Sample records for phase epitaxy method

  1. Trends in heteroepitaxy of III-Vs on silicon for photonic and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Lourdudoss, Sebastian; Junesand, Carl; Kataria, Himanshu; Metaferia, Wondwosen; Omanakuttan, Giriprasanth; Sun, Yan-Ting; Wang, Zhechao; Olsson, Fredrik

    2017-02-01

    We present and compare the existing methods of heteroepitaxy of III-Vs on silicon and their trends. We focus on the epitaxial lateral overgrowth (ELOG) method as a means of achieving good quality III-Vs on silicon. Initially conducted primarily by near-equilibrium epitaxial methods such as liquid phase epitaxy and hydride vapour phase epitaxy, nowadays ELOG is being carried out even by non-equilibrium methods such as metal organic vapour phase epitaxy. In the ELOG method, the intermediate defective seed and the mask layers still exist between the laterally grown purer III-V layer and silicon. In a modified ELOG method called corrugated epitaxial lateral overgrowth (CELOG) method, it is possible to obtain direct interface between the III-V layer and silicon. In this presentation we exemplify some recent results obtained by these techniques. We assess the potentials of these methods along with the other existing methods for realizing truly monolithic photonic integration on silicon and III-V/Si heterojunction solar cells.

  2. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    DOEpatents

    Wang, Qi [Littleton, CO; Stradins, Paul [Golden, CO; Teplin, Charles [Boulder, CO; Branz, Howard M [Boulder, CO

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  3. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  4. Optimization of solar cells for air mass zero operation and study of solar cells at high temperatures, phase 4

    NASA Technical Reports Server (NTRS)

    Hovel, H. J.; Woodall, J. M.

    1980-01-01

    The Pd contact to GaAs was studied using backscattering, Auger analysis, and sheet resistance measurements. Several metallurgical phases were present at low temperatures, but PdGa was the dominant phase in samples annealed at 500 C. Ti/Pd/Ag contacts appeared to have the lowest contact resistance. Etchback epitaxy (EBE) was compared to saturated melt epitaxy (SME) method of growing liquid phase epitaxial layers. The SME method resulted in a lower density of Ga microdroplets in the grown layer, although the best solar cells were made by the EBE method. Photoluminescence was developed as a tool for contactless analysis of GaAs cells. Efficiencies of over 8 percent were measured at 250 C.

  5. Buffer architecture for biaxially textured structures and method of fabricating same

    DOEpatents

    Norton, David P.; Park, Chan; Goyal, Amit

    2004-04-06

    The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO.sub.2 and/or HfO.sub.2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO.sub.2 and HfO.sub.2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1.times.10.sup.-5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  6. A Program of Research on Microfabrication Techniques for VLSI Magnetic Devices.

    DTIC Science & Technology

    1982-10-01

    contribution to the implantation- induced uniaxial anisotropy field change. BACKGROUND Magnetic garnet films are grown by liquid phase epitaxy ( LPE ) on non...a single crystal, non-magnetic garnet substrate by the liquid phase epitaxy ( LPE ) method. These thin films , usually one to three microns in thickness...microscopy. Experimental Procedures Films of (SmYGdTm)3Ca0a.Fe4.6012 garnet were grown by liquid phase epitaxy ( LPE ) on gadolinium-gallium garnet (GGG

  7. Method for forming single phase, single crystalline 2122 BCSCO superconductor thin films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)

    1994-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  8. Study of structural properties of cubic InN films on GaAs(001) substrates by molecular beam epitaxy and migration enhanced epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.

    InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD)more » and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.« less

  9. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    DOEpatents

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  10. Weakly doped InP layers prepared by liquid phase epitaxy using a modulated cooling rate

    NASA Astrophysics Data System (ADS)

    Krukovskyi, R.; Mykhashchuk, Y.; Kost, Y.; Krukovskyi, S.; Saldan, I.

    2017-04-01

    Epitaxial structures based on InP are widely used to manufacture a number of devices such as microwave transistors, light-emitting diodes, lasers and Gunn diodes. However, their temporary instability caused by heterogeneity of resistivity along the layer thickness and the influence of various external or internal factors prompts the need for the development of a new reliable technology for their preparation. Weak doping by Yb, Al and Sn together with modulation of the cooling rate applied to prepare InP epitaxial layers is suggested to be adopted within the liquid phase epitaxy (LPE) method. The experimental results confirm the optimized conditions created to get a uniform electron concentration in the active n-InP layer. A sharp profile of electron concentration in the n+-InP(substrate)/n-InP/n+-InP epitaxial structure was observed experimentally at the proposed modulated cooling rate of 0.3 °С-1.5 °С min-1. The proposed technological method can be used to control the electrical and physical properties of InP epitaxial layers to be used in Gunn diodes.

  11. Arsine flow requirement for the flow modulation growth of high purity GaAs using adduct-grade triethylgallium

    NASA Astrophysics Data System (ADS)

    Pitts, B. L.; Emerson, D. T.; Shealy, J. R.

    1992-10-01

    Using arsine and triethylgallium with flow modulation, organometallic vapor phase epitaxy can produce high purity GaAs layers with V/III molar ratios near unity. We have estimated that under appropriate growth conditions the arsine incorporation efficiency into epitaxial GaAs can exceed 30%. The arsine flow requirement for obtaining good morphology has been identified over a range of substrate temperatures using adduct-grade triethylgallium. The process described reduces the environmental impact and life safety risk of the hydride based organometallic vapor phase epitaxial method.

  12. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured GaxIn1-xP (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to be nearly fullymore » relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.« less

  13. Epitaxial growth of three dimensionally structured III-V photonic crystal via hydride vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Qiye; Kim, Honggyu; Zhang, Runyu

    2015-12-14

    Three-dimensional (3D) photonic crystals are one class of materials where epitaxy, and the resultant attractive electronic properties, would enable new functionalities for optoelectronic devices. Here we utilize self-assembled colloidal templates to fabricate epitaxially grown single crystal 3D mesostructured Ga{sub x}In{sub 1−x}P (GaInP) semiconductor photonic crystals using hydride vapor phase epitaxy (HVPE). The epitaxial relationship between the 3D GaInP and the substrate is preserved during the growth through the complex geometry of the template as confirmed by X-ray diffraction (XRD) and high resolution transmission electron microscopy. XRD reciprocal space mapping of the 3D epitaxial layer further demonstrates the film to bemore » nearly fully relaxed with a negligible strain gradient. Fourier transform infrared spectroscopy reflection measurement indicates the optical properties of the photonic crystal which agree with finite difference time domain simulations. This work extends the scope of the very few known methods for the fabrication of epitaxial III-V 3D mesostructured materials to the well-developed HVPE technique.« less

  14. Liquid-Phase Epitaxial Growth of ZnS, ZnSe and Their Mixed Compounds Using Te as Solvent

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroshi; Aoki, Masaharu

    1981-01-01

    Epitaxial layers of ZnS, ZnSe and their mixed compounds were grown on ZnS substrates by the liquid-phase epitaxial growth (LPE) method using Te as the solvent. The open-tube slide-boat technique was used, and a suitable starting temperature for growth was found to be 850°C for ZnS and 700-800°C for ZnSe. The ZnS epitaxial layers grown on {111}A and {111}B oriented ZnS substrates were thin (˜1 μm) and smooth, had low, uniform Te concentrations (˜0.1 at.%) and were highly luminescent. The ZnSe epitaxial layers were relatively thick (10-30 μm) and had fairly high Te concentrations (a few at.%). Various mixed compound ZnS1-xSex were also grown on ZnS substrates.

  15. High quality factor whispering gallery modes from self-assembled hexagonal GaN rods grown by metal-organic vapor phase epitaxy.

    PubMed

    Tessarek, C; Sarau, G; Kiometzis, M; Christiansen, S

    2013-02-11

    Self-assembled GaN rods were grown on sapphire by metal-organic vapor phase epitaxy using a simple two-step method that relies first on a nitridation step followed by GaN epitaxy. The mask-free rods formed without any additional catalyst. Most of the vertically aligned rods exhibit a regular hexagonal shape with sharp edges and smooth sidewall facets. Cathodo- and microphotoluminescence investigations were carried out on single GaN rods. Whispering gallery modes with quality factors greater than 4000 were measured demonstrating the high morphological and optical quality of the self-assembled GaN rods.

  16. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1983-12-01

    operating at frequencies between 1 GHz and 25 GHz. 2. Investigate LPE growth of lithium ferrite with the objective of preparing low-loss, large area films ...and hexagonal ferrites when the series of contracts began in 1975. At that time the liquid phase epitaxy method for growth of magnetic garnet films ...principal interest in epitaxial garnets was for magnetic bubble memories. For this Uapplication the films had to be about 3pm thick with low defect density

  17. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1980-02-28

    shaped LPE garnet samples with 31.5um film thickness. We were informed that initial evalu- ation showed acceptably low insertion loss and that the material...frequencies above 25 GHz. c. Furnish up to eight (8) liquid phase epitaxy yttrium iron garnet films to RADC/EEA for testing and evaluation. These tasks...a "Method for Controlling Resonance Frequency of Yttrium Iron Garnet Films ." A patent, "Epitaxial Growth of M-type Hexagonal Ferrite Films on Spinel

  18. Improvement of the Processes of Liquid-Phase Epitaxial Growth of Nanoheteroepitaxial Structures

    NASA Astrophysics Data System (ADS)

    Maronchuk, I. I.; Sanikovich, D. D.; Potapkov, P. V.; Vel‧chenko, A. A.

    2018-05-01

    We have revealed the shortcomings of equipment and technological approaches in growing nanoheteroepitaxial structures with quantum dots by liquid-phase epitaxy. We have developed and fabricated a new vertical barreltype cassette for growing quantum dots and epitaxial layers of various thicknesses in one technological process. A physico-mathematical simulation has been carried out of the processes of liquid-phase epitaxial growth of quantumdimensional structures with the use of the program product SolidWorks (FlowSimulation program). Analysis has revealed the presence of negative factors influencing the growth process of the above structures. The mathematical model has been optimized, and the equipment has been modernized without additional experiments and measurements. The flow dynamics of the process gas in the reactor at various flow rates has been investigated. A method for tuning the thermal equipment has been developed. The calculated and experimental temperature distributions in the process of growing structures with high reproducibility are in good agreement, which confirms the validity of the modernization made.

  19. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires

    NASA Astrophysics Data System (ADS)

    Lu, Qipeng; Wang, An-Liang; Gong, Yue; Hao, Wei; Cheng, Hongfei; Chen, Junze; Li, Bing; Yang, Nailiang; Niu, Wenxin; Wang, Jie; Yu, Yifu; Zhang, Xiao; Chen, Ye; Fan, Zhanxi; Wu, Xue-Jun; Chen, Jinping; Luo, Jun; Li, Shuzhou; Gu, Lin; Zhang, Hua

    2018-03-01

    Crystal-phase engineering offers opportunities for the rational design and synthesis of noble metal nanomaterials with unusual crystal phases that normally do not exist in bulk materials. However, it remains a challenge to use these materials as seeds to construct heterometallic nanostructures with desired crystal phases and morphologies for promising applications such as catalysis. Here, we report a strategy for the synthesis of binary and ternary hybrid noble metal nanostructures. Our synthesized crystal-phase heterostructured 4H/fcc Au nanowires enable the epitaxial growth of Ru nanorods on the 4H phase and fcc-twin boundary in Au nanowires, resulting in hybrid Au-Ru nanowires. Moreover, the method can be extended to the epitaxial growth of Rh, Ru-Rh and Ru-Pt nanorods on the 4H/fcc Au nanowires to form unique hybrid nanowires. Importantly, the Au-Ru hybrid nanowires with tunable compositions exhibit excellent electrocatalytic performance towards the hydrogen evolution reaction in alkaline media.

  20. Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure

    NASA Technical Reports Server (NTRS)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)

    1995-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  1. Wafer-Fused Orientation-Patterned GaAs

    DTIC Science & Technology

    2008-02-13

    frequencies utilizing existing industrial foundries. 15. SUBJECT TERMS Orientation-patterned Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase... Gallium Arsenide, hydride vapor phase epitaxy, quasi-phase-matching, nonlinear frequency conversion 1. INTRODUCTION Quasi-phase-matching (QPM)1...and E. Lallier, “Second harmonic generation of CO2 laser using thick quasi-phase-matched GaAs layer grown by hydride vapour phase epitaxy

  2. Method of varying a characteristic of an optical vertical cavity structure formed by metalorganic vapor phase epitaxy

    DOEpatents

    Hou, Hong Q.; Coltrin, Michael E.; Choquette, Kent D.

    2001-01-01

    A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.

  3. Epitaxy of semiconductor-superconductor nanowires

    NASA Astrophysics Data System (ADS)

    Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S.

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.

  4. Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same

    DOEpatents

    Aytug, Tolga [Knoxville, TN; Paranthaman, Mariappan Parans [Knoxville, TN; Polat, Ozgur [Knoxville, TN

    2012-07-17

    An electronic component that includes a substrate and a phase-separated layer supported on the substrate and a method of forming the same are disclosed. The phase-separated layer includes a first phase comprising lanthanum manganate (LMO) and a second phase selected from a metal oxide (MO), metal nitride (MN), a metal (Me), and combinations thereof. The phase-separated material can be an epitaxial layer and an upper surface of the phase-separated layer can include interfaces between the first phase and the second phase. The phase-separated layer can be supported on a buffer layer comprising a composition selected from the group consisting of IBAD MgO, LMO/IBAD-MgO, homoepi-IBAD MgO and LMO/homoepi-MgO. The electronic component can also include an electronically active layer supported on the phase-separated layer. The electronically active layer can be a superconducting material, a ferroelectric material, a multiferroic material, a magnetic material, a photovoltaic material, an electrical storage material, and a semiconductor material.

  5. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Metal-organic vapor phase epitaxy of (GaAl)As for 0.85-μm laser diodes

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Bugge, F.; Butzke, G.; Lehmann, L.; Schimko, R.

    1988-11-01

    Metal-organic vapor phase epitaxy was used to grow stripe heterolaser diodes that were hitherto fabricated by liquid phase epitaxy. The main relationships between the growth parameters (partial input pressures, temperatures) and the properties of materials (thicknesses, solid-solution compositions, carrier densities) were investigated. The results were in full agreement with the mechanism of growth controlled by a vapor-phase diffusion. The results achieved routinely in the growth of GaAs are reported. It is shown that double heterostructure laser diodes fabricated by metal-organic vapor phase epitaxy compete favorably with those grown so far by liquid phase epitaxy, including their degradation and reliability.

  6. Electrochemical Liquid Phase Epitaxy (ec-LPE): A New Methodology for the Synthesis of Crystalline Group IV Semiconductor Epifilms.

    PubMed

    Demuth, Joshua; Fahrenkrug, Eli; Ma, Luyao; Shodiya, Titilayo; Deitz, Julia I; Grassman, Tyler J; Maldonado, Stephen

    2017-05-24

    Deposition of epitaxial germanium (Ge) thin films on silicon (Si) wafers has been achieved over large areas with aqueous feedstock solutions using electrochemical liquid phase epitaxy (ec-LPE) at low temperatures (T ≤ 90 °C). The ec-LPE method uniquely blends the simplicity and control of traditional electrodeposition with the material quality of melt growth. A new electrochemical cell design based on the compression of a liquid metal electrode into a thin cavity that enables ec-LPE is described. The epitaxial nature, low strain character, and crystallographic defect content of the resultant solid Ge films were analyzed by electron backscatter diffraction, scanning transmission electron microscopy, high resolution X-ray diffraction, and electron channeling contrast imaging. The results here show the first step toward a manufacturing infrastructure for traditional crystalline inorganic semiconductor epifilms that does not require high temperature, gaseous precursors, or complex apparatus.

  7. Epitaxial growth of hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  8. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Liquid phase epitaxial growth of GaInAsP/InP laser structures

    NASA Astrophysics Data System (ADS)

    Nohavica, D.; Têminová, J.; Berková, D.; Zagrádková, M.; Kortan, I.; Zelinka, I.; Walachová, I.; Malina, V.

    1988-11-01

    A modified single-phase liquid phase epitaxy method was developed on the basis of a novel variant of the growth boat. The method was used to grow GaInAsP/InP double heterostructures for lasers emitting at 1.3 and 1.55 μm. The main properties of wide-contact diodes (radiation power and threshold current density) were adopted as the characteristics of the quality of heterostructures characterized by different configurations of active and guiding layers. The quality of the structure was confirmed by the fabrication of laser diodes of the following types: stripe with oxide insulation, clad-ridge waveguide, and double-channel planar buried.

  9. Effect of deep centers on the radiative characteristics of epitaxial structures in the Ga-As-P system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ermakov, O.P.

    1986-08-01

    This paper studies the radiative characteristics of structures not doped with nitrogen based on AgP and GaAs /SUB 1-y/ P /SUB y/ in a wide range of compositions, containing stoichiometry and radiation defects. The structures studied were obtained by the methods of liquid-phase and gas-phase epitaxy. Zn was used as the acceptor impurity in obtaining the p-n structures. The radiation defects were introduced by irradiation with a beam of fast 2.5-MeV electrons and the radiative characteristics were studied with the help of the method of electroluminescence (EL).

  10. Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Nilanthy; Steer, Elisabeth D.; Smith, Emily F.; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Eaves, Laurence; Patanè, Amalia; Beton, Peter H.

    2018-07-01

    We demonstrate that γ-InSe and the α, β and γ phases of In2Se3 can be grown epitaxially on ε-GaSe substrates using a physical vapour transport method. By exploiting the temperature gradient within the tube furnace, we can grow selectively different phases of InxSey depending on the position of the substrate within the furnace. The uniform cleaved surface of ε-GaSe enables the epitaxial growth of the InxSey layers, which are aligned over large areas. The InxSey epilayers are characterised using Raman, photoluminescence, x-ray photoelectron and electron dispersive x-ray spectroscopies. Each InxSey phase and stoichiometry exhibits distinct optical and vibrational properties, providing a tuneable photoluminescence emission range from 1.3 eV to ~2 eV suitable for exploitation in electronics and optoelectronics.

  11. Epitaxial bain paths and metastable phases of tetragonal iron and manganese

    NASA Astrophysics Data System (ADS)

    Ma, Hong

    2002-04-01

    Epitaxial Bain paths and metastable states of tetragonal Fe and Mn have been studied by first-principles total-energy calculations using the full-potential linearized-augmented-plane-wave method. The main accomplishments are as follows. (1) We have performed the first ever EBP calculation of tetragonal antiferromagnetic (AF) Mn showing that when grown epitaxially on Pd(001), the AF Mn film is strained gamma-Mn, but grown on V(001) the film is strained delta-Mn, which could not be determined using the available crystallographic and elastic data because they were obtained from unstrained states. (2) We have calculated the EBP's of Fe at zero pressure in four magnetic phases, i.e., ferromagnetic (FM), nonmagnetic (NM), type-I antiferromagnetic (AF1), and type-II antiferromagnetic (AF2), which show that the AF2 is the phase of the bulk of epitaxial Fe films on Cu(001) and it is unstable for [110] and [010] shears in the (001) plane, but it can be stabilized by epitaxy on Cu(001). (3)We have unified and simplified the theory of elasticity under hydrostatic pressure p at zero temperature using the Gibbs free energy G, rather than the energy E. The minima of G, but not E, with respect to strains at the equilibrium structure give the zero temperature elastic constants; the stability of a phase at p is then determined by the same Born stability conditions used at p = 0 when applied to the elastic constants from G. The EBP's of FM Fe under hydrostatic pressure show that the bcc phase exists up to 1500 kbar. A bct phase is shown to come into existence at 1300 kbar and becomes stable at 1825 kbar and above. (4) Based on this dissertation research five papers have been published in refereed journals.

  12. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    DOEpatents

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1992-02-25

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  13. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    DOEpatents

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1986-12-30

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  14. Growth of epitaxial orthorhombic YO{sub 1.5}-substituted HfO{sub 2} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori

    YO{sub 1.5}-substituted HfO{sub 2} thin films with various substitution amounts were grown on (100) YSZ substrates by the pulsed laser deposition method directly from the vapor phase. The epitaxial growth of film with different YO{sub 1.5} amounts was confirmed by the X-ray diffraction method. Wide-area reciprocal lattice mapping measurements were performed to clarify the crystal symmetry of films. The formed phases changed from low-symmetry monoclinic baddeleyite to high-symmetry tetragonal/cubic fluorite phases through an orthorhombic phase as the YO{sub 1.5} amount increased from 0 to 0.15. The additional annular bright-field scanning transmission electron microscopy indicates that the orthorhombic phase has polarmore » structure. This means that the direct growth by vapor is of polar orthorhombic HfO{sub 2}-based film. Moreover, high-temperature X-ray diffraction measurements showed that the film with a YO{sub 1.5} amount of 0.07 with orthorhombic structure at room temperature only exhibited a structural phase transition to tetragonal phase above 450 °C. This temperature is much higher than the reported maximum temperature of 200 °C to obtain ferroelectricity as well as the expected temperature for real device application. The growth of epitaxial orthorhombic HfO{sub 2}-based film helps clarify the nature of ferroelectricity in HfO{sub 2}-based films (186 words/200 words)« less

  15. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.

    2013-07-15

    Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less

  16. Ordered structure of FeGe2 formed during solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.

    2018-05-01

    Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.

  17. Calculation of electron spectra and some problems in the thermodynamics of graphene layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alisultanov, Z. Z., E-mail: zaur0102@gmail.com

    The expressions for the energy spectra of monolayer, bilayer, and multilayer graphene, as well as epitaxial graphene, are derived using the quantum Green’s functions method. Analytic expressions are obtained for the densities of states of these systems. It is shown that a bandgap can appear the spectrum of an epitaxial graphene bilayer. A number of problems in the thermodynamics of electrons in free and epitaxial graphene layers are considered as applications. Analytic expressions are obtained for the chemical potential and heat capacity in the limiting cases of low and high temperatures. Quantum oscillations of heat capacity in graphene are analyzedmore » taking into account the Coulomb interaction. The Berry phase of epitaxial graphene is investigated.« less

  18. Suppressing the cellular breakdown in silicon supersaturated with titanium

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Prucnal, S.; Hübner, R.; Yuan, Ye; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2016-06-01

    Hyper doping Si with up to 6 at.% Ti in solid solution was performed by ion implantation followed by pulsed laser annealing and flash lamp annealing. In both cases, the implanted Si layer can be well recrystallized by liquid phase epitaxy and solid phase epitaxy, respectively. Cross-sectional transmission electron microscopy of Ti-implanted Si after liquid phase epitaxy shows the so-called growth interface breakdown or cellular breakdown owing to the occurrence of constitutional supercooling in the melt. The appearance of cellular breakdown prevents further recrystallization. However, the out-diffusion and cellular breakdown can be effectively suppressed by solid phase epitaxy during flash lamp annealing due to the high velocity of amorphous-crystalline interface and the low diffusion velocity for Ti in the solid phase.

  19. Growth of strontium ruthenate films by hybrid molecular beam epitaxy

    DOE PAGES

    Marshall, Patrick B.; Kim, Honggyu; Ahadi, Kaveh; ...

    2017-09-01

    We report on the growth of epitaxial Sr 2RuO 4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO 4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional molecular beam epitaxy that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr 2RuO 4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electronmore » microscopy. In conclusion, the method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.« less

  20. Epitaxial Graphene: A New Material for Electronics

    NASA Astrophysics Data System (ADS)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  1. Epitaxial graphene

    NASA Astrophysics Data System (ADS)

    de Heer, Walt A.; Berger, Claire; Wu, Xiaosong; First, Phillip N.; Conrad, Edward H.; Li, Xuebin; Li, Tianbo; Sprinkle, Michael; Hass, Joanna; Sadowski, Marcin L.; Potemski, Marek; Martinez, Gérard

    2007-07-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persist above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high-mobility epitaxial graphene. It appears that the effect is suppressed due to the absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low-dissipation high-speed nanoelectronics.

  2. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  3. OM-VPE growth of Mg-doped GaAs. [OrganoMetallic-Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Dietze, W. T.; Ludowise, M. J.

    1982-01-01

    The epitaxial growth of Mg-doped GaAs by the organometallic vapor phase epitaxial process (OM-VPE) has been achieved for the first time. The doping is controllable over a wide range of input fluxes of bis (cyclopentadienyl) magnesium, (C5H5)2Mg, the organometallic precursor to Mg.

  4. Low-Cost Approaches to III–V Semiconductor Growth for Photovoltaic Applications

    DOE PAGES

    Greenaway, Ann L.; Boucher, Jason W.; Oener, Sebastian Z.; ...

    2017-08-31

    III–V semiconductors form the most efficient single- and multijunction photovoltaics. Metal–organic vapor-phase epitaxy, which uses toxic and pyrophoric gas-phase precursors, is the primary commercial growth method for these materials. In order for the use of highly efficient III–V-based devices to be expanded as the demand for renewable electricity grows, a lower-cost approach to the growth of these materials is needed. This Review focuses on three deposition techniques compatible with current device architectures: hydride vapor-phase epitaxy, close-spaced vapor transport, and thin-film vapor–liquid–solid growth. Here, we consider recent advances in each technique, including the available materials space, before providing an in-depth comparisonmore » of growth technology advantages and limitations and considering the impact of modifications to the method of production on the cost of the final photovoltaics.« less

  5. The effect of surfactants on epitaxial growth of gallium nitride from gas phase in the Ga-HCl-NH3-H2-Ar system

    NASA Astrophysics Data System (ADS)

    Zhilyaev, Yu. V.; Zelenin, V. V.; Orlova, T. A.; Panteleev, V. N.; Poletaev, N. K.; Rodin, S. N.; Snytkina, S. A.

    2015-05-01

    We have studied epitaxial layers of gallium nitride (GaN) in a template composition grown by surfactant-mediated hydride-chloride vapor phase epitaxy. The surfactant component was provided by 5 mass % additives of antimony and indium to the source of gallium. Comparative analysis of the obtained results shows evidence of the positive influence of surfactants on the morphology of epitaxial GaN layers.

  6. Approach to high quality GaN lateral nanowires and planar cavities fabricated by focused ion beam and metal-organic vapor phase epitaxy.

    PubMed

    Pozina, Galia; Gubaydullin, Azat R; Mitrofanov, Maxim I; Kaliteevski, Mikhail A; Levitskii, Iaroslav V; Voznyuk, Gleb V; Tatarinov, Evgeniy E; Evtikhiev, Vadim P; Rodin, Sergey N; Kaliteevskiy, Vasily N; Chechurin, Leonid S

    2018-05-08

    We have developed a method to fabricate GaN planar nanowires and cavities by combination of Focused Ion Beam (FIB) patterning of the substrate followed by Metal Organic Vapor Phase Epitaxy (MOVPE). The method includes depositing a silicon nitride mask on a sapphire substrate, etching of the trenches in the mask by FIB with a diameter of 40 nm with subsequent MOVPE growth of GaN within trenches. It was observed that the growth rate of GaN is substantially increased due to enhanced bulk diffusion of the growth precursor therefore the model for analysis of the growth rate was developed. The GaN strips fabricated by this method demonstrate effective luminescence properties. The structures demonstrate enhancement of spontaneous emission via formation of Fabry-Perot modes.

  7. Laterally Overgrown Structures as Substrates for Lattice Mismatched Epitaxy

    DTIC Science & Technology

    2002-06-03

    low supersaturation substrate [3]. Therefore, equilibrium growth techniques as liquid buffer with TD phase epitaxy (LPE) or vapour phase epitaxy (VPE...phase diffusion during MBE growth, so lateral over- low cost semiconductor devices. Therefore, vapour growth must rely on the surface mobility of...is replaced by graphite film not wetted For the GaAs on GaAs ELO system we attributed by the gallium melt [35]. Similarly, tungsten has been broadening

  8. Substrate-Independent Epitaxial Growth of the Metal-Organic Framework MOF-508a.

    PubMed

    Wilson, M; Barrientos-Palomo, S N; Stevens, P C; Mitchell, N L; Oswald, G; Nagaraja, C M; Badyal, J P S

    2018-01-31

    Plasmachemical deposition is a substrate-independent method for the conformal surface functionalization of solid substrates. Structurally well-defined pulsed plasma deposited poly(1-allylimidazole) layers provide surface imidazole linker groups for the directed liquid-phase epitaxial (layer-by-layer) growth of metal-organic frameworks (MOFs) at room temperature. For the case of microporous [Zn (benzene-1,4-dicarboxylate)-(4,4'-bipyridine) 0.5 ] (MOF-508), the MOF-508a polymorph containing two interpenetrating crystal lattice frameworks undergoes orientated Volmer-Weber growth and displays CO 2 gas capture behavior at atmospheric concentrations in proportion to the number of epitaxially grown MOF-508 layers.

  9. Environmentally friendly method to grow wide-bandgap semiconductor aluminum nitride crystals: Elementary source vapor phase epitaxy

    PubMed Central

    Wu, PeiTsen; Funato, Mitsuru; Kawakami, Yoichi

    2015-01-01

    Aluminum nitride (AlN) has attracted increasing interest as an optoelectronic material in the deep ultraviolet spectral range due to its wide bandgap of 6.0 eV (207 nm wavelength) at room temperature. Because AlN bulk single crystals are ideal device substrates for such applications, the crystal growth of bulky AlN has been extensively studied. Two growth methods seem especially promising: hydride vapor phase epitaxy (HVPE) and sublimation. However, the former requires hazardous gases such as hydrochloric acid and ammonia, while the latter needs extremely high growth temperatures around 2000 °C. Herein we propose a novel vapor-phase-epitaxy-based growth method for AlN that does not use toxic materials; the source precursors are elementary aluminum and nitrogen gas. To prepare our AlN, we constructed a new growth apparatus, which realizes growth of AlN single crystals at a rate of ~18 μm/h at 1550 °C using argon as the source transfer via the simple reaction Al + 1/2N2 → AlN. This growth rate is comparable to that by HVPE, and the growth temperature is much lower than that in sublimation. Thus, this study opens up a novel route to achieve environmentally friendly growth of AlN. PMID:26616203

  10. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  11. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    2007-06-01

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  12. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.

    PubMed

    Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei

    2013-02-01

    High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

  13. Substrate Temperature effect on the transition characteristics of Vanadium (IV) oxide

    NASA Astrophysics Data System (ADS)

    Yang, Tsung-Han; Wei, Wei; Jin, Chunming; Narayan, Jay

    2008-10-01

    One of the semiconductor to metal transition material (SMT) is Vanadium Oxide (VO2) which has a very sharp transition temperature close to 340 K as the crystal structure changes from monoclinic phase (semiconductor) into tetragonal phase (metal phase). We have grown high-quality epitaxial vanadium oxide (VO2) films on sapphire (0001) substrates by pulsed laser deposition for oxygen pressure 10-2torr and obtained interesting results without further annealing treatments. The epitaxial growth via domain matching epitaxy, where integral multiples of planes matched across the film-substrate interface. We were able to control the transition characteristics such as the sharpness (T), amplitude (A) of SMT transition and the width of thermal hysteresis (H) by altering the substrate temperature from 300 ^oC, 400 ^oC, 500 ^oC, and 600 ^oC. We use the XRD to identify the microstructure of film and measure the optical properties of film. Finally the transition characteristics is observed by the resistance with the increase of temperature by Van Der Pauw method from 25 to 100 ^oC to measure the electrical resistivity hystersis loop during the transition temperature.

  14. Gradual tilting of crystallographic orientation and configuration of dislocations in GaN selectively grown by vapour phase epitaxy methods

    PubMed

    Kuwan; Tsukamoto; Taki; Horibuchi; Oki; Kawaguchi; Shibata; Sawaki; Hiramatsu

    2000-01-01

    Cross-sectional transmission electron microscope (TEM) observation was performed for selectively grown gallium nitride (GaN) in order to examine the dependence of GaN microstructure on the growth conditions. The GaN films were grown by hydride vapour phase epitaxy (HVPE) or metalorganic vapour phase epitaxy (MOVPE) on GaN covered with a patterned mask. Thin foil specimens for TEM observation were prepared with focused ion beam (FIB) machining apparatus. It was demonstrated that the c-axis of GaN grown over the terrace of the mask tilts towards the centre of the terrace when the GaN is grown in a carrier gas of N2. The wider terrace results in a larger tilting angle if other growth conditions are identical. The tilting is attributed to 'horizontal dislocations' (HDs) generated during the overgrowth of GaN on the mask terrace. The HDs in HVPE-GaN have a semi-loop shape and are tangled with one another, while those in MOVPE-GaN are straight and lined up to form low-angle grain boundaries.

  15. Epitaxial growth and characterization of Si/NiSi 2/Si(111) heterostructures

    NASA Astrophysics Data System (ADS)

    Rizzi, Angela; Förster, A.; Lüth, H.; Slijkerman, W.

    1989-04-01

    Si/NiSi 2/Si(111) heterostructures are grown under UHV conditions. The well known "template" method is used to produce the epitaxial NiSi 2 interlayer. On top of the suicide, the silicon epitaxial growth is obtained by means of gas phase reaction of SiH 4 at a surface temperature of 500° C. The Si growth rate is strongly enhanced by predissociation of SiH 4 using a hot tungsten filament in the vicinity of the surface. The single steps of the growth are followed in-situ by means of AES, HREELS and LEED analysis. Ex-situ high resolution RBS analysis is also applied for characterization.

  16. A semi-empirical model for the complete orientation dependence of the growth rate for vapor phase epitaxy - Chloride VPE of GaAs

    NASA Technical Reports Server (NTRS)

    Seidel-Salinas, L. K.; Jones, S. H.; Duva, J. M.

    1992-01-01

    A semi-empirical model has been developed to determine the complete crystallographic orientation dependence of the growth rate for vapor phase epitaxy (VPE). Previous researchers have been able to determine this dependence for a limited range of orientations; however, our model yields relative growth rate information for any orientation. This model for diamond and zincblende structure materials is based on experimental growth rate data, gas phase diffusion, and surface reactions. Data for GaAs chloride VPE is used to illustrate the model. The resulting growth rate polar diagrams are used in conjunction with Wulff constructions to simulate epitaxial layer shapes as grown on patterned substrates. In general, this model can be applied to a variety of materials and vapor phase epitaxy systems.

  17. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: High-performance 1.3-μm InGaAsP/InP heterostructures formed by two-phase liquid epitaxy

    NASA Astrophysics Data System (ADS)

    Novotný, J.; Procházková, O.; Šrobár, F.; Zelinka, J.

    1988-11-01

    A description is given of a two-phase liquid epitaxy method used to grow InGaAsP/InP heterostructures intended for injection lasers emitting in the 1.3-μm range. A study was made of heterostructures of three types: double, with an additional quaternary layer (λ approx 1.1 μm) adjoining the active layer; with two quaternary layers between the active layer and the InP confining layers. The configuration with two flanking quaternary layers was found to be the best from the point of view of the threshold current density, optical output power, and reproducibility.

  18. Overcoming Ehrlich-Schwöbel barrier in (1 1 1)A GaAs molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ritzmann, Julian; Schott, Rüdiger; Gross, Katherine; Reuter, Dirk; Ludwig, Arne; Wieck, Andreas D.

    2018-01-01

    In this work, we first study the effect of different growth parameters on the molecular beam epitaxy (MBE) growth of GaAs layers on (1 1 1)A oriented substrates. After that we present a method for the MBE growth of atomically smooth layers by sequences of growth and annealing phases. The samples exhibit low surface roughness and good electrical properties shown by atomic force microscopy (AFM), scanning electron microscopy (SEM) and van-der-Pauw Hall measurements.

  19. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  20. Fabrication of selective-area growth InGaN LED by mixed-source hydride vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Bae, Sung Geun; Jeon, Injun; Jeon, Hunsoo; Kim, Kyoung Hwa; Yang, Min; Yi, Sam Nyung; Lee, Jae Hak; Ahn, Hyung Soo; Yu, Young Moon; Sawaki, Nobuhiko; Kim, Suck-Whan

    2018-01-01

    We prepared InGaN light-emitting diodes (LEDs) with the active layers grown from a mixed source of Ga-In-N materials on an n-type GaN substrate by a selective-area growth method and three fabrication steps: photolithography, epitaxial layer growth, and metallization. The preparation followed a previously developed experimental process using apparatus for mixed-source hydride vapor-phase epitaxy (HVPE), which consisted of a multi-graphite boat, for insulating against the high temperature and to control the growth rate of epilayers, filled with the mixed source on the inside and a radio-frequency (RF) heating coil for heating to a high temperature (T > 900 °C) and for easy control of temperature outside the source zone. Two types of LEDs were prepared, with In compositions of 11.0 and 6.0% in the InGaN active layer, and room-temperature electroluminescence measurements exhibited a main peak corresponding to the In composition at either 420 or 390 nm. The consecutive growth of InGaN LEDs by the mixed-source HVPE method provides a technique for the production of LEDs with a wide range of In compositions in the active layer.

  1. Methods for improved growth of group III nitride buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphologymore » of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).« less

  2. Perspective. Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    DOE PAGES

    Wu, J.; Bozovic, I.

    2015-04-06

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  3. Strontium cobaltite oxygen sponge catalyst and methods of use

    DOEpatents

    Lee, Ho Nyung; Jeen, Hyoungjeen; Choi, Woo Seok; Biegalski, Michael; Folkman, Chad M.; Tung, I-Cheng; Fong, Dillon D.; Freeland, John W.; Shin, Dongwon; Ohta, Hiromichi; Chisholm, Matthew F.

    2017-01-24

    Rapid, reversible redox activity may be accomplished at significantly reduced temperatures, as low as about 200.degree. C., from epitaxially stabilized, oxygen vacancy ordered SrCoO.sub.2.5 and thermodynamically unfavorable perovskite SrCoO.sub.3-.delta.. The fast, low temperature redox activity in SrCoO.sub.3-.delta. may be attributed to a small Gibbs free energy difference between the two topotactic phases. Epitaxially stabilized thin films of strontium cobaltite provide a catalyst adapted to rapidly transition between oxidation states at substantially low temperatures. Methods of transitioning a strontium cobaltite catalyst from a first oxidation state to a second oxidation state are described.

  4. Low symmetry phase in Pb(Zr0.52Ti0.48)O3 epitaxial thin films with enhanced ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Yan, Li; Li, Jiefang; Cao, Hu; Viehland, D.

    2006-12-01

    The authors report the structural and ferroelectric properties of Pb(Zr0.52Ti0.48)O3 (PZT) epitaxial thin films grown on (001), (110), and (111) SrRuO3/SrTiO3 substrates by pulsed laser deposition. A monoclinic C (Mc) phase has been found for (101) films, whereas (001) and (111) ones were tetragonal (T ) and rhombohedral (R), respectively. The authors find that the ferroelectric polarization of the Mc phase is higher than that in either the T or R ones. These results are consistent with predictions (i) of epitaxial phase diagrams and (ii) that the enhanced ferroelectric properties of morphotropic phase boundary PZT are related to a low symmetry monoclinic phase.

  5. X-ray Topographic Methods and Application to Analysis of Electronic Materials

    NASA Technical Reports Server (NTRS)

    Mayo, W. E.; Liu, H. Y.; Chaudhuri, J.

    1984-01-01

    Three supplementary X-ray techniques new to semiconductor applications are discussed. These are the Computer Aided Rocking Curve Analyzer, the Divergent Beam Method and a new method based on enhanced X-ray flourescence. The first method is used for quantitative mapping of an elastic or plastic strain field while the other two methods are used only to measure elastic strains. The divergent beam method is used for measuring the full strain tensor while the microfluorescence method is useful for monitoring strain uniformity. These methods are discussed in detail and examples of their application is presented. Among these are determination of the full strain ellipsoid in state-of-the-art liquid phase epitaxy deposited III-V epitaxial films; mapping of the plastic strain concentrations in tensile deformed Si; and quantitative determination of damage in V3Si due to ion implantation.

  6. Hetero-junction photovoltaic device and method of fabricating the device

    DOEpatents

    Aytug, Tolga; Christen, David K; Paranthaman, Mariappan Parans; Polat, Ozgur

    2014-02-10

    A hetero-junction device and fabrication method in which phase-separated n-type and p-type semiconductor pillars define vertically-oriented p-n junctions extending above a substrate. Semiconductor materials are selected for the p-type and n-type pillars that are thermodynamically stable and substantially insoluble in one another. An epitaxial deposition process is employed to form the pillars on a nucleation layer and the mutual insolubility drives phase separation of the materials. During the epitaxial deposition process, the orientation is such that the nucleation layer initiates propagation of vertical columns resulting in a substantially ordered, three-dimensional structure throughout the deposited material. An oxidation state of at least a portion of one of the p-type or the n-type semiconductor materials is altered relative to the other, such that the band-gap energy of the semiconductor materials differ with respect to stoichiometric compositions and the device preferentially absorbs particular selected bands of radiation.

  7. Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX 3 Arrays

    DOE PAGES

    Wang, Yiping; Sun, Xin; Shivanna, Ravichandran; ...

    2016-11-16

    One-dimensional nanoscale epitaxial arrays serve as a great model in studying fundamental physics and for emerging applications. With an increasing focus laid on the Cs-based inorganic halide perovskite out of its outstanding material stability, we have applied vapor phase epitaxy to grow well aligned horizontal CsPbX 3 (X: Cl, Br, or I or their mixed) nanowire arrays in large scale on mica substrate. The as-grown nanowire features a triangular prism morphology with typical length ranging from a few tens of micrometers to a few millimeters. Structural analysis reveals that the wire arrays follow the symmetry of mica substrate through incommensuratemore » epitaxy, paving a way for a universally applicable method to grow a broad family of halide perovskite materials. We have studied the unique photon transport in the one-dimensional structure in the all-inorganic Cs-based perovskite wires via temperature dependent and spatially resolved photoluminescence. Furthermore, epitaxy of well oriented wire arrays in halide perovskite would be a promising direction for enabling the circuit-level applications of halide perovskite in high-performance electro-optics and optoelectronics.« less

  8. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.

    PubMed

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-24

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h -1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  9. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  10. Comparative study on the roles of anisotropic epitaxial strain and chemical doping in inducing the antiferromagnetic insulator phase in manganite films

    NASA Astrophysics Data System (ADS)

    Jin, Feng; Feng, Qiyuan; Guo, Zhuang; Lan, Da; Wang, Lingfei; Gao, Guanyin; Xu, Haoran; Chen, Binbin; Chen, Feng; Lu, Qingyou; Wu, Wenbin

    2017-11-01

    Epitaxial strain and chemical doping are two different methods that are commonly used to tune the physical properties of epitaxial perovskite oxide films, but their cooperative effects are less addressed. Here we try to tune the phase separation (PS) in (La1-xP rx) 2 /3C a1 /3Mn O3 (0 ≤x ≤0.4 , LPCMO) films via cooperatively controlling the anisotropic epitaxial strain (AES) and the Pr doping. These films are grown simultaneously on NdGa O3(110 ) ,(LaAlO3) 0.3(SrAl0.5Ta0.5O3 ) 0.7(001 ) , and NdGa O3(001 ) substrates with progressively increased in-plane AES, and probed by x-ray diffraction, magnetotransport, and magnetic force microscopy (MFM) measurements. Although it is known that for x =0 the AES can enhance the orthorhombicity of the films yielding a phase diagram with the antiferromagnetic charge-ordered insulator (AF-COI) state induced, which is quite different from the bulk one, we illustrate that the Pr doping can further drive the films towards a more robust COI state. This cooperative effect is reflected by the increasing magnetic fields needed to melt the COI phase as a function of AES and the doping level. More strikingly, by directly imaging the phase competition morphology of the LPCMO /NdGa O3(001 ) films via MFM, we find that during COI melting the PS domain structure is subject to both AES and the quenched disorder. However, in the reverse process, as the magnetic field is decreased, the COI phase reappears and the AES dominates leaving a crystalline-orientation determined self-organized microstructure. This finding suggests that the PS states and the domain configurations can be selectively controlled by the AES and/or the quenched disorder, which may shed some light on the engineering of PS domains for device fabrications.

  11. Thermoelectric Properties of Epitaxial β-FeSi2 Thin Films on Si(111) and Approach for Their Enhancement

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki

    2017-05-01

    We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.

  12. Improved Boat For Liquid-Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Connolly, John C.

    1991-01-01

    Liquid-phase epitaxial (LPE) growth boat redesigned. Still fabricated from ultra-high-purity graphite, but modified to permit easy disassembly and cleaning, along with improved wiping action for more complete removal of melt to reduce carry-over of gallium. Larger substrates and more uniform composition obtained.

  13. Phase transition and epitaxies between hydrated orthorhombic and anhydrous monoclinic uric acid crystals

    NASA Astrophysics Data System (ADS)

    Boistelle, R.; Rinaudo, C.

    1981-05-01

    Anhydrous monoclinic and hydrated orthorhombic uric acid crystals can be nucleated and grown from pure water solutions either separately or together with epitaxial relationships. When crystals of one modification exist in the solution they can act as nucleation substrate for the crystals of the other modification. In both cases the new phase grows epitaxially on the substrate; the mutual orientations are the same but the contact planes are different. In addition, the anhydrous modification grows into the hydrated one which undergoes a phase transition by a dissolution-recrystallization process. It is likely that the same processes occur in human stones made up of uric acids.

  14. Epitaxial Garnets and Hexagonal Ferrites.

    DTIC Science & Technology

    1982-04-20

    goenv.o -,y la)ers were YIG (yttrium iron garnet ) films grown by liquid phase epitaxy w:* ( LPE ) on gadolinium gallium garnet (GGG) substrates. Magnetic...containing three epitaxial layers. In addition to the MSW work oil garnets , LPE of lithium ferrite and hexagonal fertites was studied. A substituted lead...of a stripline. The other layers are epitaxial films , generally YIG (yttrium iron garnet ) with magnetic properties adjusted by suitable modifications

  15. Formation and reconstruction of Se nanoislands at the surface of thin epitaxial ZnSe layers grown on GaAs substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovskiy, V. I.; Krivobok, V. S., E-mail: krivobok@lebedev.ru; Kuznetsov, P. I.

    2016-05-15

    Strained epitaxial ZnSe layers are grown on GaAs substrates by the method of vapor-phase epitaxy from metal-organic compounds. It is found that Se nanoislands with a density of 10{sup 8} to 10{sup 9} cm{sup –2} are formed at the surface of such layers. It is established that an increase in the size of Se islands and a decrease in their density take place after completion of growth. Annealing in a H{sub 2} atmosphere at a temperature higher than 260°C leads to the disappearance of Se islands and to a decrease in the surface roughness. It is shown that annealing doesmore » not lead to deterioration of the structural perfection of the epitaxial ZnSe films; rather, annealing gives rise to a decrease in the intensity of impurity–defect luminescence and to an increase in the intensity of intrinsic radiation near the bottom of the exciton band.« less

  16. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications

    NASA Astrophysics Data System (ADS)

    Schleicher, B.; Niemann, R.; Diestel, A.; Hühne, R.; Schultz, L.; Fähler, S.

    2015-08-01

    Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth and martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.

  17. Bragg projection ptychography on niobium phase domains

    NASA Astrophysics Data System (ADS)

    Burdet, Nicolas; Shi, Xiaowen; Clark, Jesse N.; Huang, Xiaojing; Harder, Ross; Robinson, Ian

    2017-07-01

    Bragg projection ptychography (BPP) is a coherent x-ray diffraction imaging technique which combines the strengths of scanning microscopy with the phase contrast of x-ray ptychography. Here we apply it for high resolution imaging of the phase-shifted crystalline domains associated with epitaxial growth. The advantages of BPP are that the spatial extent of the sample is arbitrary, it is nondestructive, and it gives potentially diffraction limited spatial resolution. Here we demonstrate the application of BPP for revealing the domain structure caused by epitaxial misfit in a nanostructured metallic thin film. Experimental coherent diffraction data were collected from a niobium thin film, epitaxially grown on a sapphire substrate as the beam was scanned across the sample. The data were analyzed by BPP using a carefully selected combination of refinement procedures. The resulting image shows a close packed array of epitaxial domains, shifted with respect to each other due to misfit between the film and its substrate.

  18. Microstructure and Optical Properties of Nonpolar m-Plane GaN Films Grown on m-Plane Sapphire by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Duan, Ruifei; Wang, Junxi; Li, Jinmin; Huo, Ziqiang; Yang, Jiankun; Zeng, Yiping

    2008-05-01

    Thick nonpolar (1010) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (1013) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (1010) and (1013) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42 eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers.

  19. Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Saj Mohan M., M.; Ramadurai, Ranjith

    2018-04-01

    Strain engineering is a key to develop novel properties in functional materials. We report a strain mediated phase stabilization and epitaxial growth of bismuth ferrite(BiFeO3) thin films on LaAlO3 (LAO) substrates. The strain in the epitaxial layer is controlled by controlling the thickness of bottom electrode where the thickness of the BFO is kept constant. The thickness of La0.7Sr0.3MnO3(LSMO) template layer was optimized to grow completely strained tetragonal, tetragonal/rhombohedral mixed phase and fully relaxed rhombohedral phase of BFO layers. The results were confirmed with coupled-θ-2θ scan, and small area reciprocal space mapping. The piezoelectric d33 (˜ 45-48 pm/V) coefficient of the mixed phase was relatively larger than the strained tetragonal and relaxed rhombohedral phase for a given thickness.

  20. Nucleation and Epitaxy-Mediated Phase Transformation of a Precursor Cadmium Carbonate Phase at the Calcite/Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riechers, Shawn L.; Rosso, Kevin M.; Kerisit, Sebastien N.

    Mineral nucleation can be catalyzed by the presence of mineral substrates; however, the mechanisms of heterogeneous nucleation remain poorly understood. A combination of in situ time-sequenced measurements and nano-manipulation experiments were performed using atomic force microscopy (AFM) to probe the mechanisms of heteroepitaxial nucleation of otavite (CdCO3) on calcite (CaCO3) single crystals that exposed the (10-14) surface. Otavite and calcite are isostructural carbonates that display a 4% lattice mismatch, based on their (10-14) surface areas. AFM observations revealed a two-stage process in the nucleation of cadmium carbonate surface precipitates. As evidenced by changes in height, shape, growth behavior, and frictionmore » signal of the precipitates, a precursor phase was observed to initially form on the surface and subsequently undergo an epitaxy-mediated phase transformation to otavite, which then grew epitaxially. Nano-manipulation experiments, in which the applied force was increased progressively until precipitates were removed from the surface, showed that adhesion of the precursor phase to the substrate was distinctively weaker than that of the epitaxial phase, consistent with that of an amorphous phase. These findings demonstrate for the first time that heterogeneous mineral nucleation can follow a non-classical pathway like that found in homogenous aqueous conditions.« less

  1. Depositing spacing layers on magnetic film with liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sanfort, R. M.

    1975-01-01

    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided.

  2. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides.

    PubMed

    Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  3. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    NASA Astrophysics Data System (ADS)

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.

    2017-03-01

    We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

  4. Proximity Effects of Beryllium-Doped GaN Buffer Layers on the Electronic Properties of Epitaxial AlGaN/GaN Heterostructures

    DTIC Science & Technology

    2010-05-17

    arranged by Prof. A. Zaslavsky Keywords: Gallium nitride High electron mobility transistor Molecular beam epitaxy Homoepitaxy Doping a b s t r a c t AlGaN...GaN/Be:GaN heterostructures have been grown by rf-plasma molecular beam epitaxy on free- standing semi-insulating GaN substrates, employing...hydride vapor phase epitaxy (HVPE) grown GaN sub- strates has enabled the growth by molecular beam epitaxy (MBE) of AlGaN/GaNHEMTswith significantly

  5. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  6. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  7. Epitaxial Garnet Investigation; Technical Report, Foreign Travel

    DTIC Science & Technology

    1988-10-25

    Pure yttrium iron garnet (YIG) films are grown on GGG substrates by * liquid phase epitaxy ( LPE ) in production lots. In addition, one or two...epitaxial garnet films for Philips Dr. Krumme * Dr. Doormann 3-6-87 Thomson - CSF Research Center, Orsay, France Dr. J. P. Castera Dr. P. L. Meunier all...research physicists who grow, characterize, Dr. J. Y. Beguin or use epitaxial garnet films for Thomson CSF. Dr. J. L. Rolland Dr. P. Friez The

  8. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template.

    PubMed

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-10-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi 2 Se 3 epitaxial heterostructures by using two-dimensional (2D) Bi 2 Se 3 nanoplates as soft templates. The dangling bond-free surface of 2D Bi 2 Se 3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi 2 Se 3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi 2 Se 3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi 2 Se 3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi 2 Se 3 nanoplates. We further show that the resulted PbSe/Bi 2 Se 3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi 2 Se 3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions.

  9. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template

    PubMed Central

    Lin, Zhaoyang; Yin, Anxiang; Mao, Jun; Xia, Yi; Kempf, Nicholas; He, Qiyuan; Wang, Yiliu; Chen, Chih-Yen; Zhang, Yanliang; Ozolins, Vidvuds; Ren, Zhifeng; Huang, Yu; Duan, Xiangfeng

    2016-01-01

    Epitaxial heterostructures with precisely controlled composition and electronic modulation are of central importance for electronics, optoelectronics, thermoelectrics, and catalysis. In general, epitaxial material growth requires identical or nearly identical crystal structures with small misfit in lattice symmetry and parameters and is typically achieved by vapor-phase depositions in vacuum. We report a scalable solution-phase growth of symmetry-mismatched PbSe/Bi2Se3 epitaxial heterostructures by using two-dimensional (2D) Bi2Se3 nanoplates as soft templates. The dangling bond–free surface of 2D Bi2Se3 nanoplates guides the growth of PbSe crystal without requiring a one-to-one match in the atomic structure, which exerts minimal restriction on the epitaxial layer. With a layered structure and weak van der Waals interlayer interaction, the interface layer in the 2D Bi2Se3 nanoplates can deform to accommodate incoming layer, thus functioning as a soft template for symmetry-mismatched epitaxial growth of cubic PbSe crystal on rhombohedral Bi2Se3 nanoplates. We show that a solution chemistry approach can be readily used for the synthesis of gram-scale PbSe/Bi2Se3 epitaxial heterostructures, in which the square PbSe (001) layer forms on the trigonal/hexagonal (0001) plane of Bi2Se3 nanoplates. We further show that the resulted PbSe/Bi2Se3 heterostructures can be readily processed into bulk pellet with considerably suppressed thermal conductivity (0.30 W/m·K at room temperature) while retaining respectable electrical conductivity, together delivering a thermoelectric figure of merit ZT three times higher than that of the pristine Bi2Se3 nanoplates at 575 K. Our study demonstrates a unique epitaxy mode enabled by the 2D nanocrystal soft template via an affordable and scalable solution chemistry approach. It opens up new opportunities for the creation of diverse epitaxial heterostructures with highly disparate structures and functions. PMID:27730211

  10. Method of depositing epitaxial layers on a substrate

    DOEpatents

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  11. Systematic Study of p-type Doping and Related Defects in III-Nitrides: Pathway toward a Nitride HBT

    DTIC Science & Technology

    2012-11-20

    InGaN growth where an intermediate regime does not exist.40 Considering GaN molecular - beam epitaxy (MBE) growth phase diagrams such as those...1009 (2007). 44 S. D. Burnham, Improved Understanding and Control of Magnesium-Doped Gallium Nitride by Plasma Assisted Molecular Beam Epitaxy , in...reported using a modified form of molecular beam epitaxy (MBE) called Metal-Modulated Epitaxy (MME).11, 12 The details of this shuttered technique

  12. An instrument for in situ coherent x-ray studies of metal-organic vapor phase epitaxy of III-nitrides

    DOE PAGES

    Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...

    2017-03-21

    Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less

  13. Bragg projection ptychography on niobium phase domain

    DOE PAGES

    Burdet, Nicolas; Shi, Xiaowen; Huang, Xiaojing; ...

    2016-08-10

    Here, we demonstrate that the highly sensitive phase-contrast properties of Bragg coherent diffraction measurements combined with the translational diversity of ptychography can provide a Bragg “dark field” imaging method capable of revealing the finger print of domain structure in metallic thin films. Experimental diffraction data was taken from a epitaxially grown niobium metallic thin film on sapphire; and analyzed with the help of a careful combination of implemented refinement mechanisms.

  14. Probing mixed tetragonal/rhombohedral-like monoclinic phases in strained bismuth ferrite films by optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Denev, Sava; Zeches, Robert J.; Vlahos, Eftihia; Podraza, Nikolas J.; Melville, Alexander; Schlom, Darrell G.; Ramesh, R.; Gopalan, Venkatraman

    2010-09-01

    Epitaxial strain can induce the formation of morphotropic phase boundary in lead free ferroelectrics like bismuth ferrite, thereby enabling the coexistence of tetragonal and rhombohedral phases in the same film. The relative ratio of these phases is governed by the film thickness and theoretical studies suggest that there exists a monoclinic distortion of both the tetragonal as well as the rhombohedral unit cells due to imposed epitaxial strain. In this work we show that optical second harmonic generation can distinguish the tetragonal-like phase from the rhombohedral-like phase and enable detection of monoclinic distortion in only a pure tetragonal-like phase.

  15. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  16. Interface engineering in epitaxial growth of layered oxides via a conducting layer insertion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Yu; Meng, Dechao; Wang, Jianlin

    2015-07-06

    There is a long-standing challenge in the fabrication of layered oxide epitaxial films due to their thermodynamic phase-instability and the large stacking layer number. Recently, the demand for high-quality thin films is strongly pushed by their promising room-temperature multiferroic properties. Here, we find that by inserting a conducting and lattice matched LaNiO{sub 3} buffer layer, high quality m = 5 Bi{sub 6}FeCoTi{sub 3}O{sub 18} epitaxial films can be fabricated using the laser molecular beam epitaxy, in which the atomic-scale sharp interface between the film and the metallic buffer layer explains the enhanced quality. The magnetic and ferroelectric properties of the high qualitymore » Bi{sub 6}FeCoTi{sub 3}O{sub 18} films are studied. This study demonstrates that insertion of the conducting layer is a powerful method in achieving high quality layered oxide thin films, which opens the door to further understand the underline physics and to develop new devices.« less

  17. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleicher, B., E-mail: b.schleicher@ifw-dresden.de; Niemann, R.; Schultz, L.

    2015-08-07

    Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.72}Ti{sub 0.28}O{sub 3} substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth andmore » martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.« less

  18. Metalorganic vapor phase epitaxy of AlN on sapphire with low etch pit density

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Figiel, J. J.; Alliman, D. L.; Gunning, B. P.; Kempisty, J. M.; Creighton, J. R.; Mishima, A.; Ikenaga, K.

    2017-06-01

    Using metalorganic vapor phase epitaxy, methods were developed to achieve AlN films on sapphire with low etch pit density (EPD). Key to this achievement was using the same AlN growth recipe and only varying the pre-growth conditioning of the quartz-ware. After AlN growth, the quartz-ware was removed from the growth chamber and either exposed to room air or moved into the N2 purged glove box and exposed to H2O vapor. After the quartz-ware was exposed to room air or H2O, the AlN film growth was found to be more reproducible, resulting in films with (0002) and (10-12) x-ray diffraction (XRD) rocking curve linewidths of 200 and 500 arc sec, respectively, and EPDs < 100 cm-2. The EPD was found to correlate with (0002) linewidths, suggesting that the etch pits are associated with open core screw dislocations similar to GaN films. Once reproducible AlN conditions were established using the H2O pre-treatment, it was found that even small doses of trimethylaluminum (TMAl)/NH3 on the quartz-ware surfaces generated AlN films with higher EPDs. The presence of these residual TMAl/NH3-derived coatings in metalorganic vapor phase epitaxy (MOVPE) systems and their impact on the sapphire surface during heating might explain why reproducible growth of AlN on sapphire is difficult.

  19. Hexagonal AlN Layers Grown on Sulfided Si(100) Substrate

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Gushchina, E. V.; Konenkova, E. V.; L'vova, T. V.; Panteleev, V. N.; Shcheglov, M. P.

    2018-01-01

    We have studied the influence of sulfide passivation on the initial stages of aluminum nitride (AlN)-layer nucleation and growth by hydride vapor-phase epitaxy (HVPE) on (100)-oriented single-crystalline silicon substrates. It is established that the substrate pretreatment in (NH4)2S aqueous solution leads to the columnar nucleation of hexagonal AlN crystals of two modifications rotated by 30° relative to each other. Based on the sulfide treatment, a simple method of oxide removal from and preparation of Si(100) substrate surface is developed that can be used for the epitaxial growth of group-III nitride layers.

  20. Epitaxial growth of CZT(S,Se) on silicon

    DOEpatents

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  1. Chemical beam epitaxy of GaAs1-xNx using MMHy and DMHy precursors, modeled by ab initio study of GaAs(100) surfaces stability over As2, H2 and N2

    NASA Astrophysics Data System (ADS)

    Valencia, Hubert; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-06-01

    Using ab initio calculations, a simple model for GaAs1-xNx vapor-phase epitaxy on (100) surface of GaAs was created. By studying As2 and H2 molecules adsorptions and As/N atom substitutions on (100) GaAs surfaces, we obtain a relative stability diagram of all stable surfaces under varying As2, H2, and N2 conditions. We previously proved that this model could describe the vapor-phase epitaxy of GaAs1-x Nx with simple, fully decomposed, precursors. In this paper, we show that in more complex reaction conditions using monomethylhydrazine (MMHy), and dimethylhydrazine (DMHy), it is still possible to use our model to obtain an accurate description of the temperature and pressure stability domains for each surfaces, linked to chemical beam epitaxy (CBE) growth conditions. Moreover, the different N-incorporation regimes observed experimentally at different temperature can be explain and predict by our model. The use of MMHy and DMHy precursors can also be rationalized. Our model should then help to better understand the conditions needed to obtain an high quality GaAs1-xNx using vapor-phase epitaxy.

  2. Thin Film Synthesis of New Complex Titanates.

    NASA Astrophysics Data System (ADS)

    Salvador, Paul

    2008-03-01

    Thin film deposition methods allow for one to synthesize rationally specific compositions in targeted crystal structures. Because most of the thermodynamic and kinetic variables that control the range of materials that can be synthesized are unknown for specific compounds/processes, epitaxial stabilization and design of artificially layered crystals are driven through empirical investigations. Using examples taken primarily from the family of complex titanates, which exhibit a range of interesting physicochemical behaviors, the thermodynamic and kinetic factors that control materials design using thin film deposition are discussed. The phase competition between the pyrochlore and the (110) layered perovskite structure in the RE2Ti2O7 family (RE = rare-earth, Bi) will be explored, using pulsed laser deposition as a synthesis method. For RE = Gd, Sm, Nd, and La, the phase stability over a wide range of conditions is dictated entirely by substrate choice, indicating that the free energies of the phases are similar enough such that by controlling nucleation one controls the phase formation. In a related fashion, the growth of AETi2O5 films (AE = Ba or Sr) will be discussed with respect to the formation of single-phase films or films that phase separate into AETiO3 and TiO2. The entire Ba1-xSrxTi2O5 series was grown and will be discussed with respect to growth technique (using MBE and PLD) and/or substrate choice. In this case, rock-salt substrates, which are not expected to interact strongly with any phase in the system, allow for the formation of single-phase films. Finally, several examples will be discussed with respect to the (SrO)m(TiO2)n system, which includes the perovskite SrTiO3 and the Ruddlesden-Popper phase Sr2TiO4, grown using layer-by-layer molecular beam epitaxy. The solid phase epitaxial formation of the perovskite SrTiO3 from superlattices of rock-salt SrO and anatase TiO2 is discussed from both a kinetic and thermodynamic perspective by exploring the growth of a range of m and n values. Using similar arguments for stability, new layered intergrowths in the SrmTiO2+m family are presented and their structures are discussed.

  3. Accumulation of Background Impurities in Hydride Vapor Phase Epitaxy Grown GaN Layers

    NASA Astrophysics Data System (ADS)

    Usikov, Alexander; Soukhoveev, Vitali; Kovalenkov, Oleg; Syrkin, Alexander; Shapovalov, Liza; Volkova, Anna; Ivantsov, Vladimir

    2013-08-01

    We report on accumulation of background Si and O impurities measured by secondary ion mass spectrometry (SIMS) at the sub-interfaces in undoped, Zn- and Mg-doped multi-layer GaN structures grown by hydride vapor phase epitaxy (HVPE) on sapphire substrates with growth interruptions. The impurities accumulation is attributed to reaction of ammonia with the rector quartz ware during the growth interruptions. Because of this effect, HVPE-grown GaN layers had excessive Si and O concentration on the surface that may hamper forming of ohmic contacts especially in the case of p-type layers and may complicate homo-epitaxial growth of a device structure.

  4. Optical properties of bulk gallium nitride single crystals grown by chloride-hydride vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Agyekyan, V. F.; Borisov, E. V.; Serov, A. Yu.; Filosofov, N. G.

    2017-12-01

    A gallium nitride crystal 5 mm in thickness was grown by chloride-hydride vapor-phase epitaxy on a sapphire substrate, from which the crystal separated during cooling. At an early stage, a three-dimensional growth mode was implemented, followed by a switch to a two-dimensional mode. Spectra of exciton reflection, exciton luminescence, and Raman scattering are studied in several regions characteristic of the sample. Analysis of these spectra and comparison with previously obtained data for thin epitaxial GaN layers with a wide range of silicon doping enabled conclusions about the quality of the crystal lattice in these characteristic regions.

  5. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-06-01

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.

  6. HgCdTe liquid phase epitaxy - An overview

    NASA Astrophysics Data System (ADS)

    Castro, C. A.; Korenstein, R.

    1982-08-01

    Techniques and results of using liquid phase epitaxy (LPE) to form crystalline thin HgCdTe films for industrial-scale applications in IR detectors and focal plane arrays are discussed. Varying the mole fraction of CdTe in HgCdTe is noted to permit control of the bandwidth. LPE-grown films are noted to have a low carrier concentration, on the order of 4 x 10 to the 14th to 5 x 10 to the 15th/cu cm, a good surface morphology and be amenable to production scale-up. Details of the isothermal, equilibrium cooling, and supersaturation cooling LPE growth modes are reviewed, noting the necessity of developing a reliable method for determining the liquidus temperature for all modes to maintain uniformity of film growth from batch to batch. Mechanical steps can be either dipping the substrate into the melt or the slider boat approach, which is used in the production of compound semiconductors.

  7. Spontaneous formation of GaN/AlN core-shell nanowires on sapphire by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Trassoudaine, Agnès; Roche, Elissa; Bougerol, Catherine; André, Yamina; Avit, Geoffrey; Monier, Guillaume; Ramdani, Mohammed Réda; Gil, Evelyne; Castelluci, Dominique; Dubrovskii, Vladimir G.

    2016-11-01

    Spontaneous GaN/AlN core-shell nanowires with high crystal quality were synthesized on sapphire substrates by vapor-liquid-solid hydride vapor phase epitaxy (VLS-HVPE) without any voluntary aluminum source. Deposition of aluminum is difficult to achieve in this growth technique which uses metal-chloride gaseous precursors: the strong interaction between the AlCl gaseous molecules and the quartz reactor yields a huge parasitic nucleation on the walls of the reactor upstream the substrate. We open up an innovative method to produce GaN/AlN structures by HVPE, thanks to aluminum etching from the sapphire substrate followed by redeposition onto the sidewalls of the GaN core. The paper presents the structural characterization of GaN/AlN core-shell nanowires, speculates on the growth mechanism and discusses a model which describes this unexpected behavior.

  8. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy.

    PubMed

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-06-24

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.

  9. Cross-stacked carbon nanotubes assisted self-separation of free-standing GaN substrates by hydride vapor phase epitaxy

    PubMed Central

    Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan

    2016-01-01

    We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields. PMID:27340030

  10. Single Crystal Faceplate Evaluation

    DTIC Science & Technology

    1993-10-25

    conventional powder phosphor. The utility of garnets is amplified by the high state of the art of liquid phase epitaxy ( LPE ). Liquid phase epitaxy of...7]. Much the research at Allied-Signal, Inc. in garnet layer growth has been involved with the kinetics of crystallization of garnet from LPE melts...acceptable resolution and light output characteristics. Single crystal faceplates being evaluated are composed of yttrium aluminum garnet (YAG) with an

  11. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  12. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  13. Epitaxial stabilization and phase instability of VO2 polymorphs

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.

  14. Epitaxial stabilization and phase instability of VO2 polymorphs.

    PubMed

    Lee, Shinbuhm; Ivanov, Ilia N; Keum, Jong K; Lee, Ho Nyung

    2016-01-20

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.

  15. Epitaxial stabilization and phase instability of VO2 polymorphs

    PubMed Central

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  16. Structural evolution of epitaxial SrCoO x films near topotactic phase transition

    DOE PAGES

    Jeen, Hyoung Jeen; Lee, Ho Nyung

    2015-12-18

    Control of oxygen stoichiometry in complex oxides via topotactic phase transition is an interesting avenue to not only modifying the physical properties, but utilizing in many energy technologies, such as energy storage and catalysts. However, detailed structural evolution in the close proximity of the topotactic phase transition in multivalent oxides has not been much studied. In this work, we used strontium cobaltites (SrCoO x) epitaxially grown by pulsed laser epitaxy (PLE) as a model system to study the oxidation-driven evolution of the structure, electronic, and magnetic properties. We grew coherently strained SrCoO 2.5thin films and performed post-annealing at various temperaturesmore » for topotactic conversion into the perovskite phase (SrCoO 3-δ). We clearly observed significant changes in electronic transport, magnetism, and microstructure near the critical temperature for the topotactic transformation from the brownmillerite to the perovskite phase. Furthermore, the overall crystallinity was well maintained without much structural degradation, indicating that topotactic phase control can be a useful tool to control the physical properties repeatedly via redox reactions.« less

  17. Exposing high-energy surfaces by rapid-anneal solid phase epitaxy

    DOE PAGES

    Wang, Y.; Song, Y.; Peng, R.; ...

    2017-08-08

    The functional design of nanoscale transition metal oxide heterostructures depends critically on the growth of atomically flat epitaxial thin films. Much of the time, improved functionality is expected for heterostructures and surfaces with orientations that do not have the lowest surface free energy. For example, crystal faces with a high surface free energy, such as rutile (001) planes, frequently exhibit higher catalytic activities but are correspondingly harder to synthesize due to energy-lowering faceting transitions. We propose a broadly applicable rapid-anneal solid phase epitaxial synthesis approach for the creation of atomically flat, high surface free energy oxide heterostructures. We also demonstratemore » its efficacy via the synthesis of atomically flat, epitaxial RuO 2(001) films with a superior oxygen evolution activity, quantified by their lower onset potential and higher current density, relative to that of more common RuO 2(110) films.« less

  18. Transmission electron microscopy study of the formation of epitaxial CoSi2/Si (111) by a room-temperature codeposition technique

    NASA Technical Reports Server (NTRS)

    D'Anterroches, Cecile; Yakupoglu, H. Nejat; Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1988-01-01

    Co and Si have been codeposited on Si (111) substrates near room temperature in a stoichiometric 1:2 ratio in a molecular beam epitaxy system. Annealing of these deposits yields high-quality single-crystal CoSi2 layers. Transmission electron microscopy has been used to examine as-deposited layers and layers annealed at 300, 500, and 600 C. Single-crystal epitaxial grains of CoSi2 embedded in a matrix of amorphous Co/Si are observed in as-deposited samples, while the layer is predominantly single-crystal, inhomogeneously strained CoSi2 at 300 C. At 600 C, a homogeneously strained single-crystal layer with a high density of pinholes is observed. In contrast to other solid phase epitaxy techniques used to grow CoSi2 on Si (111), no intermediate silicide phases are observed prior to the formation of CoSi2.

  19. Crystallization engineering as a route to epitaxial strain control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbashev, Andrew R.; Plokhikh, Aleksandr V.; Barbash, Dmitri

    2015-10-01

    The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001)SrTiO{sub 3} and (001)LaAlO{sub 3} substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001)BiFeO{sub 3} phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001)SrTiO{sub 3} results in a coherently strained film, themore » same films obtained on (001)LaAlO{sub 3} showed an unstrained, dislocation-rich interface, with an even lower temperature onset of the perovskite phase crystallization than in the case of (001)SrTiO{sub 3}. Our results demonstrate how the strain control in an epitaxial film can be accomplished via its crystallization from the amorphous state.« less

  20. Epitaxial CoSi2 on MOS devices

    DOEpatents

    Lim, Chong Wee; Shin, Chan Soo; Petrov, Ivan Georgiev; Greene, Joseph E.

    2005-01-25

    An Si.sub.x N.sub.y or SiO.sub.x N.sub.y liner is formed on a MOS device. Cobalt is then deposited and reacts to form an epitaxial CoSi.sub.2 layer underneath the liner. The CoSi.sub.2 layer may be formed through a solid phase epitaxy or reactive deposition epitaxy salicide process. In addition to high quality epitaxial CoSi.sub.2 layers, the liner formed during the invention can protect device portions during etching processes used to form device contacts. The liner can act as an etch stop layer to prevent excessive removal of the shallow trench isolation, and protect against excessive loss of the CoSi.sub.2 layer.

  1. Tunable Microwave Transversal Filters.

    DTIC Science & Technology

    1984-05-01

    magnetostatic waves MSW propagating at microwave frequency in magnetically biased, liquid phase epitaxial films of yttrium iron garnet (YIG) grown on...25 uM-thick 3 mm-wide and 15 mm-long YIG film grown by liquid phase epitaxy On a 500 uM-thick ( ) gadolinium gallium garnet (GGG) substrate was used...obtained. The delay line material was prepared by growing YIG films on one inch diameter gallium gadolinium garnet (GGG) wafers using the liquid

  2. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    DTIC Science & Technology

    2016-09-15

    controlled synthesis of single-wall carbon nanotubes. Firstly, we have successfully demonstrated a vapor-phase-epitaxy-analogous general strategy for...preselected chirality. Moreover, we carried out systematic investigations of the chirality-dependent growth kinetics and termination mechanism for the... generally believed that the diameters of the nanotubes are determined by the size of the catalytic metal particles. Unfortunately, attempts to control

  3. Semiconductor diode laser material and devices with emission in visible region of the spectrum

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Kressel, H.

    1975-01-01

    Two alloy systems, (AlGa)As and (InGa)P, were studied for their properties relevant to obtaining laser diode operation in the visible region of the spectrum. (AlGa)As was prepared by liquid-phase epitaxy (LPE) and (InGa)P was prepared both by vapor-phase epitaxy and by liquid-phase epitaxy. Various schemes for LPE growth were applied to (InGa)P, one of which was found to be capable of producing device material. All the InGaP device work was done using vapor-phase epitaxy. The most successful devices were fabricated in (AlGa)As using heterojunction structures. At room temperature, the large optical cavity design yielded devices lasing in the red (7000 A). Because of the relatively high threshold due to the basic band structure limitation in this alloy, practical laser diode operation is presently limited to about 7300 A. At liquid-nitrogen temperature, practical continuous-wave operation was obtained at a wavelength of 6500 to 6600 A, with power emission in excess of 50 mW. The lowest pulsed lasing wavelength is 6280 A. At 223 K, lasing was obtained at 6770 A, but with high threshold currents. The work dealing with CW operation at room temperature was successful with practical operation having been achieved to about 7800 A.

  4. Gallium Nitride (GaN) High Power Electronics (FY11)

    DTIC Science & Technology

    2012-01-01

    GaN films grown by metal-organic chemical vapor deposition (MOCVD) and ~1010 in films grown by molecular beam epitaxy (MBE) when they are deposited...inductively coupled plasma I-V current-voltage L-HVPE low doped HVPE MBE molecular beam epitaxy MOCVD metal-organic chemical vapor deposition...figure of merit HEMT high electron mobility transistor H-HVPE high doped HVPE HPE high power electronics HVPE hydride vapor phase epitaxy ICP

  5. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn; State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024; Ma, Xuefu

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarizationmore » components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.« less

  6. Epitaxial phase diagrams of SrTiO3, CaTiO3, and SrHfO3: Computational investigation including the role of antiferrodistortive and A -site displacement modes

    NASA Astrophysics Data System (ADS)

    Angsten, Thomas; Asta, Mark

    2018-04-01

    Ground-state epitaxial phase diagrams are calculated by density functional theory (DFT) for SrTiO3, CaTiO3, and SrHfO3 perovskite-based compounds, accounting for the effects of antiferrodistortive and A -site displacement modes. Biaxial strain states corresponding to epitaxial growth of (001)-oriented films are considered, with misfit strains ranging between -4 % and 4%. Ground-state structures are determined using a computational procedure in which input structures for DFT optimizations are identified as local minima in expansions of the total energy with respect to strain and soft-mode degrees of freedom. Comparison to results of previous DFT studies demonstrates the effectiveness of the computational approach in predicting ground-state phases. The calculated results show that antiferrodistortive octahedral rotations and associated A -site displacement modes act to suppress polarization and reduce the epitaxial strain energy. A projection of calculated atomic displacements in the ground-state epitaxial structures onto soft-mode eigenvectors shows that three ferroelectric and six antiferrodistortive displacement modes are dominant at all misfit strains considered, with the relative contributions from each varying systematically with the strain. Additional A -site displacement modes contribute to the atomic displacements in CaTiO3 and SrHfO3, which serve to optimize the coordination of the undersized A -site cation.

  7. Liquid phase heteroepitaxial growth on convex substrate using binary phase field crystal model

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Zhang, Tinghui; Chen, Zheng

    2018-06-01

    The liquid phase heteroepitaxial growth on convex substrate is investigated with the binary phase field crystal (PFC) model. The paper aims to focus on the transformation of the morphology of epitaxial films on convex substrate with two different radiuses of curvature (Ω) as well as influences of substrate vicinal angles on films growth. It is found that films growth experience different stages on convex substrate with different radiuses of curvature (Ω). For Ω = 512 Δx , the process of epitaxial film growth includes four stages: island coupled with layer-by-layer growth, layer-by-layer growth, island coupled with layer-by-layer growth, layer-by-layer growth. For Ω = 1024 Δx , film growth only experience islands growth and layer-by-layer growth. Also, substrate vicinal angle (π) is an important parameter for epitaxial film growth. We find the film can grow well when π = 2° for Ω = 512 Δx , while the optimized film can be obtained when π = 4° for Ω = 512 Δx .

  8. Coexisting nanoscale inverse spinel and rock salt crystallographic phases in NiCo2O4 epitaxial thin films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sharona, H.; Loukya, B.; Bhat, U.; Sahu, R.; Vishal, B.; Silwal, P.; Gupta, A.; Datta, R.

    2017-12-01

    The origin of alternating wavy dark-bright stripe-like contrast in strain contrast transmission electron microscopy images of NiCo2O4 (NCO) epitaxial thin films grown by pulsed laser deposition has been investigated. The nanoscale stripe-like pattern is determined to be associated with coexisting rock salt (RS) and inverse spinel crystal phases. The presence of two different phases, not addressed in previous reports, is experimentally confirmed by both electron diffraction and high resolution transmission electron microscopy imaging. First principles based calculations, together with compressive strain present in the films, support the formation of such coexisting crystallographic phases in NCO. Similar microstructural patterns and RS structure are not observed in epitaxial films of two other oxides of the spinel family, namely, NiFe2O4 and CoFe2O4. A correlation between the coexisting structures and the macroscopic physical properties of NCO is discussed.

  9. Soft X-ray multilayers produced by sputtering and molecular beam epitaxy (MBE) - Substrate and interfacial roughness

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick A.; Slaughter, J. M.; Powers, K. D.; Falco, Charles M.

    1988-01-01

    Roughness measurements were made on uncoated silicon wafers and float glass using a WYKO TOPO-3D phase shifting interferometry, and the results are reported. The wafers are found to be slightly smoother than the flat glass. The effects of different cleaning methods and of the deposition of silicon 'buffer layers' on substrate roughness are examined. An acid cleaning method is described which gives more consistent results than detergent cleaning. Healing of the roughness due to sputtered silicon buffer layers was not observed on the length scale probed by the WYKO. Sputtered multilayers are characterized using both the WYKO interferometer and low-angle X-ray diffraction in order to yield information about the roughness of the top surface and of the multilayer interfaces. Preliminary results on film growth using molecular beam epitaxy are also presented.

  10. Homogeneous crystalline FeSi2 films of c (4 × 8) phase grown on Si (111) by reactive deposition epitaxy.

    PubMed

    Zou, Zhi-Qiang; Sun, Li-Min; Shi, Gao-Ming; Liu, Xiao-Yong; Li, Xu

    2013-12-05

    The growth of iron silicides on Si (111) using reactive deposition epitaxy method was studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy (XPS). Instead of the mixture of different silicide phases, a homogeneous crystalline film of c (4 × 8) phase was formed on the Si (111) surface at approximately 750°C. Scanning tunneling spectra show that the film exhibits a semiconducting character with a band gap of approximately 0.85 eV. Compared with elemental Fe, the Fe 2p peaks of the film exhibit a lower spin-orbit splitting (-0.3 eV) and the Fe 2p3/2 level has a smaller full-width at half maximum (-0.6 eV) and a higher binding energy (+0.3 eV). Quantitative XPS analysis shows that the c (4 × 8) phase is in the FeSi2 stoichiometry regime. The c (4 × 8) pattern could result from the ordered arrangement of defects of Fe vacancies in the buried Fe layers.

  11. Homogeneous crystalline FeSi2 films of c (4 × 8) phase grown on Si (111) by reactive deposition epitaxy

    PubMed Central

    2013-01-01

    The growth of iron silicides on Si (111) using reactive deposition epitaxy method was studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy (XPS). Instead of the mixture of different silicide phases, a homogeneous crystalline film of c (4 × 8) phase was formed on the Si (111) surface at approximately 750°C. Scanning tunneling spectra show that the film exhibits a semiconducting character with a band gap of approximately 0.85 eV. Compared with elemental Fe, the Fe 2p peaks of the film exhibit a lower spin-orbit splitting (−0.3 eV) and the Fe 2p3/2 level has a smaller full-width at half maximum (−0.6 eV) and a higher binding energy (+0.3 eV). Quantitative XPS analysis shows that the c (4 × 8) phase is in the FeSi2 stoichiometry regime. The c (4 × 8) pattern could result from the ordered arrangement of defects of Fe vacancies in the buried Fe layers. PMID:24305438

  12. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    PubMed Central

    Kangawa, Yoshihiro; Akiyama, Toru; Ito, Tomonori; Shiraishi, Kenji; Nakayama, Takashi

    2013-01-01

    We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results. In addition, the Ga diffusion length on GaAs(001) during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed. PMID:28811438

  13. Pinhole-free growth of epitaxial CoSi.sub.2 film on Si(111)

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor); Grunthaner, Paula J. (Inventor)

    1991-01-01

    Pinhole-free epitaxial CoSi.sub.2 films (14') are fabricated on (111)-oriented silicon substrates (10) with a modified solid phase epitaxy technique which utilizes (1) room temperature stoichiometric (1:2) codeposition of Co and Si followed by (2) room temperature deposition of an amorphous silicon capping layer (16), and (3) in situ annealing at a temperature ranging from about 500.degree. to 750.degree. C.

  14. Characterization of solar cells for space applications. Volume 14: Electrical characteristics of Hughes liquid phase epitaxy gallium arsenide solar cells as a function of intensity, temperature and irradiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1981-01-01

    Electrical characteristics of liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. The solar cells were exposed to 1 MeV electron fluences of, respectively, 0, one hundred trillion, one quadrillion, and ten quadrillion e/sq cm.

  15. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method.

    PubMed

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed

    2016-08-10

    Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  16. Epitaxial stabilization and phase instability of VO 2 polymorphs

    DOE PAGES

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; ...

    2016-01-20

    The VO 2 polymorphs, i.e., VO 2(A), VO 2(B), VO 2(M1) and VO 2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO 2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO 2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on variousmore » perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO 2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. In conclusion, our successful epitaxy of both VO 2(A) and VO 2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO 2 polymorphs for potential applications in advanced electronic and energy devices.« less

  17. Nanostructures produced by phase-separation during growth of (III-V).sub.1-x(IV.sub.2).sub.x alloys

    DOEpatents

    Norman, Andrew G [Evergreen, CO; Olson, Jerry M [Lakewood, CO

    2007-06-12

    Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.

  18. Engineering hybrid epitaxial InAsSb/Al nanowires for stronger topological protection

    NASA Astrophysics Data System (ADS)

    Sestoft, Joachim E.; Kanne, Thomas; Gejl, Aske Nørskov; von Soosten, Merlin; Yodh, Jeremy S.; Sherman, Daniel; Tarasinski, Brian; Wimmer, Michael; Johnson, Erik; Deng, Mingtang; Nygârd, Jesper; Jespersen, Thomas Sand; Marcus, Charles M.; Krogstrup, Peter

    2018-04-01

    The combination of strong spin-orbit coupling, large g factors, and the coupling to a superconductor can be used to create a topologically protected state in a semiconductor nanowire. Here we report on growth and characterization of hybrid epitaxial InAsSb/Al nanowires, with varying composition and crystal structure. We find the strongest spin-orbit interaction at intermediate compositions in zinc-blende InAs1 -xSbx nanowires, exceeding that of both InAs and InSb materials, confirming recent theoretical studies. We show that the epitaxial InAsSb/Al interface allows for a hard induced superconducting gap and 2 e transport in Coulomb charging experiments, similarly to experiments on InAs/Al and InSb/Al materials, and find measurements consistent with topological phase transitions at low magnetic fields due to large effective g factors. Finally we present a method to grow pure wurtzite InAsSb nanowires which are predicted to exhibit even stronger spin-orbit coupling than the zinc-blende structure.

  19. Heterogeneous Two-Phase Pillars in Epitaxial NiFe 2 O 4 -LaFeO 3 Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comes, Ryan B.; Perea, Daniel E.; Spurgeon, Steven R.

    2017-07-10

    Self-assembled epitaxial oxide nanocomposites have been explored for a wide range of applications, including multiferroic and magnetoelectric properties, plasmonics, and catalysis. These so-called “vertically aligned nanocomposites” form spontaneously during the deposition process when segregation into two phases is energetically favorable as compared to a solid solution. However, there has been surprisingly little work understanding the driving forces that govern the synthesis of these materials, which can include point defect energetics, surface diffusion, and interfacial energies. To explore these factors, La-Ni-Fe-O films have been synthesized by molecular beam epitaxy and it is shown that these phase segregate into spinel-perovskite nanocomposites. Usingmore » complementary scanning transmission electron microscopy and atom-probe tomography, the elemental composition of each phase is examined and found that Ni ions are exclusively found in the spinel phase. From correlative analysis, a model for the relative favorability of the Ni2+ and Ni3+ valences under the growth conditions is developed. It is shown that multidimensional characterization techniques provide previously unobserved insight into the growth process and complex driving forces for phase segregation.« less

  20. Characterization of HgCdTe and Related Materials and Substrates for Third Generation Infrared Detectors

    DTIC Science & Technology

    2012-12-01

    metal-organic vapor phase epitaxy (MOVPE); (iii) convenient n-type and p- type dopants; (iv) versatile methods for forming mesas , planar homojunctions...S. Kim, E. Plis, J. B. Rodriguez , G. D. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A

  1. Development of scintillating screens based on the single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitaliy; Savchyn, Volodymyr; Zorenko, Tanya; Fedorov, Alexander; Sidletskiy, Oleg

    2014-09-01

    The paper is dedicated to development of scintillators based on single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets onto Gd3Ga5O12 substrates using the liquid phase epitaxy method.

  2. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  3. Deposition of hydrogenated silicon clusters for efficient epitaxial growth.

    PubMed

    Le, Ha-Linh Thi; Jardali, Fatme; Vach, Holger

    2018-06-13

    Epitaxial silicon thin films grown from the deposition of plasma-born hydrogenated silicon nanoparticles using plasma-enhanced chemical vapor deposition have widely been investigated due to their potential applications in photovoltaic and nanoelectronic device technologies. However, the optimal experimental conditions and the underlying growth mechanisms leading to the high-speed epitaxial growth of thin silicon films from hydrogenated silicon nanoparticles remain far from being understood. In the present work, extensive molecular dynamics simulations were performed to study the epitaxial growth of silicon thin films resulting from the deposition of plasma-born hydrogenated silicon clusters at low substrate temperatures under realistic reactor conditions. There is strong evidence that a temporary phase transition of the substrate area around the cluster impact site to the liquid state is necessary for the epitaxial growth to take place. We predict further that a non-normal incidence angle for the cluster impact significantly facilitates the epitaxial growth of thin crystalline silicon films.

  4. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    NASA Astrophysics Data System (ADS)

    Puybaret, Renaud; Patriarche, Gilles; Jordan, Matthew B.; Sundaram, Suresh; El Gmili, Youssef; Salvestrini, Jean-Paul; Voss, Paul L.; de Heer, Walt A.; Berger, Claire; Ougazzaden, Abdallah

    2016-03-01

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5-8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metal organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.

  5. Ordered arrays of multiferroic epitaxial nanostructures.

    PubMed

    Vrejoiu, Ionela; Morelli, Alessio; Biggemann, Daniel; Pippel, Eckhard

    2011-01-01

    Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe(2)O(4) (NFO) and FE PbZr(0.52)Ti(0.48)O(3) or PbZr(0.2)Ti(0.8)O(3), with large range order and lateral dimensions from 200 nm to 1 micron. The structures were fabricated by pulsed-laser deposition. High resolution transmission electron microscopy and high angle annular dark-field scanning transmission electron microscopy were employed to investigate the microstructure and the epitaxial growth of the structures. Room temperature ferroelectric and ferrimagnetic domains of the heterostructures were imaged by piezoresponse force microscopy (PFM) and magnetic force microscopy (MFM), respectively. PFM and MFM investigations proved that the hybrid epitaxial nanostructures show ferroelectric and magnetic order at room temperature. Dielectric effects occurring after repeated switching of the polarization in large planar capacitors, comprising ferrimagnetic NiFe2O4 dots embedded in ferroelectric PbZr0.52Ti0.48O3 matrix, were studied. These hybrid multiferroic structures with clean and well defined epitaxial interfaces hold promise for reliable investigations of magnetoelectric coupling between the ferrimagnetic / magnetostrictive and ferroelectric / piezoelectric phases.

  6. Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puybaret, Renaud; Jordan, Matthew B.; Voss, Paul L.

    We report the growth of high-quality triangular GaN nanomesas, 30-nm thick, on the C-face of 4H-SiC using nanoselective area growth (NSAG) with patterned epitaxial graphene grown on SiC as an embedded mask. NSAG alleviates the problems of defects in heteroepitaxy, and the high mobility graphene film could readily provide the back low-dissipative electrode in GaN-based optoelectronic devices. A 5–8 graphene-layer film is first grown on the C-face of 4H-SiC by confinement-controlled sublimation of silicon carbide. Graphene is then patterned and arrays of 75-nm-wide openings are etched in graphene revealing the SiC substrate. A 30-nm-thick GaN is subsequently grown by metalmore » organic vapor phase epitaxy. GaN nanomesas grow epitaxially with perfect selectivity on SiC, in the openings patterned through graphene. The up-or-down orientation of the mesas on SiC, their triangular faceting, and cross-sectional scanning transmission electron microscopy show that they are biphasic. The core is a zinc blende monocrystal surrounded with single-crystal wurtzite. The GaN crystalline nanomesas have no threading dislocations or V-pits. This NSAG process potentially leads to integration of high-quality III-nitrides on the wafer scalable epitaxial graphene/silicon carbide platform.« less

  7. Growth of BaSi2 continuous films on Ge(111) by molecular beam epitaxy and fabrication of p-BaSi2/n-Ge heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Takabe, Ryota; Yachi, Suguru; Tsukahara, Daichi; Toko, Kaoru; Suemasu, Takashi

    2017-05-01

    We grew BaSi2 films on Ge(111) substrates by various growth methods based on molecular beam epitaxy (MBE). First, we attempted to form BaSi2 films directly on Ge(111) by MBE without templates. We next formed BaSi2 films using BaGe2 templates as commonly used for MBE growth of BaSi2 on Si substrates. Contrary to our prediction, the lateral growth of BaSi2 was not promoted by these two methods; BaSi2 formed not into a continuous film but into islands. Although streaky patterns of reflection high-energy electron diffraction were observed inside the growth chamber, no X-ray diffraction lines of BaSi2 were observed in samples taken out from the growth chamber. Such BaSi2 islands were easily to get oxidized. We finally attempted to form a continuous BaSi2 template layer on Ge(111) by solid phase epitaxy, that is, the deposition of amorphous Ba-Si layers onto MBE-grown BaSi2 epitaxial islands, followed by post annealing. We achieved the formation of an approximately 5-nm-thick BaSi2 continuous layer by this method. Using this BaSi2 layer as a template, we succeeded in forming a-axis-oriented 520-nm-thick BaSi2 epitaxial films on Ge substrates, although (111)-oriented Si grains were included in the grown layer. We next formed a B-doped p-BaSi2(20 nm)/n-Ge(111) heterojunction solar cell. A wide-spectrum response from 400 to 2000 nm was achieved. At an external bias voltage of 1 V, the external quantum efficiency reached as high as 60%, demonstrating the great potential of BaSi2/Ge combination. However, the efficiency of a solar cell under AM1.5 illumination was quite low (0.1%). The origin of such a low efficiency was examined.

  8. Low-cost Engineering of Laser Rods and Slabs with Liquid Phase Epitaxy

    DTIC Science & Technology

    2011-09-01

    SUPPLEMENTARY NOTES 14. ABSTRACT We investigated the use of a liquid phase epitaxial ( LPE ) coating to improve the performance of a rod or slab laser. A...single crystal erbium-doped yttrium aluminum garnet (Er:YAG) rod coated with undoped YAG, and an uncoated sample were procured, then compared on the...the whispering gallery modes, which otherwise would deplete the gain in ~50% of the rod volume. We also investigated LPE growth on a ceramic sample

  9. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  10. The role of electron-electron repulsion in the problem of epitaxial graphene on a metal: Simple estimates

    NASA Astrophysics Data System (ADS)

    Davydov, S. Yu.

    2017-08-01

    For single-layer graphene placed on a metal substrate, the influence of intra- and interatomic Coulomb repulsion of electrons ( U and G, respectively) on its phase diagram is considered in the framework of an extended Hartree-Fock theory. The general solution of the problem is presented, on the basis of which special cases allowing for analytical consideration are analyzed: free and epitaxial graphene with and without regard for the energy of the electron transition between neighboring atoms of graphene. Three regions of the phase diagram are considered: spin and charge density waves (SDW and CDW, respectively) and the semimetal (SM) state uniform in the spin and charge. The main attention is paid to undoped graphene. It is shown that the allowance for the interaction with a metal substrate expands the SM existence domain. However, in all the considered cases, the boundary between the SDW and CDW states is described by the equation U = zG, where z = 3 is the number of nearest neighbors in graphene. The widening of the SM state region also results from the doping of graphene, and the effect is independent of the sign of free carriers introduced into epitaxial graphene by the substrate. According to estimates made, the only state possible in the buffer layer is the metal-type SM state, whereas, in epitaxial graphene, the CDW state is possible. The influence of temperature on the phase diagram of epitaxial graphene is discussed.

  11. Reduction of degradation in vapor phase transported InP/InGaAsP mushroom stripe lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, H.; Burkhardt, E.G.; Pfister, W.

    1988-10-03

    The rapid degradation rate generally observed in InP/InGaAsP mushroom stripe lasers can be considerably decreased by regrowing the open sidewalls of the active stripe with low-doped InP in a second epitaxial step using the hydride vapor phase transport technique. This technique does not change the fundamental laser parameters like light-current and current-voltage characteristics. Because of this drastic reduction in degradation, the vapor phase epitaxy regrown InP/InGaAsP mushroom laser seems to be an interesting candidate for application in optical communication.

  12. Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-jun

    2018-02-01

    In the present study, the epitaxial growth and cracking mechanisms of thermally sprayed ceramic splats were explored. We report, for the first time, the epitaxial growth of various splat/substrate combinations at low substrate temperatures (100 °C) and large lattice mismatch (- 11.26%). Our results suggest that thermal spray deposition was essentially a liquid-phase epitaxy, readily forming chemical bonding. The interface temperature was also estimated. The results convincingly demonstrated that atoms only need to diffuse and rearrange over a sufficiently short range during extremely rapid solidification. Concurrently, severe cracking occurred in the epitaxial splat/substrate systems, which indicated high tensile stress was produced during splat deposition. The origin of the tensile stress was attributed to the strong constraint of the locally heated substrate by its cold surroundings.

  13. Finite-element analysis of scattering parameters of surface acoustic wave bandpass filter formed on barium titanate thin film

    NASA Astrophysics Data System (ADS)

    Timoshenko; Kalinchuk; Shirokov

    2018-04-01

    The frequency dependence of scattering parameters of interdigital surface acoustic wave transducers placed on ferroelectric barium titanate (BaTiO3) epitaxial film in c-phase coated over magnesium oxide has been studied using the finite-element method (FEM) approach along with the perfectly matched layer (PML) technique. The interdigital transducer which has a comb-like structure with aluminum electrodes excites the mechanical wave. The distance between the fingers allows tuning the frequency properties of the wave propagation. The magnesium oxide is taken as the substrate. The two-dimensional model of two-port surface acoustic wave filter is created to calculate scattering parameters and to show how to design the fixture in COMSOLTM. Some practical computational challenges of finite element modeling of SAW devices in COMSOLTM are shown. The effect of lattice misfit strain on acoustic properties of heterostructures of BaTiO3 epitaxial film in c-phase at room temperature is discussed in present article for two low-frequency surface acoustic resonances.

  14. The influence of point defects on the thermal conductivity of AlN crystals

    NASA Astrophysics Data System (ADS)

    Rounds, Robert; Sarkar, Biplab; Alden, Dorian; Guo, Qiang; Klump, Andrew; Hartmann, Carsten; Nagashima, Toru; Kirste, Ronny; Franke, Alexander; Bickermann, Matthias; Kumagai, Yoshinao; Sitar, Zlatko; Collazo, Ramón

    2018-05-01

    The average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30-325 K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268 W/m K and 339 W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298 W/m K and 341 W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100 K. Phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.

  15. Ferroelectric behavior of Al substituted InP

    NASA Astrophysics Data System (ADS)

    Park, C. S.; Lee, S. J.; Kang, T. W.; Fu, D. J.

    2006-12-01

    InP:Al was grown by the liquid phase epitaxy method on InP (100)substrates. X-ray diffraction confirmed the epitaxial growth along (100) of AlInP. Photoluminescence spectra showed the evident effect of Al content. Ferroelectric characterization of the sample revealed a clear hysteresis in its polarization-voltage curves. The remnant polarization of InP:Al amounts to 1.99μC/cm2 at 300Hz, and it decreases with increasing temperature in a continuous and diffusive manner. Resistance measurement demonstrated a maximum resistance at 160°C, tentatively consistent with the transition temperature of remnant polarization. The ferroelectricity is accounted by the collective interaction between nuclei having the microscopic instability from the cation size difference in InP:Al.

  16. Scintillation properties of the Ce-doped multicomponent garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Prusa, P.; Kucera, M.; Mares, J. A.; Hanus, M.; Beitlerova, A.; Onderisinova, Z.; Nikl, M.

    2013-10-01

    (Lu,Y,Gd)3(Al,Ga)5O12:Ce garnet scintillator single crystalline films were grown onto LuAG, YAG and GGG substrates by liquid phase epitaxy method. Absorption, radioluminescence spectra and photoluminescence excitation, emission spectra, and decay kinetics were measured. Photoelectron yield, its dependence on amplifier shaping time and energy resolution were determined to evaluate scintillation performance. Most of the samples exhibited strong UV emission caused by trapped excitons and/or Gd3+ 4f-4f transition. However, emission spectrum of the best performing Gd2YAl5O12:Ce is dominated by the Ce3+ fast 5d-4f luminescence. This sample has outperformed photoelectron yield of all the garnet films studied so far.

  17. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method

    PubMed Central

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-01-01

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533

  18. Combinatorial materials synthesis and high-throughput screening: an integrated materials chip approach to mapping phase diagrams and discovery and optimization of functional materials.

    PubMed

    Xiang, X D

    Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.

  19. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  20. Optical Behavior of III-TM-N Materials and Devices

    DTIC Science & Technology

    2008-09-26

    0296 University of Florida GaN films were doped with Eu to a concentration of ~0.12 at. % during growth at 800 °C by molecular beam epitaxy , with...MAGNETIC SEMICONDUCTOR GROWTH AND CHARACTERIZATION Growth of the films presented occurred in a Varian Gen II by gas-source molecular beam epitaxy ...versus temperature for films of either undoped AlN, single phase AlMnN, or Mn4N. AlCrN films were grown by Molecular Beam Epitaxy (MBE) on c-plane

  1. Molecular beam epitaxy-grown wurtzite MgS thin films for solar-blind ultra-violet detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Y. H.; He, Q. L.; Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, HKSAR, People's Republic of China

    2013-04-29

    Molecular beam epitaxy grown MgS on GaAs(111)B substrate was resulted in wurtzite phase, as demonstrated by detailed structural characterizations. Phenomenological arguments were used to account for why wurtzite phase is preferred over zincblende phase or its most stable rocksalt phase. Results of photoresponse and reflectance measurements performed on wurtzite MgS photodiodes suggest a direct bandgap at around 5.1 eV. Their response peaks at 245 nm with quantum efficiency of 9.9% and enjoys rejection of more than three orders at 320 nm and close to five orders at longer wavelengths, proving the photodiodes highly competitive in solar-blind ultraviolet detection.

  2. Use of column V alkyls in organometallic vapor phase epitaxy (OMVPE)

    NASA Technical Reports Server (NTRS)

    Ludowise, M. J.; Cooper, C. B., III

    1982-01-01

    The use of the column V-trialkyls trimethylarsenic (TMAs) and trimethylantimony (TMSb) for the organometallic vapor phase epitaxy (OM-VPE) of III-V compound semiconductors is reviewed. A general discussion of the interaction chemistry of common Group III and Group V reactants is presented. The practical application of TMSb and TMAs for OM-VPE is demonstrated using the growth of GaSb, GaAs(1-y)Sb(y), Al(x)Ga(1-x)Sb, and Ga(1-x)In(x)As as examples.

  3. Ultrahigh-yield growth of GaN via halogen-free vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Kimura, Taishi

    2018-06-01

    The material yield of Ga during GaN growth via halogen-free vapor-phase epitaxy (HF-VPE) was systematically investigated and found to be much higher than that obtained using conventional hydride VPE. This is attributed to the much lower process pressure and shorter seed-to-source distance, owing to the inherent chemical reactions and corresponding reactor design used for HF-VPE growth. Ultrahigh-yield GaN growth was demonstrated on a 4-in.-diameter sapphire seed substrate.

  4. Growth of Y3Fe5O12/GaN layers by laser molecular-beam epitaxy and characterization of their structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-12-01

    Laser molecular-beam epitaxy has been employed to obtain layers of yttrium-iron garnet (YIG) Y3Fe5O12 on gallium nitride substrates. It was found that there exists a polycrystalline YIG phase without admixtures of other structural phases. A magnetic anisotropy of films of the "easy-magnetic plane" type was found. The gyromagnetic ratio and the demagnetizing field 4π M S were calculated.

  5. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  6. Tunnel Junction Development Using Hydride Vapor Phase Epitaxy

    DOE PAGES

    Ptak, Aaron J.; Simon, John D.; Schulte, Kevin L.; ...

    2017-10-18

    We demonstrate for the first time III-V tunnel junctions grown using hydride vapor phase epitaxy (HVPE) with peak tunneling currents >8 A/cm 2, sufficient for operation of a multijunction device to several hundred suns of concentration. Multijunction solar cells rely on tunneling interconnects between subcells to enable series connection with minimal voltage loss, but tunnel junctions have never been shown using the HVPE growth method. HVPE has recently reemerged as a low-cost growth method for high-quality III-V materials and devices, including the growth of high-efficiency III-V solar cells. We previously showed single-junction GaAs solar cells with conversion efficiencies of ~24%more » with a path forward to equal or exceed the practical efficiency limits of crystalline Si. Moving to a multijunction device structure will allow for even higher efficiencies with minimal impact on cost, necessitating the development of tunnel interconnects. Here in this paper, we demonstrate the performance of both isolated HVPE-grown tunnel junctions, as well as single-junction GaAs solar cell structures with a tunnel junction incorporated into the contact region. We observe no degradation in device performance compared to a structure without the added junction.« less

  7. Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios

    NASA Astrophysics Data System (ADS)

    Nair, Hari P.; Liu, Yang; Ruf, Jacob P.; Schreiber, Nathaniel J.; Shang, Shun-Li; Baek, David J.; Goodge, Berit H.; Kourkoutis, Lena F.; Liu, Zi-Kui; Shen, Kyle M.; Schlom, Darrell G.

    2018-04-01

    Epitaxial SrRuO3 and CaRuO3 films were grown under an excess flux of elemental ruthenium in an adsorption-controlled regime by molecular-beam epitaxy (MBE), where the excess volatile RuOx (x = 2 or 3) desorbs from the growth front leaving behind a single-phase film. By growing in this regime, we were able to achieve SrRuO3 and CaRuO3 films with residual resistivity ratios (ρ300 K/ρ4 K) of 76 and 75, respectively. A combined phase stability diagram based on the thermodynamics of MBE (TOMBE) growth, termed a TOMBE diagram, is employed to provide improved guidance for the growth of complex materials by MBE.

  8. Phase transformations in ion-irradiated silicides

    NASA Technical Reports Server (NTRS)

    Hewett, C. A.; Lau, S. S.; Suni, I.; Hung, L. S.

    1985-01-01

    The present investigation has three objectives. The first is concerned with the phase transformation of CoSi2 under ion implantation and the subsequent crystallization characteristics during annealing, taking into account epitaxial and nonepitaxial recrystallization behavior. The second objective is related to a study of the general trend of implantation-induced damage and crystallization behavior for a number of commonly used silicides. The last objective involves a comparison of the recrystallization behavior of cosputtered refractory silicides with that of the ion-implanted silicides. It was found that epitaxial regrowth of ion-irradiated CoSi2 occurred for samples with an epitaxial seed left at the Si/CoSi2 interface. A structural investigation of CoSi2 involving transmission electron microscopy (TEM) showed that after high-dose implantation CoSi2 is amorphous.

  9. Epitaxial growth of silicon for layer transfer

    DOEpatents

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  10. Epitaxial growth of mixed conducting layered Ruddlesden–Popper La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) phases by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kuan-Ting; Soh, Yeong-Ah; Skinner, Stephen J., E-mail: s.skinner@imperial.ac.uk

    2013-10-15

    Graphical abstract: - Highlights: • High quality epitaxial thin films of layered Ruddlesden–Popper nickelates were prepared. • For the first time this has been achieved by the PLD process. • n = 1, 2 and 3 films were successfully deposited on SrTiO{sub 3} and NdGaO{sub 3} substrates. • c-Axis oriented films were confirmed by XRD analysis. • In-plane and out-of-plane strain effects on lattice are discussed. - Abstract: Layered Ruddlesden–Popper phases of composition La{sub n+1}Ni{sub n}O{sub 3n+1} (n = 1, 2 and 3) have been epitaxially grown on SrTiO{sub 3} (0 0 1) or NdGaO{sub 3} (1 1 0) singlemore » crystal substrates using the pulsed laser deposition technique. X-ray diffraction analyses (θ/2θ, rocking curves, and φ-scans) and atomic force microscopy confirms the high-quality growth of the series of films with low surface roughness values (less than 1 nm). In particular, epitaxial growth of the higher order phases (n = 2 and 3) of lanthanum nickelate have been demonstrated for the first time.« less

  11. Thermodynamic considerations of the vapor phase reactions in III-nitride metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2017-04-01

    We analyzed the metal organic vapor phase epitaxial growth mechanism of the III-nitride semiconductors GaN, AlN, and InN by first-principles calculations and thermodynamic analyses. In these analyses, we investigated the decomposition processes of the group III source gases X(CH3)3 (X = Ga, Al, In) at finite temperatures and determined whether the (CH3)2GaNH2 adduct can be formed or not. The results of our calculations show that the (CH3)2GaNH2 adduct cannot be formed in the gas phase in GaN metal organic vapor phase epitaxy (MOVPE), whereas, in AlN MOVPE, the formation of the (CH3)2AlNH2 adduct in the gas phase is exclusive. In the case of GaN MOVPE, trimethylgallium (TMG, [Ga(CH3)3]) decomposition into Ga gas on the growth surface with the assistance of H2 carrier gas, instead of the formation of the (CH3)2GaNH2 adduct, occurs almost exclusively. Moreover, in the case of InN MOVPE, the formation of the (CH3)2InNH2 adduct does not occur and it is relatively easy to produce In gas even without H2 in the carrier gas.

  12. Liquid-phase epitaxy grown PbSnTe distributed feedback laser diodes with broad continuous single-mode tuning range

    NASA Technical Reports Server (NTRS)

    Hsieh, H.-H.; Fonstad, C. G.

    1980-01-01

    Distributed feedback (DFB) pulsed laser operation has been demonstrated in stripe geometry Pb(1-x)Sn(x)Te double-heterostructures grown by liquid-phase epitaxy. The grating structure of 0.79 micron periodicity operates in first order near 12.8 microns and was fabricated prior to the liquid-phase epitaxial growth using holographic exposure techniques. These DFB lasers had moderate thresholds, 3.6 kA/sq cm, and the output power versus current curves exhibited a sharp turn-on free of kinks. Clean, single-mode emission spectra, continuously tunable over a range in excess of 20 per cm, centered about 780 per cm (12.8 microns), and at an average rate of 1.2 per cm-K from 9 to 26 K, were observed. While weaker modes could at times be seen in the spectrum, substantially single-mode operation was obtained over the entire operating range and to over 10 times threshold.

  13. Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang

    2017-09-01

    Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.

  14. The photovoltaic properties of an Al In As/InP heterojunctions grown by LPE method

    NASA Technical Reports Server (NTRS)

    Wang, Edward Y.

    1989-01-01

    Work is presented on heterojunction solar cells which were studied under the NASA/Arizona State University intern program. The heterojunction solar cells were fabricated by the liquid phase epitaxy method. The basic conversion efficiency was measured at 5 percent. It was determined that a thicker epilayer is needed, and that the density of recombination center should be reduced to give a smaller saturation current and hence a larger open-circuit voltage.

  15. Epitaxial BiFeO3 thin films fabricated by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Kim, Y. K.; Funakubo, H.; Ishiwara, H.

    2006-04-01

    Epitaxial BiFeO3 (BFO) thin films were fabricated on (001)-, (110)-, and (111)-oriented single-crystal SrRuO3(SRO )/SrTiO3(STO) structures by chemical solution deposition. X-ray diffraction indicates the formation of an epitaxial single-phase perovskite structure and pole figure measurement confirms the cube-on-cube epitaxial relationship of BFO ‖SRO‖STO. Chemical-solution-deposited BFO films have a rhombohedral structure with lattice parameter of 0.395nm, which is the same structure as that of a bulk single crystal. The remanent polarization of approximately 50μC/cm2 was observed in BFO (001) thin films at 80K.

  16. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOEpatents

    Sankar, Sambasivan; Goyal, Amit; Barnett, Scott A.; Kim, Ilwon; Kroeger, Donald M.

    2004-08-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.

  17. Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3

    DOE PAGES

    Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun; ...

    2018-01-17

    Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less

  18. Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun

    Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less

  19. Applying CLIPS to control of molecular beam epitaxy processing

    NASA Technical Reports Server (NTRS)

    Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.

    1990-01-01

    A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.

  20. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-01

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  1. Understanding the Growth Mechanism of GaN Epitaxial Layers on Mechanically Exfoliated Graphite.

    PubMed

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Gan, Lin; Xu, Bingshe; Jiang, Haiwei

    2018-04-27

    The growth mechanism of GaN epitaxial layers on mechanically exfoliated graphite is explained in detail based on classic nucleation theory. The number of defects on the graphite surface can be increased via O-plasma treatment, leading to increased nucleation density on the graphite surface. The addition of elemental Al can effectively improve the nucleation rate, which can promote the formation of dense nucleation layers and the lateral growth of GaN epitaxial layers. The surface morphologies of the nucleation layers, annealed layers and epitaxial layers were characterized by field-emission scanning electron microscopy, where the evolution of the surface morphology coincided with a 3D-to-2D growth mechanism. High-resolution transmission electron microscopy was used to characterize the microstructure of GaN. Fast Fourier transform diffraction patterns showed that cubic phase (zinc-blend structure) GaN grains were obtained using conventional GaN nucleation layers, while the hexagonal phase (wurtzite structure) GaN films were formed using AlGaN nucleation layers. Our work opens new avenues for using highly oriented pyrolytic graphite as a substrate to fabricate transferable optoelectronic devices.

  2. Initial growth processes in the epitaxy of Ge with GeH{sub 4} on oxidized Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angermeier, D.; Kuhn, W.S.; Druihle, R.

    1997-02-01

    The heteroepitaxial growth of Ge on (100) Si in a horizontal, atmospheric pressure metallorganic vapor-phase epitaxy reactor is reported using germane GeH{sub 4} (0.1% in H{sub 2}). A particularly crucial parameter for germanium deposition on silicon is the time for the onset of epitaxial growth, the incubation time. The time was measured at substrate temperatures between 450 and 600{degree}C. At a substrate temperature of 450{degree}C an incubation time of 520 s was found and for the subsequent epitaxy growth rates of 50 nm/min were determined by Nomarski microscopy and electron diffraction. The existence of residual oxide in the reactor chambermore » forming an in situ SiO{sub 2} layer was evaluated by x-ray photoemission spectroscopy. To obtain a more thorough understanding of the gas- and solid-phase composition of Ge, Si, and oxygen the Gibbs energy of the system was calculated for various growth temperatures. It was concluded that SiO{sub 2} molecules are reduced by GeH{sub 4} molecules during the incubation period.« less

  3. NO-assisted molecular-beam epitaxial growth of nitrogen substituted EuO

    NASA Astrophysics Data System (ADS)

    Wicks, R.; Altendorf, S. G.; Caspers, C.; Kierspel, H.; Sutarto, R.; Tjeng, L. H.; Damascelli, A.

    2012-04-01

    We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO1 -xNx films with good control over the films' nitrogen concentration. In situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu3+4f6 and a corresponding decrease in the number of Eu2+4f7, indicating that nitrogen is being incorporated in its 3- oxidation state. While small amounts of Eu3+ in over-oxidized Eu1-δO thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu3+ in EuO1-xNx still allows the ferromagnetic phase to exist with an unaffected Tc, thus providing an ideal model system to study the interplay between the magnetic f7 (J = 7/2) and the non-magnetic f6 (J = 0) states close to the Fermi level.

  4. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Matthias, E-mail: m.paul@ihfg.uni-stuttgart.de; Kettler, Jan; Zeuner, Katharina

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  5. Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films

    PubMed Central

    Ji, Yanda; Zhang, Yin; Gao, Min; Yuan, Zhen; Xia, Yudong; Jin, Changqing; Tao, Bowan; Chen, Chonglin; Jia, Quanxi; Lin, Yuan

    2014-01-01

    Vanadium dioxide (VO2) with its unique sharp resistivity change at the metal-insulator transition (MIT) has been extensively considered for the near-future terahertz/infrared devices and energy harvesting systems. Controlling the epitaxial quality and microstructures of vanadium dioxide thin films and understanding the metal-insulator transition behaviors are therefore critical to novel device development. The metal-insulator transition behaviors of the epitaxial vanadium dioxide thin films deposited on Al2O3 (0001) substrates were systematically studied by characterizing the temperature dependency of both Raman spectrum and Fourier transform infrared spectroscopy. Our findings on the correlation between the nucleation dynamics of intermediate monoclinic (M2) phase with microstructures will open a new avenue for the design and integration of advanced heterostructures with controllable multifunctionalities for sensing and imaging system applications. PMID:24798056

  6. Direct Growth of CdTe on a (211) Si Substrate with Vapor Phase Epitaxy Using a Metallic Cd Source

    NASA Astrophysics Data System (ADS)

    Iso, Kenji; Gokudan, Yuya; Shiraishi, Masumi; Murakami, Hisashi; Koukitu, Akinori

    2017-10-01

    We successfully performed epitaxial CdTe growth on a Si (211) substrate with vapor-phase epitaxy using a cost-effective metallic cadmium source as a group-II precursor. The thermodynamic data demonstrate that the combination of metallic Cd and diisopropyl-telluride (DiPTe) with a H2 carrier gas enables the growth of CdTe crystals. A CdTe single crystal with a (422) surface orientation was obtained when a growth temperature between 600°C and 650°C was employed. The surface morphology and crystalline quality were improved with increasing film thickness. The full-width at half-maximum of the x-ray rocking curves with a film thickness of 15.7 μm for the skew-symmetrical (422) and asymmetrical (111) reflection were 528 arcsec and 615 arcsec, respectively.

  7. Growth and characterization of single crystal rocksalt LaAs using LuAs barrier layers

    NASA Astrophysics Data System (ADS)

    Krivoy, E. M.; Rahimi, S.; Nair, H. P.; Salas, R.; Maddox, S. J.; Ironside, D. J.; Jiang, Y.; Dasika, V. D.; Ferrer, D. A.; Kelp, G.; Shvets, G.; Akinwande, D.; Bank, S. R.

    2012-11-01

    We demonstrate the growth of high-quality, single crystal, rocksalt LaAs on III-V substrates; employing thin well-behaved LuAs barriers layers at the III-V/LaAs interfaces to suppress nucleation of other LaAs phases, interfacial reactions between GaAs and LaAs, and polycrystalline LaAs growth. This method enables growth of single crystal epitaxial rocksalt LaAs with enhanced structural and electrical properties. Temperature-dependent resistivity and optical reflectivity measurements suggest that epitaxial LaAs is semimetallic, consistent with bandstructure calculations in literature. LaAs exhibits distinct electrical and optical properties, as compared with previously reported rare-earth arsenide materials, with a room-temperature resistivity of ˜459 μΩ-cm and an optical transmission window >50% between ˜3-5 μm.

  8. Schottky barrier diode and method thereof

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid (Inventor); Franz, David (Inventor)

    2008-01-01

    Pt/n.sup.-GaN Schottky barrier diodes are disclosed that are particularly suited to serve as ultra-violet sensors operating at wavelengths below 200 nm. The Pt/n.sup.-GaN Schottky barrier diodes have very large active areas, up to 1 cm.sup.2, which exhibit extremely low leakage current at low reverse biases. Very large area Pt/n.sup.-GaN Schottky diodes of sizes 0.25 cm.sup.2 and 1 cm.sup.2 have been fabricated from n.sup.-/n.sup.+ GaN epitaxial layers grown by vapor phase epitaxy on single crystal c-plane sapphire, which showed leakage currents of 14 pA and 2.7 nA, respectively for the 0.25 cm.sup.2 and 1 cm.sup.2 diodes both configured at a 0.5V reverse bias.

  9. Influence of the growth method on degradation of InGaN laser diodes

    NASA Astrophysics Data System (ADS)

    Bojarska, Agata; Muzioł, Grzegorz; Skierbiszewski, Czesław; Grzanka, Ewa; Wiśniewski, Przemysław; Makarowa, Irina; Czernecki, Robert; Suski, Tadek; Perlin, Piotr

    2017-09-01

    We demonstrate the influence of the operation current density and temperature on the degradation rate of InGaN laser diodes grown via metalorganic vapor-phase epitaxy (MOVPE) and plasma-assisted molecular beam epitaxy (PAMBE). The degradation rate of the MOVPE devices shows an exponential dependence on the temperature, with an activation energy of 0.38-0.43 eV, and a linear dependence on the operating current density. In comparison, the MBE-grown lasers exhibit a higher activation energy, on the order of 1 eV, and typically a lower degradation rate, resulting in a service time exceeding 50,000 h. We suggest that this difference may be related to the lower concentration of H in the Mg-doped MBE-grown GaN.

  10. Modeling of Gallium Nitride Hydride Vapor Phase Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A reactor model for the hydride vapor phase epitaxy of GaN is presented. The governing flow, energy, and species conservation equations are solved in two dimensions to examine the growth characteristics as a function of process variables and reactor geometry. The growth rate varies with GaCl composition but independent of NH3 and H2 flow rates. A change in carrier gas for Ga source from H2 to N2 affects the growth rate and uniformity for a fixed reactor configuration. The model predictions are in general agreement with observed experimental behavior.

  11. InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy.

    PubMed

    Natrella, Michele; Rouvalis, Efthymios; Liu, Chin-Pang; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2012-08-13

    We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz -3 dB bandwidth and -5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.

  12. Effect of Elastic Strain Fluctuation on Atomic Layer Growth of Epitaxial Silicide in Si Nanowires by Point Contact Reactions.

    PubMed

    Chou, Yi-Chia; Tang, Wei; Chiou, Chien-Jyun; Chen, Kai; Minor, Andrew M; Tu, K N

    2015-06-10

    Effects of strain impact a range of applications involving mobility change in field-effect-transistors. We report the effect of strain fluctuation on epitaxial growth of NiSi2 in a Si nanowire via point contact and atomic layer reactions, and we discuss the thermodynamic, kinetic, and mechanical implications. The generation and relaxation of strain shown by in situ TEM is periodic and in synchronization with the atomic layer reaction. The Si lattice at the epitaxial interface is under tensile strain, which enables a high solubility of supersaturated interstitial Ni atoms for homogeneous nucleation of an epitaxial atomic layer of the disilicide phase. The tensile strain is reduced locally during the incubation period of nucleation by the dissolution of supersaturated Ni atoms in the Si lattice but the strained-Si state returns once the atomic layer epitaxial growth of NiSi2 occurs by consuming the supersaturated Ni.

  13. Structural phase diagram for ultra-thin epitaxial Fe 3O 4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alraddadi, S.; Hines, W.; Yilmaz, T.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  14. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2015-01-06

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  15. Methods of preparing flexible photovoltaic devices using epitaxial liftoff, and preserving the integrity of growth substrates used in epitaxial growth

    DOEpatents

    Forrest, Stephen R; Zimmerman, Jeramy; Lee, Kyusang; Shiu, Kuen-Ting

    2013-02-19

    There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.

  16. The photovoltaic properties of an Al In As/InP heterojunctions grown by LPE method. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, E.Y.

    1989-10-01

    Work is presented on heterojunction solar cells which were studied under the NASA/Arizona State University intern program. The heterojunction solar cells were fabricated by the liquid phase epitaxy method. The basic conversion efficiency was measured at 5 percent. It was determined that a thicker epilayer is needed, and that the density of recombination center should be reduced to give a smaller saturation current and hence a larger open-circuit voltage.

  17. Surface morphology and structure of Ge layer on Si(111) after solid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshida, Ryoma; Tosaka, Aki; Shigeta, Yukichi

    2018-05-01

    The surface morphology change of a Ge layer on a Si(111) surface formed by solid phase epitaxy has been investigated with a scanning tunneling microscope (STM). The Ge film was deposited at room temperature and annealed at 400 °C or 600 °C. The STM images of the sample surface after annealing at 400 °C show a flat wetting layer (WL) with small three-dimensional islands on the WL. After annealing at 600 °C, the STM images show a surface roughening with large islands. From the relation between the average height of the roughness and the deposited layer thickness, it is confirmed that the diffusion of Ge atoms becomes very active at 600 °C. The Si crystal at the interface is reconstructed and the intermixing occurs over 600 °C. However, the intermixing is fairly restricted in the solid phase epitaxy growth at 400 °C. The surface morphology changes with the crystallization at 400 °C are discussed by the shape of the islands formed on the WL surface. It is shown that the diffusion of the Ge atoms in the amorphous phase is active even at 400 °C.

  18. Lateral solid phase epitaxy of silicon and application to the fabrication of metal oxide semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Greene, Brian Joseph

    Thin film silicon on insulator fabrication is an increasingly important technology requirement for improving performance in future generation devices and circuits. One process for SOI fabrication that has recently been generating renewed interest is Lateral Solid Phase Epitaxy (LSPE) of silicon over oxide. This process involves annealing amorphous silicon that has been deposited on oxide patterned Si wafers. The (001) Si substrate forms the crystalline seed for epitaxial growth, permitting the generation of Si films that are both single crystal, and oriented to the substrate. This method is particularly attractive to fabrication that requires low temperature processing, because the Si films are deposited in the amorphous phase at temperatures near 525°C, and crystallized at temperatures near 570°C. It is also attractive for applications requiring three dimensional stacking of active silicon device layers, due to the relatively low temperatures involved. For sub-50 nm gate length MOSFET fabrication, an SOI thickness on the order of 10 nm will be required. One limitation of the LSPE process has been the need for thick films (0.5--2 mum) and/or heavy P doping (10 19--1020 cm-3) to increase the maximum achievable lateral growth distance, and therefore minimize the area on the substrate occupied by seed holes. This dissertation discusses the characterization and optimization of process conditions for large area LSPE silicon film growth, as well as efforts to adapt the traditional LSPE process to achieve ultra-thin SOI layers (Tsilicon ≤ 25 nm) while avoiding the use of heavy active doping layers. MOSFETs fabricated in these films that exhibit electron mobility comparable to the Universal Si MOS Mobility are described.

  19. Strain Phase Diagram of SrTiO3 Thin Films

    NASA Astrophysics Data System (ADS)

    He, Feizhou; Shapiro, S. M.

    2005-03-01

    SrTiO3 thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of oxide films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained, epitaxial films of SrTiO3 were grown on different substrates. The structural phase transition temperature Tc increases from 105 K in bulk STO to 167 K for films under tensile strain and 330 K for films with compressive strain. The measured temperature-strain phase diagram is qualitatively consistent with theory [1], however the increase in Tc is much larger than predicted in all cases. The symmetry of the phases involved in the transition is different from the corresponding bulk structures largely because of epitaxial constraint, the clamping effect. Thus the shape of the STO unit cell is tetragonal at all temperatures. The possibility exists of a very unique low temperature phase with orthorhombic symmetry (Cmcm) but tetragonal unit cell shape. More generally, we have characterized at least three different manifestations of the clamping effect, showing it is much more subtle than usually recognized. This work is supported through NSF DMR-0239667, DMR-0132918, by the Research Corp, and at BNL by the US DOE DE-AC02-98CH10886. [1] N. A. Pertsev, A. K. Tagantsev and N. Setter, Phys. Rev. B61, R825 (2000).

  20. Elemental Topological Dirac Semimetal: α -Sn on InSb(111)

    DOE PAGES

    Xu, Cai-Zhi; Chan, Yang-Hao; Chen, Yige; ...

    2017-04-04

    Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated with bulk electronic states near the Fermi level. We have observed such bulk Dirac cones in epitaxially grown α-Sn films on InSb(111), the first such TDS system realized in an elemental form, using angle-resolved photoemission spectroscopy. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point ofmore » a zero-gap semimetal phase to a topological insulator phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced.« less

  1. Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi

    PubMed Central

    Steele, J. A.; Lewis, R. A.; Horvat, J.; Nancarrow, M. J. B.; Henini, M.; Fan, D.; Mazur, Y. I.; Schmidbauer, M.; Ware, M. E.; Yu, S.-Q.; Salamo, G. J.

    2016-01-01

    Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural, and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys. PMID:27377213

  2. Structural and waveguiding characteristics of Er3+:Yb3Al5-yGayO12 films grown by the liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Hlásek, T.; Rubešová, K.; Jakeš, V.; Nekvindová, P.; Kučera, M.; Daniš, S.; Veis, M.; Havránek, V.

    2015-11-01

    Erbium (Er3+) doped ytterbium garnet (Er:Yb3Al5-yGayO12; y = 0, 0.55 and 1.1) single crystalline thick films have been grown by the low-temperature liquid phase epitaxy method (LPE). The composition of the films was determined using the high resolution XRD, the particle-induced X-ray emission spectroscopy (PIXE) and the particle-induced gamma-ray emission spectroscopy (PIGE). The lattice mismatch between films and substrates was investigated by the high-resolution X-ray diffraction. The surface analysis was carried out by the atomic force microscopy (AFM). Pure infrared emission of Er3+ ions was observed in all films containing gallium. The characteristics such as refractive index, thickness and light propagation were studied by the m-line spectroscopy (MLS) using several wavelengths (633, 964, 1311 and 1552 nm). All samples, where y = 1.1, were multimode waveguides. For these reasons, the Er:Yb3Al3.9Ga1.1O12 seems to be a promising material for light amplifiers in the IR region.

  3. Strain Accommodation By Facile WO6 Octahedral Distortion and Tilting During WO3 Heteroepitaxy on SrTiO3(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Yingge; Gu, Meng; Varga, Tamas

    2014-08-27

    In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planarmore » defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.« less

  4. Engineered unique elastic modes at a BaTiO 3/2x1-Ge(001) interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumah, D. P.; Dogan, M.; Ngai, J. H.

    Here, the strong interaction at an interface between a substrate and thin film leads to epitaxy and provides a means of inducing structural changes in the epitaxial film. These induced material phases often exhibit technologically relevant electronic, magnetic, and functional properties. The 2×1 surface of a Ge(001) substrate applies a unique type of epitaxial constraint on thin films of the perovskite oxide BaTiO 3 where a change in bonding and symmetry at the interface leads to a non-bulk-like crystal structure of the BaTiO 3. While the complex crystal structure is predicted using first-principles theory, it is further shown that themore » details of the structure are a consequence of hidden phases found in the bulk elastic response of the BaTiO 3 induced by the symmetry of forces exerted by the germanium substrate.« less

  5. Engineered Unique Elastic Modes at a BaTiO 3 / ( 2 × 1 ) - Ge ( 001 ) Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumah, D. P.; Dogan, M.; Ngai, J. H.

    The strong interaction at an interface between a substrate and thin film leads to epitaxy and provides a means of inducing structural changes in the epitaxial film. These induced material phases often exhibit technologically relevant electronic, magnetic, and functional properties. The 2×1 surface of a Ge(001) substrate applies a unique type of epitaxial constraint on thin films of the perovskite oxide BaTiO3 where a change in bonding and symmetry at the interface leads to a non-bulk-like crystal structure of the BaTiO3. While the complex crystal structure is predicted using first-principles theory, it is further shown that the details of themore » structure are a consequence of hidden phases found in the bulk elastic response of the BaTiO3 induced by the symmetry of forces exerted by the germanium substrate.« less

  6. Engineered unique elastic modes at a BaTiO 3/2x1-Ge(001) interface

    DOE PAGES

    Kumah, D. P.; Dogan, M.; Ngai, J. H.; ...

    2016-03-07

    Here, the strong interaction at an interface between a substrate and thin film leads to epitaxy and provides a means of inducing structural changes in the epitaxial film. These induced material phases often exhibit technologically relevant electronic, magnetic, and functional properties. The 2×1 surface of a Ge(001) substrate applies a unique type of epitaxial constraint on thin films of the perovskite oxide BaTiO 3 where a change in bonding and symmetry at the interface leads to a non-bulk-like crystal structure of the BaTiO 3. While the complex crystal structure is predicted using first-principles theory, it is further shown that themore » details of the structure are a consequence of hidden phases found in the bulk elastic response of the BaTiO 3 induced by the symmetry of forces exerted by the germanium substrate.« less

  7. Oxygen vacancies controlled multiple magnetic phases in epitaxial single crystal Co0.5(Mg0.55Zn0.45)0.5O1-v thin films

    PubMed Central

    Zhu, Dapeng; Cao, Qiang; Qiao, Ruimin; Zhu, Shimeng; Yang, Wanli; Xia, Weixing; Tian, Yufeng; Liu, Guolei; Yan, Shishen

    2016-01-01

    High quality single-crystal fcc-Cox(MgyZn1-y)1-xO1-v epitaxial thin films with high Co concentration up to x = 0.5 have been fabricated by molecular beam epitaxy. Systematic magnetic property characterization and soft X-ray absorption spectroscopy analysis indicate that the coexistence of ferromagnetic regions, superparamagnetic clusters, and non-magnetic boundaries in the as-prepared Cox(MgyZn1-y)1-xO1-v films is a consequence of the intrinsic inhomogeneous distribution of oxygen vacancies. Furthermore, the relative strength of multiple phases could be modulated by controlling the oxygen partial pressure during sample preparation. Armed with both controllable magnetic properties and tunable band-gap, Cox(MgyZn1-y)1-xO1-v films may have promising applications in future spintronics. PMID:27062992

  8. Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...

    2016-10-19

    Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less

  9. Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Hartmann, Jana; Mandl, Martin; Sadat Mohajerani, Matin; Wehmann, Hergo-H.; Strassburg, Martin; Waag, Andreas

    2014-04-01

    Three-dimensional GaN columns recently have attracted a lot of attention as the potential basis for core-shell light emitting diodes for future solid state lighting. In this study, the fundamental insights into growth kinetics and mass transport mechanisms of N-polar GaN columns during selective area metal organic vapor phase epitaxy on patterned SiOx/sapphire templates are systematically investigated using various pitch of apertures, growth time, and silane flow. Species impingement fluxes on the top surface of columns Jtop and on their sidewall Jsw, as well as, the diffusion flux from the substrate Jsub contribute to the growth of the GaN columns. The vertical and lateral growth rates devoted by Jtop, Jsw and Jsub are estimated quantitatively. The diffusion length of species on the SiOx mask surface λsub as well as on the sidewall surfaces of the 3D columns λsw are determined. The influences of silane on the growth kinetics are discussed. A growth model is developed for this selective area metal organic vapor phase epitaxy processing.

  10. Strain-induced phase variation and dielectric constant enhancement of epitaxial Gd{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhter, P., E-mail: Pini@tx.technion.ac.il; Amouyal, Y.; Eizenberg, M.

    2016-07-07

    One of the approaches for realizing advanced high k insulators for metal oxide semiconductor field effect transistors based devices is the use of rare earth oxides. When these oxides are deposited as epitaxial thin films, they demonstrate dielectric properties that differ greatly from those that are known for bulk oxides. Using structural and spectroscopic techniques, as well as first-principles calculations, Gd{sub 2}O{sub 3} films deposited on Si (111) and Ge (111) were characterized. It was seen that the same 4 nm thick film, grown simultaneously on Ge and Si, presents an unstrained lattice on Ge while showing a metastable phase onmore » Si. This change from the cubic lattice to the distorted metastable phase is characterized by an increase in the dielectric constant of more than 30% and a change in band gap. The case in study shows that extreme structural changes can occur in ultra-thin epitaxial rare earth oxide films and modify their dielectric properties when the underlying substrate is altered.« less

  11. Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films

    NASA Astrophysics Data System (ADS)

    Dufour, C.; Dumesnil, K.; Mangin, Ph

    2006-07-01

    Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.

  12. Box-like gel capsules from heterostructures based on a core-shell MOF as a template of crystal crosslinking.

    PubMed

    Ishiwata, Takumi; Michibata, Ayano; Kokado, Kenta; Ferlay, Sylvie; Hosseini, Mir Wais; Sada, Kazuki

    2018-02-06

    New polymer capsules (PCs) were obtained using a crystal crosslinking (CC) method on core-shell MOF crystals. The latter are based on the epitaxial growth of two isostructural coordination polymers which are then selectively crosslinked. Decomposition of the non-reticulated phase leads to new PCs, possessing a well-defined hollow cubic shape reflecting the heterostructure of the template.

  13. Process for forming epitaxial perovskite thin film layers using halide precursors

    DOEpatents

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  14. Nanoscale self-templating for oxide epitaxy with large symmetry mismatch

    DOE PAGES

    Gao, Xiang; Lee, Shinbuhm; Nichols, John A.; ...

    2016-12-02

    Direct observations using scanning transmission electron microscopy unveil an intriguing interfacial bi-layer that enables epitaxial growth of a strain-free, monoclinic, bronze-phase VO 2(B) thin film on a perovskite SrTiO 3 (STO) substrate. For this study, we observe an ultrathin (2–3 unit cells) interlayer best described as highly strained VO 2(B) nanodomains combined with an extra (Ti,V)O 2 layer on the TiO 2 terminated STO (001) surface. By forming a fully coherent interface with the STO substrate and a semi-coherent interface with the strain-free epitaxial VO 2(B) film above, the interfacial bi-layer enables the epitaxial connection of the two materials despitemore » their large symmetry and lattice mismatch.« less

  15. Effect of as Passivation on Vapor-Phase Epitaxial Growth of Ge on (211)Si as a Buffer Layer for CdTe Epitaxy

    DTIC Science & Technology

    2011-04-07

    PALOSZ,5 , SUDHIR TRIVEDI,5 , PRIYALAL WIJEWARNASURIYA,3 , ISHWARA BHAT2, Brimrose Corporation of America 19 Loveton Circle Hunt Valley Loveton...Polytechnic Institute, Troy, NY 12180, USA. 5.— Brimrose Corporation of America, Sparks, MD 21152, USA. 6.—e-mail: shints@rpi.edu We report an

  16. Epitaxial Ce and the magnetism of single-crystal Ce/Nd superlattices

    NASA Astrophysics Data System (ADS)

    Clegg, P. S.; Goff, J. P.; McIntyre, G. J.; Ward, R. C.; Wells, M. R.

    2003-05-01

    The chemical structure of epitaxial γ cerium and the chemical and magnetic structures of cerium/neodymium superlattices have been studied using x-ray and neutron diffraction techniques. The samples were grown using molecular-beam epitaxy, optimized to yield the desired Ce allotropes. The x-ray measurements show that, in the superlattices, both constituents adopt the dhcp structure and that the stacking sequence remains intact down to T˜2 K; these are the first measurements of magnetic ordering in single-crystal dhcp Ce. The magnetic structure of the superlattices with thicker Nd layers exhibit incommensurate order and ferromagnetism on separate sublattices in a similar manner to Nd under applied pressure. The sample with thickest Ce layers has a magnetic structure similar to bulk β Ce, which has commensurate transverse modulation with a propagation wave vector [1/2 0 0] and moments along the hexagonal a direction. These two types of magnetic order appear to be mutually exclusive. γ Ce is the high-temperature fcc phase of Ce, our single-phase epitaxial sample is observed to go through a new, but partial, structural transition not previously seen in the bulk material.

  17. Epitaxial growth and characterization of CuGa2O4 films by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wei, Hongling; Chen, Zhengwei; Wu, Zhenping; Cui, Wei; Huang, Yuanqi; Tang, Weihua

    2017-11-01

    Ga2O3 with a wide bandgap of ˜ 4.9 eV can crystalize in five crystalline phases. Among those phases, the most stable monoclinic β-Ga2O3 has been studied most, however, it is hard to find materials lattice matching with β-Ga2O3 to grown epitaxial thin films for optoelectronic applications. In this work, CuGa2O4 bulk were prepared by solid state reaction as target, and the films were deposited on sapphire substrates by laser molecular beam epitaxy (L-MBE) at different substrate temperatures. The influences of substrate temperature on structural and optical properties have been systematically investigated by means of X-ray diffraction, Transmission electron microscope and UV-vis absorption spectra. High quality cubic structure and [111] oriented CuGa2O4 film can be obtained at substrate temperature of 750 °C. It's also demonstrated that the CuGa2O4 film has a bandgap of ˜ 4.4 eV and a best crystal quality at 750 °C, suggesting that CuGa2O4 film is a promising candidate for applications in ultraviolet optoelectronic devices.

  18. Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications

    NASA Astrophysics Data System (ADS)

    Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.

    2017-10-01

    This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on- n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on- p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.

  19. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  20. Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-04-01

    In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.

  1. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Two-stage liquid phase epitaxy for fabrication of buried InGaAsP/InP heterostructures

    NASA Astrophysics Data System (ADS)

    Procházková, O.; Novotný, J.; Šrobár, F.

    1988-11-01

    The technology of growth of buried heterojunction lasers emitting at 1.3 μm and some of their physical properties are described. Mesa stripes 8-μm wide were formed on heteroepitaxial wafers grown by liquid phase epitaxy at 630°C. They were buried by a second process at a lower temperature (590°C). The threshold current was about 100 mA and the temperature sensitivity was characterized by a parameter amounting to about 60 K. Single-mode lasing was observed occasionally.

  2. Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor

    NASA Astrophysics Data System (ADS)

    Baker, Troy; Mayo, Ashley; Veisi, Zeinab; Lu, Peng; Schmitt, Jason

    2014-10-01

    Aluminum nitride (AlN) was grown on c-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). The experiments utilized a two zone inductively heated hot-wall reactor. The surface morphology, crystal quality, and growth rate were investigated as a function of growth temperature in the range of 1450-1575 °C. AlN templates grown to a thickness of 1 μm were optimized with double axis X-ray diffraction (XRD) rocking curve full width half maximums (FWHMs) of 135″ for the (002) and 513″ for the (102).

  3. Suppression of planar defects in the molecular beam epitaxy of GaAs/ErAs/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Crook, Adam M.; Nair, Hari P.; Ferrer, Domingo A.; Bank, Seth R.

    2011-08-01

    We present a growth method that overcomes the mismatch in rotational symmetry of ErAs and conventional III-V semiconductors, allowing for epitaxially integrated semimetal/semiconductor heterostructures. Transmission electron microscopy and reflection high-energy electron diffraction reveal defect-free overgrowth of ErAs layers, consisting of >2× the total amount of ErAs that can be embedded with conventional layer-by-layer growth methods. We utilize epitaxial ErAs nanoparticles, overgrown with GaAs, as a seed to grow full films of ErAs. Growth proceeds by diffusion of erbium atoms through the GaAs spacer, which remains registered to the underlying substrate, preventing planar defect formation during subsequent GaAs growth. This growth method is promising for metal/semiconductor heterostructures that serve as embedded Ohmic contacts to epitaxial layers and epitaxially integrated active plasmonic devices.

  4. Digitally grown AlInAsSb for high gain separate absorption, grading, charge, and multiplication avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Lyu, Yuexi; Han, Xi; Sun, Yaoyao; Jiang, Zhi; Guo, Chunyan; Xiang, Wei; Dong, Yinan; Cui, Jie; Yao, Yuan; Jiang, Dongwei; Wang, Guowei; Xu, Yingqiang; Niu, Zhichuan

    2018-01-01

    We report on the growth of high quality GaSb-based AlInAsSb quaternary alloy by molecular beam epitaxy (MBE) to fabricate avalanche photodiodes (APDs). By means of high resolution X-ray diffraction (HRXRD) and scanning transmission electron microscope (STEM), phase separation phenomenon of AlInAsSb random alloy with naturally occurring vertical superlattice configuration was demonstrated. To overcome the tendency for phase segregation while maintaining a highly crystalline film, a digital alloy technique with migration-enhanced epitaxy growth method was employed, using a shutter sequence of AlSb, AlAs, AlSb, Sb, In, InAs, In, Sb. AlInAsSb digital alloy has proved to be reproducible and consistent with single phase, showing sharp satellite peaks on HRXRD rocking curve and smooth surface morphology under atomic force microscopy (AFM). Using optimized digital alloy, AlInAsSb separate absorption, grading, charge, and multiplication (SAGCM) APD was grown and fabricated. At room temperature, the device showed high performance with low dark current density of ∼14.1 mA/cm2 at 95% breakdown and maximum stable gain before breakdown as high as ∼200, showing the potential for further applications in optoelectronic devices.

  5. Metastable phases of silver and gold in hexagonal structure

    NASA Astrophysics Data System (ADS)

    Jona, F.; Marcus, P. M.

    2004-07-01

    Metastable phases of silver and gold in hexagonal close-packed structures are investigated by means of first-principles total-energy calculations. Two different methods are employed to find the equilibrium states: determination of the minima along the hexagonal epitaxial Bain path, and direct determination of minima of the total energy by a new minimum-path procedure. Both metals have two equilibrium states at different values of the hexagonal axial ratio c/a. For both metals, the elastic constants show that the high-c/a states are stable, hence, since the ground states are face-centred cubic, these states represent hexagonal close-packed metastable phases. The elastic constants of the low-c/a states show that they are unstable.

  6. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    PubMed Central

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-01-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films. PMID:26975328

  7. Aqueous solution epitaxy of CdS layers on CuInSe 2

    NASA Astrophysics Data System (ADS)

    Furlong, M. J.; Froment, M.; Bernard, M. C.; Cortès, R.; Tiwari, A. N.; Krejci, M.; Zogg, H.; Lincot, D.

    1998-09-01

    Epitaxial CdS thin films have been deposited from an aqueous ammonia solution containing cadmium ions and thiourea as precursors on single crystalline CuInSe 2 films prepared by MBE on Si(1 1 1) and GaAs(1 0 0) substrates. The structure and quality of the films were investigated by RHEED, glancing angle XRD and HRTEM in cross-section. The films are cubic on (1 0 0) substrates, and mixed cubic and hexagonal on (1 1 1) substrates due to the presence of stacking faults parallel to the substrate. The growth is under surface kinetic control with an activation energy of 85 kJ mol -1. Epitaxy improves with increasing temperature and an epitaxial transition temperature at approx. 60°C is demonstrated in the selected experimental conditions. The epitaxy is very sensitive to the preparation of the surface. Beneficial effects of in situ or ex situ chemical etching are found. Similarities between aqueous solution and vapor-phase chemical depositions are pointed out.

  8. The processes of formation and epitaxial alignment of SrTiO3 thin films prepared by metallo-organic decomposition

    NASA Astrophysics Data System (ADS)

    Braunstein, G.; Paz-Pujalt, G. R.; Mason, M. G.; Blanton, T.; Barnes, C. L.; Margevich, D.

    1993-01-01

    The processes of formation and crystallization of thin films of SrTiO3 prepared by the method of metallo-organic decomposition have been studied with particular emphasis on the relationship between the thermal decomposition of the metallo-organic precursors and the eventual epitaxial alignment of the crystallized films. The films are deposited by spin coating onto single-crystalline silicon and SrTiO3 substrates, pyrolyzed on a hot plate at temperatures ranging from 200 to 450 °C, and subsequently heat treated in a quartz tube furnace at temperatures ranging from 300 to 1200 °C. Heat treatment at temperatures up to 450-500 °C results in the evaporation of solvents and other organic addenda, thermal decomposition of the metallo-organic (primarily metal-carboxylates) precursors, and formation of a carbonate species. This carbonate appears to be an intermediate phase in the reaction of SrCO3 and TiO2 to form SrTiO3. Relevant to this work is the fact that the carbonate species exhibits diffraction lines, indicating the formation of grains that can serve as seeds for the nucleation and growth of randomly oriented SrTiO3 crystallites, thereby leading to a polycrystalline film. Deposition on silicon substrates indeed results in the formation of polycrystalline SrTiO3. However, when the precursor solution is deposited on single-crystalline SrTiO3 substrates, the crystallization process involves a competition between two mechanisms: the random nucleation and growth of crystallites just described, and layer-by-layer solid phase epitaxy. Epitaxial alignment on SrTiO3 substrates can be achieved when the samples are heat treated at temperatures of 1100-1200 °C or at temperatures as low as 600-650 °C when the substrate is heated to about 1100 °C before spin coating.

  9. Overlayer growth and electronic properties of the Bi/GaSb(110) interface

    NASA Astrophysics Data System (ADS)

    Gavioli, Luca; Betti, Maria Grazia; Casarini, Paolo; Mariani, Carlo

    1995-06-01

    The overlayer growth and electronic properties of the Bi/GaSb(110) interface and of the two-dimensional ordered (1×1)- and (1×2)-Bi layers have been investigated by complementary spectroscopic techniques (high-resolution electron-energy-loss, photoemission, and Auger spectroscopy). Bismuth forms an epitaxial monolayer, followed by island formation (Stranski-Krastanov growth mode) covering an average surface area of 40% at a nominal coverage of 4 ML. The (1×2)-symmetry stable structural phase, obtained after annealing at ~220 °C, corresponds to an average nominal Bi coverage of about 0.7 ML, suggesting an atomic geometry different from the epitaxial-continued layer structure. The disposal of Bi atoms in the (1×2) structure should build up an ``open'' layer, as the Ga-related surface exciton quenched in the (1×1) epitaxial monolayer is present in the (1×2) stable phase. The two symmetry phases are characterized by strong absorption features at 1 eV [(1×1)-Bi] and 0.54 eV [(1×2)-Bi], related to interband electronic transitions between Bi-induced electronic states. The major Bi-related occupied electronic levels, present in the valence band of the (1×1)- and (1×2)-Bi layer, have been detected by angle-integrated ultraviolet photoemission spectroscopy. Both the (1×1) and (1×2) phases show a metallic nature, with a low density of electronic states at the Fermi level. Schottky barrier heights of 0.20 and 0.14 eV are estimated for the epitaxial (1×1)- and (1×2)-symmetry stage, respectively, by analyzing the space-charge layer conditions through the study of the dopant-induced free-carrier plasmon in the GaSb substrate.

  10. Methods for enhancing P-type doping in III-V semiconductor films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Feng; Stringfellow, Gerald; Zhu, Junyi

    2017-08-01

    Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.

  11. Phase transition in lead titanate thin films: a Brillouin study

    NASA Astrophysics Data System (ADS)

    Kuzel, P.; Dugautier, C.; Moch, P.; LeMarrec, F.; Karkut, M. G.

    2002-12-01

    The elastic properties of both polycrystalline and epitaxial PbTiO3 (PTO) thin films are studied using Brillouin scattering spectroscopy. The epitaxial PTO films were prepared by pulsed laser ablation on (1) a [0 0 1] single crystal of SrTiO3 (STO) doped with Nb and (2) a [0 0 1] STO buffered with a layer of YBa2Cu3O7. The polycrystalline PTO films were prepared by sol-gel on a Si substrate buffered with TiO2 and Pt layers. The data analysis takes into account the ripple and the elasto-optic contributions. The latter significantly affects the measured spectra since it gives rise to a Love mode in the p-s scattering geometry. At room temperature, the spectra of the epitaxially grown samples are interpreted using previously published elastic constants of PTO single crystals. Sol-gel samples exhibit appreciable softening of the effective elastic properties compared to PTO single crystals: this result is explained by taking into account the random orientation of the microscopic PTO grains. For both the polycrystalline and the epitaxial films we have determined that the piezoelectric terms do not contribute to the spectra. The temperature dependence of the spectra shows strong anomalies of the elastic properties near the ferroelectric phase transition. Compared to the bulk, TC is higher in the sol-gel films, while in the epitaxial films the sign of the TC shift depends on the underlying material.

  12. Gordon Research Conference on Crystal Growth (1990)

    DTIC Science & Technology

    1990-04-01

    Labs, MH) 14. Cox Vapor Levitation Epitaxy of Quantum Wires and Wire-like Structures Using Laterally Propagating Surface Steps. (Bellcore, Red Bank) 15...introduced many new aspects of crystal growth, including strained layer superlattices, quantum cluster growth, and vertical zone melting of GaAs...Films 2. E. Bauser Semiconductor Liquid Phase Epitaxy: Growth and Properties of Layers and Heterostructures 3. M. L. Steigerwald Growth of Quantum

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usanov, D. A., E-mail: UsanovDA@info.sgu.ru; Nikitov, S. A.; Skripal, A. V.

    A method is proposed for the measurement of the electrophysical characteristics of semiconductor structures: the electrical conductivity of the n layer, which plays the role of substrate for a semiconductor structure, and the thickness and electrical conductivity of the strongly doped epitaxial n{sup +} layer. The method is based on the use of a one-dimensional microwave photonic crystal with a violation of periodicity containing the semiconductor structure under investigation. The characteristics of epitaxial gallium-arsenide structures consisting of an epitaxial layer and the semi-insulating substrate measured by this method are presented.

  14. Epitaxial growth of iridate pyrochlore Nd 2Ir 2O 7 films

    DOE PAGES

    Gallagher, J. C.; Esser, B. D.; Morrow, R.; ...

    2016-02-29

    Epitaxial films of the pyrochlore Nd 2Ir 2O 7 have been grown on (111)-oriented yttria-stabilized zirconia (YSZ) substrates by off-axis sputtering followed by post-growth annealing. X-ray diffraction (XRD) results demonstrate phase-pure epitaxial growth of the pyrochlore films on YSZ. Scanning transmission electron microscopy (STEM) investigation of an Nd 2Ir 2O 7 film with a short post-annealing provides insight into the mechanism for crystallization of Nd 2Ir 2O 7 during the post-annealing process. STEM images reveal clear pyrochlore ordering of Nd and Ir in the films. As a result, the epitaxial relationship between the YSZ and Nd 2Ir 2O 7 ismore » observed clearly while some interfacial regions show a thin region with polycrystalline Ir nanocrystals.« less

  15. Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gálvez, S.; Rubio-Zuazo, J., E-mail: rubio@esrf.fr; Salas-Colera, E.

    Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.

  16. Epitaxial lateral overgrowth of GaAs: effect of doping on LPE growth behaviour

    NASA Astrophysics Data System (ADS)

    Zytkiewicz, Z. R.; Dobosz, D.; Pawlowska, M.

    1999-05-01

    Results of epitaxial lateral overgrowth (ELO) of GaAs on (001) GaAs substrates by liquid phase epitaxy are reported. We show that by introducing Si, Sn or Te impurities to the Ga-As solution the vertical growth rate is reduced while the lateral growth rate is significantly enhanced, which leads to a growth habit modification. Furthermore, the impurity incorporation into the growing layer is different on the upper and side surfaces of the ELO, reflecting the fundamental differences between the lateral and vertical growth modes. This phenomenon can be applied for studying the temporal development of ELO layers.

  17. Molecular beam epitaxy growth and magnetic properties of Cr-Co-Ga Heusler alloy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Wuwei, E-mail: wfeng@cugb.edu.cn; Wang, Weihua; Zhao, Chenglong

    2015-11-15

    We have re-investigated growth and magnetic properties of Cr{sub 2}CoGa films using molecular beam epitaxy technique. Phase separation and precipitate formation were observed experimentally again in agreement with observation of multiple phases separation in sputtered Cr{sub 2}CoGa films by M. Meinert et al. However, significant phase separation could be suppressed by proper control of growth conditions. We showed that Cr{sub 2}CoGa Heusler phase, rather than Co{sub 2}CrGa phase, constitutes the majority of the sample grown on GaAs(001) at 450 {sup o}C. The measured small spin moment of Cr{sub 2}CoGa is in agreement with predicted HM-FCF nature; however, its Curie temperaturemore » is not as high as expected from the theoretical prediction probably due to the off-stoichiometry of Cr{sub 2}CoGa and the existence of the disorders and phase separation.« less

  18. Nitridation- and Buffer-Layer-Free Growth of [1100]-Oriented GaN Domains on m-Plane Sapphire Substrates by Using Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Seo, Yeonwoo; Lee, Sanghwa; Jue, Miyeon; Yoon, Hansub; Kim, Chinkyo

    2012-12-01

    Over a wide range of growth conditions, GaN domains were grown on bare m-plane sapphire substrates by using hydride vapor phase epitaxy (HVPE), and the relation between these growth conditions and three possible preferred crystallographic orientations ([1100], [1103], [1122]) of GaN domains was investigated. In contrast with the previous reports by other groups, our results revealed that preferentially [1100]-oriented GaN domains were grown without low-temperature nitridation or a buffer layer, and that the growth condition of preferentially [1100]-oriented GaN was insensitive to V/III ratio.

  19. Controlling Surface Morphology and Circumventing Secondary Phase Formation in Non-polar m-GaN by Tuning Nitrogen Activity

    NASA Astrophysics Data System (ADS)

    Chang, C. W.; Wadekar, P. V.; Guo, S. S.; Cheng, Y. J.; Chou, M.; Huang, H. C.; Hsieh, W. C.; Lai, W. C.; Chen, Q. Y.; Tu, L. W.

    2018-01-01

    For the development of non-polar nitrides based optoelectronic devices, high-quality films with smooth surfaces, free of defects or clusters, are critical. In this work, the mechanisms governing the topography and single phase epitaxy of non-polar m-plane gallium nitride ( m-GaN) thin films are studied. The samples were grown using plasma-assisted molecular beam epitaxy on m-plane sapphire substrates. Growth of pure m-GaN thin films, concomitant with smooth surfaces is possible at low radio frequency powers and high growth temperatures as judged by the high resolution x-ray diffraction, field emission scanning electron microscopy, and atomic force microscopy measurements. Defect types and densities are quantified using transmission electron microscopy, while Raman spectroscopy was used to analyze the in-plane stress in the thin films which matches the lattice mismatch analysis. Energy dispersive spectroscopy and cathodoluminescence support a congruent growth and a dominant near band edge emission. From the analysis, a narrow growth window is discovered wherein epitaxial growth of pure m-plane GaN samples free of secondary phases with narrow rocking curves and considerable smooth surfaces are successfully demonstrated.

  20. Two-dimensional La2/3Sr4/3MnO4 Manganite Films Probed by Epitaxial Strain and Cation Ordering

    NASA Astrophysics Data System (ADS)

    Nelson-Cheeseman, Brittany; Santos, Tiffany; Bhattacharya, Anand

    2010-03-01

    Dimensionality is known to play a central role in the properties of strongly correlated systems. Here we investigate magnetism and transport in thin films of the Ruddlesden-Popper n=1 phase, La1-xSr1+xMnO4. Within this material, the MnO6-octahedra form two-dimensional perovskite sheets separated by an extra rocksalt layer. By fabricating high quality thin films with ozone-assisted molecular beam epitaxy, we study how the effects of epitaxial strain and intentional cation ordering, known as digital synthesis, influence the properties of this 2-dimensional manganite. For example, at the same Mn^3+:Mn^4+ ratio (2:1) as its fully spin-polarized 3D manganite counterpart, this two dimensional analog at x=1/3 only displays a spin glass phase below 20K in bulk. This is believed to result from a competition between superexchange and double exchange, as well as disordered Jahn-Teller distortions. However, in our films we find weak ferromagnetic order up to much higher temperatures in addition to a low temperature spin glass phase. We will discuss how strain and cation order effect the presence of this weak ferromagnetism.

  1. β-Ga2O3 versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Gang

    2017-10-01

    Gallium oxide thin films of β and ε phase were grown on c-plane sapphire using metal-organic chemical vapor deposition and the phase compositions were analyzed using X-ray diffraction. The epitaxial phase diagram was constructed as a function of the growth temperature and VI/III ratio. A low growth temperature and low VI/III ratio were beneficial for the formation of hexagonal-type ε-Ga2O3. Further structure analysis revealed that the epitaxial relationship between ε-Ga2O3 and c-plane sapphire is ε-Ga2O3 (0001) || Al2O3 (0001) and ε-Ga2O3 || Al2O3 . The structural evolution of the mixed-phase sample during film thickening was investigated. By reducing the growth rate, the film evolved from a mixed phase to the energetically favored ε phase. Based on these results, a Ga2O3 thin film with a phase-pure ε-Ga2O3 upper layer was successfully obtained.

  2. In situ TEM observation of heterogeneous phase transition of a constrained single-crystalline Ag2Te nanowire.

    PubMed

    In, Juneho; Yoo, Youngdong; Kim, Jin-Gyu; Seo, Kwanyong; Kim, Hyunju; Ihee, Hyotchel; Oh, Sang Ho; Kim, Bongsoo

    2010-11-10

    Laterally epitaxial single crystalline Ag2Te nanowires (NWs) are synthesized on sapphire substrates by the vapor transport method. We observed the phase transitions of these Ag2Te NWs via in situ transmission electron microscopy (TEM) after covering them with Pt layers. The constrained NW shows phase transition from monoclinic to a body-centered cubic (bcc) structure near the interfaces, which is ascribed to the thermal stress caused by differences in the thermal expansion coefficients. Furthermore, we observed the nucleation and growth of bcc phase penetrating into the face-centered cubic matrix at 200 °C by high-resolution TEM in real time. Our results would provide valuable insight into how compressive stresses imposed by overlayers affect behaviors of nanodevices.

  3. Giant Faraday rotation in Bi(x)Ce(3-x)Fe5O12 epitaxial garnet films.

    PubMed

    Chandra Sekhar, M; Singh, Mahi R; Basu, Shantanu; Pinnepalli, Sai

    2012-04-23

    Thin films of Bi(x)Ce(3-x)Fe(5)O(12) with x = 0.7 and 0.8 compositions were prepared by using pulsed laser deposition. We investigated the effects of processing parameters used to fabricate these films by measuring various physical properties such as X-ray diffraction, transmittance, magnetization and Faraday rotation. In this study, we propose a phase diagram which provides a suitable window for the deposition of Bi(x)Ce(3-x)Fe(5)O(12) epitaxial films. We have also observed a giant Faraday rotation of 1-1.10 degree/µm in our optimized films. The measured Faraday rotation value is 1.6 and 50 times larger than that of CeYIG and YIG respectively. A theoretical model has been proposed for Faraday rotation based on density matrix method and an excellent agreement between experiment and theory is found. © 2012 Optical Society of America

  4. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomicmore » spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.« less

  5. Oxygen vacancies controlled multiple magnetic phases in epitaxial single crystal Co 0.5(Mg 0.55Zn 0.45) 0.5O 1-v thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Dapeng; Cao, Qiang; Qiao, Ruimin

    2016-04-11

    High quality single-crystal fcc-Co x (Mg y Zn 1-y ) 1-x O 1-v epitaxial thin films with high Co concentration up to x = 0.5 have been fabricated by molecular beam epitaxy. Systematic magnetic property characterization and soft X-ray absorption spectroscopy analysis indicate that the coexistence of ferromagnetic regions, superparamagnetic clusters, and non-magnetic boundaries in the as-prepared Co x (Mg y Zn 1-y ) 1-x O 1-v films is a consequence of the intrinsic inhomogeneous distribution of oxygen vacancies. Furthermore, the relative strength of multiple phases could be modulated by controlling the oxygen partial pressure during sample preparation. Armed withmore » both controllable magnetic properties and tunable band-gap, Co x (Mg y Zn 1-y ) 1-x O 1-v films may have promising applications in future spintronics.« less

  6. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy

    PubMed Central

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Bräse, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Müllen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wöll, Christof

    2012-01-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 × 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++)2- carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process. PMID:23213357

  7. Metalorganic vapor phase epitaxial growth of red and infrared vertical-cavity surface-emitting laser diodes

    NASA Astrophysics Data System (ADS)

    Schneider, R. P.; Lott, J. A.; Lear, K. L.; Choquette, K. D.; Crawford, M. H.; Kilcoyne, S. P.; Figiel, J. J.

    1994-12-01

    Metalorganic vapor phase epitaxy (MOVPE) is used for the growth of vertical-cavity surface-emitting laser (VCSEL) diodes. MOVPE exhibits a number of important advantages over the more commonly-used molecular-beam epitaxial (MBE) techniques, including ease of continuous compositional grading and carbon doping for low-resistance p-type distributed Bragg reflectors (DBRs), higher growth rates for rapid throughput and greater versatility in choice of materials and dopants. Planar gain-guided red VCSELs based on AlGaInP/AlGaAs heterostructures lase continuous-wave at room temperature, with voltage thresholds between 2.5 and 3 V and maximum power outputs of over 0.3 mW. Top-emitting infra-red (IR) VCSELs exhibit the highest power-conversion (wall-plug) efficiencies (21%), lowest threshold voltage (1.47 V), and highest single mode power (4.4 mW from an 8 μm device) yet reported. These results establish MOVPE as a preferred growth technique for this important new family of photonic devices.

  8. Epitaxial growth of a mono-crystalline metastable AuIn layer at the Au/InP(001) interface

    NASA Astrophysics Data System (ADS)

    Renda, M.; Morita, K.

    1990-01-01

    Thermal annealing of a gold layer deposited on the InP(001)-p(2×4) surface has been studied in-situ by means of LEED, AES and RBS techniques and by post analysis of RBS-channeling and glancing incidence X-ray diffraction. A clean LEED pattern of p(2×2) spots was observed for the specimen annealed for 10 min at 300°C. The composition ratio of Au/In in the epitaxial compound layer was found to be 49/51 by RBS and several at% of P was also detected by post sputter-AES analysis. It was also found that the epitaxial layer shows a clear channeling dip for an incident ion beam which is aligned along the <001> axis of InP substrate. The glancing incidence X-ray diffraction analysis indicates diffraction peaks from the pseudo-orthorombic phase of AuIn. From these experimental results, it is concluded that the epitaxial Au-compound layer is a mono-crystalline metastable phase of AuIn, of which every three atomic rows of Au or In in the [110] direction would be situated on every four atomic rows in the [010] direction of the In(001) face of the InP crystal.

  9. BiFeO3 epitaxial thin films and devices: past, present and future

    NASA Astrophysics Data System (ADS)

    Sando, D.; Barthélémy, A.; Bibes, M.

    2014-11-01

    The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

  10. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  11. Atomic Layer Deposition of Metastable β-Fe 2 O 3 via Isomorphic Epitaxy for Photoassisted Water Oxidation

    DOE PAGES

    Emery, Jonathan D.; Schlepütz, Christian M.; Guo, Peijun; ...

    2014-12-09

    Here, we report the growth and photoelectrochemical (PEC) characterization of the uncommon bibyite phase of iron(III) oxide (β-Fe 2O 3) epitaxially stabilized via atomic layer deposition on an conductive, transparent, and isomorphic template (Sn-doped In 2O 3). Furthermore, as a photoanode, unoptimized β-Fe 2O 3 ultrathin films perform similarly to their ubiquitous α-phase (hematite) counterpart, but reveal a more ideal bandgap (1.8 eV), a ~0.1 V improved photocurrent onset potential, and longer wavelength (>600 nm) spectral response. Finally, stable operation under basic water oxidation justifies further exploration of this atypical phase and motivates the investigation of other unexplored metastable phasesmore » as new PEC materials.« less

  12. Formation of ultrathin Ni germanides: solid-phase reaction, morphology and texture

    NASA Astrophysics Data System (ADS)

    van Stiphout, K.; Geenen, F. A.; De Schutter, B.; Santos, N. M.; Miranda, S. M. C.; Joly, V.; Detavernier, C.; Pereira, L. M. C.; Temst, K.; Vantomme, A.

    2017-11-01

    The solid-phase reaction of ultrathin (⩽10 nm) Ni films with different Ge substrates (single-crystalline (1 0 0), polycrystalline, and amorphous) was studied. As thickness goes down, thin film texture becomes a dominant factor in both the film’s phase formation and morphological evolution. As a consequence, certain metastable microstructures are epitaxially stabilized on crystalline substrates, such as the ɛ-Ni5Ge3 phase or a strained NiGe crystal structure on the single-crystalline substrates. Similarly, the destabilizing effect of axiotaxial texture on the film’s morphology becomes more pronounced as film thicknesses become smaller. These effects are contrasted by the evolution of germanide films on amorphous substrates, on which neither epitaxy nor axiotaxy can form, i.e. none of the (de)stabilizing effects of texture are observed. The crystallization of such amorphous substrates however, drives the film breakup.

  13. Schottky barrier detection devices having a 4H-SiC n-type epitaxial layer

    DOEpatents

    Mandal, Krishna C.; Terry, J. Russell

    2016-12-06

    A detection device, along with methods of its manufacture and use, is provided. The detection device can include: a SiC substrate defining a substrate surface cut from planar to about 12.degree.; a buffer epitaxial layer on the substrate surface; a n-type epitaxial layer on the buffer epitaxial layer; and a top contact on the n-type epitaxial layer. The buffer epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.15 cm.sup.-3 to about 5.times.10.sup.18 cm.sup.-3 with nitrogen, boron, aluminum, or a mixture thereof. The n-type epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.13 cm.sup.-3 to about 5.times.10.sup.15 cm.sup.-3 with nitrogen. The top contact can have a thickness of about 8 nm to about 15 nm.

  14. Naturally formed ultrathin V2O5 heteroepitaxial layer on VO2/sapphire(001) film

    NASA Astrophysics Data System (ADS)

    Littlejohn, Aaron J.; Yang, Yunbo; Lu, Zonghuan; Shin, Eunsung; Pan, KuanChang; Subramanyam, Guru; Vasilyev, Vladimir; Leedy, Kevin; Quach, Tony; Lu, Toh-Ming; Wang, Gwo-Ching

    2017-10-01

    Vanadium dioxide (VO2) and vanadium pentoxide (V2O5) thin films change their properties in response to external stimuli such as photons, temperature, electric field and magnetic field and have applications in electronics, optical devices, and sensors. Due to the multiple valence states of V and non-stoichiometry in thin films, it is challenging to grow epitaxial, single-phase V-oxide on a substrate, or a heterostructure of two epitaxial V-oxides. We report the formation of a heterostructure consisting of a few nm thick ultrathin V2O5 epitaxial layer on pulsed laser deposited tens of nm thick epitaxial VO2 thin films grown on single crystal Al2O3(001) substrates without post annealing of the VO2 film. The simultaneous observation of the ultrathin epitaxial V2O5 layer and VO2 epitaxial film is only possible by our unique reflection high energy electron diffraction pole figure analysis. The out-of-plane and in-plane epitaxial relationships are V2O5[100]||VO2[010]||Al2O3[001] and V2O5[03 2 bar ]||VO2[100]||Al2O3[1 1 bar 0], respectively. The existence of the V2O5 layer on the surface of the VO2 film is also supported by X-ray photoelectron spectroscopy and Raman spectroscopy.

  15. Semiconductor Laser Diode Arrays by MOCVD (Metalorganic Chemical Vapor Deposition)

    DTIC Science & Technology

    1987-09-01

    laser diode arrays are intended to be used as an optical pump for solid state yttrium aluminum garnet (YAG) lasers. In particular, linear uniform...corresponds to about . , 8080A. Such thin layer structures, while difficult to grow by such conventional growth methods as liquid phase epitaxy ( LPE ...lower yet than for DH lasers grown by LPE . , - Conventional self-aligned stripe laser This structure is formed by growing (on an n-type GaAs substrate

  16. High-quality AlN film grown on a nanosized concave-convex surface sapphire substrate by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Nagatomi, Takaharu; Morishita, Tomohiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2017-10-01

    We developed a method for fabricating high-crystal-quality AlN films by combining a randomly distributed nanosized concavo-convex sapphire substrate (NCC-SS) and a three-step growth method optimized for NCC-SS, i.e., a 3-nm-thick nucleation layer (870 °C), a 150-nm-thick high-temperature layer (1250 °C), and a 3.2-μm-thick medium-temperature layer (1110 °C). The NCC-SS is easily fabricated using a conventional metalorganic vapor phase epitaxy reactor equipped with a showerhead plate. The resultant AlN film has a crack-free and single-step surface with a root-mean-square roughness of 0.5 nm. The full-widths at half-maxima of the X-ray rocking curve were 50/250 arcsec for the (0002)/(10-12) planes, revealing that the NCC surface is critical for achieving such a high-quality film. Hexagonal-pyramid-shaped voids at the AlN/NCC-SS interface and confinement of dislocations within the 150-nm-thick high-temperature layer were confirmed. The NCC surface feature and resultant faceted voids play an important role in the growth of high-crystal-quality AlN films, likely via localized and/or disordered growth of AlN at the initial stage, contributing to the alignment of high-crystal-quality nuclei and dislocations.

  17. Evidence of martensitic phase transitions in magnetic Ni-Mn-In thin films

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Zhang, Le; Dubenko, I.; Samanta, T.; Stadler, S.; Ali, N.

    2013-02-01

    Ni50Mn35In15 Heusler alloy thin films (with thicknesses of about 10 nm) have been grown on single crystal MgO and SrTiO3 (STO) (100) substrates using a laser-assisted molecular beam epitaxy method. Films of mixed austenitic and martensitic phases and of pure martensitic phase have been detected for those grown on MgO and STO substrates, respectively. Thermomagnetic curves were measured using a SQUID magnetometer and are consistent with those of off-stoichiometric In-based bulk Heusler alloys, including a martensitic transition at T = 315 K for films grown on MgO. The differences in the properties of the films grown on MgO and STO are discussed.

  18. Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Lingzi; Yeo, Yee-Chia, E-mail: yeo@ieee.org

    This work demonstrates and describes for the first time an unusual strain-relaxation mechanism by the formation and self-assembly of well-ordered tin wires during the thermal annealing of epitaxial Ge{sub 0.83}Sn{sub 0.17}-on-Ge(001) substrate. Fully strained germanium-tin alloys (Ge{sub 0.83}Sn{sub 0.17}) were epitaxially grown on Ge(001) substrate by molecular beam epitaxy. The morphological and compositional evolution of Ge{sub 0.83}Sn{sub 0.17} during thermal annealing is studied by atomic force microscopy, X-ray diffraction, transmission electron microscopy. Under certain annealing conditions, the Ge{sub 0.83}Sn{sub 0.17} layer decomposes into two stable phases, and well-defined Sn wires that are preferentially oriented along two orthogonal 〈100〉 azimuths aremore » formed. The formation of the Sn wires is related to the annealing temperature and the Ge{sub 0.83}Sn{sub 0.17} thickness, and can be explained by the nucleation of a grain with Sn islands on the outer front, followed by grain boundary migration. The Sn wire formation process is found to be thermally activated, and an activation enthalpy (E{sub c}) of 0.41 eV is extracted. This thermally activated phase transformation, i.e., 2D epitaxial layer to 3D wires, occurs via a mechanism akin to “cellular precipitation.” This synthesis route of Sn wires opens new possibilities for creation of nanoscale patterns at high-throughput without the need for lithography.« less

  19. Effects of external mechanical loading on phase diagrams and dielectric properties in epitaxial ferroelectric thin films with anisotropic in-plane misfit strains

    NASA Astrophysics Data System (ADS)

    Qiu, J. H.; Jiang, Q.

    2007-02-01

    A phenomenological Landau-Devonshine theory is used to describe the effects of external mechanical loading on equilibrium polarization states and dielectric properties in epitaxial ferroelectric thin films grown on dissimilar orthorhombic substrates which induce anisotropic misfit strains in the film plane. The calculation focuses on single-domain perovskite BaTiO3 and PbTiO3 thin films on the assumption that um1=-um2. Compared with the phase diagrams without external loading, the characteristic features of "misfit strain-misfit strain" phase diagrams at room temperature are the presence of paraelectric phase and the strain-induced ferroelectric to paraelectric phase transition. Due to the external loading, the "misfit strain-stress" and "stress-temperature" phase diagrams also have drastic changes, especially for the vanishing of paraelectric phase in "misfit strain-stress" phase map and the appearance of possible ferroelectric phases. We also investigate the dielectric properties and the tunability of both BaTiO3 and PbTiO3 thin films. We find that the external stress dependence of phase diagrams and dielectric properties largely depends on strain anisotropy as well.

  20. Epitaxial Fe{sub 3}Pt/FePt nanocomposites on MgO and SrTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casoli, F., E-mail: casoli@imem.cnr.it; Nasi, L.; Cabassi, R.

    We have exploited the pseudomorphic growth of the magnetically soft Fe{sub 3}Pt phase on top of L1{sub 0}-FePt to obtain fully epitaxial soft/hard nanocomposites on both MgO(100) and SrTiO{sub 3}(100). The magnetic properties of this new nanocomposite system, driven by the soft/hard exchange-coupling, can be tailored by varying soft phase thickness, soft phase magnetic anisotropy and substrate. Coercivity is strongly reduced by the addition of the soft phase, a reduction which is definitely affected by the nominal composition of the soft phase and by the substrate choice; similarly is the magnetic phase diagram of the composite system. Coercive field decreasesmore » down to 21% of the hard layer value for Fe{sub 3}Pt(5 nm)/FePt(3.55 nm) nanocomposites on SrTiO{sub 3}; this maximum coercivity reduction was obtained with a nominal atomic content of Fe in the soft phase of 80%.« less

  1. Numerical simulations of epitaxial growth process in MOVPE reactor as a tool for design of modern semiconductors for high power electronics

    NASA Astrophysics Data System (ADS)

    Skibinski, Jakub; Caban, Piotr; Wejrzanowski, Tomasz; Kurzydlowski, Krzysztof J.

    2014-10-01

    In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.

  2. Epitaxial solar-cell fabrication, phase 2

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1977-01-01

    Dichlorosilane (SiH2Cl2) was used as the silicon source material in all of the epitaxial growths. Both n/p/p(+) and p/n/n(+) structures were studied. Correlations were made between the measured profiles and the solar cell parameters, especially cell open-circuit voltage. It was found that in order to obtain consistently high open-circuit voltage, the epitaxial techniques used to grow the surface layer must be altered to obtain very abrupt doping profiles in the vicinity of the junction. With these techniques, it was possible to grow reproducibly both p/n/n(+) and n/p/p(+) solar cell structures having open-circuit voltages in the 610- to 630-mV range, with fill-factors in excess of 0.80 and AM-1 efficiencies of about 13%. Combinations and comparisons of epitaxial and diffused surface layers were also made. Using such surface layers, we found that the blue response of epitaxial cells could be improved, resulting in AM-1 short-circuit current densities of about 30 mA/cm sq. The best cells fabricated in this manner had AM-1 efficiency of 14.1%.

  3. Structure and strain relaxation mechanisms of ultrathin epitaxial Pr2O3 films on Si(111)

    NASA Astrophysics Data System (ADS)

    Schroeder, T.; Lee, T.-L.; Libralesso, L.; Joumard, I.; Zegenhagen, J.; Zaumseil, P.; Wenger, C.; Lupina, G.; Lippert, G.; Dabrowski, J.; Müssig, H.-J.

    2005-04-01

    The structure of ultrathin epitaxial Pr2O3 films on Si(111) was studied by synchrotron radiation-grazing incidence x-ray diffraction. The oxide film grows as hexagonal Pr2O3 phase with its (0001) plane attached to the Si(111) substrate. The hexagonal (0001) Pr2O3 plane matches the in-plane symmetry of the hexagonal Si(111) surface unit cell by aligning the ⟨101¯0⟩Pr2O3 along the ⟨112¯⟩ Si directions. The small lattice mismatch of 0.5% results in the growth of pseudomorphic oxide films of high crystalline quality with an average domain size of about 50 nm. The critical thickness tc for pseudomorphic growth amounts to 3.0±0.5nm. The relaxation of the oxide film from pseudomorphism to bulk behavior beyond tc causes the introduction of misfit dislocations, the formation of an in-plane small angle mosaicity structure, and the occurence of a phase transition towards a (111) oriented cubic Pr2O3 film structure. The observed phase transition highlights the influence of the epitaxial interface energy on the stability of Pr2O3 phases on Si(111). A mechanism is proposed which transforms the hexagonal (0001) into the cubic (111) Pr2O3 epilayer structure by rearranging the oxygen network but leaving the Pr sublattice almost unmodified.

  4. Epitaxial growth of VO2 by periodic annealing

    NASA Astrophysics Data System (ADS)

    Tashman, J. W.; Lee, J. H.; Paik, H.; Moyer, J. A.; Misra, R.; Mundy, J. A.; Spila, T.; Merz, T. A.; Schubert, J.; Muller, D. A.; Schiffer, P.; Schlom, D. G.

    2014-02-01

    We report the growth of ultrathin VO2 films on rutile TiO2 (001) substrates via reactive molecular-beam epitaxy. The films were formed by the cyclical deposition of amorphous vanadium and its subsequent oxidation and transformation to VO2 via solid-phase epitaxy. Significant metal-insulator transitions were observed in films as thin as 2.3 nm, where a resistance change ΔR/R of 25 was measured. Low angle annular dark field scanning transmission electron microscopy was used in conjunction with electron energy loss spectroscopy to study the film/substrate interface and revealed the vanadium to be tetravalent and the titanium interdiffusion to be limited to 1.6 nm.

  5. Grouped and Multistep Nanoheteroepitaxy: Toward High-Quality GaN on Quasi-Periodic Nano-Mask.

    PubMed

    Feng, Xiaohui; Yu, Tongjun; Wei, Yang; Ji, Cheng; Cheng, Yutian; Zong, Hua; Wang, Kun; Yang, Zhijian; Kang, Xiangning; Zhang, Guoyi; Fan, Shoushan

    2016-07-20

    A novel nanoheteroepitaxy method, namely, the grouped and multistep nanoheteroepitaxy (GM-NHE), is proposed to attain a high-quality gallium nitride (GaN) epilayer by metal-organic vapor phase epitaxy. This method combines the effects of sub-100 nm nucleation and multistep lateral growth by using a low-cost but unique carbon nanotube mask, which consists of nanoscale growth windows with a quasi-periodic 2D fill factor. It is found that GM-NHE can facilely reduce threading dislocation density (TDD) and modulate residual stress on foreign substrate without any regrowth. As a result, high-quality GaN epilayer is produced with homogeneously low TDD of 4.51 × 10(7) cm(-2) and 2D-modulated stress, and the performance of the subsequent 410 nm near-ultraviolet light-emitting diode is greatly boosted. In this way, with the facile fabrication of nanomask and the one-off epitaxy procedure, GaN epilayer is prominently improved with the assistance of nanotechnology, which demonstrates great application potential for high-efficiency TDD-sensitive optoelectronic and electronic devices.

  6. Nanoscale Strontium Titanate Sheets and Crystals

    NASA Astrophysics Data System (ADS)

    Tilka, Jack Andrew

    The physical properties of materials are dominated by their structure and composition. Insight into the structure of complex oxide materials has the potential to improve our understanding and eventually control of their physical properties. This PhD thesis reports the development of characterization and fabrication techniques relevant to improving the scientific understanding of complex oxide materials. The work presented here has two components. I report a way to use ideas that were originally developed in semiconductor processing to control the elastic strain state and crystallization process of the model complex oxide SrTiO3. An additional component is an important series of advances in the analysis of diffraction patterns acquired with focused x-ray nanobeams. The fabrication and characterization of nanoscale SrTiO3 has been experimentally shown to allow the introduction of elastic strain into SrTiO3. The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction experiments show that the SrTiO 3 sheets have rocking curves with angular widths less than 0.02°. These widths are less than a factor of two larger than bulk SrTiO3, which shows that the sheets are suitable substrates for epitaxial thin film growth. A precisely selected elastic strain can be introduced into the SrTiO 3 sheets using a silicon nitride stressor layer. Synchrotron x-ray nanodiffraction studies show that the strain introduced in the SrTiO3 sheets is on the order of 10-4, matching the predictions of an elastic model. This approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect not achievable in heteroepitaxy on rigid substrates. An additional fabrication technique is also evaluated here based on the crystallization of SrTiO3 from initially amorphous thin films. This process is known as solid-phase epitaxy in two-dimensional samples but is just beginning to be explored in more complex geometries. I report experiments in both homoepitaxy and heteroepitaxy including measurements of crystal growth rates and the crystallographic orientations of crystals formed in this way. The lateral growth rates are consistent with previously measured vertical growth. This result indicated that previous work on vertical solid-phase epitaxy could be extended into lateral solid-phase epitaxy, which has the power to be applied to complicated non-planar geometries. The highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale structural characterization of materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. I report here a series of methods that expand the range of physical problems that can be accurately captured by coherent x-ray optical simulations. My approach has been to expand simulations methods to include arbitrary x-ray incident angles and arbitrary epitaxial heterostructures. I first applied these methods to extract the misorientation of lattice planes and the strain of individual layers of Si/SiGe heterostructures relevant to applications in quantum electronics. Further applications reported in this thesis are in probing defects created in the processing of SrTiO3 and in measuring the change in lattice parameter introduced into strained SrTiO3 sheets. The systematic interpretation of nanobeam diffraction patterns aids in the fabrication of SrTiO3 nanostructures.

  7. Anomalous expansion of the copper-apical-oxygen distance in superconducting cuprate bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hua; Yacoby, Yizhak; Butko, Vladimir Y.

    2010-08-27

    We have introduced an improved x-ray phase-retrieval method with unprecedented speed of convergence and precision, and used it to determine with sub-Angstrom resolution the complete atomic structure of epitaxial La{sub 2-x}Sr{sub x}CuO{sub 4} ultrathin films. We focus on superconducting heterostructures built from constituent materials that are not superconducting in bulk samples. Single-phase metallic or superconducting films are also studied for comparison. The results show that this phase-retrieval diffraction method enables accurate measurement of structural modifications in near-surface layers, which may be critically important for elucidation of surface-sensitive experiments. Specifically we find that, while the copper-apical-oxygen distance remains approximately constant inmore » single-phase films, it shows a dramatic increase from the metallic-insulating interface of the bilayer towards the surface by as much as 0.45 {angstrom}. The apical-oxygen displacement is known to have a profound effect on the superconducting transition temperature.« less

  8. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  9. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sasaki, Kohei; Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Kuramata, Akito; Yamakoshi, Shigenobu

    2017-12-01

    We developed depletion-mode vertical Ga2O3 trench metal-oxide-semiconductor field-effect transistors by using n+ contact and n- drift layers. These epilayers were grown on an n+ (001) Ga2O3 single-crystal substrate by halide vapor phase epitaxy. Cu and HfO2 were used for the gate metal and dielectric film, respectively. The mesa width and gate length were approximately 2 and 1 µm, respectively. The devices showed good DC characteristics, with a specific on-resistance of 3.7 mΩ cm2 and clear current modulation. An on-off ratio of approximately 103 was obtained.

  10. Direct observation of fatigue in epitaxially grown Pb(Zr,Ti)O3 thin films using second harmonic piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.

    2011-08-01

    Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.

  11. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  12. Reduction of threading dislocation density in SiGe epilayer on Si (0 0 1) by lateral growth liquid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    O'Reilly, Andrew J.; Quitoriano, Nathaniel J.

    2018-02-01

    Si0.973Ge0.027 epilayers were grown on a Si (0 0 1) substrate by a lateral liquid-phase epitaxy (LLPE) technique. The lateral growth mechanism favoured the glide of misfit dislocations and inhibited the nucleation of new dislocations by maintaining the thickness less than the critical thicknesses for dislocation nucleation and greater than the critical thickness for glide. This promoted the formation of an array of long misfit dislocations parallel to the [1 1 0] growth direction and reduced the threading dislocation density to 103 cm-2, two orders of magnitude lower than the seed area with an isotropic misfit dislocation network.

  13. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    NASA Astrophysics Data System (ADS)

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  14. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Technical Reports Server (NTRS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-01-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  15. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Astrophysics Data System (ADS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-02-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  16. Parasitic phases at the origin of magnetic moment in BiFeO3 thin films grown by low deposition rate RF sputtering

    NASA Astrophysics Data System (ADS)

    Mori, Thiago J. A.; Mouls, Caroline L.; Morgado, Felipe F.; Schio, Pedro; Cezar, Júlio C.

    2017-09-01

    A series of epitaxial BiFeO3 thin films has been grown under high partial pressure in a pure O2 atmosphere, which leads to a low deposition rate. The samples grown under these conditions have presented an evolution of the quality of the epitaxy as the deposition temperature increases, however, spurious β- Bi2O3 and supertetragonal BiFeO3 phases are present in the films grown at higher temperatures. The presence of γ- Fe2O3 is reported in one growing condition, and has been attributed to the origin of hysteretic ferromagnetic behavior. A second kind of magnetism, with higher magnetic moment and anhysteretic behaviour, is attributed to the presence of mixed phases of BiFeO3.

  17. Low-Temperature Surface Preparation and Epitaxial Growth of ZnS and Cu 2ZnSnS 4 on ZnS(110) and GaP(100)

    DOE PAGES

    Harvey, Steven P; Wilson, Samual; Moutinho, Helio R; ...

    2017-08-12

    Here we give a summary of the low-temperature preparation methods of ZnS(110) and GaP(100) crystals for epitaxial growth of ZnS and Cu 2ZnSnS 4 (CZTS) via molecular beam epitaxy. Substrates were prepared for epitaxial growth by means of room-temperature aqueous surface treatments and subsequent ultra-high vacuum transfer to the deposition system. Epitaxial growth of ZnS was successful at 500 K on both ZnS(110) and GaP(100) as only single domains were observed with electron backscatter diffraction; furthermore, transmission electron microscopy measurements confirmed an epitaxial interface. Epitaxial growth of CZTS was successful on ZnS at 700 K. However, epitaxial growth was notmore » possible on GaP at 700 K due to Ga xS y formation, which significantly degraded the quality of the GaP crystal surface. Although CZTS was grown epitaxially on ZnS, growth of multiple crystallographic domains remains a problem that could inherently limit the viability of epitaxial CZTS for model system studies.« less

  18. Low-Temperature Surface Preparation and Epitaxial Growth of ZnS and Cu 2ZnSnS 4 on ZnS(110) and GaP(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Steven P; Wilson, Samual; Moutinho, Helio R

    Here we give a summary of the low-temperature preparation methods of ZnS(110) and GaP(100) crystals for epitaxial growth of ZnS and Cu 2ZnSnS 4 (CZTS) via molecular beam epitaxy. Substrates were prepared for epitaxial growth by means of room-temperature aqueous surface treatments and subsequent ultra-high vacuum transfer to the deposition system. Epitaxial growth of ZnS was successful at 500 K on both ZnS(110) and GaP(100) as only single domains were observed with electron backscatter diffraction; furthermore, transmission electron microscopy measurements confirmed an epitaxial interface. Epitaxial growth of CZTS was successful on ZnS at 700 K. However, epitaxial growth was notmore » possible on GaP at 700 K due to Ga xS y formation, which significantly degraded the quality of the GaP crystal surface. Although CZTS was grown epitaxially on ZnS, growth of multiple crystallographic domains remains a problem that could inherently limit the viability of epitaxial CZTS for model system studies.« less

  19. Preparation of a silicon surface for subsequent growth of dilute nitride alloys by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lazarenko, A. A.; Berezovskaya, T. N.; Denisov, D. V.; Sobolev, M. S.; Pirogov, E. V.; Nikitina, E. V.

    2017-11-01

    This article discusses the process of preparation of a silicon surface for subsequent growth of dilute nitride alloys by molecular-beam epitaxy. The method of preparation of Si (100) and Si (111) substrates was developed. This method provides reproducible high-quality silicon surface for molecular-beam epitaxy of Si-GaP heterostructures. As a result, it managed to reduce the eviction oxide temperature below 800 °C, which is an important parameter for the MBE technology.

  20. Surface control alloy substrates and methods of manufacture therefor

    DOEpatents

    Fritzemeier, Leslie G.; Li, Qi; Rupich, Martin W.; Thompson, Elliott D.; Siegal, Edward J.; Thieme, Cornelis Leo Hans; Annavarapu, Suresh; Arendt, Paul N.; Foltyn, Stephen R.

    2004-05-04

    Methods and articles for controlling the surface of an alloy substrate for deposition of an epitaxial layer. The invention includes the use of an intermediate layer to stabilize the substrate surface against oxidation for subsequent deposition of an epitaxial layer.

  1. Molecular beam epitaxially grown copper indium diselenide and copper gallium diselenide films

    NASA Astrophysics Data System (ADS)

    Yoon, Seokhyun

    2005-12-01

    To eliminate the influence of grain boundaries, CuInSe2 (CIS) and CuGaSe2 (CGS) films were grown on (100) GaAs wafers. The effects of Cu to III metal ratio and dosing with Na on the growth mode and defect properties were studied at two growth temperatures. The impact of post-annealing in Se on the defect structure of CGS film was also studied. Two-dimensional simulations were used to better understand the role of grain boundary on cell performance. For growth at 360°C, the In-rich CIS films were polycrystalline, whereas the Cu-rich CIS films were epitaxial exhibiting a Stranski-Krastanov (S-K) growth mode. It is proposed that a Cu-Se secondary phase enhances the mobility of adatoms, allowing epitaxial growth to a critical thickness, at which point segregation at the nucleation sites became faster the rate of growth. Island structures, embedded in a matrix region, were oriented along the [01-1] directed edges with surface undulations apparent on the matrix surface with dominant {112} crystal planes. At the higher growth temperature of 464°C, the CIS films grew epitaxially without the need of a Cu-Se phase. Both CIS films grown at low and high temperatures were nearly relaxed. The segregation of epitaxial Cu1.5Se was also observed in the Cu-rich, Na-dosed CIS film, which is attributed to a surfactant effect of Na. At a growth temperature of 438°C, CGS films showed a S-K growth mode and nearly pseudomorphic growth. Hemispherical islands with twins were observed in the Ga-rich CGS films and epitaxial Cu1.5Se phase were identified in the top region of the island structure. From the PL analysis of Cu-rich, Na-dosed CGS film after Se-annealing, a new defect level located 20 meV above the valence band edge was identified as NaGa acceptor state. Two-dimensional simulation of the impact of grain boundaries on device performance showed that the short circuit current decreases sharply along with the other device parameters below a critical grain size due to the complete depletion. The increase of dark saturation current with decreasing grain size was predicted due to an increase in the recombination current.

  2. Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes.

    PubMed

    Lin, Xiaoyang; Zhao, Wei; Zhou, Wenbin; Liu, Peng; Luo, Shu; Wei, Haoming; Yang, Guangzhi; Yang, Junhe; Cui, Jie; Yu, Richeng; Zhang, Lina; Wang, Jiaping; Li, Qunqing; Zhou, Weiya; Zhao, Weisheng; Fan, Shoushan; Jiang, Kaili

    2017-02-28

    Exploiting the superior properties of nanomaterials at macroscopic scale is a key issue of nanoscience. Different from the integration strategy, "additive synthesis" of macroscopic structures from nanomaterial templates may be a promising choice. In this paper, we report the epitaxial growth of aligned, continuous, and catalyst-free carbon nanofiber thin films from carbon nanotube films. The fabrication process includes thickening of continuous carbon nanotube films by gas-phase pyrolytic carbon deposition and further graphitization of the carbon layer by high-temperature treatment. As-fabricated nanofibers in the film have an "annual ring" cross-section, with a carbon nanotube core and a graphitic periphery, indicating the templated growth mechanism. The absence of a distinct interface between the carbon nanotube template and the graphitic periphery further implies the epitaxial growth mechanism of the fiber. The mechanically robust thin film with tunable fiber diameters from tens of nanometers to several micrometers possesses low density, high electrical conductivity, and high thermal conductivity. Further extension of this fabrication method to enhance carbon nanotube yarns is also demonstrated, resulting in yarns with ∼4-fold increased tensile strength and ∼10-fold increased Young's modulus. The aligned and continuous features of the films together with their outstanding physical and chemical properties would certainly promote the large-scale applications of carbon nanofibers.

  3. Oxide Interfaces: emergent structure and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, Roy

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-06ER46273 during the period 6/1/2012– 5/31/2016. The overall goals of this program were focused on the behavior of epitaxial oxide heterostructures at atomic length scales (Ångstroms), and correspondingly short time-scales (fs -ns). The results contributed fundamentally to one of the currently most active frontiers in condensed matter physics research, namely to better understand the intricate relationship between charge, lattice, orbital and spin degrees of freedom that are exhibited by complex oxide heterostructures. The findings also contributed towards an important technological goal which was to achievemore » a better basic understanding of structural and electronic correlations so that the unusual properties of complex oxides can be exploited for energy-critical applications. Specific research directions included: probing the microscopic behavior of epitaxial interfaces and buried layers; novel materials structures that emerge from ionic and electronic reconfiguration at epitaxial interfaces; ultrahigh-resolution mapping of the atomic structure of heterointerfaces using synchrotron-based x-ray surface scattering, including direct methods of phase retrieval; using ultrafast lasers to study the effects of transient strain on coherent manipulation of multi-ferroic order parameters; and investigating structural ordering and relaxation processes in real-time.« less

  4. Self-Assembled Multilayer Structure and Enhanced Thermochromic Performance of Spinodally Decomposed TiO2-VO2 Thin Film.

    PubMed

    Sun, Guangyao; Zhou, Huaijuan; Cao, Xun; Li, Rong; Tazawa, Masato; Okada, Masahisa; Jin, Ping

    2016-03-23

    Composite films of VO2-TiO2 were deposited on sapphire (11-20) substrate by cosputtering method. Self-assembled well-ordered multilayer structure with alternating Ti- and V-rich epitaxial thin layer was obtained by thermal annealing via a spinodal decomposition mechanism. The structured thermochromic films demonstrate superior optical modulation upon phase transition, with significantly reduced transition temperature. The results provide a facile and novel approach to fabricate smart structures with excellent performance.

  5. Epitaxy of GaN in high aspect ratio nanoscale holes over silicon substrate

    NASA Astrophysics Data System (ADS)

    Wang, Kejia; Wang, Anqi; Ji, Qingbin; Hu, Xiaodong; Xie, Yahong; Sun, Ying; Cheng, Zhiyuan

    2017-12-01

    Dislocation filtering in gallium nitride (GaN) by epitaxial growth through patterned nanoscale holes is studied. GaN grown from extremely high aspect ratio holes by metalorganic chemical vapor deposition is examined by transmission electron microscopy and high-resolution transmission electron microscopy. This selective area epitaxial growth method with a reduced epitaxy area and an increased depth to width ratio of holes leads to effective filtering of dislocations within the hole and improves the quality of GaN significantly.

  6. Electroless epitaxial etching for semiconductor applications

    DOEpatents

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  7. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.

    PubMed

    Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng

    2017-02-01

    Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi 0.5 Sb 1.5 Te 3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Kinetic Model for GaAs Growth by Hydride Vapor Phase Epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, Kevin L.; Simon, John; Jain, Nikhil

    2016-11-21

    Precise control of the growth of III-V materials by hydride vapor phase epitaxy (HVPE) is complicated by the fact that the growth rate depends on the concentrations of nearly all inputs to the reactor and also the reaction temperature. This behavior is in contrast to metalorganic vapor phase epitaxy (MOVPE), which in common practice operates in a mass transport limited regime where growth rate and alloy composition are controlled almost exclusively by flow of the Group III precursor. In HVPE, the growth rate and alloy compositions are very sensitive to temperature and reactant concentrations, which are strong functions of themore » reactor geometry. HVPE growth, particularly the growth of large area materials and devices, will benefit from the development of a growth model that can eventually be coupled with a computational fluid dynamics (CFD) model of a specific reactor geometry. In this work, we develop a growth rate law using a Langmuir-Hinshelwood (L-H) analysis, fitting unknown parameters to growth rate data from the literature that captures the relevant kinetic and thermodynamic phenomena of the HVPE process. We compare the L-H rate law to growth rate data from our custom HVPE reactor, and develop quantitative insight into reactor performance, demonstrating the utility of the growth model.« less

  9. Thermoelectric properties of epitaxial β-FeSi2 thin films grown on Si(111) substrates with various film qualities

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki

    2017-05-01

    Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.

  10. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOEpatents

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  11. Combined strain and composition-induced effects in the metal-insulator transition of epitaxial VO2 films

    NASA Astrophysics Data System (ADS)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.

    2017-12-01

    The role of epitaxial strain, thermal strain, and bulk (strain-free) lattice parameters in the metal-insulator transition (MIT) and the structural phase transition (SPT) of VO2 is investigated for the case of epitaxial films grown on (001)-oriented TiO2 substrates. Temperature-resolved X-ray reciprocal space mapping has been used to determine the absolute state of strain as well as the bulk lattice parameters of VO2 at 100 °C. For the thinnest film (15 nm), the state of strain is dominated by the film/substrate lattice mismatch yielding an in-plane tensile strain which, in turn, shifts both the MIT and the SPT towards lower temperatures. Conversely, for the thickest film (100 nm), the epitaxial strain is relaxed, so that the state of strain is dominated by the VO2/TiO2 thermal expansion mismatch which is responsible for a compressive in-plane strain. In all cases, a swelling of the strain-free VO2 unit-cell is observed which indicates the presence of interfacial oxygen vacancies and/or Ti diffusion into the VO2 films. The presence of oxygen vacancies stabilizes the metallic rutile phase and counterbalances the action of thermal strain on the MIT and the SPT and degrades the electric properties for the thinnest film. For the thickest film, the resistivity ratio is 6.4 × 104.

  12. Development of epitaxial Al xSc 1-xN for artificially structured metal/semiconductor superlattice metamaterials

    DOE PAGES

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; ...

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The Al xSc 1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity rangemore » for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt Al xSc 1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt Al xSc 1-xN alloys enable high quality epitaxial rocksalt metal/Al xSc 1-xN superlattices with a wide range of accessible metamaterials properties.« less

  13. Ambiguous Role of Growth-Induced Defects on the Semiconductor-to-Metal Characteristics in Epitaxial VO2/TiO2 Thin Films.

    PubMed

    Mihailescu, Cristian N; Symeou, Elli; Svoukis, Efthymios; Negrea, Raluca F; Ghica, Corneliu; Teodorescu, Valentin; Tanase, Liviu C; Negrila, Catalin; Giapintzakis, John

    2018-04-25

    Controlling the semiconductor-to-metal transition temperature in epitaxial VO 2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO 2 epitaxial thin films grown on TiO 2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V 4+ -V 4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO 2 /TiO 2 multilayer structures.

  14. Strain-induced nanostructure of Pb(Mg1/3Nb2/3)O3-PbTiO3 on SrTiO3 epitaxial thin films with low PbTiO3 concentration

    NASA Astrophysics Data System (ADS)

    Kiguchi, Takanori; Fan, Cangyu; Shiraishi, Takahisa; Konno, Toyohiko J.

    2017-10-01

    The singularity of the structure in (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) (x = 0-50 mol %) epitaxial thin films of 100 nm thickness was investigated from the viewpoint of the localized residual strain in the nanoscale. The films were deposited on SrTiO3 (STO) (001) single-crystal substrates by chemical solution deposition (CSD) using metallo-organic decomposition (MOD) solutions. X-ray and electron diffraction patterns revealed that PMN-xPT thin films included a single phase of the perovskite-type structure with the cube-on-cube orientation relationship between PMN-xPT and STO: (001)Film ∥ (001)Sub, [100]Film ∥ [100]Sub. X-ray reciprocal space maps showed an in-plane tensile strain in all the compositional ranges considered. Unit cells in the films were strained from the rhombohedral (pseudocubic) (R) phase to a lower symmetry crystal system, the monoclinic (MB) phase. The morphotropic phase boundary (MPB) that split the R and tetragonal (T) phases was observed at x = 30-35 for bulk crystals of PMN-xPT, whereas the strain suppressed the transformation from the R phase to the T phase in the films up to x = 50. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) analysis and its related local strain analysis revealed that all of the films have a bilayer morphology. The nanoscale strained layer formed only above the film/substrate semi-coherent interface. The misfit dislocations generated the localized and periodic strain fields deformed the unit cells between the dislocation cores from the R to an another type of the monoclinic (MA) phase. Thus, the singular and localized residual strains in the PMN-xPT/STO (001) epitaxial thin films affect the phase stability around the MPB composition and result in the MPB shift phenomena.

  15. Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayari, Taha; Li, Xin; Voss, Paul L.

    Recent advances in epitaxial growth have led to the growth of III-nitride devices on 2D layered h-BN. This advance has the potential for wafer-scale transfer to arbitrary substrates, which could improve the thermal management and would allow III-N devices to be used more flexibly in a broader range of applications. We report wafer scale exfoliation of a metal organic vapor phase epitaxy grown InGaN/GaN Multi Quantum Well (MQW) structure from a 5 nm thick h-BN layer that was grown on a 2-inch sapphire substrate. The weak van der Waals bonds between h-BN atomic layers break easily, allowing the MQW structure tomore » be mechanically lifted off from the sapphire substrate using a commercial adhesive tape. This results in the surface roughness of only 1.14 nm on the separated surface. Structural characterizations performed before and after the lift-off confirm the conservation of structural properties after lift-off. Cathodoluminescence at 454 nm was present before lift-off and 458 nm was present after. Electroluminescence near 450 nm from the lifted-off structure has also been observed. These results show that the high crystalline quality ultrathin h-BN serves as an effective sacrificial layer—it maintains performance, while also reducing the GaN buffer thickness and temperature ramps as compared to a conventional two-step growth method. These results support the use of h-BN as a low-tack sacrificial underlying layer for GaN-based device structures and demonstrate the feasibility of large area lift-off and transfer to any template, which is important for industrial scale production.« less

  16. Epitaxial ternary nitride thin films prepared by a chemical solution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Hongmei; Feldmann, David M; Wang, Haiyan

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gries, K. I.; Vogel, S.; Straubinger, R.

    The self-assembled formation of ordered, vertically stacked rocksalt/wurtzite Mg{sub x}Zn{sub 1−x}O heterostructures by planar phase separation is shown. These heterostructures form quasi “natural” two-dimensional hetero-interfaces between the different phases upon annealing of MgO-oversaturated wurtzite Mg{sub x}Zn{sub 1−x}O layers grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. The optical absorption spectra show a red shift simultaneous with the appearance of a cubic phase upon annealing at temperatures between 900 °C and 1000 °C. Transmission electron microscopy reveals that these effects are caused by phase separation leading to the formation of a vertically ordered rock salt/wurtzite heterostructures. To explain these observations, wemore » suggest a phase separation epitaxy model that considers this process being initiated by the formation of a cubic (Mg,Zn)Al{sub 2}O{sub 4} spinel layer at the interface to the sapphire substrate, acting as a planar seed for the epitaxial precipitation of rock salt Mg{sub x}Zn{sub 1−x}O. The equilibrium fraction x of magnesium in the resulting wurtzite (rock salt) layers is approximately 0.15 (0.85), independent of the MgO content of the as-grown layer and determined by the annealing temperature. This model is confirmed by photoluminescence analysis of the resulting layer systems after different annealing temperatures. In addition, we show that the thermal annealing process results in a significant reduction in the density of edge- and screw-type dislocations, providing the possibility to fabricate high quality templates for quasi-homoepitaxial growth.« less

  18. Superconducting Ga/GaSe layers grown by van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Desrat, W.; Moret, M.; Briot, O.; Ngo, T.-H.; Piot, B. A.; Jabakhanji, B.; Gil, B.

    2018-04-01

    We report on the growth of GaSe films by molecular beam epitaxy on both (111)B GaAs and sapphire substrates. X-ray diffraction reveals the perfect crystallinity of GaSe with the c-axis normal to the substrate surface. The samples grown under Ga rich conditions possess an additional gallium film on top of the monochalcogenide layer. This metallic film shows two normal-to-superconducting transitions which are detected at T c ≈ 1.1 K and 6.0 K. They correspond likely to the β and α-phases of gallium in the form of bulk and droplets respectively. Our results demonstrate that van der Waals epitaxy can lead to future high quality hybrid superconductor/monochalcogenide heterostructures.

  19. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    PubMed Central

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-01-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ < 0.01) obtained on Bi0.95Y0.05FeO3 films epitaxially grown on SrTiO3 (001) by pulsed laser deposition. High resolution transmission electron microscopy and geometric phase analysis evidenced nanostripe domains with alternating compressive/tensile strain and slight lattice rotations. Nanoscale mixed phase/domain ensembles are commonly found in different complex materials with giant dielectric/electromechanical (ferroelectric/ relaxors) or magnetoresistance (manganites) response. Our work brings insight into the joined role of chemical pressure and epitaxial strain on the appearance of nanoscale stripe structure which creates conditions for easy reorientation and high dielectric response, and could be of more general relevance for the field of materials science where engineered materials with huge response to external stimuli are a highly priced target. PMID:27157090

  20. Phase formation and morphological stability of ultrathin Ni-Co-Pt silicide films formed on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng; Wu, Dongping, E-mail: dongpingwu@fudan.edu.cn; Kubart, Tomas

    Ultrathin Ni, Co, and Pt films, each no more than 4 nm in thickness, as well as their various combinations are employed to investigate the competing growth of epitaxial Co{sub 1-y}Ni{sub y}Si{sub 2} films against polycrystalline Pt{sub 1-z}Ni{sub z}Si. The phase formation critically affects the morphological stability of the resulting silicide films, with the epitaxial films being superior to the polycrystalline ones. Any combination of those metals improves the morphological stability with reference to their parent individual metal silicide films. When Ni, Co, and Pt are all included, the precise initial location of Pt does little to affect the final phasemore » formation in the silicide films and the epitaxial growth of Co{sub 1-x}Ni{sub x}Si{sub 2} films is always perturbed, in accordance to thermodynamics that shows a preferential formation of Pt{sub 1-z}Ni{sub z}Si over that of Co{sub 1-y}Ni{sub y}Si{sub 2}.« less

  1. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y. T., E-mail: yasun@kth.se; Omanakuttan, G.; Lourdudoss, S.

    2015-05-25

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reductionmore » effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm{sup 2} at a reverse voltage of −1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm{sup 2}, an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon.« less

  2. Growth of high-quality InGaN/GaN LED structures on (1 1 1) Si substrates with internal quantum efficiency exceeding 50%

    NASA Astrophysics Data System (ADS)

    Lee, JaeWon; Tak, Youngjo; Kim, Jun-Youn; Hong, Hyun-Gi; Chae, Suhee; Min, Bokki; Jeong, Hyungsu; Yoo, Jinwoo; Kim, Jong-Ryeol; Park, Youngsoo

    2011-01-01

    GaN-based light-emitting-diodes (LEDs) on (1 1 1) Si substrates with internal quantum efficiency (IQE) exceeding 50% have been successfully grown by metal organic vapor phase epitaxy (MOVPE). 3.5 μm thick crack-free GaN epitaxial layers were grown on the Si substrates by the re-growth method on patterned templates. Series of step-graded Al xGa 1- xN epitaxial layers were used as the buffer layers to compensate thermal tensile stresses produced during the post-growth cooling process as well as to reduce the density of threading dislocations (TDs) generated due to the lattice mismatches between III-nitride layers and the silicon substrates. The light-emitting region consisted of 1.8 μm thick n-GaN, 3 periods of InGaN/GaN superlattice, InGaN/GaN multiple quantum wells (MQWs) designed for a peak wavelength of about 455 nm, an electron blocking layer (EBL), and p-GaN. The full-widths at half-maximum (FWHM) of (0 0 0 2) and (1 0 -1 2) ω-rocking curves of the GaN epitaxial layers were 410 and 560 arcsec, respectively. Cross-sectional transmission electron microscopy (TEM) investigation revealed that the propagation of the threading dislocations was mostly limited to the interface between the last Al xGa 1- xN buffer and n-GaN layers. The density of the threading dislocations induced pits of n-GaN, as estimated by atomic force microscopy (AFM), was about 5.5×10 8 cm -2. Temperature dependent photoluminescence (PL) measurements with a relative intensity integration method were carried out to estimate the internal quantum efficiency (IQE) of the light-emitting structures grown on Si, which reached up to 55%.

  3. Molecular beam epitaxy and characterization of stannic oxide

    NASA Astrophysics Data System (ADS)

    White, Mark Earl

    Wide bandgap oxides such as tin-doped indium oxide (ITO), zinc oxide (ZnO), and tin oxide (SnO2) are currently used in a variety of technologically important applications, including gas sensors and transparent conducting films for devices such as flat panel displays and photovoltaics. Due to the focus on industrial applications, prior research did not investigate the basic material properties of SnO2 films due to unoptimized growth methods such as RF sputtering and pulsed laser deposition which produced low resistance, polycrystalline films. Beyond these applications, few attempts to enhance and control the fundamental SnO2 properties for semiconducting applications have been reported. This work develops the heteroepitaxy of SnO2 thin films on r-plane Al2O3 by plasma-assisted molecular beam epitaxy (PA-MBE) and demonstrates control of the electrical transport of those films. Phase-pure, epitaxial single crystalline films were controllably and reproducibly grown. X-ray diffraction measurements indicated that these films exhibited the highest structural quality reported. Depending on the epitaxial conditions, tin- and oxygen-rich growth regimes were observed. An unexpected growth rate decrease in the tin-rich regime was determined to be caused by volatile suboxide formation. Excellent transport properties for naturally n-type SnO2 were achieved: the electron mobility, mu, was 103 cm2/V s at a concentration, n, of 2.7 x 1017 cm-3. To control the bulk electron density, antimony was used as an intentional n-type dopant. Antimony-doped film properties showed the highest reported mobilities for doped films (mu = 36 cm2/V s for n = 2.8 x 10 20 cm-3). Films doped with indium had resistivities over five orders-of-magnitude greater than undoped films. These highly resistive films provided a method to control the electrical transport properties. Further research will facilitate detailed studies of the fundamental properties of SnO2 and its development as an oxide with full semiconducting properties.

  4. Study of thin film growth kinetics of homoepitaxy by molecular beam epitaxy and pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Shin, Byungha

    This thesis presents an extensive study of the growth kinetics during low temperature homoepitaxy by Molecular Beam Epitaxy (MBE) and Pulsed Laser Deposition (PLD) of our model system Ge(001). The range of the study covers from the sub-monolayer (sub-ML) regime to the later stage where film thickness amounts to a few thousand MLs; it also covers epitaxial breakdown in which epitaxial growth is no longer sustained and the growing phase becomes amorphous. First, we have conducted a systematic investigation of the phase shift of the RHEED intensity oscillations during Ge(001) homoepitaxy MBE for a wide range of diffraction conditions. We conclude that the phase shift is caused by the overlap of the specular spot and the Kikuchi features, in contrast to models involving dynamical scattering theory for the phase shift. We have studied the sub-ML growth of Ge(001) homoepitaxy by MBE at low temperatures using RHEED intensity oscillations obtained for a range of low incidence angles where the influence of the dynamical nature of electron scattering such as the Kikuchi features is minimized. We have developed a new model for RHEED specular intensity that includes the diffuse scattering off surface steps and the layer interference between terraces of different heights using the kinematic approximation. By using the model to interpret the measured RHEED intensity, we find the evolution of the coverage of the first 2--3 layers, from which we infer the ES barrier height to be 0.077 +/- 0.014 eV. Finally, using a dual MBE-PLD UHV chamber, we have conducted experiments under identical thermal, background, and surface preparation conditions to compare Ge(001) homoepitaxial growth morphology in PLD and MBE at low temperatures. To isolate the effect of kinetic energy of depositing species during PLD, we varied the average kinetic energy: ˜450 eV in PLD-HKE, ˜300 eV in PLD-LKE, and <1 eV in PLD-TH. At 150°C, we find that in PLD-LKE and in MBE the film morphology evolves in a similar fashion: initially irregularly shaped mounds form, followed by pyramidal mounds with edges of the square-base along <100> directions. The areal feature density is higher for PLD films than for MBE films grown at the same average growth rate and temperature. Furthermore, the dependence upon film thickness of roughness and feature separation differ for PLD and MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-HKE > PLD-LKE > MBE. At 100°C, PLD-LKE and MBE follow the same morphology evolution as at 150°C. The epitaxial thicknesses are ranked in the order PLD-LKE > MBE > PLD-TH; additionally, the surface is smoother in PLD-LKE than in MBE. Together, these results convincingly demonstrate that the enhancement of epitaxial growth---the reduction in roughness and the delay of epitaxial breakdown---are due to the kinetic energy of depositing species in PLD. To study the relaxation behavior, we varied the repetition rate from 5 Hz to 20 Hz in PLD-LKE at 100°C. However, we find no systematic effect on surface roughness by varying the repetition rate. This result is consistent with an investigation on the sub-ML growth regime of PLD-LKE by monitoring the intensity variations of the RHEED specular spot.

  5. Silicon Nanosheets: Crossover between Multilayer Silicene and Diamond-like Growth Regime.

    PubMed

    Grazianetti, Carlo; Cinquanta, Eugenio; Tao, Li; De Padova, Paola; Quaresima, Claudio; Ottaviani, Carlo; Akinwande, Deji; Molle, Alessandro

    2017-03-28

    The structural and electronic properties of nanoscale Si epitaxially grown on Ag(111) can be tuned from a multilayer silicene phase, where the constitutive layers incorporate a mixed sp 2 /sp 3 bonding, to other ordinary Si phases, such as amorphous and diamond-like Si. Based on comparative scanning tunneling microscopy and Raman spectroscopy investigations, a key role in determining the nanoscale Si phase is played by the growth temperature of the epitaxial deposition on Ag(111) substrate and the presence or absence of a single-layer silicene as a seed for the successive growth. Furthermore, when integrated into a field-effect transistor device, multilayer silicene exhibits a characteristic ambipolar charge carrier transport behavior that makes it strikingly different from other conventional Si channels and suggestive of a Dirac-like character of the electronic bands of the crystal. These findings spotlight the interest in multilayer silicene as a different nanoscale Si phase for advanced nanotechnology applications such as ultrascaled nanoelectronics and nanomembranes, as well as for fundamental exploration of quantum properties.

  6. Magnetic chalcogenides in 3 and lower dimensions

    NASA Astrophysics Data System (ADS)

    Furdyna, J. K.; Dong, S.-N.; Lee, S.; Liu, X.; Dobrowolska, M.

    2018-06-01

    In this article we review magnetic phenomena that occur in the chalcogenide family involving transition metals. Magnetic properties displayed by bulk 3D chalcogenides compounds and alloys produced by equilibrium growth methods are discussed. 2D magnetic chalcogenide systems such as epitaxial films and more complex multilayers, whose formation is made possible by epitaxial methods and/or by van der Waals epitaxy, are presented in detail. We present a brief overview of magnetic effects emerging as the dimensionality of chalcogenide materialss is reduced to 1D (nanowires and related structures) and to zero-D (quantum dots formed by both top-down and bottom-up methods).

  7. Domain epitaxy for thin film growth

    DOEpatents

    Narayan, Jagdish

    2005-10-18

    A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.

  8. Molecular Beam Epitaxial Growth of Iron Nitrides on Zinc-Blende Gallium Nitride(001)

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Lin, Wenzhi; Chinchore, Abhijit; Wang, Kangkang; Smith, Arthur R.

    2008-03-01

    Iron nitrides are attractive materials for their high magnetic moments, corrosion, and oxidation resistance. We present the successful epitaxial growth of iron nitride on zinc-blende gallium nitride (c-GaN) in order to develop a novel magnetic transition metal nitride/semiconductor system. First, GaN is grown on magnesium oxide (MgO) substrates having (001) orientation using rf N2-plasma molecular beam epitaxy. Then we grow FeN at substrate temperature of ˜ 210 ^oC up to a thickness of ˜ 10.5 nm. In-situ reflection high-energy electron diffraction (RHEED) is used to monitor the surface during growth. Initial results suggest that the epitaxial relationship is FeN[001] || GaN[001] and FeN[100] || GaN[100]. Work in progress is to investigate the surface using in-situ scanning tunneling microscopy (STM) to reveal the surface structure at atomic scale, as well as to explore more Fe-rich magnetic phases.

  9. The stability of the epitaxially introduced metastable metallic structures of thin layers and multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeville, M.C.

    Among the very large number of metallic thin films, sandwiches and multilayers which have been elaborated by epitaxy on various single crystalline substrates during the last decade, few new structures are reported. Limiting to the case of 3d metals, one finds with a great confidence bcc Cobalt, possibly bee Nickel and a non-compact hexagonal (hp) iron. Moreover structures existing at high temperature under ambient pressure are epitaxially stabilized at room temperature (RT) like fcc Cobalt, fcc Iron, fcc and bcc Manganese. The hcp iron which is stable under high pressure at RT would not be epitaxially stabilized at ambient pressuremore » conversely to first findings. The critical thickness of the metastable phase is generally limited to some monolayers in thin films, being slightly increased in sandwiches or multilayers, even if the phenomenological wetting criterion to build superlattices is not satisfied. No increased magnetic moment has been found up to now in the expanded lattices, contrary to band structure calculation predictions. 56 refs.« less

  10. Induced Superconductivity and Engineered Josephson Tunneling Devices in Epitaxial (111)-Oriented Gold/Vanadium Heterostructures.

    PubMed

    Wei, Peng; Katmis, Ferhat; Chang, Cui-Zu; Moodera, Jagadeesh S

    2016-04-13

    We report a unique experimental approach to create topological superconductors by inducing superconductivity into epitaxial metallic thin film with strong spin-orbit coupling. Utilizing molecular beam epitaxy technique under ultrahigh vacuum conditions, we are able to achieve (111) oriented single phase of gold (Au) thin film grown on a well-oriented vanadium (V) s-wave superconductor film with clean interface. We obtained atomically smooth Au thin films with thicknesses even down to below a nanometer showing near-ideal surface quality. The as-grown V/Au bilayer heterostructure exhibits superconducting transition at around 3.9 K. Clear Josephson tunneling and Andreev reflection are observed in S-I-S tunnel junctions fabricated from the epitaxial bilayers. The barrier thickness dependent tunneling and the associated subharmonic gap structures (SGS) confirmed the induced superconductivity in Au (111), paving the way for engineering thin film heterostructures based on p-wave superconductivity and nano devices exploiting Majorana Fermions for quantum computing.

  11. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lei, Qingyu; Golalikhani, Maryam; Davidson, Bruce A.; Liu, Guozhen; Schlom, Darrell G.; Qiao, Qiao; Zhu, Yimei; Chandrasena, Ravini U.; Yang, Weibing; Gray, Alexander X.; Arenholz, Elke; Farrar, Andrew K.; Tenne, Dmitri A.; Hu, Minhui; Guo, Jiandong; Singh, Rakesh K.; Xi, Xiaoxing

    2017-12-01

    Advancements in nanoscale engineering of oxide interfaces and heterostructures have led to discoveries of emergent phenomena and new artificial materials. Combining the strengths of reactive molecular-beam epitaxy and pulsed-laser deposition, we show here, with examples of Sr1+xTi1-xO3+δ, Ruddlesden-Popper phase Lan+1NinO3n+1 (n = 4), and LaAl1+yO3(1+0.5y)/SrTiO3 interfaces, that atomic layer-by-layer laser molecular-beam epitaxy significantly advances the state of the art in constructing oxide materials with atomic layer precision and control over stoichiometry. With atomic layer-by-layer laser molecular-beam epitaxy we have produced conducting LaAlO3/SrTiO3 interfaces at high oxygen pressures that show no evidence of oxygen vacancies, a capability not accessible by existing techniques. The carrier density of the interfacial two-dimensional electron gas thus obtained agrees quantitatively with the electronic reconstruction mechanism.

  12. High Zn Content Single-phase RS-MgZnO Suitable for Solar-blind Frequency Applications

    NASA Astrophysics Data System (ADS)

    Liang, H. L.; Mei, Z. X.; Liu, Z. L.; Guo, Y.; Azarov, A. Yu.; Kuznetsov, A. Yu.; Hallen, A.; Du, X. L.

    2010-11-01

    Single-phase rock-salt MgZnO films with high Zn content were successfully fabricated on the templates of MgO (111)/α-sapphire (0001) by radio-frequency plasma assisted molecular beam epitaxy. The influence of growth temperature on epitaxy of MgZnO alloy films was investigated by the combined studies of crystal structures, compositions, and optical properties. It is found that the incorporation of Zn atoms into the rock-salt MgZnO films is greatly enhanced at low temperature, confirmed by in-situ reflection high-energy electron diffraction observations and ex-situ X-ray diffraction characterization. Zn fraction in the single-phase rock-salt Mg0.53Zn0.47O film was determined by Rutherford backscattering spectrometry. Optical properties of the films were investigated by transmittance spectroscopy and reflectance spectroscopy, both of which demonstrate the solar-blind band gap and its dependence on Zn content.

  13. Influences of misfit strains on liquid phase heteroepitaxial growth

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Peng, Yingying; Yu, Genggeng; Chen, Zheng

    2017-10-01

    Influences of misfit strains with different signs on liquid phase heteroepitaxial growth are studied by binary phase field crystal model. It is amazing to find that double islands are formed because of lateral and vertical separation. The morphological evolution of epitaxial layer depends on signs of misfit strains. The maximum atomic layer thickness of double islands under negative misfit strain is larger than that of under positive misfit strain at the same evolutional time, and size differences between light and dark islands is much smaller under negative misfit strain than that of under positive misfit strain. In addition, concentration field and density field approximately have similar variational law along x direction under the same misfit strain but show opposite variational trend under misfit strains with different signs. Generally, free energy of epitaxial growth systems keeps similar variational trend under misfit strains with different signs.

  14. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  15. Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth

    NASA Astrophysics Data System (ADS)

    Inatomi, Yuya; Kangawa, Yoshihiro; Ito, Tomonori; Suski, Tadeusz; Kumagai, Yoshinao; Kakimoto, Koichi; Koukitu, Akinori

    2017-07-01

    The composition pulling effect in metalorganic vapor-phase InGaN epitaxy was theoretically investigated by thermodynamic analysis. The excess energies of biaxial-strained In x Ga1- x N were numerically calculated using empirical interatomic potentials considering different situations: (i) coherent growth on GaN(0001), (ii) coherent growth on In0.2Ga0.8N(0001), and (iii) bulk growth. Using the excess energies, the excess chemical potentials of InN and GaN alloys were computed. Our results show that compressive strain suppresses In incorporation, whereas tensile strain promotes it. Moreover, assuming chemical equilibrium, the relationship between the solid composition and the growth conditions was predicted. The results successfully reproduced the typical composition pulling effect.

  16. Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications

    PubMed Central

    2013-01-01

    GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377

  17. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    NASA Astrophysics Data System (ADS)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  18. Low Loss Substrates for Microwave Applications and Sol-Gel Processing of Superconductors

    DTIC Science & Technology

    1994-03-31

    crystallographic axis normal to solid state technology, in the growth of ferrimagnetic garnets the substrate plane) or. better, in "epitaxial" films (i.e...hay- by liquid phase epitaxy ( LPE ). is from a melt using a para- ing their three crystallographic axes related to those of a magnetic garnet structure...yttrium barium cuprate (YBCO) films and their microwave applications have been carried out. Several promising new hosts such as Sr(All/2Tal/2)03, Sr(Al1

  19. Producible Alternative to CdTe for Epitaxy (PACE-2) of LWIR HgCdTe

    DTIC Science & Technology

    1984-01-01

    esmv and .de~aty "p bisto momnberl isrepor cover the progre made toward the achievenientof device quality LWIR HgCdTe on an alternate substrte...initial phase of the research program en- titled, _Producible Alternative to CdTe for Epitaxyý(PACE-2) of LWIR HgCJie". Also described are alternate...objective of this program is the demonstration of the feasibility of PACE-2 technology through fabrication and evaluation of multi- plexed LWIR hybrid

  20. Annual Report on Electronics Research at the University of Texas at Austin

    DTIC Science & Technology

    1993-02-14

    Order Phase Transition in a Laser Threshold," AppI. Phys. Lett. 60 3081-3083 (22 June, 1992). 16. K. Sadra and B.G. Streetman, "’The Coupled Hole... beam epitaxy (MBE) to grow stacks of very high quality epitaxial layers. In order to achieve high reflectiviry, both the thickness and composition of...shifts in intense femtosecond laser pulses." Journal of the Optical Society of America B 9, 2032-2040 (1992). II. LIST OF CONFERENCE PROCEEDINGS

  1. Synthesis of Multifunctional Materials

    DTIC Science & Technology

    2006-09-01

    temperatures of 600’C and higher, whereas layers grown at lower temperature contained PbO inclusions. Growth of Pb(ZrxTi1 ..)0 3 ( PZT ) films by molecular...beam epitaxy was demonstrated for the first time. Single-crystal, single-phase PZT films were grown on (001) SrTiO3 substrates at a growth temperature...compounds of the PZT system, PbTiO 3 and PbZrO 3, and three-dimensional growth mode for PZT films of intermediate compositions. Epitaxial growth of PbO

  2. Preface

    NASA Astrophysics Data System (ADS)

    Qiu, Roger; Paskova, Tania

    2016-10-01

    This special issue of Journal of Crystal Growth contains papers presented at the 20th American Conference on Crystal Growth and Epitaxy (ACCGE-20), the 17th Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE-17) and the Second 2D Electronic Materials Symposium, which were jointly held in Big Sky, Montana from August 2-7, 2015. The conference was co-chaired by Joan Redwing (Penn State, ACCGE chair), Luke Mawst (University of Wisconsin, Madison, OMVPE chair), and D. Kurt Gaskill (U.S. Naval Research Laboratory, 2D chair).

  3. III-V Compounds and Alloys: An Update.

    PubMed

    Woodall, J M

    1980-05-23

    The III-V compounds and alloys have been studied for three decades. Until recently, these materials have been commercialized for only a few specialized optoelectronic devices and microwave devices. Advances in thin-film epitaxy techniques, such as liquid phase epitaxy and chemical vapor deposition, are now providing the ability to form good quality lattice-matched heterojunctions with III-V materials. New optoelectronic devices, such as room-temperature continuous-wave injection lasers, have already resulted. This newfound ability may also affect the field of highspeed integrated circuits.

  4. Modeling and Optimization for Epitaxial Growth: Transport and Growth Studies

    DTIC Science & Technology

    1999-01-01

    effect . It is expressed as the sum of these two components j i jC i jT i where jC i and jT i denote the concentration driven and thermally driven...improve manufacturing effectiveness for epitaxial growth of silicon and silicon-germanium (Si-Ge) thin films on a silicon wafer. Growth takes place in the...non-uniformity to compensate for the effects of other phenomena such as reactant depletion, gas heating and gas phase reactions, thermal diffusion of

  5. Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Wenqiang, E-mail: wfeng1@vols.utk.edu; Salgado, Abner J., E-mail: asalgad1@utk.edu; Wang, Cheng, E-mail: cwang1@umassd.edu

    We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a generalmore » framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems – including thin film epitaxy with slope selection and the square phase field crystal model – are carried out to verify the efficiency of the scheme.« less

  6. Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms

    NASA Astrophysics Data System (ADS)

    Feng, Wenqiang; Salgado, Abner J.; Wang, Cheng; Wise, Steven M.

    2017-04-01

    We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems - including thin film epitaxy with slope selection and the square phase field crystal model - are carried out to verify the efficiency of the scheme.

  7. Epitaxial Growth of Oriented Metalloporphyrin Network Thin Film for Improved Selectivity of Volatile Organic Compounds.

    PubMed

    Li, De-Jing; Gu, Zhi-Gang; Vohra, Ismail; Kang, Yao; Zhu, Yong-Sheng; Zhang, Jian

    2017-05-01

    This study reports an oriented and homogenous cobalt-metalloporphyrin network (PIZA-1) thin film prepared by liquid phase epitaxial (LPE) method. The thickness of the obtained thin films can be well controlled, and their photocurrent properties can also be tuned by LPE cycles or the introduction of conductive guest molecules (tetracyanoquinodimethane and C 60 ) into the PIZA-1 pores. The study of quartz crystal microbalance adsorption confirms that the PIZA-1 thin film with [110]-orientation presents much higher selectivity of benzene over toluene and p-xylene than that of the PIZA-1 powder with mixed orientations. These results reveal that the selective adsorption of volatile organic compounds highly depends on the growth orientations of porphyrin-based metal-organic framework thin films. Furthermore, the work will provide a new perspective for developing important semiconductive sensing materials with improved selectivity of guest compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enhanced kinetics of Al{sub 0.97}Ga{sub 0.03}As wet oxidation through the use of hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Du, M.; Sagnes, I.; Beaudoin, G.

    2006-09-11

    This letter reports on a different kinetic behavior of the wet thermal oxidation process resulting in Al{sub x}O{sub y} material depending on the AlAs material growth method, molecular beam epitaxy (MBE) or metal organic vapor phase epitaxy (MOVPE). A higher oxidation rate for MOVPE-grown materia is systemically found. Considering the major role of hydrogen in the wet oxidation reaction, it is believed this observation could be linked with the higher hydrogen residual concentration in MOVPE layers. Using a hydrogen plasma, MBE-grown Al{sub 0.97}Ga{sub 0.03}As layers were hydrogened prior to oxidation. This hydrogenated sample showed a ten times enhanced oxidation ratemore » as compared to the nonhydrogenated Al{sub 0.97}Ga{sub 0.03}As sample. This behavior is mainly attributed to a hydrogen induced modification of the diffusion limited regime, enhancing the diffusion length of oxidizing species and reaction products in the oxidized layers.« less

  9. The structure and magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film

    NASA Astrophysics Data System (ADS)

    Huang, Yuanqi; Chen, Zhengwei; Zhang, Xiao; Wang, Xiaolong; Zhi, Yusong; Wu, Zhenping; Tang, Weihua

    2018-05-01

    High quality epitaxial single phase (Ga0.96Mn0.04)2O3 and Ga2O3 thin films have been prepared on sapphire substrates by using laser molecular beam epitaxy (L-MBE). X-ray diffraction results indicate that the thin films have the monoclinic structure with a ≤ft( {\\bar 201} \\right) preferable orientation. Room temperature (RT) ferromagnetism appears and the magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film are enhanced compared with our previous works. Experiments as well as the first principle method are used to explain the role of Mn dopant on the structure and magnetic properties of the thin films. The ferromagnetic properties are explained based on the concentration of transition element and the defects in the thin films. Project supported by the National Natural Science Foundation of China (Nos. 11404029, 51572033, 51172208) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shengurov, V. G.; Chalkov, V. Yu.; Denisov, S. A.

    The conditions of the epitaxial growth of high-quality relaxed Si{sub 1–x}Ge{sub x} layers by the combined method of the sublimation molecular-beam epitaxy and vapor-phase decomposition of monogermane on a hot wire are considered. The combined growth procedure proposed provides a means for growing Si{sub 1–x}Ge{sub x} layers with a thickness of up to 2 µm and larger. At reduced growth temperatures (T{sub S} = 325–350°C), the procedure allows the growth of Si{sub 1–x}Ge{sub x} layers with a small surface roughness (rms ≈ 2 nm) and a low density of threading dislocations. The photoluminescence intensity of Si{sub 1–x}Ge{sub x}:Er layers ismore » significantly (more than five times) higher than the photoluminescence intensity of layers produced under standard growth conditions (T{sub S} ≈ 500°C) and possess an external quantum efficiency estimated at a level of ~0.4%.« less

  11. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  12. Method utilizing laser-processing for the growth of epitaxial p-n junctions

    DOEpatents

    Young, R.T.; Narayan, J.; Wood, R.F.

    1979-11-23

    This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.

  13. Formation of atomically smooth epitaxial metal films on a chemically reactive interface: Mg on Si(111)

    NASA Astrophysics Data System (ADS)

    Özer, Mustafa M.; Weitering, Hanno H.

    2013-07-01

    Deposition of Mg on Si(111)7 × 7 produces an epitaxial magnesium silicide layer. Under identical annealing conditions, the thickness of this Mg2Si(111) layer increases with deposition amount, reaching a maximum of 4 monolayer (ML) and decreasing to ˜3 ML at higher Mg coverage. Excess Mg coalesces into atomically flat, crystalline Mg(0001) films. This surprising growth mode can be attributed to the accidental commensurability of the Mg(0001), Si(111), and Mg2Si(111) interlayer spacing and the concurrent minimization of in-plane Si mass transfer and domain-wall energies. The commensurability of the interlayer spacing defines a highly unique solid-phase epitaxial growth process capable of producing trilayer structures with atomically abrupt interfaces and atomically smooth surface morphologies.

  14. Electrodeposition of Metal on GaAs Nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  15. Cyan laser diode grown by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turski, H., E-mail: henryk@unipress.waw.pl; Muziol, G.; Wolny, P.

    We demonstrate AlGaN-cladding-free laser diodes (LDs), operating in continuous wave (CW) mode at 482 nm grown by plasma-assisted molecular beam epitaxy (PAMBE). The maximum CW output power was 230 mW. LDs were grown on c-plane GaN substrates obtained by hydride vapor phase epitaxy. The PAMBE process was carried out in metal-rich conditions, supplying high nitrogen flux (Φ{sub N}) during quantum wells (QWs) growth. We found that high Φ{sub N} improves quality of high In content InGaN QWs. The role of nitrogen in the growth of InGaN on (0001) GaN surface as well as the influence of LDs design on threshold currentmore » density are discussed.« less

  16. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  17. Crystallographic orientation of epitaxial BaTiO3 films: The role of thermal-expansion mismatch with the substrate

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Tarsa, E. J.; Clarke, D. R.; Speck, J. S.

    1995-02-01

    Expitaxial ferroelectric BaTiO3 thin films have been grown on (001) MgO and MgO-buffered (001) GaAs substrates by pulsed laser deposition to explore the effect of substrate lattice parameter. X-ray-diffraction studies showed that the BaTiO3 films on both MgO single-crystal substrates and MgO-buffered (001) GaAs substrates have a cube-on-cube epitaxy; however, for the BaTiO3 films grown on MgO the spacing of the planes parallel to the substrate was close to the c-axis dimension of the unconstrained tetragonal phase, whereas the BaTiO3 films on MgO/GaAs exhibited a spacing closer to the a-axis dimension of the unconstrained tetragonal phase. The cube-on-cube epitaxy was maintained through the heterostructures even when thin epitaxial intermediate buffer layers of SrTiO3 and La(0.5)Sr(0.5)CoO3 were used. The intermediate layers had no effect on the position of the BaTiO3 peak in theta - 2 theta scans. Together, these observations indicate that, for the materials combinations studied, it is the thermal-expansion mismatch between the film and the underlying substrate that determines the crystallographic orientation of the BaTiO3 film. Preliminary measurements indicate that the BaTiO3 films are 'weakly' ferroelectric.

  18. Substantiation of Epitaxial Growth of Diamond Crystals on the Surface of Carbide Fe3AlC0.66 Phase Nanoparticles.

    PubMed

    Dzevin, Ievgenij M; Mekhed, Alexander A

    2017-12-01

    Samples of Fe-Al-C alloys of varying composition were synthesized under high pressures and temperatures. From X-ray analysis data, only K-phase with usual for it average parameter of elemental lattice cell, a = 0.376 nm, carbide Fe 3 C and cubic diamond reflexes were present before and after cooling to the temperature of liquid nitrogen.Calculations were made of the parameters of unit cells, the enthalpy of formation of the Fe 3 AlC, Fe 3.125 Al 0.825 C 0.5 , Fe 3.5 Al 0.5 C 0.5 , Fe 3.5 Al 0.5 C, Fe 3 Al 0.66 C 0.66 , and Fe 3 AlC 0.66 unit cells and crystallographic planes were identified on which epitaxial growth of the diamond phase was possible, using density functional theory as implemented in the WIEN2k package.The possibility of epitaxial growth of diamond crystals on Fe 3 AlC 0.66 (K-phase) nanoparticles was, therefore, demonstrated. The [200] plane was established to be the most suitable plane for diamond growth, having four carbon atoms arranged in a square and a central vacancy which can be occupied by carbon during thermal-and-pressure treatment. Distances between carbon atoms in the [200] plane differ by only 5% from distances between the carbon atoms of a diamond. The electronic structure and energetic parameters of the substrate were also investigated. It was shown that the substrate with at least four intermediate layers of K-phase exhibits signs of stability such as negative enthalpy of formation and the Fermi level falling to minimum densities of states.

  19. High power ultraviolet light emitting diodes based on GaN /AlGaN quantum wells produced by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Cabalu, J. S.; Bhattacharyya, A.; Thomidis, C.; Friel, I.; Moustakas, T. D.; Collins, C. J.; Komninou, Ph.

    2006-11-01

    In this paper, we report on the growth by molecular beam epitaxy and fabrication of high power nitride-based ultraviolet light emitting diodes emitting in the spectral range between 340 and 350nm. The devices were grown on (0001) sapphire substrates via plasma-assisted molecular beam epitaxy. The growth of the light emitting diode (LED) structures was preceded by detailed materials studies of the bottom n-AlGaN contact layer, as well as the GaN /AlGaN multiple quantum well (MQW) active region. Specifically, kinetic conditions were identified for the growth of the thick n-AlGaN films to be both smooth and to have fewer defects at the surface. Transmission-electron microscopy studies on identical GaN /AlGaN MQWs showed good quality and well-defined interfaces between wells and barriers. Large area mesa devices (800×800μm2) were fabricated and were designed for backside light extraction. The LEDs were flip-chip bonded onto a Si submount for better heat sinking. For devices emitting at 340nm, the measured differential on-series resistance is 3Ω with electroluminescence spectrum full width at half maximum of 18nm. The output power under dc bias saturates at 0.5mW, while under pulsed operation it saturates at approximately 700mA to a value of 3mW, suggesting that thermal heating limits the efficiency of these devices. The output power of the investigated devices was found to be equivalent with those produced by the metal-organic chemical vapor deposition and hydride vapor-phase epitaxy methods. The devices emitting at 350nm were investigated under dc operation and the output power saturates at 4.5mW under 200mA drive current.

  20. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  1. A reliable method to grow vertically-aligned silicon nanowires by a novel ramp-cooling process

    NASA Astrophysics Data System (ADS)

    Ho, Tzuen-Wei; Hong, Franklin Chau-Nan

    2012-08-01

    We have grown silicon nanowires (SiNWs) on Si (1 1 1) substrates by gold-catalyzed vapor-liquid-solid (VLS) process using tetrachlorosilane (SiCl4) in a hot-wall chemical vapor deposition reactor. Even under the optimized conditions including H2 annealing to reduce the surface native oxide, epitaxial SiNWs of 150-200 nm in diameter often grew along all four <1 1 1> family directions with one direction vertical and three others inclined to the surface. Therefore, the growth of high degree ordered SiNW arrays along [1 1 1] only was attempted on Au-coated Si (1 1 1) by a ramp-cooling process utilizing the liquid phase epitaxy (LPE) mechanism. The Au-coated Si substrate was first annealed in H2 at 650 °C to form Au-Si alloy nanoparticles, and then ramp-cooled at a controlled rate to precipitate epitaxial Si seeds on the substrate based on LPE mechanism. The substrate was further heated in SiCl4/H2 to 850 °C for the VLS growths of SiNWs on the Si seeds. Thus, almost 100% vertically-aligned SiNWs along [1 1 1] only could be reproducibly grown on Si (1 1 1), without using a template or patterning the metal catalyst. The high-density vertically-aligned SiNWs have good potentials for solar cells and nano-devices.

  2. Ga/1-x/Al/x/As LED structures grown on GaP substrates.

    NASA Technical Reports Server (NTRS)

    Woodall, J. M.; Potemski, R. M.; Blum, S. E.; Lynch, R.

    1972-01-01

    Ga(1-x)Al(x)As light-emitting diode structures have been grown on GaP substrates by the liquid-phase-epitaxial method. In spite of the large differences in lattice constants and thermal-expansion coefficients, room-temperature efficiencies up to 5.5% in air have been observed for a peak emission of 8500 A. Using undoped GaP substrates, which are transparent to the infrared and red portions of the spectrum, thin structures of Ga(1-x)Al(x)As with large external efficiencies can now be made.

  3. Defect-driven localization crossovers in MBE-grown La-doped SrSn O3 films

    NASA Astrophysics Data System (ADS)

    Wang, Tianqi; Thoutam, Laxman Raju; Prakash, Abhinav; Nunn, William; Haugstad, Greg; Jalan, Bharat

    2017-11-01

    Through systematic control of cation stoichiometry using a hybrid molecular beam epitaxy method, we show a crossover from weak to strong localization of electronic carriers in La-doped SrSn O3 films on LaAl O3 (001). We demonstrate that substrate-induced dislocations in these films can have a strong influence on the electron phase coherence length resulting in two-dimensional to three-dimensional weak localization crossover. We discuss the correlation between electronic transport, and defects associated with nonstoichiometry and dislocations.

  4. Epitaxial GeSn film formed by solid phase epitaxy and its application to Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor capacitors with sub-nm equivalent oxide thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ching-Wei; Wu, Yung-Hsien; Hsieh, Ching-Heng

    2014-11-17

    Through the technique of solid phase epitaxy (SPE), an epitaxial Ge{sub 0.955}Sn{sub 0.045} film was formed on a Ge substrate by depositing an amorphous GeSn film followed by a rapid thermal annealing at 550 °C. A process that uses a SiO{sub 2} capping layer on the amorphous GeSn film during SPE was proposed and it prevents Sn precipitation from occurring while maintaining a smooth surface due to the reduced surface mobility of Sn atoms. The high-quality epitaxial GeSn film was observed to have single crystal structure, uniform thickness and composition, and tiny surface roughness with root mean square of 0.56 nm. Withmore » a SnO{sub x}-free surface, Yb{sub 2}O{sub 3}-gated GeSn metal-oxide-semiconductor (MOS) capacitors with equivalent oxide thickness (EOT) of 0.55 nm were developed. A small amount of traps inside the Yb{sub 2}O{sub 3} was verified by negligible hysteresis in capacitance measurement. Low leakage current of 0.4 A/cm{sup 2} at gate bias of flatband voltage (V{sub FB})-1 V suggests the high quality of the gate dielectric. In addition, the feasibility of using Yb{sub 2}O{sub 3} to well passivate GeSn surface was also evidenced by the small interface trap density (D{sub it}) of 4.02 × 10{sup 11} eV{sup −1} cm{sup −2}, which can be attributed to smooth GeSn surface and Yb{sub 2}O{sub 3} valency passivation. Both leakage current and D{sub it} performance outperform other passivation techniques at sub-nm EOT regime. The proposed epitaxial GeSn film along with Yb{sub 2}O{sub 3} dielectric paves an alternative way to enable high-performance GeSn MOS devices.« less

  5. Photoluminescence investigation of type-II GaSb/GaAs quantum dots grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Hu, Shuhong; Xie, Hao; Lin, Hongyu; lu, Hongbo; Wang, Chao; Sun, Yan; Dai, Ning

    2018-06-01

    GaSb quantum dots (QDs) with an areal density of ∼1 × 1010 cm-2 are successfully grown by the modified (rapid slider) liquid phase epitaxy technique. The morphology of the QDs has been investigated by scanning electron microscope (SEM) and atom force microscope (AFM). The power-dependence and temperature-dependence photoluminescence (PL) spectra have been studied. The bright room-temperature PL suggests a good luminescence quality of GaSb QDs/GaAs matrix system. The type-II alignment of the GaSb QDs/GaAs matrix system is verified by the blue-shift of the QDs peak with the increase of excitation power. From the temperature-dependence PL spectra, the activation energy of QDs is determined to be 111 meV.

  6. CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.

    1995-05-01

    Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.

  7. Indirectly pumped 3.7 THz InGaAs/InAlAs quantum-cascade lasers grown by metal-organic vapor-phase epitaxy.

    PubMed

    Fujita, Kazuue; Yamanishi, Masamichi; Furuta, Shinichi; Tanaka, Kazunori; Edamura, Tadataka; Kubis, Tillmann; Klimeck, Gerhard

    2012-08-27

    Device-performances of 3.7 THz indirect-pumping quantum-cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax ~100 K. The observed roll-over of output intensities in current ranges below maximum currents and limitation of Tmax are discussed with a model for electron-gas heating in injectors. Possible ways toward elevation of Tmax are suggested.

  8. Quantum dots grown in the InSb/GaSb system by liquid-phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomenko, Ya. A.; Dement’ev, P. A.; Moiseev, K. D., E-mail: mkd@iropt2.ioffe.rssi.ru

    2016-07-15

    The first results of the liquid-phase epitaxial growth of quantum dots in the InSb/GaSb system and atomic-force microscopy data on the structural characteristics of the quantum dots are reported. It is shown that the surface density, shape, and size of nanoislands depend on the deposition temperature and the chemical properties of the matrix surface. Arrays of InSb quantum dots on GaSb (001) substrates are produced in the temperature range T = 450–465°C. The average dimensions of the quantum dots correspond to a height of h = 3 nm and a base dimension of D = 30 nm; the surface densitymore » is 3 × 10{sup 9} cm{sup –2}.« less

  9. Solid-state synthesis, structural and magnetic properties of CoPd films

    NASA Astrophysics Data System (ADS)

    Myagkov, V. G.; Bykova, L. E.; Zhigalov, V. S.; Tambasov, I. A.; Bondarenko, G. N.; Matsynin, A. A.; Rybakova, A. N.

    2015-05-01

    The results of the investigation of the structural and magnetic properties of CoPd films with equiatomic composition have been presented. The films have been synthesized by vacuum annealing of polycrystalline Pd/Co and epitaxial Pd/α-Co(110) and Pd/β-Co(001) bilayer samples. It has been shown that, for all samples, the annealing to 400°C does not lead to the mixing of layers and the formation of compounds. A further increase in the annealing temperature results in the formation of a disordered CoPd phase at the Pd/Co interface, which is fully completed after annealing at 650°C. The epitaxial relationships between the disordered CoPd phase and the MgO(001) substrate are determined as follows: CoPd(110)<

  10. Gaalas/Gaas Solar Cell Process Study

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K. I.

    1980-01-01

    Available information on liquid phase, vapor phase (including chemical vapor deposition) and molecular beam epitaxy growth procedures that could be used to fabricate single crystal, heteroface, (AlGa) As/GaAs solar cells, for space applications is summarized. A comparison of the basic cost elements of the epitaxy growth processes shows that the current infinite melt LPE process has the lower cost per cell for an annual production rate of 10,000 cells. The metal organic chemical vapor deposition (MO-CVD) process has the potential for low cost production of solar cells but there is currently a significant uncertainty in process yield, i.e., the fraction of active material in the input gas stream that ends up in the cell. Additional work is needed to optimize and document the process parameters for the MO-CVD process.

  11. Method for implantation of high dopant concentrations in wide band gap materials

    DOEpatents

    Usov, Igor [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM

    2009-09-15

    A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.

  12. Heteroepitaxial Cu 2O thin film solar cell on metallic substrates

    DOE PAGES

    Wee, Sung Hun; Huang, Po-Shun; Lee, Jung-Kun; ...

    2015-11-06

    Heteroepitaxial, single-crystal-like Cu 2O films on inexpensive, flexible, metallic substrates can potentially be used as absorber layers for fabrication of low-cost, high-performance, non-toxic, earth-abundant solar cells. Here, we report epitaxial growth of Cu 2O films on low cost, flexible, textured metallic substrates. Cu 2O films were deposited on the metallic templates via pulsed laser deposition under various processing conditions to study the influence of processing parameters on the structural and electronic properties of the films. It is found that pure, epitaxial Cu 2O phase without any trace of CuO phase is only formed in a limited deposition window of P(Omore » 2) - temperature. The (00l) single-oriented, highly textured, Cu 2O films deposited under optimum P(O 2) - temperature conditions exhibit excellent electronic properties with carrier mobility in the range of 40-60 cm 2 V -1 s -1 and carrier concentration over 10 16 cm -3. The power conversion efficiency of 1.65% is demonstrated from a proof-of-concept Cu 2O solar cell based on epitaxial Cu 2O film prepared on the textured metal substrate.« less

  13. All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.

    PubMed

    Yu, Xuezhe; Wang, Hailong; Pan, Dong; Zhao, Jianhua; Misuraca, Jennifer; von Molnár, Stephan; Xiong, Peng

    2013-04-10

    Combining self-catalyzed vapor-liquid-solid growth of GaAs nanowires and low-temperature molecular-beam epitaxy of (Ga,Mn)As, we successfully synthesized all zinc-blende (ZB) GaAs/(Ga,Mn)As core-shell nanowires on Si(111) substrates. The ZB GaAs nanowire cores are first fabricated at high temperature by utilizing the Ga droplets as the catalyst and controlling the triple phase line nucleation, then the (Ga,Mn)As shells are epitaxially grown on the side facets of the GaAs core at low temperature. The growth window for the pure phase GaAs/(Ga,Mn)As core-shell nanowires is found to be very narrow. Both high-resolution transmission electron microscopy and scanning electron microscopy observations confirm that all-ZB GaAs/(Ga,Mn)As core-shell nanowires with smooth side surface are obtained when the Mn concentration is not more than 2% and the growth temperature is 245 °C or below. Magnetic measurements with different applied field directions provide strong evidence for ferromagnetic ordering in the all-ZB GaAs/(Ga,Mn)As nanowires. The hybrid nanowires offer an attractive platform to explore spin transport and device concepts in fully epitaxial all-semiconductor nanospintronic structures.

  14. Liquid phase epitaxy of binary III–V nanocrystals in thin Si layers triggered by ion implantation and flash lamp annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wutzler, Rene, E-mail: r.wutzler@hzdr.de; Rebohle, Lars; Prucnal, Slawomir

    2015-05-07

    The integration of III–V compound semiconductors in Si is a crucial step towards faster and smaller devices in future technologies. In this work, we investigate the formation process of III–V compound semiconductor nanocrystals, namely, GaAs, GaSb, and InP, by ion implantation and sub-second flash lamp annealing in a SiO{sub 2}/Si/SiO{sub 2} layer stack on Si grown by plasma-enhanced chemical vapor deposition. Raman spectroscopy, Rutherford Backscattering spectrometry, and transmission electron microscopy were performed to identify the structural and optical properties of these structures. Raman spectra of the nanocomposites show typical phonon modes of the compound semiconductors. The formation process of themore » III–V compounds is found to be based on liquid phase epitaxy, and the model is extended to the case of an amorphous matrix without an epitaxial template from a Si substrate. It is shown that the particular segregation and diffusion coefficients of the implanted group-III and group-V ions in molten Si significantly determine the final appearance of the nanostructure and thus their suitability for potential applications.« less

  15. Heteroepitaxial Cu2O thin film solar cell on metallic substrates

    PubMed Central

    Wee, Sung Hun; Huang, Po-Shun; Lee, Jung-Kun; Goyal, Amit

    2015-01-01

    Heteroepitaxial, single-crystal-like Cu2O films on inexpensive, flexible, metallic substrates can potentially be used as absorber layers for fabrication of low-cost, high-performance, non-toxic, earth-abundant solar cells. Here, we report epitaxial growth of Cu2O films on low cost, flexible, textured metallic substrates. Cu2O films were deposited on the metallic templates via pulsed laser deposition under various processing conditions to study the influence of processing parameters on the structural and electronic properties of the films. It is found that pure, epitaxial Cu2O phase without any trace of CuO phase is only formed in a limited deposition window of P(O2) - temperature. The (00l) single-oriented, highly textured, Cu2O films deposited under optimum P(O2) - temperature conditions exhibit excellent electronic properties with carrier mobility in the range of 40–60 cm2 V−1 s−1 and carrier concentration over 1016 cm−3. The power conversion efficiency of 1.65% is demonstrated from a proof-of-concept Cu2O solar cell based on epitaxial Cu2O film prepared on the textured metal substrate. PMID:26541499

  16. Gallium Phosphide Integrated with Silicon Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chaomin

    It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch ( 0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells. Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si. In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM). The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation during GaP epitaxial growth on Si by MBE were proposed. To achieve high performance of GaP/Si solar cells, different GaP/Si structures were designed, fabricated and compared, including GaP as a hetero-emitter, GaP as a heterojunction on the rear side, inserting passivation membrane layers at the GaP/Si interface, and GaP/wet-oxide functioning as a passivation contact. A designed of a-Si free carrier-selective contact MoOx/Si/GaP solar cells demonstrated 14.1% power conversion efficiency.

  17. Study of process technology for GaAlAs/GaAs heteroface solar cells

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Walker, G. H.; Byvik, C. E.; Almgren, D. W.

    1980-01-01

    Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt.

  18. High-efficiency solar cells fabricated from direct-current magnetron sputtered n-indium tin oxide onto p-InP grown by atmospheric pressure metalorganic vapor phase epitaxy

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    An attempt is made to improve device efficiencies by depositing indium tin oxide onto epitaxially grown p-InP on p(+)-InP substrates. This leads to a reduction in the device series resistance, high-quality reproducible surfaces, and an improvement in the transport properties of the base layer. Moreover, many of the facets associated with badly characterized bulk liquid encapsulated Czochralski substrates used in previous investigations are removed in this way.

  19. Epitaxial growth and photoluminescence of hexagonal CdS 1- xSe x alloy films

    NASA Astrophysics Data System (ADS)

    Grün, M.; Gerlach, H.; Breitkopf, Th.; Hetterich, M.; Reznitsky, A.; Kalt, H.; Klingshirn, C.

    1995-01-01

    CdSSe ternary alloy films were grown on GaAs(111) by hot-wall beam epitaxy. The hexagonal crystal phase is obtained. The composition varies from 0 to 40% selenium. Luminescence spectroscopy at low temperatures shows a dominant effect by alloy disorder. Localization of carriers, for example, is still observed at a pulsed optical excitation density of 6 mJ/cm 2. The overall quality of the CdSSe films is sufficient to use them as buffer layers for the growth of hexagonal superlattices.

  20. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  1. Native oxides formation and surface wettability of epitaxial III-V materials: The case of InP and GaAs

    NASA Astrophysics Data System (ADS)

    Gocalinska, A.; Rubini, S.; Pelucchi, E.

    2016-10-01

    The time dependent transition from hydrophobic to hydrophilic states of the metalorganic vapour phase epitaxy (MOVPE) grown InP, GaAs and InAs is systematically documented by contact angle measurements. Natural oxides forming on the surfaces of air-exposed materials, as well as the results of some typical wet chemical process to remove those oxides, were studied by X-ray photoemission spectroscopy (XPS), revealing, surprisingly, a fundamental lack of strong correlations between the surface oxide composition and the reported systematic changes in hydrophobicity.

  2. Molecular Beam Epitaxy of lithium niobium oxide multifunctional materials

    NASA Astrophysics Data System (ADS)

    Tellekamp, M. Brooks; Shank, Joshua C.; Doolittle, W. Alan

    2017-04-01

    The role of stoichiometry and growth temperature in the preferential nucleation of material phases in the Li-Nb-O family are explored yielding an empirical growth phase diagram. It is shown that while single parameter variation often produces multi-phase films, combining substrate temperature control with the previously published lithium flux limited growth allows the repeatable growth of high quality single crystalline films of many different oxide phases. Higher temperatures (800-1050 °C) than normally used in MBE were necessary to achieve high quality materials. At these temperatures the desorption of surface species is shown to play an important role in film composition. Using this method single phase films of NbO, NbO2, LiNbO2, Li3NbO4, LiNbO3, and LiNb3O8 have been achieved in the same growth system, all on c-plane sapphire. Finally, the future of these films in functional oxide heterostructures is briefly discussed.

  3. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; Allerman, Andrew A.; Lee, Stephen R.

    2017-04-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750-900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to 7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at 362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.

  4. Growth and Characterization of (211)B Cadmium Telluride Buffer Layer Grown by Metal-organic Vapor Phase Epitaxy on Nanopatterned Silicon for Mercury Cadmium Telluride Based Infrared Detector Applications

    NASA Astrophysics Data System (ADS)

    Shintri, Shashidhar S.

    Mercury cadmium telluride (MCT or Hg1-xCdxTe) grown by molecular beam epitaxy (MBE) is presently the material of choice for fabricating infrared (IR) detectors used in night vision based military applications. The focus of MCT epitaxy has gradually shifted since the last decade to using Si as the starting substrate since it offers several advantages. But the ˜19 % lattice mismatch between MCT and Si generates lots of crystal defects some of which degrade the performance of MCT devices. Hence thick CdTe films are used as buffer layers on Si to accommodate the defects. However, growth of high quality single crystal CdTe on Si is challenging and to date, the best MBE CdTe/Si reportedly has defects in the mid-105 cm -2 range. There is a critical need to reduce the defect levels by at least another order of magnitude, which is the main motivation behind the present work. The use of alternate growth technique called metal-organic vapor phase epitaxy (MOVPE) offers some advantages over MBE and in this work MOVPE has been employed to grow the various epitaxial films. In the first part of this work, conditions for obtaining high quality (211)B CdTe epitaxy on (211)Si were achieved, which also involved studying the effect of having additional intermediate buffer layers such as Ge and ZnTe and incorporation of in-situ thermal cyclic annealing (TCA) to reduce the dislocation density. A critical problem of Si cross-contamination due to 'memory effect' of different reactant species was minimized by introducing tertiarybutylArsine (TBAs) which resulted in As-passivation of (211)Si. The best 8-10 µm thick CdTe films on blanket (non-patterned) Si had dislocations around 3×105 cm-2, which are the best reported by MOVPE till date and comparable to the highest quality films available by MBE. In the second part of the work, nanopatterned (211)Si was used to study the effect of patterning on the crystal quality of epitaxial CdTe. In one such study, patterning of ˜20 nm holes in SiO2/Ge/(211)Si was achieved by block co-polymer (BCP) lithography. Conditions for selective CdTe epitaxy was achieved and results showed different defect propagation mechanism at the patterned interface compared to the films grown on blanket Si. In another study, patterning of ˜360 nm holes in SiO2/(211)Si was done by molecular transfer lithography (MxL). Conditions for selective Ge and CdTe epitaxy were achieved which was the most challenging part of this work. Thin CdTe films were characterized to check the effect of nanopatterning. Certain results invariably showed that CdTe grown on nanopatterned substrates demonstrated promise of defect reduction and blocking close to the growth interface. But presently, nanopatterning also offers some serious challenges such as uniformity of patterns and substrate cleaning prior to growth for successful implementation of epitaxy on very large areas. Such factors resulted in degradation of overall crystal quality and will be discussed in this work. This is the first successful demonstration of selective (211)B CdTe epitaxy on Si by MOVPE using some of the relatively novel and promising nanopatterning techniques.

  5. Strain tuning of electronic structure in Bi 4Ti 3O 12-LaCoO 3 epitaxial thin films

    DOE PAGES

    Choi, Woo Seok; Lee, Ho Nyung

    2015-05-08

    In this study, we investigated the crystal and electronic structures of ferroelectric Bi 4Ti 3O 12 single-crystalline thin films site-specifically substituted with LaCoO 3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO 3 and SrTiO 3 substrates to vary the degree of strain. With increasing the LCO substitution, we observed a systematic increase in the c-axis lattice constant of the Aurivillius phase related with the modification of pseudo-orthorhombic unit cells. These compositional and structural changes resulted in a systematic decrease in the band gap, i.e., the optical transition energy between the oxygen 2p and transition-metal 3dmore » states, based on a spectroscopic ellipsometry study. In particular, the Co 3d state seems to largely overlap with the Ti t 2g state, decreasing the band gap. Interestingly, the applied tensile strain facilitates the band-gap narrowing, demonstrating that epitaxial strain is a useful tool to tune the electronic structure of ferroelectric transition-metal oxides.« less

  6. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    NASA Astrophysics Data System (ADS)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  7. Epitaxial growth of GaN/AlN/InAlN heterostructures for HEMTs in horizontal MOCVD reactors with different designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsatsulnikov, A. F., E-mail: andrew@beam.ioffe.ru; Lundin, W. V.; Sakharov, A. V.

    2016-09-15

    The epitaxial growth of InAlN layers and GaN/AlN/InAlN heterostructures for HEMTs in growth systems with horizontal reactors of the sizes 1 × 2', 3 × 2', and 6 × 2' is investigated. Studies of the structural properties of the grown InAlN layers and electrophysical parameters of the GaN/AlN/InAlN heterostructures show that the optimal quality of epitaxial growth is attained upon a compromise between the growth conditions for InGaN and AlGaN. A comparison of the epitaxial growth in different reactors shows that optimal conditions are realized in small-scale reactors which make possible the suppression of parasitic reactions in the gas phase.more » In addition, the size of the reactor should be sufficient to provide highly homogeneous heterostructure parameters over area for the subsequent fabrication of devices. The optimal compositions and thicknesses of the InAlN layer for attaining the highest conductance in GaN/AlN/InAlN transistor heterostructures.« less

  8. Epitaxially Grown Films of Standing and Lying Pentacene Molecules on Cu(110) Surfaces

    PubMed Central

    2011-01-01

    Here, it is shown that pentacene thin films (30 nm) with distinctively different crystallographic structures and molecular orientations can be grown under essentially identical growth conditions in UHV on clean Cu(110) surfaces. By X-ray diffraction, we show that the epitaxially oriented pentacene films crystallize either in the “thin film” phase with standing molecules or in the “single crystal” structure with molecules lying with their long axes parallel to the substrate. The morphology of the samples observed by atomic force microscopy shows an epitaxial alignment of pentacene crystallites, which corroborates the molecular orientation observed by X-ray diffraction pole figures. Low energy electron diffraction measurements reveal that these dissimilar growth behaviors are induced by subtle differences in the monolayer structures formed by slightly different preparation procedures. PMID:21479111

  9. Adjustable magnetoelectric effect of self-assembled vertical multiferroic nanocomposite films by the in-plane misfit strain and ferromagnetic volume fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huaping, E-mail: wuhuaping@gmail.com; Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540; Chai, Guozhong

    The strain-mediated magnetoelectric (ME) property of self-assembled vertical multiferroic nanocomposite films epitaxially grown on cubic substrates was calculated by a nonlinear thermodynamic theory combined with the elastic theory. The dependent relations of phase state of ferroelectric films with the in-plane misfit strain, out-of-plane misfit strain, temperature, and volume fraction of ferromagnetic phase were confirmed. The effects of in-plane misfit strain and ferromagnetic volume fraction on the polarization and dielectric constant of ferroelectric films at room temperature were elaborately analyzed for the vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films. Our calculated results confirmed the relationship amongmore » ME effect and in-plane misfit strain and ferromagnetic volume fraction in the nanocomposite films. The ME voltage coefficients of vertical BaTiO{sub 3}-CoFe{sub 2}O{sub 4} and PbTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films displayed various maximums and abrupt points at special phases and phase transition boundaries. The ME voltage coefficients of lead-free BaTiO{sub 3}-CoFe{sub 2}O{sub 4} nanocomposite films epitaxially grown on different substrates could reach a comparative value of ∼2 V·cm{sup −1}·Oe{sup −1} under the controllable in-plane misfit strain induced by substrate clamping. Our results provided an available method for the optimal design of vertical multiferroic nanocomposites with adjustable ME effect by optimizing the ferromagnetic volume fraction and substrate type.« less

  10. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    NASA Astrophysics Data System (ADS)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  11. Epitaxial growth and chemical vapor transport of ZnTe by closed-tube method

    NASA Astrophysics Data System (ADS)

    Ogawa, H.; Nishio, M.; Arizumi, T.

    1981-04-01

    The epitaxial growth of ZnTe in a ZnTe- I2 system by a closed tube method is investigated by varying the charged iodine concentration ( MI2) or the temperature difference ( ΔT) between the high and low temperature zones. The transport rate is a function of MI2 and ΔT and has a minimum value increasing monotonically at higher and lower iodine concentration, and it increases with increasing ΔT. This experimental result can be explained well by thermodynamical calculations. The growth rate of ZnTe has the same tendency as the transport rate. The surface morphology of epitaxial layer on (110)ZnTe is not sinificantly affected by MI2 but becomes smoother with increasing temperature. The surface morphology and the growth rate of ZnTe layers also depend upon the orientation of substrate. The epitaxial layer can be obtained at temperature as low as 623°C.

  12. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    NASA Astrophysics Data System (ADS)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  13. Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Tuocheng; Jia, Zhenzhao; Yan, Baoming

    2015-01-05

    We demonstrate hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Compared with the conventional thermal decomposition technique, the size of the growth domain by this method is substantially increased and the thickness variation is reduced. Based on the morphology of epitaxial graphene, the role of hydrogen is revealed. It is found that hydrogen acts as a carbon etchant. It suppresses the defect formation and nucleation of graphene. It also improves the kinetics of carbon atoms via hydrocarbon species. These effects lead to increase of the domain size and the structure quality. The consequent capping effectmore » results in smooth surface morphology and suppression of multilayer growth. Our method provides a viable route to fine tune the growth kinetics of epitaxial graphene on SiC.« less

  14. Cosine (Cobalt Silicide Growth Through Nitrogen-Induced Epitaxy) Process For Epitaxial Cobalt Silicide Formation For High Performance Sha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Chong Wee; Shin, Chan Soo; Gall, Daniel

    A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.

  15. Ultra-Low Threshold Vertical-Cavity Surface-Emitting Lasers for USAF Applications

    DTIC Science & Technology

    2005-01-01

    molecular beam epitaxy , semiconductors, finite element method, modeling and simulation, oxidation furnace 16. SECURITY CLASSIFICATION OF: 19a. NAME OF...Patterson Air Force Base). Device material growth was accomplished by means of molecular beam epitaxy (MBE) using a Varian GENII MBE system owned by the...grown by molecular beam epitaxy on a GaAs substrate. Vertical posts, with square and circular cross sections ranging in size from 5 to 40 microns

  16. Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate.

    PubMed

    Shimizu, Tomohiro; Zhang, Zhang; Shingubara, Shoso; Senz, Stephan; Gösele, Ulrich

    2009-04-01

    Vertically aligned epitaxial Ge/Si heterostructure nanowire arrays on Si(100) substrates were prepared by a two-step chemical vapor deposition method in anodic aluminum oxide templates. n-Butylgermane vapor was employed as new safer precursor for Ge nanowire growth instead of germane. First a Si nanowire was grown by the vapor liquid solid growth mechanism using Au as catalyst and silane. The second step was the growth of Ge nanowires on top of the Si nanowires. The method presented will allow preparing epitaxially grown vertical heterostructure nanowires consisting of multiple materials on an arbitrary substrate avoiding undesired lateral growth.

  17. Spin Polarization of Alternate Monatomic Epitaxial [Fe/Co]n Superlattice

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Doi, Masaaki; Sahashi, Masashi; Rajanikanth, Ammanabrolu; Takahashi, Yukiko; Hono, Kazuhiro

    2012-09-01

    The spin polarization (P) of alternate monatomic layered (AML) epitaxial [Fe/Co]n superlattices grown on MgO(001) substrates by electron beam (EB) evaporation has been measured by the point contact Andreev reflection (PCAR) method. The intrinsic transport P of 0.60 was obtained for the AML epitaxial [Fe/Co]n superlattice grown at 75 °C, which is comparable to that of half-metallic Heusler alloys measured by PCAR. The AML epitaxial [Fe/Co]n superlattices on MgO(001), which are expected to possess the B2 ordered structure, show the highest spin polarization of metallic Fe-Co alloy films.

  18. One-step Ge/Si epitaxial growth.

    PubMed

    Wu, Hung-Chi; Lin, Bi-Hsuan; Chen, Huang-Chin; Chen, Po-Chin; Sheu, Hwo-Shuenn; Lin, I-Nan; Chiu, Hsin-Tien; Lee, Chi-Young

    2011-07-01

    Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 < x < 1) graded buffer layer was demonstrated through a facile chemical vapor deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

  19. Epitaxial structure and electronic property of β-Ga2O3 films grown on MgO (100) substrates by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Ryo; Yoshimatsu, Kohei; Hattori, Mai; Ohtomo, Akira

    2017-10-01

    We investigated heteroepitaxial growth of Si-doped Ga2O3 films on MgO (100) substrates by pulsed-laser deposition as a function of growth temperature (Tg) to find a strong correlation between the structural and electronic properties. The films were found to contain cubic γ-phase and monoclinic β-phase, the latter of which indicated rotational twin domains when grown at higher Tg. The formation of the metastable γ-phase and twin-domain structure in the stable β-phase are discussed in terms of the in-plane epitaxial relationships with a square MgO lattice, while crystallinity of the β-phase degraded monotonically with decreasing Tg. The room-temperature conductivity indicated a maximum at the middle of Tg, where the β-Ga2O3 layer was relatively highly crystalline and free from the twin-domain structure. Moreover, both crystallinity and conductivity of β-Ga2O3 films on the MgO substrates were found superior to those on α-Al2O3 (0001) substrates. A ratio of the conductivity, attained to the highest quantity on each substrate, was almost three orders of magnitude.

  20. Layer-by-layer epitaxial growth of defect-engineered strontium cobaltites

    DOE PAGES

    Andersen, Tassie K.; Cook, Seyoung; Wan, Gang; ...

    2018-01-18

    Here, control over structure and composition of (ABO 3) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cation’s stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentrationmore » as a function of film thickness. Experimental results are compared to kinetically-limited thermodynamic predictions, in particular, solute trapping, with semi-quantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.« less

  1. Layer-by-layer epitaxial growth of defect-engineered strontium cobaltites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Cook, Seyoung; Wan, Gang

    Here, control over structure and composition of (ABO 3) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cation’s stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentrationmore » as a function of film thickness. Experimental results are compared to kinetically-limited thermodynamic predictions, in particular, solute trapping, with semi-quantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.« less

  2. Layer-by-Layer Epitaxial Growth of Defect-Engineered Strontium Cobaltites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Tassie K.; Cook, Seyoung; Wan, Gang

    Control over structure and composition of (ABO(3)) perovskite oxides offers exciting opportunities since these materials possess unique, tunable properties. Perovskite oxides with cobalt B-site cations are particularly promising, as the range of the cations stable oxidation states leads to many possible structural frameworks. Here, we report growth of strontium cobalt oxide thin films by molecular beam epitaxy, and conditions necessary to stabilize different defect concentration phases. In situ X-ray scattering is used to monitor structural evolution during growth, while in situ X-ray absorption near-edge spectroscopy is used to probe oxidation state and measure changes to oxygen vacancy concentration as amore » function of film thickness. Experimental results are compared to kinetically limited thermodynamic predictions, in particular, solute trapping, with semiquantitative agreement. Agreement between observations of dependence of cobaltite phase on oxidation activity and deposition rate, and predictions indicates that a combined experimental/theoretical approach is key to understanding phase behavior in the strontium cobalt oxide system.« less

  3. Investigation of the growth of garnet films by liquid phase epitaxy

    NASA Technical Reports Server (NTRS)

    Moody, J. W.; Shaw, R. W.; Sandfort, R. M.

    1974-01-01

    Liquid phase expitaxy was investigated to determine its applicability to fabricating magnetic rare earth garnet films for spacecraft data recording systems. Two mixed garnet systems were investigated in detail: (1) Gd-Y and (2) Eu-Yb-Y. All films were deposited on Gd3Ga5012 substrates. The uniaxial anisotropy of the Gd-Y garnets is primarily stress-induced. These garnets are characterized by high-domain wall mobility, low coercivity and modest anisotropy. Characteristic length was found to be relatively sensitive to temperature. The Eu-Yb-Y garnets exhibit acceptable mobilities, good temperature stability and reasonable quality factors. The uniaxial anisotropy of these garnets is primarily growth-induced. The system is well suited for compositional "tailoring" to optimize specific desirable properties. Liquid phase epitaxy can be used to deposit Gd3Ga5012 spacing layers on magnetic garnet films and this arrangement possesses certain advantages over more conventional magnetic filmspacing layer combinations. However, it cannot be used if the magnetic film is to be ion implanted.

  4. Nanoscopic insights into the effect of silicon on core-shell InGaN/GaN nanorods: Luminescence, composition, and structure

    NASA Astrophysics Data System (ADS)

    Ren, Christopher X.; Tang, Fengzai; Oliver, Rachel A.; Zhu, Tongtong

    2018-01-01

    GaN-based nanorods and nanowires have recently shown great potential as a platform for future energy-efficient photonic and optoelectronic applications, such as light emitting diodes and nanolasers. Currently, the most industrially scalable method of growing III-nitride nanorods remains metal-organic vapour phase epitaxy: whilst this growth method is often used in conjunction with extrinsic metallic catalyst particles, these particles can introduce unwanted artifacts in the nanorods such as stacking faults. In this paper, we examine the catalyst-free growth of GaN/InGaN core-shell nanorods by metal-organic vapor phase epitaxy for optoelectronic applications using silane to enhance the vertical growth of the nanorods. We find that both the silane concentration and exposure time can greatly affect the nanorod properties, and that larger concentrations and longer exposure times can severely degrade the nanorod structure and thus result in reduced emission from the InGaN QW shell. Finally, we report that the mechanism behind the effect of silane on the nanorod structure is the unintentional formation of an SiNx interlayer following completion of the growth of the nanorod core. This interlayer induces the growth of GaN islands on the nanorod sidewalls, the spatial distribution of which can affect their subsequent coalescence during the lateral growth stages and result in non-uniformity in the nanorod structure. This suggests that careful control of the silane flow must be exerted during growth to achieve both high aspect ratio nanorods and uniform emission along the length of the nanorod.

  5. Strain-free bulk-like GaN grown by hydride-vapor-phase-epitaxy on two-step epitaxial lateral overgrown GaN template

    NASA Astrophysics Data System (ADS)

    Gogova, D.; Kasic, A.; Larsson, H.; Hemmingsson, C.; Monemar, B.; Tuomisto, F.; Saarinen, K.; Dobos, L.; Pécz, B.; Gibart, P.; Beaumont, B.

    2004-07-01

    Crack-free bulk-like GaN with high crystalline quality has been obtained by hydride-vapor-phase-epitaxy (HVPE) growth on a two-step epitaxial lateral overgrown GaN template on sapphire. During the cooling down stage, the as-grown 270-μm-thick GaN layer was self-separated from the sapphire substrate. Plan-view transmission electron microscopy images show the dislocation density of the free-standing HVPE-GaN to be ˜2.5×107 cm-2 on the Ga-polar face. A low Ga vacancy related defect concentration of about 8×1015 cm-3 is extracted from positron annihilation spectroscopy data. The residual stress and the crystalline quality of the material are studied by two complementary techniques. Low-temperature photoluminescence spectra show the main neutral donor bound exciton line to be composed of a doublet structure at 3.4715 (3.4712) eV and 3.4721 (3.4718) eV for the Ga- (N-) polar face with the higher-energy component dominating. These line positions suggest virtually strain-free material on both surfaces with high crystalline quality as indicated by the small full width at half maximum values of the donor bound exciton lines. The E1(TO) phonon mode position measured at 558.52 cm-1 (Ga face) by infrared spectroscopic ellipsometry confirms the small residual stress in the material, which is hence well suited to act as a lattice-constant and thermal-expansion-coefficient matched substrate for further homoepitaxy, as needed for high-quality III-nitride device applications.

  6. Strained-layer epitaxy of germanium-silicon alloys

    NASA Astrophysics Data System (ADS)

    Bean, J. C.

    1985-10-01

    Strained-layer epitaxy is presented as a developing technique for combining Si with other materials in order to obtain semiconductors with enhanced electronic properties. The method involves applying layers sufficiently thin so that the atoms deposited match the bonding configurations of the substrate crystal. When deposited on Si, a four-fold bonding pattern is retained, with a lowered interfacial energy and augmented stored strain energy in the epitaxial layer. The main problem which remains is building an epitaxial layer thick enough to yield desired epitaxial properties while avoiding a reversion to an unstrained structure. The application of a Ge layer to Si using MBE is described, along with the formation of heterojunction multi-layer superlattices, which can reduce the dislocation effects in some homojunctions. The technique shows promise for developing materials of use as bipolar transistors, optical detectors and fiber optic transmission devices.

  7. The {alpha}-particle excited scintillation response of the liquid phase epitaxy grown LuAG:Ce thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prusa, P.; Cechak, T.; Mares, J. A.

    2008-01-28

    Liquid phase epitaxy grown Lu{sub 3}Al{sub 5}O{sub 12}:Ce (LuAG:Ce) 20 {mu}m thick films and plate cut from the bulk Czochralski-grown LuAG:Ce crystal were prepared for comparison of photoelectron yield (PhY) and PhY dependence on shaping time (0.5-10 {mu}s). {sup 241}Am ({alpha} particles) was used for excitation. At the 0.5 {mu}s shaping time, the best film shows comparable PhY with the bulk sample. PhY of bulk material increases noticeably more with shaping time than that of the films. Energy resolution of films is better. Influence of Pb{sup 2+} contamination in the films (from the flux) and antisite Lu{sub Al} defect inmore » bulk material is discussed.« less

  8. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    DOE PAGES

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; ...

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  9. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi

    2018-04-01

    In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.

  10. Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs

    NASA Technical Reports Server (NTRS)

    Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.

    1979-01-01

    The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.

  11. Thermodynamic analysis of trimethylgallium decomposition during GaN metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2018-04-01

    We analyzed the decomposition of Ga(CH3)3 (TMG) during the metal organic vapor phase epitaxy (MOVPE) of GaN on the basis of first-principles calculations and thermodynamic analysis. We performed activation energy calculations of TMG decomposition and determined the main reaction processes of TMG during GaN MOVPE. We found that TMG reacts with the H2 carrier gas and that (CH3)2GaH is generated after the desorption of the methyl group. Next, (CH3)2GaH decomposes into (CH3)GaH2 and this decomposes into GaH3. Finally, GaH3 becomes GaH. In the MOVPE growth of GaN, TMG decomposes into GaH by the successive desorption of its methyl groups. The results presented here concur with recent high-resolution mass spectroscopy results.

  12. Effect of AlInGaN barrier layers with various TMGa flows on optoelectronic characteristics of near UV light-emitting diodes grown by atmospheric pressure metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fu, Yi-Keng; Lu, Yu-Hsuan; Jiang, Ren-Hao; Chen, Bo-Chun; Fang, Yen-Hsiang; Xuan, Rong; Su, Yan-Kuin; Lin, Chia-Feng; Chen, Jebb-Fang

    2011-08-01

    Near ultraviolet light-emitting diodes (LEDs) with quaternary AlInGaN quantum barriers (QBs) are grown by atmospheric pressure metalorganic vapor phase epitaxy. The indium mole fraction of AlInGaN QB could be enhanced as we increased the TMG flow rate. Both the wavelength shift in EL spectra and forward voltage at 20 mA current injection were reduced by using AlInGaN QB. Under 100 mA current injection, the LED output power with Al 0.089In 0.035Ga 0.876N QB can be enhanced by 15.9%, compared to LED with GaN QB. It should be attributed to a reduction of lattice mismatch induced polarization mismatch in the active layer.

  13. New PbSnTe heterojunction laser diode structures with improved performance

    NASA Technical Reports Server (NTRS)

    Fonstad, C. G.; Kasemset, D.; Hsieh, H. H.; Rotter, S.

    1980-01-01

    Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved.

  14. Copper-related defects in In0.53Ga0.47As grown by liquid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Tilly, L. P.; Grimmeiss, H. G.; Hansson, P. O.

    1993-01-01

    High-purity In0.53Ga0.47As lattice matched to InP was grown by liquid-phase epitaxy and used for the study of Cu-related defects. The samples had a free-electron carrier concentration of n=5.0×1014 cm-3 and an electron mobility of μ77 K=44 000 cm2/V s. A Cu-related acceptor level 25 meV above the valence-band edge was identified using photoluminescence measurements. Comparing the energy position of this shallow acceptor level with the Ev+157.8-meV Cu-acceptor level in GaAs supports the assumption of an internal energy reference level [J. M. Langer, C. Delerue, M. Lannoo, and H. Heinrich, Phys. Rev. B 38, 7723 (1988)] common to GaAs and InxGa1-xAs.

  15. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation

    PubMed Central

    Liu, Jinxuan; Shekhah, Osama; Stammer, Xia; Arslan, Hasan K.; Liu, Bo; Schüpbach, Björn; Terfort, Andreas; Wöll, Christof

    2012-01-01

    The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) HKUST-1 has been studied for three different COOH-terminated templating organic surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA), 4’-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along the (111) direction.

  16. Morphological, compositional, and geometrical transients of V-groove quantum wires formed during metalorganic vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dimastrodonato, Valeria; Pelucchi, Emanuele; Zestanakis, Panagiotis A.; Vvedensky, Dimitri D.

    2013-07-01

    We present a theoretical model of the formation of self-limited (Al)GaAs quantum wires within V-grooves on GaAs(001) substrates during metalorganic vapor-phase epitaxy. We identify the facet-dependent rates of the kinetic processes responsible for the formation of the self-limiting profile, which is accompanied by Ga segregation along the axis perpendicular to the bottom of the original template, and analyze their interplay with the facet geometry in the transient regime. A reduced model is adopted for the evolution of the patterned profile, as determined by the angle between the different crystallographic planes as a function of the growth conditions. Our results provide a comprehensive phenomenological understanding of the self-ordering mechanism on patterned surfaces which can be harnessed for designing the quantum optical properties of low-dimensional systems.

  17. Atomic transport during solid-phase epitaxial recrystallization of amorphous germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radek, M.; Bracht, H., E-mail: bracht@uni-muenster.de; Johnson, B. C.

    2015-08-24

    The atomic mixing of matrix atoms during solid-phase epitaxy (SPE) is studied by means of isotopically enriched germanium (Ge) multilayer structures that were amorphized by Ge ion implantation up to a depth of 1.5 μm. Recrystallization of the amorphous structure is performed at temperatures between 350 °C and 450 °C. Secondary-ion-mass-spectrometry is used to determine the concentration-depth profiles of the Ge isotope before and after SPE. An upper limit of 0.5 nm is deduced for the displacement length of the Ge matrix atoms by the SPE process. This small displacement length is consistent with theoretical models and atomistic simulations of SPE, indicating that themore » SPE mechanism consists of bond-switching with nearest-neighbours across the amorphous-crystalline (a/c) interface.« less

  18. Magnetic properties of low-moment ferrimagnetic Heusler Cr2CoGa thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; DeCapua, Matthew C.; Player, Gabriel; Heiman, Don

    2016-10-01

    Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87 meV. These results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.

  19. Magnetic properties of low-moment ferrimagnetic Heusler Cr 2CoGa thin films grown by molecular beam epitaxy

    DOE PAGES

    Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; ...

    2016-10-31

    Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr 2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87more » meV. Finally, these results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.« less

  20. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection.

    PubMed

    Ding, Hong; Dwaraknath, Shyam S; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A

    2016-05-25

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.

  1. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection

    DOE PAGES

    Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren; ...

    2016-05-04

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO 2 compounds which provides a rich chemical and structural polymorph space. Here, we find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO 2 substrates, where the VO 2 brookite phase would be preferentially grown on the a-c TiO 2 brookite plane whilemore » the columbite and anatase structures favor the a-b plane on the respective TiO 2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO 2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. Our criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less

  2. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structuresmore » favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less

  3. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO 2 compounds which provides a rich chemical and structural polymorph space. Here, we find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO 2 substrates, where the VO 2 brookite phase would be preferentially grown on the a-c TiO 2 brookite plane whilemore » the columbite and anatase structures favor the a-b plane on the respective TiO 2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO 2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. Our criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.« less

  4. History of HgTe-based photodetectors in Poland

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2010-09-01

    In Poland, the HgCdTe studies began in 1960 at the Institute of Physics, Warsaw University. The material processing laboratory was created by Giriat and later by Dziuba, Gałązka, and others. Bridgman technique with sealed thick wall quartz ampoules was used to grow material suitable for research and experimental devices. Among the first papers published in 1961 and 1963 there were the Polish works devoted to preparation, doping, and electrical properties of HgCdTe. Infrared detector's research and development efforts in Poland were concentrated mostly on uncooled market niche. At the beginning, a modified isothermal vapour phase epitaxy has been used for research and commercial fabrication of photoconductive, photoelectromagnetic and other HgCdTe devices. Bulk growth and liquid phase epitaxy were also used. Recently, the fabrication of infrared devices relies on low temperature epitaxial technique, namely metalorganic vapour phase deposition. At present stage of development, the photoconductive and photoelectromagnetic (PEM) detectors are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, photodiodes offer high performance and very fast response. However, conventional photovoltaic uncooled detectors suffer from low quantum efficiency and very low junction resistance. The problems have been solved with advanced band gap engineered architecture, multiple cell heterojunction devices connected in series, and monolithic integration of the detectors with microoptics. In final part of the paper, the Polish achievements in technology and performance of HgMnTe and HgZnTe photodetectors are presented.

  5. DOE-EPSCoR. Exchange interactions in epitaxial intermetallic layered systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeClair, Patrick R.; Gary, Mankey J.

    2015-05-25

    The goal of this research is to develop a fundamental understanding of the exchange interactions in epitaxial intermetallic alloy thin films and multilayers, including films and multilayers of Fe-Pt, Co-Pt and Fe-P-Rh alloys deposited on MgO and Al2O3 substrates. Our prior results have revealed that these materials have a rich variety of ferromagnetic, paramagnetic and antiferromagnetic phases which are sensitive functions of composition, substrate symmetry and layer thickness. Epitaxial antiferromagnetic films of FePt alloys exhibit a different phase diagram than bulk alloys. The antiferromagnetism of these materials has both spin ordering transitions and spin orienting transitions. The objectives include themore » study of exchange-inversion materials and the interface of these materials with ferromagnets. Our aim is to formulate a complete understanding of the magnetic ordering in these materials, as well as developing an understanding of how the spin structure is modified through contact with a ferromagnetic material at the interface. The ultimate goal is to develop the ability to tune the phase diagram of the materials to produce layered structures with tunable magnetic properties. The alloy systems that we will study have a degree of complexity and richness of magnetic phases that requires the use of the advanced tools offered by the DOE-operated national laboratory facilities, such as neutron and x-ray scattering to measure spin ordering, spin orientations, and element-specific magnetic moments. We plan to contribute to DOE’s mission of producing “Materials by Design” with properties determined by alloy composition and crystal structure. We have developed the methods for fabricating and have performed neutron diffraction experiments on some of the most interesting phases, and our work will serve to answer questions raised about the element-specific magnetizations using the magnetic x-ray dichroism techniques and interface magnetism in layered structures using polarized neutron reflectometry. Through application of these techniques to understand the materials fabricated in our laboratory, we will employ a tight feedback loop to tailor the magnetic properties on demand. Developing the ability to control magnetic anisotropy is essential for creating the next generation of magnetic storage media (for hard disks, for example), where individual bit sizes have already become smaller than 100nm in the largest dimension. Still smaller bits and higher storage density will require the ability to exquisitely tailor magnetic media properties at the atomic level, the ultimate goal of our study.« less

  6. Coherent Fe-rich nano-scale perovskite oxide phase in epitaxial Sr2FeMoO6 films grown on cubic and scandate substrates

    NASA Astrophysics Data System (ADS)

    Deniz, Hakan; Preziosi, Daniele; Alexe, Marin; Hesse, Dietrich

    2017-01-01

    We report the growth of high-quality epitaxial Sr2FeMoO6 (SFMO) thin films on various unconventional oxide substrates, such as TbScO3, DyScO3, and Sr2Al0.3Ga0.7TaO6 (SAGT) as well as on the most commonly used one, SrTiO3 (STO), by pulsed laser deposition. The films were found to contain a foreign nano-scale phase coherently embedded inside the SFMO film matrix. Through energy dispersive X-ray spectroscopy and scanning transmission electron microscopy, we identified the foreign phase to be Sr2-xFe1+yMo1-yO6, an off-stoichiometric derivative of the SFMO compound with Fe rich content (y ≈ 0.6) and a fairly identical crystal structure to SFMO. The films on STO and SAGT exhibited very good magnetic properties with high Curie temperature values. All the samples have fairly good conducting behavior albeit the presence of a foreign phase. Despite the relatively large number of items of the foreign phase, there is no significant deterioration in the properties of the SFMO films. We discuss in detail how magneto-transport properties are affected by the foreign phase.

  7. Pseudomorphic to orthomorphic growth of Fe films on Cu3Au(001)

    NASA Astrophysics Data System (ADS)

    Bruno, F.; Terreni, S.; Floreano, L.; Cossaro, A.; Cvetko, D.; Luches, P.; Mattera, L.; Morgante, A.; Moroni, R.; Repetto, M.; Verdini, A.; Canepa, M.

    2002-06-01

    The structure of Fe films grown on the (001) surface of a Cu3Au single crystal at room temperature has been investigated by means of grazing incidence x-ray diffraction (GIXRD) and photo/Auger-electron diffraction (ED) as a function of thickness in the (3-36)-Å range. The combination of GIXRD and ED allows one to obtain quantitative information on the in-plane spacing a from the former technique, and the ratio between the vertical spacing c and a, from the latter one. At low coverage the film grows pseudomorphic to the face-centered-cubic substrate. The experimental results obtained on a film of 8 Å thickness clearly indicate the overcoming of the limit for pseudomorphic growth. Above this limit the film is characterized by the coexistence of the pseudomorphic phase with another tetragonally strained phase γ, which falls on the epitaxial line of ferromagnetic face-centered cubic Fe. Finally, the development of a body-centered phase α, whose unit cell is rotated by 45° with respect to the substrate one, has been clearly observed at ~17 Å. α is the dominating phase for film thickness above ~25 Å and its lattice constant evolves towards the orthomorphic phase in strict quantitative agreement with epitaxial curves calculated for body-centered tetragonal iron phases.

  8. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1998-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  9. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1999-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  10. High quality InP-on-Si for solar cell applications

    NASA Technical Reports Server (NTRS)

    Shellenbarger, Zane A.; Goodwin, Thomas A.; Collins, Sandra R.; Dinetta, Louis C.

    1994-01-01

    InP on Si solar cells combine the low-cost and high-strength of Si with the high efficiency and radiation tolerance of InP. The main obstacle in the growth of single crystal InP-on-Si is the high residual strain and high dislocation density of the heteroepitaxial InP films. The dislocations result from the large differences in lattice constant and thermal expansion mismatch of InP and Si. Adjusting the size and geometry of the growth area is one possible method of addressing this problem. In this work, we conducted a material quality study of liquid phase epitaxy overgrowth layers on selective area InP grown by a proprietary vapor phase epitaxy technique on Si. The relationship between growth area and dislocation density was quantified using etch pit density measurements. Material quality of the InP on Si improved both with reduced growth area and increased aspect ratio (length/width) of the selective area. Areas with etch pit density as low as 1.6 x 10(exp 4) sq cm were obtained. Assuming dislocation density is an order of magnitude greater than etch pit density, solar cells made with this material could achieve the maximum theoretical efficiency of 23% at AMO. Etch pit density dependence on the orientation of the selective areas on the substrate was also studied.

  11. Duality picture of Superconductor-insulator transitions on Superconducting nanowire.

    PubMed

    Makise, Kazumasa; Terai, Hirotaka; Tominari, Yukihiro; Tanaka, Shukichi; Shinozaki, Bunju

    2016-06-17

    In this study, we investigated the electrical transport properties of niobium titanium nitride (NbTiN) nanowire with four-terminal geometries to clarify the superconducting phase slip phenomena and superconducting-insulator transitions (SIT) for one-dimensional superconductors. We fabricated various nanowires with different widths and lengths from epitaxial NbTiN films using the electron beam lithography method. The temperature dependence of resistance R(T) below the superconducting transition temperature Tc was analyzed using thermal activation phase slip (TAPS) and quantum phase slip (QPS) theories. Although the accuracy of experimental data at low temperatures can deviate when using the TAPS model, the QPS model thoroughly represents the R(T) characteristic with resistive tail at low temperatures. From the analyses of data on Tc, we found that NbTiN nanowires exhibit SIT because of the change in the ratio of kinetic inductance energy and QPS amplitude energy with respect to the flux-charge duality theory.

  12. Metal-Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials.

    PubMed

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-04-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.

  13. Model-based magnetization retrieval from holographic phase images.

    PubMed

    Röder, Falk; Vogel, Karin; Wolf, Daniel; Hellwig, Olav; Wee, Sung Hun; Wicht, Sebastian; Rellinghaus, Bernd

    2017-05-01

    The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO 3 substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Structure and Properties of VO2 and Titanium Dioxide Based Epitaxial Heterostructures Integrated with Silicon and Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Bayati, Mohammad Reza

    The main focus of this study was placed on structure-property correlation in TiO2 and VO2 based epitaxial heterostructures where the photochemical and electrical properties were tuned through microstructural engineering. In the framework of domain matching epitaxy, epitaxial growth of TiO2 and VO2 heterostructures on different substrates were explained. The theta-2theta and ϕ scan X-ray diffraction measurements and detailed high resolution electron microscopy studies corroborated our understanding of the epitaxial growth and the crystallographic arrangement across the interfaces. The influence of the laser and substrate variables on structural characteristics of the films was investigated using X-ray photoelectron spectroscopy, room temperature photoluminescence spectroscopy, and UV-Vis spectrophotometry. In addition, morphological studies were performed by atomic force microscopy. Photochemical properties of the heterostructures were assessed through measuring surface wettability characteristics and photocatalytic reaction rate constant of degradation of 4-chlorophenol under ultraviolet and visible irradiations. We also studied electrical properties employing 4-probe measurement technique. The effect of post treatment processes, such as vacuum annealing and laser treatment, on structure and properties was investigated as well. The role of point defects and deviation from the stoichiometry on photochemical and electrical properties was addressed. In this research, TiO2 epilayers with controlled phase structure, defect content, and crystallographic alignments were grown on sapphire and silicon substrates. Integration with silicon was achieved using cubic and tetragonal yttria-stabilized zirconia buffer layers. I was able to tune the phase structure of the TiO2 based heterostructures from pure rutile to pure anatase and establish an epitaxial relationship across the interfaces in each case. These heterostructures were used for two different purposes. First, their application in environmental remediation was taken into account. The photochemical efficiency of the samples was evaluated under ultraviolet and visible illuminations. I was able to establish a correlation between the growth conditions and the photocatalytic activity of single crystalline TiO 2 thin films. Visible-light-responsive TiO2 films were fabricated via vacuum annealing of the samples where point defects, namely oxygen vacancies and titanium interstitial, are surmised to play a critical role. An ultrafast switching was observed in wetting characteristics of the single crystalline rutile TiO2 films from a hydrophobic state to a superhydrophilic state by single pulsed excimer laser annealing. It was observed that the laser annealing almost doubles the photocatalytic efficiency of the anatase epitaxial thin films. I was able to measure the photochemical properties of the rutile and the anatase TiO2 heterostructures in a controlled way due to the single crystalline nature of the films. Second, the rutile TiO2 epilayers with different out-of-plane orientations were deposited and used as a platform for VO2 based epitaxial heterostructures with the aim of manipulating of microstructure and electrical properties of the VO 2 films. Vanadium dioxide (VO2) is an interesting material due to the abrupt change in electrical resistivity and infrared transmittance at about 68 °C. The transition temperature can be tuned through microstructural engineering. It was the idea behind using rutile TiO2 with different crystallographic orientations as a template to tune the semiconductor to metal transition characteristics of the VO2 top layer. I successfully grew VO2(001), VO2(100), and VO2(2¯01) epitaxial thin films on TiO2(100)/c-sapphire, TiO2(101)/r-sapphire, and TiO2(001)/ m-sapphire platforms, respectively. It was observed that tetragonal phase of VO2 was stabilized at lower temperatures leading to a significant decrease in the semiconductor to metal transition temperature. In other words, we were able to tune the transition temperature of the VO 2 epitaxial heterostructures. This achievement introduces the VO 2 based single crystalline heterostructures as a promising candidate for a wide range of applications where different transition temperatures are required. The epitaxial relationships were established and atomic arrangement across the interfaces was studied in detail.

  15. Van der Waals Epitaxy of Functional Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Hao

    In the diligent pursuit of low-power consumption, multifunctional, and environmentally friendly electronics, more sophisticated requirements on functional materials are on demand. Recently, the discovery of 2D layered materials has created a revolution to this field. Pioneered by graphene, these new 2D materials exhibit abundant unusual physical phenomena that is undiscovered in bulk forms. These materials are characterized with their layer form and almost pure 2D electronic behavior. The confinement of charge and heat transport at such ultrathin planes offers possibilities to overcome the bottleneck of present device development in thickness limitation, and thus push the technologies into next generation. Van der Waals epitaxy, an epitaxial growth method to combine 2D and 3D materials, is one of current reliable manufacturing processes to fabricate 2D materials by growing these 2D materials epitaxially on 3D materials. Then, transferring the 2D materials to the substrates for practical applications. In the mean time, van der Waals epitaxy has also been used to create free-standing 3D materials by growing 3D materials on 2D materials and then removing them from 2D materials since the interfacial boding between 2D and 3D materials should be weak van der Waals bonds. In this study, we intend to take the same concept, but to integrate a family of functional materials in order to open new avenue to flexible electronics. Due to the interplay of lattice, charge, orbital, and spin degrees of freedom, correlated electrons in oxides generate a rich spectrum of competing phases and physical properties. Recently, lots of studies have suggested that oxide heterostructures provide a powerful route to create and manipulate the degrees of freedom and offer new possibilities for next generation devices, thus create a new playground for researchers to investigate novel physics and the emergence of fascinating states of condensed matter. In this talk, we use a 2D layered material as the substrate. And we take several oxides as examples to demonstrate a pathway to integrate 3D functional oxides on 2D layered materials.

  16. Subeutectic Synthesis of Epitaxial Si-NWs with Diverse Catalysts Using a Novel Si Precursor

    PubMed Central

    2010-01-01

    The applicability of a novel silicon precursor with respect to reasonable nanowire (NW) growth rates, feasibility of epitaxial NW growth and versatility with respect to diverse catalysts was investigated. Epitaxial growth of Si-NWs was achieved using octochlorotrisilane (OCTS) as Si precursor and Au as catalyst. In contrast to the synthesis approach with SiCl4 as precursor, OCTS provides Si without the addition of H2. By optimizing the growth conditions, effective NW synthesis is shown for alternative catalysts, in particular, Cu, Ag, Ni, and Pt with the latter two being compatible to complementary metal-oxide-semiconductor technology. As for these catalysts, the growth temperatures are lower than the lowest liquid eutectic; we suggest that the catalyst particle is in the solid state during NW growth and that a solid-phase diffusion process, either in the bulk, on the surface, or both, must be responsible for NW nucleation. PMID:20843058

  17. Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using rf sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Laughlin, David E.; Kryder, Mark H.

    2007-04-01

    Epitaxial lead zirconium titanate (PZT) (001) thin films with a Pt bottom electrode were deposited by rf sputtering onto Si(001) single crystal substrates with a Ag buffer layer. Both PZT(20/80) and PZT(53/47) samples were shown to consist of a single perovskite phase and to have the (001) orientation. The orientation relationship was determined to be PZT(001)[110]‖Pt(001)[110]‖Ag(001)[110]‖Si(001)[110]. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). The electron diffraction pattern confirmed the epitaxial relationship between each layer. The measured remanent polarization Pr and coercive field Ec of the PZT(20/80) thin film were 26μC /cm2 and 110kV/cm, respectively. For PZT(53/47), Pr was 10μC /cm2 and Ec was 80kV/cm.

  18. Domain matching epitaxy of BaBiO3 on SrTiO3 with structurally modified interface

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Stübinger, M.; Jin, L.; Kamp, M.; Pfaff, F.; Lubk, A.; Büchner, B.; Sing, M.; Claessen, R.

    2018-04-01

    The perovskite BaBiO3 (BBO) is a versatile oxide parent material which displays superconductivity upon p-doping, while n-doping has been predicted to establish a wide-bandgap topological insulator phase. Here, we report on a mechanism that allows for epitaxial deposition of high-quality crystalline BBO thin films on SrTiO3 substrates despite a significant lattice mismatch of as large as 12%. It is revealed that the growth takes place through domain matching epitaxy, resulting in domains with alternating lateral sizes of 8 and 9 BBO unit cells. In particular, a structurally modified interface layer is identified which serves as a nucleation layer for the BBO films and gradually relieves the strain by decoupling the film lattice from the substrate. The BBO growth mechanism identified here may be prototypical for prospective thin film deposition of other perovskites with large lattice constants.

  19. Multiple delta doping of single crystal cubic boron nitride films heteroepitaxially grown on (001)diamonds

    NASA Astrophysics Data System (ADS)

    Yin, H.; Ziemann, P.

    2014-06-01

    Phase pure cubic boron nitride (c-BN) films have been epitaxially grown on (001) diamond substrates at 900 °C. The n-type doping of c-BN epitaxial films relies on the sequential growth of nominally undoped (p-) and Si doped (n-) layers with well-controlled thickness (down to several nanometer range) in the concept of multiple delta doping. The existence of nominally undoped c-BN overgrowth separates the Si doped layers, preventing Si dopant segregation that was observed for continuously doped epitaxial c-BN films. This strategy allows doping of c-BN films can be scaled up to multiple numbers of doped layers through atomic level control of the interface in the future electronic devices. Enhanced electronic transport properties with higher hall mobility (102 cm2/V s) have been demonstrated at room temperature as compared to the normally continuously Si doped c-BN films.

  20. Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onbasli, M. C., E-mail: onbasli@mit.edu; Kim, D. H.; Ross, C. A.

    2014-10-01

    Yttrium iron garnet (YIG, Y {sub 3}Fe{sub 5}O{sub 12}) films have been epitaxially grown on Gadolinium Gallium Garnet (GGG, Gd{sub 3}Ga{sub 5}O{sub 12}) substrates with (100) orientation using pulsed laser deposition. The films were single-phase, epitaxial with the GGG substrate, and the root-mean-square surface roughness varied between 0.14 nm and 0.2 nm. Films with thicknesses ranging from 17 to 200 nm exhibited low coercivity (<2 Oe), near-bulk room temperature saturation moments (∼135 emu cm{sup −3}), in-plane easy axis, and damping parameters as low as 2.2 × 10{sup −4}. These high quality YIG thin films are useful in the investigation ofmore » the origins of novel magnetic phenomena and magnetization dynamics.« less

  1. Recombination properties of dislocations in GaN

    NASA Astrophysics Data System (ADS)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  2. Strain doping: Reversible single-axis control of a complex oxide lattice via helium implantation

    DOE PAGES

    Guo, Hangwen; Dong, Shuai; Rack, Philip D.; ...

    2015-06-25

    We report on the use of helium ion implantation to independently control the out-of-plane lattice constant in epitaxial La 0.7Sr 0.3MnO 3 thin films without changing the in-plane lattice constants. The process is reversible by a vacuum anneal. Resistance and magnetization measurements show that even a small increase in the out-of-plane lattice constant of less than 1% can shift the metal-insulator transition and Curie temperatures by more than 100 °C. Unlike conventional epitaxy-based strain tuning methods which are constrained not only by the Poisson effect but by the limited set of available substrates, the present study shows that strain canmore » be independently and continuously controlled along a single axis. This permits novel control over orbital populations through Jahn-Teller effects, as shown by Monte Carlo simulations on a double-exchange model. As a result, the ability to reversibly control a single lattice parameter substantially broadens the phase space for experimental exploration of predictive models and leads to new possibilities for control over materials’ functional properties.« less

  3. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1999-04-27

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  4. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-21

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  5. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-14

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  6. Method of Forming Three-Dimensional Semiconductors Structures

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor)

    2002-01-01

    Silicon and metal are coevaporated onto a silicon substrate in a molecular beam epitaxy system with a larger than stoichiometric amount of silicon so as to epitaxially grow columns of metal silicide embedded in a matrix of single crystal, epitaxially grown silicon. Higher substrate temperatures and lower deposition rates yield larger columns that are farther apart while more silicon produces smaller columns. Column shapes and locations are selected by seeding the substrate with metal silicide starting regions. A variety of 3-dimensional, exemplary electronic devices are disclosed.

  7. Growth and Performance of GaInP/A1GaInP Visible Light Emitting Laser-Diodes,

    DTIC Science & Technology

    SEMICONDUCTOR LASERS, *EPITAXIAL GROWTH, ALLOYS, LAYERS, LOW PRESSURE, PRESSURE, QUALITY, ROOM TEMPERATURE, SUBSTRATES, GALLIUM PHOSPHIDES, INDIUM PHOSPHIDES, THERMAL PROPERTIES, ENERGY GAPS, ENERGY BANDS, VAPOR PHASES.

  8. Electronic and magnetic properties of epitaxial SrRh O 3 films

    DOE PAGES

    Nichols, John A.; Yuk, Simuck F.; Sohn, Changhee; ...

    2017-06-16

    The strong interplay of fundamental order parameters in complex oxides is known to give rise to exotic physical phenomena. The 4$d$ transition-metal oxide SrRh O 3 has generated much interest, but advances have been hindered by difficulties in preparing single-crystalline phases. Here we epitaxially stabilize high-quality single-crystalline SrRh O 3 films and investigate their structural, electronic, and magnetic properties. Lastly, we determine that their properties significantly differ from the paramagnetic metallic ground state that governs bulk samples and are strongly related to rotations of Rh O 6 octahedra.

  9. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behler, Anna; Department of Physics, Institute for Solid State Physics, Dresden University of Technology, 01062 Dresden; Teichert, Niclas

    2013-12-15

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  10. Effect of the nand p-type Si(100) substrates with a SiC buffer layer on the growth mechanism and structure of epitaxial layers of semipolar AlN and GaN

    NASA Astrophysics Data System (ADS)

    Bessolov, V. N.; Grashchenko, A. S.; Konenkova, E. V.; Myasoedov, A. V.; Osipov, A. V.; Red'kov, A. V.; Rodin, S. N.; Rubets, V. P.; Kukushkin, S. A.

    2015-10-01

    A new effect of the n-and p-type doping of the Si(100) substrate with a SiC film on the growth mechanism and structure of AlN and GaN epitaxial layers has been revealed. It has been experimentally shown that the mechanism of AlN and GaN layer growth on the surface of a SiC layer synthesized by substituting atoms on n- and p-Si substrates is fundamentally different. It has been found that semipolar AlN and GaN layers on the SiC/Si(100) surface grow in the epitaxial and polycrystalline structures on p-Si and n-Si substrates, respectively. A new method for synthesizing epitaxial semipolar AlN and GaN layers by chloride-hydride epitaxy on silicon substrates has been proposed.

  11. Nanowire-templated lateral epitaxial growth of non-polar group III nitrides

    DOEpatents

    Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM

    2010-03-02

    A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

  12. Accelerated GaAs growth through MOVPE for low-cost PV applications

    NASA Astrophysics Data System (ADS)

    Ubukata, Akinori; Sodabanlu, Hassanet; Watanabe, Kentaroh; Koseki, Shuichi; Yano, Yoshiki; Tabuchi, Toshiya; Sugaya, Takeyoshi; Matsumoto, Koh; Nakano, Yoshiaki; Sugiyama, Masakazu

    2018-05-01

    The high growth rate of epitaxial GaAs was investigated using a novel horizontal metalorganic vapor phase epitaxy (MOVPE) reactor, from the point of view of realizing low-cost photovoltaic (PV) solar cells. The GaAs growth rate exhibited an approximately linear relationship with the amount of trimethylgalium (TMGa) supplied, up to a rate of 90 μm/h. The distribution of growth rate was observed for a two-inch wafer, along the flow direction, and the normalized profile of the distribution was found to be independent of the precursor input, from 20 to 70 μm/h. These tendencies indicated that significant parasitic prereaction did not occur in the gaseous phase, for this range of growth rate. GaAs p-n single-junction solar cells were successfully fabricated at growth rates of 20, 60, and 80 μm/h. The conversion efficiency of the cell grown at 80 μm/h was comparable to that of the 20 μm/h cell, indicating the good quality and properties of GaAs. The epitaxial growth exhibited good uniformity, as evidenced by the uniformity of the cell performance across the wafer, from the center to the edge. The result indicated the potential of high-throughput MOVPE for low-cost production, not only for PV devices but also for other semiconductor applications.

  13. Photoinduced current transient spectroscopy of deep levels and transport mechanisms in iron-doped GaN thin films grown by low pressure-metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Muret, P.; Pernot, J.; Azize, M.; Bougrioua, Z.

    2007-09-01

    Electrical transport and deep levels are investigated in GaN:Fe layers epitaxially grown on sapphire by low pressure metalorganic vapor phase epitaxy. Photoinduced current transient spectroscopy and current detected deep level spectroscopy are performed between 200 and 650 K on three Fe-doped samples and an undoped sample. A detailed study of the detected deep levels assigns dominant centers to a deep donor 1.39 eV below the conduction band edge EC and to a deep acceptor 0.75 eV above the valence band edge EV at low electric field. A strong Poole-Frenkel effect is evidenced for the donor. Schottky diodes characteristics and transport properties in the bulk GaN:Fe layer containing a homogenous concentration of 1019 Fe/cm3 are typical of a compensated semiconductor. They both indicate that the bulk Fermi level is located typically 1.4 eV below EC, in agreement with the neutrality equation and dominance of the deep donor concentration. This set of results demonstrates unambiguously that electrical transport in GaN:Fe is governed by both types, either donor or acceptor, of the iron impurity, either substitutional in gallium sites or associated with other defects.

  14. Epitaxy of advanced nanowire quantum devices

    NASA Astrophysics Data System (ADS)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  15. Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy

    DOE PAGES

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; ...

    2016-11-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less

  16. Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.

    Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less

  17. Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition.

    PubMed

    Carretero-Genevrier, Adrián; Gich, Martí

    2015-12-21

    This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr(2+) act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth.

  18. Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition

    PubMed Central

    Carretero-Genevrier, Adrián; Gich, Martí

    2015-01-01

    This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr2+ act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth. PMID:26710210

  19. Highly tensile-strained Ge/InAlAs nanocomposites

    NASA Astrophysics Data System (ADS)

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material.

  20. High-Performance InGaAs/InP Composite-Channel High Electron Mobility Transistors Grown by Metal-Organic Vapor-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Sugiyama, Hiroki; Kosugi, Toshihiko; Yokoyama, Haruki; Murata, Koichi; Yamane, Yasuro; Tokumitsu, Masami; Enoki, Takatomo

    2008-04-01

    This paper reports InGaAs/InP composite-channel (CC) high electron mobility transistors (HEMTs) grown by metal-organic vapor-phase epitaxy (MOVPE) with excellent breakdown and high-speed characteristics. Atomic force microscopy (AFM) reveals high-quality heterointerfaces between In(Ga,Al)As and In(Al)P. Fabricated 80-nm-gate CC HEMTs exhibit on- and off-state breakdown (burnout) voltages estimated at higher than 3 and 8 V. An excellent current-gain cutoff frequency ( fT) of 186 GHz is also obtained in the CC HEMTs. The on-wafer uniformity of CC-HEMT characteristics is comparable to those of our mature 100-nm-gate InGaAs single-channel HEMTs. Bias-stress aging tests reveals that the lifetime of CC HEMTs is expected to be comparable to that of our conventional InGaAs single-channel HEMTs.

  1. Chiral bobbers and skyrmions in epitaxial FeGe/Si(111) films

    NASA Astrophysics Data System (ADS)

    Ahmed, Adam S.; Rowland, James; Esser, Bryan D.; Dunsiger, Sarah R.; McComb, David W.; Randeria, Mohit; Kawakami, Roland K.

    2018-04-01

    We report experimental and theoretical evidence for the formation of chiral bobbers—an interfacial topological spin texture—in FeGe films grown by molecular beam epitaxy. After establishing the presence of skyrmions in FeGe/Si(111) thin-film samples through Lorentz transmission electron microscopy and the topological Hall effect, we perform magnetization measurements that reveal an inverse relationship between the film thickness and the slope of the susceptibility (d χ /d H ). We present evidence for the evolution as a function of film thickness L from a skyrmion phase for L LD/2 , where LD˜70 nm is the FeGe pitch length. We show using micromagnetic simulations that chiral bobbers, earlier predicted to be metastable, are in fact the stable ground state in the presence of an additional interfacial Rashba Dzyaloshinskii-Moriya interaction.

  2. Photoluminescence of Gallium Phosphide-Based Nanostructures with Germanium Quantum Dots, Grown by Liquid-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Maronchuk, I. I.; Sanikovich, D. D.; Velchenko, A. A.

    2017-11-01

    We have used liquid-phase epitaxy with pulsed substrate cooling using two structural designs to grow samples of nanoheteroepitaxial structures with Ge quantum dots in a GaP matrix on Si substrates. We have measured the photoluminescence spectra of the samples at temperatures of 77 K and 300 K with excitation by laser emission at λ = 4880 Å and 5145 Å. We draw conclusions concerning the factors influencing the spectrum and intensity of emission for nanostructures with quantum dots. It was found that in order to reduce nonradiative recombination in multilayer p-n structures, we need to create quantum dot arrays inside p and n regions rather than in the central portion of the depletion layer of the p-n junction. We show that the theoretical energies for Ge quantum dots of the calculated sizes are comparable with the energies of their photoluminescence maxima.

  3. Preparation of freestanding GaN wafer by hydride vapor phase epitaxy on porous silicon

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Li, Peng; Liang, Renrong; Xiao, Lei; Xu, Jun; Wang, Jing

    2018-05-01

    A freestanding GaN wafer was prepared on porous Si (111) substrate using hydride vapor phase epitaxy (HVPE). To avoid undesirable effects of the porous surface on the crystallinity of the GaN, a GaN seed layer was first grown on the Si (111) bare wafer. A pattern with many apertures was fabricated in the GaN seed layer using lithography and etching processes. A porous layer was formed in the Si substrate immediately adjacent to the GaN seed layer by an anodic etching process. A 500-μm-thick GaN film was then grown on the patterned GaN seed layer using HVPE. The GaN film was separated from the Si substrate through the formation of cracks in the porous layer caused by thermal mismatch stress during the cooling stage of the HVPE. Finally, the GaN film was polished to obtain a freestanding GaN wafer.

  4. Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)

    NASA Astrophysics Data System (ADS)

    Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.

    2005-06-01

    Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.

  5. Effect of the out-of-plane stress on the properties of epitaxial SrTiO3 films with nano-pillar array on Si-substrate

    NASA Astrophysics Data System (ADS)

    Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei

    2015-08-01

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.

  6. Preparation of 2-in.-diameter (001) β-Ga2O3 homoepitaxial wafers by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Sasaki, Kohei; Goto, Ken; Konishi, Keita; Murakami, Hisashi; Kuramata, Akito; Kumagai, Yoshinao; Yamakoshi, Shigenobu

    2017-11-01

    The homoepitaxial growth of thick β-Ga2O3 layers on 2-in.-diameter (001) wafers was demonstrated by halide vapor phase epitaxy. Growth rates of 3 to 4 µm/h were confirmed for growing intentionally Si-doped n-type layers. A homoepitaxial layer with an average thickness and carrier concentration of 10.9 µm and 2.7 × 1016 cm-3 showed standard deviations of 1.8 µm (16.5%) and 0.5 × 1016 cm-3 (19.7%), respectively. Ni Schottky barrier diodes fabricated directly on a 5.3-µm-thick homoepitaxial layer with a carrier concentration of 3.4 × 1016 cm-3 showed reasonable reverse and forward characteristics, i.e., breakdown voltages above 200 V and on-resistances of 3.8-7.7 mΩ cm2 at room temperature.

  7. InAs nanowires grown by metal-organic vapor-phase epitaxy (MOVPE) employing PS/PMMA diblock copolymer nanopatterning.

    PubMed

    Huang, Yinggang; Kim, Tae Wan; Xiong, Shisheng; Mawst, Luke J; Kuech, Thomas F; Nealey, Paul F; Dai, Yushuai; Wang, Zihao; Guo, Wei; Forbes, David; Hubbard, Seth M; Nesnidal, Michael

    2013-01-01

    Dense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (~10 nm) SiNx layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF4 reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ~ 20 nm and micrometer-scale lengths were achieved with a density of ~ 5 × 10(10) cm(2). The nanowire structures were characterized by scanning electron microscopy and transmission electron microscopy, which indicate twin defects in a primary zincblende crystal structure and the absence of threading dislocation within the imaged regions.

  8. Field-temperature phase diagrams of freestanding and substrate-constrained epitaxial Ni-Mn-Ga-Co films for magnetocaloric applications

    NASA Astrophysics Data System (ADS)

    Diestel, A.; Niemann, R.; Schleicher, B.; Schwabe, S.; Schultz, L.; Fähler, S.

    2015-07-01

    Ferroic cooling processes that rely on field-induced first-order transformations of solid materials are a promising step towards a more energy-efficient refrigeration technology. In particular, thin films are discussed for their fast heat transfer and possible applications in microsystems. Substrate-constrained films are not useful since their substrates act as a heat sink. In this article, we examine a substrate-constrained and a freestanding epitaxial film of magnetocaloric Ni-Mn-Ga-Co. We compare phase diagrams and entropy changes obtained by magnetic field and temperature scans, which differ. We observe an asymmetry of the hysteresis between heating and cooling branch, which vanishes at high magnetic fields. These effects are discussed with respect to the vector character of a magnetic field, which acts differently on the nucleation and growth processes compared to the scalar character of the temperature.

  9. The NASA program in Space Energy Conversion Research and Technology

    NASA Astrophysics Data System (ADS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  10. Highly tensile-strained Ge/InAlAs nanocomposites

    PubMed Central

    Jung, Daehwan; Faucher, Joseph; Mukherjee, Samik; Akey, Austin; Ironside, Daniel J.; Cabral, Matthew; Sang, Xiahan; Lebeau, James; Bank, Seth R.; Buonassisi, Tonio; Moutanabbir, Oussama; Lee, Minjoo Larry

    2017-01-01

    Self-assembled nanocomposites have been extensively investigated due to the novel properties that can emerge when multiple material phases are combined. Growth of epitaxial nanocomposites using lattice-mismatched constituents also enables strain-engineering, which can be used to further enhance material properties. Here, we report self-assembled growth of highly tensile-strained Ge/In0.52Al0.48As (InAlAs) nanocomposites by using spontaneous phase separation. Transmission electron microscopy shows a high density of single-crystalline germanium nanostructures coherently embedded in InAlAs without extended defects, and Raman spectroscopy reveals a 3.8% biaxial tensile strain in the germanium nanostructures. We also show that the strain in the germanium nanostructures can be tuned to 5.3% by altering the lattice constant of the matrix material, illustrating the versatility of epitaxial nanocomposites for strain engineering. Photoluminescence and electroluminescence results are then discussed to illustrate the potential for realizing devices based on this nanocomposite material. PMID:28128282

  11. Luminescence and scintillation properties of liquid phase epitaxy grown Y2SiO5:Ce single crystalline films

    NASA Astrophysics Data System (ADS)

    Wantong, Kriangkrai; Yawai, Nattasuda; Chewpraditkul, Weerapong; Kucera, Miroslav; Hanus, Martin; Nikl, Martin

    2017-06-01

    Luminescence and scintillation properties of Y2SiO5:Ce single crystalline film (YSO:Ce-LPE) grown by the liquid phase epitaxy technique are investigated and compared to the bulk Czochralski-grown YSO:Ce single crystal (YSO:Ce-SC). The light yield (LY) and energy resolution are measured using an R6231 photomultiplier under excitation with α - and γ- rays. At 662 keV γ- rays, the LY value of 12,410 ph/MeV obtained for YSO:Ce -LPE is lower than that of 20,150 ph/MeV for YSO:Ce -SC whereas the comparable LY value and energy resolution are obtained under excitation with 5.5 MeV α- rays. The ratio of LY under excitation with α- and γ- rays (α/γ ratio) is determined. Dependence of LY on an amplifier shaping time (0.5-12 μs) is also measured.

  12. Substrate misorientation induced strong increase in the hole concentration in Mg doped GaN grown by metalorganic vapor phase epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suski, T.; Litwin-Staszewska, E.; Piotrzkowski, R.

    We demonstrate that relatively small GaN substrate misorientation can strongly change hole carrier concentration in Mg doped GaN layers grown by metalorganic vapor phase epitaxy. In this work intentionally misoriented GaN substrates (up to 2 deg. with respect to ideal <0001> plane) were employed. An increase in the hole carrier concentration to the level above 10{sup 18} cm{sup -3} and a decrease in GaN:Mg resistivity below 1 {omega} cm were achieved. Using secondary ion mass spectroscopy we found that Mg incorporation does not change with varying misorientation angle. This finding suggests that the compensation rate, i.e., a decrease in unintentionalmore » donor density, is responsible for the observed increase in the hole concentration. Analysis of the temperature dependence of electrical transport confirms this interpretation.« less

  13. The NASA program in Space Energy Conversion Research and Technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  14. Temperature compensated piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Neurgaonkar, R. R.; Cross, L. E.

    1982-01-01

    From the electrostriction measurements on SBN crystals, it was found that the fourth order electrostrictive coupling terms are not adequate to fully describe the paraelectric phase above Curie temperature, and hence six rank coupling terms are needed; the electrostrictive coupling terms do not change markedly with cation substitution. Results of SAW measurements on the SBN:60 crystal showed that this composition possesses temperature-compensated orientations and it is similar to other best-known bronze composition PKN. Efforts are being made to establish acoustical losses correctly for this composition and based on this information, necessary changes in crystal composition will be made. The liquid phase epitaxial growth work has been shown to be successful not only for the Sr.5Ba.5Nb206, but other important bronze composition Sr2KNb5015 (hetero-epitaxial growth) onto the various orientations of the SBN crystal. Efforts are under way to establish their piezoelectric and acoustical properties.

  15. Material growth and characterization for solid state devices

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali; Iyer, Shanthi

    1988-01-01

    During the period of this research grant, the process of liquid phase electroepitaxy (LPEE) was used to grow ternary and quaternary alloy III-V semiconductor thin films. Selective area growth of InGaAs was performed on InP substrates using a patterned sputtered quartz or spin-on glass layer. The etch back and growth characteristics with respect to substrate orientation were investigated. The etch back behavior is somewhat different from wet chemical etching with respect to the sidewall profiles which are observed. LPEE was also employed to grow epitaxial layers of InGaAsP alloys on InP substrates. The behavior of Mn as an acceptor dopant was investigated with low temperature Hall coefficient and photoluminescence measurements. A metal-organic vapor phase epitaxy system was partially complete within the grant period. This atmospheric pressure system will be used to deposit III-V compound and alloy semiconductor layers in future research efforts.

  16. Fabrication of oriented hydroxyapatite film by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hirata, Keishiro; Kubota, Takafumi; Koyama, Daisuke; Takayanagi, Shinji; Matsukawa, Mami

    2017-08-01

    Hydroxyapatite (HAp) is compatible with bone tissue and is used mainly as a bone prosthetic material, especially as the coating of implants. Oriented HAp film is expected to be a high-quality epitaxial scaffold of the neonatal bone. To fabricate highly oriented HAp thin films via the conventional plasma process, we deposited the HAp film on a Ti coated silica glass substrate using RF magnetron sputtering in low substrate temperature conditions. The X-ray diffraction pattern of the film sample consisted of an intense (002) peak, corresponding to the highly oriented HAp. The (002) peak in XRD diagrams can be attributed either to the monoclinic phase or the hexagonal phase. Pole figure analysis showed that the (002) plane grew parallel to the surface of the substrate, without inclination. Transmission Electron Microscope analysis also showed the fabrication of aligned HAp crystallites. The selected area diffraction patterns indicated the existence of monoclinic phase. The existence of hexagonal phase could not be judged. These results indicate the uniaxial films fabricated by this technique enable to be the epitaxial scaffold of the neonatal bone. This scaffold can be expected to promote connection with the surrounding bone tissue and recovery of the dynamic characteristics of the bone.

  17. Growth and properties of semi-metallic and semiconducting phases of MoTe2 monolayer by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, Jinglei; Wang, Guanyong; Tang, Yanan; Xu, Jinpeng; Dai, Xianqi; Jia, Jinfeng; Ho, Wingkin; Xie, Maohai

    Hexagonal (2H) and distorted octahedral (1T') phases are the two common structures of monolayer MoTe2 showing, respectively, semiconducting and semi-metallic properties. The formation energies between the two structures of MoTe2 are almost equal, so there is a high chance to tune the structures of MoTe2 and to bring in new applications such as phase-change electronics. In this work, we report growth of both 2H and 1T' MoTe2 ML by molecular-beam epitaxy (MBE) and demonstrate the tunability of the structural phases by changing the growth conditions of MBE. We present experimental and theoretical evidences showing the important role of Te surface adsorption in promoting and stabilizing the otherwise metastable 1T'-MoTe2 during MBE. By scanning tunneling microscopy and spectroscopy, we also reveal quantum dot states and quantum inter-valley interference patterns in the 2H and 1T' domains, respectively. RGC(HKU9/CRF/13G), the Ministry of Science and Technology of China(2013CB921902), NSFC (11521404, 11227404), NSFC (11504334 and U1404109).

  18. Decoupling interface effect on the phase stability of CdS thin films by van der Waals heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Wang, Yiping; Seewald, Lucas J.; Chen, Zhizhong; Shi, Jian; Washington, Morris A.; Lu, Toh-Ming

    2017-01-01

    Wurtzite (W) and zinc-blende (ZB) polytypism has long been observed in epitaxial CdS thin films. The present work, based on van der Waals epitaxial CdS thin films, is an attempt to explain which crystal modification, W or ZB, is favored under different growth conditions. In this van der Waals epitaxy system where the substrate influence is considered weak, it is found that the substrate temperature plays a crucial role in determining the crystal modification of CdS, that is, W and ZB CdS are more stable at low and high ends of substrate temperature, respectively. We attribute this temperature effect to the entropy difference (SW < SZB), a conclusion well supported by the thermodynamic hard sphere model formulation of the entropy difference between hexagonal close-packed and face-centered cubic structures. By summarizing other works, we find that the entropy difference model can also be applied to large mismatched (≳3%) CdS-substrate chemical epitaxy systems but not for small mismatched (≲3%) ones. In the latter case, the energy benefit in terms of high density of bonding contributed by the substrate-film interface is believed to be too overwhelming for the intrinsic entropy difference to overcome. Furthermore, the deposition rate is found to affect the crystalline quality and strain level in CdS films but not the crystal modification of the CdS films. Last, Raman and photoluminescence spectroscopies reveal the strain behaviors in the films. The phase change from W to ZB CdS is well-correlated with the observed peak shifts in Raman and photoluminescence spectroscopies.

  19. Structural and chemical ordering of Heusler C o x M n y G e z epitaxial films on Ge (111): Quantitative study using traditional and anomalous x-ray diffraction techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, B. A.; Chu, Y. S.; He, L.

    2015-12-01

    Epitaxial films of CoxMnyGez grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy Co2MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involves analyzing the energy dependence of multiple reflections across each constituent absorptionmore » edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. The quantitative MEAD analysis further reveals no detectable amount (< 0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry (Co0.5Mn0.25Ge0.25) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.« less

  20. Effect of L1{sub 2} ordering in antiferromagnetic Ir-Mn epitaxial layer on exchange bias of FePd films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y. C.; Duh, J. G., E-mail: pmami.hsiao@gmail.com, E-mail: lin.yg@nsrrc.org.tw, E-mail: jgd@mx.nthu.edu.tw; Hsiao, S. N., E-mail: pmami.hsiao@gmail.com, E-mail: lin.yg@nsrrc.org.tw, E-mail: jgd@mx.nthu.edu.tw

    2015-05-07

    Two series of samples of single-layer IrMn and IrMn/FePd bilayer films, deposited on a single-crystal MgO substrate at different IrMn deposition temperatures (T{sub s} = 300–700 °C), were investigated using magnetron sputtering. L1{sub 2} ordering was revealed for the 30 nm-thick IrMn epitaxial (001) films with T{sub s} ≥ 400 °C, determined by synchrotron radiation x-ray diffractometry (XRD). XRD results also provide evidence of the epitaxial growth of the IrMn films on MgO substrate. Increasing T{sub s} from 400 to 700 °C monotonically increases the ordering parameter of L1{sub 2} phases from 0.17 to 0.81. An in-plane exchange bias field (H{sub eb}) of 22 Oe is obtained in amore » 10 nm-thick FePd film that is deposited on the disordered IrMn films. As the L1{sub 2} ordering of the IrMn layers increases, the H{sub eb} gradually decreases to 0 Oe, meaning that the exchange bias behavior vanishes. The increased surface roughness, revealed by atomic force microscopy, of the epitaxial IrMn layers with increasing T{sub s} cannot be the main cause of the decrease in H{sub eb} due to the compensated surface spins regardless of the disordered and ordered (001) IrMn layers. The change of antiferromagnetic structure from the A1 to the L1{sub 2} phase was correlated with the evolution of H{sub eb}.« less

  1. Growth of Ca{sub 2}MnO{sub 4} Ruddlesden-Popper structured thin films using combinatorial substrate epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacotte, M.; David, A.; Pravarthana, D.

    2014-12-28

    The local epitaxial growth of pulsed laser deposited Ca{sub 2}MnO{sub 4} films on polycrystalline spark plasma sintered Sr{sub 2}TiO{sub 4} substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew inmore » a grain-over-grain pattern such that each Ca{sub 2}MnO{sub 4} grain had a single OR with the Sr{sub 2}TiO{sub 4} grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001]{sub film}||[100][001]{sub sub}. The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides.« less

  2. Electron Microscope Studies of Cadmium Mercury Telluride

    NASA Astrophysics Data System (ADS)

    Lyster, Martin

    Available from UMI in association with The British Library. Requires signed TDF. Epitaxial layers of Cd_{x }Hg_{(1-x)}Te grown on various substrates by liquid phase epitaxy and metallo-organic vapour phase epitaxy have been studied using transmission and scanning electron microscopy, in a variety of contrast modes. Wavelength-dispersive X-ray microanalysis has been used to study interfaces in epitaxial specimens, and the results are used to derive diffusion coefficients for a range of values of x in Cd_ {x}Hg_{(1-x)} Te. Extensive use has been made of back-scattered electron contrast in the SEM as a means of compositional mapping, and defect structures are imaged by this technique. The back-scattered electron contrast at interfaces has been studied in detail and is modelled using the Monte Carlo approach. The modelling is combined with calculations and practical measurements of the probe size in the SEM instrument used in the work, to arrive at a quantitative explanation of this contrast. The SEM and scintillator detector used allow a spatial resolution of better than 1000A, but it is shown that improvements in this are possible with present technology. Scanning infra-red microscopy (SIRM) and high -resolution transmission electron microscopy (HREM) have been applied to the study of CdTe. SIRM images reveal information about Te precipitation, including particle size and density. HREM images provide results concerning dislocation structures in CdTe. Selected-area diffraction contrast TEM results are presented which illustrate the microstructure of LPE and MOVPE material; and TEM foil preparation techniques are discussed, including the choice of ion species for milling cross-sectional specimens. In view of the results obtained, suggestions are made for future work in this field.

  3. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  4. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  5. Strain-Driven Nanoscale Phase Competition near the Antipolar-Nonpolar Phase Boundary in Bi0.7La0.3FeO3 Thin Films.

    PubMed

    Dedon, Liv R; Chen, Zuhuang; Gao, Ran; Qi, Yajun; Arenholz, Elke; Martin, Lane W

    2018-05-02

    Complex-oxide materials tuned to be near phase boundaries via chemistry/composition, temperature, pressure, etc. are known to exhibit large susceptibilities. Here, we observe a strain-driven nanoscale phase competition in epitaxially constrained Bi 0.7 La 0.3 FeO 3 thin films near the antipolar-nonpolar phase boundary and explore the evolution of the structural, dielectric, (anti)ferroelectric, and magnetic properties with strain. We find that compressive and tensile strains can stabilize an antipolar PbZrO 3 -like Pbam phase and a nonpolar Pnma orthorhombic phase, respectively. Heterostructures grown with little to no strain exhibit a self-assembled nanoscale mixture of the two orthorhombic phases, wherein the relative fraction of each phase can be modified with film thickness. Subsequent investigation of the dielectric and (anti)ferroelectric properties reveals an electric-field-driven phase transformation from the nonpolar phase to the antipolar phase. X-ray linear dichroism reveals that the antiferromagnetic-spin axes can be effectively modified by the strain-induced phase transition. This evolution of antiferromagnetic-spin axes can be leveraged in exchange coupling between the antiferromagnetic Bi 0.7 La 0.3 FeO 3 and a ferromagnetic Co 0.9 Fe 0.1 layer to tune the ferromagnetic easy axis of the Co 0.9 Fe 0.1 . These results demonstrate that besides chemical alloying, epitaxial strain is an alternative and effective way to modify subtle phase relations and tune physical properties in rare earth-alloyed BiFeO 3 . Furthermore, the observation of antiferroelectric-antiferromagnetic properties in the Pbam Bi 0.7 La 0.3 FeO 3 phase could be of significant scientific interest and great potential in magnetoelectric devices because of its dual antiferroic nature.

  6. Method of fabricating low-dislocation-density epitaxially-grown films with textured surfaces

    DOEpatents

    Li, Qiming; Wang, George T

    2015-01-13

    A method for forming a surface-textured single-crystal film layer by growing the film atop a layer of microparticles on a substrate and subsequently selectively etching away the microparticles to release the surface-textured single-crystal film layer from the substrate. This method is applicable to a very wide variety of substrates and films. In some embodiments, the film is an epitaxial film that has been grown in crystallographic alignment with respect to a crystalline substrate.

  7. Wide-band operation of quasi-optical distributed superconductor/insulator/superconductor mixers with epitaxial NbN/AlN/NbN junctions

    NASA Astrophysics Data System (ADS)

    Kohjiro, S.; Shitov, S. V.; Wang, Z.; Uzawa, Y.; Miki, S.; Kawakami, A.; Shoji, A.

    2004-05-01

    For the optimum design of integrated receivers operating above the gap frequency of Nb, we have designed, fabricated and tested NbN-based quasi-optical superconductor/insulator/superconductor (SIS) mixers. The mixer chip incorporates a resonant half-wavelength epitaxial NbN/AlN/NbN junction, a twin-slot antenna and their coupling circuits. We adopted two kinds of coupling circuit between the antenna and the SIS junction: one is an in-phase feed with a length of 95 µm and the other is an anti-phase feed of 30 µm length. It was found that the anti-phase mixer reveals a 3 dB bandwidth of 43% of the centre frequency; the uncorrected double-sideband receiver noise temperature TRX = 691 K at 0.91 THz and TRX = 844 K at 0.80 THz, while 17% and TRX = 1250 K at 0.79 THz for the in-phase version. Possible reasons for this difference are discussed, which could be transmission loss and its robustness with respect to the variation of junction parameters. These experimental results suggest the NbN-based distributed mixer with the anti-phase feed is a better candidate for wide-band integrated receivers operating above 0.7 THz.

  8. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Hong, Seungbum; Bowden, Mark E.

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200°C due to the low Curie temperature of the piezoelectric material. High temperature piezoelectric materials such as La2Ti2O7 (LTO) would facilitate the development of high-temperature sensors if the piezoelectric coupling coefficient could be maximized. We have deposited epitaxial LTO films on SrTiO3(001), SrTiO3(110), and rutile TiO2(110) substrates by pulsed laser deposition, and show that the crystalline orientation of the LTO film, and thus its piezoelectric coupling direction, can be controlled by epitaxial matching to the substrate. The structure and phase purity of the films were investigated by x-raymore » diffraction and scanning transmission electron microscopy. To characterize the piezoelectric properties, piezoresponse force microscopy was used to measure the in-plane and out-of-plane piezoelectric coupling in the films. We find that the strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric crystalline direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO2(110) results in epitaxial La2/3TiO3, an orthorhombic perovskite of interest as a microwave dielectric material. La2/3TiO3 can be difficult to stabilize in bulk form, and epitaxial deposition has not been previously reported. These results confirm that control of the crystalline orientation of LTO-based materials can increase the out-of-plane strength of its piezoelectric coupling, which can be exploited in piezoelectric devices.« less

  9. Methods for improved growth of group III nitride semiconductor compounds

    DOEpatents

    Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro

    2015-03-17

    Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.

  10. Structure and piezo-ferroelectricity relationship study of (K0.5Na0.5)0.985La0.005NbO3 epitaxial films deposited on SrTiO3 by sputtering.

    PubMed

    H Mŏk, H Linh; Martínez-Aguilar, E; Gervacio-Arciniega, J J; Vendrell, X; Siqueiros-Beltrones, J M; Raymond-Herrera, O

    2017-12-18

    This work demonstrates that the rf-sputtering technique, combined with appropriate heat treatments, is potentially effective to develop new materials and devices based on oxide-interface and strain engineering. We report a study of the structural-physical properties relationship of high crystalline quality, highly oriented and epitaxial thin films of the lead-free (K 0.5 Na 0.5 ) 0.985 La 0.005 NbO 3 (KNNLa) compound which were successfully deposited on Nb-doped SrTiO 3 substrates, with orientations [100] (NSTO100) and [110] (NSTO110). The crystalline growth and the local ferroelectric and piezoelectric properties were evaluated by piezoresponse force microscopy combined with transmission electron microscopy and texture analysis by X-ray diffraction. Conditioned by the STO surface parameters, in the KNNLa films on NSTO100 coexist a commensurate [001]-tetragonal phase and two incommensurate [010]-monoclinic phases; while on NSTO110 the KNNLa films grew only in an incommensurate [101]-monoclinic phase. Both samples show excellent out-of-plane polarization switching patterns consistent with 180° domains walls; while for KNNLa/NSTO100 ferroelectric domains grow with the polarization pointing down, for KNNLa/NSTO110 they prefer to grow with the polarization pointing up. Comparing with previous reports on epitaxial KNN films, we find our samples to be of very high quality regarding their crystalline growth with highly ordered ferroelectric domains arrangements and, consequently, great potential for domain engineering.

  11. Uncooled infrared photodetectors in Poland

    NASA Astrophysics Data System (ADS)

    Piotrowski, Jozef; Piotrowski, Adam

    2005-09-01

    The history and present status of the middle and long wavelength Hg1xCdxTe infrared detectors in Poland are reviewed. Research and development efforts in Poland were concentrated mostly on uncooled market niche. Technology of the infrared photodetectors has been developed by several research groups. The devices are based on mercury-based variable band gap semiconductor alloys. Modified isothermal vapor phase epitaxy (ISOVPE) has been used for many years for research and commercial fabrication of photoconductive, photoelectromagnetic and other devices. Bulk growth and liquid phase epitaxy was also used. At present, the fabrication of IR devices relies on low temperature epitaxial technique, namely metalorganic vapor phase deposition (MOCVD), frequently in combination with the ISOVPE. Photoconductive and photoelectromagnetic detectors are still in production. The devices are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, the PV devices could offer high performance and very fast response. Actually, the uncooled long wavelength devices of conventional design suffer from two issues; namely low quantum efficiency and very low junction resistance. It makes them useless for practical applications. The problems have been solved with advanced 3D band gap engineered architecture, multiple cell heterojunction devices connected in series, monolithic integration of the detectors with microoptics and other improvements. Present fabrication program includes devices which are optimized for operation at any wavelength within a wide spectral range 1-15 μm and 200-300 K temperature range. Special solutions have been applied to improve speed of response. Some devices show picoseconds range response time. The devices have found numerous civilian and military applications.

  12. High current density GaAs/Si rectifying heterojunction by defect free Epitaxial Lateral overgrowth on Tunnel Oxide from nano-seed.

    PubMed

    Renard, Charles; Molière, Timothée; Cherkashin, Nikolay; Alvarez, José; Vincent, Laetitia; Jaffré, Alexandre; Hallais, Géraldine; Connolly, James Patrick; Mencaraglia, Denis; Bouchier, Daniel

    2016-05-04

    Interest in the heteroepitaxy of GaAs on Si has never failed in the last years due to the potential for monolithic integration of GaAs-based devices with Si integrated circuits. But in spite of this effort, devices fabricated from them still use homo-epitaxy only. Here we present an epitaxial technique based on the epitaxial lateral overgrowth of micrometer scale GaAs crystals on a thin SiO2 layer from nanoscale Si seeds. This method permits the integration of high quality and defect-free crystalline GaAs on Si substrate and provides active GaAs/Si heterojunctions with efficient carrier transport through the thin SiO2 layer. The nucleation from small width openings avoids the emission of misfit dislocations and the formation of antiphase domains. With this method, we have experimentally demonstrated for the first time a monolithically integrated GaAs/Si diode with high current densities of 10 kA.cm(-2) for a forward bias of 3.7 V. This epitaxial technique paves the way to hybrid III-V/Si devices that are free from lattice-matching restrictions, and where silicon not only behaves as a substrate but also as an active medium.

  13. High-quality EuO thin films the easy way via topotactic transformation

    DOE PAGES

    Mairoser, Thomas; Mundy, Julia A.; Melville, Alexander; ...

    2015-07-16

    Epitaxy is widely employed to create highly oriented crystalline films. A less appreciated, but nonetheless powerful means of creating such films is via topotactic transformation, in which a chemical reaction transforms a single crystal of one phase into a single crystal of a different phase, which inherits its orientation from the original crystal. Topotactic reactions may be applied to epitactic films to substitute, add or remove ions to yield epitactic films of different phases. Here we exploit a topotactic reduction reaction to provide a non-ultra-high vacuum (UHV) means of growing highly oriented single crystalline thin films of the easily over-oxidizedmore » half-metallic semiconductor europium monoxide (EuO) with a perfection rivalling that of the best films of the same material grown by molecular-beam epitaxy or UHV pulsed-laser deposition. Lastly, as the technique only requires high-vacuum deposition equipment, it has the potential to drastically improve the accessibility of high-quality single crystalline films of EuO as well as other difficult-to-synthesize compounds.« less

  14. Antisite disorder induced spin glass and exchange bias effect in Nd2NiMnO6 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Singh, Amit Kumar; Chauhan, Samta; Chandra, Ramesh

    2017-03-01

    We report the observation of the exchange bias effect and spin glass behaviour at low temperature in a ferromagnetic Nd2NiMnO6 epitaxial thin film. Along with the ferromagnetic transition at ˜194 K, an additional transition is observed at lower temperature (˜55 K) as seen from M-T curves of the sample. A shift in the ac susceptibility peak with frequency has been observed at low temperature, which is a signature of a glassy phase within the sample. The detailed investigation of the memory effect and time dependent magnetic relaxation measurements reveals the presence of a spin glass phase in the Nd2NiMnO6 thin film. The exchange bias effect observed at low temperature in the sample has been associated with an antisite disorder induced spin glass phase, which results in a ferromagnetic/spin glass interface at low temperature. The exchange bias behaviour has been further confirmed by performing cooling field and temperature dependence of exchange bias along with training effect measurements.

  15. Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions

    PubMed Central

    Li, S.; Kang, N.; Fan, D. X.; Wang, L. B.; Huang, Y. Q.; Caroff, P.; Xu, H. Q.

    2016-01-01

    Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-Pérot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics. PMID:27102689

  16. Molecular beam epitaxy of InN nanowires on Si

    NASA Astrophysics Data System (ADS)

    Golam Sarwar, A. T. M.; Carnevale, Santino D.; Kent, Thomas F.; Laskar, Masihhur R.; May, Brelon J.; Myers, Roberto C.

    2015-10-01

    We report on a systematic growth study of the nucleation process of InN nanowires on Si(1 1 1) substrates using plasma assisted molecular beam epitaxy (PAMBE). Samples are grown with various substrate temperatures and III/V ratios. Scanning electron microscopy, X-ray diffraction spectroscopy, energy dispersive X-ray spectroscopy, and photoluminescence are carried out to map out the variation in structural and optical properties versus growth conditions. Statistical averages of areal density, height, and radius are mapped as a function of substrate temperature and III/V ratio. Three different morphological phases are identified on the growth surface: InN, α-In and β-In. Based on SEM image analysis of samples grown at different conditions, the formation mechanism of these phases is proposed. Finally, the growth phase diagram of PAMBE grown InN on Si under N-rich condition is presented, and tapered versus non-tapered growth conditions are identified. It is found that high growth temperature and low III/V ratio plays a critical role in the growth of non-tapered InN nanowires.

  17. Segregation of Sb in Ge epitaxial layers and its usage for the selective doping of Ge-based structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, A. V.; Drozdov, M. N.; Novikov, A. V., E-mail: anov@ipmras.ru

    2015-11-15

    The segregation of Sb in Ge epitaxial layers grown by the method of molecular beam epitaxy on Ge (001) substrates is investigated. For a growth temperature range of 180–325°C, the temperature dependence is determined for the segregation ratio of Sb in Ge, which shows a sharp increase (by more than three orders of magnitude) with increasing temperature. The strong dependence of the segregation properties of Sb on the growth temperature makes it possible to adapt a method based on the controlled use of segregation developed previously for the doping of Si structures for the selective doping of Ge structures withmore » a donor impurity. Using this method selectively doped Ge:Sb structures, in which the bulk impurity concentration varies by an order of magnitude at distances of 3–5 nm, are obtained.« less

  18. Chemically stabilized epitaxial wurtzite-BN thin film

    NASA Astrophysics Data System (ADS)

    Vishal, Badri; Singh, Rajendra; Chaturvedi, Abhishek; Sharma, Ankit; Sreedhara, M. B.; Sahu, Rajib; Bhat, Usha; Ramamurty, Upadrasta; Datta, Ranjan

    2018-03-01

    We report on the chemically stabilized epitaxial w-BN thin film grown on c-plane sapphire by pulsed laser deposition under slow kinetic condition. Traces of no other allotropes such as cubic (c) or hexagonal (h) BN phases are present. Sapphire substrate plays a significant role in stabilizing the metastable w-BN from h-BN target under unusual PLD growth condition involving low temperature and pressure and is explained based on density functional theory calculation. The hardness and the elastic modulus of the w-BN film are 37 & 339 GPa, respectively measured by indentation along <0001> direction. The results are extremely promising in advancing the microelectronic and mechanical tooling industry.

  19. Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies

    NASA Astrophysics Data System (ADS)

    Biškup, Neven; Salafranca, Juan; Mehta, Virat; Oxley, Mark P.; Suzuki, Yuri; Pennycook, Stephen J.; Pantelides, Sokrates T.; Varela, Maria

    2014-02-01

    The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film's electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.

  20. Electronic Structure of HgBa2CaCu2O(6+delta) Epitaxial films measured by x-ray Photoemission

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Rupp, M.; Gupta, A.; Tsuei, C. C.

    1995-01-01

    The electronic structure and chemical states of HgBa2CaCu20(sub 6 + delta), epitaxial films have been studied with x-ray photelectron spectroscopy. Signals from the superconducting phase dominate all the core-level spectra, and a clear Fermi edge is observed in the valence-band region. The Ba, Ca, Cu, and O core levels are similar to those of Tl2Ba2CaCu208(+)O(sub 6 + delta), but distinct differences are observed in the valence bands which are consistent with differences in the calculated densities of states.

  1. Epitaxial Ni-Mn-Ga films deposited on SrTiO{sub 3} and evidence of magnetically induced reorientation of martensitic variants at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heczko, O.; Thomas, M.; Buschbeck, J.

    2008-02-18

    Epitaxial Ni-Mn-Ga films were grown on SrTiO{sub 3} by sputter deposition. The films deposited at 673 K are ferromagnetic and martensitic at room temperature. Pole figure measurements indicate that the twinned orthorhombic martensite microstructure of the film has a lower symmetry compared to bulk. Magnetically induced reorientation or magnetic shape memory effect is indicated by magnetization curve measurements. Though the overall extension of the film is constrained by a rigid substrate, the reorientation is possible due to the additional degree of freedom in the orthorhombic phase.

  2. Manipulation of Dirac cones in metal-intercalated epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Zhuang; Kim, Minsung; Tringides, Michael; Ho, Kai-Ming

    Graphene is one of the most attractive materials from both fundamental and practical points of view due to its characteristic Dirac cones. The electronic property of graphene can be modified through the interaction with substrate or another graphene layer as illustrated in few-layer epitaxial graphene. Recently, metal intercalation became an effective method to manipulate the electronic structure of graphene by modifying the coupling between the constituent layers. In this work, we show that the Dirac cones of epitaxial graphene can be manipulated by intercalating rare-earth metals. We demonstrate that rare-earth metal intercalated epitaxial graphene has tunable band structures and the energy levels of Dirac cones as well as the linear or quadratic band dispersion can be controlled depending on the location of the intercalation layer and density. Our results could be important for applications and characterizations of the intercalated epitaxial graphene. Supported by the U.S. DOE-BES under Contract No. DE-AC02-07CH11358.

  3. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    DOEpatents

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  4. Progress with polycrystalline silicon thin-film solar cells on glass at UNSW

    NASA Astrophysics Data System (ADS)

    Aberle, Armin G.

    2006-01-01

    Polycrystalline Si (pc-Si) thin-film solar cells on glass have long been considered a very promising approach for lowering the cost of photovoltaic (PV) solar electricity. In recent years there have been dramatic advances with this PV technology, and the first commercial modules (CSG Solar) are expected to hit the marketplace in 2006. The CSG modules are based on solid-phase crystallisation of plasma-enhanced chemical vapor deposition (PECVD) -deposited amorphous Si. Independent research in the author's group at the University of New South Wales (UNSW) during recent years has led to the development of three alternative pc-Si thin-film solar cells on glass—EVA, ALICIA and ALICE. Cell thickness is generally about 2 μm. The first two cells are made by vacuum evaporation, whereas ALICE cells can be made by either vacuum evaporation or PECVD. Evaporation has the advantage of being a fast and inexpensive Si deposition method. A crucial component of ALICIA and ALICE cells is a seed layer made on glass by metal-induced crystallisation of amorphous silicon (a-Si). The absorber layer of these cells is made by either ion-assisted Si epitaxy (ALICIA) or solid-phase epitaxy of a-Si (ALICE). This paper reports on the status of these three new thin-film PV technologies. All three solar cells seem to be capable of voltages of over 500 mV and, owing to their potentially inexpensive and scalable fabrication process, have significant industrial appeal.

  5. Hydride vapor phase epitaxy and characterization of high-quality ScN epilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshima, Yuichi, E-mail: OSHIMA.Yuichi@nims.go.jp; Víllora, Encarnación G.; Shimamura, Kiyoshi

    2014-04-21

    The heteroepitaxial growth of ScN films was investigated on various substrates by hydride vapor phase epitaxy (HVPE). Single crystalline mirror-like ScN(100) and ScN(110) layers were successfully deposited on r- and m-plane sapphire substrates, respectively. Homogeneous stoichiometric films (N/Sc ratio 1.01 ± 0.10) up to 40 μm in thickness were deposited. Their mosaicity drastically improved with increasing the film thickness. The band gap was determined by optical methods to be 2.06 eV. Impurity concentrations including H, C, O, Si, and Cl were investigated through energy dispersive X-ray spectrometry and secondary ion mass spectrometry. As a result, it was found that the presence of impurities wasmore » efficiently suppressed in comparison with that of HVPE-grown ScN films reported in the past, which was possible thanks to the home-designed corrosion-free HVPE reactor. Room-temperature Hall measurements indicated that the residual free electron concentrations ranged between 10{sup 18}–10{sup 20} cm{sup −3}, which was markedly lower than the reported values. The carrier mobility increased monotonically with the decreasing in carrier concentration, achieving the largest value ever reported, 284 cm{sup 2} V{sup −1} s{sup −1} at n = 3.7 × 10{sup 18} cm{sup −3}.« less

  6. Optical and Structural Properties of Microcrystalline GaN on an Amorphous Substrate Prepared by a Combination of Molecular Beam Epitaxy and Metal-Organic Chemical Vapor Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Jung-Wook; Hwang, Hyeong-Yong; Kang, Eun-Kyu

    2016-05-01

    Microscale platelet-shaped GaN grains were grown on amorphous substrates by a combined epitaxial growth method of molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD). First, MBE GaN was grown on an amorphous substrate as a pre-orienting layer and its structural properties were investigated. Second, MOCVD grown GaN samples using the different growth techniques of planar and selective area growth (SAG) were comparatively investigated by transmission electron microscopy (TEM), cathodoluminescence (CL), and photoluminescence (PL). In MOCVD planar GaN, strong bound exciton peaks dominated despite the high density of the threading dislocations (TDs). In MOCVD SAG GaN, on the othermore » hand, TDs were clearly reduced with bending, but basal stacking fault (BSF) PL peaks were observed at 3.42 eV. The combined epitaxial method not only provides a deep understanding of the growth behavior but also suggests an alternative approach for the growth of GaN on amorphous substances.« less

  7. Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0 0 0 1) AlN/sapphire using growth mode modification process

    NASA Astrophysics Data System (ADS)

    Su, Xujun; Zhang, Jicai; Huang, Jun; Zhang, Jinping; Wang, Jianfeng; Xu, Ke

    2017-06-01

    Defect structures were investigated by transmission electron microscopy for AlN/sapphire (0 0 0 1) epilayers grown by high temperature hydride vapor phase epitaxy using a growth mode modification process. The defect structures, including threading dislocations, inversion domains, and voids, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. AlN film growth was initiated at 1450 °C with high V/III ratio for 8 min. This was followed by low V/III ratio growth for 12 min. The near-interfacial region shows a high density of threading dislocations and inversion domains. Most of these dislocations have Burgers vector b = 1/3〈1 1 2 0〉 and were reduced with the formation of dislocation loops. In the middle range 400 nm < h < 2 μm, dislocations gradually aggregated and reduced to ∼109 cm-2. The inversion domains have a shuttle-like shape with staggered boundaries that deviate by ∼ ±5° from the c axis. Above 2 μm thickness, the film consists of isolated threading dislocations with a total density of 8 × 108 cm-2. Most of threading dislocations are either pure edge or mixed dislocations. The threading dislocation reduction in these films is associated with dislocation loops formation and dislocation aggregation-interaction during island growth with high V/III ratio.

  8. Molecular beam epitaxy growth method for vertical-cavity surface-emitting laser resonators based on substrate thermal emission

    NASA Astrophysics Data System (ADS)

    Talghader, J. J.; Hadley, M. A.; Smith, J. S.

    1995-12-01

    A molecular beam epitaxy growth monitoring method is developed for distributed Bragg reflectors and vertical-cavity surface-emitting laser (VCSEL) resonators. The wavelength of the substrate thermal emission that corresponds to the optical cavity resonant wavelength is selected by a monochromator and monitored during growth. This method allows VCSEL cavities of arbitrary design wavelength to be grown with a single control program. This letter also presents a theoretical model for the technique which is based on transmission matrices and simple thermal emission properties. Demonstrated reproducibility of the method is well within 0.1%.

  9. Coalescence induced dislocation reduction in selectively grown lattice-mismatched heteroepitaxy: Theoretical prediction and experimental verification

    NASA Astrophysics Data System (ADS)

    Yako, Motoki; Ishikawa, Yasuhiko; Wada, Kazumi

    2018-05-01

    A method for reduction of threading dislocation density (TDD) in lattice-mismatched heteroepitaxy is proposed, and the reduction is experimentally verified for Ge on Si. Flat-top epitaxial layers are formed through coalescences of non-planar selectively grown epitaxial layers, and enable the TDD reduction in terms of image force. Numerical calculations and experiments for Ge on Si verify the TDD reduction by this method. The method should be applicable to not only Ge on Si but also other lattice-mismatched heteroepitaxy such as III-V on Si.

  10. Electrical properties of epitaxial yttrium iron garnet ultrathin films at high temperatures

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Naletov, V. V.; Vila, L.; Marty, A.; Brenac, A.; Jacquot, J.-F.; de Loubens, G.; Viret, M.; Anane, A.; Cros, V.; Ben Youssef, J.; Beaulieu, N.; Demidov, V. E.; Divinskiy, B.; Demokritov, S. O.; Klein, O.

    2018-02-01

    We report a study on the electrical properties of 19-nm-thick yttrium iron garnet (YIG) films grown by liquid phase epitaxy on gadolinium gallium garnet single crystal. The electrical conductivity and Hall coefficient are measured in the high-temperature range [300,400] K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band gap of Eg≈2 eV. It drops to values about 5 ×103Ω cm at T =400 K, thus indicating that epitaxial YIG ultrathin films behave as large gap semiconductors. We also infer the Hall mobility, which is found to be positive (p type) at 5 cm2V-1sec-1 and almost independent of temperature. We discuss the consequence for nonlocal spin transport experiments performed on YIG at room temperature and demonstrate the existence of electrical offset voltages to be disentangled from pure spin effects.

  11. Superconductivity in epitaxial InN thin films with large critical fields

    NASA Astrophysics Data System (ADS)

    Pal, Buddhadeb; Joshi, Bhanu P.; Chakraborti, Himadri; Jain, Aditya K.; Barick, Barun K.; Ghosh, Kankat; Laha, Apurba; Dhar, Subhabrata; Gupta, Kantimay Das

    2018-04-01

    We report superconductivity in Chemical Vapor Deposition (CVD) and Plasma-Assisted Molecular Beam Epitaxy (PA-MBE) grown epitaxial InN films having carrier density ˜ 1019 - 1020cm-3. The superconducting phase transition starts at temperatures around Tc,onset˜3 K and the resistance goes to zero completely at Tc0 ˜ 1.6 K. The temperature dependence of the critical field HC2(T) does not obey a two fluid Casimir-Gorter (C-G) model rather it is well explained by the 2-D Tinkham model. The extrapolated value of the zero-temperature perpendicular critical field HC2(0) is found to be between 0.25 - 0.9 T, which is ten times greater than that of Indium metal. It may indicate the intrinsic nature of superconductivity in InN films. The angle dependence of critical field is well described by Lawrence-Doniach (L-D) model, which suggest the existence of quasi-2D superconducting layers.

  12. In-plane microwave dielectric properties of paraelectric barium strontium titanate thin films with anisotropic epitaxy

    NASA Astrophysics Data System (ADS)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J. A.

    2005-08-01

    In-plane dielectric properties of ⟨110⟩ oriented epitaxial (Ba0.60Sr0.40)TiO3 thin films in the thickness range from 25-1200nm have been investigated under the influence of anisotropic epitaxial strains from ⟨100⟩ NdGaO3 substrates. The measured dielectric properties show strong residual strain and in-plane directional dependence. Below 150nm film thickness, there appears to be a phase transition due to the anisotropic nature of the misfit strain relaxation. In-plane relative permittivity is found to vary from as much as 500-150 along [11¯0] and [001] respectively, in 600nm thick films, and from 75 to 500 overall. Tunability was found to vary from as much as 54% to 20% in all films and directions, and in a given film the best tunability is observed along the compressed axis in a mixed strain state, 54% along [11¯0] in the 600nm film for example.

  13. AlGaN/GaN high electron mobility transistor grown on GaN template substrate by molecule beam epitaxy system

    NASA Astrophysics Data System (ADS)

    Tsai, Jenn-Kai; Chen, Y. L.; Gau, M. H.; Pang, W. Y.; Hsu, Y. C.; Lo, Ikai; Hsieh, C. H.

    2008-03-01

    In this study, AlGaN/GaN high electron mobility transistor (HEMT) structure was grow on GaN template substrate radio frequency plasma assisted molecular beam epitaxy (MBE) equipped with an EPI UNI-Bulb nitrogen plasma source. The undoped GaN template substrate was grown on c-sapphire substrate by metal organic vapor phase epitaxy system (MOPVD). After growth of MOVPE and MBE, the samples are characterized by double crystal X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), atomic force microscopy (AFM), and Hall effect measurements. We found that the RMS roughness of template substrate play the major role in got the high value of mobility on AlGaN/GaN HEMT. When the roughness was lower than 0.77 nm in a 25 μm x 25 μm area, the mobility of HEMT at the temperature of 77 K was over 10000 cm^2/Vs.

  14. Methods for making thin layers of crystalline materials

    DOEpatents

    Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy

    2013-07-23

    Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.

  15. Isolation of high quality graphene from Ru by solution phase intercalation

    NASA Astrophysics Data System (ADS)

    Koren, E.; Sutter, E.; Bliznakov, S.; Ivars-Barcelo, F.; Sutter, P.

    2013-09-01

    We introduce a method for isolating graphene grown on epitaxial Ru(0001)/α-Al2O3. The strong graphene/Ru(0001) coupling is weakened by electrochemically driven intercalation of hydrogen underpotentially deposited in aqueous KOH solution, which allows the penetration of water molecules at the graphene/Ru(0001) interface. Following these electrochemically driven processes, the graphene can be isolated by electrochemical hydrogen evolution and transferred to arbitrary supports. Raman and transport measurements demonstrate the high quality of the transferred graphene. Our results show that intercalation, typically carried out in vacuum, can be extended to solution environments for graphene processing under ambient conditions.

  16. Crystal growth of HVPE-GaN doped with germanium

    NASA Astrophysics Data System (ADS)

    Iwinska, M.; Takekawa, N.; Ivanov, V. Yu.; Amilusik, M.; Kruszewski, P.; Piotrzkowski, R.; Litwin-Staszewska, E.; Lucznik, B.; Fijalkowski, M.; Sochacki, T.; Teisseyre, H.; Murakami, H.; Bockowski, M.

    2017-12-01

    Crystallization by hydride vapor phase epitaxy method of gallium nitride single crystals doped with germanium and properties of the obtained material are described in this paper. Growth was performed in hydrogen and nitrogen carrier gas. The results were studied and compared. Influence of different flows of germanium tetrachloride, precursor of germanium, on the grown crystals was investigated. Ammonothermal GaN substrates were used as seeds for crystallization. Structural, electrical, and optical properties of HVPE-GaN doped with germanium are presented and discussed in detail. They were compared to properties of HVPE-GaN doped with silicon and also grown on native seeds of high quality.

  17. Strain Imaging of Nanoscale Semiconductor Heterostructures with X-Ray Bragg Projection Ptychography

    NASA Astrophysics Data System (ADS)

    Holt, Martin V.; Hruszkewycz, Stephan O.; Murray, Conal E.; Holt, Judson R.; Paskiewicz, Deborah M.; Fuoss, Paul H.

    2014-04-01

    We report the imaging of nanoscale distributions of lattice strain and rotation in complementary components of lithographically engineered epitaxial thin film semiconductor heterostructures using synchrotron x-ray Bragg projection ptychography (BPP). We introduce a new analysis method that enables lattice rotation and out-of-plane strain to be determined independently from a single BPP phase reconstruction, and we apply it to two laterally adjacent, multiaxially stressed materials in a prototype channel device. These results quantitatively agree with mechanical modeling and demonstrate the ability of BPP to map out-of-plane lattice dilatation, a parameter critical to the performance of electronic materials.

  18. The Control of Anisotropic Transport in Manganites by Stripy Domains

    NASA Astrophysics Data System (ADS)

    Ju, Changcheng; Lu, Xiaomei; Chu, Yinghao

    2014-03-01

    Epitaxial thin film acts as a significant tool to investigate novel phenomena of complex oxide systems. Extrinsic constraint1 of uniform or certain designed buffer layer strain could be easily implanted to these materials. However, the strain distribution might be quite complicated by involving micro- or nano-lattice distortions which could partially relax the strain and determine the complex phase diagrams of thin film, meanwhile introducing structural and physical inhomogeneities. In this work , we report 71° striped ferroelectric domains created in BFO can also epitaxially lock the perovskite manganites leading to the emerge of ordered structural domain. LSMO/BFO hetero-epitaxial samples are deposited by PLD. The 71° periodic striped domains and coherent growth are demonstrated by PFM and X-ray analysis. Plan-view TEM and X-ray RSM have been used to confirm the epitaxial relationships of the functional layers and IP lattice constant. Both the simulation and structural analysis demonstrate we can create a periodic ordered stripe structural domain in LSMO. And this will leave an anisotropic distribution of structural domain walls which makes it possible to capture the anisotropic tunneling for strong electron-lattice coupling in manganites. Temperature-dependent resistivity measurements reveal a substantial anisotropic resistivities and a remarkable shift of the MI transition between the perpendicular and parallel to the stripe domain directions.

  19. Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.

    PubMed

    Caccamo, Lorenzo; Hartmann, Jana; Fàbrega, Cristian; Estradé, Sonia; Lilienkamp, Gerhard; Prades, Joan Daniel; Hoffmann, Martin W G; Ledig, Johannes; Wagner, Alexander; Wang, Xue; Lopez-Conesa, Lluis; Peiró, Francesca; Rebled, José Manuel; Wehmann, Hergo-Heinrich; Daum, Winfried; Shen, Hao; Waag, Andreas

    2014-02-26

    3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In ∼ 0.30 ± 0.04) is rather homogeneous in InGaN shells along the radial and longitudinal directions. The growing strategy allows us to tune the band gap of the InGaN layer in order to match the visible absorption with the solar spectrum as well as to align the semiconductor bands close to the water redox potentials to achieve high efficiency. The relation between structure, surface, and photoelectrochemical property of GaN-InGaN is explored by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), current-voltage, and open circuit potential (OCP) measurements. The epitaxial GaN-InGaN interface, pseudomorphic InGaN thin films, homogeneous and suitable indium concentration and defined surface orientation are properties demanded for systematic study and efficient photoanodes based on III-nitride heterojunctions.

  20. Spectroscopic and microscopic investigation of MBE-grown CdTe (211)B epitaxial thin films on GaAs (211)B substrates

    NASA Astrophysics Data System (ADS)

    Özden, Selin; Koc, Mumin Mehmet

    2018-03-01

    CdTe epitaxial thin films, for use as a buffer layer for HgCdTe defectors, were grown on GaAs (211)B using the molecular beam epitaxy method. Wet chemical etching (Everson method) was applied to the epitaxial films using various concentrations and application times to quantify the crystal quality and dislocation density. Surface characterization of the epitaxial films was achieved using Atomic force microscopy and Scanning electron microscopy (SEM) before and after each treatment. The Energy Dispersive X-Ray apparatus of SEM was used to characterize the chemical composition. Untreated CdTe films show smooth surface characteristics with root mean square (RMS) roughnesses of 1.18-3.89 nm. The thicknesses of the CdTe layers formed were calculated via FTIR spectrometry and obtained by ex situ spectroscopic ellipsometry. Raman spectra were obtained for various temperatures. Etch pit densities (EPD) were measured, from which it could be seen that EPD changes between 1.7 × 108 and 9.2 × 108 cm-2 depending on the concentration of the Everson etch solution and treatment time. Structure, shape and depth of pits resulting from each etch pit implementation were also evaluated. Pit widths varying between 0.15 and 0.71 µm with heights varying between 2 and 80 nm were observed. RMS roughness was found to vary by anything from 1.56 to 26 nm.

Top