It produces similar yet complementary constraints on the cosmological model to those found using measurements of the cosmic shear.

  7. Laser Doppler flowmetry for measurement of laminar capillary blood flow in the horse

    NASA Astrophysics Data System (ADS)

    Adair, Henry S., III

    1998-07-01

    Current methods for in vivo evaluation of digital hemodynamics in the horse include angiography, scintigraphy, Doppler ultrasound, electromagnetic flow and isolated extracorporeal pump perfused digit preparations. These techniques are either non-quantifiable, do not allow for continuous measurement, require destruction of the horse orare invasive, inducing non- physiologic variables. In vitro techniques have also been reported for the evaluation of the effects of vasoactive agents on the digital vessels. The in vitro techniques are non-physiologic and have evaluated the vasculature proximal to the coronary band. Lastly, many of these techniques require general anesthesia or euthanasia of the animal. Laser Doppler flowmetry is a non-invasive, continuous measure of capillary blood flow. Laser Doppler flowmetry has been used to measure capillary blood flow in many tissues. The principle of this method is to measure the Doppler shift, that is, the frequency change that light undergoes when reflected by moving objects, such as red blood cells. Laser Doppler flowmetry records a continuous measurement of the red cell motion in the outer layer of the tissue under study, with little or no influence on physiologic blood flow. This output value constitutes the flux of red cells and is reported as capillary perfusion units. No direct information concerning oxygen, nutrient or waste metabolite exchange in the surrounding tissue is obtained. The relationship between the flowmeter output signal and the flux of red blood cells is linear. The principles of laser Doppler flowmetry will be discussed and the technique for laminar capillary blood flow measurements will be presented.

  8. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta‐analysis

    PubMed Central

    De Boer, M. A.; Heymans, M. W.; Schoonmade, L. J.; Bossuyt, P. M. M.; Mol, B. W. J.; De Groot, C. J. M.; Bax, C. J.

    2018-01-01

    ABSTRACT Objective Doppler ultrasonographic assessment of the cerebroplacental ratio (CPR) and middle cerebral artery (MCA) is widely used as an adjunct to umbilical artery (UA) Doppler to identify fetuses at risk of adverse perinatal outcome. However, reported estimates of its accuracy vary considerably. The aim of this study was to review systematically the prognostic accuracies of CPR and MCA Doppler in predicting adverse perinatal outcome, and to compare these with UA Doppler, in order to identify whether CPR and MCA Doppler evaluation are of added value to UA Doppler. Methods PubMed, EMBASE, the Cochrane Library and ClinicalTrials.gov were searched, from inception to June 2016, for studies on the prognostic accuracy of UA Doppler compared with CPR and/or MCA Doppler in the prediction of adverse perinatal outcome in women with a singleton pregnancy of any risk profile. Risk of bias and concerns about applicability were assessed using the QUADAS‐2 (Quality Assessment of Diagnostic Accuracy Studies‐2) tool. Meta‐analysis was performed for multiple adverse perinatal outcomes. Using hierarchal summary receiver–operating characteristics meta‐regression models, the prognostic accuracy of CPR vs MCA Doppler was compared indirectly, and CPR and MCA Doppler vs UA Doppler compared directly. Results The search identified 4693 articles, of which 128 studies (involving 47 748 women) were included. Risk of bias or suboptimal reporting was detected in 120/128 studies (94%) and substantial heterogeneity was found, which limited subgroup analyses for fetal growth and gestational age. A large variation was observed in reported sensitivities and specificities, and in thresholds used. CPR outperformed UA Doppler in the prediction of composite adverse outcome (as defined in the included studies) (P < 0.001) and emergency delivery for fetal distress (P = 0.003), but was comparable to UA Doppler for the other outcomes. MCA Doppler performed significantly worse

  9. Right-to-left shunt detection sensitivity with air-saline and air-succinil gelatin transcranial Doppler.

    PubMed

    Puledda, Francesca; Toscano, Massimiliano; Pieroni, Alessio; Veneroso, Gabriele; Di Piero, Vittorio; Vicenzini, Edoardo

    2016-02-01

    Air-saline transcranial Doppler is nowadays the first-choice examination to identify right-to-left shunt. To increase right-to-left shunt detection in echocardiography, cardiologists also use air-gelatin mixtures, which are more stable, more echogenic, and easier to be prepared. We assessed the sensitivity of air-gelatin compared with air-saline for transcranial Doppler right-to-left shunt detection. Air-saline transcranial Doppler, during unilateral middle cerebral artery monitoring at rest and after Valsalva maneuver, was performed in patients referred to our neurosonology laboratory for right-to-left shunt detection. The same transcranial Doppler protocol was repeated with air-gelatin. To consider transcranial Doppler positive for cardiac right-to-left shunt, at least one embolic signal had to be detected within 20″ from contrast injection. Later signals were interpreted of pulmonary origin. Trans-thoracic echocardiography was repeated with both air-saline and air-gelatin. A total of 97 patients were enrolled; 46 had negative transcranial Doppler for cardiac right-to-left shunt with both air-saline and air-gelatin; out of these, four patients with air-saline plus two more patients with air-gelatin presented late, isolated microemboli, slightly more numerous with air-gelatin: these were interpreted as pulmonary shunts and confirmed with trans-thoracic echocardiography. In 28 patients with already early positive air-saline transcranial Doppler at rest, air-gelatin induced a marked right-to-left shunt increase, facilitating its visualization at trans-thoracic echocardiography. In 23 patients in whom air-saline transcranial Doppler was negative at rest and positive for cardiac right-to-left shunt only after Valsalva maneuver, air-gelatin was able to reveal shunt also at rest. Air-gelatin increases right-to-left shunt detection sensitivity with transcranial Doppler in particular at rest, even in patients in whom air-saline mixture fails to identify the shunt. The

  10. Three dimensional laser Doppler velocimeter turbulence measurements in a pipe flow

    NASA Technical Reports Server (NTRS)

    Fuller, C. E., III; Cliff, W. C.; Huffaker, R. M.

    1973-01-01

    The mean and turbulent u, v, and w components of a gaseous fully developed turbulent pipe flow were measured with a laser Doppler velocimeter system. Measurements of important system parameters are presented and discussed in relation to the measurement accuracy. Simultaneous comparisons of the laser Doppler and hot wire anemometer measurements in the turbulent flow provided evidence that the two systems were responding to the same flow phenomena.

  11. Phase fluctuation spectra: New radio science information to become available in the DSN tracking system Mark III-77

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    An algorithm was developed for the continuous and automatic computation of Doppler noise concurrently at four sample rate intervals, evenly spanning three orders of magnitude. Average temporal Doppler phase fluctuation spectra will be routinely available in the DSN tracking system Mark III-77 and require little additional processing. The basic (noise) data will be extracted from the archival tracking data file (ATDF) of the tracking data management system.

  12. High-intensity focused ultrasound ablation assisted using color Doppler imaging for the treatment of hepatocellular carcinomas.

    PubMed

    Fukuda, Hiroyuki; Numata, Kazushi; Nozaki, Akito; Kondo, Masaaki; Morimoto, Manabu; Maeda, Shin; Tanaka, Katsuaki; Ohto, Masao; Ito, Ryu; Ishibashi, Yoshiharu; Oshima, Noriyoshi; Ito, Ayao; Zhu, Hui; Wang, Zhi-Biao

    2013-12-01

    We evaluated the usefulness of color Doppler flow imaging to compensate for the inadequate resolution of the ultrasound (US) monitoring during high-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma (HCC). US-guided HIFU ablation assisted using color Doppler flow imaging was performed in 11 patients with small HCC (<3 lesions, <3 cm in diameter). The HIFU system (Chongqing Haifu Tech) was used under US guidance. Color Doppler sonographic studies were performed using an HIFU 6150S US imaging unit system and a 2.7-MHz electronic convex probe. The color Doppler images were used because of the influence of multi-reflections and the emergence of hyperecho. In 1 of the 11 patients, multi-reflections were responsible for the poor visualization of the tumor. In 10 cases, the tumor was poorly visualized because of the emergence of a hyperecho. In these cases, the ability to identify the original tumor location on the monitor by referencing the color Doppler images of the portal vein and the hepatic vein was very useful. HIFU treatments were successfully performed in all 11 patients with the assistance of color Doppler imaging. Color Doppler imaging is useful for the treatment of HCC using HIFU, compensating for the occasionally poor visualization provided by B-mode conventional US imaging.

  13. The swirl turbine

    NASA Astrophysics Data System (ADS)

    Haluza, M.; Pochylý, F.; Rudolf, P.

    2012-11-01

    In the article is introduced the new type of the turbine - swirl turbine. This turbine is based on opposite principle than Kaplan turbine. Euler equation is satisfied in the form gHηh = -u2vu2. From this equation is seen, that inflow of liquid into the runner is without rotation and on the outflow is a rotation of liquid opposite of rotation of runner. This turbine is suitable for small head and large discharge. Some constructional variants of this turbine are introduced in the article and theoretical aspects regarding losses in the draft tube. The theory is followed by computational simulations in Fluent and experiments using laser Doppler anemometry.

  14. Measurements in a separation bubble on an airfoil using laser velocimetry

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Edward J.; Mueller, Thomas J.

    1990-01-01

    An experimental investigation was conducted to measure the reverse flow within the transitional separation bubble that forms on an airfoil at low Reynolds numbers. Measurements were used to determine the effect of the reverse flow on integrated boundary-layer parameters often used to model the bubble. Velocity profile data were obtained on an NACA 663-018 airfoil at angle of attack of 12 deg and a chord Reynolds number of 140,000 using laser Doppler and single-sensor hot-wire anemometry. A new correlation is proposed based on zero velocity position, since the Schmidt (1986) correlations fail in the turbulent portion of the bubble.

  15. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  16. Ghost features in Doppler-broadened spectra of rovibrational transitions in trapped HD+ ions

    NASA Astrophysics Data System (ADS)

    Patra, Sayan; Koelemeij, J. C. J.

    2017-02-01

    Doppler broadening plays an important role in laser rovibrational spectroscopy of trapped deuterated molecular hydrogen ions (HD+), even at the millikelvin temperatures achieved through sympathetic cooling by laser-cooled beryllium ions. Recently, Biesheuvel et al. (2016) presented a theoretical lineshape model for such transitions which not only considers linestrengths and Doppler broadening, but also the finite sample size and population redistribution by blackbody radiation, which are important in view of the long storage and probe times achievable in ion traps. Here, we employ the rate equation model developed by Biesheuvel et al. to theoretically study the Doppler-broadened hyperfine structure of the (v, L) : (0, 3) → (4, 2) rovibrational transition in HD+ at 1442 nm. We observe prominent yet hitherto unrecognized ghost features in the simulated spectrum, whose positions depend on the Doppler width, transition rates, and saturation levels of the hyperfine components addressed by the laser. We explain the origin and behavior of such features, and we provide a simple quantitative guideline to assess whether ghost features may appear. As such ghost features may be common to saturated Doppler-broadened spectra of rotational and vibrational transitions in trapped ions composed of partly overlapping lines, our work illustrates the necessity to use lineshape models that take into account all the relevant physics.

  17. Ultrasound Doppler method of remote elastometry

    NASA Astrophysics Data System (ADS)

    Timanin, E. M.; Eremin, E. V.; Belyaev, R. V.; Mansfel'd, A. D.

    2015-03-01

    The paper presents the theoretical relations constituting the basis of remote measurements of the shear elasticity of biological tissues using the ultrasound Doppler method. It also describes the hardware-software setup implementing this approach, as well as the results of experiments with these tools on a biological tissue phantom and on human liver in vivo.

  18. Analysis of Doppler radar windshear data

    NASA Technical Reports Server (NTRS)

    Williams, F.; Mckinney, P.; Ozmen, F.

    1989-01-01

    The objective of this analysis is to process Lincoln Laboratory Doppler radar data obtained during FLOWS testing at Huntsville, Alabama, in the summer of 1986, to characterize windshear events. The processing includes plotting velocity and F-factor profiles, histogram analysis to summarize statistics, and correlation analysis to demonstrate any correlation between different data fields.

  19. Wayside Bearing Fault Diagnosis Based on a Data-Driven Doppler Effect Eliminator and Transient Model Analysis

    PubMed Central

    Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang

    2014-01-01

    A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197

  20. Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization

    PubMed Central

    Zair, Salim; Le Hégarat-Mascle, Sylvie; Seignez, Emmanuel

    2016-01-01

    In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS) data is hindered by Non-Line Of Sight (NLOS) and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR) and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF) or a Rao-Blackwellization (RB) approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the ‘outliers’ in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation. PMID:27110796

  1. Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization.

    PubMed

    Zair, Salim; Le Hégarat-Mascle, Sylvie; Seignez, Emmanuel

    2016-04-22

    In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS) data is hindered by Non-Line Of Sight (NLOS) and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR) and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF) or a Rao-Blackwellization (RB) approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the 'outliers' in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation.

  2. Characterization of turbulent wake of wind turbine by coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Li, Rongzhong; Wang, Xitao; Feng, Changzhong; Zhuang, Quanfeng; Zhang, Kailin

    2014-11-01

    The indispensable access to real turbulent wake behavior is provided by the pulsed coherent Doppler Light Detection and Ranging (LIDAR) which operates by transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. The Doppler shift in the frequency of the backscattered signal is analyzed to obtain the line-of-sight (LOS) velocity component of the air motion. From the LOS velocities the characteristic of the turbulent wake can be deduced. The Coherent Doppler LIDAR (CDL) is based on all-fiber laser technology and fast digital-signal-processing technology. The 1.5 µm eye-safe Doppler LIDAR system has a pulse length of 200ns and a pulse repetition frequency of 10 kHz. The speed measurement range is ±50m/s and the speed measurement uncertainty is 0.3 m/s. The 2-axis beam scanner and detection range of 3000m enable the system to monitor the whole wind farming filed. Because of the all-fiber structure adoption, the system is stable, reliable and high-integrated. The wake vortices of wind turbine blades with different spatial and temporal scales have been observed by LIDAR. In this paper, the authors discuss the possibility of using LIDAR measurements to characterize the complicated wind field, specifically wind velocity deficit and terrain effects.

  3. Pulse Doppler ultrasound as a tool for the diagnosis of chronic testicular dysfunction in stallions

    PubMed Central

    Ortiz-Rodriguez, Jose M.; Anel-Lopez, Luis; Martín-Muñoz, Patricia; Álvarez, Mercedes; Gaitskell-Phillips, Gemma; Anel, Luis; Rodríguez-Medina, Pedro; Peña, Fernando J.

    2017-01-01

    Testicular function is particularly susceptible to vascular insult, resulting in a negative impact on sperm production and quality of the ejaculate. A prompt diagnosis of testicular dysfunction enables implementation of appropriate treatment, hence improving fertility forecasts for stallions. The present research aims to: (1) assess if Doppler ultrasonography is a good tool to diagnose stallions with testicular dysfunction; (2) to study the relationship between Doppler parameters of the testicular artery and those of sperm quality assessed by flow cytometry and (3) to establish cut off values to differentiate fertile stallions from those with pathologies causing testicular dysfunction. A total of 10 stallions (n: 7 healthy stallions and n: 3 sub-fertile stallions) were used in this study. Two ejaculates per stallion were collected and preserved at 5°C in a commercial extender. The semen was evaluated at T0, T24 and T48h by flow cytometry. Integrity and viability of sperm (YoPro®-1/EthD-1), mitochondrial activity (MitoTracker® Deep Red FM) and the DNA fragmentation index (Sperm Chromatin Structure Assay) were assessed. Doppler parameters were measured at three different locations on the testicular artery (Supratesticular artery (SA); Capsular artery (CA) and Intratesticular artery (IA)). The Doppler parameters calculated were: Resistive Index (RI), Pulsatility Index (PI), Peak Systolic Velocity (PSV), End Diastolic Velocity (EDV), Time Average Maximum Velocity (TAMV), Total Arterial Blood Flow (TABF) and TABF rate. The capsular artery was the most reliable location to carry out spectral Doppler assessment, since blood flow parameters of this artery were most closely correlated with sperm quality parameters. Significant differences in all the Doppler parameters studied were observed between fertile and subfertile stallions (p ≤ 0.05). The principal components analysis assay determined that fertile stallions are characterized by high EDV, TAMV, TABF and TABF rate

  4. B-mode and power Doppler ultrasonography of the equine suspensory ligament branches: A descriptive study on 13 horses.

    PubMed

    Rabba, Silvia; Grulke, Sigrid; Verwilghen, Denis; Evrard, Laurence; Busoni, Valeria

    2018-03-01

    Ultrasonography is routinely used to achieve the diagnosis of equine suspensory ligament desmopathy. In human medicine, power Doppler ultrasonography has also been found to be useful for the diagnosis of tendon/ligament injuries. The aim of this prospective, pilot study was to assess the presence or absence of power Doppler signal in suspensory ligament branches and compare B-mode findings with power Doppler findings in suspensory ligament branches of lame and non-lame limbs. Thirteen horses were used (eight lame horses, with lameness related to pain in the suspensory ligament branches, and five non-lame horses). Ten lame limbs and 24 sound limbs were assessed by B-mode and power Doppler ultrasonography. The severity of power Doppler signal was scored by two independent readers. The B-mode ultrasonographic examination revealed abnormalities in branches of lame limbs and in branches of sound limbs. Suspensory ligament branches that were considered normal in B-mode showed no power Doppler signal. However, power Doppler signal was detected in suspensory ligament branches that were abnormal in B-mode, both in lame and sound limbs. Power Doppler scores were subjectively higher in suspensory ligament branches of lame limbs and in branches with more severe B-mode changes. Findings supported the use of power Doppler as an adjunctive diagnostic test for lame horses with suspected suspensory desmopathy. © 2018 American College of Veterinary Radiology.

  5. Doppler tracking in time-dependent cosmological spacetimes

    NASA Astrophysics Data System (ADS)

    Giulini, Domenico; Carrera, Matteo

    I will discuss the theoretical problems associated with Doppler tracking in time dependent background geometries, where ordinary Newtonian kinematics fails. A derivation of an exact general-relativistic formula for the two-way Doppler tracking of a spacecraft in homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes is presented, as well as a controlled approximation in McVittie spacetimes representing an FLRW background with a single spherically-symmetric inhomogeneity (e.g. a single star or black hole). The leading-order corrections of the acceleration as compared to the Newtonian expression are calculated, which are due to retardation and cosmological expansion and which in the Solar System turn out to be significantly below the scale (nanometer per square-second) set by the Pioneer Anomaly. Last, but not least, I discuss kinematical ambiguities connected with notions of "simultaneity" and "spatial distance", which, in principle, also lead to tracking corrections.

  6. Laser backscattering analytical model of Doppler power spectra about rotating convex quadric bodies of revolution

    NASA Astrophysics Data System (ADS)

    Gong, YanJun; Wu, ZhenSen; Wang, MingJun; Cao, YunHua

    2010-01-01

    We propose an analytical model of Doppler power spectra in backscatter from arbitrary rough convex quadric bodies of revolution (whose lateral surface is a quadric) rotating around axes. In the global Cartesian coordinate system, the analytical model deduced is suitable for general convex quadric body of revolution. Based on this analytical model, the Doppler power spectra of cones, cylinders, paraboloids of revolution, and sphere-cones combination are proposed. We analyze numerically the influence of geometric parameters, aspect angle, wavelength and reflectance of rough surface of the objects on the broadened spectra because of the Doppler effect. This analytical solution may contribute to laser Doppler velocimetry, and remote sensing of ballistic missile that spin.

  7. Changes in cochlear blood flow in mice due to loud sound exposure measured with Doppler optical microangiography and laser Doppler flowmetry.

    PubMed

    Reif, Roberto; Zhi, Zhongwei; Dziennis, Suzan; Nuttall, Alfred L; Wang, Ruikang K

    2013-10-01

    In this work we determined the contributions of loud sound exposure (LSE) on cochlear blood flow (CoBF) in an in vivo anesthetized mouse model. A broadband noise system (20 kHz bandwidth) with an intensity of 119 dB SPL, was used for a period of one hour to produce a loud sound stimulus. Two techniques were used to study the changes in blood flow, a Doppler optical microangiography (DOMAG) system; which can measure the blood flow within individual cochlear vessels, and a laser Doppler flowmetry (LDF) system; which averages the blood flow within a volume (a hemisphere of ~1.5 mm radius) of tissue. Both systems determined that the blood flow within the cochlea is reduced due to the LSE stimulation.

  8. C IV Doppler shifts observed in active region filaments

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.

    1986-01-01

    The Doppler shift properties of 21 active region filaments were studied using C IV Dopplergram data. Most are associated with corridors of weak magnetic field that separate opposite polarity strong fields seen in photospheric magnetograms. A majority of the filaments are relatively blue shifted, although several lie very close to the dividing lines between blue and red shift. Only one filament in the samples is clearly red shifted. A new calibration procedure for Dopplergrams indicates that sizable zero point offsets are often required. The center-to-limb behavior of the resulting absolute Doppler shifts suggests that filament flows are usually quite small. It is possible that they vanish.

  9. Laser Metrology Heterodyne Phase-Locked Loop

    NASA Technical Reports Server (NTRS)

    Loya, Frank; Halverson, Peter

    2009-01-01

    A method reduces sensitivity to noise in a signal from a laser heterodyne interferometer. The phase-locked loop (PLL) removes glitches that occur in a zero-crossing detector s output [that can happen if the signal-to-noise ratio (SNR) of the heterodyne signal is low] by the use of an internal oscillator that produces a square-wave signal at a frequency that is inherently close to the heterodyne frequency. It also contains phase-locking circuits that lock the phase of the oscillator to the output of the zero-crossing detector. Because the PLL output is an oscillator signal, it is glitch-free. This enables the ability to make accurate phase measurements in spite of low SNR, creates an immunity to phase error caused by shifts in the heterodyne frequency (i.e. if the target moves causing Doppler shift), and maintains a valid phase even when the signal drops out for brief periods of time, such as when the laser is blocked by a stray object.

  10. Real-time and interactive virtual Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Hirji, Samira; Downey, Donal B.; Holdsworth, David W.; Steinman, David A.

    2005-04-01

    This paper describes our "virtual" Doppler ultrasound (DUS) system, in which colour DUS (CDUS) images and DUS spectrograms are generated on-the-fly and displayed in real-time in response to position and orientation cues provided by a magnetically tracked handheld probe. As the presence of complex flow often confounds the interpretation of Doppler ultrasound data, this system will serve to be a fundamental tool for training sonographers and gaining insight into the relationship between ambiguous DUS images and complex blood flow dynamics. Recently, we demonstrated that DUS spectra could be realistically simulated in real-time, by coupling a semi-empirical model of the DUS physics to a 3-D computational fluid dynamics (CFD) model of a clinically relevant flow field. Our system is an evolution of this approach where a motion-tracking device is used to continuously update the origin and orientation of a slice passing through a CFD model of a stenosed carotid bifurcation. After calibrating our CFD model onto a physical representation of a human neck, virtual CDUS images from an instantaneous slice are then displayed at a rate of approximately 15 Hz by simulating, on-the-fly, an array of DUS spectra and colour coding the resulting spectral mean velocity using a traditional Doppler colour scale. Mimicking a clinical examination, the operator can freeze the CDUS image on-screen, and a spectrogram corresponding to the selected sample volume location is rendered at a higher frame rate of at least 30 Hz. All this is achieved using an inexpensive desktop workstation and commodity graphics card.

  11. Doppler search for a gravitational background radiation with two spacecraft

    NASA Astrophysics Data System (ADS)

    Bertotti, B.; Iess, L.

    1985-11-01

    The prospect of detecting a gravitational wave background by means of a simultaneous Doppler tracking of two spacecraft are discussed. It is found that the cross spectrum of the Doppler shifts of the two spacecraft is a filtered expression of the energy density spectrum of the background. The filter function, which is expressed as a series in terms of Legendre polynomials, is obtained by an integration over the rotation group, assuming the background to be isotropic. The main noise sources are examined, and the advantages of a measurement with two spacecraft are noted.

  12. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 2: Inversion of differential and rotating Doppler shifts

    NASA Technical Reports Server (NTRS)

    Gay, R. H.; Grossi, M. D.

    1975-01-01

    The preparation of the analytical approach and of the related software used in the inversion of the differential and rotating Doppler data obtained from the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) is discussed. These data were collected in space-to-space paths (between the ASTP Docking Module (DM) and the Apollo Command Service Module and in space-to-ground paths (between the DM and ground). The Doppler links operated at 162 and 324 MHz and have an accuracy better than 3 MHz over 10-sec integration time. The inversion approach was tested with dummy data obtained with a computer simulation. It was found that a measurement accuracy of 1 to 10% in the value of the horizontal electron density gradient at 221-km altitude can be achieved, in space-to-space paths. For space-to-ground paths near the orbital plane, possible effects of the horizontal gradients on the received differential Doppler shifts were identified. It was possible to reduce the gradient-associated errors in the inversion that leads to the columnar electron content by approximately one-half. Accuracies of 5 to 10% in columnar electron content are achievable, with this gradient-compensation technique.

  13. Doppler measurements of the ionosphere on the occasion of the Apollo-Soyuz test project. Part 1: Computer simulation of ionospheric-induced Doppler shifts

    NASA Technical Reports Server (NTRS)

    Grossi, M. D.; Gay, R. H.

    1975-01-01

    A computer simulation of the ionospheric experiment of the Apollo-Soyuz Test Project (ASTP) was performed. ASTP is the first example of USA/USSR cooperation in space and is scheduled for summer 1975. The experiment consists of performing dual-frequency Doppler measurements (at 162 and 324 MHz) between the Apollo Command Service Module (CSM) and the ASTP Docking Module (DM), both orbiting at 221-km height and at a relative distance of 300 km. The computer simulation showed that, with the Doppler measurement resolution of approximately 3 mHz provided by the instrumentation (in 10-sec integration time), ionospheric-induced Doppler shifts will be measurable accurately at all times, with some rare exceptions occurring when the radio path crosses regions of minimum ionospheric density. The computer simulation evaluated the ability of the experiment to measure changes of columnar electron content between CSM and DM (from which horizontal gradients of electron density at 221-km height can be obtained) and to measure variations in DM-to-ground columnar content (from which an averaged columnar content and the electron density at the DM can be deduced, under some simplifying assumptions).

  14. [Postpartal ovarian thrombophlebitis. Value of Doppler ultrasonograph y].

    PubMed

    Renaud-Giono, A; Giraud, J R; Poulain, P; Proudhon, J F; Grall, J Y; Moquet, P Y; Darnault, J P

    1996-01-01

    Thrombophlebitis of the ovarian vein is a well recognized but uncommon complication during the postpartum period. We report a small series and emphasize the contribution of color Doppler and the basic therapeutic measures.

  15. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  16. Correlation of echo-Doppler aortic valve regurgitation index with angiographic aortic regurgitation severity.

    PubMed

    Chen, Ming; Luo, Huai; Miyamoto, Takashi; Atar, Shaul; Kobal, Sergio; Rahban, Masoud; Brasch, Andrea V; Makkar, Rajendra; Neuman, Yoram; Naqvi, Tasneem Z; Tolstrup, Kirsten; Siegel, Robert J

    2003-09-01

    We assessed aortic regurgitation (AR) severity by utilizing multiple echo-Doppler variables in comparison with AR severity by aortic root angiography. Patients were divided into 3 groups: mild, moderate, and severe. An AR index (ARI) was developed, comprising 5 echocardiographic parameters: ratio of color AR jet height to left ventricular outlet flow diameter, AR signal density from continuous-wave Doppler, pressure half-time, left ventricular end-diastolic diameter, and aortic root diameter. There was a strong correlation between AR severity by angiography and the calculated echo-Doppler ARI (r = 0.84, p = 0.0001). As validated by aortic angiography, the ARI is an accurate reflection of AR severity.

  17. Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test

    NASA Astrophysics Data System (ADS)

    Kozlov, I. O.; Zherebtsov, E. A.; Zherebtsova, A. I.; Dremin, V. V.; Dunaev, A. V.

    2017-11-01

    Laser Doppler flowmetry (LDF) is a method widely used in diagnosis of microcirculation diseases. It is well known that information about frequency distribution of Doppler spectrum of the laser radiation scattered by moving red blood cells (RBC) usually disappears after signal processing procedure. Photocurrent’s spectrum distribution contains valuable diagnostic information about velocity distribution of the RBC. In this research it is proposed to compute the indexes of microcirculation in the sub-ranges of the Doppler spectrum as well as investigate the frequency distribution of the computed indexes.

  18. Power and color Doppler ultrasound settings for inflammatory flow: impact on scoring of disease activity in patients with rheumatoid arthritis.

    PubMed

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin; Ellegaard, Karen; D'Agostino, Maria Antonietta; Iagnocco, Annamaria; Naredo, Esperanza; Balint, Peter; Wakefield, Richard J; Torp-Pedersen, Arendse; Terslev, Lene

    2015-02-01

    To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. Six different types of ultrasound machines were used. On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. Power Doppler was more sensitive on half of the machines, whereas color Doppler was more sensitive on the other half, using both factory settings and study settings. There was an average increase in Doppler sensitivity, despite modality, of 78% when study settings were applied. Over the 6 machines, 2 Doppler modalities, and 2 settings, the grades for each of 7 of the patients varied between 0 and 3, while the grades for each of the other 4 patients varied between 0 and 2. The effect of using different machines, Doppler modalities, and settings has a considerable influence on the quantification of inflammation by ultrasound in RA patients, and this must be taken into account in multicenter studies. Copyright © 2015 by the American College of Rheumatology.

  19. Live imaging of rat embryos with Doppler swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.

    2009-09-01

    The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology.

  20. Live imaging of rat embryos with Doppler swept-source optical coherence tomography

    PubMed Central

    Larina, Irina V.; Furushima, Kenryo; Dickinson, Mary E.; Behringer, Richard R.; Larin, Kirill V.

    2009-01-01

    The rat has long been considered an excellent system to study mammalian embryonic cardiovascular physiology, but has lacked the extensive genetic tools available in the mouse to be able to create single gene mutations. However, the recent establishment of rat embryonic stem cell lines facilitates the generation of new models in the rat embryo to link changes in physiology with altered gene function to define the underlying mechanisms behind congenital cardiovascular birth defects. Along with the ability to create new rat genotypes there is a strong need for tools to analyze phenotypes with high spatial and temporal resolution. Doppler OCT has been previously used for 3-D structural analysis and blood flow imaging in other model species. We use Doppler swept-source OCT for live imaging of early postimplantation rat embryos. Structural imaging is used for 3-D reconstruction of embryo morphology and dynamic imaging of the beating heart and vessels, while Doppler-mode imaging is used to visualize blood flow. We demonstrate that Doppler swept-source OCT can provide essential information about the dynamics of early rat embryos and serve as a basis for a wide range of studies on functional evaluation of rat embryo physiology. PMID:19895102

  1. A symmetrical laser Doppler velocity meter and its application to turbulence characterization

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.

    1972-01-01

    A symmetrical method of optical heterodyning of the Doppler shifted scattered laser radiation developed for velocity measurements with a minimal instrumental spectral broadening and a high signal-to-noise ratio. The method employs two laser beams incident on the moving scatterer and does not use any reference beam for heterodyning. The Doppler signal frequency is independent of the scattering angle and the signal possesses no receiving aperture broadening. Optical alignment is simple. Typical values of the instrumental spectral broadening were approximately 0.8 percent of the center frequency of the Doppler signal, and the signal-to-noise ratio was approximately 25 dB, obtained from an air flow system using submicron dioctylphthalate scattering aerosol. Experimental and theoretical studies were made on the characteristics of the Doppler signal and the effect of system parameters in turbulent flow measurement. The optimization process involved in the beam optics and in the use of a spatial filter is described. For localized flow measurement in any direction of the three-dimensional orthogonal coordinates, the system, using uncorrected optical components, had a sensing volume which can be described by a sensitive length of 600 microns and a diameter of 100 microns.

  2. Low-cost mm-wave Doppler/FMCW transceivers for ground surveillance applications

    NASA Astrophysics Data System (ADS)

    Hansen, H. J.; Lindop, R. W.; Majstorovic, D.

    2005-12-01

    A 35 GHz Doppler CW/FMCW transceiver (Equivalent Radiated Power ERP=30dBm) has been assembled and its operation described. Both instantaneous beat signals (relating to range in FMCW mode) and Doppler signals (relating to targets moving at ~1.5 ms -1) exhibit audio frequencies. Consequently, the radar processing is provided by laptop PC using its inbuilt video-audio media system with appropriate MathWorks software. The implications of radar-on-chip developments are addressed.

  3. Utero-placental perfusion Doppler indices in growth restricted fetuses: effect of sildenafil citrate.

    PubMed

    El-Sayed, Mohamed Adel; Saleh, Said Abdel-Aty; Maher, Mohammad Ahmed; Khidre, Asmaa Mohamed

    2018-04-01

    To assess efficacy and tolerability of sildenafil citrate on utero-placental blood flow and fetal growth in pregnancies complicated by fetal growth restriction (FGR). From March 2015, a randomized controlled trial of 54 patients at 24 weeks or more complicated by FGR and abnormal Doppler indices were randomly allocated 1:1 into an intervention arm (receive sildenafil citrate, 50 mg) or a control arm (receive placebo). The primary outcomes were changes occurred in the Doppler parameters 2 h following drug administration. Baseline characteristics were similar between groups. Significant difference was observed in the Delta uterine and umbilical Doppler indices among sildenafil group as compared to placebo group (p < 0.001). Middle cerebral Doppler indices, however, decreased significantly after sildenafil, which could be the result of shifting more blood to improve the utero-placental perfusion. No difference regarding Delta cerebro-placental ratio among both groups (p = 0.979). Sildenafil was also associated with pregnancy prolongation (p = .0001), increased gestational age at delivery (p = .004), improved neonatal weight (p = .0001), and less admission to neonatal intensive care unit (p = .03). No adverse effects reported in both treatment arms. Sildenafil citrate, by its vasodilator effect, can improve utero-placental blood flow in pregnancies complicated by FGR and abnormal Doppler. gov Registry: NCT02362399.

  4. On the utility of the ionosonde Doppler-derived EXB drift during the daytime

    NASA Astrophysics Data System (ADS)

    Joshi, L. M.; Sripathi, S.

    2016-03-01

    Vertical EXB drift measured using the ionosonde Doppler sounding during the daytime suffers from an underestimation of the actual EXB drift because the reflection height of the ionosonde signals is also affected by the photochemistry of the ionosphere. Systematic investigations have indicated a fair/good correlation to exist between the C/NOFS and ionosonde Doppler-measured vertical EXB drift during the daytime over magnetic equator. A detailed analysis, however, indicated that the linear relation between the ionosonde Doppler drift and C/NOFS EXB drift varied with seasons. Thus, solar, seasonal, and also geomagnetic variables were included in the Doppler drift correction, using the artificial neural network-based approach. The RMS error in the neural network was found to be smaller than that in the linear regression analysis. Daytime EXB drift was derived using the neural network which was also used to model the ionospheric redistribution in the SAMI2 model. SAMI2 model reproduced strong (weak) equatorial ionization anomaly (EIA) for cases when neural network corrected daytime vertical EXB drift was high (low). Similar features were also observed in GIM TEC maps. Thus, the results indicate that the neural network can be utilized to derive the vertical EXB drift from its proxies, like the ionosonde Doppler drift. These results indicate that the daytime ionosonde measured vertical EXB drift can be relied upon, provided that adequate corrections are applied to it.

  5. Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Satyabrata

    Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to themore » OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.« less

  6. Signatures of the Martian rotation parameters in the Doppler and range observables

    NASA Astrophysics Data System (ADS)

    Yseboodt, Marie; Dehant, Véronique; Péters, Marie-Julie

    2017-09-01

    The position of a Martian lander is affected by different aspects of Mars' rotational motions: the nutations, the precession, the length-of-day variations and the polar motion. These various motions have a different signature in a Doppler observable between the Earth and a lander on Mars' surface. Knowing the correlations between these signatures and the moments when these signatures are not null during one day or on a longer timescale is important to identify strategies that maximize the geophysical return of observations with a geodesy experiment, in particular for the ones on-board the future NASA InSight or ESA-Roscosmos ExoMars2020 missions. We provide first-order formulations of the signature of the rotation parameters in the Doppler and range observables. These expressions are functions of the diurnal rotation of Mars, the lander position, the planet radius and the rotation parameter. Additionally, the nutation signature in the Doppler observable is proportional to the Earth declination with respect to Mars. For a lander on Mars close to the equator, the motions with the largest signature in the Doppler observable are due to the length-of-day variations, the precession rate and the rigid nutations. The polar motion and the liquid core signatures have a much smaller amplitude. For a lander closer to the pole, the polar motion signature is enhanced while the other signatures decrease. We also numerically evaluate the amplitudes of the rotation parameters signature in the Doppler observable for landers on other planets or moons.

  7. Improved cardiac motion detection from ultrasound images using TDIOF: a combined B-mode/ tissue Doppler approach

    NASA Astrophysics Data System (ADS)

    Tavakoli, Vahid; Stoddard, Marcus F.; Amini, Amir A.

    2013-03-01

    Quantitative motion analysis of echocardiographic images helps clinicians with the diagnosis and therapy of patients suffering from cardiac disease. Quantitative analysis is usually based on TDI (Tissue Doppler Imaging) or speckle tracking. These methods are based on two independent techniques - the Doppler Effect and image registration, respectively. In order to increase the accuracy of the speckle tracking technique and cope with the angle dependency of TDI, herein, a combined approach dubbed TDIOF (Tissue Doppler Imaging Optical Flow) is proposed. TDIOF is formulated based on the combination of B-mode and Doppler energy terms in an optical flow framework and minimized using algebraic equations. In this paper, we report on validations with simulated, physical cardiac phantom, and in-vivo patient data. It is shown that the additional Doppler term is able to increase the accuracy of speckle tracking, the basis for several commercially available echocardiography analysis techniques.

  8. Direct measurement of Lorentz transformation with Doppler effects

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    For space science and astronomy the fundamentality of one-way velocity of light (OWVL) is selfevident. The measurement of OWVL (distance/interval) and the clock synchronization with light-signal transfer make a logical circulation. This means that OWVL could not be directly measured but only come indirectly from astronomical method (Romer's Io eclipse and Bradley's sidereal aberration), furthermore, the light-year by definitional OWVL and the trigonometry distance with AU are also un-measurable. For to solve this problem two methods of clock synchronization were proposed: The direct method is that at one end of dual-speed transmissionline with single clock measure the arriving-time difference of longitudinal wave and transverse wave or ordinary light and extraordinary light, again to calculate the collective sending-time of two wave with Yang's /shear elastic-modulus ratio (E/k) or extraordinary/ordinary light refractive-index ratio (ne/no), which work as one earthquake-station with single clock measures first-shake time and the distance to epicenter; The indirect method is that the one-way wavelength l is measured by dual-counters Ca and Cb and computer's real-time operation of reading difference (Nb - Na) of two counters, the frequency f is also simultaneously measured, then l f is just OWVL. Therefore, with classical Newtonian mechanics and ether wave optics, OWVL can be measured in the Galileo coordinate system with an isotropic length unit (1889 international meter definition). Without any hypotheses special relativity can entirely establish on the metrical results. When a certain wavelength l is defined as length unit, foregoing measurement of one-way wavelength l will become as the measurement of rod's length. Let a rigidity-rod connecting Ca and Cb moves relative to lamp-house with velocity v, rod's length L = (Nb - Na) l will change follow v by known Doppler effect, i.e., L(q) =L0 (1+ (v/c) cos q), where L0 is the proper length when v= 0, v• r = v cos q

  9. Doppler ultrasound exam of an arm or leg

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003775.htm Doppler ultrasound exam of an arm or leg To use ... this page, please enable JavaScript. This test uses ultrasound to look at the blood flow in the ...

  10. Carotid artery Doppler ultrasonography in retinal macroaneurysms.

    PubMed

    Thurairajan, G; Potamitis, T; Naylor, G; Gibson, J

    1998-01-01

    It is postulated that retinal arterial macroaneurysms (RAMs) occur at the site of incomplete embolic occlusion of a branch retinal artery. Embolic events of the retinal vessels are related to the state of the carotid artery tree and therefore Doppler ultrasonography of the carotid arteries in these patients is of particular interest. We have examined 13 patients with retinal artery macroaneurysms with carotid artery Doppler ultrasonography (CADU). Eight of these patients (61.5%) exhibited atheromatous plaques on the same side as the RAM with a moderate degree of arterial narrowing. Although our group of patients did not show advanced carotid artery disease, alterations of the arterial wall found at the level of the carotid artery were higher than expected in a similar hypertensive population. To our knowledge this is the first study of the carotid arterial tree in these patients. Our results support the theory that RAMs may be of embolic origin. Furthermore they demonstrate that CADU is a useful investigation in patients with RAMs.

  11. Developments in laser Doppler blood perfusion monitoring

    NASA Astrophysics Data System (ADS)

    Leahy, Martin J.; de Mul, Frits F. M.; Nilsson, Gert E.; Maniewski, Roman; Liebert, Adam

    2003-03-01

    This paper reviews the development and use of laser Doppler perfusion monitors and imagers. Despite their great success and almost universal applicability in microcirculation research, they have had great difficulty in converting to widespread clinical application. The enormous interest in microvascular blood perfusion coupled with the 'ease of use' of the technique has led to 2000+ publications citing its use. However, useful results can only be achieved with an understanding of the basic principles of the instrumentation and its application in the various clinical disciplines. The basic technical background is explored and definitions of blood perfusion and laser Doppler perfusion are established. The calibration method is then described together with potential routes to standardisation. A guide to the limitations in application of the technique gives the user a clear indication of what can be achieved in new studies as well as possible inadequacy in some published investigations. Finally some clinical applications have found acceptability and these will be explored.

  12. Cavity-ring-down Doppler-broadening primary thermometry

    NASA Astrophysics Data System (ADS)

    Gotti, Riccardo; Moretti, Luigi; Gatti, Davide; Castrillo, Antonio; Galzerano, Gianluca; Laporta, Paolo; Gianfrani, Livio; Marangoni, Marco

    2018-01-01

    A step forward in Doppler-broadening thermometry is demonstrated using a comb-assisted cavity-ring-down spectroscopic approach applied to an isolated near-infrared line of carbon dioxide at thermodynamic equilibrium. Specifically, the line-shape of the Pe(12 ) line of the (30012 )←(00001 ) band of C O2 at 1.578 µm is accurately measured and its Doppler width extracted from a refined multispectrum fitting procedure accounting for the speed dependence of the relaxation rates, which were found to play a role even at the very low pressures explored, from 1 to 7 Pa. The thermodynamic gas temperature is retrieved with relative uncertainties of 8 ×10-6 (type A) and 11 ×10-6 (type B), which ranks the system at the first place among optical methods. Thanks to a measurement time of only ≈5 h , the technique represents a promising pathway toward the optical determination of the thermodynamic temperature with a global uncertainty at the 10-6 level.

  13. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  14. Doppler echocardiographic predictors of mortality in female rats after myocardial infarction.

    PubMed

    Santos, Alexandra Alberta; Helber, Izzo; Flumignan, Ronald L G; Antonio, Ednei L; Carvalho, Antonio C; Paola, Angelo A; Tucci, Paulo J; Moises, Valdir A

    2009-03-01

    Doppler echocardiogram is useful for the evaluation of anatomical and functional changes in late myocardial infarction (MI) in rats. However, no studies have evaluated the prognostic value of echocardiographic parameters 1 week after MI. Doppler echocardiogram was performed in 84 female Wistar rats 1 week after MI to determine infarction size, left chambers dimensions, fractional area change (FAC) of the left ventricle (LV), mitral inflow and tissue Doppler, myocardial performance index (MPI), and signs of pulmonary hypertension. The 365-day follow-up showed 53.6% mortality rate. Nonsurvivors showed larger (P < .05) MI size and cavity dimensions, poorer diastolic and systolic function, and higher frequency of pulmonary hypertension. Parameters at early stage of MI associated with higher mortality risk by Cox multivariate regression model were FAC or=0.60 (RR 3.49, 95% CI, 1.80-6.76), LV systolic area >or=0.26 cm(2) (RR 4.38, 95% CI, 1.88-10.21), E/E' ratio >or=20.3 (RR 2.12, 95% CI, 1.15-4.34), and E/A ratio associated with FAC (RR 2.99, 95% CI, 1.44-6.18). Some diastolic and systolic Doppler echocardiographic parameters in rats may be able to predict late mortality risk after MI.

  15. Ambiguity Of Doppler Centroid In Synthetic-Aperture Radar

    NASA Technical Reports Server (NTRS)

    Chang, Chi-Yung; Curlander, John C.

    1991-01-01

    Paper discusses performances of two algorithms for resolution of ambiguity in estimated Doppler centroid frequency of echoes in synthetic-aperture radar. One based on range-cross-correlation technique, other based on multiple-pulse-repetition-frequency technique.

  16. Christian Andreas Doppler: A legendary man inspired by the dazzling light of the stars

    PubMed Central

    Katsi, V; Felekos, I; Kallikazaros, I

    2013-01-01

    Christian Andreas Doppler is renowned primarily for his revolutionary theory of the Doppler effect, which has deeply influenced many areas of modern science and technology, including medicine. His work has laid the foundations for modern ultrasonography and his ideas are still inspiring discoveries more than a hundred years after his death. Doppler may well earn the title of Homo Universalis for his broad knowledge of physics, mathematics and astronomy and most of all for his indefatigable investigations for new ideas and his ingenious mind. According to Bolzano: “It is hard to believe how fruitful a genius Austria has in this man”. His legacy of scientific achievement have seen Doppler honoured in the later years on coinage and money, names of streets, educational institutions, rock groups, even of a lunar crater; while the ultimate tribute to his work is the countless references to the homonymous medical eponym. PMID:24376313

  17. Generalized Doppler and aberration kernel for frequency-dependent cosmological observables

    NASA Astrophysics Data System (ADS)

    Yasini, Siavash; Pierpaoli, Elena

    2017-11-01

    We introduce a frequency-dependent Doppler and aberration transformation kernel for the harmonic multipoles of a general cosmological observable with spin weight s , Doppler weight d and arbitrary frequency spectrum. In the context of cosmic microwave background (CMB) studies, the frequency-dependent formalism allows to correct for the motion-induced aberration and Doppler effects on individual frequency maps with different masks. It also permits to deboost background radiations with non-blackbody frequency spectra, like extragalactic foregrounds and CMB spectra with primordial spectral distortions. The formalism can also be used to correct individual E and B polarization modes and account for motion-induced E/B mixing of polarized observables with d ≠1 at different frequencies. We apply the generalized aberration kernel on polarized and unpolarized specific intensity at 100 and 217 GHz and show that the motion-induced effects typically increase with the frequency of observation. In all-sky CMB experiments, the frequency-dependence of the motion-induced effects for a blackbody spectrum are overall negligible. However in a cut-sky analysis, ignoring the frequency dependence can lead to percent level error in the polarized and unpolarized power spectra over all angular scales. In the specific cut-sky used in our analysis (b >4 5 ° ,fsky≃14 % ), and for the dipole-inferred velocity β =0.00123 typically attributed to our peculiar motion, the Doppler and aberration effects can change polarized and unpolarized power spectra of specific intensity in the CMB rest frame by 1 - 2 % , but we find the polarization cross-leakage between E and B modes to be negligible.

  18. 3D power Doppler ultrasound in early diagnosis of preeclampsia.

    PubMed

    Neto, R Moreira; Ramos, J G L

    2016-01-01

    Preeclampsia is a known cause of maternal, fetal and neonatal morbidity and mortality. Thus, evaluation of the predicting value of comparing 3D power Doppler indices (3DPD) of uteroplacental circulation (UPC) in the first and second trimester in patients who developed preeclampsia (PE) and those who did not and testing the hypothesis that the parameters of vascularization and placenta flow intensity, as determined by three-dimensional ultrasound (3D), are different in normal pregnancies compared with preeclampsia, could be a suitable screening method. A prospective observational study using 3D power Doppler were performed to evaluate the placental perfusion in 96 pregnant women who came to do the ultrasound routine between 11 and 14 weeks. The placental vascular index (VI), flow index (FI), blood vessels and blood flow index (VFI) by three-dimensional Doppler histogram were calculated. All patients repeated the exam between 16 and 20 weeks. The outcome was scored as normal or preeclamptic. Placental vascular indices including VI, FI and VFI were significantly lower in preeclamptic placentas compared with controls in the study performed in the second trimester (p<0.001). There was not any statistical difference in the patients examined in the first trimester. Our findings suggest that 3D-power Doppler assessment of placental vascular indices in the second trimester has the potential to detect women at risk for subsequent development of PE. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  19. Dove prism based rotating dual beam bidirectional Doppler OCT

    PubMed Central

    Blatter, Cedric; Coquoz, Séverine; Grajciar, Branislav; Singh, Amardeep S. G.; Bonesi, Marco; Werkmeister, René M.; Schmetterer, Leopold; Leitgeb, Rainer A.

    2013-01-01

    Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism. The volume is probed from two distinct illumination directions with variable controlled incidence plane, allowing for reconstruction of the true flow velocity at arbitrary vessel orientations. The principle is implemented with Swept Source OCT at 1060nm with 100,000 A-Scans/s. We apply the system to resolve pulsatile retinal absolute blood velocity by performing segment scans around the optic nerve head and circumpapillary scan time series. PMID:23847742

  20. How to study the Doppler effect with Audacity software

    NASA Astrophysics Data System (ADS)

    Adriano Dias, Marco; Simeão Carvalho, Paulo; Rodrigues Ventura, Daniel

    2016-05-01

    The Doppler effect is one of the recurring themes in college and high school classes. In order to contextualize the topic and engage the students in their own learning process, we propose a simple and easily accessible activity, i.e. the analysis of the videos available on the internet by the students. The sound of the engine of the vehicle passing by the camera is recorded on the video; it is then analyzed with the free software Audacity by measuring the frequency of the sound during approach and recede of the vehicle from the observer. The speed of the vehicle is determined due to the application of Doppler effect equations for acoustic waves.