Sample records for phase electron diffraction

  1. Device and method for creating Gaussian aberration-corrected electron beams

    DOEpatents

    McMorran, Benjamin; Linck, Martin

    2016-01-19

    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  2. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.

    PubMed

    Brodusch, N; Demers, H; Gauvin, R

    2013-04-01

    A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  3. Solving the jitter problem in microwave compressed ultrafast electron diffraction instruments: Robust sub-50 fs cavity-laser phase stabilization

    PubMed Central

    Otto, M. R.; René de Cotret, L. P.; Stern, M. J.; Siwick, B. J.

    2017-01-01

    We demonstrate the compression of electron pulses in a high-brightness ultrafast electron diffraction instrument using phase-locked microwave signals directly generated from a mode-locked femtosecond oscillator. Additionally, a continuous-wave phase stabilization system that accurately corrects for phase fluctuations arising in the compression cavity from both power amplification and thermal drift induced detuning was designed and implemented. An improvement in the microwave timing stability from 100 fs to 5 fs RMS is measured electronically, and the long-term arrival time stability (>10 h) of the electron pulses improves to below our measurement resolution of 50 fs. These results demonstrate sub-relativistic ultrafast electron diffraction with compressed pulses that is no longer limited by laser-microwave synchronization. PMID:28852686

  4. Anomalous Diffraction in Crystallographic Phase Evaluation

    PubMed Central

    Hendrickson, Wayne A.

    2014-01-01

    X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017

  5. Atomic structure solution of the complex quasicrystal approximant Al77Rh15Ru8 from electron diffraction data.

    PubMed

    Samuha, Shmuel; Mugnaioli, Enrico; Grushko, Benjamin; Kolb, Ute; Meshi, Louisa

    2014-12-01

    The crystal structure of the novel Al77Rh15Ru8 phase (which is an approximant of decagonal quasicrystals) was determined using modern direct methods (MDM) applied to automated electron diffraction tomography (ADT) data. The Al77Rh15Ru8 E-phase is orthorhombic [Pbma, a = 23.40 (5), b = 16.20 (4) and c = 20.00 (5) Å] and has one of the most complicated intermetallic structures solved solely by electron diffraction methods. Its structural model consists of 78 unique atomic positions in the unit cell (19 Rh/Ru and 59 Al). Precession electron diffraction (PED) patterns and high-resolution electron microscopy (HRTEM) images were used for the validation of the proposed atomic model. The structure of the E-phase is described using hierarchical packing of polyhedra and a single type of tiling in the form of a parallelogram. Based on this description, the structure of the E-phase is compared with that of the ε6-phase formed in Al-Rh-Ru at close compositions.

  6. Two-dimensional mapping of polarizations of rhombohedral nanostructures in the orthorhombic phase of KNbO3 by the combined use of scanning transmission electron microscopy and convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Tsuda, Kenji; Tanaka, Michiyoshi

    2015-08-01

    Rhombohedral nanostructures previously found in the orthorhombic phase of KNbO3, by convergent-beam electron diffraction [Tsuda et al., Appl. Phys. Lett. 102, 051913 (2013)], have been investigated by the combined use of scanning transmission electron microscopy and convergent-beam electron diffraction. Two-dimensional distributions of the rhombohedral nanostructures, or nanometer-scale spatial fluctuations of polarization clusters, have been successfully visualized. The correlation length of the observed spatial fluctuations of local polarizations is related to the cpc/apc ratio and the transition entropy.

  7. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  8. Geometry of phase-separated domains in phospholipid bilayers by diffraction-contrast electron microscopy.

    PubMed Central

    Hui, S W

    1981-01-01

    The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers. Images FIGURE 1 FIGURE 3 FIGURE 6 PMID:6894707

  9. A protocol for searching the most probable phase-retrieved maps in coherent X-ray diffraction imaging by exploiting the relationship between convergence of the retrieved phase and success of calculation.

    PubMed

    Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2017-09-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.

  10. Femtosecond gas phase electron diffraction with MeV electrons.

    PubMed

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin

    2016-12-16

    We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.

  11. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  12. Direct single-shot phase retrieval from the diffraction pattern of separated objects

    DOE PAGES

    Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...

    2016-02-22

    The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less

  13. When holography meets coherent diffraction imaging.

    PubMed

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.

  14. Investigation of the effect of phase nonuniformities and the microwave field distribution on the electronic efficiency of a diffraction-radiation generator

    NASA Astrophysics Data System (ADS)

    Maksimov, P. P.; Tsvyk, A. I.; Shestopalov, V. P.

    1985-10-01

    The effect of local phase nonuniformities of the diffraction gratings and the field distribution of the open cavity on the electronic efficiency of a diffraction-radiation generator (DRG) is analyzed numerically on the basis of a self-consistent system of nonlinear stationary equations for the DRG. It is shown that the interaction power and efficiency of a DRG can be increased by the use of an open cavity with a nonuniform diffraction grating and a complex form of microwave field distribution over the interaction space.

  15. Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2014-11-17

    Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.

  16. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    PubMed

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  17. Nanostructure size determination in p-type porous silicon by the use of transmission electron diffraction image processing

    NASA Astrophysics Data System (ADS)

    Ramirez-Porras, A.

    2005-06-01

    The structure of p-type porous silicon (PS) has been investigated by the use of transmission electron diffraction (TED) microscopy and image processing. The results suggest the presence of well oriented crystalline phases and polycrystalline phases characterized by random orientation. These phases are believed to be formed by spheres with a mean diameter of 4.3 nm and a standard deviation of 1.3 nm.

  18. Application of δ recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes.

    PubMed

    Rius, Jordi; Mugnaioli, Enrico; Vallcorba, Oriol; Kolb, Ute

    2013-07-01

    δ Recycling is a simple procedure for directly extracting phase information from Patterson-type functions [Rius (2012). Acta Cryst. A68, 399-400]. This new phasing method has a clear theoretical basis and was developed with ideal single-crystal X-ray diffraction data. On the other hand, introduction of the automated diffraction tomography (ADT) technique has represented a significant advance in electron diffraction data collection [Kolb et al. (2007). Ultramicroscopy, 107, 507-513]. When combined with precession electron diffraction, it delivers quasi-kinematical intensity data even for complex inorganic compounds, so that single-crystal diffraction data of nanometric volumes are now available for structure determination by direct methods. To check the tolerance of δ recycling to missing data-collection corrections and to deviations from kinematical behaviour of ADT intensities, δ recycling has been applied to differently shaped nanocrystals of various inorganic materials. The results confirm that it can phase ADT data very efficiently. In some cases even more complete structure models than those derived from conventional direct methods and least-squares refinement have been found. During this study it has been demonstrated that the Wilson-plot scaling procedure is largely insensitive to sample thickness variations and missing absorption corrections affecting electron ADT intensities.

  19. Facing the phase problem in Coherent Diffractive Imaging via Memetic Algorithms.

    PubMed

    Colombo, Alessandro; Galli, Davide Emilio; De Caro, Liberato; Scattarella, Francesco; Carlino, Elvio

    2017-02-09

    Coherent Diffractive Imaging is a lensless technique that allows imaging of matter at a spatial resolution not limited by lens aberrations. This technique exploits the measured diffraction pattern of a coherent beam scattered by periodic and non-periodic objects to retrieve spatial information. The diffracted intensity, for weak-scattering objects, is proportional to the modulus of the Fourier Transform of the object scattering function. Any phase information, needed to retrieve its scattering function, has to be retrieved by means of suitable algorithms. Here we present a new approach, based on a memetic algorithm, i.e. a hybrid genetic algorithm, to face the phase problem, which exploits the synergy of deterministic and stochastic optimization methods. The new approach has been tested on simulated data and applied to the phasing of transmission electron microscopy coherent electron diffraction data of a SrTiO 3 sample. We have been able to quantitatively retrieve the projected atomic potential, and also image the oxygen columns, which are not directly visible in the relevant high-resolution transmission electron microscopy images. Our approach proves to be a new powerful tool for the study of matter at atomic resolution and opens new perspectives in those applications in which effective phase retrieval is necessary.

  20. Single-slit electron diffraction with Aharonov-Bohm phase: Feynman's thought experiment with quantum point contacts.

    PubMed

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-10

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.

  1. Direct observation of anti-phase boundaries in heteroepitaxy of GaSb thin films grown on Si(001) by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Woo, S. Y.; Hosseini Vajargah, S.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Botton, G. A.

    2012-10-01

    Unambiguous identification of anti-phase boundaries (APBs) in heteroepitaxial films of GaSb grown on Si has been so far elusive. In this work, we present conventional transmission electron microscopy (TEM) diffraction contrast imaging using superlattice reflections, in conjunction with convergent beam electron diffraction analysis, to determine a change in polarity across APBs in order to confirm the presence of anti-phase disorder. In-depth analysis of anti-phase disorder is further supported with atomic resolution high-angle annular dark-field scanning transmission electron microscopy. The nature of APBs in GaSb is further elucidated by a comparison to previous results for GaAs epilayers grown on Si.

  2. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.

  3. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godec, Matjaz, E-mail: matjaz.godec@imt.si; Batic, Barbara Setina; Mandrino, Djordje

    2010-04-15

    A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbidesmore » were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.« less

  4. Phase retrieval for crystalline specimens

    NASA Astrophysics Data System (ADS)

    Arnal, Romain A.; Millane, Rick P.

    2017-09-01

    The recent availability of ultra-bright and ultra-short X-rays pulses from new sources called x-ray free-electron lasers (XFELs) has introduced a new paradigm in X-ray crystallography. Called "diffraction-before-destruction," this paradigm addresses the main problems that plague crystallography using synchrotron sources. However, the phase problem of coherent diffraction imaging remains: one has to retrieve the phase of the measured diffraction amplitude in order to reconstruct the object. Fibrous and membrane proteins that crystallize in 1D and 2D crystals can now potentially be used for data collection with free-electron lasers. The crystallographic phase problem with such crystalline specimens is eased as the Fourier amplitude can be sampled more finely than at the Bragg sampling along one or two directions. Here we characterise uniqueness of the phase problem for different types of crystalline specimen. Simulated ab initio phase retrieval using iterative projection algorithms for 2D crystals is presented.

  5. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that themore » quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.« less

  6. High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Bender, H A; Wilcox, N S

    2010-01-01

    Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.

  7. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE PAGES

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...

    2018-04-30

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  8. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  9. Four-dimensional ultrafast electron microscopy of phase transitions

    PubMed Central

    Grinolds, Michael S.; Lobastov, Vladimir A.; Weissenrieder, Jonas; Zewail, Ahmed H.

    2006-01-01

    Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space–charge effects. Here, we demonstrate the ability to obtain sequences of snapshots (“movies”) with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal–insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves. PMID:17130445

  10. Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results.

    PubMed

    Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S

    2013-10-01

    A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  11. A compact electron gun for time-resolved electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A., E-mail: derek.wann@york.ac.uk

    A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolutionmore » of the diffraction pattern.« less

  12. Nanoscale monoclinic domains in epitaxial SrRuO{sub 3} thin films deposited by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghica, C., E-mail: cghica@infim.ro; Negrea, R. F.; Nistor, L. C.

    2014-07-14

    In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO{sub 3} layers used as bottom electrodes in multiferroic coatings onto SrTiO{sub 3} substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO{sub 3} thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO{sub 3} orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence ofmore » structurally disordered nanometric domains in the SrRuO{sub 3} bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (−4% ÷ −5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO{sub 6} octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO{sub 3} structure.« less

  13. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  14. Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate analysis.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.

  15. High-resolution electron microscope

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1977-01-01

    Employing scanning transmission electron microscope as interferometer, relative phases of diffraction maximums can be determined by analysis of dark field images. Synthetic aperture technique and Fourier-transform computer processing of amplitude and phase information provide high resolution images at approximately one angstrom.

  16. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  17. Quantum-chemical calculations and electron diffraction study of the equilibrium molecular structure of vitamin K3

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Tikhonov, D. S.; Grikina, O. E.; Rykov, A. N.; Stepanov, N. F.

    2014-05-01

    The equilibrium molecular structure of 2-methyl-1,4-naphthoquinone (vitamin K3) having C s symmetry is experimentally characterized for the first time by means of gas-phase electron diffraction using quantum-chemical calculations and data on the vibrational spectra of related compounds.

  18. Characterization of the α phase nucleation in a two-phase metastable β titanium alloy

    NASA Astrophysics Data System (ADS)

    Lenain, A.; Clément, N.; Jacques, P. J.; Véron, M.

    2005-12-01

    Beta titanium alloys are increasingly the best choice for automotive and aerospace applications due to their high performance-to-density ratio. Among these alloys, the TIMETAL Ti-LCB is already used in the automotive industry because it presents excellent mechanical properties and a lower cost compared with other Ti alloys. The current study deals with the characterization of the nucleation and growth of the α phase in several thermomechanical processes, because the distribution and size of the α phase strongly influence the mechanical properties of the resulting microstructures. Several heat treatments were conducted after either cold rolling or annealing. The resulting microstructures were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, or electron backscatter diffraction. It was observed that the morphology and the volume fraction of the α phase are strongly dependent on the holding temperature, on the heating or cooling rate, and on the β grain size.

  19. Atomically resolved structural determination of graphene and its point defects via extrapolation assisted phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission functionmore » of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction.« less

  20. Origin of Pressure-induced Superconducting Phase in K xFe 2-ySe 2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    DOE PAGES

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; ...

    2016-08-08

    Pressure dependence of the electronic and crystal structures of K xFe 2–ySe 2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change ofmore » Fermi surface topology. Lastly, our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.« less

  1. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    DOE PAGES

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  2. Origin of Pressure-induced Superconducting Phase in KxFe2-ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun'Ichiro

    2016-08-01

    Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.

  3. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.

    PubMed

    Kang, Suk Hoon; Kim, Tae Kyu; Jang, Jinsung; Oh, Kyu Hwan

    2015-06-01

    In this study, the effect of simple shearing on microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. Two different shear strain routes were obtained by twisting cylindrical specimens in the forward and backward directions. The strain-induced martensite phase was effectively obtained by alteration of the routes. Formation of the martensite phase clearly resulted in significant hardening of the steel. Grain-size reduction and strain-induced martensitic transformation within the deformed structures of the strained specimens were characterized by scanning electron microscopy - electron back-scattered diffraction, X-ray diffraction, and the TEM-ASTAR (transmission electron microscopy - analytical scanning transmission atomic resolution, automatic crystal orientation/phase mapping for TEM) system. Significant numbers of twin networks were formed by alteration of the shear strain routes, and the martensite phases were nucleated at the twin interfaces.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Ludmila, E-mail: llm@ispms.tsc.ru; Meisner, Stanislav, E-mail: msn@ispms.tsc.ru; Mironov, Yurii, E-mail: myp@ispms.tsc.ru

    The paper considers the effects arising on X-ray diffraction patterns taken in different diffraction geometries and how these effects can be interpreted to judge structural states in NiTi near-surface regions after electron and ion beam treatment. It is shown that qualitative and quantitative analysis of phase composition, lattice parameters of main phases, elastic stress states, and their in-depth variation requires X-ray diffraction patterns in both symmetric Bragg–Brentano and asymmetric Lambot–Vassamilleta geometries with variation in X-ray wavelengths and imaging conditions (with and with no β-filter). These techniques of structural phase analysis are more efficient when the thickness of modified NiTi surfacemore » layers is 1–10 μm (after electron beam treatment) and requires special imaging conditions when the thickness of modified NiTi surface layers is no greater than 1 μm (after ion beam treatment)« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sicupira, Felipe Lucas; Sandim, Maria José R.; Sandim, Hugo R.Z.

    The good performance of supermartensitic stainless steels is strongly dependent on the volume fraction of retained austenite at room temperature. The present work investigates the effect of secondary tempering temperatures on this phase transformation and quantifies the amount of retained austenite by X-ray diffraction and saturation magnetization. The steel samples were tempered for 1 h within a temperature range of 600–800 °C. The microstructure was characterized using scanning electron microscopy and electron backscatter diffraction. Results show that the amount of retained austenite decreased with increasing secondary tempering temperature in both quantification methods. - Highlights: • The phase transformation during secondarymore » tempering temperatures was observed. • Phases were quantified by X-ray diffraction and DC-saturation magnetization. • More retained austenite forms with increasing secondary tempering temperature. • The retained austenite is mainly located at the grain and lath boundaries.« less

  6. Study of the solid-state amorphization of (GaSb){sub 1-x}Ge{sub x} semiconductors by real-time neutron diffraction and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedotov, V. K., E-mail: fedotov@issp.ac.ru; Ponyatovsky, E. G.

    2011-12-15

    The spontaneous amorphization of high-pressure quenched phases of the GaSb-Ge system has been studied by neutron diffraction while slowly heating the phases at atmospheric pressure. The sequence of changes in the structural parameters of the initial crystalline phase and the final amorphous phase is established. The behavior of the phases and the correlation in the structural features of the phase transitions and anomalous thermal effects exhibit signs of the inhomogeneous model of solid-state amorphization.

  7. Phase study of titanium dioxide nanoparticle prepared via sol-gel process

    NASA Astrophysics Data System (ADS)

    Oladeji Araoyinbo, Alaba; Bakri Abdullah, Mohd Mustafa Al; Salleh, Mohd Arif Anuar Mohd; Aziz, Nurul Nadia Abdul; Iskandar Azmi, Azwan

    2018-03-01

    In this study, titanium dioxide nanoparticles have been prepared via sol-gel process using titanium tetraisopropoxide as a precursor with hydrochloric acid as a catalyst, and ethanol with deionized water as solvents. The value of pH used is set to 3, 7 and 8. The sols obtained were dried at 100 °C for 1 hr and calcined at 350, 550, and 750 °C for 3 hrs to observe the phase transformation of titanium dioxide nanoparticle. The samples were characterized by x-ray diffraction and field emission scanning electron microscope. The morphology analysis is obtained from field emission scanning electron microscope. The phase transformation was investigated by x-ray diffraction. It was found that the pH of the solution affect the agglomeration of titanium dioxide particle. The x-ray diffraction pattern of titanium dioxide shows the anatase phase most abundant at temperature of 350 °C. At temperature of 550 °C the anatase and rutile phase were present. At temperature of 750 °C the rutile phase was the most abundant for pH 3, 7 and 8. It was confirmed that at higher temperature the rutile phase which is the stable phase are mostly present.

  8. A new nanoscale metastable iron phase in carbon steels

    PubMed Central

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  9. Determination of the mean inner potential of cadmium telluride via electron holography

    NASA Astrophysics Data System (ADS)

    Cassidy, C.; Dhar, A.; Shintake, T.

    2017-04-01

    Mean inner potential is a fundamental material parameter in solid state physics and electron microscopy and has been experimentally measured in CdTe, a technologically important semiconductor. As a first step, the inelastic mean free path for electron scattering in CdTe was determined, using electron energy loss spectroscopy, to enable precise thickness mapping of thin CdTe lamellae. The obtained value was λi(CdTe, 300 kV) = 192 ± 10 nm. This value is relatively large, given the high density of the material, and is discussed in the text. Next, electron diffraction and specimen tilting were employed to identify weakly diffracting lattice orientations, to enable the straightforward measurement of the electron phase shift. Finally, electron holography was utilized to quantitatively map the phase shift experienced by electron waves passing through a CdTe crystal, with several different propagation vectors. Utilization of both thickness and phase data allowed computation of mean inner potential as V0 (CdTe) = 14.0 ± 0.9 V, within the range of previous theoretical estimates.

  10. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    PubMed

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumurugoti, P.; Clark, B.M.; Edwards, D.J.

    Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffractionmore » (SAED) revealed ordered arrangement of tunnel ions (Ba/Cs) and vacancies, suggesting efficient Cs incorporation into the lattice.« less

  12. Phase retrieval by coherent modulation imaging.

    PubMed

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R; Vila-Comamala, Joan; Guizar-Sicairos, Manuel; Robinson, Ian K

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers.

  13. Decomposition of L a2 -xS rxCu O4 into several L a2O3 phases at elevated temperatures in ultrahigh vacuum inside a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet; Yu, Guichuan; Sasagawa, Takao; Greven, Martin; Mkhoyan, K. Andre

    2018-05-01

    We report the decomposition of L a2 -xS rxCu O4 into L a2O3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150 °C and is considerably expedited in the temperature range of 350 °C-450 °C. Two major resultant solid phases are identified as metallic Cu and L a2O3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, L a2O3 phases are further identified to be derivatives of a fluorite structure—fluorite, pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and La M4 ,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and L a2O3 phases remain unchanged after cooling to room temperature.

  14. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector.

    PubMed

    van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P

    2016-03-01

    Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).

  15. Single-shot coherent diffraction imaging of microbunched relativistic electron beams for free-electron laser applications.

    PubMed

    Marinelli, A; Dunning, M; Weathersby, S; Hemsing, E; Xiang, D; Andonian, G; O'Shea, F; Miao, Jianwei; Hast, C; Rosenzweig, J B

    2013-03-01

    With the advent of coherent x rays provided by the x-ray free-electron laser (FEL), strong interest has been kindled in sophisticated diffraction imaging techniques. In this Letter, we exploit such techniques for the diagnosis of the density distribution of the intense electron beams typically utilized in an x-ray FEL itself. We have implemented this method by analyzing the far-field coherent transition radiation emitted by an inverse-FEL microbunched electron beam. This analysis utilizes an oversampling phase retrieval method on the transition radiation angular spectrum to reconstruct the transverse spatial distribution of the electron beam. This application of diffraction imaging represents a significant advance in electron beam physics, having critical applications to the diagnosis of high-brightness beams, as well as the collective microbunching instabilities afflicting these systems.

  16. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  17. Ordered structure of FeGe2 formed during solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.

    2018-05-01

    Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.

  18. Thermal phase transition behavior of lipid layers on a single human corneocyte cell.

    PubMed

    Imai, Tomohiro; Nakazawa, Hiromitsu; Kato, Satoru

    2013-09-01

    We have improved the selected area electron diffraction method to analyze the dynamic structural change in a single corneocyte cell non-invasively stripped off from human skin surface. The improved method made it possible to obtain reliable diffraction images to trace the structural change in the intercellular lipid layers on a single corneocyte cell during heating from 24°C to 100°C. Comparison of the results with those of synchrotron X-ray diffraction experiments on human stratum corneum sheets revealed that the intercellular lipid layers on a corneocyte cell exhibit essentially the same thermal phase transitions as those in a stratum corneum sheet. These results suggest that the structural features of the lipid layers are well preserved after the mechanical stripping of the corneocyte cell. Moreover, electron diffraction analyses of the thermal phase transition behaviors of the corneocyte cells that had the lipid layers with different distributions of orthorhombic and hexagonal domains at 24°C suggested that small orthorhombic domains interconnected with surrounding hexagonal domains transforms in a continuous manner into new hexagonal domains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Ultrafast large-amplitude relocation of electronic charge in ionic crystals

    PubMed Central

    Zamponi, Flavio; Rothhardt, Philip; Stingl, Johannes; Woerner, Michael; Elsaesser, Thomas

    2012-01-01

    The interplay of vibrational motion and electronic charge relocation in an ionic hydrogen-bonded crystal is mapped by X-ray powder diffraction with a 100 fs time resolution. Photoexcitation of the prototype material KH2PO4 induces coherent low-frequency motions of the PO4 tetrahedra in the electronically excited state of the crystal while the average atomic positions remain unchanged. Time-dependent maps of electron density derived from the diffraction data demonstrate an oscillatory relocation of electronic charge with a spatial amplitude two orders of magnitude larger than the underlying vibrational lattice motions. Coherent longitudinal optical and tranverse optical phonon motions that dephase on a time scale of several picoseconds, drive the charge relocation, similar to a soft (transverse optical) mode driven phase transition between the ferro- and paraelectric phase of KH2PO4. PMID:22431621

  20. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    PubMed

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genderen, E. van; Clabbers, M. T. B.; Center for Cellular Imaging and NanoAnalytics

    A specialized quantum area detector for electron diffraction studies makes it possible to solve the structure of small organic compound nanocrystals in non-cryo conditions by direct methods. Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e{sup −} Å{sup −2} s{sup −1}) were collected at roommore » temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014)« less

  2. 3D Diffraction Microscope Provides a First Deep View

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei

    2005-03-01

    When a coherent diffraction pattern is sampled at a spacing sufficiently finer than the Bragg peak frequency (i.e. the inverse of the sample size), the phase information is in principle encoded inside the diffraction pattern, and can be directly retrieved by using an iterative process. In combination of this oversampling phasing method with either coherent X-rays or electrons, a novel form of diffraction microscopy has recently been developed to image nanoscale materials and biological structures. In this talk, I will present the principle of the oversampling method, discuss the first experimental demonstration of this microscope, and illustrate some applications in nanoscience and biology.

  3. Investigation of the optical property and photocatalytic activity of mixed phase nanocrystalline titania

    NASA Astrophysics Data System (ADS)

    Paul, Susmita; Choudhury, Amarjyoti

    2014-10-01

    Mixed phase nanocrystalline titania are prepared by simple sol-gel method. The physico-chemical characteristics of the prepared nanoparticles are studied with X-ray diffraction, high-resolution transmission electron microscopy, RAMAN, BET, UV-Vis, steady state and time resolved photoluminescence. X-ray diffraction and Raman spectra clearly demarcate the anatase and rutile phase as both the phases give different diffraction patterns and Raman peaks. A comparison in the band gap indicates that pure anatase and rutile phase have band gap in the UV region, whereas a mixture of these phases has lower band gap and corresponds to the visible region. Steady state and time resolved photoluminescence are employed to understand the emissivity and carrier lifetime. The photocatalytic activity is evaluated by monitoring the degradation of phenol under visible light illumination. Due to the synergistic effect of mixed anatase and rutile phases, mixed phase nanocrystalline titania exhibit superior photocatalytic activity.

  4. Defect ordering in YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6: Synthesis and characterization by neutron and electron diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Y. P.; Greedan, J. E.; O'Reilly, A. H.; Reimers, J. N.; Stager, C. V.; Post, M. L.

    1990-02-01

    Polycrystalline samples of YBa 2Cu 3O 6.5 and YBa 2Cu 3O 6.6 were prepared by oxygen titration of YBa 2 Cu 3O 6.0 at 450°C followed by slow cooling to room temperature. Both samples showed evidence for the a' = 2a supercell in individual grains by electron diffraction as reported previously. In addition the superlattice was observed in neutron powder diffraction indicating that the bulk material is also well ordered. In this study the YBa 2Cu 3O 6.6 phase showed longer correlation lengths for ordering along both a* and b* than YBa 2Cu 3O 6.5. For the former compound the powder-averaged, sample-averaged a* correlation distance is 26A˚from neutron diffraction. Analysis of electron diffraction profiles on selected single crystals give correlation lengths along a*, b*, and c* of 100, 200, and 50A˚, respectively. Dark field imaging discloses the presence of striped, ordered domains elongated along b* with a distribution of sizes. Both neutron diffraction and dark field imaging indicate that the volume fraction of the ordered domains is about 50%. A correlation is noted between the Meissner Effect and the extent of defect ordering in the bulk samples of the two phases.

  5. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector

    PubMed Central

    van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.

    2016-01-01

    Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375

  6. High-resolution three-dimensional partially coherent diffraction imaging.

    PubMed

    Clark, J N; Huang, X; Harder, R; Robinson, I K

    2012-01-01

    The wave properties of light, particularly its coherence, are responsible for interference effects, which can be exploited in powerful imaging applications. Coherent diffractive imaging relies heavily on coherence and has recently experienced rapid growth. Coherent diffractive imaging recovers an object from its diffraction pattern by computational phasing with the potential of wavelength-limited resolution. Diminished coherence results in reconstructions that suffer from artefacts or fail completely. Here we demonstrate ab initio phasing of partially coherent diffraction patterns in three dimensions, while simultaneously determining the coherence properties of the illuminating wavefield. Both the dramatic improvements in image interpretability and the three-dimensional evaluation of the coherence will have broad implications for quantitative imaging of nanostructures and wavefield characterization with X-rays and electrons.

  7. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  8. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED

    PubMed Central

    Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; Collazo, Michael J.; Shi, Dan; Reyes, Francis E.; Gonen, Tamir; Eisenberg, David S.

    2016-01-01

    Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstacle is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined. We show with four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods. PMID:27647903

  9. Structural phase transitions and time-resolved dynamics of solid-supported interfacial methanol observed by reflection electron diffraction

    NASA Astrophysics Data System (ADS)

    Yang, Ding-Shyue; He, Xing; Wu, Chengyi

    Due to their large scattering cross sections with matter, electrons are suitable for contactless probing of solid-supported surface assemblies, especially in a reflection geometry. Direct visualization of assembly structures through electron diffraction further enables studies of ultrafast structural dynamics through the pump-probe scheme as well as discoveries of hidden phase changes in equilibrium that have been obscure in spectroscopic measurements. In this presentation, we report our first observation of unique two-stage transformations of interfacial methanol on smooth hydrophobic surfaces. The finding may reconcile the inconsistent previous reports of the crystallization temperature using various indirect methods. Dynamically, energy transfer across a solid-molecule interface following photoexcitation of the substrate is found to be highly dependent on the structure of interfacial methanol. If it is only 2-dimensionally ordered, as the film thickness increases, a prolonged time in the decrease of diffraction intensity is seen, signifying an inefficient vibrational coupling in the surface normal direction. Implications of the dynamics results and an outlook of interfacial studies using time-resolved and averaged electron diffraction will be discussed. We gratefully acknowledge the support from the R. A. Welch Foundation (Grant No. E-1860), the Donors of the American Chemical Society Petroleum Research Fund (ACS-PRF), and the University of Houston.

  10. Phase Equilibria and Crystallography of Ceramic Oxides

    PubMed Central

    Wong-Ng, W.; Roth, R. S.; Vanderah, T. A.; McMurdie, H. F.

    2001-01-01

    Research in phase equilibria and crystallography has been a tradition in the Ceramics Division at National Bureau of Standards/National Institute of Standatrds and Technology (NBS/NIST) since the early thirties. In the early years, effort was concentrated in areas of Portland cement, ceramic glazes and glasses, instrument bearings, and battery materials. In the past 40 years, a large portion of the work was related to electronic materials, including ferroelectrics, piezoelectrics, ionic conductors, dielectrics, microwave dielectrics, and high-temperature superconductors. As a result of the phase equilibria studies, many new compounds have been discovered. Some of these discoveries have had a significant impact on US industry. Structure determinations of these new phases have often been carried out as a joint effort among NBS/NIST colleagues and also with outside collaborators using both single crystal and neutron and x-ray powder diffraction techniques. All phase equilibria diagrams were included in Phase Diagrams for Ceramists, which are collaborative publications between The American Ceramic Society (ACerS) and NBS/NIST. All x-ray powder diffraction patterns have been included in the Powder Diffraction File (PDF). This article gives a brief account of the history of the development of the phase equilibria and crystallographic research on ceramic oxides in the Ceramics Division. Represented systems, particularly electronic materials, are highlighted. PMID:27500068

  11. Molecular structure and conformational preferences of gaseous 1-iodo-1-silacyclohexane

    NASA Astrophysics Data System (ADS)

    Belyakov, A. V.; Baskakov, A. A.; Berger, R. J. F.; Mitzel, N. W.; Oberhammer, H.; Arnason, I.; Wallevik, S. Ò.

    2012-03-01

    The molecular structure of the axial and equatorial conformers of 1-iodo-1-silacyclohexane, CH2(CH2CH2)2SiH-I, as well as thermodynamic equilibrium between these species were investigated by means of gas-phase electron diffraction (GED) and quantum chemical calculations up to MP2(full)/SDB-AUG-CC-pVTZ level of theory (MP2). According to electron diffraction data, the vapor of this compound comprises a mixture of conformers with chair conformation and Cs symmetry differing in the axial and equatorial position of the Si-I bond (axial = 73(7) mol%/equatorial = 27(7) mol%) at T = 352 K. This corresponds to a free energy difference of A = -0.59(22) kcal mol-1. The observed gas-phase electron diffraction parameters are in good agreement with those obtained from theory. NBO analysis revealed that axial conformer of 1-iodo-1-silacyclohexane is an example for electrostatic stabilization of a conformer which is unfavorable in terms of steric and conjugation interaction.

  12. Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huon, A.; Lee, D.; Herklotz, A.

    Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less

  13. Decomposition of L a 2 – x S r x Cu O 4 into several L a 2 O 3 phases at elevated temperatures in ultrahigh vacuum inside a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet

    Here, we report the decomposition of La 2–xSr xCuO 4 into La 2O 3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150°C and is considerably expedited in the temperature range of 350°C–450°C. Two major resultant solid phases are identified as metallic Cu and La 2O 3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, La 2O 3 phases are further identified to be derivatives of a fluorite structure—fluorite,more » pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and LaM 4,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and La 2O 3 phases remain unchanged after cooling to room temperature.« less

  14. Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films

    DOE PAGES

    Huon, A.; Lee, D.; Herklotz, A.; ...

    2017-09-18

    Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less

  15. Decomposition of L a 2 – x S r x Cu O 4 into several L a 2 O 3 phases at elevated temperatures in ultrahigh vacuum inside a transmission electron microscope

    DOE PAGES

    Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet; ...

    2018-05-15

    Here, we report the decomposition of La 2–xSr xCuO 4 into La 2O 3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150°C and is considerably expedited in the temperature range of 350°C–450°C. Two major resultant solid phases are identified as metallic Cu and La 2O 3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, La 2O 3 phases are further identified to be derivatives of a fluorite structure—fluorite,more » pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and LaM 4,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and La 2O 3 phases remain unchanged after cooling to room temperature.« less

  16. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, Sergey, E-mail: konovserg@gmail.com; Alsaraeva, Krestina, E-mail: gromov@physics.sibsiu.ru; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.

  17. Physical chemistry: Molecular motion watched

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley; Collet, Eric

    2013-04-01

    A laser pulse can switch certain crystals from an insulating phase to a highly conducting phase. The ultrafast molecular motions that drive the transition have been directly observed using electron diffraction. See Letter p.343

  18. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-05-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  19. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    PubMed Central

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651

  20. Optical determination of crystal phase in semiconductor nanocrystals

    PubMed Central

    Lim, Sung Jun; Schleife, André; Smith, Andrew M.

    2017-01-01

    Optical, electronic and structural properties of nanocrystals fundamentally derive from crystal phase. This is especially important for polymorphic II–VI, III–V and I-III-VI2 semiconductor materials such as cadmium selenide, which exist as two stable phases, cubic and hexagonal, each with distinct properties. However, standard crystallographic characterization through diffraction yields ambiguous phase signatures when nanocrystals are small or polytypic. Moreover, diffraction methods are low-throughput, incompatible with solution samples and require large sample quantities. Here we report the identification of unambiguous optical signatures of cubic and hexagonal phases in II–VI nanocrystals using absorption spectroscopy and first-principles electronic-structure theory. High-energy spectral features allow rapid identification of phase, even in small nanocrystals (∼2 nm), and may help predict polytypic nanocrystals from differential phase contributions. These theoretical and experimental insights provide simple and accurate optical crystallographic analysis for liquid-dispersed nanomaterials, to improve the precision of nanocrystal engineering and improve our understanding of nanocrystal reactions. PMID:28513577

  1. Layer dependence of the superconducting transition temperature of HgBa2Can-1 CunO2 n+2+ δ

    NASA Astrophysics Data System (ADS)

    Scott, B. A.; Suard, E. Y.; Tsuei, C. C.; Mitzi, D. B.; McGuire, T. R.; Chen, B.-H.; Walker, D.

    1994-09-01

    High-pressure methods have been used to synthesize multiphase compositions in the Hg12{ n-1} n homologous series. The phase assemblages were examined by optical, electron diffraction and X-ray diffraction techniques, and their stoichiometries verified by electron microprobe. Transport and magnetic susceptibility measurements were combined with the results of the phase analysis to establish superconducting transition temperatures for both as-prepared and O 2- or Ar-annealed materials. It was found that the transition temperature peaks at Tc = 134 K for n = 3 and then decreases abruptly for n>4, reaching Tc<90 K for n⪖7.

  2. Effect of screw threading dislocations and inverse domain boundaries in GaN on the shape of reciprocal-space maps.

    PubMed

    Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David

    2017-04-01

    The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.

  3. A pseudo-3D approach based on electron backscatter diffraction and backscatter electron imaging to study the character of phase boundaries between Mg and long period stacking ordered phase in a Mg–2Y–Zn alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afshar, Mehran, E-mail: m.afshar@mpie.de; Zaefferer, Stefan, E-mail: s.zaefferer@mpie.de

    2015-03-15

    In Mg–2 at.% Y–1 at.% Zn alloys, the LPSO (Long Period Stacking Ordered) phase is important to improve mechanical properties of the material. The aim of this paper is to present a study on the phase boundary character in these two-phase alloys. Using EBSD pattern analysis it was found that the 24R structure is the dominant LPSO phase structure in the current alloy. The phase boundary character between the Mg matrix and the LPSO phase was investigated using an improved pseudo-3D EBSD (electron backscatter diffraction) technique in combination with BSE or SE (backscatter or secondary electron) imaging. A large amountmore » of very low-angle phase boundaries was detected. The (0 0 0 2) plane in the Mg matrix which is parallel to the (0 0 0 24) plane in the LPSO phase was found to be the most frequent plane for these phase boundaries. This plane is supposed to be the habit plane of the eutectic co-solidification of the Mg matrix and the LPSO phase. - Highlights: • It is shown that for the investigated alloy the LPSO phase has mainly 24R crystal structure. • A new method is presented which allows accurate determination of the 5-parameter grain or phase boundary character. • It is found that the low-angle phase boundaries appearing in the alloy all have basal phase boundary planes.« less

  4. Microstructure and phase composition of hypoeutectic Te-Bi alloy as evaporation source for photoelectric cathode

    NASA Astrophysics Data System (ADS)

    Wang, Bao-guang; Yang, Wen-hui; Gao, Hong-ye; Tian, Wen-huai

    2018-05-01

    A hypoeutectic 60Te-40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te-40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as {[0001]_{B{i_2}T{e_3}}}//{[1\\bar 21\\bar 3]_{Te}} and the direction of Te phase parallel to {[11\\bar 20]_{B{i_2}T{e_3}}} is deviated by 18° from Te N{(2\\bar 1\\bar 11)_{Te}}.

  5. Path-separated electron interferometry in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  6. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  7. Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films

    NASA Astrophysics Data System (ADS)

    Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.

    2002-06-01

    The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.

  8. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal.

    PubMed

    Clabbers, M T B; van Genderen, E; Wan, W; Wiegers, E L; Gruene, T; Abrahams, J P

    2017-09-01

    Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm 3 , i.e. no more than 6 × 10 5 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures.

  9. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal

    PubMed Central

    Clabbers, M. T. B.; van Genderen, E.; Wiegers, E. L.; Gruene, T.; Abrahams, J. P.

    2017-01-01

    Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm3, i.e. no more than 6 × 105 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures. PMID:28876237

  10. Use of reciprocal lattice layer spacing in electron backscatter diffraction pattern analysis

    PubMed

    Michael; Eades

    2000-03-01

    In the scanning electron microscope using electron backscattered diffraction, it is possible to measure the spacing of the layers in the reciprocal lattice. These values are of great use in confirming the identification of phases. The technique derives the layer spacing from the higher-order Laue zone rings which appear in patterns from many materials. The method adapts results from convergent-beam electron diffraction in the transmission electron microscope. For many materials the measured layer spacing compares well with the calculated layer spacing. A noted exception is for higher atomic number materials. In these cases an extrapolation procedure is described that requires layer spacing measurements at a range of accelerating voltages. This procedure is shown to improve the accuracy of the technique significantly. The application of layer spacing measurements in EBSD is shown to be of use for the analysis of two polytypes of SiC.

  11. HANFORD WASTE MINERALOGY REFERENCE REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  12. The effect of steel chemistry on the formation of Fe-Zn intermetallic compounds of galvanneal-coated steel sheets

    NASA Astrophysics Data System (ADS)

    Lin, C. S.; Meshii, M.

    1994-10-01

    The effects of steel chemistry on the formation of Fe-Zn intermetallic compounds in the galvanneal coatings have been investigated by examining the microstructure of galvanneal coat-ings on extra-low-carbon (ELC) steel, interstitial-free (IF) steel, and interstitial-free rephos-phorized (IFP) steel. The layer structure of the coatings was revealed by chemical etching. Phases present in each layer were then identified using electron diffraction in transmission elec-tron microscopy (TEM). A two-layer structure, one consisting of the δ phase with a small fraction of the ζ, phase dispersed on the surface and Γ phases and another consisting of the δ and Γ1 phases, was observed in the ELC sample and the IFP sample, respectively. A three-layer structure consisting of the δ, Γ1 + δ, and Γ phases was observed in the IF sample. The presence of C in the steel substrate retarded the alloying between Fe and Zn; while P in the steel favored the formation of the Γ1, phase over the Γ phase by its surface segregation in the steel substrate. The orientation relationship between coating and substrate was also studied by electron diffraction. Three α-Fe/Γ orientation relationships were frequently observed.

  13. Pressure-induced Lifshitz transition in NbP: Raman, x-ray diffraction, electrical transport, and density functional theory

    NASA Astrophysics Data System (ADS)

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Qi, Yanpeng; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.

    2018-02-01

    We report high-pressure Raman, synchrotron x-ray diffraction, and electrical transport studies on Weyl semimetals NbP and TaP along with first-principles density functional theoretical (DFT) analysis. The frequencies of first-order Raman modes of NbP harden with increasing pressure and exhibit a slope change at Pc˜9 GPa. The pressure-dependent resistivity exhibits a minimum at Pc. The temperature coefficient of resistivity below Pc is positive as expected for semimetals but changes significantly in the high-pressure phase. Using DFT calculations, we show that these anomalies are associated with a pressure-induced Lifshitz transition, which involves the appearance of electron and hole pockets in its electronic structure. In contrast, the results of Raman and synchrotron x-ray diffraction experiments on TaP and DFT calculations show that TaP is quite robust under pressure and does not undergo any phase transition.

  14. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED

    DOE PAGES

    Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio; ...

    2016-09-19

    Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstaclemore » is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined.We showwith four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.« less

  15. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawaya, Michael R.; Rodriguez, Jose; Cascio, Duilio

    Electrons, because of their strong interaction with matter, produce high-resolution diffraction patterns from tiny 3D crystals only a few hundred nanometers thick in a frozen-hydrated state. This discovery offers the prospect of facile structure determination of complex biological macromolecules, which cannot be coaxed to form crystals large enough for conventional crystallography or cannot easily be produced in sufficient quantities. Two potential obstacles stand in the way. The first is a phenomenon known as dynamical scattering, in which multiple scattering events scramble the recorded electron diffraction intensities so that they are no longer informative of the crystallized molecule. The second obstaclemore » is the lack of a proven means of de novo phase determination, as is required if the molecule crystallized is insufficiently similar to one that has been previously determined.We showwith four structures of the amyloid core of the Sup35 prion protein that, if the diffraction resolution is high enough, sufficiently accurate phases can be obtained by direct methods with the cryo-EM method microelectron diffraction (MicroED), just as in X-ray diffraction. The success of these four experiments dispels the concern that dynamical scattering is an obstacle to ab initio phasing by MicroED and suggests that structures of novel macromolecules can also be determined by direct methods.« less

  16. Phase retrieval by coherent modulation imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  17. Phase retrieval by coherent modulation imaging

    DOE PAGES

    Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; ...

    2016-11-18

    Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging (CDI) is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit-wave. This coherent modulation imaging (CMI) method removes inherent ambiguities of CDI and uses a reliable, rapidly converging iterative algorithm involving three planes. It works formore » extended samples, does not require tight support for convergence, and relaxes dynamic range requirements on the detector. CMI provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free electron laser.« less

  18. Detection of magnetic circular dichroism in amorphous materials utilizing a single-crystalline overlayer

    DOE PAGES

    Lin, J.; Zhong, X. Y.; Song, C.; ...

    2017-12-27

    Physicists are fascinated with topological defects in solid-state materials, because by breaking the translational symmetry they offer emerging properties that are not present in their parental phases. For example, edge dislocations—the 2π phase-winding topological defects—in antiferromagnetic NiO crystals can exhibit ferromagnetic behaviors. Herein, we study how these defects could give rise to exotic topological orders when they interact with a high energy electron beam. To probe this interaction, we formed a coherent electron nanobeam in a scanning transmission electron microscope and recorded the far-field transmitted patterns as the beam steps through the edge dislocation core in [001] NiO. Surprisingly, wemore » found the amplitude patterns of the <020> Bragg disks evolve in a similar manner to the evolution of an annular solar eclipse. Using the ptychographic technique, we recovered the missing phase information in the diffraction plane and revealed the topological phase vortices in the diffracted beams. Through atomic topological defects, the wave function of electrons can be converted from plane wave to electron vortex. This approach provides a new perspective for boosting the collection efficiency of magnetic circular dichroism spectra with high spatial resolution and understanding the relationship between symmetry breaking and exotic property of individual topological defect at atomic level.« less

  19. Detection of magnetic circular dichroism in amorphous materials utilizing a single-crystalline overlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, J.; Zhong, X. Y.; Song, C.

    Physicists are fascinated with topological defects in solid-state materials, because by breaking the translational symmetry they offer emerging properties that are not present in their parental phases. For example, edge dislocations—the 2π phase-winding topological defects—in antiferromagnetic NiO crystals can exhibit ferromagnetic behaviors. Herein, we study how these defects could give rise to exotic topological orders when they interact with a high energy electron beam. To probe this interaction, we formed a coherent electron nanobeam in a scanning transmission electron microscope and recorded the far-field transmitted patterns as the beam steps through the edge dislocation core in [001] NiO. Surprisingly, wemore » found the amplitude patterns of the <020> Bragg disks evolve in a similar manner to the evolution of an annular solar eclipse. Using the ptychographic technique, we recovered the missing phase information in the diffraction plane and revealed the topological phase vortices in the diffracted beams. Through atomic topological defects, the wave function of electrons can be converted from plane wave to electron vortex. This approach provides a new perspective for boosting the collection efficiency of magnetic circular dichroism spectra with high spatial resolution and understanding the relationship between symmetry breaking and exotic property of individual topological defect at atomic level.« less

  20. On the bulk degradation of yttria-stabilized nanocrystalline zirconia dental implant abutments: an electron backscatter diffraction study.

    PubMed

    Ocelík, V; Schepke, U; Rasoul, H Haji; Cune, M S; De Hosson, J Th M

    2017-08-01

    Degradation of yttria-stabilized zirconia dental implants abutments due to the tetragonal to monoclinic phase transformation was studied in detail by microstructural characterization using Electron Back Scatter Diffraction (EBSD). The amount and distribution of the monoclinic phase, the grain-size distribution and crystallographic orientations between tetragonal and monoclinic crystals in 3 mol.% yttria-stabilized polycrystalline zirconia (3Y-TZP) were determined in two different types of nano-crystalline dental abutments, even for grains smaller than 400 nm. An important and novel conclusion is that no substantial bulk degradation of 3Y-TZP dental implant abutments was detected after 1 year of clinical use.

  1. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa

    DOE PAGES

    Briggs, R.; Gorman, M. G.; Coleman, A. L.; ...

    2017-01-09

    Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Furthermore, shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearancemore » of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.« less

  2. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa.

    PubMed

    Briggs, R; Gorman, M G; Coleman, A L; McWilliams, R S; McBride, E E; McGonegle, D; Wark, J S; Peacock, L; Rothman, S; Macleod, S G; Bolme, C A; Gleason, A E; Collins, G W; Eggert, J H; Fratanduono, D E; Smith, R F; Galtier, E; Granados, E; Lee, H J; Nagler, B; Nam, I; Xing, Z; McMahon, M I

    2017-01-13

    Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.

  3. Electronic heterodyne moire deflectometry: A method for transient and three dimensional density fields measurements

    NASA Technical Reports Server (NTRS)

    Stricker, Josef

    1987-01-01

    Effects of diffraction and nonlinear photographic emulsion characteristics on the performance of deferred electronic heterodyne moire deflectometry are investigated. The deferred deflectometry is used for measurements of nonsteady phase objects where it is difficult to complete the analysis of the field in real time. The sensitivity, accuracy and resolution of the system are calculated and it is shown that they are weakly affected by diffraction and by nonlinear recording. The feactures of the system are significantly improved compared with the conventional deferred intensity moire technique, and are comparable with the online heterodyne moire. The system was evaluated experimentally by deferred measurements of the refractive index gradients of a weak phase object consisting of a large KD*P crystal. This was done by photographing the phase object through a Ronchi grating and analyzing the tranparency with the electronic heterodyne readout system. The results are compared with the measurements performed on the same phase object with online heterodyne moire deflectometry and with heterodyne holographic interferometry methods. Some practical considerations for system improvement are discussed.

  4. Mechanisms of decoherence in electron microscopy.

    PubMed

    Howie, A

    2011-06-01

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Exploring transmission Kikuchi diffraction using a Timepix detector

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Mingard, K.; Maneuski, D.; O'Shea, V.; Trager-Cowan, C.

    2017-02-01

    Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods.

  6. Fine Structure in Multi-Phase Zr8Ni21-Zr7Ni10-Zr2Ni7 Alloy Revealed by Transmission Electron Microscope

    PubMed Central

    Shen, Haoting; Bendersky, Leonid A.; Young, Kwo; Nei, Jean

    2015-01-01

    The microstructure of an annealed alloy with a Zr8Ni21 composition was studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The presence of three phases, Zr8Ni21, Zr2Ni7, and Zr7Ni10, was confirmed by SEM/X-ray energy dispersive spectroscopy compositional mapping and TEM electron diffraction. Distribution of the phases and their morphology can be linked to a multi-phase structure formed by a sequence of reactions: (1) L → Zr2Ni7 + L’; (2) peritectic Zr2Ni7 + L’ → Zr2Ni7 + Zr8Ni21 + L”; (3) eutectic L” → Zr8Ni21 + Zr7Ni10. The effect of annealing at 960 °C, which was intended to convert a cast structure into a single-phase Zr8Ni21 structure, was only moderate and the resulting alloy was still multi-phased. TEM and crystallographic analysis of the Zr2Ni7 phase show a high density of planar (001) defects that were explained as low-energy boundaries between rotational variants and stacking faults. The crystallographic features arise from the pseudo-hexagonal structure of Zr2Ni7. This highly defective Zr2Ni7 phase was identified as the source of the broad X-ray diffraction peaks at around 38.4° and 44.6° when a Cu-K was used as the radiation source. PMID:28793460

  7. Excitation of phonons in medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.

    1996-03-01

    The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.

  8. Femtosecond Electron Wave Packet Propagation and Diffraction: Towards Making the ``Molecular Movie"

    NASA Astrophysics Data System (ADS)

    Miller, R. J. Dwayne

    2003-03-01

    Time-resolved electron diffraction harbors great promise for achieving atomic resolution of the fastest chemical processes. The generation of sufficiently short electron pulses to achieve this real time view of a chemical reaction has been limited by problems in maintaining short electron pulses with realistic electron densities to the sample. The propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. This analyis shows that the redistribution of electrons inside the packet, arising from space-charge and dispersion contributions, changes the pulse envelope and leads to the development of a spatially linear axial velocity distribution. These results have been used in the design of femtosecond photoelectron guns with higher time resolution and novel electron-optical methods of pulse characterization that are approaching 100 fs timescales. Time-resolved diffraction studies with electron pulses of approximately 500 femtoseconds have focused on solid-liquid phase transitions under far from equilibrium conditions. This work gives a microscopic description of the melting process and illustrates the promise of atomically resolving transition state processes.

  9. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  10. Visualizing light with electrons

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. P. S.; Word, R. C.; Koenenkamp, R.

    2014-03-01

    In multiphoton photoemission electron microscopy (nP-PEEM) electrons are emitted from surfaces at a rate proportional to the surface electromagnetic field amplitude. We use 2P-PEEM to give nanometer scale visualizations of light of diffracted and waveguide fields around various microstructures. We use Fourier analysis to determine the phase and amplitude of surface fields in relation to incident light from the interference patterns. To provide quick and intuitive simulations of surface fields, we employ two dimensional Fresnel-Kirchhoff integration, a technique based on freely propagating waves and Huygens' principle. We find generally good agreement between simulations and experiment. Additionally diffracted wave simulations exhibit greater phase accuracy, indicating that these waves are well represented by a two dimensional approximation. The authors gratefully acknowledge funding of this research by the US-DOE Basic Science Office under Contract DE-FG02-10ER46406.

  11. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Sokolowski-Tinten, K.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; Makasyuk, I.; Edstrom, S.; McCormick, D.; Jobe, K.; Hast, C.; Glenzer, S. H.; Wang, X.

    2016-11-01

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.

  12. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhumagulova, K. N., E-mail: dzhumagulova.karlygash@gmail.com; Shalenov, E. O.; Ramazanov, T. S.

    2015-08-15

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  13. Materials science in the time domain using Bragg coherent diffraction imaging

    DOE PAGES

    Robinson, Ian; Clark, Jesse; Harder, Ross

    2016-03-14

    Materials are generally classified by a phase diagram which displays their properties as a function of external state variables, typically temperature and pressure. A new dimension that is relatively unexplored is time: a rich variety of new materials can become accessible in the transient period following laser excitation from the ground state. The timescale of nanoseconds to femtoseconds, is ripe for investigation using x-ray free-electron laser (XFEL) methods. There is no shortage of materials suitable for time-resolved materials-science exploration. Oxides alone represent most of the minerals making up the Earth's crust, catalysts, ferroelectrics, corrosion products and electronically ordered materials suchmore » as superconductors, to name a few. Some of the elements have metastable phase diagrams with predicted new phases. There are some examples known already: an oxide 'hidden phase' living only nanoseconds and an electronically ordered excited phase of fullerene C 60, lasting only femtoseconds. In a completely general way, optically excited states of materials can be probed with Bragg coherent diffraction imaging, both below the damage threshold and in the destructive regime. Lastly, prospective methods for carrying out such XFEL experiments are discussed.« less

  14. Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials

    DTIC Science & Technology

    2013-06-17

    of the films without having to fabricate capacitors. In addition, the use of X - ray diffraction (XRD) analysis enabled Chikyow et al.40 to identify an...effects of Al doping and annealing on the thermal stabil- ity of the Y2O3/Si gate stack were studied by X - ray photoemission spectroscopy (XPS) and X - ray ...the major diffraction features in the phase distribution. For a given structural phase, the X - ray peak intensity allows one to track the compositional

  15. Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.

    PubMed

    Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin

    2018-02-06

    The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and  followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated  samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.

  16. Visible diffraction from quasi-crystalline arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2015-08-01

    Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.

  17. Structure of phospholipid-cholesterol membranes: an x-ray diffraction study.

    PubMed

    Karmakar, Sanat; Raghunathan, V A

    2005-06-01

    We have studied the phase behavior of mixtures of cholesterol with dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), and dilauroyl phosphatidylethanolamine (DLPE), using x-ray diffraction techniques. Phosphatidylcholine (PC)-cholesterol mixtures are found to exhibit a modulated phase for cholesterol concentrations around 15 mol % at temperatures below the chain melting transition. Lowering the relative humidity from 98% to 75% increases the temperature range over which it exists. An electron density map of this phase in DPPC-cholesterol mixtures, calculated from the x-ray diffraction data, shows bilayers with a periodic height modulation, as in the ripple phase observed in many PCs in between the main- and pretransitions. However, these two phases differ in many aspects, such as the dependence of the modulation wavelength on the cholesterol content and thermodynamic stability at reduced humidities. This modulated phase is found to be absent in DLPE-cholesterol mixtures. At higher cholesterol contents the gel phase does not occur in any of these three systems, and the fluid lamellar phase is observed down to the lowest temperature studied (5 degrees C).

  18. Ultrafast electron crystallography: Transient structures of molecules, surfaces, and phase transitions

    PubMed Central

    Ruan, Chong-Yu; Vigliotti, Franco; Lobastov, Vladimir A.; Chen, Songye; Zewail, Ahmed H.

    2004-01-01

    The static structure of macromolecular assemblies can be mapped out with atomic-scale resolution by using electron diffraction and microscopy of crystals. For transient nonequilibrium structures, which are critical to the understanding of dynamics and mechanisms, both spatial and temporal resolutions are required; the shortest scales of length (0.1–1 nm) and time (10–13 to 10–12 s) represent the quantum limit, the nonstatistical regime of rates. Here, we report the development of ultrafast electron crystallography for direct determination of structures with submonolayer sensitivity. In these experiments, we use crystalline silicon as a template for different adsorbates: hydrogen, chlorine, and trifluoroiodomethane. We observe the coherent restructuring of the surface layers with subangstrom displacement of atoms after the ultrafast heat impulse. This nonequilibrium dynamics, which is monitored in steps of 2 ps (total change ≤10 ps), contrasts that of the nanometer substrate. The effect of adsorbates and the phase transition at higher fluences were also studied through the evolution of streaks of interferences, Bragg spots (and their rocking curves), and rings in the diffraction patterns. We compare these results with kinematical theory and those of x-ray diffraction developed to study bulk behaviors. The sensitivity achieved here, with the 6 orders of magnitude larger cross section than x-ray diffraction, and with the capabilities of combined spatial (≈0.01 Å) and temporal (300–600 fs) resolutions, promise diverse applications for this ultrafast electron crystallography tabletop methodology. PMID:14745037

  19. Imaging ultrafast dynamics of molecules with laser-induced electron diffraction.

    PubMed

    Lin, C D; Xu, Junliang

    2012-10-14

    We introduce a laser-induced electron diffraction method (LIED) for imaging ultrafast dynamics of small molecules with femtosecond mid-infrared lasers. When molecules are placed in an intense laser field, both low- and high-energy photoelectrons are generated. According to quantitative rescattering (QRS) theory, high-energy electrons are produced by a rescattering process where electrons born at the early phase of the laser pulse are driven back to rescatter with the parent ion. From the high-energy electron momentum spectra, field-free elastic electron-ion scattering differential cross sections (DCS), or diffraction images, can be extracted. With mid-infrared lasers as the driving pulses, it is further shown that the DCS can be used to extract atomic positions in a molecule with sub-angstrom spatial resolution, in close analogy to the standard electron diffraction method. Since infrared lasers with pulse duration of a few to several tens of femtoseconds are already available, LIED can be used for imaging dynamics of molecules with sub-angstrom spatial and a few-femtosecond temporal resolution. The first experiment with LIED has shown that the bond length of oxygen molecules shortens by 0.1 Å in five femtoseconds after single ionization. The principle behind LIED and its future outlook as a tool for dynamic imaging of molecules are presented.

  20. Accurate determination of lattice parameters based on Niggli reduced cell theory by using digitized electron diffraction micrograph.

    PubMed

    Yang, Yi; Cai, Canying; Lin, Jianguo; Gong, Lunjun; Yang, Qibin

    2017-05-01

    In this paper, we used Niggli reduced cell theory to determine lattice constants of a micro/nano crystal by using electron diffraction patterns. The Niggli reduced cell method enhanced the accuracy of lattice constant measurement obviously, because the lengths and the angles of lattice vectors of a primitive cell can be measured directly on the electron micrographs instead of a double tilt holder. With the aid of digitized algorithm and least square optimization by using three digitized micrographs, a valid reciprocal Niggli reduced cell number can be obtained. Thus a reciprocal and real Bravais lattices are acquired. The results of three examples, i.e., Mg 4 Zn 7 , an unknown phase (Precipitate phase in nickel-base superalloy) and Ba 4 Ti 13 O 30 showed that the maximum errors are 1.6% for lengths and are 0.3% for angles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Synthesis, Characterization and Antibacterial Activity of BiVO4 Microstructure

    NASA Astrophysics Data System (ADS)

    Ekthammathat, Nuengruethai; Phuruangrat, Anukorn; Thongtem, Somchai; Thongtem, Titipun

    2018-05-01

    Hyperbranched BiVO4 microstructure were successfully synthesized by a hydrothermal method. Upon characterization the products by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, selected area electron diffraction (SAED) and photoluminescence (PL) spectroscopy, pure monoclinic hyperbranched BiVO4 with dominant vibration peak at 810 cm-1 and strong photoemission peak at 360 nm was synthesized in the solution with pH 1. In the solution with pH 2, tetragonal BiVO4 phase was also detected. In this research, antibacterial activity against S. aureus and E. coli was investigated by counting the colony forming unit (CFU). At 37°C within 24 h, the monoclinic BiVO4 phase can play the role in inhibiting S. aureus growth (350 CFU/mL remaining bacteria) better than that against E. coli (a large number of remaining bacteria).

  2. Electrochemical Liquid Phase Epitaxy (ec-LPE): A New Methodology for the Synthesis of Crystalline Group IV Semiconductor Epifilms.

    PubMed

    Demuth, Joshua; Fahrenkrug, Eli; Ma, Luyao; Shodiya, Titilayo; Deitz, Julia I; Grassman, Tyler J; Maldonado, Stephen

    2017-05-24

    Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.

  3. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z., E-mail: mmo09@slac.stanford.edu; Shen, X.; Chen, Z.

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.« less

  4. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z.; Shen, X.; Chen, Z.

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less

  5. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE PAGES

    Mo, M. Z.; Shen, X.; Chen, Z.; ...

    2016-08-04

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less

  6. A time-dependent order parameter for ultrafast photoinduced phase transitions.

    PubMed

    Beaud, P; Caviezel, A; Mariager, S O; Rettig, L; Ingold, G; Dornes, C; Huang, S-W; Johnson, J A; Radovic, M; Huber, T; Kubacka, T; Ferrer, A; Lemke, H T; Chollet, M; Zhu, D; Glownia, J M; Sikorski, M; Robert, A; Wadati, H; Nakamura, M; Kawasaki, M; Tokura, Y; Johnson, S L; Staub, U

    2014-10-01

    Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.

  7. Room Temperature Elastic Moduli and Vickers Hardness of Hot-Pressed LLZO Cubic Garnet

    DTIC Science & Technology

    2012-01-01

    polishing compounds, Leco, St. Joseph, MI). X - ray diffraction and scanning electron microscopy (SEM) The microstructure of the hot-pressed specimens...was examined on uncoated fracture surfaces by SEM with an accelerating voltage of 1 and 3 kV. Phase purity was evaluated from X - ray diffraction data...the micro- structure appeared to be homogenous for the two hot- pressed LLZO specimens included in this study (Fig. 1). X - ray diffraction confirmed that

  8. Native phasing of x-ray free-electron laser data for a G protein-coupled receptor.

    PubMed

    Batyuk, Alexander; Galli, Lorenzo; Ishchenko, Andrii; Han, Gye Won; Gati, Cornelius; Popov, Petr A; Lee, Ming-Yue; Stauch, Benjamin; White, Thomas A; Barty, Anton; Aquila, Andrew; Hunter, Mark S; Liang, Mengning; Boutet, Sébastien; Pu, Mengchen; Liu, Zhi-Jie; Nelson, Garrett; James, Daniel; Li, Chufeng; Zhao, Yun; Spence, John C H; Liu, Wei; Fromme, Petra; Katritch, Vsevolod; Weierstall, Uwe; Stevens, Raymond C; Cherezov, Vadim

    2016-09-01

    Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of "diffraction-before-destruction." However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A 2A adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.

  9. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis.

    PubMed

    Liu, Qun; Hendrickson, Wayne A

    2017-01-01

    The normal elastic X-ray scattering that depends only on electron density can be modulated by an "anomalous" component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those that can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.

  10. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  11. Facile synthesis of Co3O4 hexagonal plates by flux method

    NASA Astrophysics Data System (ADS)

    Han, Ji-Long; Meng, Qing-Fen; Gao, Sheng-Li

    2018-01-01

    Using a novel flux method, a hexagonal plate of Co3O4 was directly synthesized. In this method, CoCl2·6H2O, NaOH, and the cosolvent H3BO3 were heated to 750 °C for 2 h in a corundum crucible. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscope (HRTEM). Furthermore, XRD studies indicated that the product consisted of a cubic phase of Co3O4, and the phase existed in a completely crystalline form. Then, SEM results indicated that these hexagonal plates tiered up and they had diameters in the range of 2-10 μm. According to the results of SAED and HRTEM analyses, the interlayer spacing was about 0.24 nm, which corresponds to the interlayer distance of (3 1 1) crystal plane of cubic Co3O4.

  12. Functional Organic Monolayers

    DTIC Science & Technology

    2005-10-31

    Weierstall, K. Downing** and R. M. Glaeser*. J. Struct. Biol. 144, p209. 2003. 292 "A new thin-film phase of pentacene ". J. Wu and J. Spence. J...electron diffraction methods, we have discovered a new phase of pentacene , a material important for attempts to develop organic semiconductors

  13. Ultrafast molecular processes mapped by femtosecond x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Elsaesser, Thomas

    2012-02-01

    X-ray diffraction with a femtosecond time resolution allows for mapping photoinduced structural dynamics on the length scale of a chemical bond and in the time domain of atomic and molecular motion. In a pump-probe approach, a femtosecond excitation pulse induces structural changes which are probed by diffracting a femtosecond hard x-ray pulse from the excited sample. The transient angular positions and intensities of diffraction peaks give insight into the momentary atomic or molecular positions and into the distribution of electronic charge density. The simultaneous measurement of changes on different diffraction peaks is essential for determining atom positions and charge density maps with high accuracy. Recent progress in the generation of ultrashort hard x-ray pulses (Cu Kα, wavelength λ=0.154 nm) in laser-driven plasma sources has led to the implementation of the powder diffraction and the rotating crystal method with a time resolution of 100 fs. In this contribution, we report new results from powder diffraction studies of molecular materials. A first series of experiments gives evidence of a so far unknown concerted transfer of electrons and protons in ammonium sulfate [(NH4)2SO4], a centrosymmetric structure. Charge transfer from the sulfate groups results in the sub-100 fs generation of a confined electron channel along the c-axis of the unit cell which is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. A second study addresses atomic rearrangements and charge dislocations in the non-centrosymmetric potassium dihydrogen phosphate [KH2PO4, KDP]. Photoexcitation generates coherent low-frequency motions along the LO and TO phonon coordinates, leaving the average atomic positions unchanged. The time-dependent maps of electron density demonstrate a concomitant oscillatory relocation of electronic charge with a spatial amplitude of the order of a chemical bond length, two orders of magnitude larger than the vibrational amplitudes. The coherent phonon motions drive the charge relocation, similar to a soft mode driven phase transition between the ferro- and paraelectric phase of KDP.

  14. Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction Microscopy.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong

    2015-06-16

    Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, polyβ-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ∼1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure.

  15. Structure and transport in organic semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Vos, Sandra Elizabeth Fritz

    Organic Semiconductors represent an exciting area of research due to their potential application in cheap and flexible electronics. In spite of the abundant interest in organic electronics the electronic transport mechanism remains poorly understood. Understanding the connection between molecular structure, crystal packing, intermolecular interactions and electronic delocalization is an important aspect of improving the transport properties of organics in thin film transistors (TFTs). In an organic thin film transistor, charge carrier transport is believed to occur within the first few monolayers of the organic material adjacent to the dielectric. It is therefore critical to understand the initial stages of film growth and molecular structure in these first few layers and relate this structure to electronic transport properties. The structure of organic films at the interface with an amorphous silicon dioxide ( a-SiO2) dielectric and how structure relates to transport in a TFT is the focus of this thesis. Pentacene films on a-SiO2 were extensively characterized with specular and in-plane X-ray diffraction, and CuKalpha1, and synchrotron radiation. The first layer of pentacene molecules adjacent to the a-SiO2 crystallized in a rectangular unit cell with the long axis of the molecules perpendicular to the substrate surface. Subsequent layers of pentacene crystallized in a slightly oblique in-plane unit cell that evolved as thickness was increased. The rectangular monolayer phase of pentacene did not persist when subsequent layers were deposited. Specular diffraction with Synchrotron radiation of a 160 A pentacene film (˜ 10 layers) revealed growth initiation of a bulk-like phase and persistence of the thin-film phase. Pentacene molecules were more tilted in the bulk-like phase and the in-plane unit cell was slightly more oblique. Pentacene grains began to grow randomly oriented with respect to the substrate surface (out-of-plane) in films near 650 A in thickness. The single crystal bulk phase of pentacene was observed from specular diffraction (CuKalpha1) of a 2.5 mum film. These results suggest that the thickness of pentacene films on a-SiO2 is an important aspect in the comparison of crystal structure and electronic transport.

  16. Three dimensional X-ray Diffraction Contrast Tomography Reconstruction of Polycrystalline Strontium Titanate during Sintering and Electron Backscatter Diffraction Validation

    NASA Astrophysics Data System (ADS)

    Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.

    The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.

  17. Effect of Cooling Rates on γ → α Transformation and Metastable States in Fe-Cu Alloys with Addition of Ni

    NASA Astrophysics Data System (ADS)

    Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.

    2018-07-01

    α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.

  18. Diffractive optics fabricated by direct write methods with an electron beam

    NASA Technical Reports Server (NTRS)

    Kress, Bernard; Zaleta, David; Daschner, Walter; Urquhart, Kris; Stein, Robert; Lee, Sing H.

    1993-01-01

    State-of-the-art diffractive optics are fabricated using e-beam lithography and dry etching techniques to achieve multilevel phase elements with very high diffraction efficiencies. One of the major challenges encountered in fabricating diffractive optics is the small feature size (e.g. for diffractive lenses with small f-number). It is not only the e-beam system which dictates the feature size limitations, but also the alignment systems (mask aligner) and the materials (e-beam and photo resists). In order to allow diffractive optics to be used in new optoelectronic systems, it is necessary not only to fabricate elements with small feature sizes but also to do so in an economical fashion. Since price of a multilevel diffractive optical element is closely related to the e-beam writing time and the number of etching steps, we need to decrease the writing time and etching steps without affecting the quality of the element. To do this one has to utilize the full potentials of the e-beam writing system. In this paper, we will present three diffractive optics fabrication techniques which will reduce the number of process steps, the writing time, and the overall fabrication time for multilevel phase diffractive optics.

  19. Modulated structures and associated microstructures in the ferroelectric phase of Ba1-xSrxAl2O4 for 0.7 ≤ x ≤ 1.0

    NASA Astrophysics Data System (ADS)

    Tsukasaki, Hirofumi; Ishii, Yui; Tanaka, Eri; Kurushima, Kosuke; Mori, Shigeo

    2016-01-01

    In order to understand the ferroelectric and ferroelastic phases in Ba1-xSrxAl2O4 for 0.7 ≤ x ≤ 1.0, we have investigated the crystal structures and their associated microstructures of the ferroelectric and ferroelastic phases mainly by transmission electron microscopy (TEM) and scanning transmission electron microscopy-high-angle angular dark-field (STEM-HAADF) experiments, combined with powder X-ray diffraction experiments. Electron diffraction experiments showed that the ferroelectric and ferroelastic phases of Ba1-xSrxAl2O4 for 0.7 ≤ x ≤ 1.0 should be characterized as a modulated structure with the modulation vector of \\boldsymbol{{q}} = 0,1/2,0, whose space group should be monoclinic P21. High-resolution TEM experiments revealed that the microstructures in the monoclinic phase can be characterized as twin structures and nanometer-sized planar defects due to the monoclinic structure with the modulated structures, which are responsible for anomalous elastic behaviors and mechanoelectro-optical properties. In addition, subatomic-resolution STEM-HAADF images clearly indicated that the displacement of Al3+ ions involved in the AlO4 tetrahedra should play a crucial role in the formation of the modulated structures and twin structures.

  20. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    NASA Astrophysics Data System (ADS)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  1. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.

    PubMed

    Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G

    2006-08-28

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  2. Photoinduced discommensuration of the commensurate charge-density wave phase in 1 T -Ta S2

    NASA Astrophysics Data System (ADS)

    Tanimura, Katsumi

    2018-06-01

    The dynamics induced by femtosecond-laser excitation of the commensurate phase of the charge-density wave (CDW) in 1 T -Ta S2 have been studied using both time-resolved electron diffraction and the time-resolved spectroscopy of coherent-phonon dynamics. Electron diffraction results show that the commensurate CDW phase is transformed into a new phase with CDW order that is similar to the nearly commensurate phase with threshold-type transition rates; the threshold excitation density of 0.2 per 13 Ta atoms is evaluated. Coherent-phonon spectroscopy results show that, together with the amplitude mode of CDW with a frequency of 2.41 THz, two other modes with frequencies of 2.34 and 2.07 THz are excited in the photoexcited commensurate CDW phase over a timescale of several tens of picoseconds after excitation. Spectroscopic, temporal, and excitation-intensity dependent characteristics of the three coherent phonons reveal that a photoinduced decomposition of the commensurate CDW order into an ensemble of domains with different CDW orders is induced before the CDW-phase transition occurs. The physics underlying the photoinduced decomposition and evolution into discommensurations responsible for the CDW-order transformation are discussed.

  3. Coexistence of two electronic phases in LaTiO3+δ (0.01⩽δ⩽0.12) and their evolution with δ

    NASA Astrophysics Data System (ADS)

    Zhou, H. D.; Goodenough, J. B.

    2005-04-01

    Although LaTiO3+δ(0.01⩽δ⩽0.12) is single-phase to powder x-ray diffraction, its properties reveal that a hole-poor strongly correlated electronic phase coexists with a hole-rich itinerant-electron phase. With δ⩽0.03 , the hole-rich phase exists as a minority phase of isolated, mobile itinerant-electron clusters embedded in the hole-poor phase. With δ⩾0.08 , isolated hole-poor clusters are embedded in an itinerant-electron matrix. As δ>0.08 increases, the hole-poor clusters become smaller and more isolated until they are reduced to superparamagnetic strong-correlation fluctuations by δ=0.12 . This behavior is consistent with prediction from the virial theorem of a first-order phase change at the crossover from localized (or strongly correlated) to itinerant electronic behavior, a smaller equilibrium (Ti-O) bond length being in the itinerant-electron phase. Accordingly, the variation of volume with oxidation state does not obey Végard’s law; the itinerant-electron minority phase exerts a compressive force on the hole-poor matrix, and the hole-poor minority phase exerts a tensile stress on the hole-rich matrix.

  4. Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography.

    PubMed

    Yuan, Liang Leon; Herman, Peter R

    2015-12-21

    A multi-level nanophotonic structure is a major goal in providing advanced optical functionalities as found in photonic crystals and metamaterials. A three-level nano-grating phase mask has been fabricated in an electron-beam resist (ma-N) to meet the requirement of holographic generation of a diamond-like 3D nanostructure in photoresist by a single exposure step. A 2D mask with 600 nm periodicity is presented for generating first order diffracted beams with a preferred π/2 phase shift on the X- and Y-axes and with sufficient 1(st) order diffraction efficiency of 3.5% at 800 nm wavelength for creating a 3D periodic nanostructure in SU-8 photoresist. The resulting 3D structure is anticipated to provide an 8% complete photonic band gap (PBG) upon silicon inversion. A thin SiO2 layer was used to isolate the grating layers and multiple spin-coating steps served to planarize the final resist layer. A reversible soft coating (aquaSAVE) was introduced to enable SEM inspection and verification of each insulating grating layer. This e-beam lithographic method is extensible to assembling multiple layers of a nanophotonic structure.

  5. Monoclinic nanodomains in morphotropic phase boundary Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–PbTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Y., E-mail: y-sato@sigma.t.u-tokyo.ac.jp; Hirayama, T.; Ikuhara, Y.

    2014-02-24

    Crystalline structure is a fundamental characteristic of many materials, and drastic changes in properties may accompany crystal phase transitions. A prominent example of this is the morphotropic phase boundary of (Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3}) single crystal, a region that exhibits a high piezoelectric effect. Although the highest piezoelectricity is often attributed to a monoclinic crystal phase, formation of ferroelectric nanodomains (NDs) complicates understanding of this crystal structure. In this Letter, we report dedicated transmission electron microscopy and electron diffraction analysis to understand the crystal structure at the ND level. Splitting of diffraction spots, caused by very small lattice distortionmore » in the NDs, is important to understanding crystal structure and has been unambiguously observed. The results can be explained by monoclinic phase NDs. Combining these results with our previous findings on ND dynamics [Sato et al. Phys. Rev. Lett. 107, 187601 (2011)], monoclinic NDs can potentially make a considerable contribution to the piezoelectricity in these materials.« less

  6. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  7. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun

    2015-02-11

    The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  8. Characterization of Microstructure and Mechanical Properties of Mg-8Li-3Al-1Y Alloy Subjected to Different Rolling Processes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Liu, Qiang; Liu, Ruirui; Zhou, Haitao

    2018-06-01

    The mechanical properties and microstructure evolution of Mg-8Li-3Al-1Y alloy undergoing different rolling processes were systematically investigated. X-ray diffraction, optical microscope, scanning electron microscopy, transmission electron microscopy as well as electron backscattered diffraction were used for tracking the microstructure evolution. Tensile testing was employed to characterize the mechanical properties. After hot rolling, the MgLi2Al precipitated in β-Li matrix due to the transformation reaction: β-Li → β-Li + MgLi2Al + α-Mg. As for the alloy subjected to annealed hot rolling, β-Li phase was clearly recrystallized while recrystallization rarely occurred in α-Mg phase. With regard to the microstructure undergoing cold rolling, plenty of dislocations and dislocation walls were easily observed. In addition, the microstructure of alloys subjected to annealed cold rolling revealed the formation of new fresh α-Mg grains in β-Li phase due to the precipitation reaction. The mechanical properties and fracture modes of Mg-8Li-3Al-1Y alloys can be effectively tuned by different rolling processes.

  9. Structure and Stoichiometry of MgxZny in Hot-Dipped Zn-Mg-Al Coating Layer on Interstitial-Free Steel

    NASA Astrophysics Data System (ADS)

    Kim, Jaenam; Lee, Chongsoo; Jin, Youngsool

    2018-03-01

    Correlations of stoichiometry and phase structure of MgxZny in hot-dipped Zn-Mg-Al coating layer which were modified by additive element have been established on the bases of diffraction and phase transformation principles. X-ray diffraction (XRD) results showed that MgxZny in the Zn-Mg-Al coating layers consist of Mg2Zn11 and MgZn2. The additive elements had a significant effect on the phase fraction of Mg2Zn11 while the Mg/Al ratio had a negligible effect. Transmission electron microscope (TEM) assisted selected area electron diffraction (SAED) results of small areas MgxZny were indexed dominantly as MgZn2 which have different Mg/Zn stoichiometry between 0.10 and 0.18. It is assumed that the MgxZny have deviated stoichiometry of the phase structure with additive element. The deviated Mg2Zn11 phase structure was interpreted as base-centered orthorhombic by applying two theoretical validity: a structure factor rule explained why the base-centered orthorhombic Mg2Zn11 has less reciprocal lattice reflections in the SAED compared to hexagonal MgZn2, and a phase transformation model elucidated its reasonable lattice point sharing of the corresponding unit cell during hexagonal MgZn2 (a, b = 0.5252 nm, c = 0.8577 nm) transform to intermediate tetragonal and final base-centered orthorhombic Mg2Zn11 (a = 0.8575 nm, b = 0.8874 nm, c = 0.8771 nm) in the equilibrium state.

  10. Study of thermal stability of spontaneously grown superlattice structures by metalorganic vapor phase epitaxy in AlxGa1-xAs/GaAs heterostructure

    NASA Astrophysics Data System (ADS)

    Pradhan, A.; Maitra, T.; Mukherjee, S.; Mukherjee, S.; Satpati, B.; Nayak, A.; Bhunia, S.

    2018-04-01

    Spontaneous superlattice ordering in a length scale larger than an atomic layer has been observed in AlxGa1-xAs layers grown on (100) GaAs substrates by metalorganic vapor phase epitaxy. Transmission electron microscopic image clearly revealed superlattice structures and the selected area electron diffraction showed closely spaced superlattice spots around the main diffraction pattern. High resolution x-ray diffraction showed distinct and sharp superlattice peaks symmetrically positioned around the central (004) Bragg peak and the similar measurement for (002) planes, which is quasi-forbidden for Bragg reflections showed only superlattice peaks. Thermal annealing studies showed the superlattice structure was stable up to 800 °C and disappeared after annealing at 900 °C retaining the crystallinity of the epilayer. Study of inter-diffusivitiesin such superlattice structures has been carried out using high temperaturex-ray diffraction results. Here we present (004) x-ray θ-2θ scans of the AlGaAs/GaAs (100) sample with annealing time for different temperatures. Conclusions regarding interdiffusion in such superlattice structures are drawn from high temperature X-ray measurements.

  11. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The ultrafast laser excitation of matters leads to non-equilibrium states with complex solid-liquid phase transition dynamics. We used electron diffraction at mega-electronvolt energies to visualize the ultrafast melting of gold on the atomic scale length. For energy densities approaching the irreversible melting regime, we first observed heterogeneous melting on time scales of 100 ps to 1000 ps, transitioning to homogeneous melting that occurs catastrophically within 10-20 ps at higher energy densities. We showed evidence for the heterogeneous coexistence of solid and liquid. We determined the ion and electron temperature evolution and found superheated conditions. Our results constrain the electron-ion couplingmore » rate, determine the Debye temperature and reveal the melting sensitivity to nucleation seeds.« less

  12. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grygiel, C.; Lebius, H.; Bouffard, S.

    2012-01-15

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIXmore » to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.« less

  13. Phase transition studies of germanium to 1. 25 Mbar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Y.K.; Brister, K.E.; Desgreniers, S.

    1986-05-05

    New phase transitions in Ge were observed by energy-dispersive x-ray diffraction techniques for pressures up to 125 GPa (1.25 Mbar) as follows: the ..beta..-Sn structure to the simple hexagonal (sh) phase at 75 +- 3 GPa and to the double hexagonal close-packed structure (dhcp) at 102 +- 5 GPa. These are the highest pressures for which a crystalline structure change has been directly observed in any material by x-ray diffraction. Total-energy pseudopotential calculations predict 84 +- 10 GPa for the ..beta..-Sn to sh phase transition and 105 +- 21 GPa for sh to hcp (not dhcp) transition. The role ofmore » 3d core electrons in increasing the transformation pressures in Ge, as compared to Si, is emphasized.« less

  14. Carrier Dynamics and Application of the Phase Coherent Photorefractive Effect in ZnSe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Dongol, Amit

    The intensity dependent diffraction efficiency of a phase coherent photorefractive (PCP) ZnSe quantum well (QW) is investigated at 80 K in a two-beam four-wave mixing (FWM) configuration using 100 fs laser pulses with a repetition rate of 80 MHz. The observed diffraction efficiencies of the first and second-order diffracted beam are on the order of 10-3 and 10-5, respectively, revealing nearly no intensity dependence. The first-order diffraction is caused by the PCP effect where the probe-pulse is diffracted due to a long-living incoherent electron density grating in the QW. The second-order diffraction is created by a combination of diffraction processes. For negative probe-pulse delay, the exciton polarization is diffracted at the electron grating twice by a cascade effect. For positive delay, the diffracted signal is modified by the destructive interference with a chi(5) generated signal due to a dynamical screening effect. Model calculations of the signal traces based on the optical Bloch equations considering inhomogeneous broadening of exciton energies are in good agreement with the experimental data. To study the carrier dynamics responsible for the occurrence of the PCP effect, threebeam FWM experiments are carried out. The non-collinear wave-vectors k1 , k2 and k3 at central wavelength of 441 nm (~2.81 eV) were resonantly tuned to the heavy-hole exciton transition energy at 20 K. In the FWM experiment the time coincident strong pump pulses k1 and k2 create both an exciton density grating in the QW and an electron-hole pair grating in the GaAs while the delayed weak pulse k3 simultaneously probes the exciton lifetime as well as the electron grating capture time. The model calculations are in good agreement with the experimental results also providing information about the transfer delay of electrons arriving from the substrate to the QW. For negative probe-pulse delay we still observe a diffracted signal due to the long living electron density grating in the QW. The electron grating build-up and decay times are also studied with the modified three-beam FWM set-up. Using an optical shutter for pump pulses k1and k2, the dynamics of the electron grating formation and its decay is continuously probed by a delayed pulse k3. The obtained build-up and decay times are found to depend nearly linearly on the intensity of incident pulses k1 and k2 being on the order of several microseconds at low pump intensities. The PCP effect in ZnSe QW possesses a time-gating capability which can be used for real-time holographic imaging. In this work we demonstrate contrast enhanced real time holographic imaging (CEHI) of floating glass beads and of living unicellular animals (Paramecium and Euglena cells) in aqueous solution. We also demonstrate CEHI of a ~100 im thick wire concealed behind a layer of chicken skin. The results demonstrate the potential of PCP QWs for real-time and depth-resolved imaging of moving micrometer sized biological objects in transparent media or of obscured objects in turbid media.

  15. Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu

    2007-09-01

    Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.

  16. Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping

    DOE PAGES

    Pekin, Thomas C.; Gammer, Christoph; Ciston, Jim; ...

    2017-01-28

    Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as their positions relative to a reference are directly used to calculate strain. Here in this study, we compare several correlation methods using both simulated and experimental data in order to directly probe susceptibility to measurement error due to non-uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with amore » Sobel filter before performing cross correlation or performing a square-root magnitude weighted phase correlation returned the best results when inner disk structure was present. Lastly, we have tested these methods both on simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304 stainless steel.« less

  17. Ti12.5Zr21V10Cr8.5MnxCo1.5Ni46.5-x AB2-type metal hydride alloys for electrochemical storage application: Part 1. Structural characteristics

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Levin, I.; Newbury, D.; Young, K.; Chao, B.; Creuziger, A.

    2012-11-01

    The microstructures of a series of AB2-based metal hydride alloys (Ti12.5Zr21V10Cr8.5MnxCo1.5Ni46.5-x) designed to have different fractions of non-Laves secondary phases were studied by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, and electron backscatter diffraction. The results indicate that the alloys contain a majority of hydrogen storage Laves phases and a minority of fine-structured non-Laves phases. Formation of the phases is accomplished by dendritic growth of a hexagonal C14 Laves phase. The C14 phase is followed by either a peritectic solidification of a cubic C15 Laves phase (low Mn containing alloys) or a C14 phase of different composition (high Mn containing alloys), and finally a B2 phase formed in the interdendritic regions (IDR). The interdendritic regions may then undergo further solid-state transformation into Zr7Ni10-type, Zr9Ni11-type and TiNi-type phases. As the Mn content in the alloy increases, the fraction of the C14 phase increases, whereas the fraction of C15 decreases. In the IDRs when the alloy's Mn content increases the Zr9Ni11 phases and Zr7Ni10 phase fraction first increases and then decreases, while the TiNi-based phase fraction first increases and then stabilized at 0.02. IDR compositions can be generally expressed as (Ti,Zr,V,Cr,Mn,Co)50Ni50, which accounted for 7-10% of the overall alloy volume fraction.

  18. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.

    PubMed

    Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei

    2013-02-01

    High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

  19. Phase behavior and transitions of self-assembling nano-structured materials

    NASA Astrophysics Data System (ADS)

    Duan, Hu

    Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Q.; Cheng, J. -G.; Fan, W.

    The perovskite (Pv) SrIrO 3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn 4+ for Ir 4+ in the SrIr 1-xSn xO 3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic phase at TN ≥ 225 K. The continuous change of the cell volume as detected by X-ray diffraction andmore » the l-shape transition of the specific heat on cooling through TN demonstrate that the metal-insulator transition is of second-order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below TN. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below TN in the same way as proposed by Slater.« less

  1. Slater Insulator in Iridate Perovskites with Strong Spin-Orbit Coupling.

    PubMed

    Cui, Q; Cheng, J-G; Fan, W; Taylor, A E; Calder, S; McGuire, M A; Yan, J-Q; Meyers, D; Li, X; Cai, Y Q; Jiao, Y Y; Choi, Y; Haskel, D; Gotou, H; Uwatoko, Y; Chakhalian, J; Christianson, A D; Yunoki, S; Goodenough, J B; Zhou, J-S

    2016-10-21

    The perovskite SrIrO_{3} is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn^{4+} for Ir^{4+} in the SrIr_{1-x}Sn_{x}O_{3} perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at T_{N}≥225  K. The continuous change of the cell volume as detected by x-ray diffraction and the λ-shape transition of the specific heat on cooling through T_{N} demonstrate that the metal-insulator transition is of second order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below T_{N}. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below T_{N} in the same way as proposed by Slater.

  2. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    PubMed

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Photon-assisted electron energy loss spectroscopy and ultrafast imaging.

    PubMed

    Howie, Archie

    2009-08-01

    A variety of ways is described in which photons can be used not only for ultrafast electron microscopy but also to enormously widen the energy range of spatially-resolved electron spectroscopy. Periodic chains of femtosecond laser pulses are a particularly important and accurately timed source for single-shot imaging and diffraction as well as for several forms of pump-probe microscopy at even higher spatial resolution and sub-picosecond timing. Many exciting new fields are opened up for study by these developments. Ultrafast, single shot diffraction with intense pulses of X-rays supplemented by phase retrieval techniques may eventually offer a challenging alternative and purely photon-based route to dynamic imaging at high spatial resolution.

  4. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  5. High current table-top setup for femtosecond gas electron diffraction.

    PubMed

    Zandi, Omid; Wilkin, Kyle J; Xiong, Yanwei; Centurion, Martin

    2017-07-01

    We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We present here a device that uses pulse compression to overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. The high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.

  6. High current table-top setup for femtosecond gas electron diffraction

    DOE PAGES

    Zandi, Omid; Wilkin, Kyle J.; Xiong, Yanwei; ...

    2017-05-08

    Here, we have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We also present here a device that uses pulse compression tomore » overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. Finally, the high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.« less

  7. Extracting conformational structure information of benzene molecules via laser-induced electron diffraction

    DOE PAGES

    Ito, Yuta; Wang, Chuncheng; Le, Anh-Thu; ...

    2016-05-01

    Here, we have measured the angular distributions of high energy photoelectrons of benzene molecules generated by intense infrared femtosecond laser pulses. These electrons arise from the elastic collisions between the benzene ions with the previously tunnel-ionized electrons that have been driven back by the laser field. Theory shows that laser-free elastic differential cross sections (DCSs) can be extracted from these photoelectrons, and the DCS can be used to retrieve the bond lengths of gas-phase molecules similar to the conventional electron diffraction method. From our experimental results, we have obtained the C-C and C-H bond lengths of benzene with a spatialmore » resolution of about 10 pm. Our results demonstrate that laser induced electron diffraction (LIED) experiments can be carried out with the present-day ultrafast intense lasers already. Looking ahead, with aligned or oriented molecules, more complete spatial information of the molecule can be obtained from LIED, and applying LIED to probe photo-excited molecules, a “molecular movie” of the dynamic system may be created with sub-A°ngstrom spatial and few-ten femtosecond temporal resolutions.« less

  8. Coherent diffractive imaging using randomly coded masks

    DOE PAGES

    Seaberg, Matthew H.; d'Aspremont, Alexandre; Turner, Joshua J.

    2015-12-07

    We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. As a result, the experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-raymore » synchrotron and even free electron laser experiments.« less

  9. Synchrotron-radiation X-ray diffraction evidence of the emergence of ferroelectricity in LiTaO3 by ordering of a disordered Li ion in the polar direction

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Gang; Abe, Tomohiro; Moriyoshi, Chikako; Tanaka, Hiroshi; Kuroiwa, Yoshihiro

    2018-07-01

    Synchrotron-radiation X-ray diffraction studies as a function of temperature reveal the structural origin of the spontaneous polarization and related lattice strains in stoichiometric LiTaO3. Electron charge density distribution maps visualized by the maximum entropy method clearly demonstrate that ordering of the disordered Li ion in the polar direction accompanied by deformation of the oxygen octahedra lead to the ferroelectric phase transition. The ionic polarization attributed to the ionic displacements is dominant in the polar structure. The structural change occurs continuously at the phase transition temperature, which suggests a second-order phase transition.

  10. Coherent diffractive imaging using randomly coded masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaberg, Matthew H., E-mail: seaberg@slac.stanford.edu; Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025; D'Aspremont, Alexandre

    2015-12-07

    We experimentally demonstrate an extension to coherent diffractive imaging that encodes additional information through the use of a series of randomly coded masks, removing the need for typical object-domain constraints while guaranteeing a unique solution to the phase retrieval problem. Phase retrieval is performed using a numerical convex relaxation routine known as “PhaseCut,” an iterative algorithm known for its stability and for its ability to find the global solution, which can be found efficiently and which is robust to noise. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even freemore » electron laser experiments.« less

  11. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography.

    PubMed

    Chu, Cheng Hung; Shiue, Chiun Da; Cheng, Hsuen Wei; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping

    2010-08-16

    Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a ZnS-SiO(2) dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge(2)Sb(2)Te(5) thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.

  12. Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations.

    PubMed

    Eggeman, A S; London, A; Midgley, P A

    2013-11-01

    Graphical processing units (GPUs) offer a cost-effective and powerful means to enhance the processing power of computers. Here we show how GPUs can greatly increase the speed of electron diffraction pattern simulations by the implementation of a novel method to generate the phase grating used in multislice calculations. The increase in speed is especially apparent when using large supercell arrays and we illustrate the benefits of fast encoding the transmission function representing the atomic potentials through the simulation of thermal diffuse scattering in silicon brought about by specific vibrational modes. © 2013 Elsevier B.V. All rights reserved.

  13. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less

  14. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase

    DOE PAGES

    Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.

    2017-06-26

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less

  15. Femtosecond Optical and X-Ray Measurement of the Semiconductor-to-Metal Transition in VO2

    NASA Astrophysics Data System (ADS)

    Cavalleri, Andrea; Toth, Csaba; Squier, Jeff; Siders, Craig; Raksi, Ferenc; Forget, Patrick; Kieffer, Jean-Claude

    2001-03-01

    While the use of ultrashort visible pulses allows access to ultrafast changes in the optical properties during phase transitions, measurement of the correlation between atomic movement and electronic rearrangement has proven more elusive. Here, we report on the conjunct measurement of ultrafast electronic and structural dynamics during a semiconductor-to-metal phase transition in VO2. Rearrangement of the unit cell from monoclinic to rutile (measured by ultrafast x-ray diffraction) is accompanied by a sharp increase in the electrical conductivity and perturbation of the optical properties (measured with ultrafast visible spectroscopy). Ultrafast x-ray diffraction experiments were performed using femtosecond bursts of Cu-Ka from a laser generated plasma source. A clear rise of the diffraction signal originating from the impulsively generated metallic phase was observable on the sub-picosecond timescale. Optical experiments were performed using time-resolved microscopy, providing temporally and spatially resolved measurements of the optical reflectivity at 800 nm. The data indicate that the reflectivity of the low-temperature semiconducting solid is driven to that of the equilibrium, high-temperature metallic phase within 400 fs after irradiation with a 50-fs laser pulse at fluences in excess of 10 mJ/cm2. In conclusion, the data presented in this contribution suggest that the semiconductor-to-metal transition in VO2 occurs within 500 fs after laser-irradiation. A nonthermal physical mechanism governs the re-arrangement.

  16. Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent

    PubMed Central

    Nakane, Takanori; Hanashima, Shinya; Suzuki, Mamoru; Saiki, Haruka; Hayashi, Taichi; Kakinouchi, Keisuke; Sugiyama, Shigeru; Kawatake, Satoshi; Matsuoka, Shigeru; Matsumori, Nobuaki; Nango, Eriko; Kobayashi, Jun; Shimamura, Tatsuro; Kimura, Kanako; Mori, Chihiro; Kunishima, Naoki; Sugahara, Michihiro; Takakyu, Yoko; Inoue, Shigeyuki; Masuda, Tetsuya; Hosaka, Toshiaki; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Inoue, Tsuyoshi; Nureki, Osamu; Iwata, So; Murata, Michio; Mizohata, Eiichi

    2016-01-01

    The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams. PMID:27799539

  17. Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent.

    PubMed

    Nakane, Takanori; Hanashima, Shinya; Suzuki, Mamoru; Saiki, Haruka; Hayashi, Taichi; Kakinouchi, Keisuke; Sugiyama, Shigeru; Kawatake, Satoshi; Matsuoka, Shigeru; Matsumori, Nobuaki; Nango, Eriko; Kobayashi, Jun; Shimamura, Tatsuro; Kimura, Kanako; Mori, Chihiro; Kunishima, Naoki; Sugahara, Michihiro; Takakyu, Yoko; Inoue, Shigeyuki; Masuda, Tetsuya; Hosaka, Toshiaki; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Inoue, Tsuyoshi; Nureki, Osamu; Iwata, So; Murata, Michio; Mizohata, Eiichi

    2016-11-15

    The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.

  18. Long-term oxidization and phase transition of InN nanotextures

    PubMed Central

    2011-01-01

    The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase. PMID:21711908

  19. Transmission/Scanning Transmission Electron Microscopy | Materials Science

    Science.gov Websites

    imaging such as high resolution TEM. Transmission electron diffraction patterns help to determine the microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives high scattering angle can be collected to form high-resolution, chemically sensitive, atomic number (Z

  20. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level.

    PubMed

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2015-12-01

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. Copyright © 2015. Published by Elsevier B.V.

  1. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Petkov, Mihail P.; ...

    2007-04-07

    Here, we report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  2. Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires.

    PubMed

    Jacobs, Benjamin W; Ayres, Virginia M; Petkov, Mihail P; Halpern, Joshua B; He, Maoqi; Baczewski, Andrew D; McElroy, Kaylee; Crimp, Martin A; Zhang, Jiaming; Shaw, Harry C

    2007-05-01

    We report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

  3. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns

    NASA Astrophysics Data System (ADS)

    Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.

    2015-11-01

    Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.

  4. Solar physical vapor deposition preparation and microstructural characterization of TiO2 based nanophases for dye-sensitized solar cell applications.

    PubMed

    Negrea, Denis; Ducu, Catalin; Moga, Sorin; Malinovschi, Viorel; Monty, Claude J A; Vasile, Bogdan; Dorobantu, Dorel; Enachescu, Marian

    2012-11-01

    Titanium dioxide exists in three crystalline phases: anatase, rutile and brookite. Although rutile is thermodynamically more stable, anatase is considered as the most favorable phase for photocatalysis and solar energy conversion. Recent studies have shown a significant improvement of light harvesting and overall solar conversion efficiency of anatase nanoparticles in dye-sensitized solar cells (DSSCs) when using a mixture of anatase and rutile phases (10-15% rutile). TiO2 nanopowders have been prepared by a solar physical vapor deposition process (SPVD). This method has been developed in Odeillo-Font Romeu France using "heliotron" solar reactors working under concentrated sunlight in 2 kW solar furnaces. By controlling reactor's atmosphere type (air/argon) and gas pressure, several types of anatase/rutile nanophases have been obtained with slightly different microstructural properties and morphological characteristics. X-ray diffraction analyses (XRD) were performed on precursor and on the SPVD obtained nanopowders. Information concerning their phase composition and coherence diffraction domain (crystallites size and strain) was obtained. Nanopowders morphology has been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  5. Preparation and characterization of a possible topological insulator BiYO3: experiment versus theory.

    PubMed

    Zhang, Y; Deng, S; Pan, M; Lei, M; Kan, X; Ding, Y; Zhao, Y; Köhler, J

    2016-03-21

    The Bi-Y-O system has been investigated by X-ray powder diffraction, electron diffraction, UV-vis and IR experiments. A metastable cubic high temperature phase of BiYO3 with fluorite-type structure has been structurally characterized for the first time and shows a large band gap of ∼ 5.9 eV. A unified description for the numerous structural variants discovered in the Bi-Y-O system is established within the symmetry breaking approach. This rich structural phenomenon makes the Bi-Y-O system a promising candidate in the search for new topological insulators for applications. On this basis, a long standing controversy on the phase diagram of the Bi-Y-O system has been solved. Our DFT calculations predict a high pressure phase for BiYO3 with perovskite (ABO3) structure and ordering of Bi and Y on the A and B sites, respectively. However, our analysis of the nature of the low energy electronic structure shows that this phase is not a suitable candidate for a topological insulator.

  6. Reflection high-energy electron diffraction study of growth and interface formation of the Ga(1-x)In(x)Sb/InAs strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Fan, W. C.; Zborowski, J. T.; Golding, T. D.; Shih, H. D.

    1992-01-01

    Reflection high-energy electron diffraction (RHEED) during molecular beam epitaxy is used to study the growth and interface formation of the Ga(1-x)In(x)Sb/InAs (x is not greater than 0.4) strained-layer superlattices (SLSs) on GaSb(100) substrates. A number of surface atomic structures were observed in the growth of the SLS: a (1 x 3) phase from the InAs epilayer surface, a (2 x 3) phase, a (2 x 4) phase, and diffuse (1 x 1)-like phases from the InAs epilayer surface. It is suggested that the long-range order quality of the interface of Ga(1-x)In(x)Sb on InAs may be better than that of the interface of InAs on Ga(1-x)In(x)Sb, but the abruptness of the interfaces would still be compatible. The RHEED intensity variations in the formation of the interfaces are discussed in terms of interface chemical reactions.

  7. In search of the elusive IrB 2: Can mechanochemistry help?

    DOE PAGES

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...

    2015-10-20

    We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.

  8. In search of the elusive IrB 2: Can mechanochemistry help?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina

    We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.

  9. Orthorhombic Zr2Co11 phase revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X. -Z.; Zhang, W. Y.; Sellmyer, D. J.

    2014-10-01

    The structure of the orthorhombic Zr2Co11 phase was revisited in the present work. Selected-area electron diffraction (SAED) and high-resolution electron microscopy (HREM) techniques were used to investigate the structure. They show the orthorhombic Zr2Co11 phase has a 1-D incommensurate modulated structure. The structure can be approximately described as a B-centered orthorhombic lattice. The lattice parameters of the orthorhombic Zr2Co11 phase have been determined by a tilt series of SAED patterns. A hexagonal network with a modulation wave has been observed in the HREM image and the hexagonal motif is considered as the basic structural unit.

  10. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5.

    PubMed

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G

    2015-08-28

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization.

  11. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5

    PubMed Central

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G.

    2015-01-01

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization. PMID:26314613

  12. Intramolecular π-π Interactions in Flexibly Linked Partially Fluorinated Bisarenes in the Gas Phase.

    PubMed

    Blomeyer, Sebastian; Linnemannstöns, Marvin; Nissen, Jan Hendrick; Paulus, Jannik; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2017-10-16

    Three compounds with phenyl and pentafluorophenyl rings bridged by (CH 2 ) 3 and (CH 2 ) 2 SiMe 2 units were synthesized by hydrosilylation and C-C coupling reactions. Their solid-state structures are dominated by intermolecular π stacking interactions, primarily leading to dimeric or chain-type aggregates. Analysis of free molecules in the gas phase by electron diffraction revealed the most abundant conformer to be significantly stabilized by intramolecular π-π interactions. For the silicon compounds, structures characterized by σ-π interactions between methyl and pentafluorophenyl groups are second lowest in energy and cannot be excluded completely by the gas electron diffraction experiments. C 6 H 5 (CH 2 ) 3 C 6 F 5 , in contrast, is present as a single conformer. The gas-phase structures served as a reference for the evaluation of a series of (dispersion-corrected) quantum-chemical calculations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Q.; Hendrickson, W.

    2017-01-01

    The normal elastic X-ray scattering that depends only on electron density can be modulated by an ?anomalous? component due to resonance between X-rays and electronic orbitals. Anomalous scattering thereby precisely identifies atomic species, since orbitals distinguish atomic elements, which enables the multi- and single-wavelength anomalous diffraction (MAD and SAD) methods. SAD now predominates in de novo structure determination of biological macromolecules, and we focus here on the prevailing SAD method. We describe the anomalous phasing theory and the periodic table of phasing elements that are available for SAD experiments, differentiating between those readily accessible for at-resonance experiments and those thatmore » can be effective away from an edge. We describe procedures for present-day SAD phasing experiments and we discuss optimization of anomalous signals for challenging applications. We also describe methods for using anomalous signals as molecular markers for tracing and element identification. Emerging developments and perspectives are discussed in brief.« less

  14. A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform.

    PubMed

    René de Cotret, Laurent P; Siwick, Bradley J

    2017-07-01

    The general problem of background subtraction in ultrafast electron powder diffraction (UEPD) is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT) wavelet transforms when applied to simulated UEPD data on the M1-R phase transition in VO 2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, S.; Devaraj, A.; Kovarik, L.

    Transformation kinetics of metastable body-centered cubic γ-UMo phase in U-10 wt.percent Mo alloy during annealing at sub-eutectoid temperatures of 500C and 400C has been determined as a function of time using detailed microstructural characterization by scanning electron microscopy, X-ray diffraction analysis, scanning transmission electron microscopy, and atom probe tomography. Based on the results, we found that the phase transformation is initiated by cellular transformation at both the temperatures, which results in formation of a lamellar microstructure along prior γ-UMo grain boundaries.

  16. H-T magnetic phase diagrams of electron-doped Sm1-xCaxMnO3: Evidence for phase separation and metamagnetic transitions

    NASA Astrophysics Data System (ADS)

    Respaud, M.; Broto, J. M.; Rakoto, H.; Vanacken, J.; Wagner, P.; Martin, C.; Maignan, A.; Raveau, B.

    2001-04-01

    The magnetic properties of the polycrystalline manganites Sm1-xCaxMnO3 have been studied for (1>=x>=2/3) under high magnetic fields up to 50 T. The phase diagrams in the H-T plane have been determined. The more representative systems have also been studied by means of neutron diffraction experiments. Increasing the electron concentration in CaMnO3 leads to an increasing minor ferromagnetic (FM) component superimposed on the antiferromagnetic (AFM) background. A cluster-glass regime is observed for x=0.9, where FM clusters are embedded in the G-type AFM matrix of the parent compound. For 0.8>=x, field-induced transitions from the AFM ground state to a FM one have been observed. They correspond to the melting of the C-type AFM orbital-ordered phase for x=0.8, and to the collapse of the charge-ordered phase for x=3/4. In between these two characteristic domains of concentration, x~0.85, the magnetization curves show a superposition of the two above behaviors, suggesting phase separation. This scenario is consistent with the neutron diffraction results showing that the crystalline and magnetic structures of each phase coexist.

  17. Molecular structure and conformational preferences of 1-bromo-1-silacyclohexane, CH2(CH2CH2)2SiH-Br, as studies by gas-phase electron diffraction and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Belyakov, A. V.; Baskakov, A. A.; Naraev, V. N.; Rykov, A. N.; Oberhammer, H.; Arnason, I.; Wallevik, S. O.

    2012-10-01

    The molecular structure of axial and equatorial conformer of the 1-bromo-1-silacyclohexane molecule, CH2(CH2CH2)2SiH-Br, as well as thermodynamic equilibrium between these species are investigated by means of gas-phase electron diffraction and quantum chemistry on the MP2(full)/SDB-AUG-cc-PVTZ level of theory. It is revealed that according to electron diffraction data, the compound exists in the gasphase as a mixture of conformers possessing the chair conformation of the six-membered ring and C s symmetry and differing in the axial and equatorial position of the Si-Br bond (ax. = 80(5) mol %, eq. = 20(7) mol %) at 352 K, that corresponds to the value of A = ( G {ax/○} - G {eq/○}) = -0.82(32) kcal/mol. It is found that observed data agree well with theoretical ones. Using Natural Bond Orbital (NBO) analysis it is revealed that axial conformer of 1-bromo-1-silacyclohexane molecule is an example of the stabilization of the form that is unfavorable from the point of view of steric effects and effects of conjugations. It is concluded that stabilization is achieved due to electrostatic interactions.

  18. Non-destructive detection of cross-sectional strain and defect structure in an individual Ag five-fold twinned nanowire by 3D electron diffraction mapping.

    PubMed

    Fu, Xin; Yuan, Jun

    2017-07-24

    Coherent x-ray diffraction investigations on Ag five-fold twinned nanowires (FTNWs) have drawn controversial conclusions concerning whether the intrinsic 7.35° angular gap could be compensated homogeneously through phase transformation or inhomogeneously by forming disclination strain field. In those studies, the x-ray techniques only provided an ensemble average of the structural information from all the Ag nanowires. Here, using three-dimensional (3D) electron diffraction mapping approach, we non-destructively explore the cross-sectional strain and the related strain-relief defect structures of an individual Ag FTNW with diameter about 30 nm. The quantitative analysis of the fine structure of intensity distribution combining with kinematic electron diffraction simulation confirms that for such a Ag FTNW, the intrinsic 7.35° angular deficiency results in an inhomogeneous strain field within each single crystalline segment consistent with the disclination model of stress-relief. Moreover, the five crystalline segments are found to be strained differently. Modeling analysis in combination with system energy calculation further indicates that the elastic strain energy within some crystalline segments, could be partially relieved by the creation of stacking fault layers near the twin boundaries. Our study demonstrates that 3D electron diffraction mapping is a powerful tool for the cross-sectional strain analysis of complex 1D nanostructures.

  19. Structural studies of degradation process of zirconium dioxide tetragonal phase induced by grinding with dental bur

    NASA Astrophysics Data System (ADS)

    Piosik, A.; Żurowski, K.; Pietralik, Z.; Hędzelek, W.; Kozak, M.

    2017-11-01

    Zirconium dioxide has been widely used in dental prosthetics. However, the improper mechanical treatment can induce changes in the microstructure of zirconium dioxide. From the viewpoint of mechanical properties and performance, the phase transitions of ZrO2 from the tetragonal to the monoclinic phase induced by mechanical processing, are particularly undesirable. In this study, the phase transitions of yttrium stabilized zirconium dioxide (Y-TZP) induced by mechanical treatment are investigated by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and powder diffraction (XRD). Mechanical stress was induced by different types of drills used presently in dentistry. At the same time the surface temperature was monitored during milling using a thermal imaging camera. Diffraction analysis allowed determination of the effect of temperature and mechanical processing on the scale of induced changes. The observed phase transition to the monoclinic phase was correlated with the methods of mechanical processing.

  20. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization.

    PubMed

    Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald

    2013-01-01

    Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.

  1. Phase Imaging: A Compressive Sensing Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Sebastian; Stevens, Andrew; Browning, Nigel D.

    Since Wolfgang Pauli posed the question in 1933, whether the probability densities |Ψ(r)|² (real-space image) and |Ψ(q)|² (reciprocal space image) uniquely determine the wave function Ψ(r) [1], the so called Pauli Problem sparked numerous methods in all fields of microscopy [2, 3]. Reconstructing the complete wave function Ψ(r) = a(r)e-iφ(r) with the amplitude a(r) and the phase φ(r) from the recorded intensity enables the possibility to directly study the electric and magnetic properties of the sample through the phase. In transmission electron microscopy (TEM), electron holography is by far the most established method for phase reconstruction [4]. Requiring a highmore » stability of the microscope, next to the installation of a biprism in the TEM, holography cannot be applied to any microscope straightforwardly. Recently, a phase retrieval approach was proposed using conventional TEM electron diffractive imaging (EDI). Using the SAD aperture as reciprocal-space constraint, a localized sample structure can be reconstructed from its diffraction pattern and a real-space image using the hybrid input-output algorithm [5]. We present an alternative approach using compressive phase-retrieval [6]. Our approach does not require a real-space image. Instead, random complimentary pairs of checkerboard masks are cut into a 200 nm Pt foil covering a conventional TEM aperture (cf. Figure 1). Used as SAD aperture, subsequently diffraction patterns are recorded from the same sample area. Hereby every mask blocks different parts of gold particles on a carbon support (cf. Figure 2). The compressive sensing problem has the following formulation. First, we note that the complex-valued reciprocal-space wave-function is the Fourier transform of the (also complex-valued) real-space wave-function, Ψ(q) = F[Ψ(r)], and subsequently the diffraction pattern image is given by |Ψ(q)|2 = |F[Ψ(r)]|2. We want to find Ψ(r) given a few differently coded diffraction pattern measurements yn = |F[HnΨ(r)]|2, where the matrices Hn encode the mask structure of the aperture. This is a nonlinear inverse problem, but has been shown to be solvable even in the underdetermined case [6]. Since each diffraction pattern yn contains diffraction information from selected regions of the same sample, the differences in each pattern contain local phase information, which can be combined to form a full estimate of the real-space wave-function[7]. References: [1] W. Pauli in “Die allgemeinen Prinzipien der Wellenmechanik“, ed. H Geiger and W Scheel, (Julius Springer, Berlin). [2] A. Tonomura, Rev. Mod. Phys. 59 (1987), p. 639. [3] J. Miao et al, Nature 400 (1999), p. 342. [4] H. Lichte et al, Annu. Rev. Mater. Res. 37 (2007), p. 539. [5] J. Yamasaki et al, Appl. Phys. Lett. 101 (2012), 234105. [6] P Schniter and S Rangan. Signal Proc., IEEE Trans. on. 64(4), (2015), pp. 1043. [7] Supported by the Chemical Imaging, Signature Discovery, and Analytics in Motion initiatives at PNNL. PNNL is operated by Battelle Memorial Inst. for the US DOE; contract DE-AC05-76RL01830.« less

  2. Structure refinement of the δ1p phase in the Fe-Zn system by single-crystal X-ray diffraction combined with scanning transmission electron microscopy.

    PubMed

    Okamoto, Norihiko L; Tanaka, Katsushi; Yasuhara, Akira; Inui, Haruyuki

    2014-04-01

    The structure of the δ1p phase in the iron-zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1p phase with the space group of P63/mmc comprises more or less regular (normal) Zn12 icosahedra, disordered Zn12 icosahedra, Zn16 icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1p phase are discussed in comparison with those in the Γ and ζ phases in the iron-zinc system.

  3. Relationships Between the Phase Transformation Kinetics, Texture Evolution, and Microstructure Development in a 304L Stainless Steel Under Biaxial Loading Conditions: Synchrotron X-ray and Electron Backscatter Diffraction Studies

    DOE PAGES

    Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...

    2015-02-11

    Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less

  4. Improvement of the piezoelectric properties in (K,Na)NbO3-based lead-free piezoelectric ceramic with two-phase co-existing state

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Matsuoka, T.; Kozuka, H.; Yamazaki, M.; Ohbayashi, K.; Ida, T.

    2015-06-01

    Two phases of (K,Na)NbO3 (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K1-xNax)0.86Ca0.04Li0.02Nb0.85O3-δ-0.042K0.85Ti0.85Nb1.15O5-0.036BaZrO3-0.0016Co3O4- 0.0025Fe2O3-0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains of the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, kp = 0.56, has been observed at the composition x = 0.56.

  5. Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Hoffman, Jason; Rowland, Clare E.

    Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less

  6. Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3

    DOE PAGES

    Zhu, Yi; Hoffman, Jason; Rowland, Clare E.; ...

    2018-05-04

    Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less

  7. Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun

    2011-03-01

    Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.

  8. Crystallization induced ordering of hard magnetic L1{sub 0} phase in melt-spun FeNi-based ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Kazuhisa, E-mail: sato@uhvem.osaka-u.ac.jp; Sharma, Parmanand; Zhang, Yan

    2016-05-15

    The microstructure of newly developed hard magnetic Fe{sub 42}Ni{sub 41.3}Si{sub x}B{sub 12-x}P{sub 4}Cu{sub 0.7} (x = 2 to 8 at%) nanocrystalline alloy ribbons has been studied by transmission electron microscopy (TEM) and electron diffraction. A high-density polycrystalline grains, ∼30 nm in size, were formed in a ribbon after annealing at 673 K for 288 hours. Elemental mapping of the annealed specimen revealed the coexistence of three regions, Fe-rich, Ni-rich, and nearly equiatomic Fe-Ni, with areal fractions of 37%, 40%, and 23 %, respectively. The equiatomic L1{sub 0}-type ordered phase of FeNi was detected in between the Fe and Ni-rich phases.more » The presence of superlattice reflections in nanobeam electron diffraction patterns confirmed the formation of the hard magnetic L1{sub 0} phase beyond any doubt. The L1{sub 0} phase of FeNi was detected in alloys annealed in the temperature range of 673 to 813 K. The present results suggest that the order-disorder transition temperature of L1{sub 0} FeNi is higher than the previously reported value (593 K). The high diffusion rates of the constituent elements induced by the crystallization of an amorphous phase at relatively low temperature (∼673 K) are responsible for the development of atomic ordering in FeNi.« less

  9. Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM).

    PubMed

    Mu, X; Kobler, A; Wang, D; Chakravadhanula, V S K; Schlabach, S; Szabó, D V; Norby, P; Kübel, C

    2016-11-01

    Transmission electron microscopy (TEM) has been used intensively in investigating battery materials, e.g. to obtain phase maps of partially (dis)charged (lithium) iron phosphate (LFP/FP), which is one of the most promising cathode material for next generation lithium ion (Li-ion) batteries. Due to the weak interaction between Li atoms and fast electrons, mapping of the Li distribution is not straightforward. In this work, we revisited the issue of TEM measurements of Li distribution maps for LFP/FP. Different TEM techniques, including spectroscopic techniques (energy filtered (EF)TEM in the energy range from low-loss to core-loss) and a STEM diffraction technique (automated crystal orientation mapping (ACOM)), were applied to map the lithiation of the same location in the same sample. This enabled a direct comparison of the results. The maps obtained by all methods showed excellent agreement with each other. Because of the strong difference in the imaging mechanisms, it proves the reliability of both the spectroscopic and STEM diffraction phase mapping. A comprehensive comparison of all methods is given in terms of information content, dose level, acquisition time and signal quality. The latter three are crucial for the design of in-situ experiments with beam sensitive Li-ion battery materials. Furthermore, we demonstrated the power of STEM diffraction (ACOM-STEM) providing additional crystallographic information, which can be analyzed to gain a deeper understanding of the LFP/FP interface properties such as statistical information on phase boundary orientation and misorientation between domains. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Broadening and shifting of Bragg reflections of nanoscale-microtwinned LT-Ni3Sn2

    NASA Astrophysics Data System (ADS)

    Leineweber, Andreas; Krumeich, Frank

    2013-12-01

    The effect of nanoscale microtwinning of long-range ordered domains in LT-Ni3Sn2 on its diffraction behaviour was studied by X-ray powder diffraction and electron microscopy. LT-Ni3Sn2 exhibits a Ni2In/NiAs-type structure with a superstructure breaking the symmetry relative to the hexagonal high-temperature (HT) to the orthorhombic low-temperature (LT) phase, implying three different twin-domain orientations. The microstructure was generated by annealing HT-Ni3Sn2 considerably below the order-disorder transition temperature, establishing the LT phase avoiding too much domain coarsening. High-resolution electron microscopy reveals domain sizes of 100-200 Å compatible with the Scherrer broadening of the superstructure reflections recorded by X-ray diffraction. Whereas the orthorhombic symmetry of the LT phase leads in powder-diffraction patterns from coarse-domain size material to splitting of the fundamental reflections, this splitting does not occur for the LT-Ni3Sn2 with nanoscale domains. Instead, a (pseudo)hexagonal indexing is possible giving hexagonal lattice parameters, which are, however, incompatible with the positions of the superstructure reflections. This can be attributed to interference between X-rays scattered by the differently oriented, truly orthorhombic domains leading to merging of the fundamental reflections. These show pronounced anisotropic microstrain-like broadening, where the integral breadths ? on the reciprocal d-spacing scale of a series of higher order reflection increase in a non-linear fashion with upward curvature with the reciprocal d-spacings ? of these reflections. Such a type of unusual microstrain broadening appears to be typical for microstructures which are inhomogeneous on the nanoscale, and in which the structural inhomogeneities lead to small phase shifts of the scattered radiation from different locations (e.g. domains).

  11. Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H.G., E-mail: helen.jones@npl.co.uk

    A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beammore » exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.« less

  12. Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn

    2015-01-15

    Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less

  13. Neutron and X-ray investigations of the Jahn–Teller switch in partially deuterated ammonium copper Tutton salt, (NH 4 ) 2 [Cu(H 2 O) 6 ](SO 4 ) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Mads R. V.; Piccoli, Paula M. B.; Hathwar, Venkatesha R.

    2017-01-31

    The structural phase transition accompanied by a Jahn–Teller switch has been studied over a range of H/D ratios in (NH 4) 2[Cu(H 2O) 6](SO 4) 2(ACTS). In particular, single-crystal neutron diffraction investigations of crystals with deuteration in the range 50 to 82% are shown to be consistent with previous electron paramagnetic resonance (EPR) experiments exhibiting a phase boundary at 50% deuteration under ambient pressure. Polycrystalline samples show that the two phases can co-exist. In addition, single-crystal neutron and polycrystalline X-ray diffraction pressure experiments show a shift to lower pressure at 60% deuterationversusprevious measurements at 100% deuteration.

  14. Diffraction-controlled backscattering threshold and application to Raman gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Harvey A.; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544; Mounaix, Philippe

    2011-04-15

    In most classic analytical models of linear stimulated scatter, light diffraction is omitted, a priori. However, modern laser optic typically includes a variant of the random phase plate [Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984)], resulting in diffraction limited laser intensity fluctuations - or localized speckles - which may result in explosive reflectivity growth as the average laser intensity approaches a critical value [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)]. Among the differences between stimulated Raman scatter (SRS) and stimulated Brillouin scatter is that the SRS scattered light diffracts more stronglymore » than the laser light with increase of electron density. This weakens the tendency of the SRS light to closely follow the most amplified paths, diminishing gain. Let G{sub 0} be the one-dimensional power gain exponent of the stimulated scatter. In this paper we show that differential diffraction gives rise to an increase of G{sub 0} at the SRS physical threshold with increase of electron density up to a drastic disruption of SRS as electron density approaches one fourth of its critical value from below. For three wave interaction lengths not small compared to a speckle length, this is a physically robust Raman gap mechanism.« less

  15. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    PubMed

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing.

  16. In search of the elusive IrB{sub 2}: Can mechanochemistry help?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhilin; Blair, Richard G.; Department of Physics, University of Central Florida, Orlando, FL 32816

    The previously unknown hexagonal ReB{sub 2}-type IrB{sub 2} diboride and orthorhombic IrB monoboride phases were produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. In addition to XRD, scanning electron microscopy and transmission electron microscopy were employed to further characterize the microstructure of the phases produced. - Graphical abstract: ReB{sub 2}-type IrB{submore » 2} and a new IrB have been successfully synthesized for the first time using mechanochemical method. Crystal structures of IrB{sub 2} and IrB were studied by synchrotron X-ray diffraction. Microstructures of the new phases were characterized by SEM and TEM. - Highlights: • ReB{sub 2}-type IrB{sub 2} and a new IrB have been synthesized by mechanochemical method. • Crystal structures of IrB{sub 2} and IrB were studied by synchrotron XRD. • Microstructures of the new phases were characterized by SEM and TEM.« less

  17. Body-centered orthorhombic C 16 : A novel topological node-line semimetal

    DOE PAGES

    Wang, Jian -Tao; Weng, Hongming; Nie, Simin; ...

    2016-05-11

    We identify by ab initio calculations a novel topological semimetal carbon phase in all-sp 2 bonding networks with a 16-atom body-centered orthorhombic unit cell, termed bco-C 16. Total-energy calculations show that bco-C 16 is comparable to solid fcc-C 60 in energetic stability, and phonon and molecular dynamics simulations confirm its dynamical stability. This all-sp 2 carbon allotrope can be regarded as a three-dimensional modification of graphite, and its simulated x-ray diffraction (XRD) pattern matches well a previously unexplained diffraction peak in measured XRD spectra of detonation and chimney soot, indicating its presence in the specimen. Electronic band structure calculations revealmore » that bco-C 16 is a topological node-line semimetal with a single nodal ring. Lastly, these findings establish a novel carbon phase with intriguing structural and electronic properties of fundamental significance and practical interest.« less

  18. The microstructural characterization of an in situ grown Si{sub 3}N{sub 4} whisker-reinforced BAS glass-ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Feng; Ortiz-Longo, C.R.; White, K.W.

    The microstructure of barium aluminum silicate (BAS)/silicon nitride in situ whisker reinforced ceramic matrix composite was examined by X-ray diffraction, transmission electron microscopy, electron diffraction and energy-dispersive X-ray microanalysis. Although the authors can not conclusively exclude the presence of orthorhombic BAS, hexagonal BAS and both {alpha}-Si{sub 3}N{sub 4} and {beta}-Si{sub 3}N{sub 4} were identified in this material. The {beta}-Si{sub 3}N{sub 4} whiskers nucleate and grow in random directions in the nearly continuous matrix of metastable hexacelsian. The crystallization process of the glass phase can be taken almost to completion but a small proportion of residual glass phase is present atmore » the interface and grains-junction. Both whisker-like and equiaxed {beta}-Si{sub 3}N{sub 4} exist in this material.« less

  19. Quantitative measurements of magnetic vortices using position resolved diffraction in Lorentz STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaluzec, N. J.

    2002-03-05

    A number of electron column techniques have been developed over the last forty years to permit visualization of magnetic fields in specimens. These include: Fresnel imaging, Differential Phase Contrast, Electron Holography and Lorentz STEM. In this work we have extended the LSTEM methodology using Position Resolved Diffraction (PRD) to quantitatively measure the in-plane electromagnetic fields of thin film materials. The experimental work reported herein has been carried out using the ANL AAEM HB603Z 300 kV FEG instrument 5. In this instrument, the electron optical column was operated in a zero field mode, at the specimen, where the objective lens ismore » turned off and the probe forming lens functions were reallocated to the C1, C2, and C3 lenses. Post specimen lenses (P1, P2, P3, P4) were used to magnify the transmitted electrons to a YAG screen, which was then optically transferred to a Hamamatsu ORCA ER CCD array. This CCD was interfaced to an EmiSpec Data Acquisition System and the data was subsequently transferred to an external computer system for detailed quantitative analysis. In Position Resolved Diffraction mode, we digitally step a focused electron probe across the region of interest of the specimen while at the same time recording the complete diffraction pattern at each point in the scan.« less

  20. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    PubMed Central

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  1. An electron diffraction study of alkali chloride vapors

    NASA Technical Reports Server (NTRS)

    Mawhorter, R. J.; Fink, M.; Hartley, J. G.

    1985-01-01

    A study of monomers and dimers of the four alkali chlorides NaCl, KCl, RbCl, and CsCl in the vapor phase using the counting method of high energy electron diffraction is reported. Nozzle temperatures from 850-960 K were required to achieve the necessary vapor pressures of approximately 0.01 torr. Using harmonic calculations for the monomer and dimer 1 values, a consistent set of structures for all four molecules was obained. The corrected monomer distances reproduce the microwave values very well. The experiment yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  2. Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses

    DOE PAGES

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; ...

    2016-04-05

    Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angström spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 Å) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule.more » In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Lastly, our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.« less

  3. Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen

    2012-09-01

    Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.

  4. The behavior of single-crystal silicon to dynamic loading using in-situ X-ray diffraction and phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hae Ja; Xing, Zhou; Galtier, Eric; Arnold, Brice; Granados, Eduardo; Brown, Shaughnessy B.; Tavella, Franz; McBride, Emma; Fry, Alan; Nagler, Bob; Schropp, Andreas; Seiboth, Frank; Samberg, Dirk; Schroer, Christian; Gleason, Arianna E.; Higginbotham, Andrew

    Hydrostatic and uniaxial compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including orthorhombic Imma phase, body-centered tetragonal phase, and a hexagonal primitive phase. The dynamic response of silicon at high pressure, however, is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. In order to characterize the elastic and phase transitions, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudo-flat top shape creates high pressures up to 60 GPa. We measure the crystal structure by observing X-ray diffraction orthogonal to the shock propagation direction over a range of pressures. We describe the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and discuss the dynamic response of Si in high-pressure phases Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by.

  5. Epitaxy of Fe/Cu/Si(1 1 1) ultrathin films: an Auger electron diffraction study

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Bernardini, R.; Montecchiari, A.; Carboni, R.; De Crescenzi, M.

    2001-06-01

    Epitaxial Fe films, with thickness in the range between 1 and 50 ML (monolayer, ML), were grown in ultrahigh vacuum conditions on the 7×7 reconstructed (1 1 1)-Si surface. The films were evaporated on a Cu thick buffer layer to avoid iron silicides formation. Auger electron diffraction (AED) technique has been used to investigate the growth of the pseudomorphic film of fcc γ-Fe(1 1 1) and the successive growth of bcc Fe(1 1 0) domains in the Kurdjumov-Sachs orientation. The early stages of growth have been carefully investigated through AED to assess the pseudomorphism of iron γ-phase. AED patterns clearly show the presence of diffraction features that are fingerprints of the existence of a few bcc arranged atomic structures even for 1 ML iron coverage.

  6. RAPID COMMUNICATION: Study of superstructure II in multiferroic BiMnO3

    NASA Astrophysics Data System (ADS)

    Ge, Bing-Hui; Li, Fang-Hua; Li, Xue-Ming; Wang, Yu-Mei; Chi, Zhen-Hua; Jin, Chang-Qing

    2008-09-01

    The crystal structure of the minor phase, named superstructure II, existing in multiferroic compound BiMnO3 has been studied by electron diffraction and high-resolution transmission electron microscopy. Domains of major and minor phases coexisting in BiMnO3 were observed in high-resolution electron microscope images. The unit cell of minor phase was determined to be triclinic with the size 4×4×4 times as large as the distorted perovskite subcell. The [111] and [10bar 1] projected structure maps of the minor phase have been derived from the corresponding images by means of the image processing. A possible rough three-dimensional (3D) structure model was proposed based on the 3D structural information extracted from the two projected structure maps. Since there is no inversion centre in the proposed model, the minor phase may contribute to the ferroelectric property of BiMnO3.

  7. On the Use of Dynamical Diffraction Theory To Refine Crystal Structure from Electron Diffraction Data: Application to KLa5O5(VO4)2, a Material with Promising Luminescent Properties.

    PubMed

    Colmont, Marie; Palatinus, Lukas; Huvé, Marielle; Kabbour, Houria; Saitzek, Sébastien; Djelal, Nora; Roussel, Pascal

    2016-03-07

    A new lanthanum oxide, KLa5O5(VO4)2, was synthesized using a flux growth technique that involved solid-state reaction under an air atmosphere at 900 °C. The crystal structure was solved and refined using an innovative approach recently established and based on three-dimensional (3D) electron diffraction data, using precession of the electron beam and then validated against Rietveld refinement and denisty functional theory (DFT) calculations. It crystallizes in a monoclinic unit cell with space group C2/m and has unit cell parameters of a = 20.2282(14) Å, b = 5.8639(4) Å, c = 12.6060(9) Å, and β = 117.64(1)°. Its structure is built on Cresnel-like two-dimensional (2D) units (La5O5) of 4*3 (OLa4) tetrahedra, which run parallel to (001) plane, being surrounded by isolated VO4 tetrahedra. Four isolated vanadate groups create channels that host K(+) ions. Substitution of K(+) cations by another alkali metal is possible, going from lithium to rubidium. Li substitution led to a similar phase with a primitive monoclinic unit cell. A complementary selected area electron diffraction (SAED) study highlighted diffuse streaks associated with stacking faults observed on high-resolution electron microscopy (HREM) images of the lithium compound. Finally, preliminary catalytic tests for ethanol oxidation are reported, as well as luminescence evidence. This paper also describes how solid-state chemists can take advantages of recent progresses in electron crystallography, assisted by DFT calculations and powder X-ray diffraction (PXRD) refinements, to propose new structural types with potential applications to the physicist community.

  8. Phase purity of NiCo2O4, a catalyst candidate for electrolysis of water

    NASA Technical Reports Server (NTRS)

    Singer, J.; Fielder, W. L.; Garlick, R. G.; Negas, T.

    1987-01-01

    NiCo2O4 is shown to be difficult to obtain as a pure phase, and may never have been so obtained. High resolution x-ray diffractometry is required for its precise characterization. Film XRD is not likely to show the asymmetry in the spinel diffraction lines, caused by poorly crystallized NiO, as seen in diffractometer traces. The Co3O4 which is expected to accompany NiO as an impurity in NiCo2O4 syntheses has the same diffraction pattern as the binary oxide. Firings of the co-precipitated hydroxides at 300, 350, and 400 C, including one in pure O2, failed to produce single phase cobaltate. Scanning electron microscopy showed all the sintered products to range over several orders of magnitude in agglomerate/particle size. Surface areas by BET were all in the range 40 to 110 m sq/g, equivalent to particles of 200 to 100 Angstrom diameter. The spinel diffraction line breadths were compatible with those approximate dimensions.

  9. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  10. A quantum diffractor for thermal flux

    NASA Astrophysics Data System (ADS)

    José Martínez-Pérez, Maria; Giazotto, Francesco

    2014-04-01

    Macroscopic phase coherence between weakly coupled superconductors leads to peculiar interference phenomena. Among these, magnetic flux-driven diffraction might be produced, in full analogy to light diffraction through a rectangular slit. This can be experimentally revealed by the electric current and, notably, also by the heat current transmitted through the circuit. The former was observed more than 50 years ago and represented the first experimental evidence of the phase-coherent nature of the Josephson effect, whereas the second one was still lacking. Here we demonstrate the existence of heat diffraction by measuring the modulation of the electronic temperature of a small metallic electrode nearby-contacted to a thermally biased short Josephson junction subjected to an in-plane magnetic field. The observed temperature dependence exhibits symmetry under magnetic flux reversal, and clear resemblance with a Fraunhofer-like modulation pattern. Our approach, joined to widespread methods for phase-biasing superconducting circuits, might represent an effective tool for controlling the thermal flux in nanoscale devices.

  11. Probing ionospheric structures using the LOFAR radio telescope

    NASA Astrophysics Data System (ADS)

    Mevius, M.; van der Tol, S.; Pandey, V. N.; Vedantham, H. K.; Brentjens, M. A.; de Bruyn, A. G.; Abdalla, F. B.; Asad, K. M. B.; Bregman, J. D.; Brouw, W. N.; Bus, S.; Chapman, E.; Ciardi, B.; Fernandez, E. R.; Ghosh, A.; Harker, G.; Iliev, I. T.; Jelić, V.; Kazemi, S.; Koopmans, L. V. E.; Noordam, J. E.; Offringa, A. R.; Patil, A. H.; van Weeren, R. J.; Wijnholds, S.; Yatawatta, S.; Zaroubi, S.

    2016-07-01

    LOFAR is the LOw-Frequency Radio interferometer ARray located at midlatitude (52°53'N). Here we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric total electron content values with an accuracy better than 0.001 total electron content unit = 1016m-2 over distances ranging between 1 and 100 km. For all observations the power law behavior of the phase structure function is confirmed over a long range of baseline lengths, between 1 and 80 km, with a slope that is, in general, larger than the 5/3 expected for pure Kolmogorov turbulence. The measured average slope is 1.89 with a one standard deviation spread of 0.1. The diffractive scale, i.e., the length scale where the phase variance is 1rad2, is shown to be an easily obtained single number that represents the ionospheric quality of a radio interferometric observation. A small diffractive scale is equivalent to high phase variability over the field of view as well as a short time coherence of the signal, which limits calibration and imaging quality. For the studied observations the diffractive scales at 150 MHz vary between 3.5 and 30 km. A diffractive scale above 5 km, pertinent to about 90% of the observations, is considered sufficient for the high dynamic range imaging needed for the LOFAR epoch of reionization project. For most nights the ionospheric irregularities were anisotropic, with the structures being aligned with the Earth magnetic field in about 60% of the observations.

  12. Thermomechanical behavior and microstructural evolution of a Ni(Pd)-rich Ni 24.3Ti 49.7Pd 26 high temperature shape memory alloy

    DOE PAGES

    Benafan, O.; Garg, A.; Noebe, R. D.; ...

    2015-04-20

    We investigated the effect of thermomechanical cycling on a slightly Ni(Pd)-rich Ni 24.3Ti 49.7Pd 26 (near stochiometric Ni–Ti basis with Pd replacing Ni) high temperature shape memory alloy. Furthermore, aged tensile specimens (400 °C/24 h/furnace cooled) were subjected to constant-stress thermal cycling in conjunction with microstructural assessment via in situ neutron diffraction and transmission electron microscopy (TEM), before and after testing. It was shown that in spite of the slightly Ni(Pd)-rich composition and heat treatment used to precipitation harden the alloy, the material exhibited dimensional instabilities with residual strain accumulation reaching 1.5% over 10 thermomechanical cycles. This was attributed tomore » insufficient strengthening of the material (insufficient volume fraction of precipitate phase) to prevent plasticity from occurring concomitant with the martensitic transformation. In situ neutron diffraction revealed the presence of retained martensite while cycling under 300 MPa stress, which was also confirmed by transmission electron microscopy of post-cycled samples. Neutron diffraction analysis of the post-thermally-cycled samples under no-load revealed residual lattice strains in the martensite and austenite phases, remnant texture in the martensite phase, and peak broadening of the austenite phase. The texture we developed in the martensite phase was composed mainly of those martensitic tensile variants observed during thermomechanical cycling. Presence of a high density of dislocations, deformation twins, and retained martensite was revealed in the austenite state via in-situ TEM in the post-cycled material, providing an explanation for the observed peak broadening in the neutron diffraction spectra. Despite the dimensional instabilities, this alloy exhibited a biased transformation strain on the order of 3% and a two-way shape memory effect (TWSME) strain of ~2%, at relatively high actuation temperatures.« less

  13. Liquid-phase explosive crystallization of electron-beam-evaporated a-Si films induced by flash lamp annealing

    NASA Astrophysics Data System (ADS)

    Ohdaira, Keisuke; Matsumura, Hideki

    2013-01-01

    We succeed in the formation of micrometer-order-thick polycrystalline silicon (poly-Si) films through the flash-lamp-induced liquid-phase explosive crystallization (EC) of precursor a-Si films prepared by electron-beam (EB) evaporation. The velocity of the explosive crystallization (vEC) is estimated to be ˜14 m/s, which is close to the velocity of the liquid-phase epitaxy (LPE) of Si at a temperature around the melting point of a-Si of 1418 K. Poly-Si films formed have micrometer-order-long grains stretched along a lateral crystallization direction, and X-ray diffraction (XRD) and electron diffraction pattern measurements reveal that grains in poly-Si films tend to have a particular orientation. These features are significantly different from our previous results: the formation of poly-Si films containing randomly-oriented 10-nm-sized fine grains formed from a-Si films prepared by catalytic chemical vapor deposition (Cat-CVD) or sputtering. One possible reason for the emergence of a different EC mode in EB-evaporated a-Si films is the suppression of solid-phase nucleation (SPN) during Flash Lamp Annealing (FLA) due to tensile stress which precursor a-Si films originally hold. Poly-Si films formed from EB-evaporated a-Si films would contribute to the realization of high-efficiency thin-film poly-Si solar cells because of large and oriented grains.

  14. Microstructural study of codeposited pentacene:perfluoropentacene grown on KCl by TEM techniques

    NASA Astrophysics Data System (ADS)

    Félix, Rocío; Breuer, Tobias; Witte, Gregor; Volz, Kerstin; Gries, Katharina I.

    2017-08-01

    Transmission electron microscopy techniques have been used as a research tool to derive information on structure and orientation of organic semiconductor blends. Within this work, we have studied the structure and morphology of pentacene (PEN, C22H14) and perfluoropentacene (PFP, C22F14) blends grown with [2:1] and [1:2] mixing ratios on KCl substrates. The [2:1] mixture exhibits a uniform layer on the substrate with domains that are rotated in-plane by 90° towards each other. Electron diffraction experiments revealed that these domains are formed by a crystalline mixed phase (consisting of PEN and PFP) and a PEN phase in excess whose lattice parameters are rather similar. By contrast, in the [1:2] blend, two different arrangements were found. The majority of the sample exhibits some spicular fibers on a background layer lying on top of the KCl substrate. The microstructural characterization revealed that these fibers consist of pure PFP in excess while the background layer is formed by the mixed phase. The other arrangement, which is present to a lesser extent, consists of a PFP film that is in direct contact with the KCl substrate. Using electron diffraction experiments, the orientation of the different phases with respect to each other and in some cases relative to the KCl substrate has been determined.

  15. 8-beam local oscillator array at 4.7 THz generated by a phase grating and a quantum cascade laser.

    PubMed

    Mirzaei, B; Silva, J R G; Hayton, D; Groppi, C; Kao, T Y; Hu, Q; Reno, J L; Gao, J R

    2017-11-27

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.

  16. High-Resolution Infrared and Electron-Diffraction Studies of Trimethylenecyclopropane ([3]-Radialene)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Corey; Holmes, Joshua; Nibler, Joseph W.

    2013-05-16

    Combined high-resolution spectroscopic, electron-diffraction, and quantum theoretical methods are particularly advantageous for small molecules of high symmetry and can yield accurate structures that reveal subtle effects of electron delocalization on molecular bonds. The smallest of the radialene compounds, trimethylenecyclopropane, [3]-radialene, has been synthesized and examined in the gas phase by these methods. The first high-resolution infrared spectra have been obtained for this molecule of D3h symmetry, leading to an accurate B0 rotational constant value of 0.1378629(8) cm-1, within 0.5% of the value obtained from electronic structure calculations (density functional theory (DFT) B3LYP/cc-pVTZ). This result is employed in an analysis ofmore » electron-diffraction data to obtain the rz bond lengths (in Å): C-H = 1.072 (17), C-C = 1.437 (4), and C=C = 1.330 (4). The analysis does not lead to an accurate value of the HCH angle; however, from comparisons of theoretical and experimental angles for similar compounds, the theoretical prediction of 117.5° is believed to be reliable to within 2°. The effect of electron delocalization in radialene is to reduce the single C-C bond length by 0.07 Å compared to that in cyclopropane.« less

  17. Oriented Nucleation of both Ge-Fresnoite and Benitoite/BaGe4O9 during the Surface Crystallisation of Glass Studied by Electron Backscatter Diffraction

    PubMed Central

    Wisniewski, Wolfgang; Patschger, Marek; Murdzheva, Steliana; Thieme, Christian; Rüssel, Christian

    2016-01-01

    Two glasses of the compositions 2 BaO - TiO2 - 2.75 GeO2 and 2 BaO – TiO2 –3.67 GeO2 (also known as BTG55) are annealed at temperatures from 680 to 970 °C to induce surface crystallization. The resulting samples are analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD). Ge-Fresnoite (Ba2TiGe2O8, BTG) is observed at the immediate surface of all samples and oriented nucleation is proven in both compositions. After a very fast kinetic selection, the crystal growth of BTG into the bulk occurs via highly oriented dendrites where the c-axes are oriented perpendicular to the surface. The growth of this oriented layer is finally blocked by dendritc BTG originating from bulk nucleation. The secondary phases BaTiGe3O9 (benitoite) and BaGe4O9 are also identified near the surface by XRD and localized by EBSD which additionally indicates orientation preferences for these phases. This behaviour is in contrast with previous reports from the Ba2TiSi2O8 as well as the Sr2TiSi2O8 systems. PMID:26853738

  18. Phase state of a Bi-43 wt % Sn superplastic alloy and its changes under the effect of external mechanical stresses and aging

    NASA Astrophysics Data System (ADS)

    Korshak, V. F.; Chushkina, R. A.; Shapovalov, Yu. A.; Mateichenko, P. V.

    2011-07-01

    Samples of a Bi-43 wt % Sn superplastic alloy have been studied by X-ray diffraction in the ascast state, after compression of as-cast samples to ˜70% on a hydraulic press, after aging in the as-cast and preliminarily compressed state, and using samples deformed under superplastic conditions. The X-ray diffraction studies have been carried out using a DRON-2.0 diffractometer in Cu Kα radiation. The samples aged and deformed under superplasticity conditions have been studied using electron-microprobe analysis in a JSM-820 scanning electron microscope equipped with a LINK AN/85S EDX system. It has been found that the initial structural-phase state of the alloy was amorphous-crystalline. Causes that lead to a change in this state upon deformation and aging are discussed. A conclusion is made that the superplasticity effect manifests itself against the background of processes that are stipulated by the tendency of the initially metastable alloy to phase equilibrium similarly to what is observed in the Sn-38 wt % Pb eutectic alloy studied earlier.

  19. Determination of the molecular structure of tetrakis(trimethylsilyl)hydrazine, N 2(SiMe 3) 4, in the gas phase by electron diffraction

    NASA Astrophysics Data System (ADS)

    Brain, Paul T.; Irving, Iain A.; Rankin, David W. H.; Robertson, Heather E.; Leung, Wing-Por; Bühl, Michael

    1997-09-01

    The gas-phase molecular structure of tetrakis(trimethylsily)hydrazine, N 2(SiMe 3) 4, in the gas phase has been determined by electron diffraction. The skeleton consists of two planar NSi 2 fragments which are not coplanar, but twisted 86.9(38)° relative to one another. This conformation, combined with the arrangements of the trimethylsilyl groups, gives the molecule overall D2 symmetry, and ensures that there are no major steric interactions between the groups. Ab initio calculations at the {SCF}/{6-31 G∗ } level confirm that D2 symmetry is favoured. The bond lengths ( ra) of 143.3(16) pm for NN. 175.9(5) pm for SiN and 187.5(2) pm for SiC, and the SiNSi and CSiC angles of 124.1(15)° and 108.8(7) respectively, also indicate that this is not a severely strained molecule, although the SiN distance is quite long, being comparable to that observed in N(SiMe 3) 3.

  20. Mechanically activated synthesis of PZT and its electromechanical properties

    NASA Astrophysics Data System (ADS)

    Liu, X.; Akdogan, E. K.; Safari, A.; Riman, R. E.

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead zirconium titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ˜110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.

  1. Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent x-ray diffraction microscopy.

    PubMed

    Kodama, Wataru; Nakasako, Masayoshi

    2011-08-01

    Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.

  2. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less

  3. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    PubMed

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Gendy, AA; Bertino, M; Clifford, D

    Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe2C) of nanoparticles. Structural characterization of the CoFe2C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffraction was alsomore » performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, TB, of 790K for particles with a domain size as small as 5 +/- 1 nm. The particles have magnetocrystalline anisotropy of 4.662 +/- 10 6 J/m(3), which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe2C nanoparticles have huge potential for enhanced magnetic data storage devices. (C) 2015 AIP Publishing LLC.« less

  5. Yttria catalyzed microstructural modifications in oxide dispersion strengthened V-4Cr-4Ti alloys synthesized by field assisted sintering technique

    NASA Astrophysics Data System (ADS)

    Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran; Verma, Shailendra Kumar; Dash, Biswaranjan; Agrawal, Priyanka; Subramanian, Karthikeyan

    2017-08-01

    The present work deals with synthesis, characterisation and elevated temperature mechanical property evaluation of V-4Cr-4Ti and oxide (yttria = 0.3, 0.6 and 0.9 at%) dispersion strengthened V-4Cr-4Ti alloy processed by mechanical alloying and field-assisted sintering, under optimal conditions. Microstructural parameters of both powder and sintered samples were deduced by X-ray diffraction (XRD) and further confirmed with high resolution transmission electron microscopy. Powder diffraction and electron microscopy study show that ball milling of starting elemental powders (V-4Cr-4Ti) with and without yttria addition has resulted in single phase α-V (V-4Cr-4Ti) alloy. Wherein, XRD and electron microscopy images of sintered samples have revealed phase separation (viz., Cr-V and Ti-V) and domain size reduction, with yttria addition. The reasons behind phase separation and domain size reduction with yttria addition during sintering are extensively discussed. Microhardness and high temperature compression tests were done on sintered samples. Yttria addition (0.3 and 0.6 at.%) increases the elevated temperature compressive strength and strain hardening exponent of α-V alloys. High temperature compression test of 0.9 at% yttria dispersed α-V alloy reveals a glassy behaviour.

  6. High pressure study of Pu(0.92)Am(0.08) binary alloy.

    PubMed

    Klosek, V; Griveau, J C; Faure, P; Genestier, C; Baclet, N; Wastin, F

    2008-07-09

    The phase transitions (by means of x-ray diffraction) and electrical resistivity of a Pu(0.92)Am(0.08) binary alloy were determined under pressure (up to 2 GPa). The evolution of atomic volume with pressure gives detailed information concerning the degree of localization of 5f electronic states and their delocalization process. A quasi-linear V = f(P) dependence reflects subtle modifications of the electronic structure when P increases. The electrical resistivity measurements reveal the very high stability of the δ phase for pressures less than 0.7 GPa, since no martensitic-like transformation occurs at low temperature. Remarkable electronic behaviours have also been observed. Finally, resistivity curves have shown the temperature dependence of the phase transformations together with unexpected kinetic effects.

  7. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGES

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  8. Structure of a two-dimensional crystal in a Langmuir monolayer: grazing incidence X-ray diffraction and macroscopic properties

    NASA Astrophysics Data System (ADS)

    Flament, C.; Gallet, F.; Graner, F.; Goldmann, M.; Peterson, I.; Renault, A.

    1994-06-01

    Grazing incidence X-ray diffraction is performed on a Langmuir monolayer made of pure fluorescent NBD-stearic acid, spread at the free surface of water. It shows several intense narrow peaks in the solid phase, at the same wavevectors as the brightest peaks observed earlier by electron diffraction, for a monolayer transferred onto an amorphous polymer substrate. Thus the solid phase has the same crystalline structure on water and on solid substrate. The relative peak intensities are comparable in both experiments, and in the proposed model for the molecular structure. This model also accounts for the very large anisotropy of the crystalline phase and its optical properties. This phase could be ferroelectric, as previously assumed in order to explain the elongated shape of the crystals. Une monocouche de Langmuir, composée d'acide NBD-stéarique fluorescent pur, déposée à la surface libre de l'eau, est analysée par diffraction de rayons X sous incidence rasante. On détecte plusieurs pics étroits et intenses dans la phase solide, aux mêmes vecteurs d'onde que les pics les plus brillants précédemment observés par diffraction électronique, pour une monocouche transférée sur un substrat de polymère amorphe. La phase solide a donc la même structure cristalline sur l'eau et sur substrat solide. Les intensités relatives des pics sont comparables dans les deux expériences, ainsi que dans le modèle proposé pour la structure moléculaire. Ce modèle rend également compte de l'anisotropie très importante de la phase cristalline et de ses propriétés optiques. Il pourrait s'agir d'une phase ferroélectrique, comme cela avait été précédemment supposé pour expliquer la forme allongée des cristaux.

  9. Emerging opportunities in structural biology with X-ray free-electron lasers

    PubMed Central

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  10. Neutron and electron diffraction studies of La(Zn1/2Ti1/2)O3 perovskite.

    PubMed

    Ubic, Rick; Hu, Yi; Abrahams, Isaac

    2006-08-01

    The crystallography and microwave dielectric properties of La(Zn(1/2)Ti(1/2))O(3) (LZT) ceramics prepared via the mixed-oxide route were investigated in this study. While samples were largely single phase, small amounts of ZnO impurity were detected in sintered pellets. Observed reflections in electron and neutron diffraction patterns indicate that the symmetry of LZT is P2(1)/n. The B site is ordered on {110} or pseudocubic {111}, but the presence of the pseudocubic 1/2(111) reflection is in itself insufficient to indicate the existence of such order. Rietveld refinements of the neutron diffraction data yield an excellent fit for such a model. The structure is highly twinned, with variants related through common {211} composition planes and 90 degrees rotations about <011>. The microwave dielectric properties measured were epsilon(r) = 34, Qf = 36,090 and tau(f) = -70 MK(-1).

  11. Decagonal quasicrystal and related crystalline phases in Mn-Ga alloys with 52 to 63 a/o Ga

    NASA Astrophysics Data System (ADS)

    Wu, J. S.; Kuo, K. H.

    1997-03-01

    A decagonal quasicrystal (DQC) and six related intermetallic phases with large unit cells have been found in binary Mn-Ga alloys with 52 to 63 at. pct Ga by means of transmission electron microscopy (TEM). As does the Al-Mn DQC, the Ga-Mn DQC also has a periodicity of 1.25 nm along its tenfold axis. However, its Mn content, determined by electron microprobe X-ray analysis (about 45 to 50 at. pct Mn), is much higher than that of the Al-Mn DQC (about 20 to 30 at. pct Mn). The compositions of the intermetallic phases are about 53, 56, 58, and 62 at. pct Ga, corresponding respectively to the unknown structures of MnGa (50.7 to 53.4 at. pct Ga), Mn5Ga6 (55 at pct Ga), Mn5Ga7 (57.9 at. pct Ga), and Mn3Ga5 (62.9 at. pct Ga) given in the binary Mn-Ga phase diagram ( Metals Hand-book, T.B. Massalski, J.L. Murray, L.H. Benneft, and H. Baker, eds., ASM, Metals Park, OH, 1986, vol. 2, p. 1144). Their lattice types have been determined by selected area electron diffraction. The ferromagnetic Mn3Ga5 is tetragonal, a=1.25 nm and c=2.50 nm; Mn5Ga7 is orthorhombic, a=4.57 nm, b=1.25 nm, and c=1.44 nm; Mn5Ga6 has two different but closely related orthorhombic unit cells, a=1.26 nm, b=1.25 nm, and c=1.48 nm as well as a=0.77 nm, b=1.25 nm, and c=2.36 nm; MnGa also has two different and related unit cells, one orthorhombic with a=2.04 nm, b=1.25 nm, and c=1.48 nm and the other monoclinic with a=2.59 nm, b=1.25 nm, c=1.15 nm, and β≈=110 deg. All these orthorhombic phases have b=1.25 nm, being the same as the periodicity along the tenfold axis of the Ga-Mn and Al-Mn DQCs. Moreover, all these six intermetallic phases give electron diffraction patterns displaying a pseudo-tenfold distribution of strong diffraction spots and are considered to be crystalline approximants of the Ga-Mn DQC.

  12. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE PAGES

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  13. Effect of iron doping on structural and microstructural properties of nanocrystalline ZnSnO3 thin films prepared by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.

    2018-05-01

    This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.

  14. Monitoring nonadiabatic avoided crossing dynamics in molecules by ultrafast X-ray diffraction

    DOE PAGES

    Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2017-05-26

    We examine time-resolved X-ray diffraction from molecules in the gas phase which undergo nonadiabatic avoided-crossing dynamics involving strongly coupled electrons and nuclei. Several contributions to the signal are identified, representing (in decreasing strength) elastic scattering, contributions of the electronic coherences created by nonadiabatic couplings in the avoided crossing regime, and inelastic scattering. The former probes the charge density and delivers direct information on the evolving molecular geometry. The latter two contributions are weaker and carry spatial information through the transition charge densities (off-diagonal elements of the charge-density operator). Furthermore, simulations are presented for the nonadiabatic harpooning process in the excitedmore » state of sodium fluoride.« less

  15. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  17. Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc; Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache

    2013-07-15

    The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and directmore » current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.« less

  18. Crystallization of the glassy phase of grain boundaries in silicon nitride

    NASA Technical Reports Server (NTRS)

    Jefferson, D. A.; Thomas, J. M.; Wen, S.

    1984-01-01

    Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.

  19. Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging

    NASA Astrophysics Data System (ADS)

    Maetz, Jean-Yves; Cazottes, Sophie; Verdu, Catherine; Kleber, Xavier

    2016-01-01

    The effect of isothermal aging at 963 K (690 °C) on the microstructure of a 2101 lean duplex stainless steel, with the composition Fe-21.5Cr-5Mn-1.6Ni-0.22N-0.3Mo, was investigated using a multi-technique and multi-scale approach. The kinetics of phase transformation and precipitation was followed from a few minutes to thousands of hours using thermoelectric power measurements; based on these results, certain aging states were selected for electron microscopy characterization. Scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy were used to quantitatively describe the microstructural evolution through crystallographic analysis, chemical analysis, and volume fraction measurements from the macroscopic scale down to the nanometric scale. During aging, the precipitation of M23C6 carbides, Cr2N nitrides, and σ phase as well as the transformation of ferrite into austenite and austenite into martensite was observed. These complex microstructural changes are controlled by Cr volume diffusion. The precipitation and phase transformation mechanisms are described.

  20. Synthesis and characterization of Ti-Si-C-N films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtansky, D.V.; Levashov, E.A.; Sheveiko, A.N.

    1999-09-01

    This study represents one of the first attempts to deposit multicomponent (more than three components) thin films by magnetron sputtering of multiphase composite targets (three phases or even more). Films of Ti-Si-C-N were synthesized through dc magnetron sputtering of xTiC + yTi{sub 3}SiC{sub 2} + zA composite targets (A was TiSi{sub 2}, SiC, or a mixture of these phases) in an argon atmosphere or in a gaseous mixture of argon and nitrogen. The as-deposited films were characterized using Auger electron spectroscopy, X-ray diffraction, transmission electron microscopy using selected area electron diffraction and high-resolution techniques, and microhardness. It was shown thatmore » the substrate temperature and the nitrogen concentration in the reactive gas had a strong influence on the structure and the composition of the as-deposited films. Polycrystalline grains contained a high density of dislocations and exhibited a curved appearance of the lattice fringes that is probably due to the presence of the long-range stress fields. The measurements of the lattice parameters using the selected area electron diffraction pattern (SA EDP) method indicated, with a high probability, that the polycrystalline grains consist of clusters of atoms with varying compositions. The grain boundaries in the nanocrystalline Ti-Si-C-N films had both ordered and disordered regions, although some regions close to the interface exhibited neither a fully crystalline nor a homogeneously amorphous structure. The contribution of compressive stress as determined by an increase in the fcc lattice parameter is also discussed.« less

  1. Dimethylalkoxygallane incorporating a donor-functionalised alkoxide: the monomeric gas-phase structure.

    PubMed

    Knapp, Caroline E; Carmalt, Claire J; McMillan, Paul F; Wann, Derek A; Robertson, Heather E; Rankin, David W H

    2008-12-28

    The structure of the vapour produced upon heating the dimethylalkoxygallane [Me(2)GaOCH(2)CH(2)NMe(2)](2) has been studied by gas-phase electron diffraction and ab initio molecular orbital calculations; only the monomeric form [Me(2)GaOCH(2)CH(2)NMe(2)] is observed in the vapour, with the nitrogen atom forming a dative bond with the metal centre.

  2. Fast two-dimensional grid and transmission X-ray microscopy scanning methods for visualizing and characterizing protein crystals

    PubMed Central

    Wojdyla, Justyna Aleksandra; Panepucci, Ezequiel; Martiel, Isabelle; Ebner, Simon; Huang, Chia-Ying; Caffrey, Martin; Bunk, Oliver; Wang, Meitian

    2016-01-01

    A fast continuous grid scan protocol has been incorporated into the Swiss Light Source (SLS) data acquisition and analysis software suite on the macromolecular crystallography (MX) beamlines. Its combination with fast readout single-photon counting hybrid pixel array detectors (PILATUS and EIGER) allows for diffraction-based identification of crystal diffraction hotspots and the location and centering of membrane protein microcrystals in the lipid cubic phase (LCP) in in meso in situ serial crystallography plates and silicon nitride supports. Diffraction-based continuous grid scans with both still and oscillation images are supported. Examples that include a grid scan of a large (50 nl) LCP bolus and analysis of the resulting diffraction images are presented. Scanning transmission X-ray microscopy (STXM) complements and benefits from fast grid scanning. STXM has been demonstrated at the SLS beamline X06SA for near-zero-dose detection of protein crystals mounted on different types of sample supports at room and cryogenic temperatures. Flash-cooled crystals in nylon loops were successfully identified in differential and integrated phase images. Crystals of just 10 µm thickness were visible in integrated phase images using data collected with the EIGER detector. STXM offers a truly low-dose method for locating crystals on solid supports prior to diffraction data collection at both synchrotron microfocusing and free-electron laser X-ray facilities. PMID:27275141

  3. Growth of single crystalline delafossite LaCuO2 by the travelling-solvent floating zone method

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Büchner, B.; Wurmehl, S.; Hess, C.

    2014-09-01

    Single crystals of LaCuO2 have been grown for the first time using the travelling-solvent floating zone method. The crystal was grown in an Ar-atmosphere by reduction of La2Cu2O5, which was used as the feed rod composition for the growth. The grown crystal has been characterized with regard to phase purity and single crystallinity using powder X-ray diffraction, energy dispersive X-ray analysis, Laue diffraction and scanning electron microscopy.

  4. Mott localization in a pure stripe antiferromagnet Rb 1 - δ Fe 1.5 - σ S 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng; Yi, Ming; Cao, Huibo

    A combination of neutron diffraction and angle-resolved photoemission spectroscopy measurements on a pure antiferromagnetic stripe Rb 1-δFe 1.5-σS 2 is reported. A neutron diffraction experiment on a powder sample shows that a 98% volume fraction of the sample is in the antiferromagnetic stripe phase with rhombic iron vacancy order and a refined composition of Rb 0.66Fe 1.36S 2, and that only 2% of the sample is in the block antiferromagnetic phase with √5×√5 iron vacancy order. Furthermore, a neutron diffraction experiment on a single crystal shows that there is only a single phase with the stripe antiferromagnetic order with themore » refined composition of Rb 0.78Fe 1.35S 2, while the phase with block antiferromagnetic order is absent. Angle-resolved photoemission spectroscopy measurements on the same crystal with the pure stripe phase reveal that the electronic structure is gapped at the Fermi level with a gap larger than 0.325 eV. The data collectively demonstrate that the extra 10% iron vacancies in addition to the rhombic iron vacancy order effectively impede the formation of the block antiferromagnetic phase; the data also suggest that the stripe antiferromagnetic phase with rhombic iron vacancy order is a Mott insulator.« less

  5. Vapor phase diamond growth technology

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1981-01-01

    Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.

  6. Airborne asbestos in Colorado public schools.

    PubMed

    Chadwick, D A; Buchan, R M; Beaulieu, H J

    1985-02-01

    Levels of airborne asbestos for six Colorado public school facilities with sprayed-on asbestos materials were documented using three analytical techniques. Phase contrast microscopy showed levels up to the thousandths of a fiber per cubic centimeter (f/cc), scanning electron microscopy (SEM) up to the hundredths of a f/cc, and transmission electron microscopy coupled to selected area electron diffraction and energy dispersive X-ray analysis (TEM-SAED-EDXA) up to the tenths of an asbestos f/cc. Phase contrast microscopy was found to be an inadequate analytical technique for documenting the levels of airborne asbestos fibers in the schools: only large fibers which were not embedded in the filter were counted, and asbestos fibers were not distinguished from nonasbestos.

  7. Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagelueken, Gregor; Huang, Hexian; Harlos, Karl

    2012-10-01

    The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most onlymore » to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.« less

  8. Multi-scale invertigation of the relationship between the microstructure and mechanical properties in dual phase steels

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes. In this work, our goal is to establish what kind of relationship exist between the mechanical properties and the microstructural representation of dual phase steels obtained from experimental observations. Microstructure in different specimens are characterized with advanced experimental techniques as optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction pattern, scanning probe microscopy, and nanoindentation. Nanoindentation, Vickers hardness and tensile testing are conducted to reveal a multi-scale mechanical performance on original material and also specimens under a variety combinations of temperatures, cooling rates, and rolling conditions. To quantify the single phase properties in each sample, an inverse method is adopted using experimental nanoindentation load-depth curves to obtain tensile stress-strain curves for each phase, and the inverse results were verified with the true stress-strain curves from tensile tests. This work also provides the insight on spatial phase distribution of different phases through a 2-point correlation statistical methodology and relate to material strength and formability. The microstructure information is correlated with the results of mechanical tests. The broken surfaces from tensile testing are analyzed to discover the fracture mechanism in relation to martensite morphology and distribuion. Viscoplastic self-consistent fast Fourier Transformation simulations is also used to compute efficiently the local and the homogenized viscoplastic response of the polycrystalline microstructure. The specific objectives of this work are 1) the development of etching techniques and electron backscatter diffraction strategies to characterize ferrite and martensite phases in steel; 2) the uncovering of a relationship between strength/ductility and material microstructure, 3) a statistical description to quantify the spatial distributions of these phases; and finally 4) the simulation of the microstructural evolution using parameters obtained from the experiments.

  9. Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.

    2018-04-01

    The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.

  10. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.

    PubMed

    Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari

    2005-05-01

    We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.

  11. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase.

    PubMed

    Politi, Yael; Arad, Talmon; Klein, Eugenia; Weiner, Steve; Addadi, Lia

    2004-11-12

    The skeletons of adult echinoderms comprise large single crystals of calcite with smooth convoluted fenestrated morphologies, raising many questions about how they form. By using water etching, infrared spectroscopy, electron diffraction, and environmental scanning electron microscopy, we show that sea urchin spine regeneration proceeds via the initial deposition of amorphous calcium carbonate. Because most echinoderms produce the same type of skeletal material, they probably all use this same mechanism. Deposition of transient amorphous phases as a strategy for producing single crystals with complex morphology may have interesting implications for the development of sophisticated materials.

  12. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ait Ahsaine, H.; Taoufyq, A.; Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex

    2014-10-15

    The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better representedmore » by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.« less

  13. Pressure induced band inversion, electronic and structural phase transitions in InTe: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Rajaji, V.; Pal, Koushik; Sarma, Saurav Ch.; Joseph, B.; Peter, Sebastian C.; Waghmare, Umesh V.; Narayana, Chandrabhas

    2018-04-01

    We report high-pressure Raman scattering measurements on the tetragonal phase of InTe corroborated with the first-principles density functional theory and synchrotron x-ray diffraction measurements. Anomalous pressure-dependent linewidths of the A1 g and Eg phonon modes provide evidence of an isostructural electronic transition at ˜3.6 GPa . The first-principles theoretical analysis reveals that it is associated with a semiconductor-to-metal transition due to increased density of states near the Fermi level. Further, this pressure induced metallization acts as a precursor for structural phase transition to a face centered cubic phase (F m 3 ¯m ) at ˜6.0 GPa . Interestingly, theoretical results reveal a pressure induced band inversion at the Z and M points of the Brillouin zone corresponding to pressures ˜1.0 and ˜1.4 GPa , respectively. As the parity of bands undergoing inversions is the same, the topology of the electronic state remains unchanged, and hence InTe retains its trivial band topology (Z2=0 ) . The pressure dependent behavior of the A1 g and Eg modes can be understood based on the results from the synchrotron x-ray diffraction, which shows anisotropic compressibility of the lattice in the a and c directions. Our Raman measurements up to ˜19 GPa further confirms the pressure induced structural phase transition from a face-centered to primitive cubic (F m 3 ¯m to P m 3 ¯m ) at P ˜15 GPa .

  14. Ultrafast diffraction conoscopy of the structural phase transition in VO2: Evidence of two lattice distortions

    NASA Astrophysics Data System (ADS)

    Kumar, Nardeep; Rúa, Armando; Fernández, Félix E.; Lysenko, Sergiy

    2017-06-01

    Photoinduced phase transitions in complex correlated systems occur very rapidly and involve the interplay between various electronic and lattice degrees of freedom. For these materials to be considered for practical applications, it is important to discover how their phase transitions take place. Here we use a novel ultrafast diffraction conoscopy technique to study the evolution of vanadium dioxide (VO2) from biaxial to uniaxial symmetry. A key finding in this study is an additional relaxation process through which the phase transition takes place. Our results show that the biaxial monoclinic crystal initially, within the first 100-300 fs, transforms to a transient biaxial crystal, and within the next 300-400 fs converts into a uniaxial rutile crystal. The characteristic times for these transitions depend on film morphology and are presumably altered by misfit strain. We take advantage of Landau phenomenology to describe the complex dynamics of VO2 phase transition in the femtosecond regime.

  15. Candidate Elastic Quantum Critical Point in LaCu 6 - x Au x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Lekh; May, Andrew F.; Koehler, Michael R.

    2016-11-30

    In this paper, the structural properties of LaCu 6-xAu x are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu 6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x c=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x c. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. Finally, the data and calculations presented here are consistent with the zero temperature terminationmore » of a continuous structural phase transition suggesting that the LaCu 6-xAu x series hosts an elastic quantum critical point.« less

  16. Stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 probed with MeV ultrafast electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Guyader, L.; Chase, T.; Reid, A. H.

    Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined frommore » the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. Finally, these results might be of relevance in understanding the metallic character of the laser-induced metastable “hidden” state recently discovered in this compound.« less

  17. STM-electroluminescence from clustered C3N4 nanodomains synthesized via green chemistry process.

    PubMed

    Andrade, E P; Costa, B B A; Chaves, C R; de Paula, A M; Cury, L A; Malachias, A; Safar, G A M

    2018-01-01

    A Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and synchrotron X-ray diffraction study on clustered C 3 N 4 nanoparticles (nanoflakes) is conducted on green-chemistry synthesized samples obtained from chitosan through high power sonication. Morphological aspects and the electronic characteristics are investigated. The observed bandgap of the nanoflakes reveals the presence of different phases in the material. Combining STM morphology, STS spectra and X-ray diffraction (XRD) results one finds that the most abundant phase is graphitic C 3 N 4 . A high density of defects is inferred from the XRD measurements. Additionally, STM-electroluminescence (STMEL) is detected in C 3 N 4 nanoflakes deposited on a gold substrate. The tunneling current creates photons that are three times more energetic than the tunneling electrons of the STM sample. We ponder about the two most probable models to explain the observed photon emission energy: either a nonlinear optical phenomenon or a localized state emission. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evolution of the magnetic and structural properties of Fe 1 - x Co x V 2 O 4

    DOE PAGES

    Sinclair, R.; Ma, Jie; Cao, H. B.; ...

    2015-10-12

    The magnetic and structural properties of single-crystal Fe 1-xCo xV 2O 4 samples have been investigated by performing specific heat, susceptibility, neutron diffraction, and x-ray diffraction measurements. As the orbital-active Fe 2+ ions with larger ionic size are gradually substituted by the orbital-inactive Co 2+ ions with smaller ionic size, the system approaches the itinerant electron limit with decreasing V-V distance. Then, various factors such as the Jahn-Teller distortion and the spin-orbital coupling of the Fe 2+ ions on the A sites and the orbital ordering and electronic itinerancy of the V 3+ ions on the B sites compete withmore » each other to produce a complex magnetic and structural phase diagram. Finally, this phase diagram is compared to those of Fe 1-xMn xV 2O 4 and Mn 1-xCo xV 2O 4 to emphasize several distinct features.« less

  19. Stacking order dynamics in the quasi-two-dimensional dichalcogenide 1T-TaS2 probed with MeV ultrafast electron diffraction.

    PubMed

    Le Guyader, L; Chase, T; Reid, A H; Li, R K; Svetin, D; Shen, X; Vecchione, T; Wang, X J; Mihailovic, D; Dürr, H A

    2017-07-01

    Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T -TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l  = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined from the intensity of the CDW satellites aligned around the incommensurate l  = 1/3 characteristic stacking order. These results might be of relevance in understanding the metallic character of the laser-induced metastable "hidden" state recently discovered in this compound.

  20. Stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 probed with MeV ultrafast electron diffraction

    DOE PAGES

    Le Guyader, L.; Chase, T.; Reid, A. H.; ...

    2017-05-03

    Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined frommore » the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. Finally, these results might be of relevance in understanding the metallic character of the laser-induced metastable “hidden” state recently discovered in this compound.« less

  1. Multi scale imaging of the Cloudy Zone in the Tazewell IIICD Meteorite

    NASA Astrophysics Data System (ADS)

    Einsle, J. F.; Harrison, R. J.; Nichols, C. I. O.; Blukis, R.; Midgley, P. A.; Eggeman, A.; Saghi, Z.; Bagot, P.

    2015-12-01

    Paleomagnetic studies of iron and stony iron meteorites suggest that many small planetary bodies possessed molten cores resulting in the generation of a magnetic field. As these bodies cooled, Fe-Ni metal trapped within their mantle underwent a series of low-temperature transitions, leading to the familiar Widmanstatten intergrowth of kamacite and taenite. Adjacent to the kamacite/taenite interface is the so-called "cloudy zone" (CZ): a nanoscale intergrowth of tetrataenite islands in an Fe-rich matrix phase formed via spinodal decomposition. It has recently been shown (Bryson et al. 2015, Nature) that the CZ encodes a time-series record of the evolution of the magnetic field generated by the molten core of the planetary body. Extracting meaningful paleomagnetic data from the CZ relies, on a thorough understanding of the 3D chemical and magnetic properties of the intergrowth focsusing on the interactions between the magnetically hard tetrataenite islands and the magnetically soft matrix. Here we present a multi scale study of the chemical and crystallographic make up of the CZ in the Tazewell IIICD meteorite, using a range of advanced microscopy techniques. The results provide unprecedented insight into the architecture of the CZ, with implications for how the CZ acquires chemical transformation remanance during cooling on the parent body. Previous 2D transmission electron microscope studies of the CZ suggested that the matrix is an ordered Fe3Ni phase with the L12 structure. Interpretation of the electron diffraction patterns and chemical maps in these studies was hindered by a failure to resolve signals from overlapping island and matrix phases. Here we obtain high resolution electron diffraction and 3D chemical maps with near atomic resolution using a combination of scanning precession electron diffraction, 3D STEM EDS and atom probe tomography. Using this combined methodology we reslove for the first time the phenomena of secondary precipitation in the tetrataenite islands and chemical partitioning of trace elements between the island and matrix phases. The new crystallographic and compositional measurements present a quantitative picture of low-temperature local equilibrium in the Fe-Ni system. This leads to an improved understanding of the magnetic models used to perform paleomagnetism of the CZ.

  2. Structural and physical property study of sol-gel synthesized CoFe2-xHoxO4 nano ferrites

    NASA Astrophysics Data System (ADS)

    Patankar, K. K.; Ghone, D. M.; Mathe, V. L.; Kaushik, S. D.

    2018-05-01

    CoFe2-xHoxO4 (x = 0.00, 0.05, 0.10, 0.15, 0.20) ferrites were prepared by the suitably modified Sol-Gel technique. X-ray diffraction (XRD) analysis revealed that the substituted samples show phase pure formation till 10% substitution, which is far higher phase pure than the earlier reports. Upon further substitution an inevitable secondary phase of HoFeO3 along with the spinel phase despite regulating synthesis parameters in the sol-gel reaction route. These results are further corroborated more convincingly by room temperature neutron diffraction. Morphological features of the ferrites were studied by Scanning Electron Microscopy (SEM). The magnetic parameters viz. the saturation magnetization (Ms), coercivity (Hc) and remanence (Mr) were determined from room temperature isothermal magnetization. These parameters were found to decrease with increase in Ho substitution. The decrease in magnetization is analyzed in the light of exchange interactions between rare earth and transition metal ions. Magnetostriction measurements revealed interesting results and the presence of a secondary phase was found to be responsible for decreased measu-red magnetostriction values. The solubility limit of Ho in CoFe2O4 lattice is also reflected from the X-ray and neutron diffraction analysis and magnetostriction studies.

  3. Nonequilibrium synthesis of NbAl3 and Nb-Al-V alloys by laser cladding. I - Microstructure evolution

    NASA Technical Reports Server (NTRS)

    Sircar, S.; Chattopadhyay, K.; Mazumder, J.

    1992-01-01

    The evolution of the microstructure in NbAl3 synthesized by a laser cladding technique (a rapid solidification process, with cooling rates up to 10 exp 6 C/sec) is investigated, and the phases are identified using convergent beam electron diffraction. Two new metastable phases were identified and characterized in detail. The effect of adding V on the final microstructure was also investigated, and the various phase chemistries and the partitioning of different elements into different phases were studied.

  4. Phase diagram and structural evolution of tin/indium (Sn/In) nanosolder particles: from a non-equilibrium state to an equilibrium state.

    PubMed

    Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong

    2017-08-31

    A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn 4 and In, with some Sn being detected by XRD, but no In 3 Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn 4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In 3 Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.

  5. FIBER AND INTEGRATED OPTICS, LASER APPLICATIONS, AND OTHER PROBLEMS IN QUANTUM ELECTRONICS: Numerical simulation of an unstable ring resonator with a Fourier phase corrector

    NASA Astrophysics Data System (ADS)

    Kliment'ev, S. I.; Kuprenyuk, V. I.; Lyubimov, V. V.; Sherstobitov, V. E.

    1989-04-01

    The results are given of calculations of the parameters of an unstable ring resonator with an internal angular selector based on a Fourier phase corrector. It is shown that the use of such a selector makes it possible to compensate partly for the effects of small-scale phase inhomogeneities and to reduce also the influence of the edge diffraction on the structure of the field in a resonator.

  6. Nanoscale contact resistance of V2O5 xerogel films developed by nanostructured powder

    NASA Astrophysics Data System (ADS)

    Bera, Biswajit; Sekhar Das, Pradip; Bhattacharya, Manjima; Ghosh, Swapankumar; Mukhopadhyay, Anoop Kumar; Dey, Arjun

    2016-03-01

    Here we report the synthesis of V2O5 nanostructures by a fast, simple, cost-effective, low-temperature chemical process; followed by the deposition of V2O5 xerogel thin films on a glass substrate by a sol-gel route. Phase analysis, phase transition, microstructural and electronic characterization studies are carried out by x-ray diffraction, texture coefficient analysis, field emission scanning electron microscopy, transmission electron microscopy (TEM), related selected area electron diffraction pattern (SAED) analysis, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, differential scanning calorimetry, and x-ray photoelectron spectroscopy techniques. Confirmatory TEM and SAED data analysis prove further that in this polycrystalline powder there is a unique localized existence of purely single crystalline V2O5 powder with a preferred orientation in the (0 1 0) direction. The most interesting result obtained in the present work is that the xerogel thin films exhibit an inherent capability to enhance the intrinsic resistance against contact induced deformations as more external load is applied during the nanoindentation experiments. In addition, both the nanohardness and Young’s modulus of the films are found to be insensitive to load variations (e.g. 1 to 7 mN). These results are explained in terms of microstructural parameters, e.g. porosity and structural configuration.

  7. Molecular geometry of vanadium dichloride and vanadium trichloride: a gas-phase electron diffraction and computational study.

    PubMed

    Varga, Zoltán; Vest, Brian; Schwerdtfeger, Peter; Hargittai, Magdolna

    2010-03-15

    The molecular geometries of VCl2 and VCl3 have been determined by computations and gas-phase electron diffraction (ED). The ED study is a reinvestigation of the previously published analysis for VCl2. The structure of the vanadium dichloride dimer has also been calculated. According to our joint ED and computational study, the evaporation of a solid sample of VCl2 resulted in about 66% vanadium trichloride and 34% vanadium dichloride in the vapor. Vanadium dichloride is unambiguously linear in its 4Sigma(g)+ ground electronic state. For VCl3, all computations yielded a Jahn-Teller-distorted ground-state structure of C(2v) symmetry. However, it lies merely less than 3 kJ/mol lower than the 3E'' state (D(3h) symmetry). Due to the dynamic nature of the Jahn-Teller effect in this case, rigorous distinction cannot be made between the planar models of either D(3h) symmetry or C(2v) symmetry for the equilibrium structure of VCl3. Furthermore, the presence of several low-lying excited electronic states of VCl3 is expected in the high-temperature vapor. To our knowledge, this is the first experimental and computational study of the VCl3 molecule.

  8. Diffraction Techniques in Structural Biology

    PubMed Central

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  9. Diffraction Techniques in Structural Biology

    PubMed Central

    Egli, Martin

    2010-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy and neutron diffraction are well established and have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches and high-speed computing and visualization, now provide specialists and non-specialists alike with a steady flow of molecular images of unprecedented detail. The present chapter combines a general overview of diffraction methods with a step-by-step description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:20517991

  10. Diffraction Techniques in Structural Biology.

    PubMed

    Egli, Martin

    2016-06-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last twenty years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  11. Symmetry-Breaking Phase Transition without a Peierls Instability in Conducting Monoatomic Chains

    NASA Astrophysics Data System (ADS)

    Blumenstein, C.; Schäfer, J.; Morresi, M.; Mietke, S.; Matzdorf, R.; Claessen, R.

    2011-10-01

    The one-dimensional (1D) model system Au/Ge(001), consisting of linear chains of single atoms on a surface, is scrutinized for lattice instabilities predicted in the Peierls paradigm. By scanning tunneling microscopy and electron diffraction we reveal a second-order phase transition at 585 K. It leads to charge ordering with transversal and vertical displacements and complex interchain correlations. However, the structural phase transition is not accompanied by the electronic signatures of a charge density wave, thus precluding a Peierls instability as origin. Instead, this symmetry-breaking transition exhibits three-dimensional critical behavior. This reflects a dichotomy between the decoupled 1D electron system and the structural elements that interact via the substrate. Such substrate-mediated coupling between the wires thus appears to have been underestimated also in related chain systems.

  12. Investigation of structural, optical, catalytic, fluorescence studies of eco-friendly synthesized Bi2S3 nanostructures

    NASA Astrophysics Data System (ADS)

    Ayodhya, Dasari; Veerabhadram, Guttena

    2017-02-01

    A simple solution phase method has been developed for the synthesis of ribonucleosides capped Bi2S3 nanostructures (NSs) with an average diameter of 15 nm and length of below 100 nm. Transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction (XRD) studies revealed that these NSs were grown from a colloidal dispersion of amorphous Bi2S3 particles, which was first formed through a thermal reaction at a temperature of 60 °C. The phase and structure of the Bi2S3 NSs have been identified by using X-ray powder diffraction. The crystal structure had orthorhombic structure. The surface properties and morphology have been investigated using scanning electron microscope (SEM) technique. The N2 sorption-desorption experiments showed that the surface area of the NSs was 6.35 m2 g-1 by Brunauer-Emmett-Teller (BET). The experiments showed that the Bi2S3 NSs prepared in the present work could be used as catalyst for the reduction of SO dye using a reducing agent. It was found that the as-obtained Bi2S3 NSs contributed to the best catalytic activity. Photoluminescence experiments showed a quenching of the Bi2S3 fluorescence with increasing L-cysteine (Cys) content in the solution. Furthermore, the proposed NSs as sensor were employed for the determination of metal ions with satisfactory results.

  13. Structure and conformation of 1,4-difluorobutane as determined by gas-phase electron diffraction, and by molecular mechanics and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Krosley, Kevin; Hagen, Kolbjørn; Hedberg, Kenneth

    1995-06-01

    Gas-phase electron diffraction data at 23°C together with molecular mechanics (MM3) and ab initio (HF/6-31G∗, gaussian 86) calculations have been used to determine the structure and conformations of 1,4-difluorobutane. The object was to ascertain whether effects similar to the gauche effect in 1,2-difluoroethane, which serves to stabilize the gauche form with the fluorine atoms in close proximity, could also operate in 1,4-difluorobutane. It was found both theoretically and experimentally that the proportion of those conformers having close fluorine atoms was small, implying the absence of effects similar to the gauche effect. The conformational composition estimated from the theoretical calculations is in good agreement with the experimental data. The experimental electron diffraction results constrained by assumptions drawn from the theoretical calculations, ED/MM3 [ED/ab initio], for the principal distances ( {r g}/{Å}) and angles ( {∠ α}/{deg}) with estimated 2σ uncertainties are as follows: r(CH) = 1.105(3) [1.106(3)], r(CF) = 1.398(2) [1.398(2)], r(C 1C 2) = 1.513(2) [1.516(2)], r(C 2C 3) = 1.537(2) [1.532(2)], ∠FCC = 110.9(3) [111.1(3)], ∠CCC = 112.9(4) [112.9(4)], and ∠HCH = 100(3) [100(3)].

  14. Polyethylene nano crystalsomes formed at a curved liquid/liquid interface.

    PubMed

    Wang, Wenda; Staub, Mark C; Zhou, Tian; Smith, Derrick M; Qi, Hao; Laird, Eric D; Cheng, Shan; Li, Christopher Y

    2017-12-21

    Crystallization is incommensurate with nanoscale curved space due to the lack of three dimensional translational symmetry of the latter. Herein, we report the formation of single-crystal-like, nanosized polyethylene (PE) capsules using a miniemulsion solution crystallization method. The miniemulsion was formed at elevated temperatures using PE organic solution as the oil phase and sodium dodecyl sulfate as the surfactant. Subsequently, cooling the system stepwisely for controlled crystallization led to the formation of hollow, nanosized PE crystalline capsules, which are named as crystalsomes since they mimic the classical self-assembled structures such as liposome, polymersome and colloidosome. We show that the formation of the nanosized PE crystalsomes is driven by controlled crystallization at the curved liquid/liquid interface of the miniemulson droplet. The morphology, structure and mechanical properties of the PE crystalsomes were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic force spectroscopy. Electron diffraction showed the single-crystal-like nature of the crystalsomes. The incommensurateness between the nanocurved interface and the crystalline packing led to reduced crystallinity and crystallite size of the PE crystalsome, as observed from the X-ray diffraction measurements. Moreover, directly quenching the emulsion below the spinodal line led to the formation of hierarchical porous PE crystalsomes due to the coupling of the PE crystallization and liquid/liquid phase separation. We anticipate that this unique crystalsome represents a new type of nanostructure that might be used as nanodrug carriers and ultrasound contrast agents.

  15. 8-beam local oscillator array at 47 THz generated by a phase grating and a quantum cascade laser

    DOE PAGES

    Mirzaei, B.; Silva, J. R. G.; Hayton, D.; ...

    2017-11-13

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less

  16. Electronic and structural ground state of heavy alkali metals at high pressure

    DOE PAGES

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less

  17. Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals

    NASA Astrophysics Data System (ADS)

    Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun

    2012-04-01

    We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.

  18. Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory

    NASA Astrophysics Data System (ADS)

    Nath Gupta, Satyendra; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Elghazali, Moaz A.; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.

    2018-05-01

    High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at GPa for NbAs and GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.

  19. On the existence of declared 9R phase in Fe–Ni invar alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabanova, I. G.; Sagaradze, V. V., E-mail: vsagaradze@imp.uran.ru; Kataeva, N. V.

    2016-07-15

    An analysis of recently reported electron diffraction patterns suggests that metastable austenitic Fe–32Ni alloy subjected to α → γ transformation upon slow heating does not exhibit any signs of formation of the 9R phase; the conventional nanocrystalline γ phase with an fcc lattice is formed instead. Extended lamellae with a layered structure, erroneously identified as a new phase of the (3R + 9R) type in Fe–32Ni alloy, are conventional twinning (midrib) regions of each initial α crystal, in which γ-phase twin nanolamellae are formed upon heating.

  20. The structural and electronic properties of cleaved silicon (111) surfaces following adsorption of silver

    NASA Astrophysics Data System (ADS)

    Le Lay, G.; Chauvet, A.; Manneville, M.; Kern, R.

    Silver overlayers for coverages ranging from zero to several monolayers are evaporated on vacuum-cleaved (111) silicon surfaces and carefully examined using low-energy electron diffraction (diffraction patterns and I(v) curves), and Auger electron spectroscopy (condensation/desorption curves), with the aim of establishing a closer correlation between the adsorption process, the different superlattices observed (i.e. 7 × 7-R(±19°1), 3 × 3-R(30° ), 3 × 1 and 6 × 1), the growth mechanism of the deposit on the one hand and the electronic properties of the system recently probed using photoemission yield spectroscopy on the other hand. These new results basically confirm the direct relations we had previously shown between the growth mode as monitored with electron diffraction LEED, RHEED, TED and Auger spectroscopy, and the electronic structures as investigated by low energy electron spectroscopy, but permit a deeper insight into the adsorption process at low coverage. At room temperature on the 2 × 1 cleavage structure where the silver-silicon interaction is weak, the adsorbed phase is completed at about 6/7 of a monolayer (θ ≃ 6/7) and a local arrangement of vacancies in the adlayer yields the 7 superstructure, while little effect on the silicon dangling bonds is noticed, but when silver two-dimensional islands (θ > 6/7) growing in a quasi layer fashion have covered the substrate surface. At higher temperatures three-dimensional growth of crystallites occurs after completion of the 3 phase whose saturation coverage increases with condensation temperatures, maxima ranging from θ ˜ 0.7 to θ ˜ 1.0 ( T ˜ 500°C) for different cleaves. This Si(111) 3-Ag surface exhibits again the same dangling bond peak as a clean 2 × 1 Si surface, despite the fact that the interaction between Ag and Si is now rather strong, as is confirmed by desorption experiments ( T ˜ 600°C). We thus critically discuss the geometrical models of this 3 phase previously devised and tentatively propose a new one which accounts better for these recent results, along with models of the 3 × 1 and 6 × 1 structures observed in the course of the desorption process.

  1. High-resolution electron microscopy observation of a new crystalline approximant W' of Mg-Zn-Y icosahedral quasicrystal

    PubMed

    Luo; Hashimoto

    2000-10-01

    A new ordered structure W' with a lattice parameter (a = 2.05 nm) about three times as large as that of the fundamental face-centered cubic W phase (a = 0.6848 nm) has been found in the Mg-Zn-Y system by means of transmission electron microscopy. The W' and W phases have the cube-to-cube orientation relationship. Moreover, the strong electron diffraction spots of the W' phase showed pseudoicosahedral symmetry, implying that it is a crystalline approximant of the Mg-Zn-Y icosahedral quasicrystal. In the high-resolution electron microscopic images of the W' phase, Penrose tiles of pentagons and boats with an edge length of a(p) = 0.481 nm can be identified. A binary tile of crown subunit has also been deduced from such a tiling. Translation domains of the W' phase have also been observed and the translation vectors at the domain boundary are: a(p), tau x a(p) and (1 + tau) x a(p), respectively, where (1 + tau) x a(p) equals to the edge length a(r) of the big obtuse rhombus of the W' phase and tau = (1 + square root of 5)/2, is the golden ratio.

  2. Low-energy electron diffraction study of Si(111)-(√3x √3)R30∘ -B

    NASA Astrophysics Data System (ADS)

    Marino, K. E.; Huang, Y. T.; Diehl, R. D.; Tu, Weison; Mulugeta, Daniel; Snijders, P. C.; Weitering, H. H.

    2014-03-01

    Metal-semiconductor interfaces are important for the function and manufacture of advanced electronics, such as those used in computers, tablets and phones. They also exhibit many interesting physical phenomena that are interesting from a fundamental point of view, including exotic phases and phase transitions. This study involves the analysis and modeling of the surface structure of a thin film of boron on the Si(111) surface. The addition of metal atoms to the surface of Si(111) simplifies its structure by removing a ``rippling'' that is present on the clean surface. The low-energy electron diffraction (LEED) data were measured at a surface temperature of 80 K at ORNL. The LEED analysis utilized the SATLEED analysis programs. The results are similar to those obtained in an earlier LEED study for this interface, but the precision is higher due to the larger dataset employed., The results of this study will be compared to other studies of this and similar systems. We acknowledge the Eberly College of Science for funding this project. González, Guo, Ortega, Flores, Weitering. Phys. Rev. Lett. 102, 115501 (2009)

  3. Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness.

    PubMed

    Angella, Giuliano; Barbieri, Giuseppe; Donnini, Riccardo; Montanari, Roberto; Richetta, Maria; Varone, Alessandra

    2017-09-05

    Electron Beam (EB) welding has been used to realize seams on 2 mm-thick plates of directionally solidified (DS) IN792 superalloy. The first part of this work evidenced the importance of pre-heating the workpiece to avoid the formation of long cracks in the seam. The comparison of different pre-heating temperatures (PHT) and pass speeds ( v ) allowed the identification of optimal process parameters, namely PHT = 300 °C and v = 2.5 m/min. The microstructural features of the melted zone (MZ); the heat affected zone (HAZ), and base material (BM) were investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD), and micro-hardness tests. In the as-welded condition; the structure of directionally oriented grains was completely lost in MZ. The γ' phase in MZ consisted of small (20-40 nm) round shaped particles and its total amount depended on both PHT and welding pass speed, whereas in HAZ, it was the same BM. Even if the amount of γ' phase in MZ was lower than that of the as-received material, the nanometric size of the particles induced an increase in hardness. EDS examinations did not show relevant composition changes in the γ' and γ phases. Post-welding heat treatments (PWHT) at 700 and 750 °C for two hours were performed on the best samples. After PWHTs, the amount of the ordered phase increased, and the effect was more pronounced at 750 °C, while the size of γ' particles in MZ remained almost the same. The hardness profiles measured across the joints showed an upward shift, but peak-valley height was a little lower, indicating more homogeneous features in the different zones.

  4. Common path point diffraction interferometer using liquid crystal phase shifting

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (Inventor)

    1997-01-01

    A common path point diffraction interferometer uses dyed, parallel nematic liquid crystals which surround an optically transparent microsphere. Coherent, collimated and polarized light is focused on the microsphere at a diameter larger than that of the microsphere. A portion of the focused light passes through the microsphere to form a spherical wavefront reference beam and the rest of the light is attenuated by the dyed liquid crystals to form an object beam. The two beams form an interferogram which is imaged by a lens onto an electronic array sensor and into a computer which determines the wavefront of the object beam. The computer phase shifts the interferogram by stepping up an AC voltage applied across the liquid crystals without affecting the reference beam.

  5. The magnetic order of GdMn₂Ge₂ studied by neutron diffraction and x-ray resonant magnetic scattering.

    PubMed

    Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M

    2010-06-09

    The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  6. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulima, Iwona, E-mail: isulima@up.krakow.pl

    Steel-8TiB{sub 2} composites were produced by two new sintering techniques, i.e. Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT) sintering. This study discusses the impact of these sintering methods on the microstructure of steel composites reinforced with TiB{sub 2} particles. Scanning electron microscopy (SEM), wavelength dispersive spectroscopy (WDS), X-ray diffraction, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used to analyze the microstructure evolution in steel matrix composites. The results of microscopic examinations revealed a close relationship between the composite microstructure and the methods and conditions of sintering. Substantial differences were observed in the grain size ofmore » materials sintered by HP-HT and SPS. It has been demonstrated that the composites sintered by HP-HT tend to form a chromium-iron-nickel phase in the steel matrix. In contrast, the microstructure of the composites sintered by SPS is characterized by the presence of complex borides and chromium-iron phase. - Highlights: •The steel-8TiB{sub 2} composites were fabricated by Spark Plasma Sintering (SPS) and High Pressure-High Temperature (HP-HT). •Sintering techniques has an important effect on changes in the microstructure of steel-8TiB{sub 2} composites. •New phases of different size and morphology were identified.« less

  7. Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3

    DOE PAGES

    Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun; ...

    2018-01-17

    Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less

  8. Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun

    Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less

  9. Thiobenzamide: Structure of a free molecule as studied by gas electron diffraction and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Kolesnikova, Inna N.; Putkov, Andrei E.; Rykov, Anatolii N.; Shishkov, Igor F.

    2018-06-01

    The equilibrium (re) molecular structure of thiobenzamide along with rh1 structure has been determined in gas phase using gas electron-diffraction (GED) at about 127 °C and quantum-chemical calculations (QC). Rovibrational distance corrections to the thermal averaged GED structure have been computed with anharmonic force constants obtained at the MP2/cc-pVTZ level of theory. According to the results of GED and QC thiobenzamide exists as mixture of two non-planar enantiomers of C1 symmetry. The selected equilibrium geometrical parameters of thiobenzamide (re, Å and ∠e, deg) are the following: (Cdbnd S) = 1.641(4), (Csbnd N) = 1.352(2), (Csbnd C) = 1.478(9), (Cdbnd C)av = 1.395(2), CCN = 114.7(5), CCS = 123.4(5), C2C1C7S = 31(4), C6C1C7N = 29(4). The structure of thiobenzamide in the gas phase is markedly different to that in the literature for the single crystal. The differences between the gas and the solid structures are ascribed to the presence of intermolecular hydrogen bonding in the solid phase.

  10. Microstructures of GaN1-xPx layers grown on (0001) GaN substrates by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.

    1999-03-01

    Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.

  11. High Pressure X-Ray Diffraction Studies of Bi2-xSbxTe3 (x = 0,1,2)

    NASA Astrophysics Data System (ADS)

    Jacobsen, M. K.; Kumar, R. S.; Cornelius, A. L.; Sinogeiken, S. V.; Nico, M. F.

    2007-12-01

    Recently, pressure tuning of the thermoelectric figure of merit has been reported for several materials Bi2Te3 based thermoelectric materials [2],[10],[12]. In order to investigate the bulk properties of Bi2Te3, Sb2Te3, and their solid solution in detail, we have performed structural studies up to 20 GPa. Our diffraction results show that all three compounds transform from the ambient pressure structure to a high pressure phase between 7 and 10 GPa. In addition, these diffraction results have been converted to Vinet and Holzapfel equations of state to test the claim of electronic topological transitions in these structures [3].

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, H., E-mail: hide-yamada@mg.ngkntk.co.jp; Matsuoka, T.; Kozuka, H.

    Two phases of (K,Na)NbO{sub 3} (KNN) co-exist in a KNN-based composite lead-free piezoelectric ceramic 0.910(K{sub 1−x}Na{sub x}){sub 0.86}Ca{sub 0.04}Li{sub 0.02}Nb{sub 0.85}O{sub 3−δ}–0.042K{sub 0.85}Ti{sub 0.85}Nb{sub 1.15}O{sub 5} –0.036BaZrO{sub 3}–0.0016Co{sub 3}O{sub 4}– 0.0025Fe{sub 2}O{sub 3}–0.0069ZnO system, over a wide range of Na fractions, where 0.56 ≤ x ≤ 0.75. The crystal systems of the two KNN phases are identified to tetragonal and orthorhombic by analyzing the synchrotron powder X-ray diffraction (XRD) data, high-resolution transmission electron microscopy (HR-TEM), and selected-area electron diffraction (SAD). In the range 0.33 ≤ x ≤ 0.50, the main component of the composite system is found to be single-phase KNN with a tetragonal structure. Granular nanodomains ofmore » the orthorhombic phase dispersed in the tetragonal matrix have been identified by HR-TEM and SAD for 0.56 ≤ x ≤ 0.75. Only a trace amount of the orthorhombic phase has been found in the SAD patterns at the composition x = 0.56. However, the number of orthorhombic nanodomains gradually increases with increasing Na content up to x < 0.75, as observed from the HR-TEM images. An abrupt increase and agglomeration of the nanodomains are observed at x = 0.75, where weak diffraction peaks of the orthorhombic phase have also become detectable from the XRD data. The maximum value of the electromechanical coupling coefficient, k{sub p} = 0.56, has been observed at the composition x = 0.56.« less

  13. Simple glucose reduction route for one-step synthesis of copper nanofluids

    NASA Astrophysics Data System (ADS)

    Shenoy, U. Sandhya; Shetty, A. Nityananda

    2014-01-01

    One-step method has been employed in the synthesis of copper nanofluids. Copper nitrate is reduced by glucose in the presence of sodium lauryl sulfate. The synthesized particles are characterized by X-ray diffraction technique for the phase structure; electron diffraction X-ray analysis for chemical composition; transmission electron microscopy and field emission scanning electron microscopy for the morphology; Fourier-transform infrared spectroscopy and ultraviolet-visible spectroscopy for the analysis of ingredients of the solution. Thermal conductivity, sedimentation and rheological measurements have also been carried out. It is found that the reaction parameters have considerable effect on the size of the particle formed and rate of the reaction. The techniques confirm that the synthesized particles are copper. The reported method showed promising increase in the thermal conductivity of the base fluid and is found to be reliable, simple and cost-effective method for preparing heat transfer fluids with higher stability.

  14. Ultrafast electron microscopy in materials science, biology, and chemistry

    NASA Astrophysics Data System (ADS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-06-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental knowledge for discovery-class science.

  15. Sub-15 femtosecond laser-induced nanostructures emerging on Si(100) surfaces immersed in water: analysis of structural phases

    NASA Astrophysics Data System (ADS)

    Straub, M.; Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.

    2014-04-01

    Nanoscale periodic rifts and subwavelength ripples as well as randomly nanoporous surface structures were generated on Si(100) surfaces immersed in water by tightly focused high-repetition rate sub-15 femtosecond sub-nanojoule pulsed Ti:sapphire laser light. Subsequent to laser processing, silicon oxide nanoparticles, which originated from a reaction of ablated silicon with water and aggregated on the exposed areas, were etched off by hydrofluoric acid. The structural phases of the three types of silicon nanostructures were investigated by transmission electron microscopy diffraction images recorded on focused ion beam sections. On nanorift patterns, which were produced at radiant exposure extremely close to the ablation threshold, only the ideal Si-I phase at its original bulk orientation was observed. Electron diffraction micrographs of periodic ripples, which were generated at slightly higher radiant exposure, revealed a compression of Si-I in the vertical direction by 6 %, which is attributed to recoil pressure acting during ablation. However, transitions to the high-pressure phase Si-II, which implies compression in the same direction at pressures in excess of 10 GPa, to the metastable phases Si-III or Si-IV that arise from Si-II on pressure relief or to other high-pressure phases (Si-V-Si-XII) were not observed. The nanoporous surfaces featured Si-I material with grains of resolidified silicon occurring at lattice orientations different from the bulk. Characteristic orientational relationships as well as small-angle grain boundaries reflected the rapid crystal growth on the substrate.

  16. Phase transformation pathways of ultrafast-laser-irradiated Ln2O3 (Ln =Er -Lu )

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; Solomon, Jonathan M.; Asta, Mark; Mao, Wendy L.; Yalisove, Steven M.; Ewing, Rodney C.

    2018-01-01

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln =Er -Lu ), and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln =Tm -Lu , consistent with the material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln =Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.

  17. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  18. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef, E-mail: ulm@mit.edu

    2014-01-15

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located onmore » a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: •A new method of clinker characterization •Combination of electron probe technique with cluster analysis •Simultaneous assessment of phase abundance, composition and bulk chemistry •Experimental validation performed on industrial clinkers.« less

  19. Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er – Lu )

    DOE PAGES

    Rittman, Dylan R.; Tracy, Cameron L.; Chen, Chien-Hung; ...

    2018-01-10

    Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with themore » material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.« less

  20. Structural phase transitions in yttrium under ultrahigh pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2012-09-01

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  1. Structural phase transitions in yttrium under ultrahigh pressures.

    PubMed

    Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2012-09-12

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  2. Ultrafast electron diffraction and electron microscopy: present status and future prospects

    NASA Astrophysics Data System (ADS)

    Ishchenko, A. A.; Aseyev, S. A.; Bagratashvili, V. N.; Panchenko, V. Ya; Ryabov, E. A.

    2014-07-01

    Acting as complementary research tools, high time-resolved spectroscopy and diffractometry techniques proceeding from various physical principles open up new possibilities for studying matter with necessary integration of the 'structure-dynamics-function' triad in physics, chemistry, biology and materials science. Since the 1980s, a new field of research has started at the leading research laboratories, aimed at developing means of filming the coherent dynamics of nuclei in molecules and fast processes in biological objects ('atomic and molecular movies'). The utilization of ultrashort laser pulse sources has significantly modified traditional electron beam approaches to and provided high space-time resolution for the study of materials. Diffraction methods using frame-by-frame filming and the development of the main principles of the study of coherent dynamics of atoms have paved the way to observing wave packet dynamics, the intermediate states of reaction centers, and the dynamics of electrons in molecules, thus allowing a transition from the kinetics to the dynamics of the phase trajectories of molecules in the investigation of chemical reactions.

  3. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    PubMed Central

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne

    2016-01-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918

  4. Molecular glasses of azobenzene for holographic data storage applications

    NASA Astrophysics Data System (ADS)

    Zarins, Elmars; Balodis, Karlis; Ruduss, Armands; Kokars, Valdis; Ozols, Andris; Augustovs, Peteris; Saharovs, Dmitrijs

    2018-05-01

    A series of D-N=N-A type molecular glasses where the electron acceptor part (A) contains several electron withdrawing substituents, but the electron donating part (D) of the glassy azochromophores contains amorphous phase promoting non-conjugated bulky triphenyl or hydroxyl groups have been synthesized and investigated. Results showed that the azodye physical properties depend not only on the incorporated electron withdrawing substituents but are also influenced by the bonding type of covalently attached bulky moieties. Synthesized glassy azocompounds showed glass transition temperatures up to 106 °C and thermal stability up to 312 °C. The ability to form holographic gratings in spin-cast thin films of the glassy azodyes was investigated using 532 nm and 633 nm lasers obtaining diffraction efficiency up to 57%, self-diffraction efficiency up to 15% and photosensitivity as high as 3.7 J/(cm2%). Surface relief grating (SRG) depths reached 1.1 μm and in some cases even exceeded the thickness of the films.

  5. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction.

    PubMed

    Müller, Knut; Krause, Florian F; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-15

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  6. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    NASA Astrophysics Data System (ADS)

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-12-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.

  7. Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction

    PubMed Central

    Müller, Knut; Krause, Florian F.; Béché, Armand; Schowalter, Marco; Galioit, Vincent; Löffler, Stefan; Verbeeck, Johan; Zweck, Josef; Schattschneider, Peter; Rosenauer, Andreas

    2014-01-01

    By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field-induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright-field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms. PMID:25501385

  8. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne

    2016-12-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  9. Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro

    We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreasedmore » below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.« less

  10. CMC-coated Fe3O4 nanoparticles as new MRI probes for hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Sitthichai, Sudarat; Pilapong, Chalermchai; Thongtem, Titipun; Thongtem, Somchai

    2015-11-01

    Pure Fe3O4 nanoparticles and Fe3O4 magnetic nanoparticles (MNPs) coated with carboxymethyl cellulose (CMC) were successfully prepared by co-precipitating of FeCl2·4H2O and FeCl3·6H2O in the solutions containing ammonia at 80 °C for 3 h. Phase, morphology, particle-sized distribution, surface chemistry, and weight loss were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) including high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) spectroscopy. In this research, CMC-coated Fe3O4 MNPs consisting of Fe2+ and Fe3+ ions with 543.3-mM-1 s-1 high relaxivity were detected and were able to be used for magnetic resonance imaging (MRI) application with very good contrast for targeting hepatocellular carcinoma (HCC) without any further vectorization.

  11. Triangular Graphene Grain Growth on Cube-Textured Cu Substrates

    DTIC Science & Technology

    2011-01-01

    rate of CuOx decreases with decreasing H 2 partial pressure. [ 32 ] According to the Cu-O phase diagram, [ 33 ] the eutectic temperature of Cu-CuO and...accelerating voltage of 2 KeV. The electron backscatter diffraction patterns (EBSP) were used to examine recrystallization and grain orientation of

  12. The deviations of the Al6Li3Cu quasicrystal from icosahedral symmetry : a reminiscence of a cubic crystal

    NASA Astrophysics Data System (ADS)

    Donnadieu, Patricia

    1994-05-01

    The (Al6Li3Cu) (T2) quasicrystals are known to exhibit large deviations from the icosahedral symmetry. Series of electron diffraction patterns are used to investigate these imperfections in as-cast T, samples. A detailed analysis of the 5-fold and 3-fold symmetry diffraction patterns shows that they are compatible with the m3 point group instead of the m35 icosahedral group. This symmetry reduction is interprétéd as reminiscent of the cubic approximant phase (R-Al5Li3Cu) rather than of higher order approximant phases. This interpretation is supported by previous observations on crystal/quasicrystal phase transformation in the AlLiCu system. Les quasicristaux de phase T2(Al6Li3Cu) montrent d'importantes déviations à la symétrie icosaédrique. Ces imperfections sont mises en évidence par diffraction électronique dans des échantillons de phase T2 brut de coulée. Un examen détaillé des diagrammes de diffraction de symétrie d'ordre 3 et 5 révèle qu'ils sont compatibles avec le groupe ponctuel m3 au lieu du groupe de l'icosaèdre (m35). Cette réduction de symétrie est interprétée comme une réminiscence de la phase cubique approximante (R-Al5Li3Cu) et non l'apparition d'approximant d'ordre plus élevé. Cette interprétation est suggérée par des observations antérieures sur la transformation cristal/quasicristal dans le système AlLiCu.

  13. Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017

    2015-12-15

    Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less

  14. Boron monosulfide: Equation of state and pressure-induced phase transition

    NASA Astrophysics Data System (ADS)

    Cherednichenko, K. A.; Kruglov, I. A.; Oganov, A. R.; Le Godec, Y.; Mezouar, M.; Solozhenko, V. L.

    2018-04-01

    Quasi-hydrostatic compression of rhombohedral boron monosulfide (r-BS) has been studied up to 50 GPa at room temperature using diamond-anvil cells and angle-dispersive synchrotron X-ray diffraction. A fit of the experimental P-V data to the Vinet equation of state yields the bulk modulus B0 of 42.2(1.4) GPa and its first pressure derivative B0' of 7.6(2) that are in excellent agreement with our ab initio calculations. Formation of a new high-pressure phase of boron monosulfide (hp-BS) has been observed above 35 GPa. According to ab initio evolutionary crystal structure predictions combined with Rietveld refinement of high-pressure X-ray diffraction data, the structure of hp-BS has trigonal symmetry and belongs to the space group P-3m1. As it follows from the electron density of state calculations, the phase transformation is accompanied by an insulator-metal transition.

  15. High Zn Content Single-phase RS-MgZnO Suitable for Solar-blind Frequency Applications

    NASA Astrophysics Data System (ADS)

    Liang, H. L.; Mei, Z. X.; Liu, Z. L.; Guo, Y.; Azarov, A. Yu.; Kuznetsov, A. Yu.; Hallen, A.; Du, X. L.

    2010-11-01

    Single-phase rock-salt MgZnO films with high Zn content were successfully fabricated on the templates of MgO (111)/α-sapphire (0001) by radio-frequency plasma assisted molecular beam epitaxy. The influence of growth temperature on epitaxy of MgZnO alloy films was investigated by the combined studies of crystal structures, compositions, and optical properties. It is found that the incorporation of Zn atoms into the rock-salt MgZnO films is greatly enhanced at low temperature, confirmed by in-situ reflection high-energy electron diffraction observations and ex-situ X-ray diffraction characterization. Zn fraction in the single-phase rock-salt Mg0.53Zn0.47O film was determined by Rutherford backscattering spectrometry. Optical properties of the films were investigated by transmittance spectroscopy and reflectance spectroscopy, both of which demonstrate the solar-blind band gap and its dependence on Zn content.

  16. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Hodgson, Keith O.; Ishikawa, Tetsuya; Larabell, Carolyn A.; Legros, Mark A.; Nishino, Yoshinori

    2003-01-01

    We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.

  17. Invited Review Article: Methods for imaging weak-phase objects in electron microscopy

    PubMed Central

    Glaeser, Robert M.

    2013-01-01

    Contrast has traditionally been produced in electron-microscopy of weak phase objects by simply defocusing the objective lens. There now is renewed interest, however, in using devices that apply a uniform quarter-wave phase shift to the scattered electrons relative to the unscattered beam, or that generate in-focus image contrast in some other way. Renewed activity in making an electron-optical equivalent of the familiar “phase-contrast” light microscope is based in part on the improved possibilities that are now available for device microfabrication. There is also a better understanding that it is important to take full advantage of contrast that can be had at low spatial frequency when imaging large, macromolecular objects. In addition, a number of conceptually new phase-plate designs have been proposed, thus increasing the number of options that are available for development. The advantages, disadvantages, and current status of each of these options is now compared and contrasted. Experimental results that are, indeed, superior to what can be accomplished with defocus-based phase contrast have been obtained recently with two different designs of phase-contrast aperture. Nevertheless, extensive work also has shown that fabrication of such devices is inconsistent, and that their working lifetime is short. The main limitation, in fact, appears to be electrostatic charging of any device that is placed into the electron diffraction pattern. The challenge in fabricating phase plates that are practical to use for routine work in electron microscopy thus may be more in the area of materials science than in the area of electron optics. PMID:24289381

  18. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum.

    PubMed

    Jones, Michael W M; Dearnley, Megan K; van Riessen, Grant A; Abbey, Brian; Putkunz, Corey T; Junker, Mark D; Vine, David J; McNulty, Ian; Nugent, Keith A; Peele, Andrew G; Tilley, Leann

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. © 2013 Elsevier B.V. All rights reserved.

  19. Controllable fabrication of copper phthalocyanine nanostructure crystals.

    PubMed

    Liu, Fangmei; Sun, Jia; Xiao, Si; Huang, Wenglong; Tao, Shaohua; Zhang, Yi; Gao, Yongli; Yang, Junliang

    2015-06-05

    Copper phthalocyanine (CuPc) nanostructure crystals, including nanoflower, nanoribbon, and nanowire, were controllably fabricated by temperature gradient physical vapor deposition (TG-PVD) through controlling the growth parameters. In a controllable growth system with carrier gas N2, nanoflower, nanoribbon, and nanowire crystals were formed in a high-temperature zone, medium-temperature zone, and low-temperature zone, respectively. They were proved to be β-phase, coexist of α-phase and β-phase, and α-phase respectively based on x-ray diffraction results. Furthermore, ultralong CuPc nanowires up to several millimeters could be fabricated by TG-PVD without carrier gas, and they were well-aligned to form large-area CuPc nanowire crystal arrays by the Langmuir-Blodgett method. The nanostructure crystals showed unusual optical absorption spectra from the ultraviolet-visible to near-infrared range, which was explained by the diffraction and scattering caused by the wavelength-sized nanostructures. These CuPc nanostructure crystals show potential applications in organic electronic and optoelectronic devices.

  20. Optical properties of hydrothermally synthesized TGA-capped CdS nanoparticles: controlling crystalline size and phase

    NASA Astrophysics Data System (ADS)

    Tavakoli Banizi, Zoha; Seifi, Majid

    2017-10-01

    TGA-capped CdS nanoparticles were obtained in the presence of thioglycolic acid (TGA) as capping agent via a facile hydrothermal method at relatively low temperature and over a short duration. As-synthesized TGA-capped CdS nanoparticles were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, photoluminescence spectroscopy, Ultraviolet-visible spectroscopy and energy-dispersive x-ray spectroscopy. The products had spherical shapes, although their crystalline size and phase was dependent on temperature and time of the reaction. Photoluminescence spectra showed that the fluorescence intensity decreased when increasing the reaction time and temperature.

  1. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  2. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    PubMed

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  3. MANN: A program to transfer designs for diffractive optical elements to a MANN photolithographic mask generator

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1994-01-01

    There are two basic areas of interest for diffractive optics. In the first, the property of wavefront division is exploited for achieving optical fanout, analogous to the more familiar electrical fanout of electronic circuitry. The basic problem here is that when using a simple uniform diffraction grating the energy input is divided unevenly among the output beams. The other area of interest is the use of diffractive elements to replace or supplement standard refractive elements such as lenses. Again, local grating variations can be used to control the amount of bending imparted to optical rays, and the efficiency of the diffractive element will depend on how closely the element can be matched to the design requirements. In general, production restrictions limit how closely the element approaches the design, and for the common case of photolithographic production, a series of binary masks is required to achieve high efficiency. The actual design process is much more involved than in the case of elements for optical fanout, as the desired phase of the optical wavefront over some reference plane must be specified and the phase alteration to be introduced at each point by the diffraction element must be known. This generally requires the utilization of a standard optical design program. Two approaches are possible. In the first approach, the diffractive element is treated as a special type of lens and the ordinary optical design equations are used. Optical design programs tend to follow a second approach, namely, using the equations of optical interference derived from holographic theory and then allowing the introduction of phase front corrections in the form of polynomial equations. By using either of these two methods, diffractive elements can be used not only to compensate for distortions such as chromatic or spherical aberration, but also to perform the work of a variety of other optical elements such as null correctors, beam shapers, etc. The main focus of the project described in this report is how the design information from the lens design program is incorporated into the photolithographic process. It is shown that the MANN program, a photolithographic mask generator, fills the need for a link between lens design programs and mask generation controllers.The generated masks can be used to expose a resist-coated substrate which is etched and then must be re-coated, re-exposed, and re-etched for making copies, just as in the electronics industry.

  4. Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minárik, Peter; Král, Robert; Pešička, Josef

    2016-02-15

    The magnesium alloy LAE442 was processed by extrusion and equal channel angular pressing (ECAP) to achieve ultrafine grained microstructure. Detailed characterization of the microstructure was performed by scanning electron microscope, electron back scattered diffraction (EBSD) and transmission electron microscope. The initial, as-cast, microstructure consisted of large grains of ~ 1 mm. The grain refinement due to the processing by severe plastic deformation led to a decrease of the average grain size to ~ 1.7 μm after the final step of ECAP. A detailed characterization of secondary phases showed the precipitation of Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{submore » 7} intermetallic phases. X-ray diffraction measurements proved that Li is dissolved within the magnesium matrix in the as-cast condition. Newly formed Al{sub 3}Li phase was observed after ECAP. The texture formation due to the extrusion and ECAP was different from that in the other magnesium alloys due to the activation of non-basal slip systems as a result of the decrease of the c/a ratio. - Highlights: • Combined extrusion and equal channel angular pressing results in significant grain refinement by factor 1000 approximately. • Al{sub 11}RE{sub 3}, Al{sub 2}Ca and Al{sub 10}RE{sub 2}Mn{sub 7} secondary phases are present in the as-cast material while Li was dissolved in the Mg matrix. • Extrusion and ECAP have no effect on the composition of the secondary phases but they influence strongly their distribution. • Texture evolution is affected by decrease of c/a ratio due to the presence of Li and resulting activation of non-basal slip.« less

  5. Effect of pre-strain on precipitation and exfoliation corrosion resistance in an Al-Zn-Mg alloy

    NASA Astrophysics Data System (ADS)

    Lu, Xianghan; Du, Zhiwei; Han, Xiaolei; Li, Ting; Wang, Guojun; Lu, Liying; Bai, Xiaoxia; Zhou, Tietao

    2017-12-01

    To investigate the effect of pre-strain on behaviors in a specially developed Al-4.5Zn-1.2Mg alloy, transmission electron microscopy (TEM) bright field (BF) imaging combined with select area electron diffraction (SAED), Vickers-hardness tests and electrical conductivity tests was conducted for insight into precipitation in aluminum (Al) matrix during two step ageing, and standard exfoliation corrosion (EXCO) test combined with high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) and scanning electron microscopy (SEM) was carried out for corrosion behavior. Results showed that pre-strain accelerated precipitation during two step ageing as the sequence of: (i) supersaturated solid solution (SSS), GPI zones precipitations, GPI dissolution; (ii) SSS, fcc precipitates, η’ phases or η phases. And the precipitation hardening of the fcc precipitates was not effective as GPI zones. Pre-strain also accelerated EXCO developing, which was mainly attributed to the coverage ratio of η phases on high-angle grain boundaries (HAGBs) increasing as pre-strain increase.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Ludmila L.; Semin, Viktor O.; Gudimova, Ekaterina Y.

    By transmission electron microscopy method the evolution of structural-phase states on a depth of close to equiatomic NiTi modified layer has been studied. Modification performed by pulse impact on its surface low-energy high-current electron beam (beam energy density 10 J/sm{sup 2}, 10 pulses, pulse duration 50mks). It is established that during the treatment in the layer thickness of 8–10 μm, the melting of primary B2 phase and contained therein as Ti2Ni phase particles occurs. The result is change in the concentration ratio of titanium and nickel in the direction of increasing titanium content, which was confirmed by X-ray analysis in themore » form of increased unit cell parameter B2 phase. Analysis of the electron diffraction pattern showed that the modified layer is characterized as a highly distorted structure on the basis of bcc lattice. Lattice distortions are maximal near the surface and extends to a depth of melt. In subjacent layer there is gradual decline lattice distortions is observed.« less

  7. Phase transformation pathways of Ln2O3 irradiated by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Rittman, Dylan; Solomon, Jonathan; Chen, Curtis; Tracy, Cameron; Yalisove, Steven; Asta, Mark; Mao, Wendy; Ewing, Rodney

    Ultrafast laser irradiation induces highly non-equilibrium conditions in materials through intense electronic excitation over very short timescales. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 (Ln = Er-Lu). A combination of grazing incidence X-ray diffraction and transmission electron microscopy is used to characterize the amount and depth-dependence of the phase transformation. Results indicate that-although all materials experience the same transformation-it is achieved through different damage mechanisms (pressure vs. thermal), and the short timescales associated with damage provides non-equilibrium routes of material modification. Ab initio molecular dynamics are used to isolate the effects of electronic excitations, and results are shown to be consistent with the trend in radiation resistance observed experimentally. Overall, this study provides a path to gain insight into the relationship between a material's equilibrium phase diagram and its behavior under highly non-equilibrium conditions. DOE/BES.

  8. Coexisting nanoscale inverse spinel and rock salt crystallographic phases in NiCo2O4 epitaxial thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sharona, H.; Loukya, B.; Bhat, U.; Sahu, R.; Vishal, B.; Silwal, P.; Gupta, A.; Datta, R.

    2017-12-01

    The origin of alternating wavy dark-bright stripe-like contrast in strain contrast transmission electron microscopy images of NiCo2O4 (NCO) epitaxial thin films grown by pulsed laser deposition has been investigated. The nanoscale stripe-like pattern is determined to be associated with coexisting rock salt (RS) and inverse spinel crystal phases. The presence of two different phases, not addressed in previous reports, is experimentally confirmed by both electron diffraction and high resolution transmission electron microscopy imaging. First principles based calculations, together with compressive strain present in the films, support the formation of such coexisting crystallographic phases in NCO. Similar microstructural patterns and RS structure are not observed in epitaxial films of two other oxides of the spinel family, namely, NiFe2O4 and CoFe2O4. A correlation between the coexisting structures and the macroscopic physical properties of NCO is discussed.

  9. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM (Transmission Electron Microscopy) and TED (Transmission Electron Diffraction)

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1987-01-01

    The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.

  10. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data

    DOE PAGES

    Nass, Karol; Meinhart, Anton; Barends, Thomas R. M.; ...

    2016-03-09

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Furthermore, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysingmore » data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms.« less

  11. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film

    NASA Astrophysics Data System (ADS)

    Beyerlein, Kenneth R.

    2018-03-01

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  12. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film.

    PubMed

    Beyerlein, Kenneth R

    2018-02-27

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  13. Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite

    PubMed Central

    Piazza, L.; Ma, C.; Yang, H. X.; Mann, A.; Zhu, Y.; Li, J. Q.; Carbone, F.

    2013-01-01

    The transition between different states in manganites can be driven by various external stimuli. Controlling these transitions with light opens the possibility to investigate the microscopic path through which they evolve. We performed femtosecond (fs) transmission electron microscopy on a bi-layered manganite to study its response to ultrafast photoexcitation. We show that a photoinduced temperature jump launches a pressure wave that provokes coherent oscillations of the lattice parameters, detected via ultrafast electron diffraction. Their impact on the electronic structure are monitored via ultrafast electron energy loss spectroscopy, revealing the dynamics of the different orbitals in response to specific structural distortions. PMID:26913564

  14. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGES

    An, Zhinan; Jia, Haoling; Wu, Yueying; ...

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  15. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvaraj, Mahalakshmi; Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021; Venkatachalapathy, V.

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phasemore » directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.« less

  16. Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution

    DOE PAGES

    Yang, Hao; MacLaren, Ian; Jones, Lewys; ...

    2017-04-01

    Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Thus coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light andmore » heavy elements at atomic resolution. Here, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Our experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.« less

  17. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    NASA Astrophysics Data System (ADS)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  18. Existence of a stable intermixing phase for monolayer Ge on Si(001)

    NASA Astrophysics Data System (ADS)

    Yeom, H. W.; Sasaki, M.; Suzuki, S.; Sato, S.; Hosoi, S.; Iwabuchi, M.; Higashiyama, K.; Fukutani, H.; Nakamura, M.; Abukawa, T.; Kono, S.

    1997-06-01

    A monolayer adsorption of Ge on a single-domain Si(001)2 × 1 surface has been investigated by X-ray excited Auger electron diffraction (AED) and scanning tunneling microscopy. Contrary to the common belief, a significant intermixing of Ge down to at least the fourth layer is identified. This intermixing is found to progress to a stable interface alloy phase that develops fully for annealing at 500-600°C. A possible reason for the alloy phase is discussed to be an elastic interaction from the Si(001) surface.

  19. Synthesis of MAX Phases in the Hf-Al-C System.

    PubMed

    Lapauw, Thomas; Tunca, Bensu; Cabioc'h, Thierry; Lu, Jun; Persson, Per O Å; Lambrinou, Konstantina; Vleugels, Jozef

    2016-11-07

    For the first time, MAX phases in the Hf-Al-C system were experimentally synthesized using reactive hot pressing. HfC was observed as the main competing phase. The lattice parameters of Hf 2 AlC and Hf 3 AlC 2 were determined by Rietveld refinement based on the X-ray diffraction data. The atomic stacking sequence was revealed by high-resolution scanning transmission electron microscopy. Mixtures of 211 and 312 stacking were observed within the same grain, including 523 layers. This transition in atomic structure is discussed.

  20. Microstructural investigations of 0.2% carbon content steel

    NASA Astrophysics Data System (ADS)

    Tollabimazraehno, Sajjad; Hingerl, Kurt

    2011-10-01

    The effect of thermal annealing to get different phases on low carbon steel was investigated. Steel sheets (0.2 wt. % C) of 900 μm thickness were heat treated to produce different structures. All the samples have the same starting point, transformation to coarse austenite at 900 degree Celsius. The nano indentation results revealed that samples have different hadness. By making conventional SEM micrographs, focus ion beam maps, and Electron backscatter diffraction (EBSD) the microstructural development and grain boundary variation of transformed phases martensite, biainte, tempered martensite and different combination of these phases were studied.

  1. Semi-experimental equilibrium structure of pyrazinamide from gas-phase electron diffraction. How much experimental is it?

    NASA Astrophysics Data System (ADS)

    Tikhonov, Denis S.; Vishnevskiy, Yury V.; Rykov, Anatolii N.; Grikina, Olga E.; Khaikin, Leonid S.

    2017-03-01

    A semi-experimental equilibrium structure of free molecules of pyrazinamide has been determined for the first time using gas electron diffraction method. The refinement was carried using regularization of geometry by calculated quantum chemical parameters. It is discussed to which extent is the final structure experimental. A numerical approach for estimation of the amount of experimental information in the refined parameters is suggested. The following values of selected internuclear distances were determined (values are in Å with 1σ in the parentheses): re(Cpyrazine-Cpyrazine)av = 1.397(2), re(Npyrazine-Cpyrazine)av = 1.332(3), re(Cpyrazine-Camide) = 1.493(1), re(Namide-Camide) = 1.335(2), re(Oamide-Camide) = 1.219(1). The given standard deviations represent pure experimental uncertainties without the influence of regularization.

  2. Structure determination of the ordered (2 × 1) phase of NiSi surface alloy on Ni(111) using low-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Sazzadur Rahman, Md.; Amirul Islam, Md.; Saha, Bidyut Baran; Nakagawa, Takeshi; Mizuno, Seigi

    2015-12-01

    The (2 × 1) structure of the two-dimensional nickel silicide surface alloy on Ni(111) was investigated using quantitative low-energy electron diffraction analysis. The unit cell of the determined silicide structure contains one Si and one Ni atom, corresponding to a chemical formula of NiSi. The Si atoms adopt substitutional face-centered cubic hollow sites on the Ni(111) substrate. The Ni-Si bond lengths were determined to be 2.37 and 2.34 Å. Both the alloy surface and the underlying first layers of Ni atoms exhibit slight corrugation. The Ni-Si interlayer distance is smaller than the Ni-Ni interlayer distance, which indicates that Si atoms and underlying Ni atoms strongly interact.

  3. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xifeng; Yin Hengbo; Cheng Xiaonong

    2006-11-09

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweensmore » on Cu nanoparticles was different from those arising from the individuals.« less

  4. Synthesis and structural properties of Ba(1-x)LaxTiO3 perovskite nanoparticles fabricated by solvothermal synthesis route

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.

    2017-05-01

    We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.

  5. Crystallization and X-ray diffraction analysis of a novel immune-type receptor from Ictalurus punctatus and phasing by selenium anomalous dispersion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrov, David A., E-mail: ostroda@pathology.ufl.edu; Hernández Prada, José A.; Haire, Robert N.

    2007-12-01

    A highly diversified novel immune-type receptor from catfish, NITR10, was crystallized to reveal novel mechanisms of immune recognition. X-ray diffraction data from crystals of a novel immune-type receptor (NITR10 from the catfish Ictalurus punctatus) were collected to 1.65 Å resolution and reduced to the primitive hexagonal lattice. Native and selenomethionine derivatives of NITR10 crystallized under different conditions yielded P3{sub 1}21 crystals. SeMet NITR10 was phased to a correlation coefficient of 0.77 by SAD methods and experimental electron-density maps were calculated to 1.65 Å. Five NITR10 molecules are predicted to be present in the asymmetric unit based on the Matthews coefficient.

  6. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy

    DOE PAGES

    Miao, Jiashi; Slone, C. E.; Smith, T. M.; ...

    2017-05-15

    The equiatomic NiCoCr alloy exhibits an excellent combination of strength and ductility, even greater than the FeNiCrCoMn high entropy alloy, and also displays a simultaneous increase in strength and ductility with decreasing the testing temperature. To systemically investigate the origin of the exceptional properties of NiCoCr alloy, which are related to the evolution of the deformation substructure with strain, interrupted tensile testing was conducted on the equiatomic NiCoCr single-phase solid solution alloy at both cryogenic and room temperatures at five different plastic strain levels of 1.5%, 6.5%, 29%, 50% and 70%. The evolution of deformation substructure was examined using electronmore » backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), conventional transmission electron microscopy (CTEM), diffraction contrast imaging using STEM (DCI-STEM) and atomic resolution scanning transmission electron microscopy. While the deformation substructure mainly consisted of planar dislocation slip and the dissociation of dislocations into stacking faults at small strain levels (≤6.5%), at larger strain levels, additional substructures including nanotwins and a new phase with hexagonal close packed (HCP) lamellae also appeared. The volume fraction of the HCP lamellae increases with increasing deformation, especially at cryogenic temperature. First principles calculations at 0 K indicate that the HCP phase is indeed energetically favorable relative to FCC for this composition. In conclusion, the effects of the nanotwin and HCP lamellar structures on hardening rate and ductility at both cryogenic and room temperature are qualitatively discussed.« less

  7. Synthesis, Structural Characterization, and Growth Mechanism of Li 1+x V 3 O 8 Submicron Fibers for Lithium-Ion Batteries

    DOE PAGES

    Yue, Shiyu; Li, Jing; Wang, Lei; ...

    2018-03-05

    Here, we report on the synthesis of submicron Li 1+xV 3O 8 fibers through a facile mixed ethanol/water solution-mediated solvothermal route in the absence of surfactants. All the raw materials used are commercially available, relatively inexpensive, and low-toxic, and these can be handled in an ambient atmosphere, rendering this synthetic route as reasonably facile and efficient. To ensure a desirable and acceptable sample crystallinity and purity, we introduced a postannealing treatment at 500°C. The monoclinic phase formation of the fiber sample was probed in detail using a series of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-raymore » photoelectron spectroscopy, high resolution transmission electron microscopy, and selected area electron diffraction measurements. Both morphology and chemical composition could be carefully and systematically tuned in terms of generating a class of novel, pure, and well-defined motifs of Li 1+xV 3O 8. A plausible mechanism for the formation of submicron-diameter fibers has been discussed in addition to the expected phase transformation within our Li-V-O materials. Our comprehensive study should provide for needed fundamental insights into putting forth a viable synthesis strategy for the generation of well-defined morphological variants of layered oxide materials for battery applications.« less

  8. Synthesis, Structural Characterization, and Growth Mechanism of Li 1+x V 3 O 8 Submicron Fibers for Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Shiyu; Li, Jing; Wang, Lei

    Here, we report on the synthesis of submicron Li 1+xV 3O 8 fibers through a facile mixed ethanol/water solution-mediated solvothermal route in the absence of surfactants. All the raw materials used are commercially available, relatively inexpensive, and low-toxic, and these can be handled in an ambient atmosphere, rendering this synthetic route as reasonably facile and efficient. To ensure a desirable and acceptable sample crystallinity and purity, we introduced a postannealing treatment at 500°C. The monoclinic phase formation of the fiber sample was probed in detail using a series of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-raymore » photoelectron spectroscopy, high resolution transmission electron microscopy, and selected area electron diffraction measurements. Both morphology and chemical composition could be carefully and systematically tuned in terms of generating a class of novel, pure, and well-defined motifs of Li 1+xV 3O 8. A plausible mechanism for the formation of submicron-diameter fibers has been discussed in addition to the expected phase transformation within our Li-V-O materials. Our comprehensive study should provide for needed fundamental insights into putting forth a viable synthesis strategy for the generation of well-defined morphological variants of layered oxide materials for battery applications.« less

  9. Electrochemically Induced Insulator-Metal-Insulator Transformations of Vanadium Dioxide Nanocrystal Films

    NASA Astrophysics Data System (ADS)

    Milliron, Delia; Dahlman, Clayton; Leblanc, Gabriel; Bergerud, Amy

    Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. The low-temperature state is insulating and transparent, while the high-temperature state is metallic and IR blocking. Alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, VO2 nanocrystal films have been prepared by solution deposition of V2O3 nanocrystals followed by oxidative annealing. Nanocrystalline VO2 films are electrochemically reduced, inducing changes in their electronic and optical properties. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. Reduction causes an initial transformation to a metallic, IR-colored distorted monoclinic phase. However, an unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase is observed upon further reduction.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Ian; Clark, Jesse; Harder, Ross

    Materials are generally classified by a phase diagram which displays their properties as a function of external state variables, typically temperature and pressure. A new dimension that is relatively unexplored is time: a rich variety of new materials can become accessible in the transient period following laser excitation from the ground state. The timescale of nanoseconds to femtoseconds, is ripe for investigation using x-ray free-electron laser (XFEL) methods. There is no shortage of materials suitable for time-resolved materials-science exploration. Oxides alone represent most of the minerals making up the Earth's crust, catalysts, ferroelectrics, corrosion products and electronically ordered materials suchmore » as superconductors, to name a few. Some of the elements have metastable phase diagrams with predicted new phases. There are some examples known already: an oxide 'hidden phase' living only nanoseconds and an electronically ordered excited phase of fullerene C 60, lasting only femtoseconds. In a completely general way, optically excited states of materials can be probed with Bragg coherent diffraction imaging, both below the damage threshold and in the destructive regime. Lastly, prospective methods for carrying out such XFEL experiments are discussed.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzaei, B.; Silva, J. R. G.; Hayton, D.

    We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the gratingmore » bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.« less

  12. Probing the structure of heterogeneous diluted materials by diffraction tomography.

    PubMed

    Bleuet, Pierre; Welcomme, Eléonore; Dooryhée, Eric; Susini, Jean; Hodeau, Jean-Louis; Walter, Philippe

    2008-06-01

    The advent of nanosciences calls for the development of local structural probes, in particular to characterize ill-ordered or heterogeneous materials. Furthermore, because materials properties are often related to their heterogeneity and the hierarchical arrangement of their structure, different structural probes covering a wide range of scales are required. X-ray diffraction is one of the prime structural methods but suffers from a relatively poor detection limit, whereas transmission electron analysis involves destructive sample preparation. Here we show the potential of coupling pencil-beam tomography with X-ray diffraction to examine unidentified phases in nanomaterials and polycrystalline materials. The demonstration is carried out on a high-pressure pellet containing several carbon phases and on a heterogeneous powder containing chalcedony and iron pigments. The present method enables a non-invasive structural refinement with a weight sensitivity of one part per thousand. It enables the extraction of the scattering patterns of amorphous and crystalline compounds with similar atomic densities and compositions. Furthermore, such a diffraction-tomography experiment can be carried out simultaneously with X-ray fluorescence, Compton and absorption tomographies, enabling a multimodal analysis of prime importance in materials science, chemistry, geology, environmental science, medical science, palaeontology and cultural heritage.

  13. Moessbauer spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, S.D. de; Olzon-Dionysio, M., E-mail: dmod@df.ufscar.br; Basso, R.L.O.

    2010-10-15

    Plasma nitriding of ASTM F138 stainless steel samples has been carried out using dc glow discharge under 80% H{sub 2}-20% N{sub 2} gas mixture, at 673 K, and 2, 4, and 7 h time intervals, in order to investigate the influence of treatment time on the microstructure and the corrosion resistance properties. The samples were characterized by scanning electron microscopy, glancing angle X-ray diffraction and conversion electron Moessbauer spectroscopy, besides electrochemical tests in NaCl aerated solution. A modified layer of about 6 {mu}m was observed for all the nitrided samples, independent of nitriding time. The X-ray diffraction analysis shows broadmore » {gamma}{sub N} phase peaks, signifying a great degree of nitrogen supersaturation. Besides {gamma}{sub N,} the Moessbauer spectroscopy results indicated the occurrence of {gamma}' and {epsilon} phases, as well as some other less important phases. Corrosion measurements demonstrate that the plasma nitriding time affects the corrosion resistance and the best performance is reached at 4 h treatment. It seems that the {epsilon}/{gamma}' fraction ratio plays an important role on the resistance corrosion. Additionally, the Moessbauer spectroscopy was decisive in this study, since it was able to identify and quantify the iron phases that influence the corrosion resistance of plasma nitrided ASTM F138 samples.« less

  14. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes.

    PubMed

    Wang, Zhongwu; Zhao, Yusheng; Tait, Kimberly; Liao, Xiaozhou; Schiferl, David; Zha, Changsheng; Downs, Robert T; Qian, Jiang; Zhu, Yuntian; Shen, Tongde

    2004-09-21

    A quenchable superhard high-pressure carbon phase was synthesized by cold compression of carbon nanotubes. Carbon nanotubes were placed in a diamond anvil cell, and x-ray diffraction measurements were conducted to pressures of approximately 100 GPa. A hexagonal carbon phase was formed at approximately 75 GPa and preserved at room conditions. X-ray and transmission electron microscopy electron diffraction, as well as Raman spectroscopy at ambient conditions, explicitly indicate that this phase is a sp(3)-rich hexagonal carbon polymorph, rather than hexagonal diamond. The cell parameters were refined to a(0) = 2.496(4) A, c(0) = 4.123(8) A, and V(0) = 22.24(7) A (3). There is a significant ratio of defects in this nonhomogeneous sample that contains regions with different stacking faults. In addition to the possibly existing amorphous carbon, an average density was estimated to be 3.6 +/- 0.2 g/cm(3), which is at least compatible to that of diamond (3.52 g/cm(3)). The bulk modulus was determined to be 447 GPa at fixed K' identical with 4, slightly greater than the reported value for diamond of approximately 440-442 GPa. An indented mark, along with radial cracks on the diamond anvils, demonstrates that this hexagonal carbon is a superhard material, at least comparable in hardness to cubic diamond.

  15. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes

    PubMed Central

    Wang, Zhongwu; Zhao, Yusheng; Tait, Kimberly; Liao, Xiaozhou; Schiferl, David; Zha, Changsheng; Downs, Robert T.; Qian, Jiang; Zhu, Yuntian; Shen, Tongde

    2004-01-01

    A quenchable superhard high-pressure carbon phase was synthesized by cold compression of carbon nanotubes. Carbon nanotubes were placed in a diamond anvil cell, and x-ray diffraction measurements were conducted to pressures of ≈100 GPa. A hexagonal carbon phase was formed at ≈75 GPa and preserved at room conditions. X-ray and transmission electron microscopy electron diffraction, as well as Raman spectroscopy at ambient conditions, explicitly indicate that this phase is a sp3-rich hexagonal carbon polymorph, rather than hexagonal diamond. The cell parameters were refined to a0 = 2.496(4) Å, c0 = 4.123(8) Å, and V0 = 22.24(7) Å 3. There is a significant ratio of defects in this nonhomogeneous sample that contains regions with different stacking faults. In addition to the possibly existing amorphous carbon, an average density was estimated to be 3.6 ± 0.2 g/cm3, which is at least compatible to that of diamond (3.52 g/cm3). The bulk modulus was determined to be 447 GPa at fixed K′≡4, slightly greater than the reported value for diamond of ≈440–442 GPa. An indented mark, along with radial cracks on the diamond anvils, demonstrates that this hexagonal carbon is a superhard material, at least comparable in hardness to cubic diamond. PMID:15361581

  16. Effect of thermomechanical processing on the microstructure and retained austenite stability during in situ tensile testing using synchrotron x-ray diffraction of NbMoAI TRIP steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereloma, E.; Zhang, L.; Liss, K.-D.

    2011-06-01

    In this work we compare and contrast the stability of retained austenite during tensile testing of Nb-Mo-Al transformation-induced plasticity steel subjected to different thermomechanical processing schedules. The obtained microstructures were characterised using optical metallography, transmission electron microscopy and X-ray diffraction. The transformation of retained austenite to martensite under tensile loading was observed by in-situ high energy X-ray diffraction at 1ID / APS. It has been shown that the variations in the microstructure of the steel, such as volume fractions of present phases, their morphology and dimensions, play a critical role in the strain-induced transition of retained austenite to martensite.

  17. Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    NASA Astrophysics Data System (ADS)

    Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel

    2012-03-01

    The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.

  18. Crystallization dynamics and interface stability of strontium titanate thin films on silicon.

    PubMed

    Hanzig, Florian; Hanzig, Juliane; Mehner, Erik; Richter, Carsten; Veselý, Jozef; Stöcker, Hartmut; Abendroth, Barbara; Motylenko, Mykhaylo; Klemm, Volker; Novikov, Dmitri; Meyer, Dirk C

    2015-04-01

    Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO 2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO 3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO 3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO 3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO 3 layers occurs in the case of Sr-rich composition. This leads to the formation of secondary silicate phases which are observed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.

  19. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsuan; Chu, Hsueh-Liang; Hwang, Weng-Sing; Wang, Moo-Chin; Ko, Horng-Huey

    2017-12-01

    The synthesis and optical properties of Mg-Al layered double hydroxide (LDH) precursor powders were investigated using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution TEM (HRTEM), UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363-1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH)2](CO3)0.083.(H2O)0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL) spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  20. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding sitemore » has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.« less

  1. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.

  2. Strain-induced phase transformation at the surface of an AISI-304 stainless steel irradiated to 4.4 dpa and deformed to 0.8% strain

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; Field, K. G.; Busby, J. T.

    2014-03-01

    Surface relief due to localized deformation in a 4.4-dpa neutron-irradiated AISI 304 stainless steel was investigated using scanning electron microscopy coupled with electron backscattering diffraction and scanning transmission electron microscopy. It was found a body-centered-cubic (BCC) phase (deformation-induced martensite) had formed at the surface of the deformed specimen along the steps generated from dislocation channels. Martensitic hill-like formations with widths of ˜1 μm and depths of several microns were observed at channels with heights greater than ˜150 nm above the original surface. Martensite at dislocation channels was observed in grains along the [0 0 1]-[1 1 1] orientation but not in those along the [1 0 1] orientation.

  3. Effect of Synthesis Parameter on Crystal Structures and Magnetic Properties of Magnesium Nickel Ferrite (Mg0.5Ni0.5Fe2O4) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Maulia, R.; Putra, R. A.; Suharyadi, E.

    2017-05-01

    Mg0.5Ni0.5Fe2O4 nanoparticles have been successfully synthesized by using co-precipitation method and varying the synthesis parameter, i.e. synthesis temperature and NaOH concentration. X-ray Diffraction (XRD) pattern showed that nanoparticles have cubic spinel structures with an additional phase of γ-Fe2O3 and particle size varies within the range of 4.3 - 6.7 nm. This variation is due to the effect of various synthesis parameters. Transmission Electron Microscopy (TEM) image showed that the nanoparticles exhibited agglomeration. The observed diffraction ring from selected area electron diffraction showed that the sample was polycrystalline and confirmed the peak appearing in XRD. The coercivities showed an increasing trend with an increase in particle size from 44.7 Oe to 49.6 Oe for variation of NaOH concentration, and a decreasing trend with an increase in particle size from 46.8 to 45.1 Oe for variation of synthesis temperature. The maximum magnetization showed an increasing trend with an increase in the ferrite phase from 3.7 emu/g to 5.4 emu/g possessed in the sample with variations on NaOH concentration. The maximum magnetization for the sample with variations on synthesis temperature varied from 4.4 emu/g to 5.7 emu/g due to its crystal structures.

  4. Investigation of the microstructure of metallic droplets on Ga(AsBi)/GaAs

    NASA Astrophysics Data System (ADS)

    Sterzer, E.; Knaub, N.; Ludewig, P.; Straubinger, R.; Beyer, A.; Volz, K.

    2014-12-01

    Low Bi content GaAs is a promising material for new optical devices with less heat production. The growth of such devices by metal organic vapor phase epitaxy faces several challenges. This paper summarizes results of the formation of metallic droplets during the epitaxial growth of Ga(AsBi) using all-liquid group III and V precursors. The samples that are grown, investigated by atomic force microscopy and scanning electron microscopy, show a different metal droplet distribution over the surface depending on the growth temperature and the V/III ratio of the precursors. Investigations with energy dispersive X-ray analysis and selective etching prove the appearance of phase separated Ga-Bi and pure Bi droplets at growth temperatures between 375 °C and 425 °C, which is explainable by the phase diagram of Ga-Bi. Since the pure Bi droplets show a preferred orientation on the surface after cool-down, transmission electron microscopy measurements were done by using the dark field imaging mode in addition to electron diffraction and high resolution imaging. These experiments show the single crystalline structure of the Bi droplets. The comparison of experimental diffraction patterns with image simulation shows a preferred alignment of Bi {10-1} lattice planes parallel to GaAs {202} lattice planes with the formation of a coincidence lattice. Thus it is possible to derive a model of how the Bi droplets evolve on the GaAs surface.

  5. Isolation and reversible dimerization of a selenium-selenium three-electron σ-bond.

    PubMed

    Zhang, Senwang; Wang, Xingyong; Su, Yuanting; Qiu, Yunfan; Zhang, Zaichao; Wang, Xinping

    2014-06-11

    Three-electron σ-bonding that was proposed by Linus Pauling in 1931 has been recognized as important in intermediates encountered in many areas. A number of three-electron bonding systems have been spectroscopically investigated in the gas phase, solution and solid matrix. However, X-ray diffraction studies have only been possible on simple noble gas dimer Xe∴Xe and cyclic framework-constrained N∴N radical cations. Here, we show that a diselena species modified with a naphthalene scaffold can undergo one-electron oxidation using a large and weakly coordinating anion, to afford a room-temperature-stable radical cation containing a Se∴Se three-electron σ-bond. When a small anion is used, a reversible dimerization with phase and marked colour changes is observed: radical cation in solution (blue) but diamagnetic dimer in the solid state (brown). These findings suggest that more examples of three-electron σ-bonds may be stabilized and isolated by using naphthalene scaffolds together with large and weakly coordinating anions.

  6. Electronic and structural ground state of heavy alkali metals at high pressure

    NASA Astrophysics Data System (ADS)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  7. Nonlocal Electron Coherence in MoS2 Flakes Correlated through Spatial Self Phase Modulation

    NASA Astrophysics Data System (ADS)

    Wu, Yanling; Wu, Qiong; Sun, Fei; Tian, Yichao; Zuo, Xu; Meng, Sheng; Zhao, Jimin

    2015-03-01

    Electron coherence among different flake domains of MoS2 has been generated using ultrafast or continuous wave laser beams. Such electron coherence generates characteristic far-field diffraction patterns through a purely coherent nonlinear optical effect--spatial self-phase modulation (SSPM). A wind-chime model is developed to describe the establishment of the electron coherence through correlating the photo-excited electrons among different flakes using coherent light. Owing to its finite gap band structure, we find different mechanisms, including two-photon processes, might be responsible for the SSPM in MoS2 [with a large nonlinear dielectric susceptibility χ (3) = 1.6 × 10-9 e.s.u. (SI: 2.23 × 10-17 m2/V2) per layer]. Finally, we realized all optical switching based on SSPM, demonstrating that the electron coherence generation we report here is a ubiquitous property of layered quantum materials, by which novel optical applications are accessible. National Natural Science Foundation of China (11274372).

  8. Analysis of a Novel Diffractive Scanning Wire Beam Position Monitor (BPM) for Discriminative Profiling of Electron Vs. X Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatchyn, Roman; /SLAC

    2011-09-01

    Recent numerical studies of Free Electron Lasers (FELs) operating in the Self Amplified Spontaneous Emission (SASE) regime indicate a large sensitivity of the gain to the degree of transverse overlap (and associated phase coherence) between the electron and photon beams traveling down the insertion device. Simulations of actual systems imply that accurate detection and correction for this relative loss of overlap, rather than correction for the absolute departure of the electron beam from a fixed axis, is the preferred function of an FEL amplifier's Beam Position Monitor (BPM) and corrector systems. In this note we propose a novel diffractive BPMmore » with the capability of simultaneously detecting and resolving the absolute (and relative) transverse positions and profiles of electron and x-ray beams co-propagating through an undulator. We derive the equations governing the performance of the BPM and examine its predicted performance for the SLAC Linac Coherent Light Source (LCLS), viz., for profiling multi-GeV electron bunches co-propagating with one-to-several-hundred keV x-ray beams. Selected research and development (r&d) tasks for fabricating and testing the proposed BPM are discussed.« less

  9. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Peter M.

    2014-03-31

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energymore » of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of molecular species in the hot environments of combustion processes, there are several features that make the Rydberg ionization spectroscopy uniquely useful. First, the Rydberg electron’s orbit is quite large and covers the entire molecule for most molecular structures of combustion interest. Secondly, the ionization does not change vibrational quantum numbers, so that even complicated and large molecules can be observed with fairly well resolved spectra. In fact, the spectroscopy is blind to vibrational excitation of the molecule. This has the interesting consequence for the study of chemical dynamics, where the molecules are invariably very energetic, that the molecular structures are observed unobstructed by the vibrational congestion that dominates other spectroscopies. This implies also that, as a tool to probe the time-dependent structural dynamics of chemically interesting molecules, Rydberg spectroscopy may well be better suited than electron or x-ray diffraction. With recent progress in calculating Rydberg binding energy spectra, we are approaching the point where the method can be evolved into a structure determination method. To implement the Rydberg ionization spectroscopy we use a molecular beam based, time-resolved pump-probe multi-photon ionization/photoelectron scheme in which a first laser pulse excites the molecule to a Rydberg state, and a probe pulse ionizes the molecule. A time-of-flight detector measures the kinetic energy spectrum of the photoelectrons. The photoelectron spectrum directly provides the binding energy of the electron, and thereby reveals the molecule’s time-dependent structural fingerprint. Only the duration of the laser pulses limits the time resolution. With a new laser system, we have now reached time resolutions better than 100 fs, although very deep UV wavelengths (down to 190 nm) have slightly longer instrument functions. The structural dynamics of molecules in Rydberg-excited states is obtained by delaying the probe ionization photon from the pump photon; the structural dynamics of molecules in their ground state or excited valence states is measured by inducing the dynamics using a near UV laser pulse, and employing a multi-photon ionization scheme via the Rydberg states as a probe process. Thus, the technique is capable of measuring the reaction dynamics in any electronic state of neutral molecules.« less

  10. Electron Diffraction Using Transmission Electron Microscopy

    PubMed Central

    Bendersky, Leonid A.; Gayle, Frank W.

    2001-01-01

    Electron diffraction via the transmission electron microscope is a powerful method for characterizing the structure of materials, including perfect crystals and defect structures. The advantages of electron diffraction over other methods, e.g., x-ray or neutron, arise from the extremely short wavelength (≈2 pm), the strong atomic scattering, and the ability to examine tiny volumes of matter (≈10 nm3). The NIST Materials Science and Engineering Laboratory has a history of discovery and characterization of new structures through electron diffraction, alone or in combination with other diffraction methods. This paper provides a survey of some of this work enabled through electron microscopy. PMID:27500060

  11. Phase inversion and frequency doubling of reflection high-energy electron diffraction intensity oscillations in the layer-by-layer growth of complex oxides

    NASA Astrophysics Data System (ADS)

    Mao, Zhangwen; Guo, Wei; Ji, Dianxiang; Zhang, Tianwei; Gu, Chenyi; Tang, Chao; Gu, Zhengbin; Nie*, Yuefeng; Pan, Xiaoqing

    In situ reflection high-energy electron diffraction (RHEED) and its intensity oscillations are extremely important for the growth of epitaxial thin films with atomic precision. The RHEED intensity oscillations of complex oxides are, however, rather complicated and a general model is still lacking. Here, we report the unusual phase inversion and frequency doubling of RHEED intensity oscillations observed in the layer-by-layer growth of SrTiO3 using oxide molecular beam epitaxy. In contacts to the common understanding that the maximum(minimum) intensity occurs at SrO(TiO2) termination, respectively, we found that both maximum or minimum intensities can occur at SrO, TiO2, or even incomplete terminations depending on the incident angle of the electron beam, which raises a fundamental question if one can rely on the RHEED intensity oscillations to precisely control the growth of thin films. A general model including surface roughness and termination dependent mean inner potential qualitatively explains the observed phenomena, and provides the answer to the question how to prepare atomically and chemically precise surface/interfaces using RHEED oscillations for complex oxides. We thank National Basic Research Program of China (No. 11574135, 2015CB654901) and the National Thousand-Young-Talents Program.

  12. Structure of gel phase DMPC determined by X-ray diffraction.

    PubMed Central

    Tristram-Nagle, Stephanie; Liu, Yufeng; Legleiter, Justin; Nagle, John F

    2002-01-01

    The structure of fully hydrated gel phase dimyristoylphosphatidylcholine lipid bilayers was obtained at 10 degrees C. Oriented lipid multilayers were used to obtain high signal-to-noise intensity data. The chain tilt angle and an estimate of the methylene electron density were obtained from wide angle reflections. The chain tilt angle is measured to be 32.3 +/- 0.6 degrees near full hydration, and it does not change as the sample is mildly dehydrated from a repeat spacing of D = 59.9 A to D = 56.5 A. Low angle diffraction peaks were obtained up to the tenth order for 17 samples with variable D and prepared by three different methods with different geometries. In addition to the usual Fourier reconstructions of the electron density profiles, model electron density profiles were fit to all the low angle data simultaneously while constraining the model to include the wide-angle data and the measured lipid volume. Results are obtained for area/lipid (A = 47.2 +/- 0.5 A(2)), the compressibility modulus (K(A) = 500 +/- 100 dyn/cm), various thicknesses, such as the hydrocarbon thickness (2D(C) = 30.3 +/- 0.2 A), and the head-to-head spacing (D(HH) = 40.1 +/- 0.1 A). PMID:12496100

  13. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    DOE PAGES

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; ...

    2016-12-16

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less

  14. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    PubMed Central

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu

    2016-01-01

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium. PMID:27982066

  15. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu

    2016-12-01

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.

  16. Influence of Solution Treatment Duration on Microstructural Features of an Industrial Forged UNS S32750/1.4410/F53 Super Duplex Stainless Steel (SDSS) Alloy

    NASA Astrophysics Data System (ADS)

    Cojocaru, Vasile Dănuţ; Răducanu, Doina; Angelescu, Mariana Lucia; Vintilă, Adrian Nicolae; Şerban, Nicolae; Dan, Ioan; Cojocaru, Elisabeta Mirela; Cinca, Ion

    2017-08-01

    The microstructural changes induced by solution treatment of an industrial forged F53 Super Duplex Stainless Steel alloy were studied, in order to emphasize how component phases are influenced by heat treatment temperature and duration. The solution treatment was done at a temperature of 1100°C, with variable holding times: 0.6 ks (10 min), 3.6 ks (60 min) and 10.8 ks (180 min). Scanning electron microscopy-electron backscattered diffraction was used as main characterization technique, to obtain and analyse data referring to microstructural features, such as: nature and morphology of constituent phases, average grain-size and grain misorientation. It was shown that in all studied cases the microstructure consisted of a mixture of about 45% δ-Fe (ferrite) and 55% γ-Fe (austenite). Besides δ-Fe and γ-Fe phases, other phases were also identified, such as τ-phase (chromium-iron carbide), σ-phase (chromium-iron) and δ-(Cr-Fe) (ferrite).

  17. Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory.

    PubMed

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D V S; Shekhar, C; Elghazali, Moaz A; Naumov, Pavel G; Medvedev, Sergey A; Felser, C; Waghmare, U V; Sood, A K

    2018-05-10

    High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at [Formula: see text] GPa for NbAs and [Formula: see text] GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at [Formula: see text] for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at [Formula: see text] for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.

  18. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    PubMed Central

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-01-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties. PMID:27725722

  19. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim; Engel-Herbert, Roman

    2016-07-01

    The synthesis of a 50 unit cell thick n = 4 Srn+1TinO3n+1 (Sr5Ti4O13) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO2 layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO2 layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried out over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO3 perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.

  20. 3-dimensional indexation of the icosahedral diffraction pattern using the techniques of electron microscopy

    NASA Astrophysics Data System (ADS)

    Bourdillon, Antony

    2012-11-01

    The following facts about icosahedra need wider attention. 1) The golden section τ is as fundamental to the icosahedral structure (length /edge) as π is to the sphere (circumference /diameter). 2) The diffraction series are in restricted Fibonacci order because the ratio of adjacent terms fn/fn-1 does not vary, but is the constant τ. The series is therefore geometric. 3) Because of the tetragonal subgroup in the icosahedral point group symmetry, many axes in the icosahedral structure have identical orientation to axes in the face centered cubic matrix of Al6Mn [1] (e.g. [100] and [111]). On these bases, a three dimensional stereographic projection will be presented. 4) A quasi-Bragg law is derived that correctly represents the diffraction series in powers of τ [2]. Furthermore, by employing the normal conventions of electron microscopy, all diffraction patterns are completely indexed in three dimensions. These are the topic of this presentation. Significant consequences will be presented elsewhere: 1) The diffraction pattern intensities near all main axes are correctly simulated, and all atoms are located on a specimen image. 2) The quasi-Bragg law has a special metric. Atomic locations are consistently calculated for the first time. 3) Whereas the Bragg law transforms a crystal lattice in real space into a reciprocal lattice in diffraction space, the quasi-Bragg law transforms a geometric diffraction pattern into a hierarchic structure. 4) Hyperspatial indexation [3] is superceded. [1] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W., Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 1984, 53, 1951-3. [2] Bourdillon, A. J., Nearly free electron band structures in a logarithmically periodic solid, Sol. State Comm. 2009, 149, 1221-1225. [3] Duneau, M., and Katz, A., Phys Rev Lett 54, 2688-2691

  1. Transferability of electronic structure of four energetic materials by using single crystal and high resolution X-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Sheng

    The electronic structures of four energetic materials, trinitrodiazapentalene (C6H3N5O6, TNDAP), beta-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (C4H8N8O8, beta-HMX), 1,3,3-trinitroazetidine (C3H4N4O6, TNAZ), and hexahydro-1,3,5-trinitro-1,3,5-s-triazine (C3H6N6O6, RDX), have been analyzed using Hansen-Coppens multipole refinements, using high resolution X-ray diffraction data collected at low temperature, as well as from theoretical calculated structure factors from the solid state phase using density functional theory (DFT), plus B3LYP level theory, and the 6-31G* basis set. However, when comparing both the deformation density and the electrostatic potentials from the theoretical results in TNDAP and TNAZ, they disagree with the experimental results. Therefore, those results have been deposited in appendices A4 and A6, for future reference. In HMX and RDX the theoretical results are in good agreement with experimental results. The physical properties derived from the electronic structure in these four energetic materials, such as multipole populations, the values of the electron density and its Laplacian of the electron density at the bond critical points, have also been calculated using "Atoms in Molecules" (AIM) theory both from the solid state phase calculation, and the experiment, as well as directly calculated from the free molecule in the gas phase. The electron density and the magnitude of its Laplacian from the gas phase are always larger than for the solid state phase calculation and the experiment. This may be due to the packing effect. The transferability of the experimental electronic structure of the NO 2 groups from HMX to TNDAP, TNAZ and RDX are also presented here. Even though the major populated multipoles are robust (small e.s.d.'s), these are few in number, compared with other lower populated multipoles for which the populations span a larger range. Since the deformation electron density distributions are reconstructed using linear combinations of the multipoles, it is necessary to give more degrees of freedom in the refinements. Therefore, those electron density distributions which have a wider range of the multipole populations should not be fixed in the refinements. Utilizing the same coordinate system setup in the multipole refinements of the functional groups, this system can be used as a starting point for solving the charge distribution of a larger system.

  2. Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.

    PubMed

    Morgan, Dane V; Macy, Don; Stevens, Gerald

    2008-11-01

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.

  3. Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.

    2010-12-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.

  4. Influence of gamma ray irradiation on stoichiometry of hydrothermally synthesized bismuth telluride nanoparticles

    NASA Astrophysics Data System (ADS)

    Abishek, N. S.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth telluride (Bi2Te3) nanoparticles were synthesized by the hydrothermal method at 200 °C for 24 h. The synthesized Bi2Te3 nanoparticles were irradiated with gamma rays at doses of 50 kGy and 100 kGy. The structural characterization of the pre-irradiated and post-irradiated samples was carried out by X-ray diffraction technique and was found to have rhombohedral phase having R3 ¯m (166) space group. The X-ray diffraction peaks were found to shift towards lower diffraction angle with gamma ray irradiation. The morphologies and compositions of the grown Bi2Te3 nanoparticles were studied using Field Emission Scanning Electron Microscope and X-ray energy dispersive analysis, respectively. The possible cause for the shift in the X-ray diffraction peaks with gamma ray irradiation has been discussed in the present work.

  5. Nitriding of AISI 4140 steel by a low energy broad ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochoa, E. A.; Figueroa, C. A.; Alvarez, F.

    2006-11-15

    A comprehensive study of the thermochemical nitriding process of steel AISI 4140 by low energy ion implantation (Kaufmann cell) is reported. Different times of implantation were employed and the studied samples were characterized by x-ray diffraction, in situ photoemission electron spectroscopy, scanning electron microscopy, and hardness (nanoindentation) measurements. The linear relationship between nitrogen content and hardness was verified. The structure of the nitrided layer was characterized yielding that the compound layer is formed by coarse precipitates, around small grains, constituted principally by {epsilon}-Fe{sub 2-3}N and {gamma}-Fe{sub 4}N phases and the diffusion zone is formed by fine precipitates, around big grainsmore » of the original martensitic phase, constituted principally by {gamma}-Fe{sub 4}N phase. Finally, a diffusion model for multiphase systems was applied to determine effective diffusion coefficients of nitrogen in the different phases.« less

  6. In situ synthesis of hydroxyapatite coating by laser cladding.

    PubMed

    Wang, D G; Chen, C Z; Ma, J; Zhang, G

    2008-10-15

    HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, R., E-mail: rajdeep.adhikari@jku.at; Capuzzo, G.; Bonanni, A., E-mail: alberta.bonanni@jku.at

    Polarization induced degenerate n-type doping with electron concentrations up to ∼10{sup 20 }cm{sup −3} is achieved in graded Al{sub x}Ga{sub 1−x}N layers (x: 0% → 37%) grown on unintentionally doped and on n-doped GaN:Si buffer/reservoir layers by metal organic vapor phase epitaxy. High resolution x-ray diffraction, transmission electron microscopy, and electron dispersive x-ray spectroscopy confirm the gradient in the composition of the Al{sub x}Ga{sub 1−x}N layers, while Hall effect studies reveal the formation of a three dimensional electron slab, whose conductivity can be adjusted through the GaN(:Si) buffer/reservoir.

  8. Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    PubMed Central

    2010-01-01

    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure. PMID:20802789

  9. Densely packed beta-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy.

    PubMed

    Sass, H J; Büldt, G; Beckmann, E; Zemlin, F; van Heel, M; Zeitler, E; Rosenbusch, J P; Dorset, D L; Massalski, A

    1989-09-05

    Porin is an integral membrane protein that forms channels across the outer membrane of Escherichia coli. Electron microscopic studies of negatively stained two-dimensional porin crystals have shown three stain accumulations per porin trimer, revealing the locations of pores spanning the membrane. In this study, reconstituted porin lattices embedded in glucose were investigated using the low-dose technique on a cryo-electron microscope equipped with a helium-cooled superconducting objective lens. The specimen temperature was maintained at 5 K to yield an improved microscopic and specimen stability. Under these conditions, we obtained for the first time electron diffraction patterns from porin lattices to a resolution of 3.2 A and images showing optical diffraction up to a resolution of 4.9 A. Applying correlation averaging techniques to the digitized micrographs, we were able to reconstruct projected images of the porin trimer to a resolution of up to 3.5 A. In the final projection maps, amplitudes from electron diffraction and phases from these images were combined. The predominant feature is a high-density narrow band (about 6 A in thickness) that delineates the outer perimeter of the trimer. Since the molecule consists of almost exclusively beta-sheet structure, as revealed by spectroscopic data, we conclude that this band is a cylindrical beta-pleated sheet crossing the membrane nearly perpendicularly to its plane. Another intriguing finding is a low-density area (about 70 A2) situated in the centre of the trimer.

  10. Kikuchi ultrafast nanodiffraction in four-dimensional electron microscopy

    PubMed Central

    Yurtsever, Aycan; Zewail, Ahmed H.

    2011-01-01

    Coherent atomic motions in materials can be revealed using time-resolved X-ray and electron Bragg diffraction. Because of the size of the beam used, typically on the micron scale, the detection of nanoscale propagating waves in extended structures hitherto has not been reported. For elastic waves of complex motions, Bragg intensities contain all polarizations and they are not straightforward to disentangle. Here, we introduce Kikuchi diffraction dynamics, using convergent-beam geometry in an ultrafast electron microscope, to selectively probe propagating transverse elastic waves with nanoscale resolution. It is shown that Kikuchi band shifts, which are sensitive only to the tilting of atomic planes, reveal the resonance oscillations, unit cell angular amplitudes, and the polarization directions. For silicon, the observed wave packet temporal envelope (resonance frequency of 33 GHz), the out-of-phase temporal behavior of Kikuchi’s edges, and the magnitude of angular amplitude (0.3 mrad) and polarization elucidate the nature of the motion: one that preserves the mass density (i.e., no compression or expansion) but leads to sliding of planes in the antisymmetric shear eigenmode of the elastic waveguide. As such, the method of Kikuchi diffraction dynamics, which is unique to electron imaging, can be used to characterize the atomic motions of propagating waves and their interactions with interfaces, defects, and grain boundaries at the nanoscale. PMID:21245348

  11. Growth of a decagonal Al 70Ni 15Co 15 single quasicrystal by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Jeong, H. T.; Kim, S. H.; Kim, W. T.; Kim, D. H.; Inkson, B. J.

    2000-07-01

    Single decagonal quasicrystals of Al 70Ni 15Co 15 were grown by the Czochralski method at Ar atmosphere. The grown crystals were of single decagonal phase without any secondary phases due to the peritectic reaction and contained a large single quasicrystal of cm order size. The high quality and single quasicrystallinity of them were examined by the Laue transmission photography, single crystal X-ray diffraction, and high-resolution electron microscopy investigations.

  12. Characterization of the Microstructure of the Compositionally Complex Alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1 (Postprint)

    DTIC Science & Technology

    2016-05-01

    limited to X-ray diffraction ( XRD ) and scanning electron microscopy (SEM). The alloy was reported to contain two bcc phases with similar lattice...it appears that the interface between the two phases is fairly coherent. Interestingly, the XRD study described in [8] suggested that there were two...line-scan shown in (h). 3 Distribution A. Approved for public reledifference in lattice parameter measurements realized in bulk samples ( XRD ) vs

  13. A Phase of Liposomes with Entangled Tubular Vesicles

    NASA Astrophysics Data System (ADS)

    Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.

    1994-11-01

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.

  14. Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4.

    PubMed

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2014-05-14

    The impact of ultrahigh (dis)charge rates on the phase transition mechanism in LiFePO4 Li-ion electrodes is revealed by in situ synchrotron diffraction. At high rates the solubility limits in both phases increase dramatically, causing a fraction of the electrode to bypass the first-order phase transition. The small transforming fraction demonstrates that nucleation rates are consequently not limiting the transformation rate. In combination with the small fraction of the electrode that transforms at high rates, this indicates that higher performances may be achieved by further optimizing the ionic/electronic transport in LiFePO4 electrodes.

  15. Phase relations in the system CuMoS

    USGS Publications Warehouse

    Dawei, H.; Chang, L.L.Y.; Knowles, C.R.

    1990-01-01

    Phase relations in the system CuMoS were studied in the temperature range 500-1000 ??C by using the conventional sealed, evacuated glass capsule technique. Reflected-light microscopy, X-ray powder diffraction and electron microprobe analysis were used for phase characterization. The chevrel-type phase, CuxMo3S4, is stable above 600??C, and forms equilibrium assemblages with the cubic Cu2S solid solution, copper, molybdenum, Mo2S3 and MoS2. Its solid solution ranges from Cu1.50-2.00Mo3S4 at 700??C to Cu1.22-2.00Mo3S4 at 1000 ??C. ?? 1990.

  16. Formation of an amorphous phase and its crystallization in the immiscible Nb-Zr system by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.

    2013-10-01

    Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.

  17. Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data

    NASA Astrophysics Data System (ADS)

    Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.

    2017-09-01

    The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.

  18. Magneto-structural studies of sol-gel synthesized nanocrystalline manganese substituted nickel ferrites

    NASA Astrophysics Data System (ADS)

    Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.

    2016-11-01

    Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.

  19. Synthesis and characterization of hollow spherical copper phosphide (Cu 3P) nanopowders

    NASA Astrophysics Data System (ADS)

    Liu, Shuling; Qian, Yitai; Xu, Liqiang

    2009-03-01

    In this paper, hollow spherical Cu 3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO 4ṡ5H 2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140-180 ∘C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu 3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu 3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu 3P hollow structure were also discussed.

  20. Electronic interaction in an outer-sphere mixed-valence double salt: a polarized neutron diffraction study of K(3)(MnO(4))(2).

    PubMed

    Cannon, Roderick D; Jayasooriya, Upali A; Tilford, Claire; Anson, Christopher E; Sowrey, Frank E; Rosseinsky, David R; Stride, John A; Tasset, Francis; Ressouche, Eric; White, Ross P; Ballou, Rafik

    2004-11-01

    The mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca. T = 5 K. The spin-density distribution in the paramagnetic phase at T = 10 K has been determined by polarized neutron diffraction, confirming that unpaired spin is largely confined to the nominal manganate ion Mn2. Through use of both Fourier refinement and maximum entropy methods, the spin on Mn1 is estimated as 1.75 +/- 1% of one unpaired electron with an upper limit of 2.5%.

  1. Solid-to-solid phase transformations of nanostructured selenium-tin thin films induced by thermal annealing in oxygen atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra, A.; Rossi, M.; Buccolieri, A.

    2014-06-19

    The structural and morphological evolution of nanostructured thin films obtained from thermal evaporation of polycrystalline Sn-Se starting charge as a function of the subsequent annealing temperature in an oxygen flow has been analysed. High-resolution transmission electron microscopy, small area electron diffraction, digital image processing, x-ray diffraction and Raman spectroscopy have been employed in order to investigate the structure and the morphology of the obtained films. The results evidenced, in the temperature range from RT to 500°C, the transition of the material from a homogeneous mixture of SnSe and SnSe{sub 2} nanocrystals, towards a homogeneous mixture of SnO{sub 2} and SeO{submore » 2} nanocrystals, with an intermediate stage in which only SnSe{sub 2} nanocrystals are present.« less

  2. From quantum to classical interactions between a free electron and a surface

    NASA Astrophysics Data System (ADS)

    Beierle, Peter James

    Quantum theory is often cited as being one of the most empirically validated theories in terms of its predictive power and precision. These attributes have led to numerous scientific discoveries and technological advancements. However, the precise relationship between quantum and classical physics remains obscure. The prevailing description is known as decoherence theory, where classical physics emerges from a more general quantum theory through environmental interaction. Sometimes referred to as the decoherence program, it does not solve the quantum measurement problem. We believe experiments performed between the microscopic and macroscopic world may help finish the program. The following considers a free electron that interacts with a surface (the environment), providing a controlled decoherence mechanism. There are non-decohering interactions to be examined and quantified before the weaker decohering effects are filtered out. In the first experiment, an electron beam passes over a surface that's illuminated by low-power laser light. This induces a surface charge redistribution causing the electron deflection. This phenomenon's parameters are investigated. This system can be well understood in terms of classical electrodynamics, and the technological applications of this electron beam switch are considered. Such phenomena may mask decoherence effects. A second experiment tests decoherence theory by introducing a nanofabricated diffraction grating before the surface. The electron undergoes diffraction through the grating, but as the electron passes over the surface it's predicted by various physical models that the electron will lose its wave interference property. Image charge based models, which predict a larger loss of contrast than what is observed, are falsified (despite experiencing an image charge force). A theoretical study demonstrates how a loss of contrast may not be due to the irreversible process decoherence, but dephasing (a reversible process due to randomization of the wavefunction's phase). To resolve this ambiguity, a correlation function on an ensemble of diffraction patterns is analyzed after an electron undergoes either process in a path integral calculation. The diffraction pattern is successfully recovered for dephasing, but not for decoherence, thus verifying it as a potential tool in experimental studies to determine the nature of the observed process.

  3. Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma

    NASA Astrophysics Data System (ADS)

    Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro

    1992-08-01

    A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.

  4. Monazite-type SrCr O 4 under compression

    DOE PAGES

    Gleissner, J.; Errandonea, Daniel; Segura, A.; ...

    2016-10-20

    We report a high-pressure study of monoclinic monazite-type SrCrO 4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO 4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO 4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO 4. We determined the pressure evolution of the band gap for the low- and high-pressure phasesmore » as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO 4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO 4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO 4. A comparison of the high-pressure behavior of the electronic properties of SrCrO 4 (SrWO 4) and PbCrO 4 (PbWO 4) will also be made. Lastly, the possible occurrence of a third structural phase transition is discussed.« less

  5. Direct Visualization of Orbital Flipping in Volborthite by Charge Density Analysis Using Detwinned Data

    NASA Astrophysics Data System (ADS)

    Sugawara, Kento; Sugimoto, Kunihisa; Fujii, Tatsuya; Higuchi, Takafumi; Katayama, Naoyuki; Okamoto, Yoshihiko; Sawa, Hiroshi

    2018-02-01

    The distribution of d-orbital valence electrons in volborthite [Cu3V2O7(OH)2 • 2H2O] was investigated by charge density analysis of the multipole model refinement. Diffraction data were obtained by synchrotron radiation single-crystal X-ray diffraction experiments. Data reduction by detwinning of the multiple structural domains was performed using our developed software. In this study, using high-quality data, we demonstrated that the water molecules in volborthite can be located by the hydrogen bonding in cavities that consist of Kagome lattice layers of CuO4(OH)2 and pillars of V2O7. Final multipole refinements before and after the structural phase transition directly visualized the deformation electron density of the valence electrons. We successfully directly visualized the orbital flipping of the d-orbital dx2-y2, which is the highest level of 3d orbitals occupied by d9 electrons in volborthite. The developed techniques and software can be employed for investigations of structural properties of systems with multiple structural domains.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Yuta; Wang, Chuncheng; Le, Anh-Thu

    Here, we have measured the angular distributions of high energy photoelectrons of benzene molecules generated by intense infrared femtosecond laser pulses. These electrons arise from the elastic collisions between the benzene ions with the previously tunnel-ionized electrons that have been driven back by the laser field. Theory shows that laser-free elastic differential cross sections (DCSs) can be extracted from these photoelectrons, and the DCS can be used to retrieve the bond lengths of gas-phase molecules similar to the conventional electron diffraction method. From our experimental results, we have obtained the C-C and C-H bond lengths of benzene with a spatialmore » resolution of about 10 pm. Our results demonstrate that laser induced electron diffraction (LIED) experiments can be carried out with the present-day ultrafast intense lasers already. Looking ahead, with aligned or oriented molecules, more complete spatial information of the molecule can be obtained from LIED, and applying LIED to probe photo-excited molecules, a “molecular movie” of the dynamic system may be created with sub-A°ngstrom spatial and few-ten femtosecond temporal resolutions.« less

  7. Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO 3-CaZrO 3 system

    NASA Astrophysics Data System (ADS)

    Levin, Igor; Amos, Tammy G.; Bell, Steven M.; Farber, Leon; Vanderah, Terrell A.; Roth, Robert S.; Toby, Brian H.

    2003-11-01

    Phase equilibria in the (1- x)BaZrO 3- xCaZrO 3 system were analyzed using a combination of X-ray and neutron powder diffraction, and transmission electron microscopy. The proposed phase diagram features two extended two-phase fields containing mixtures of a Ba-rich cubic phase and a tetragonal, or orthorhombic Ca-rich phase, all having perovskite-related structures. The symmetry differences in the Ca-rich phases are caused by different tilting patterns of the [ZrO 6] octahedra. In specimens quenched from 1650°C, CaZrO 3 dissolves only a few percent of Ba, whereas the solubility of Ca in BaZrO 3 is approximately 30 at% . The BaZrO 3-CaZrO 3 system features at least two tilting phase transitions, Pm3 m→ I4/ mcm and I4/ mcm→ Pbnm. Rietveld refinements of the Ba 0.8Ca 0.2ZrO 3 structure using variable-temperature neutron powder diffraction data confirmed that the Pm3 m→ I4/ mcm transition corresponds to a rotation of octahedra about one of the cubic axes; successive octahedra along this axis rotate in opposite directions. In situ variable-temperature electron diffraction studies indicated that the transition temperature increases with increasing Ca-substitution on the A-sites, from approximately -120°C at 5 at% Ca to 225°C at 20 at% Ca. Dielectric measurements revealed that the permittivity increases monotonically from 36 for BaZrO 3 to 53 for Ba 0.9Ca 0.1ZrO 3, and then decreases to 50 for Ba 0.8Ca 0.2ZrO 3. This later specimen was the Ca-richest composition for which pellets could be quenched from the single-phase cubic field with presently available equipment. Strongly non-monotonic behavior was also observed for the temperature coefficient of resonant frequency; however, in this case, the maximum occurred at a lower Ca concentration, 0.05⩽ x⩽0.1. The non-linear behavior of the dielectric properties was attributed to two competing structural effects: a positive effect associated with substitution of relatively small Ca cations on the A-sites, resulting in stretched Ca-O bonds, and a negative effect, related to the distortion of the A-site environment (bond strain relaxation) upon octahedral tilting.

  8. Microstructure of Haynes® 282® Superalloy after Vacuum Induction Melting and Investment Casting of Thin-Walled Components.

    PubMed

    Matysiak, Hubert; Zagorska, Malgorzata; Andersson, Joel; Balkowiec, Alicja; Cygan, Rafal; Rasinski, Marcin; Pisarek, Marcin; Andrzejczuk, Mariusz; Kubiak, Krzysztof; Kurzydlowski, Krzysztof J

    2013-11-01

    The aim of this work was to characterize the microstructure of the as-cast Haynes ® 282 ® alloy. Observations and analyses were carried out using techniques such as X-ray diffraction (XRD), light microscopy (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray spectroscopy (EDS), wave length dispersive X-ray spectroscopy (WDS), auger electron spectroscopy (AES) and electron energy-loss spectrometry (EELS). The phases identified in the as-cast alloy include: γ (gamma matrix), γ' (matrix strengthening phase), (TiMoCr)C (primary carbide), TiN (primary nitride), σ (sigma-TCP phase), (TiMo)₂SC (carbosulphide) and a lamellar constituent consisting of molybdenum and chromium rich secondary carbide phase together with γ phase. Within the dendrites the γ' appears mostly in the form of spherical, nanometric precipitates (74 nm), while coarser (113 nm) cubic γ' precipitates are present in the interdendritic areas. Volume fraction content of the γ' precipitates in the dendrites and interdendritic areas are 9.6% and 8.5%, respectively. Primary nitrides metallic nitrides (MN), are homogeneously dispersed in the as-cast microstructure, while primary carbides metallic carbides (MC), preferentially precipitate in interdendritic areas. Such preference is also observed in the case of globular σ phase. Lamellar constituents characterized as secondary carbides/γ phases were together with (TiMo)₂SC phase always observed adjacent to σ phase precipitates. Crystallographic relations were established in-between the MC, σ, secondary carbides and γ/γ' matrix.

  9. A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth

    NASA Astrophysics Data System (ADS)

    Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan

    2006-11-01

    We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.

  10. Determination of the structural phase and octahedral rotation angle in halide perovskites

    NASA Astrophysics Data System (ADS)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich

    2018-02-01

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.

  11. Phase transformations in Ln2O3 materials irradiated with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Lang, Maik; Zhang, Fuxiang; Trautmann, Christina; Ewing, Rodney C.

    2015-11-01

    Phase transformations induced in the cubic C-type lanthanide sesquioxides, Ln2O3 (Ln = Sm, Gd, Ho, Tm, and Lu), by dense electronic excitation are investigated. The structural modifications resulting from exposure to beams of 185 MeV Xe and 2246 MeV Au ions are characterized using synchrotron x-ray diffraction and Raman spectroscopy. The formation of a B-type polymorph, an X-type nonequilibrium phase, and an amorphous phase are observed. The specific phase formed and the transformation rate show dependence on the material composition, as well as the ion beam mass and energy. Atomistic mechanisms for these transformations are determined, indicating that formation of the B-type phase results from the production of anti-Frenkel defects and the aggregation of anion vacancies into planar clusters, whereas formation of the X-type and amorphous phases requires extensive displacement of both anions and cations. The observed variations in phase behavior with changing lanthanide ionic radius and deposited electronic energy density are related to the energetics of these transformation mechanisms.

  12. Tropical sea snail shells: Possible exotic sources for ceramic biomaterial synthesis

    NASA Astrophysics Data System (ADS)

    Oktar, F. N.; Kiyici, I. A.; Gökçe, H.; Aǧaogulları, D.; Kayali, E. S.

    2013-12-01

    In this study, chemical and structural properties of sea snail shell based bioceramic materials (i.e. hydroxyapatite, whitlockite and other phases) are produced by using mechano-chemical (ultrasonic) conversion method. For this purpose, differential thermal and gravimetric analysis (DTA/TG), X-ray diffraction, infra-red (IR) and scanning electron microscope (SEM) studies are performed.

  13. Nanomechanical study of amorphous and polycrystalline ALD HfO2 thin films

    Treesearch

    K. Tapily; J.E. Jakes; D. Gu; H. Baumgart; A.A. Elmustafa

    2011-01-01

    Thin films of hafnium oxide (HfO2) were deposited by atomic layer deposition (ALD). The structural properties of the deposited films were characterised by transmission electron microscopy (TEM) and X-ray diffraction (XRD). We investigated the effect of phase transformations induced by thermal treatments on the mechanical properties of ALD HfO

  14. Study of structural properties of cubic InN films on GaAs(001) substrates by molecular beam epitaxy and migration enhanced epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.

    InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD)more » and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.« less

  15. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakane, Takanori; Song, Changyong; POSTECH, Pohang 790-784

    Sulfur SAD phasing facilitates the structure determination of diverse native proteins using femtosecond X-rays from free-electron lasers via serial femtosecond crystallography. Serial femtosecond crystallography (SFX) allows structures to be determined with minimal radiation damage. However, phasing native crystals in SFX is not very common. Here, the structure determination of native lysozyme from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of sulfur and chlorine at a wavelength of 1.77 Å is successfully demonstrated. This sulfur SAD method can be applied to a wide range of proteins, which will improve the determination of native crystal structures.

  16. Structural, magnetic, and magnetocaloric properties of bilayer manganite La1.38Sr1.62Mn2O7

    NASA Astrophysics Data System (ADS)

    Yang, Yu-E.; Xie, Yunfei; Xu, Lisha; Hu, Dazhi; Ma, Chunlan; Ling, Langsheng; Tong, Wei; Pi, Li; Zhang, Yuheng; Fan, Jiyu

    2018-04-01

    In this study, we investigated the structural, magnetic phase transition, and magnetocaloric properties of bilayer perovskite manganite La1.38Sr1.62Mn2O7 based on X-ray diffraction, electron paramagnetic resonance, and temperature-/magnetic field-dependent magnetization measurements. The structural characterization results showed the prepared sample had a tetragonal structure with the space group I4/mmm. The Curie temperature was determined as 114 K in the magnetization studies and a second-order paramagnetic-ferromagnetic transition was confirmed by the Arrott plot, which showed that the slopes were positive for all the curves. According to the variation in the electron paramagnetic resonance spectrum, we detected obvious electronic phase separation across a broad temperature range from 220 to 80 K in this magnetic material, thereby indicating that the paramagnetic and ferromagnetic phases coexist above as well as below the Curie temperature. Based on a plot of the isothermal magnetization versus the magnetic applied field, we deduced the maximum magnetic entropy change, which only reached 1.89 J/kg.K under an applied magnetic field of 7.0 T. These theoretical investigations indicated that in addition to the magnetoelastic couplings and electron interaction, electronic phase separation and anisotropic exchange interactions also affect the magnetic entropy changes in this bilayer manganite.

  17. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.

    PubMed

    Le, M K; Zhu, X M

    2001-04-01

    Plasma source ion nitriding has emerged as a low-temperature, low-pressure nitriding approach for low-energy implanting nitrogen ions and then diffusing them into steel and alloy. In this work, a single high nitrogen face-centered-cubic (f.c.c.) phase (gammaN) formed on the 1Cr18Ni9Ti and AISI 316L austenitic stainless steels with a high nitrogen concentration of about 32 at % was characterized using Auger electron spectroscopy, electron probe microanalysis, glancing angle X-ray diffraction, and transmission electron microscopy. The corrosion resistance of the gammaN-phase layer was studied by the electrochemical cyclic polarization measurement in Ringer's solutions buffered to pH from 3.5 to 7.2 at a temperature of 37 degrees C. No pitting corrosion in the Ringer's solutions with pH = 7.2 and 5.5 was detected for the gammaN-phase layers on the two stainless steels. The high pitting potential for the gammaN-phase layers is higher, about 500 and 600 mV, above that of the two original stainless steels, respectively, in the Ringer's solution with pH = 3.5. The corroded surface morphologies of the gammaN-phase layers observed by scanning electron microscopy are consistent with the results of the electrochemical polarization measurement.

  18. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    PubMed Central

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-01-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films. PMID:26975328

  19. Characterization of a cold-rolled 2101 lean duplex stainless steel.

    PubMed

    Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene

    2013-08-01

    Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.

  20. Coherent diffraction imaging of non-isolated object with apodized illumination.

    PubMed

    Khakurel, Krishna P; Kimura, Takashi; Joti, Yasumasa; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2015-11-02

    Coherent diffraction imaging (CDI) is an established lensless imaging method widely used at the x-ray regime applicable to the imaging of non-periodic materials. Conventional CDI can practically image isolated objects only, which hinders the broader application of the method. We present the imaging of non-isolated objects by employing recently proposed "non-scanning" apodized-illumination CDI at an optical wavelength. We realized isolated apodized illumination with a specially designed optical configuration and succeeded in imaging phase objects as well as amplitude objects. The non-scanning nature of the method is important particularly in imaging live cells and tissues, where fast imaging is required for non-isolated objects, and is an advantage over ptychography. We believe that our result of phase contrast imaging at an optical wavelength can be extended to the quantitative phase imaging of cells and tissues. The method also provides the feasibility of the lensless single-shot imaging of extended objects with x-ray free-electron lasers.

  1. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light

    NASA Astrophysics Data System (ADS)

    Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad

    2016-03-01

    We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2<1.1). Consequently, a low power sample of each laser was utilized for active linear polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2<1.1). The intrinsic DOE splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.

  2. Probing the Li Insertion Mechanism of ZnFe 2O 4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe 2O 4 in Li ion batteries: A combined XRD, EXAFS, and DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.

    Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less

  3. Probing the Li Insertion Mechanism of ZnFe 2O 4 in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study [Probing the Li insertion mechanism of ZnFe 2O 4 in Li ion batteries: A combined XRD, EXAFS, and DFT study

    DOE PAGES

    Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2017-04-24

    Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less

  4. Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings.

    PubMed

    Hemmati, I; Rao, J C; Ocelík, V; De Hosson, J Th M

    2013-02-01

    During laser deposition of Ni-Cr-B-Si-C alloys with high amounts of Cr and B, various microstructures and phases can be generated from the same chemical composition that results in heterogeneous properties in the clad layer. In this study, the microstructure and phase constitution of a high-alloy Ni-Cr-B-Si-C coating deposited by laser cladding were analyzed by a combination of several microscopy characterization techniques including scanning electron microscopy in secondary and backscatter imaging modes, energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The combination of EDS and EBSD allowed unequivocal identification of micron-sized precipitates as polycrystalline orthorhombic CrB, single crystal tetragonal Cr5B3, and single crystal hexagonal Cr7C3. In addition, TEM characterization showed various equilibrium and metastable Ni-B, Ni-Si, and Ni-Si-B eutectic products in the alloy matrix. The findings of this study can be used to explain the phase formation reactions and to tune the microstructure of Ni-Cr-B-Si-C coatings to obtain the desired properties.

  5. Features of the electronic structure of FeTe compounds

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.; Lyogenkaya, A. A.; Panfilov, A. S.; Logosha, A. V.; Kotlyar, O. V.; Gnezdilov, V. P.; Makarova, I. P.; Chareev, D. A.; Mitrofanova, E. S.

    2015-12-01

    A theoretical and experimental study of the electronic structure and nature of the chemical bonds in FeTe compounds in antiferromagnetic (AFM) and paramagnetic phases was carried out. It is established that the nature of the chemical bonds is mainly metallic, and the presence of covalent bonds Fe-Te and Te-Te helps to stabilize the structural distortions of the tetragonal phase of FeTe in the low-temperature region. It is found that the bicollinear AFM structure corresponds to the ground state of the FeTe compound and the calculated value of the magnetic moment MFe = -2.4μB is in good agreement with the data from neutron diffraction measurements. At the same time, the Fermi surface (FS) of the low-temperature AFM phase is radically different from the FS of the paramagnetic FeTe. Reconstructing the FS can lead to a sign change of the Hall coefficient observed in FeTe. The calculation results serve as evidence of the fact that the electronic structures and magnetic properties of FeTe are well-described by the model of itinerant d-electrons and the density functional theory (DFT-GGA).

  6. Phase-retrieval attack free cryptosystem based on cylindrical asymmetric diffraction and double-random phase encoding

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Xiaowei; Hu, Yuhen; Wang, Qiong-Hua

    2018-03-01

    A phase-retrieval attack free cryptosystem based on the cylindrical asymmetric diffraction and double-random phase encoding (DRPE) is proposed. The plaintext is abstract as a cylinder, while the observed diffraction and holographic surfaces are concentric cylinders. Therefore, the plaintext can be encrypted through a two-step asymmetric diffraction process with double pseudo random phase masks located on the object surface and the first diffraction surface. After inverse diffraction from a holographic surface to an object surface, the plaintext can be reconstructed using a decryption process. Since the diffraction propagated from the inner cylinder to the outer cylinder is different from that of the reversed direction, the proposed cryptosystem is asymmetric and hence is free of phase-retrieval attack. Numerical simulation results demonstrate the flexibility and effectiveness of the proposed cryptosystem.

  7. Electron Beam Welding of IN792 DS: Effects of Pass Speed and PWHT on Microstructure and Hardness

    PubMed Central

    Angella, Giuliano; Montanari, Roberto; Richetta, Maria; Varone, Alessandra

    2017-01-01

    Electron Beam (EB) welding has been used to realize seams on 2 mm-thick plates of directionally solidified (DS) IN792 superalloy. The first part of this work evidenced the importance of pre-heating the workpiece to avoid the formation of long cracks in the seam. The comparison of different pre-heating temperatures (PHT) and pass speeds (v) allowed the identification of optimal process parameters, namely PHT = 300 °C and v = 2.5 m/min. The microstructural features of the melted zone (MZ); the heat affected zone (HAZ), and base material (BM) were investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD), and micro-hardness tests. In the as-welded condition; the structure of directionally oriented grains was completely lost in MZ. The γ’ phase in MZ consisted of small (20–40 nm) round shaped particles and its total amount depended on both PHT and welding pass speed, whereas in HAZ, it was the same BM. Even if the amount of γ’ phase in MZ was lower than that of the as-received material, the nanometric size of the particles induced an increase in hardness. EDS examinations did not show relevant composition changes in the γ’ and γ phases. Post-welding heat treatments (PWHT) at 700 and 750 °C for two hours were performed on the best samples. After PWHTs, the amount of the ordered phase increased, and the effect was more pronounced at 750 °C, while the size of γ’ particles in MZ remained almost the same. The hardness profiles measured across the joints showed an upward shift, but peak-valley height was a little lower, indicating more homogeneous features in the different zones. PMID:28872620

  8. Synthesis of a Ni2P/Ni12P5 bi-phase nanocomposite for the efficient catalytic reduction of 4-nitrophenol based on the unique n-n heterojunction effects.

    PubMed

    Tian, Feng-Yu; Hou, Dongfang; Zhang, Wei-Min; Qiao, Xiu-Qing; Li, Dong-Sheng

    2017-10-24

    A novel heterostructure catalyst of Ni 2 P/Ni 12 P 5 has been fabricated through a simple solvothermal method by modifying the molar ratio of the initial raw materials. The products are characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It is found that the two phases, Ni 2 P and Ni 12 P 5 , are interlaced with one another in the as-formed nanocomposite, resulting in more interfaces. The bi-phase catalyst exhibits a markedly enhanced catalytic activity in the reduction of 4-nitrophenol, as compared to that of single Ni 2 P or Ni 12 P 5 . The enhanced catalytic activity can be attributed to the unique n-n series effects, which result in the increased ease of electron transfer over the Ni 2 P/Ni 12 P 5 bi-phase catalyst.

  9. Energy-resolved coherent diffraction from laser-driven electronic motion in atoms

    NASA Astrophysics Data System (ADS)

    Shao, Hua-Chieh; Starace, Anthony F.

    2017-10-01

    We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2 s -2 p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.

  10. The Role of Phase Changes in TiO2/Pt/TiO2 Filaments

    NASA Astrophysics Data System (ADS)

    Bíró, Ferenc; Hajnal, Zoltán; Dücső, Csaba; Bársony, István

    2018-04-01

    This work analyses the role of phase changes in TiO2/Pt/TiO2 layer stacks for micro-heater application regarding their stability and reliable operation. The polycrystalline Pt layer wrapped in a TiO2 adhesion layer underwent a continuous recrystallisation in a self-heating operation causing a drift in the resistance ( R) versus temperature ( T) performance. Simultaneously, the TiO2 adhesion layer also deteriorates at high temperature by phase changes from amorphous to anatase and rutile crystallite formation, which not only influences the Pt diffusion in different migration phenomena, but also reduces the cross section of the Pt heater wire. Thorough scanning electron microscopy, energy dispersive spectroscopy, cross-sectional transmission electron microscopy (XTEM) and electron beam diffraction analysis of the structures operated at increasing temperature revealed the elemental structural processes leading to the instabilities and the accelerated degradation, resulting in rapid breakdown of the heater wire. Owing to stability and reliability criteria, the conditions for safe operation of these layer structures could be determined.

  11. Terahertz control of nanotip photoemission

    NASA Astrophysics Data System (ADS)

    Wimmer, L.; Herink, G.; Solli, D. R.; Yalunin, S. V.; Echternkamp, K. E.; Ropers, C.

    2014-06-01

    The active control of matter by strong electromagnetic fields is of growing importance, with applications all across the optical spectrum from the extreme-ultraviolet to the far-infrared. In recent years, phase-stable terahertz fields have shown tremendous potential for observing and manipulating elementary excitations in solids. In the gas phase, on the other hand, driving free charges with terahertz transients provides insight into ultrafast ionization dynamics. Developing such approaches for locally enhanced terahertz fields in nanostructures will create new means to govern electron currents on the nanoscale. Here, we use single-cycle terahertz transients to demonstrate extensive control over nanotip photoelectron emission. The terahertz near-field is shown to either enhance or suppress photocurrents, with the tip acting as an ultrafast rectifying diode. We record phase-resolved sub-cycle dynamics and find spectral compression and expansion arising from electron propagation within the terahertz near-field. These interactions produce rich spectro-temporal features and offer unprecedented control over ultrashort free electron pulses for imaging and diffraction.

  12. Tem Observation of Precipitates in Ag-Added Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Nagai, Takeshi; Matsuda, Kenji; Nakamura, Junya; Kawabata, Tokimasa; Marioara, Calin; Andersen, Sigmund J.; Holmestad, Randi; Hirosawa, Shoichi; Horita, Zenji; Terada, Daisuke; Ikeno, Susumu

    The influence of addition of the small amount of transition metals to Al-Mg-Si alloy had reported by many researchers. In the previous our work, β' phase in alloys Al — 1.0 mass% Mg2Si -0.5 mass% Ag (Ag-addition) and Al -1.0 mass% Mg2Si (base) were investigated by high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), in order to understand the effect of Ag. In addition, the distribution of Ag was investigated by energy filtered mapping and high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). One Ag-containing atomic column was observed per β' unit cell, and the unit cell symmetry is slightly changed as compared with the Ag-free β'. In this work, the microstructure of G.P. zone and β'' phase was investigated by TEM observation, which were formed before β' phase. The deformed sample by high pressure torsion (HPT) technique before aging was also investigated to understand its effect for aging in this alloy.

  13. Structural, mechanical, and magnetic properties of ferrite-austenite mixture in evaporated 304 stainless steel thin films

    NASA Astrophysics Data System (ADS)

    Merakeb, Noureddine; Messai, Amel; Djelloul, Abdelkader; Ayesh, Ahmad I.

    2015-11-01

    In this paper, we investigate the structure, composition, magnetic, and mechanical properties of stainless steel thin films formed by thermal evaporation technique. These thin films reveal novel structural and physical properties where they were found to consist of nanocrystals that are ~90 % body-centred cubic crystal structure which holds ferromagnetic properties (α-phase), and ~10 % face-centred cubic crystal structure which is paramagnetic at room temperature (γ-phase). The presence of the above phases was quantified by X-ray diffraction, transmission electron microscopy, and conversion electron Mössbauer spectroscopy. The magnetic properties were evaluated by a superconducting quantum interference device magnetometer, and they confirmed the dual-phase crystal structure of the stainless thin films, where the presence of γ-phase reduced the magnetization of the produced thin films. In addition, the fabricated stainless steel thin films did not contain micro-cracks, and they exhibit a tensile stress of about 1.7 GPa, hardness of 7.5 GPa, and elastic modulus of 104 GPa.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less

  15. Glass Formation, Phase Equilibria, and Thermodynamic Assessment of the Al-Ce-Co System Assisted by First-Principles Energy Calculations

    NASA Astrophysics Data System (ADS)

    Gao, Michael C.; Ünlü, Necip; Mihalkovic, Marek; Widom, Michael; Shiflet, G. J.

    2007-10-01

    This study investigates glass formation, phase equilibria, and thermodynamic descriptions of the Al-rich Al-Ce-Co ternary system using a novel approach that combines critical experiments, CALPHAD modeling, and first-principles (FP) calculations. The glass formation range (GFR) and a partial 500 °C isotherm are determined using a range of experimental techniques including melt spinning, transmission electron microscopy (TEM), electron probe microanalysis (EPMA), X-ray diffraction, and differential thermal analysis (DTA). Three stable ternary phases are confirmed, namely, Al8CeCo2, Al4CeCo, and AlCeCo, while a metastable phase, Al5CeCo2, was discovered. The equilibrium and metastable phases identified by the present and earlier reported experiments, together with many hypothetical ternary compounds, are further studied by FP calculations. Based on new experimental data and FP calculations, the thermodynamics of the Al-rich Al-Co-Ce system is optimized using the CALPHAD method. Application to glass formation is discussed in light of present studies.

  16. Gradient changes in structural condition of the B2 phase of NiTi surface layers after electron-beam treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Ludmila L., E-mail: llm@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru; Gudimova, Ekaterina Yu., E-mail: llm@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru; Ostapenko, Marina G., E-mail: artifact@ispms.tsc.ru

    2014-11-14

    Structural conditions of the B2 phase of the Ti{sub 49.5}Ni{sub 50.5} alloy surface layers before and after electron-beam treatments (pulse duration τ = 150 μs, number of pulses n = 5, beam energy density E ≤ 20 J/cm{sup 2}) were studied by X-ray diffraction analysis. Analysis of the X-ray patterns demonstrates that surface layers modified by electron beam treatment contain phase with B2{sup surf} structure. It is revealed that the lattice parameter of the B2{sup surf} phase in the surface (modified) layer is also higher than the lattice parameter of the B2 phase in the underlying layer (a{sub B2} = 3.0159±0.0005). Themore » values of lattice parameter of phase B2{sup surf} amounted a{sub B2}{sup surf} = 3.0316±0.0005 Å and a{sub B2}{sup surf} = 3.0252±0.0005 Å, for the specimens after electron-beam treatment at E{sub 1} = 15 J/cm{sup 2} and E{sub 2} = 20 J/cm{sup 2}, respectively. Inflated lattice parameters a{sub B2}{sup surf} are associated with changes in the chemical composition and the presence of residual stresses in the surface region of the samples after electron-beam treatments.« less

  17. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, L. W.; Lin, L.; Huang, S. L.

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  19. Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kluge, Thomas

    2015-11-01

    Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.

  20. Probing lattice dynamics and electron-phonon coupling in the topological nodal-line semimetal ZrSiS

    NASA Astrophysics Data System (ADS)

    Singha, Ratnadwip; Samanta, Sudeshna; Chatterjee, Swastika; Pariari, Arnab; Majumdar, Dipanwita; Satpati, Biswarup; Wang, Lin; Singha, Achintya; Mandal, Prabhat

    2018-03-01

    Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semimetal and has drawn enormous interests. In this paper, we have investigated the lattice dynamics and electron-phonon interaction in single-crystalline ZrSiS using Raman spectroscopy. Polarization and angle-resolved Raman data have been analyzed using crystal symmetries and theoretically calculated atomic vibrational patterns along with phonon dispersion spectra. Wavelength- and temperature-dependent measurements show the complex interplay of electron and phonon degrees of freedom, resulting in resonant phonon and quasielastic electron scattering through interband transition. Our high-pressure Raman studies reveal vibrational anomalies, which are the signature of structural phase transitions. Further investigations through high-pressure synchrotron x-ray diffraction clearly show pressure-induced structural transitions and coexistence of multiple phases, which also indicate possible electronic topological transitions in ZrSiS. This study not only provides the fundamental information on the phonon subsystem, but also sheds some light in understanding the topological nodal-line phase in ZrSiS and other isostructural systems.

  1. A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings

    NASA Astrophysics Data System (ADS)

    Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman

    2006-10-01

    Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50to900eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50eV. This energy was limited by our electron gun design. These results are particularly relevant for the use of these gratings as coherent beam splitters in low energy electron interferometry.

  2. Novel high pressure hexagonal OsB2 by mechanochemistry

    NASA Astrophysics Data System (ADS)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-07-01

    Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.

  3. Flexible fabrication of multi-scale integrated 3D periodic nanostructures with phase mask

    NASA Astrophysics Data System (ADS)

    Yuan, Liang Leon

    Top-down fabrication of artificial nanostructures, especially three-dimensional (3D) periodic nanostructures, that forms uniform and defect-free structures over large area with the advantages of high throughput and rapid processing and in a manner that can further monolithically integrate into multi-scale and multi-functional devices is long-desired but remains a considerable challenge. This thesis study advances diffractive optical element (DOE) based 3D laser holographic nanofabrication of 3D periodic nanostructures and develops new kinds of DOEs for advanced diffracted-beam control during the fabrication. Phase masks, as one particular kind of DOE, are a promising direction for simple and rapid fabrication of 3D periodic nanostructures by means of Fresnel diffraction interference lithography. When incident with a coherent beam of light, a suitable phase mask (e.g. with 2D nano-grating) can create multiple diffraction orders that are inherently phase-locked and overlap to form a 3D light interference pattern in the proximity of the DOE. This light pattern is typically recorded in photosensitive materials including photoresist to develop into 3D photonic crystal nanostructure templates. Two kinds of advanced phase masks were developed that enable delicate phase control of multiple diffraction beams. The first exploits femtosecond laser direct writing inside fused silica to assemble multiple (up to nine) orthogonally crossed (2D) grating layers, spaced on Talbot planes to overcome the inherent weak diffraction efficiency otherwise found in low-contrast volume gratings. A systematic offsetting of orthogonal grating layers to establish phase offsets over 0 to pi/2 range provided precise means for controlling the 3D photonic crystal structure symmetry between body centered tetragonal (BCT) and woodpile-like tetragonal (wTTR). The second phase mask consisted of two-layered nanogratings with small sub-wavelength grating periods and phase offset control. That was designed with isotropic properties attractive for generating a complete photonic band gap (PBG). An isolation layer was used between adjacent polymer layers to offer a reversal coating for sample preparation of scanning electron microscopy (SEM) imaging and top surface planarization. Electron beam lithography has been employed to fabricate a multi-level nano-grating phase mask that produces a diamond-like 3D nanostructure via phase mask lithography, promising for creating photonic crystal (PC) templates that can be inverted with high-index materials and form a complete PBG at telecommunication wavelengths. A laser scanning holographic method for 3D exposure in thick photoresist is introduced that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form highly uniform 3D nanostructure with beam size scaled to small 200 microm diameter. Further direct-write holography demonstrates monolithical writing of multi-scale lab-on-a-chip with multiple functionalities including on-chip integrated fluorescence. Various 3D periodic nanostructures are demonstrated over a 15 mmx15 mm area, through full 40 microm photoresist thickness and with uniform structural and optical properties revealed by focused ion beam (FIB) milling, SEM imaging and stopband measures. The lateral and axial periods scale from respective 1500 nm to 570 nm and 9.2 microm to 1.2 microm to offer a Gamma-Z stopband at 1.5 microm. Overall, laser scanning is presented as a facile means to embed 3D PC nanostructure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  4. Nature and evolution of incommensurate charge order in manganites visualized with cryogenic scanning transmission electron microscopy

    PubMed Central

    Savitzky, Benjamin H.; Admasu, Alemayehu S.; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F.

    2018-01-01

    Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge–lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale (∼6 pm to 11 pm) transverse displacements, suggesting that charge–lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative “incommensurate” order in hole-doped oxides. PMID:29382750

  5. Digital electron diffraction – seeing the whole picture

    PubMed Central

    Beanland, Richard; Thomas, Paul J.; Woodward, David I.; Thomas, Pamela A.; Roemer, Rudolf A.

    2013-01-01

    The advantages of convergent-beam electron diffraction for symmetry determination at the scale of a few nm are well known. In practice, the approach is often limited due to the restriction on the angular range of the electron beam imposed by the small Bragg angle for high-energy electron diffraction, i.e. a large convergence angle of the incident beam results in overlapping information in the diffraction pattern. Techniques have been generally available since the 1980s which overcome this restriction for individual diffracted beams, by making a compromise between illuminated area and beam convergence. Here a simple technique is described which overcomes all of these problems using computer control, giving electron diffraction data over a large angular range for many diffracted beams from the volume given by a focused electron beam (typically a few nm or less). The increase in the amount of information significantly improves the ease of interpretation and widens the applicability of the technique, particularly for thin materials or those with larger lattice parameters. PMID:23778099

  6. Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dejoie, Catherine; Tamura, Nobumichi; Kunz, Martin

    Archaeological artefacts are often heterogeneous materials where several phases coexist in a wide grain size distribution. Most of the time, retrieving structure information at the micrometre scale is of great importance for these materials. Particularly, the organization of different phases at the micrometre scale is closely related to optical or mechanical properties, manufacturing processes, functionalities in ancient times and long-term conservation. Between classic X-ray powder diffraction with a millimetre beam and transmission electron microscopy, a gap exists and structure and phase information at the micrometre scale are missing. Using a micrometre-size synchrotron X-ray beam, a hybrid approach combining both monochromaticmore » powder micro-diffraction and Laue single-crystal micro-diffraction was deployed to obtain information from nanometre- and micrometre-size phases, respectively. Therefore providing a way to bridge the aforementioned gap, this unique methodology was applied to three different types of ancient materials that all show a strong heterogeneity. In Roman terra sigillata, the specific distribution of nanocrystalline hematite is mainly responsible for the deep-red tone of the slip, while the distribution of micrometre-size quartz in ceramic bodies reflects the change of manufacturing process between pre-sigillata and high-quality sigillata periods. In the second example, we investigated the modifications occurring in Neolithic and geological flints after a heating process. By separating the diffracted signal coming from the nano- and the micrometre scale, we observed a domain size increase for nanocrystalline quartz in geological flints and a relaxation of the residual strain in larger detritic quartz. In conclusion, through the study of a Roman iron nail, we showed that the carburation process to strengthen the steel was mainly a surface process that formed 10–20 µm size domains of single–crystal ferrite and nanocrystalline cementite.« less

  7. Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials

    DOE PAGES

    Dejoie, Catherine; Tamura, Nobumichi; Kunz, Martin; ...

    2015-09-20

    Archaeological artefacts are often heterogeneous materials where several phases coexist in a wide grain size distribution. Most of the time, retrieving structure information at the micrometre scale is of great importance for these materials. Particularly, the organization of different phases at the micrometre scale is closely related to optical or mechanical properties, manufacturing processes, functionalities in ancient times and long-term conservation. Between classic X-ray powder diffraction with a millimetre beam and transmission electron microscopy, a gap exists and structure and phase information at the micrometre scale are missing. Using a micrometre-size synchrotron X-ray beam, a hybrid approach combining both monochromaticmore » powder micro-diffraction and Laue single-crystal micro-diffraction was deployed to obtain information from nanometre- and micrometre-size phases, respectively. Therefore providing a way to bridge the aforementioned gap, this unique methodology was applied to three different types of ancient materials that all show a strong heterogeneity. In Roman terra sigillata, the specific distribution of nanocrystalline hematite is mainly responsible for the deep-red tone of the slip, while the distribution of micrometre-size quartz in ceramic bodies reflects the change of manufacturing process between pre-sigillata and high-quality sigillata periods. In the second example, we investigated the modifications occurring in Neolithic and geological flints after a heating process. By separating the diffracted signal coming from the nano- and the micrometre scale, we observed a domain size increase for nanocrystalline quartz in geological flints and a relaxation of the residual strain in larger detritic quartz. In conclusion, through the study of a Roman iron nail, we showed that the carburation process to strengthen the steel was mainly a surface process that formed 10–20 µm size domains of single–crystal ferrite and nanocrystalline cementite.« less

  8. Microstructural characterization of a Zr-Ti-Ni-Mn-V-Cr based AB 2-type battery alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhan

    1999-01-01

    Transmission Electron Microscopy (TEM), combined with X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) was employed to investigate a proprietary and multicomponent AB 2 type Nickel-Metal Hydride (Ni-MH) battery alloy. This material was prepared by High Pressure Gas Atomization (HPGA) and examined in both the as-atomized and heat treated condition. TEM examination showed a heavily faulted dendritic growth structure in as-atomized powder. Selected Area Diffraction (SAD) showed that this region consisted of both a cubic C15 structure with lattice constant a=7.03 and a hexagonal C14 structure with lattice parameter a=4.97 Å, c=8.11 Å. The Orientation Relationship (OR) between the C14 and C15 structures was determined to be (111)[1more » $$\\bar{1}$$0] C15//(0001)[11$$\\bar{2}$$0] C14. An interdendritic phase possessing the C14 structure was also seen. There was also a very fine grain region consisting of the C14 structure. Upon heat treatment, the faulted structure became more defined and appeared as intercalation layers within the grains. Spherical particles rich in Zr and Ni appeared scattered at the grain boundaries instead of the C14 interdendritic phase. The polycrystalline region also changed to a mixture of C14 and C15 structures. These results as well as phase stability of the C15 and C14 structures based on a consideration of atomic size factor and the average electron concentration are discussed.« less

  9. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure

    NASA Astrophysics Data System (ADS)

    Petchsang, N.; Pon-On, W.; Hodak, J. H.; Tang, I. M.

    2009-07-01

    The magnetic properties of Co-ferrite-doped hydroxyapatite (HAP) nanoparticles of composition Ca 10-3xFe 2xCo x(PO 4) 6(OH) 2 (where x=0, 0.1, 0.2, 0.3, 0.4 and 0.5% mole) are studied. Transmission electron microscope micrograms show that the 90 nm size nanoparticles annealed at 1250 °C have a core/shell structure. Their electron diffraction patterns show that the shell is composed of the hydroxyapatite and the core is composed of the Co-ferrite, CoFe 2O 4. Electron spin resonance measurements indicate that the Co 2+ ions are being substituted into the Ca(1) sites in HAP lattice. X-ray diffraction studies show the formation of impurity phases as higher amounts of the Fe 3+/Co 2+ ions which are substituted into the HAP host matrix. The presence of two sextets (one for the A-site Fe 3+ and the other for the B-site Fe 3+) in the Mössbauer spectrum for all the doped samples clearly indicates that the CoFe 2O 4.cores are in the ferromagnetic state. Evidence of the impurity phases is seen in the appearance of doublet patterns in the Mössbauer spectrums for the heavier-doped ( x=0.4 and 0.5) specimens. The decrease in the saturation magnetizations and other magnetic properties of the nanoparticles at the higher doping levels is consistent with some of the Fe 3+ and Co 2+ which being used to form the CoO and Fe 2O 3 impurity phase seen in the XRD patterns.

  10. A transmission electron microscopy and X-ray photoelectron spectroscopy study of annealing induced γ-phase nucleation, clustering, and interfacial dynamics in reactively sputtered amorphous alumina thin films

    NASA Astrophysics Data System (ADS)

    Kumar, A. K. Nanda; Prasanna, S.; Subramanian, B.; Jayakumar, S.; Rao, G. Mohan

    2015-03-01

    Pure α-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling γ-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of ≈0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-γ transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source.

  11. Effect of SiO2/B2O3 Ratio on the Crystallization Behavior and Dielectric Properties of Barium Strontium Titanate Glass-Ceramics Prepared by Sol-Gel Process

    NASA Astrophysics Data System (ADS)

    Chen, Yongzhou; Zhang, Yong; Song, Xiaozhen; Shen, Ziqin; Zhang, Tianyuan

    2018-05-01

    Ferroelectric glass-ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3-10 wt.% (B2O3-nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol-gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass-ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal-glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.

  12. Characterization of novel microstructures in Al-Fe-V-Si and Al-Fe-V-Si-Y alloys processed at intermediate cooling rates

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan

    Samples of an Al-Fe-V-Si alloy with and without small Y additions were prepared by copper wedge-mold casting. Analysis of the microstructures developed at intermediate cooling rates revealed the formation of an atypical morphology of the cubic alpha-Al12(Fe/V)3Si phase (Im 3 space group with a = 1.26 nm) in the form of a microeutectic with alpha-Al that forms in relatively thick sections. This structure was determined to exhibit promising hardness and thermal stability when compared to the commercial rapidly solidified and processed Al-Fe-V-Si (RS8009) alloy. In addition, convergent beam electron diffraction (CBED) and selected area electron diffraction (SAD) were used to characterize a competing intermetallic phase, namely, a hexagonal phase identified as h-AlFeSi (P6/mmm space group with a = 2.45 nm c = 1.25 nm) with evidence of a structural relationship to the icosahedral quasicrystalline (QC) phase (it is a QC approximant) and a further relationship to the more desirable alpha-Al12(Fe/V) 3Si phase, which is also a QC approximant. The analysis confirmed the findings of earlier studies in this system, which suggested the same structural relationships using different methods. As will be shown, both phases form across a range of cooling rates and appear to have good thermal stabilities. Additions of Y to the alloy were also studied and found to cause the formation of primary YV2Al20 particles on the order of 1 microm in diameter distributed throughout the microstructure, which otherwise appeared essentially identical to that of the Y-free 8009 alloy. The implications of these results on the possible development of these structures will be discussed in some detail.

  13. Thermodynamic understanding of Sn whisker growth on the Cu surface in Cu(top)-Sn(bottom) bilayer system upon room temperature aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lin; Jian, Wei; Lin, Bing

    2015-06-07

    Sn whiskers are observed by scanning electron microscope on the Cu surface in Cu(top)-Sn(bottom) bilayer system upon room temperature aging. Only Cu{sub 6}Sn{sub 5} phase appears in the X-ray diffraction patterns and no Sn element is detected in the Cu sublayer by scanning transmission electron microscopy. Based on the interfacial thermodynamics, the intermetallic Cu{sub 6}Sn{sub 5} compound phase may form directly at the Sn grain boundary. Driven by the stress gradient during the formation of Cu{sub 6}Sn{sub 5} compound at Sn grain boundaries, Sn atoms segregate onto the Cu surface and accumulate to form Sn whisker.

  14. Analysis of compositional uniformity in Al{sub x}Ga{sub 1−x}N thin films using atom probe tomography and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang; Huang, Li; Porter, Lisa M.

    2016-07-15

    Calculated frequency distributions of atom probe tomography reconstructions (∼80 nm field of view) of very thin Al{sub x}Ga{sub 1−x}N (0.18 ≤ x ≤ 0.51) films grown via metalorganic vapor phase epitaxy on both (0001) GaN/AlN/SiC and (0001) GaN/sapphire heterostructures revealed homogeneous concentrations of Al and chemically abrupt Al{sub x}Ga{sub 1−x}N/GaN interfaces. The results of scanning transmission electron microscopy and selected area diffraction corroborated these results and revealed that neither superlattice ordering nor phase separation was present at nanometer length scales.

  15. Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gálvez, S.; Rubio-Zuazo, J., E-mail: rubio@esrf.fr; Salas-Colera, E.

    Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.

  16. Structure analysis of polymerized phospholipid bilayer by TED and direct methods.

    PubMed

    Stevens, M; Longo, M; Dorset, D L; Spence, J

    2002-04-01

    This paper describes the use of elastic energy filtered transmission electron diffraction combined with Direct Methods in order to study the structure of thin Langmuir-Blodgett films of a radiation sensitive diacetylene polymer (DC8.9PC). We obtain a potential map for one projection by direct phasing of zone axis patterns, and discuss experimental problems and possible solutions.

  17. Microstructural evolution of Alloy 690 during sensitization at 700 deg. C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Rodriguez, J.G.; Casales, M.; Espinoza Medina, M.A.

    2003-12-15

    A structural characterization of sensitized Alloy 690 has been carried out. Alloy 690 was solution annealed (SA; 1100 deg. C for 30 min, water quenched, WQ) and sensitized at 700 deg. C for 5, 12, 24, 36, 48 and 72 h, followed by water quenched. Techniques employed included scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction and corrosion weight-loss tests. It was found that the cubic Cr{sub 0.19}Fe{sub 0.7}Ni{sub 0.11} phase was the main component in all the conditions. In addition, a grain refinement was observed when the aging time was increased; but after 48 h of aging,more » a discrete, semicontinuous network of Cr{sub 23}C{sub 6} precipitates was detected by X-ray diffraction, in addition to the NiCrO{sub 4}, Ni{sub 9}S{sub 8} and (Fe,Ni){sub 9}S{sub 8} phases found by TEM at the grain boundaries, making this alloy more susceptible to intergranular attack (IGA). After 72 h of aging, chromium continues diffusing, 'back-filling' the prior depletion profile, recovering the IGA resistance.« less

  18. New Coll-HA/BT composite materials for hard tissue engineering.

    PubMed

    Zanfir, Andrei Vlad; Voicu, Georgeta; Busuioc, Cristina; Jinga, Sorin Ion; Albu, Madalina Georgiana; Iordache, Florin

    2016-05-01

    The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen-hydroxyapatite/barium titanate (Coll-HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol-gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll-HA and Coll-HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll-HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Structural, Morphological, Differential Scanning Calorimetric and Thermogravimetric Studies of Ball Milled Fe Doped Nanoscale La0.67Sr0.33MnO3 Manganite

    NASA Astrophysics Data System (ADS)

    Astik, Nidhi; Jha, Prafulla K.; Pratap, Arun

    2018-03-01

    The ball milling route has been used to produce the La0.67Sr0.33Mn0.85Fe0.15O3 (LSMFO) nanocrystalline sample from oxide precursors. The sample was characterized using x-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX), differential scanning calorimetry (DSC) and thermogravimetric (TGA) measurements. The x-ray diffraction confirms the phase purity of sample and shows that the sample crystallizes in the rhombohedral perovskite structure with a R-3c space group. The scanning electron micrograph shows the presence of well-faceted crystallites of LSMFO. The EDAX spectrum demonstrates the molar ratio of different elements of nanocrystalline LSMFO. Furthermore, the crystallite size using the Debye-Scherrer formula and William-Hall analysis has been found as 24 nm and 29 nm, respectively. Our results support the idea that a good quality nanocrystalline LSMFO sample can be obtained using the ball milling route. We also discuss the DSC and TGA curves and analyse the results in terms of phase transition, calcination temperature and activation barrier energies.

  20. 1D chain formation by coadsorption of Pb and Bi on Cu(001): Determination using low energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Kabiruzzaman, Md; Ahmed, Rezwan; Nakagawa, Takeshi; Mizuno, Seigi

    2017-10-01

    Coadsorption of two heavy metals, Pb and Bi, on Cu(001) at room temperature has been studied using low energy electron diffraction (LEED). c(4 × 4), c(2 × 2), and c(9√{ 2}×√{ 2}) phases are obtained at different coverages; here, we have determined the best-fit structure of c(4 × 4) phase. This structure can be described as a 1D substitutional chain arrangement of Pb and Bi atoms between the Cu rows along the [110] direction. The unit cell in the two-dimensional (2D) surface consists of one Bi atom, two Pb atoms, and four Cu atoms with one vacancy at the center. The optimal structure parameters demonstrate that Bi atoms are located at fourfold-hollow sites and that Pb atoms are laterally displaced by 0.78 Å from the fourfold-hollow site toward the vacancy. The reasons for the formation of the c(4 × 4) structure upon deposition of Pb and Bi on Cu(001) are discussed in comparison with a similar structure formed by the individual adsorption of Pb on the same substrate.

  1. Polaron hopping in olivine phosphates studied by nuclear resonant scattering

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June

    Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamiltonian. These frequencies were analyzed to obtain activation energies and an activation volume for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an anomalously large activation volume. This large, positive value is typical of ion diffusion, which indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both. In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scattering. Conventional Mossbauer spectra were collected while the sample was heated in a resistive furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the onset of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction measurements were carried out in the same temperature range. Reitveld analysis of the diffraction patterns was used to determine the temperature of sodium redistribution on the lattice. The diffraction analysis also provides new information about the phase stability of the system. The temperature evolution of the iron site occupancies from the Mossbauer measurements, combined with the synchrotron diffraction results give strong evidence for a relationship between the onset of fast electron dynamics and the redistribution of sodium in the lattice. Measurements of activation barriers for polaron hopping gave fundamental insights about the correlation between electronic carriers and mobile ions. This work established that polaron-ion interactions can alter the local dynamics of electron and ion transport. These types of coupled processes may be common in many materials used for battery electrodes, and new details concerning the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their electrochemical performance.

  2. Mapping molecular motions leading to charge delocalization with ultrabright electrons

    NASA Astrophysics Data System (ADS)

    Sciaini, German

    2014-05-01

    Ultrafast diffraction has broken the barrier to atomic exploration by combining the atomic spatial resolution of diffraction techniques with the temporal resolution of ultrafast spectroscopy. X-ray free electron lasers, slicing techniques and femtosecond laser-driven X-ray and electron sources have been successfully applied for the study of ultrafast structural dynamics in a variety of samples. Yet, the application of fs-diffraction to the study of rather sensitive organic molecular crystals remains unexplored. Organic crystals are composed by weak scattering centres, often present low melting points, poor heat conductivity and are, typically, radiation sensitive. Low repetition rates (about tens of Hertz) are therefore required to overcome accumulative heating effects from the laser excitation that can degrade the sample and mask the structural dynamics. This imparts tremendous constraints on source brightness to acquire enough diffraction data before adverse photo-degradation effects have played a non-negligible role in the crystalline structure. We implemented ultra-bright femtosecond electron diffraction to obtain a movie of the relevant molecular motions driving the photo-induced insulator-to-metal phase transition in the organic charge-transfer salt (EDO-TTF)2PF6. On the first few picoseconds (0 - 10 ps) the structural evolution, well-described by three main reaction coordinates, reaches a transient intermediate state (TIS). Model structural refinement calculations indicate that fast sliding of flat EDO-TTF molecules with consecutive motion of PF6 counter-ions drive the formation of TS instead of the expected flattening of initially bent EDO-TTF moieties which seems to evolve through a slower thermal pathway that brings the system into a final high temperature-type state. These findings establish the potential of ultrabright femtosecond electron sources for probing the primary processes governing structural dynamics with atomic resolution in labile systems relevant to chemistry and biology. For more information vide-infra Gao et al., Funding for this project was provided by the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation and Grant Agencies in Japan, vide infra Nature reference for more details.

  3. Pronounced pre-martensitic anomaly in the magnetization on Ni2MnGa thin films

    NASA Astrophysics Data System (ADS)

    Neckel, I. T.; Müller, C.; Nobrega, K. Z.; Dartora, C. A.; Schreiner, W. H.; Mosca, D. H.

    2018-05-01

    We have prepared [110]-textured Ni2MnGa thin films exhibiting an unusual pre-martensitic transition accompanied by an extremely large magnetization change. The thin films were grown by molecular beam epitaxy directly on epi-ready GaAs(111)B. Crystalline structure was investigated in situ by reflection high-energy electron diffraction (RHEED) and ex situ by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the film exhibits cubic crystalline structure (L2 1) at room temperature with lattice parameter a = 5.88 Å which undergoes martensitic transition. Magnetic characterization shows ferromagnetic behavior at room temperature with Curie temperature higher than room temperature. Martensitic transformation occurs at TM ∼ 185 K. A phenomenological model based on Landau theory of phase transformation was developed to explain the anomalous pre-martensitic transition at ∼285 K.

  4. Development of lamellar structures in natural waxes - an electron diffraction investigation

    NASA Astrophysics Data System (ADS)

    Dorset, Douglas L.

    1999-06-01

    When they are recrystallized from the melt, natural plant or insect waxes tend to form solid phases with a nematic-like structure (i.e. a parallel array of polymethylene chains with little or no aggregation of the molecules into distinct layers). An electron diffraction study of carnauba wax and two types of beeswax has shown that the degree of molecular organization into lamellar structures can be enhanced by annealing in the presence of benzoic acid, which also acts as an epitaxial substrate. Nevertheless, the resultant layer structure in the annealed solid is not the same as that found for paraffin wax fractions refined from petroleum. Probably because of a small but significant fraction of a very long chain ingredient, the lamellar separation is incomplete, incorporating a number of `bridging molecules' that span the nascent lamellar interface.The same phenomenon has been described recently for a low molecular weight polyethylene.

  5. Structure determination of molecules in an alignment laser field by femtosecond photoelectron diffraction using an X-ray free-electron laser

    PubMed Central

    Minemoto, Shinichirou; Teramoto, Takahiro; Akagi, Hiroshi; Fujikawa, Takashi; Majima, Takuya; Nakajima, Kyo; Niki, Kaori; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Tono, Kensuke; Tsuru, Shota; Wada, Ken; Yabashi, Makina; Yoshida, Shintaro; Yagishita, Akira

    2016-01-01

    We have successfully determined the internuclear distance of I2 molecules in an alignment laser field by applying our molecular structure determination methodology to an I 2p X-ray photoelectron diffraction profile observed with femtosecond X-ray free electron laser pulses. Using this methodology, we have found that the internuclear distance of the sample I2 molecules in an alignment Nd:YAG laser field of 6 × 1011 W/cm2 is elongated by from 0.18 to 0.30 Å “in average” relatively to the equilibrium internuclear distance of 2.666 Å. Thus, the present experiment constitutes a critical step towards the goal of femtosecond imaging of chemical reactions and opens a new direction for the study of ultrafast chemical reaction in the gas phase. PMID:27934891

  6. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films

    NASA Astrophysics Data System (ADS)

    Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins

    2017-12-01

    A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.

  7. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Majidi, Hasti; Winkler, Christopher R.; Taheri, Mitra L.; Baxter, Jason B.

    2012-07-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ˜3 to ˜10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing.

  8. Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask.

    PubMed

    Hsu, Chao-Wei; Chen, Yung-Feng; Su, Yan-Kuin

    2012-12-14

    GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number of dislocations. The etching pit density of GaAs on the 55 nm round-hole patterned Si substrate is about 3.3 × 10(5) cm(-2). Compared with the full width at half maximum measurement from x-ray diffraction and photoluminescence spectra of GaAs on a planar Si(001) substrate, those of GaAs on the 55 nm round-hole patterned Si substrate are reduced by 39.6 and 31.4%, respectively. The improvement in material quality is verified by transmission electron microscopy, field-emission scanning electron microscopy, Hall measurements, Raman spectroscopy, photoluminescence, and x-ray diffraction studies.

  9. Single-crystal X-ray diffraction study of SrGeO3 high-pressure perovskite phase at 100 K

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Akihiko; Arima, Hiroshi; Ohtaka, Osamu; Fujiwara, Keiko; Yoshiasa, Akira

    2017-10-01

    Single-crystal X-ray diffraction study of SrGeO3 perovskite (cubic; space group Pmɜ¯m) synthesized at 6 GPa and 1223 K was conducted at a low temperature of 100 K. The residual electron density revealed the presence of the bonding electron at the center of the Ge-O bond, in accordance with our previous conclusion that the Ge-O bond is strongly covalent. From comparison with our previous structure-refinement result at 296 K, the mean square displacement (MSD) of the O atom in the direction of the Ge-O bond is suggested to exhibit no significant temperature dependence, in contrast to that in the direction perpendicular to the bond. Thus, the strong covalency of the Ge-O bond can have a large influence on the temperature dependence of thermal vibration of the O atom.

  10. Conducting linear chains of sulphur inside carbon nanotubes

    PubMed Central

    Fujimori, Toshihiko; Morelos-Gómez, Aarón; Zhu, Zhen; Muramatsu, Hiroyuki; Futamura, Ryusuke; Urita, Koki; Terrones, Mauricio; Hayashi, Takuya; Endo, Morinobu; Young Hong, Sang; Chul Choi, Young; Tománek, David; Kaneko, Katsumi

    2013-01-01

    Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (~800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at ~450–650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding ~90 GPa to become metallic. PMID:23851903

  11. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens

    NASA Astrophysics Data System (ADS)

    Kiruba Daniel, S. C. G.; Vinothini, G.; Subramanian, N.; Nehru, K.; Sivakumar, M.

    2013-01-01

    Biosynthesis of copper, zero-valent iron (ZVI), and silver nanoparticles using leaf extract of Dodonaea viscosa has been investigated in this report. There are no additional surfactants/polymers used as capping or reducing agents for these syntheses. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction, atomic force microscopy, and high-resolution transmission electron microscopy. The phase analysis was performed using selected area electron diffraction. The pH dependence of surface plasmon resonance and subsequent size variation has been determined. The synthesized nanoparticles showed spherical morphology and the average size of 29, 27, and 16 nm for Cu, ZVI, and Ag nanoparticles, respectively. Finally, biosynthesized Cu, ZVI, and Ag nanoparticles were tested against human pathogens viz. Gram-negative Escherichia coli, Klebsiella pneumonia, Pseudomonas fluorescens and Gram-positive Staphylococcus aureus and Bacillus subtilis, and showed good antimicrobial activity.

  12. Enhancement in surface area and magnetization of CoFe2O4 nanoparticles for targeted drug delivery application

    NASA Astrophysics Data System (ADS)

    Kale, Swati B.; Somvanshi, Sandeep B.; Sarnaik, M. N.; More, S. D.; Shukla, S. J.; Jadhav, K. M.

    2018-05-01

    This paper reports facile synthesis, characterizations by X-ray diffraction and scanning electron microscopy and magnetic behaviour of cobalt ferrite nanoparticles. Cobalt ferrite nanoparticles were prepared by sol-gel auto combustion technique using glycine as a fuel. Phase purity and nanocrystalline nature of the prepared sample was confirmed through X-ray diffraction technique. No extra peak other than cubic spinel structure was observed in the XRD pattern. The crystallite size calculated by using Scherrer's formula is of the order of 21.6 nm indicating the nanocrystalline nature of the prepared cobalt ferrite sample. The surface morphological studies were carried out using scanning electron microscope (SEM). SEM image shows homogeneous, agglomerated particles with sponge-like form. The saturation magnetization, coercivity and remenance magnetization obtained by hysteresis curve clearly gives the evidence of excellent and enhanced magnetic behaviour.

  13. Imaging CF3I conical intersection and photodissociation dynamics by ultrafast electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie

    Conical intersections play a critical role in excited state dynamics of polyatomic molecules, as they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wavepacket trajectories through these intersections directly. Here we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas phase electron diffraction. In the two-photon channel, we have mapped out the real space trajectories of a coherent nuclear wavepacket, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitationmore » of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab-initio nonadiabatic dynamics calculations.« less

  14. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  15. Novel synthesis strategy for composite hydrogel of collagen/hydroxyapatite-microsphere originating from conversion of CaCO3 templates.

    PubMed

    Wei, Qingrong; Lu, Jian; Wang, Qiaoying; Fan, Hongsong; Zhang, Xingdong

    2015-03-20

    Inspired by coralline-derived hydroxyapatite, we designed a methodological route to synthesize carbonated-hydroxyapatite microspheres from the conversion of CaCO3 spherulite templates within a collagen matrix under mild conditions and thus constructed the composite hydrogel of collagen/hydroxyapatite-microspheres. Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) were employed to confirm the successful generation of the carbonated hydroxyapatite phase originating from CaCO3, and the ratios of calcium to phosphate were tracked over time. Variations in the weight portion of the components in the hybrid gels before and after the phase transformation of the CaCO3 templates were identified via thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) shows these composite hydrogels have a unique multiscale microstructure consisting of a collagen nanofibril network and hydroxyapatite microspheres. The relationship between the hydroxyapatite nanocrystals and the collagen fibrils was revealed by transmission electron microscopy (TEM) in detail, and the selected area electron diffraction (SAED) pattern further confirmed the results of the XRD analyses which show the typical low crystallinity of the generated hydroxyapatite. This smart synthesis strategy achieved the simultaneous construction of microscale hydroxyapatite particles and collagen fibrillar hydrogel, and appears to provide a novel route to explore an advanced functional hydrogel materials with promising potentials for applications in bone tissue engineering and reconstruction medicine.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Shuguang, E-mail: hustcsg@sohu.com; Zeng Kai; Li Haibin

    Dispersed rhombohedral NiS rods with high aspect ratios and rhombic dodecahedron-like cubic NiS{sub 2} crystals were prepared by solvothermal routes using NiCl{sub 2}.6H{sub 2}O and Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as reagents and ethylenediamine as a solvent, and 3D blossoming flower-like rhombohedral NiS microstructures were synthesized using different sulfur sources of thiourea. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy dispersion spectrometry and selected area electronic diffraction. All the products were pure and had good single crystalline nature. The synthesis parameters were of great importance on the purity and morphology of themore » products. The possible growth mechanisms have been discussed based on the analyses of the effects of sulfur sources and solvent on the crystal structures and detailed configurations of the products. The present work is likely to help the phase-controlled synthesis of other metal chalcogenides. - Graphical abstract: Rhombohedral NiS dispersed rods and 3D flower-like microstructures are evolved from dispersed nucleus and aggregate of nucleus, respectively, and the cross-sections of such rods are in equilateral triangle-like shape. Highlights: > 3D blossoming flower-like r-NiS microstructures are obtained. > Equilateral triangle-like cross-sections of r-NiS rods are observed. > Approach based on XRD analysis to phase-controlled synthesis is presented.« less

  17. Crystallisation of Ba1-xSrxZn2Si2O7 from BaO/SrO/ZnO/SiO2 glass with different ZrO2 and TiO2 concentrations

    NASA Astrophysics Data System (ADS)

    Vladislavova, Liliya; Kracker, Michael; Zscheckel, Tilman; Thieme, Christian; Rüssel, Christian

    2018-04-01

    The effect of different nucleation agents such as ZrO2 and TiO2 was investigated for a first time with respect to their crystallisation behaviour in the glass system BaO-SrO-ZnO-SiO2. In all studied glasses, a Ba1-xSrxZn2Si2O7 (0.1 ≤ x ≤ 0.9) solid solution crystallized. This phase was first described in 2015 to possess a similar structure as the high temperature phase of BaZn2Si2O7 and a thermal expansion close to zero or even negative. It may find applications e.g. as cook panels, telescope mirrors, and furnace windows. Kinetic parameters of the crystallisation process were determined by supplying different heating rates in a differential scanning calorimeter (DSC). The results were evaluated using the equations of Ozawa and Kissinger with respect to the activation energies. Furthermore, the Ozawa method was used for the determination of Avrami parameters, which provides further information on the nucleation and crystallisation processes. Scanning electron microscopy including electron backscatter diffraction (EBSD) was used to characterise the microstructure, to determine the crystallite size and the crystal orientation. For the characterisation of the occurring crystalline phases, X-ray diffraction was used.

  18. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim

    2016-07-25

    The synthesis of a 50 unit cell thick n = 4 Sr{sub n+1}Ti{sub n}O{sub 3n+1} (Sr{sub 5}Ti{sub 4}O{sub 13}) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO{sub 2} layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO{sub 2} layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried outmore » over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO{sub 3} perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Baozhuo; Young, Marcus L.

    Many technological applications of austenitic shape memory alloys (SMAs) involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity. In this paper, we investigated the effect of mechanical bending of pseudoelastic NiTi SMA wires using high-energy synchrotron radiation X-ray diffraction (SR-XRD). Differential scanning calorimetry was performed to identify the phase transformation temperatures. Scanning electron microscopy images show that micro-cracks in compressive regions of the wire propagate with increasing bend angle, while tensile regions tend not to exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (more » $${\\bar 1}12$$), ($${\\bar 1}03$$), ($${\\bar 1}11$$), and (101) planes, intensities and residual strain values exhibit strong anisotropy, depending upon whether the sample is in compression or tension during bending.« less

  20. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken

    Ultrafast X-ray imaging on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimens provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined. Here in this paper, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolutionmore » so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.« less

Top