Sample records for phase errors introduced

  1. Circular carrier squeezing interferometry: Suppressing phase shift error in simultaneous phase-shifting point-diffraction interferometer

    NASA Astrophysics Data System (ADS)

    Zheng, Donghui; Chen, Lei; Li, Jinpeng; Sun, Qinyuan; Zhu, Wenhua; Anderson, James; Zhao, Jian; Schülzgen, Axel

    2018-03-01

    Circular carrier squeezing interferometry (CCSI) is proposed and applied to suppress phase shift error in simultaneous phase-shifting point-diffraction interferometer (SPSPDI). By introducing a defocus, four phase-shifting point-diffraction interferograms with circular carrier are acquired, and then converted into linear carrier interferograms by a coordinate transform. Rearranging the transformed interferograms into a spatial-temporal fringe (STF), so the error lobe will be separated from the phase lobe in the Fourier spectrum of the STF, and filtering the phase lobe to calculate the extended phase, when combined with the corresponding inverse coordinate transform, exactly retrieves the initial phase. Both simulations and experiments validate the ability of CCSI to suppress the ripple error generated by the phase shift error. Compared with carrier squeezing interferometry (CSI), CCSI is effective on some occasions in which a linear carrier is difficult to introduce, and with the added benefit of eliminating retrace error.

  2. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  3. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  4. Global distortion of GPS networks associated with satellite antenna model errors

    NASA Astrophysics Data System (ADS)

    Cardellach, E.; Elósegui, P.; Davis, J. L.

    2007-07-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by ˜1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PCO errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm yr-1 level, which will impact high-precision crustal deformation studies.

  5. Global Distortion of GPS Networks Associated with Satellite Antenna Model Errors

    NASA Technical Reports Server (NTRS)

    Cardellach, E.; Elosequi, P.; Davis, J. L.

    2007-01-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by approx.1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PC0 errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm/yr level, which will impact high-precision crustal deformation studies.

  6. Calibration Method to Eliminate Zeroth Order Effect in Lateral Shearing Interferometry

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Xiang, Yang; Qi, Keqi; Chen, Dawei

    2018-04-01

    In this paper, a calibration method is proposed which eliminates the zeroth order effect in lateral shearing interferometry. An analytical expression of the calibration error function is deduced, and the relationship between the phase-restoration error and calibration error is established. The analytical results show that the phase-restoration error introduced by the calibration error is proportional to the phase shifting error and zeroth order effect. The calibration method is verified using simulations and experiments. The simulation results show that the phase-restoration error is approximately proportional to the phase shift error and zeroth order effect, when the phase shifting error is less than 2° and the zeroth order effect is less than 0.2. The experimental result shows that compared with the conventional method with 9-frame interferograms, the calibration method with 5-frame interferograms achieves nearly the same restoration accuracy.

  7. Artifact-free dynamic atomic force microscopy reveals monotonic dissipation for a simple confined liquid

    NASA Astrophysics Data System (ADS)

    Kaggwa, G. B.; Kilpatrick, J. I.; Sader, J. E.; Jarvis, S. P.

    2008-07-01

    We present definitive interaction measurements of a simple confined liquid (octamethylcyclotetrasiloxane) using artifact-free frequency modulation atomic force microscopy. We use existing theory to decouple the conservative and dissipative components of the interaction, for a known phase offset from resonance (90° phase shift), that has been deliberately introduced into the experiment. Further we show the qualitative influence on the conservative and dissipative components of the interaction of a phase error deliberately introduced into the measurement, highlighting that artifacts, such as oscillatory dissipation, can be readily observed when the phase error is not compensated for in the force analysis.

  8. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry.

    PubMed

    Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun

    2017-08-01

    The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.

  9. Automated error correction in IBM quantum computer and explicit generalization

    NASA Astrophysics Data System (ADS)

    Ghosh, Debjit; Agarwal, Pratik; Pandey, Pratyush; Behera, Bikash K.; Panigrahi, Prasanta K.

    2018-06-01

    Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in IBM 5-qubit quantum computer. After performing quantum state tomography, we obtain the experimental results with a high fidelity. Finally, we generalize the investigated code for maximally entangled n-qudit case, which could both detect and automatically correct any arbitrary phase-change error, or any phase-flip error, or any bit-flip error, or combined error of all types of error.

  10. Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon.

    PubMed

    Xu, Jingquan; Qin, SiYi; Liu, Chen; Fu, Songnian; Liu, Deming

    2018-06-15

    In order to calibrate the spatial phase response nonuniformity of liquid crystal on silicon (LCoS), we propose to use a Twyman-Green interferometer to characterize the wavefront distortion, due to the inherent curvature of the device. During the characterization, both the residual carrier frequency introduced by the Fourier transform evaluation method and the lens aberration are error sources. For the tilted phase error introduced by residual carrier frequency, the least mean square fitting method is used to obtain the tilted phase error. Meanwhile, we use Zernike polynomials fitting based on plane mirror calibration to mitigate the lens aberration. For a typical LCoS with 1×12,288 pixels after calibration, the peak-to-valley value of the inherent wavefront distortion is approximately 0.25λ at 1550 nm, leading to a half-suppression of wavefront distortion. All efforts can suppress the root mean squares value of the inherent wavefront distortion to approximately λ/34.

  11. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin

    2016-10-01

    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  12. Gamma model and its analysis for phase measuring profilometry.

    PubMed

    Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G

    2010-03-01

    Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.

  13. Investigation of advanced phase-shifting projected fringe profilometry techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu

    1999-11-01

    The phase-shifting projected fringe profilometry (PSPFP) technique is a powerful tool in the profile measurements of rough engineering surfaces. Compared with other competing techniques, this technique is notable for its full-field measurement capacity, system simplicity, high measurement speed, and low environmental vulnerability. The main purpose of this dissertation is to tackle three important problems, which severely limit the capability and the accuracy of the PSPFP technique, with some new approaches. Chapter 1 provides some background information of the PSPFP technique including the measurement principles, basic features, and related techniques is briefly introduced. The objectives and organization of the thesis are also outlined. Chapter 2 gives a theoretical treatment to the absolute PSPFP measurement. The mathematical formulations and basic requirements of the absolute PSPFP measurement and its supporting techniques are discussed in detail. Chapter 3 introduces the experimental verification of the proposed absolute PSPFP technique. Some design details of a prototype system are discussed as supplements to the previous theoretical analysis. Various fundamental experiments performed for concept verification and accuracy evaluation are introduced together with some brief comments. Chapter 4 presents the theoretical study of speckle- induced phase measurement errors. In this analysis, the expression for speckle-induced phase errors is first derived based on the multiplicative noise model of image- plane speckles. The statistics and the system dependence of speckle-induced phase errors are then thoroughly studied through numerical simulations and analytical derivations. Based on the analysis, some suggestions on the system design are given to improve measurement accuracy. Chapter 5 discusses a new technique combating surface reflectivity variations. The formula used for error compensation is first derived based on a simplified model of the detection process. The techniques coping with two major effects of surface reflectivity variations are then introduced. Some fundamental problems in the proposed technique are studied through simulations. Chapter 6 briefly summarizes the major contributions of the current work and provides some suggestions for the future research.

  14. Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation

    PubMed Central

    Scellier, Benjamin; Bengio, Yoshua

    2017-01-01

    We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution) toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task. PMID:28522969

  15. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less

  16. Effective Algorithm for Detection and Correction of the Wave Reconstruction Errors Caused by the Tilt of Reference Wave in Phase-shifting Interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xianfeng; Cai, Luzhong; Li, Dailin; Mao, Jieying

    2010-04-01

    In phase-shifting interferometry (PSI) the reference wave is usually supposed to be an on-axis plane wave. But in practice a slight tilt of reference wave often occurs, and this tilt will introduce unexpected errors of the reconstructed object wave-front. Usually the least-square method with iterations, which is time consuming, is employed to analyze the phase errors caused by the tilt of reference wave. Here a simple effective algorithm is suggested to detect and then correct this kind of errors. In this method, only some simple mathematic operation is used, avoiding using least-square equations as needed in most methods reported before. It can be used for generalized phase-shifting interferometry with two or more frames for both smooth and diffusing objects, and the excellent performance has been verified by computer simulations. The numerical simulations show that the wave reconstruction errors can be reduced by 2 orders of magnitude.

  17. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    PubMed

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  18. Automated Classification of Phonological Errors in Aphasic Language

    PubMed Central

    Ahuja, Sanjeev B.; Reggia, James A.; Berndt, Rita S.

    1984-01-01

    Using heuristically-guided state space search, a prototype program has been developed to simulate and classify phonemic errors occurring in the speech of neurologically-impaired patients. Simulations are based on an interchangeable rule/operator set of elementary errors which represent a theory of phonemic processing faults. This work introduces and evaluates a novel approach to error simulation and classification, it provides a prototype simulation tool for neurolinguistic research, and it forms the initial phase of a larger research effort involving computer modelling of neurolinguistic processes.

  19. An active co-phasing imaging testbed with segmented mirrors

    NASA Astrophysics Data System (ADS)

    Zhao, Weirui; Cao, Genrui

    2011-06-01

    An active co-phasing imaging testbed with high accurate optical adjustment and control in nanometer scale was set up to validate the algorithms of piston and tip-tilt error sensing and real-time adjusting. Modularization design was adopted. The primary mirror was spherical and divided into three sub-mirrors. One of them was fixed and worked as reference segment, the others were adjustable respectively related to the fixed segment in three freedoms (piston, tip and tilt) by using sensitive micro-displacement actuators in the range of 15mm with a resolution of 3nm. The method of twodimension dispersed fringe analysis was used to sense the piston error between the adjacent segments in the range of 200μm with a repeatability of 2nm. And the tip-tilt error was gained with the method of centroid sensing. Co-phasing image could be realized by correcting the errors measured above with the sensitive micro-displacement actuators driven by a computer. The process of co-phasing error sensing and correcting could be monitored in real time by a scrutiny module set in this testbed. A FISBA interferometer was introduced to evaluate the co-phasing performance, and finally a total residual surface error of about 50nm rms was achieved.

  20. Validation, Edits, and Application Processing Phase II and Error-Prone Model Report.

    ERIC Educational Resources Information Center

    Gray, Susan; And Others

    The impact of quality assurance procedures on the correct award of Basic Educational Opportunity Grants (BEOGs) for 1979-1980 was assessed, and a model for detecting error-prone applications early in processing was developed. The Bureau of Student Financial Aid introduced new comments into the edit system in 1979 and expanded the pre-established…

  1. Addressing Phase Errors in Fat-Water Imaging Using a Mixed Magnitude/Complex Fitting Method

    PubMed Central

    Hernando, D.; Hines, C. D. G.; Yu, H.; Reeder, S.B.

    2012-01-01

    Accurate, noninvasive measurements of liver fat content are needed for the early diagnosis and quantitative staging of nonalcoholic fatty liver disease. Chemical shift-based fat quantification methods acquire images at multiple echo times using a multiecho spoiled gradient echo sequence, and provide fat fraction measurements through postprocessing. However, phase errors, such as those caused by eddy currents, can adversely affect fat quantification. These phase errors are typically most significant at the first echo of the echo train, and introduce bias in complex-based fat quantification techniques. These errors can be overcome using a magnitude-based technique (where the phase of all echoes is discarded), but at the cost of significantly degraded signal-to-noise ratio, particularly for certain choices of echo time combinations. In this work, we develop a reconstruction method that overcomes these phase errors without the signal-to-noise ratio penalty incurred by magnitude fitting. This method discards the phase of the first echo (which is often corrupted) while maintaining the phase of the remaining echoes (where phase is unaltered). We test the proposed method on 104 patient liver datasets (from 52 patients, each scanned twice), where the fat fraction measurements are compared to coregistered spectroscopy measurements. We demonstrate that mixed fitting is able to provide accurate fat fraction measurements with high signal-to-noise ratio and low bias over a wide choice of echo combinations. PMID:21713978

  2. The Influence of Training Phase on Error of Measurement in Jump Performance.

    PubMed

    Taylor, Kristie-Lee; Hopkins, Will G; Chapman, Dale W; Cronin, John B

    2016-03-01

    The purpose of this study was to calculate the coefficients of variation in jump performance for individual participants in multiple trials over time to determine the extent to which there are real differences in the error of measurement between participants. The effect of training phase on measurement error was also investigated. Six subjects participated in a resistance-training intervention for 12 wk with mean power from a countermovement jump measured 6 d/wk. Using a mixed-model meta-analysis, differences between subjects, within-subject changes between training phases, and the mean error values during different phases of training were examined. Small, substantial factor differences of 1.11 were observed between subjects; however, the finding was unclear based on the width of the confidence limits. The mean error was clearly higher during overload training than baseline training, by a factor of ×/÷ 1.3 (confidence limits 1.0-1.6). The random factor representing the interaction between subjects and training phases revealed further substantial differences of ×/÷ 1.2 (1.1-1.3), indicating that on average, the error of measurement in some subjects changes more than in others when overload training is introduced. The results from this study provide the first indication that within-subject variability in performance is substantially different between training phases and, possibly, different between individuals. The implications of these findings for monitoring individuals and estimating sample size are discussed.

  3. Exploiting data representation for fault tolerance

    DOE PAGES

    Hoemmen, Mark Frederick; Elliott, J.; Sandia National Lab.; ...

    2015-01-06

    Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms, possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits in memory. We start by accepting this premise, and present an analytic model for the error introduced by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in the dot product'smore » result. Moreover, the absolute error is either less than one or very large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.« less

  4. Turboprop+: enhanced Turboprop diffusion-weighted imaging with a new phase correction.

    PubMed

    Lee, Chu-Yu; Li, Zhiqiang; Pipe, James G; Debbins, Josef P

    2013-08-01

    Faster periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging acquisitions, such as Turboprop and X-prop, remain subject to phase errors inherent to a gradient echo readout, which ultimately limits the applied turbo factor (number of gradient echoes between each pair of radiofrequency refocusing pulses) and, thus, scan time reductions. This study introduces a new phase correction to Turboprop, called Turboprop+. This technique employs calibration blades, which generate 2-D phase error maps and are rotated in accordance with the data blades, to correct phase errors arising from off-resonance and system imperfections. The results demonstrate that with a small increase in scan time for collecting calibration blades, Turboprop+ had a superior immunity to the off-resonance-related artifacts when compared to standard Turboprop and recently proposed X-prop with the high turbo factor (turbo factor = 7). Thus, low specific absorption rate and short scan time can be achieved in Turboprop+ using a high turbo factor, whereas off-resonance related artifacts are minimized. © 2012 Wiley Periodicals, Inc.

  5. Combination of Complex-Based and Magnitude-Based Multiecho Water-Fat Separation for Accurate Quantification of Fat-Fraction

    PubMed Central

    Yu, Huanzhou; Shimakawa, Ann; Hines, Catherine D. G.; McKenzie, Charles A.; Hamilton, Gavin; Sirlin, Claude B.; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Multipoint water–fat separation techniques rely on different water–fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex-based water–fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through “magnitude-based” methods that acquire multiecho magnitude images. Magnitude-based methods are insensitive to phase errors, but cannot estimate fat-fraction greater than 50%. In this work, we introduce a water–fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude-based reconstruction is applied after complex-based water–fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0–100% fat-fraction can be estimated with improved accuracy at low fat-fractions. PMID:21695724

  6. A New Approach to Estimate Forest Parameters Using Dual-Baseline Pol-InSAR Data

    NASA Astrophysics Data System (ADS)

    Bai, L.; Hong, W.; Cao, F.; Zhou, Y.

    2009-04-01

    In POL-InSAR applications using ESPRIT technique, it is assumed that there exist stable scattering centres in the forest. However, the observations in forest severely suffer from volume and temporal decorrelation. The forest scatters are not stable as assumed. The obtained interferometric information is not accurate as expected. Besides, ESPRIT techniques could not identify the interferometric phases corresponding to the ground and the canopy. It provides multiple estimations for the height between two scattering centers due to phase unwrapping. Therefore, estimation errors are introduced to the forest height results. To suppress the two types of errors, we use the dual-baseline POL-InSAR data to estimate forest height. Dual-baseline coherence optimization is applied to obtain interferometric information of stable scattering centers in the forest. From the interferometric phases for different baselines, estimation errors caused by phase unwrapping is solved. Other estimation errors can be suppressed, too. Experiments are done to the ESAR L band POL-InSAR data. Experimental results show the proposed methods provide more accurate forest height than ESPRIT technique.

  7. Stochastic characterization of phase detection algorithms in phase-shifting interferometry

    DOE PAGES

    Munteanu, Florin

    2016-11-01

    Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here,more » we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. As a result, the usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations.« less

  8. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  9. Correction of phase errors in quantitative water-fat imaging using a monopolar time-interleaved multi-echo gradient echo sequence.

    PubMed

    Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C

    2017-09-01

    To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. A Dynamic Attitude Measurement System Based on LINS

    PubMed Central

    Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun

    2014-01-01

    A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802

  11. Bias in the Wagner-Nelson estimate of the fraction of drug absorbed.

    PubMed

    Wang, Yibin; Nedelman, Jerry

    2002-04-01

    To examine and quantify bias in the Wagner-Nelson estimate of the fraction of drug absorbed resulting from the estimation error of the elimination rate constant (k), measurement error of the drug concentration, and the truncation error in the area under the curve. Bias in the Wagner-Nelson estimate was derived as a function of post-dosing time (t), k, ratio of absorption rate constant to k (r), and the coefficient of variation for estimates of k (CVk), or CV% for the observed concentration, by assuming a one-compartment model and using an independent estimate of k. The derived functions were used for evaluating the bias with r = 0.5, 3, or 6; k = 0.1 or 0.2; CV, = 0.2 or 0.4; and CV, =0.2 or 0.4; for t = 0 to 30 or 60. Estimation error of k resulted in an upward bias in the Wagner-Nelson estimate that could lead to the estimate of the fraction absorbed being greater than unity. The bias resulting from the estimation error of k inflates the fraction of absorption vs. time profiles mainly in the early post-dosing period. The magnitude of the bias in the Wagner-Nelson estimate resulting from estimation error of k was mainly determined by CV,. The bias in the Wagner-Nelson estimate resulting from to estimation error in k can be dramatically reduced by use of the mean of several independent estimates of k, as in studies for development of an in vivo-in vitro correlation. The truncation error in the area under the curve can introduce a negative bias in the Wagner-Nelson estimate. This can partially offset the bias resulting from estimation error of k in the early post-dosing period. Measurement error of concentration does not introduce bias in the Wagner-Nelson estimate. Estimation error of k results in an upward bias in the Wagner-Nelson estimate, mainly in the early drug absorption phase. The truncation error in AUC can result in a downward bias, which may partially offset the upward bias due to estimation error of k in the early absorption phase. Measurement error of concentration does not introduce bias. The joint effect of estimation error of k and truncation error in AUC can result in a non-monotonic fraction-of-drug-absorbed-vs-time profile. However, only estimation error of k can lead to the Wagner-Nelson estimate of fraction of drug absorbed greater than unity.

  12. Real-Time Phase Correction Based on FPGA in the Beam Position and Phase Measurement System

    NASA Astrophysics Data System (ADS)

    Gao, Xingshun; Zhao, Lei; Liu, Jinxin; Jiang, Zouyi; Hu, Xiaofang; Liu, Shubin; An, Qi

    2016-12-01

    A fully digital beam position and phase measurement (BPPM) system was designed for the linear accelerator (LINAC) in Accelerator Driven Sub-critical System (ADS) in China. Phase information is obtained from the summed signals from four pick-ups of the Beam Position Monitor (BPM). Considering that the delay variations of different analog circuit channels would introduce phase measurement errors, we propose a new method to tune the digital waveforms of four channels before summation and achieve real-time error correction. The process is based on the vector rotation method and implemented within one single Field Programmable Gate Array (FPGA) device. Tests were conducted to evaluate this correction method and the results indicate that a phase correction precision better than ± 0.3° over the dynamic range from -60 dBm to 0 dBm is achieved.

  13. Ka-Band Phased Array System Characterization

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Johnson, S.; Sands, O.; Lambert, K.

    2001-01-01

    Phased Array Antennas (PAAs) using patch-radiating elements are projected to transmit data at rates several orders of magnitude higher than currently offered with reflector-based systems. However, there are a number of potential sources of degradation in the Bit Error Rate (BER) performance of the communications link that are unique to PAA-based links. Short spacing of radiating elements can induce mutual coupling between radiating elements, long spacing can induce grating lobes, modulo 2 pi phase errors can add to Inter Symbol Interference (ISI), phase shifters and power divider network introduce losses into the system. This paper describes efforts underway to test and evaluate the effects of the performance degrading features of phased-array antennas when used in a high data rate modulation link. The tests and evaluations described here uncover the interaction between the electrical characteristics of a PAA and the BER performance of a communication link.

  14. Dichrometer errors resulting from large signals or improper modulator phasing.

    PubMed

    Sutherland, John C

    2012-09-01

    A single-beam spectrometer equipped with a photoelastic modulator can be configured to measure a number of different parameters useful in characterizing chemical and biochemical materials including natural and magnetic circular dichroism, linear dichroism, natural and magnetic fluorescence-detected circular dichroism, and fluorescence polarization anisotropy as well as total absorption and fluorescence. The derivations of the mathematical expressions used to extract these parameters from ultraviolet, visible, and near-infrared light-induced electronic signals in a dichrometer assume that the dichroic signals are sufficiently small that certain mathematical approximations will not introduce significant errors. This article quantifies errors resulting from these assumptions as a function of the magnitude of the dichroic signals. In the case of linear dichroism, improper modulator programming can result in errors greater than those resulting from the assumption of small signal size, whereas for fluorescence polarization anisotropy, improper modulator phase alone gives incorrect results. Modulator phase can also impact the values of total absorbance recorded simultaneously with linear dichroism and total fluorescence. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  15. Defining the Relationship Between Human Error Classes and Technology Intervention Strategies

    NASA Technical Reports Server (NTRS)

    Wiegmann, Douglas A.; Rantanen, Esa; Crisp, Vicki K. (Technical Monitor)

    2002-01-01

    One of the main factors in all aviation accidents is human error. The NASA Aviation Safety Program (AvSP), therefore, has identified several human-factors safety technologies to address this issue. Some technologies directly address human error either by attempting to reduce the occurrence of errors or by mitigating the negative consequences of errors. However, new technologies and system changes may also introduce new error opportunities or even induce different types of errors. Consequently, a thorough understanding of the relationship between error classes and technology "fixes" is crucial for the evaluation of intervention strategies outlined in the AvSP, so that resources can be effectively directed to maximize the benefit to flight safety. The purpose of the present project, therefore, was to examine the repositories of human factors data to identify the possible relationship between different error class and technology intervention strategies. The first phase of the project, which is summarized here, involved the development of prototype data structures or matrices that map errors onto "fixes" (and vice versa), with the hope of facilitating the development of standards for evaluating safety products. Possible follow-on phases of this project are also discussed. These additional efforts include a thorough and detailed review of the literature to fill in the data matrix and the construction of a complete database and standards checklists.

  16. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.

    PubMed

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-11-18

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.

  17. An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers

    PubMed Central

    Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan

    2017-01-01

    Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581

  18. A simulation analysis of phase processing circuitry in the Ohio University Omega receiver prototype

    NASA Technical Reports Server (NTRS)

    Palkovic, R. A.

    1975-01-01

    A FORTRAN IV simulation study of the all-digital phase-processing circuitry is described. A digital phase-lock loop (DPLL) forms the heart of the Omega navigation receiver prototype, and through the DPLL, the phase of the 10.2 KHz Omega signal was estimated when the true signal phase is contaminated with noise. The DPLL uses a frequency synthesizer as the reference oscillator. The synthesizer is composed of synchronous rate multipliers (SRM's) driven by a temperature-compensated crystal oscillator, and the use of the SRM's in this application introduces phase jitter which degrades system performance. Simulation of the frequency synthesizer discussed was to analyze the circuits on a bit-by-bit level in order to evaluate the overall design, to see easily the effects of proposed design changes prior to actual breadboarding, to determine the optimum integration time for the DPLL in an environment typical of general aviation conditions, and to quantify the phase error introduced by the SRM synthesizer and examine its effect on the system.

  19. Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays

    NASA Technical Reports Server (NTRS)

    Troy, Mitchell; Chanan, Gary; Roberts, Jennifer

    2010-01-01

    The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with sub-apertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.

  20. Picometer Level Modeling of a Shared Vertex Double Corner Cube in the Space Interferometry Mission Kite Testbed

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M.; Dekens, Frank G.

    2006-01-01

    The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.

  1. Influences of misalignment of control mirror of axisymmetric-structural CO2 laser on phase locking.

    PubMed

    Xu, Yonggen; Li, Yude; Qiu, Yi; Feng, Ting; Fu, Fuxing; Guo, Wei

    2008-11-20

    Based on the principle of phase locking of an axisymmetric-fold combination CO2 laser under the normal state condition, the mechanisms of phase locking are analyzed when the control mirror is misaligned. Then the overlapping rate (OR) of the mode volume is introduced: the main influences on phase locking are the OR, the average life of the light wave, the root mean square phase error, and the mode coupling coefficient; these influences on phase locking are studied. The distribution of the light intensity reflects the effect of phase locking. It is shown that the misaligned angle has little influence on the phase locking if it is within tolerance.

  2. Simultaneous phase-shifting interferometry study based on the common-path Fizeau interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Feng-wei; Wu, Yong-qian

    2014-09-01

    A simultaneous phase-shifting interferometry(SPSI) based on the common-path Fizeau interferometer has been discussed.In this system,two orthogonal polarized beams, using as the reference beam and test beam ,are detached by a particular Wollaston prism at a very small angle,then four equal sub-beams are achieved by a combination of three non-polarizing beam splitters(NPBS),and the phase shifts are introduced by four polarizers whose polarization azimuths are 0°, 45°, 90°, 135° with the horizontal direction respectively,the four phase shift interferograms are collected simultaneously by controlling the CCDs working at the same time .The SPSI principle is studied at first,then is the error analysis, finally we emulate the process of surface recovery by four steps phase shifts algorithm,the results indicate that, to ensure the feasibility of the SPSI system, we have to control the polarization azimuth error of the polarizer in +/- 0.5°.

  3. Testing for Granger Causality in the Frequency Domain: A Phase Resampling Method.

    PubMed

    Liu, Siwei; Molenaar, Peter

    2016-01-01

    This article introduces phase resampling, an existing but rarely used surrogate data method for making statistical inferences of Granger causality in frequency domain time series analysis. Granger causality testing is essential for establishing causal relations among variables in multivariate dynamic processes. However, testing for Granger causality in the frequency domain is challenging due to the nonlinear relation between frequency domain measures (e.g., partial directed coherence, generalized partial directed coherence) and time domain data. Through a simulation study, we demonstrate that phase resampling is a general and robust method for making statistical inferences even with short time series. With Gaussian data, phase resampling yields satisfactory type I and type II error rates in all but one condition we examine: when a small effect size is combined with an insufficient number of data points. Violations of normality lead to slightly higher error rates but are mostly within acceptable ranges. We illustrate the utility of phase resampling with two empirical examples involving multivariate electroencephalography (EEG) and skin conductance data.

  4. Simulating and assessing boson sampling experiments with phase-space representations

    NASA Astrophysics Data System (ADS)

    Opanchuk, Bogdan; Rosales-Zárate, Laura; Reid, Margaret D.; Drummond, Peter D.

    2018-04-01

    The search for new, application-specific quantum computers designed to outperform any classical computer is driven by the ending of Moore's law and the quantum advantages potentially obtainable. Photonic networks are promising examples, with experimental demonstrations and potential for obtaining a quantum computer to solve problems believed classically impossible. This introduces a challenge: how does one design or understand such photonic networks? One must be able to calculate observables using general methods capable of treating arbitrary inputs, dissipation, and noise. We develop complex phase-space software for simulating these photonic networks, and apply this to boson sampling experiments. Our techniques give sampling errors orders of magnitude lower than experimental correlation measurements for the same number of samples. We show that these techniques remove systematic errors in previous algorithms for estimating correlations, with large improvements in errors in some cases. In addition, we obtain a scalable channel-combination strategy for assessment of boson sampling devices.

  5. Distortion correction of echo planar images applying the concept of finite rate of innovation to point spread function mapping (FRIP).

    PubMed

    Nunes, Rita G; Hajnal, Joseph V

    2018-06-01

    Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared. Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated. The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased. A robust method for estimating the position of the PSF peak has been introduced.

  6. Effect of Random Circuit Fabrication Errors on Small Signal Gain and Phase in Helix Traveling Wave Tubes

    NASA Astrophysics Data System (ADS)

    Pengvanich, P.; Chernin, D. P.; Lau, Y. Y.; Luginsland, J. W.; Gilgenbach, R. M.

    2007-11-01

    Motivated by the current interest in mm-wave and THz sources, which use miniature, difficult-to-fabricate circuit components, we evaluate the statistical effects of random fabrication errors on a helix traveling wave tube amplifier's small signal characteristics. The small signal theory is treated in a continuum model in which the electron beam is assumed to be monoenergetic, and axially symmetric about the helix axis. Perturbations that vary randomly along the beam axis are introduced in the dimensionless Pierce parameters b, the beam-wave velocity mismatch, C, the gain parameter, and d, the cold tube circuit loss. Our study shows, as expected, that perturbation in b dominates the other two. The extensive numerical data have been confirmed by our analytic theory. They show in particular that the standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C, and d. Simple formulas have been derived which yield the output phase variations in terms of the statistical random manufacturing errors. This work was supported by AFOSR and by ONR.

  7. Robust iterative learning control for multi-phase batch processes: an average dwell-time method with 2D convergence indexes

    NASA Astrophysics Data System (ADS)

    Wang, Limin; Shen, Yiteng; Yu, Jingxian; Li, Ping; Zhang, Ridong; Gao, Furong

    2018-01-01

    In order to cope with system disturbances in multi-phase batch processes with different dimensions, a hybrid robust control scheme of iterative learning control combined with feedback control is proposed in this paper. First, with a hybrid iterative learning control law designed by introducing the state error, the tracking error and the extended information, the multi-phase batch process is converted into a two-dimensional Fornasini-Marchesini (2D-FM) switched system with different dimensions. Second, a switching signal is designed using the average dwell-time method integrated with the related switching conditions to give sufficient conditions ensuring stable running for the system. Finally, the minimum running time of the subsystems and the control law gains are calculated by solving the linear matrix inequalities. Meanwhile, a compound 2D controller with robust performance is obtained, which includes a robust extended feedback control for ensuring the steady-state tracking error to converge rapidly. The application on an injection molding process displays the effectiveness and superiority of the proposed strategy.

  8. Experimental measurement of structural power flow on an aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An experimental technique is used to measure the structural power flow through an aircraft fuselage with the excitation near the wing attachment location. Because of the large number of measurements required to analyze the whole of an aircraft fuselage, it is necessary that a balance be achieved between the number of measurement transducers, the mounting of these transducers, and the accuracy of the measurements. Using four transducers mounted on a bakelite platform, the structural intensity vectors at locations distributed throughout the fuselage are measured. To minimize the errors associated with using a four transducers technique the measurement positions are selected away from bulkheads and stiffeners. Because four separate transducers are used, with each transducer having its own drive and conditioning amplifiers, phase errors are introduced in the measurements that can be much greater than the phase differences associated with the measurements. To minimize these phase errors two sets of measurements are taken for each position with the orientation of the transducers rotated by 180 deg and an average taken between the two sets of measurements. Results are presented and discussed.

  9. Analysis of an all-digital maximum likelihood carrier phase and clock timing synchronizer for eight phase-shift keying modulation

    NASA Astrophysics Data System (ADS)

    Degaudenzi, Riccardo; Vanghi, Vieri

    1994-02-01

    In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.

  10. Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Munger, Rejean; Priest, David

    2005-08-01

    Wavefront-guided laser eye surgery has been recently introduced and holds the promise of correcting not only defocus and astigmatism in patients but also higher-order aberrations. Research is just beginning on the implementation of wavefront-guided methods in optical solutions, such as phase-plate-based spectacles, as alternatives to surgery. We investigate the theoretical differences between the implementation of wavefront-guided surgical and phase plate corrections. The residual aberrations of 43 model eyes are calculated after simulated refractive surgery and also after a phase plate is placed in front of the untreated eye. In each case, the current wavefront-guided paradigm that applies a direct map of the ocular aberrations to the correction zone is used. The simulation results demonstrate that an ablation map that is a Zernike fit of a direct transform of the ocular wavefront phase error is not as efficient in correcting refractive errors of sphere, cylinder, spherical aberration, and coma as when the same Zernike coefficients are applied to a phase plate, with statistically significant improvements from 2% to 6%.

  11. Spatial-temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations.

    PubMed

    Vogel, Curtis R; Tyler, Glenn A; Wittich, Donald J

    2014-07-01

    We introduce a framework for modeling, analysis, and simulation of aero-optics wavefront aberrations that is based on spatial-temporal covariance matrices extracted from wavefront sensor measurements. Within this framework, we present a quasi-homogeneous structure function to analyze nonhomogeneous, mildly anisotropic spatial random processes, and we use this structure function to show that phase aberrations arising in aero-optics are, for an important range of operating parameters, locally Kolmogorov. This strongly suggests that the d5/3 power law for adaptive optics (AO) deformable mirror fitting error, where d denotes actuator separation, holds for certain important aero-optics scenarios. This framework also allows us to compute bounds on AO servo lag error and predictive control error. In addition, it provides us with the means to accurately simulate AO systems for the mitigation of aero-effects, and it may provide insight into underlying physical processes associated with turbulent flow. The techniques introduced here are demonstrated using data obtained from the Airborne Aero-Optics Laboratory.

  12. Coupled-cluster based approach for core-level states in condensed phase: Theory and application to different protonated forms of aqueous glycine

    DOE PAGES

    Sadybekov, Arman; Krylov, Anna I.

    2017-07-07

    A theoretical approach for calculating core-level states in condensed phase is presented. The approach is based on equation-of-motion coupled-cluster theory (EOMCC) and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we address poor convergence issues that are encountered for the core-level states and significantly reduce computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to reference systems, are reproduced reasonably well. By using different protonation formsmore » of solvated glycine as a benchmark system, we show that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy.« less

  13. Coupled-cluster based approach for core-level states in condensed phase: Theory and application to different protonated forms of aqueous glycine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadybekov, Arman; Krylov, Anna I.

    A theoretical approach for calculating core-level states in condensed phase is presented. The approach is based on equation-of-motion coupled-cluster theory (EOMCC) and effective fragment potential (EFP) method. By introducing an approximate treatment of double excitations in the EOM-CCSD (EOM-CC with single and double substitutions) ansatz, we address poor convergence issues that are encountered for the core-level states and significantly reduce computational costs. While the approximations introduce relatively large errors in the absolute values of transition energies, the errors are systematic. Consequently, chemical shifts, changes in ionization energies relative to reference systems, are reproduced reasonably well. By using different protonation formsmore » of solvated glycine as a benchmark system, we show that our protocol is capable of reproducing the experimental chemical shifts with a quantitative accuracy. The results demonstrate that chemical shifts are very sensitive to the solvent interactions and that explicit treatment of solvent, such as EFP, is essential for achieving quantitative accuracy.« less

  14. Ensemble Data Assimilation Without Ensembles: Methodology and Application to Ocean Data Assimilation

    NASA Technical Reports Server (NTRS)

    Keppenne, Christian L.; Rienecker, Michele M.; Kovach, Robin M.; Vernieres, Guillaume

    2013-01-01

    Two methods to estimate background error covariances for data assimilation are introduced. While both share properties with the ensemble Kalman filter (EnKF), they differ from it in that they do not require the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The first method is referred-to as SAFE (Space Adaptive Forecast error Estimation) because it estimates error covariances from the spatial distribution of model variables within a single state vector. It can thus be thought of as sampling an ensemble in space. The second method, named FAST (Flow Adaptive error Statistics from a Time series), constructs an ensemble sampled from a moving window along a model trajectory. The underlying assumption in these methods is that forecast errors in data assimilation are primarily phase errors in space and/or time.

  15. Comparison of three rf plasma impedance monitors on a high phase angle planar inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Uchiyama, H.; Watanabe, M.; Shaw, D. M.; Bahia, J. E.; Collins, G. J.

    1999-10-01

    Accurate measurement of plasma source impedance is important for verification of plasma circuit models, as well as for plasma process characterization and endpoint detection. Most impedance measurement techniques depend in some manner on the cosine of the phase angle to determine the impedance of the plasma load. Inductively coupled plasmas are generally highly inductive, with the phase angle between the applied rf voltage and the rf current in the range of 88 to near 90 degrees. A small measurement error in this phase angle range results in a large error in the calculated cosine of the angle, introducing large impedance measurement variations. In this work, we have compared the measured impedance of a planar inductively coupled plasma using three commercial plasma impedance monitors (ENI V/I probe, Advanced Energy RFZ60 and Advanced Energy Z-Scan). The plasma impedance is independently verified using a specially designed match network and a calibrated load, representing the plasma, to provide a measurement standard.

  16. Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM

    NASA Astrophysics Data System (ADS)

    Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng

    2015-07-01

    We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.

  17. [Improvement of magnetic resonance phase unwrapping method based on Goldstein Branch-cut algorithm].

    PubMed

    Guo, Lin; Kang, Lili; Wang, Dandan

    2013-02-01

    The phase information of magnetic resonance (MR) phase image can be used in many MR imaging techniques, but phase wrapping of the images often results in inaccurate phase information and phase unwrapping is essential for MR imaging techniques. In this paper we analyze the causes of errors in phase unwrapping with the commonly used Goldstein Brunch-cut algorithm and propose an improved algorithm. During the unwrapping process, masking, filtering, dipole- remover preprocessor, and the Prim algorithm of the minimum spanning tree were introduced to optimize the residues essential for the Goldstein Brunch-cut algorithm. Experimental results showed that the residues, branch-cuts and continuous unwrapped phase surface were efficiently reduced and the quality of MR phase images was obviously improved with the proposed method.

  18. Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems.

    PubMed

    Han, Ming; Wang, Anbo

    2006-05-01

    Theoretical and experimental results have shown that mode power distribution (MPD) variations could significantly vary the phase of spectral fringes from multimode fiber extrinsic Fabry-Perot interferometric (MMF-EFPI) sensor systems, owing to the fact that different modes introduce different extra phase shifts resulting from the coupling of modes reflected at the second surface to the lead-in fiber end. This dependence of fringe pattern on MPD could cause measurement errors in signal demodulation methods of white-light MMF-EFPI sensors that implement the phase information of the fringes.

  19. Comment on "Proactive quantum secret sharing"

    NASA Astrophysics Data System (ADS)

    Gao, Gan; Wang, Yue

    2017-03-01

    In the paper, Qin and Dai (Quantum Inf Process 14:4237-4244, 2015) proposed a proactive quantum secret sharing scheme. We study the security of the proposed scheme and find that it is not secure. In the distribution phase of the proposed scheme, two dishonest participants may collaborate to eavesdrop the secret of the dealer without introducing any error.

  20. The Implications of Encoder/Modulator/ Phased Array Designs for Future Broadband LEO Communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Jensen, Chris A.; Terry, John D.

    1997-01-01

    In this paper we summarize the effects of modulation and channel coding on the design of wide angle scan, broadband, phased army antennas. In the paper we perform several trade studies. First, we investigate the amplifier back-off requirement as a function of variability of modulation envelope. Specifically, we contrast constant and non-constant envelope modulations, as well as single and multiple carrier schemes. Additionally, we address the issues an(f concerns of using pulse shaping filters with the above modulation types. Second, we quantify the effects of beam steering on the quality of data, recovery using selected modulation techniques. In particular, we show that the frequency response of the array introduces intersymbol interference for broadband signals and that the mode of operation for the beam steering controller may introduce additional burst or random errors. Finally, we show that the encoder/modulator design must be performed in conjunction with the phased array antenna design.

  1. ERP correlates of error processing during performance on the Halstead Category Test.

    PubMed

    Santos, I M; Teixeira, A R; Tomé, A M; Pereira, A T; Rodrigues, P; Vagos, P; Costa, J; Carrito, M L; Oliveira, B; DeFilippis, N A; Silva, C F

    2016-08-01

    The Halstead Category Test (HCT) is a neuropsychological test that measures a person's ability to formulate and apply abstract principles. Performance must be adjusted based on feedback after each trial and errors are common until the underlying rules are discovered. Event-related potential (ERP) studies associated with the HCT are lacking. This paper demonstrates the use of a methodology inspired on Singular Spectrum Analysis (SSA) applied to EEG signals, to remove high amplitude ocular and movement artifacts during performance on the test. This filtering technique introduces no phase or latency distortions, with minimum loss of relevant EEG information. Importantly, the test was applied in its original clinical format, without introducing adaptations to ERP recordings. After signal treatment, the feedback-related negativity (FRN) wave, which is related to error-processing, was identified. This component peaked around 250ms, after feedback, in fronto-central electrodes. As expected, errors elicited more negative amplitudes than correct responses. Results are discussed in terms of the increased clinical potential that coupling ERP information with behavioral performance data can bring to the specificity of the HCT in diagnosing different types of impairment in frontal brain function. Copyright © 2016. Published by Elsevier B.V.

  2. Seasonal variability of stratospheric methane: implications for constraining tropospheric methane budgets using total column observations

    NASA Astrophysics Data System (ADS)

    Saad, Katherine M.; Wunch, Debra; Deutscher, Nicholas M.; Griffith, David W. T.; Hase, Frank; De Mazière, Martine; Notholt, Justus; Pollard, David F.; Roehl, Coleen M.; Schneider, Matthias; Sussmann, Ralf; Warneke, Thorsten; Wennberg, Paul O.

    2016-11-01

    Global and regional methane budgets are markedly uncertain. Conventionally, estimates of methane sources are derived by bridging emissions inventories with atmospheric observations employing chemical transport models. The accuracy of this approach requires correctly simulating advection and chemical loss such that modeled methane concentrations scale with surface fluxes. When total column measurements are assimilated into this framework, modeled stratospheric methane introduces additional potential for error. To evaluate the impact of such errors, we compare Total Carbon Column Observing Network (TCCON) and GEOS-Chem total and tropospheric column-averaged dry-air mole fractions of methane. We find that the model's stratospheric contribution to the total column is insensitive to perturbations to the seasonality or distribution of tropospheric emissions or loss. In the Northern Hemisphere, we identify disagreement between the measured and modeled stratospheric contribution, which increases as the tropopause altitude decreases, and a temporal phase lag in the model's tropospheric seasonality driven by transport errors. Within the context of GEOS-Chem, we find that the errors in tropospheric advection partially compensate for the stratospheric methane errors, masking inconsistencies between the modeled and measured tropospheric methane. These seasonally varying errors alias into source attributions resulting from model inversions. In particular, we suggest that the tropospheric phase lag error leads to large misdiagnoses of wetland emissions in the high latitudes of the Northern Hemisphere.

  3. Image grating metrology using phase-stepping interferometry in scanning beam interference lithography

    NASA Astrophysics Data System (ADS)

    Li, Minkang; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Lu, Yancong; Xiang, Changcheng; Xiang, XianSong

    2016-10-01

    Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.

  4. In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network

    PubMed Central

    Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang

    2014-01-01

    The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948

  5. Precision improving of double beam shadow moiré interferometer by phase shifting interferometry for the stress of flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Lin, Ssu-Fan; Lin, Ke-Ming; Syue, Hong-Ye

    2012-09-01

    While tin-doped indium oxide (ITO) has been extensively applied in flexible electronics, the problem of the residual stress has many obstacles to overcome. This study investigated the residual stress of flexible electronics by the double beam shadow moiré interferometer, and focused on the precision improvement with phase shifting interferometry (PSI). According to the out-of-plane displacement equation, the theoretical error depends on the grating pitch and the angle between incident light and CCD. The angle error could be reduced to 0.03% by the angle shift of 10° as a result of the double beam interferometer was a symmetrical system. But the experimental error of the double beam moiré interferometer still reached to 2.2% by the noise of the vibration and interferograms. In order to improve the measurement precision, PSI was introduced to the double shadow moiré interferometer. Wavefront phase was reconstructed by the five interferograms with the Hariharan algorithm. The measurement results of standard cylinder indicating the error could be reduced from 2.2% to less than 1% with PSI. The deformation of flexible electronic could be reconstructed fast and calculated the residual stress with the Stoney correction formula. This shadow moiré interferometer with PSI could improve the precision of residual stress for flexible electronics.

  6. An Improved Model Predictive Current Controller of Switched Reluctance Machines Using Time-Multiplexed Current Sensor

    PubMed Central

    Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang

    2017-01-01

    This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Ke; Li Yanqiu; Wang Hai

    Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Basedmore » on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).« less

  8. Experimental analysis of computer system dependability

    NASA Technical Reports Server (NTRS)

    Iyer, Ravishankar, K.; Tang, Dong

    1993-01-01

    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.

  9. Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2017-01-01

    In lattice Boltzmann simulations involving moving solid boundaries, the momentum exchange between the solid and fluid phases was recently found to be not fully consistent with the principle of local Galilean invariance (GI) when the bounce-back schemes (BBS) and the momentum exchange method (MEM) are used. In the past, this inconsistency was resolved by introducing modified MEM schemes so that the overall moving-boundary algorithm could be more consistent with GI. However, in this paper we argue that the true origin of this violation of Galilean invariance (VGI) in the presence of a moving solid-fluid interface is due to the BBS itself, as the VGI error not only exists in the hydrodynamic force acting on the solid phase, but also in the boundary force exerted on the fluid phase, according to Newton's Third Law. The latter, however, has so far gone unnoticed in previously proposed modified MEM schemes. Based on this argument, we conclude that the previous modifications to the momentum exchange method are incomplete solutions to the VGI error in the lattice Boltzmann method (LBM). An implicit remedy to the VGI error in the LBM and its limitation is then revealed. To address the VGI error for a case when this implicit remedy does not exist, a bounce-back scheme based on coordinate transformation is proposed. Numerical tests in both laminar and turbulent flows show that the proposed scheme can effectively eliminate the errors associated with the usual bounce-back implementations on a no-slip solid boundary, and it can maintain an accurate momentum exchange calculation with minimal computational overhead.

  10. Kramers-Kronig based quality factor for shear wave propagation in soft tissue

    PubMed Central

    Urban, M W; Greenleaf, J F

    2009-01-01

    Shear wave propagation techniques have been introduced for measuring the viscoelastic material properties of tissue, but assessing the accuracy of these measurements is difficult for in vivo measurements in tissue. We propose using the Kramers-Kronig relationships to assess the consistency and quality of the measurements of shear wave attenuation and phase velocity. In ex vivo skeletal muscle we measured the wave attenuation at different frequencies, and then applied finite bandwidth Kramers-Kronig equations to predict the phase velocities. We compared these predictions with the measured phase velocities and assessed the mean square error (MSE) as a quality factor. An algorithm was derived for computing a quality factor using the Kramers-Kronig relationships. PMID:19759409

  11. Effect of DM Actuator Errors on the WFIRST/AFTA Coronagraph Contrast Performance

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shi, Fang

    2015-01-01

    The WFIRST/AFTA 2.4 m space telescope currently under study includes a stellar coronagraph for the imaging and the spectral characterization of extrasolar planets. The coronagraph employs two sequential deformable mirrors (DMs) to compensate for phase and amplitude errors in creating dark holes. DMs are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Working with a low-order wavefront-sensor the DM that is conjugate to a pupil can also be used to correct low-order wavefront drift during a scientific observation. However, not all actuators in a DM have the same gain. When using such a DM in low-order wavefront sensing and control subsystem, the actuator gain errors introduce high-spatial frequency errors to the DM surface and thus worsen the contrast performance of the coronagraph. We have investigated the effects of actuator gain errors and the actuator command digitization errors on the contrast performance of the coronagraph through modeling and simulations, and will present our results in this paper.

  12. A predictability study of Lorenz's 28-variable model as a dynamical system

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, V.

    1993-01-01

    The dynamics of error growth in a two-layer nonlinear quasi-geostrophic model has been studied to gain an understanding of the mathematical theory of atmospheric predictability. The growth of random errors of varying initial magnitudes has been studied, and the relation between this classical approach and the concepts of the nonlinear dynamical systems theory has been explored. The local and global growths of random errors have been expressed partly in terms of the properties of an error ellipsoid and the Liapunov exponents determined by linear error dynamics. The local growth of small errors is initially governed by several modes of the evolving error ellipsoid but soon becomes dominated by the longest axis. The average global growth of small errors is exponential with a growth rate consistent with the largest Liapunov exponent. The duration of the exponential growth phase depends on the initial magnitude of the errors. The subsequent large errors undergo a nonlinear growth with a steadily decreasing growth rate and attain saturation that defines the limit of predictability. The degree of chaos and the largest Liapunov exponent show considerable variation with change in the forcing, which implies that the time variation in the external forcing can introduce variable character to the predictability.

  13. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  14. Impact of Internally Developed Electronic Prescription on Prescribing Errors at Discharge from the Emergency Department

    PubMed Central

    Hitti, Eveline; Tamim, Hani; Bakhti, Rinad; Zebian, Dina; Mufarrij, Afif

    2017-01-01

    Introduction Medication errors are common, with studies reporting at least one error per patient encounter. At hospital discharge, medication errors vary from 15%–38%. However, studies assessing the effect of an internally developed electronic (E)-prescription system at discharge from an emergency department (ED) are comparatively minimal. Additionally, commercially available electronic solutions are cost-prohibitive in many resource-limited settings. We assessed the impact of introducing an internally developed, low-cost E-prescription system, with a list of commonly prescribed medications, on prescription error rates at discharge from the ED, compared to handwritten prescriptions. Methods We conducted a pre- and post-intervention study comparing error rates in a randomly selected sample of discharge prescriptions (handwritten versus electronic) five months pre and four months post the introduction of the E-prescription. The internally developed, E-prescription system included a list of 166 commonly prescribed medications with the generic name, strength, dose, frequency and duration. We included a total of 2,883 prescriptions in this study: 1,475 in the pre-intervention phase were handwritten (HW) and 1,408 in the post-intervention phase were electronic. We calculated rates of 14 different errors and compared them between the pre- and post-intervention period. Results Overall, E-prescriptions included fewer prescription errors as compared to HW-prescriptions. Specifically, E-prescriptions reduced missing dose (11.3% to 4.3%, p <0.0001), missing frequency (3.5% to 2.2%, p=0.04), missing strength errors (32.4% to 10.2%, p <0.0001) and legibility (0.7% to 0.2%, p=0.005). E-prescriptions, however, were associated with a significant increase in duplication errors, specifically with home medication (1.7% to 3%, p=0.02). Conclusion A basic, internally developed E-prescription system, featuring commonly used medications, effectively reduced medication errors in a low-resource setting where the costs of sophisticated commercial electronic solutions are prohibitive. PMID:28874948

  15. Impact of Internally Developed Electronic Prescription on Prescribing Errors at Discharge from the Emergency Department.

    PubMed

    Hitti, Eveline; Tamim, Hani; Bakhti, Rinad; Zebian, Dina; Mufarrij, Afif

    2017-08-01

    Medication errors are common, with studies reporting at least one error per patient encounter. At hospital discharge, medication errors vary from 15%-38%. However, studies assessing the effect of an internally developed electronic (E)-prescription system at discharge from an emergency department (ED) are comparatively minimal. Additionally, commercially available electronic solutions are cost-prohibitive in many resource-limited settings. We assessed the impact of introducing an internally developed, low-cost E-prescription system, with a list of commonly prescribed medications, on prescription error rates at discharge from the ED, compared to handwritten prescriptions. We conducted a pre- and post-intervention study comparing error rates in a randomly selected sample of discharge prescriptions (handwritten versus electronic) five months pre and four months post the introduction of the E-prescription. The internally developed, E-prescription system included a list of 166 commonly prescribed medications with the generic name, strength, dose, frequency and duration. We included a total of 2,883 prescriptions in this study: 1,475 in the pre-intervention phase were handwritten (HW) and 1,408 in the post-intervention phase were electronic. We calculated rates of 14 different errors and compared them between the pre- and post-intervention period. Overall, E-prescriptions included fewer prescription errors as compared to HW-prescriptions. Specifically, E-prescriptions reduced missing dose (11.3% to 4.3%, p <0.0001), missing frequency (3.5% to 2.2%, p=0.04), missing strength errors (32.4% to 10.2%, p <0.0001) and legibility (0.7% to 0.2%, p=0.005). E-prescriptions, however, were associated with a significant increase in duplication errors, specifically with home medication (1.7% to 3%, p=0.02). A basic, internally developed E-prescription system, featuring commonly used medications, effectively reduced medication errors in a low-resource setting where the costs of sophisticated commercial electronic solutions are prohibitive.

  16. Rocketdyne automated dynamics data analysis and management system

    NASA Technical Reports Server (NTRS)

    Tarn, Robert B.

    1988-01-01

    An automated dynamics data analysis and management systems implemented on a DEC VAX minicomputer cluster is described. Multichannel acquisition, Fast Fourier Transformation analysis, and an online database have significantly improved the analysis of wideband transducer responses from Space Shuttle Main Engine testing. Leakage error correction to recover sinusoid amplitudes and correct for frequency slewing is described. The phase errors caused by FM recorder/playback head misalignment are automatically measured and used to correct the data. Data compression methods are described and compared. The system hardware is described. Applications using the data base are introduced, including software for power spectral density, instantaneous time history, amplitude histogram, fatigue analysis, and rotordynamics expert system analysis.

  17. Multi-Scale Fusion of Information for Uncertainty Quantification and Management in Large-Scale Simulations

    DTIC Science & Technology

    2015-12-02

    simplification of the equations but at the expense of introducing modeling errors. We have shown that the Wick solutions have accuracy comparable to...the system of equations for the coefficients of formal power series solutions . Moreover, the structure of this propagator is seemingly universal, i.e...the problem of computing the numerical solution to kinetic partial differential equa- tions involving many phase variables. These types of equations

  18. Finite element modelling and updating of a lively footbridge: The complete process

    NASA Astrophysics Data System (ADS)

    Živanović, Stana; Pavic, Aleksandar; Reynolds, Paul

    2007-03-01

    The finite element (FE) model updating technology was originally developed in the aerospace and mechanical engineering disciplines to automatically update numerical models of structures to match their experimentally measured counterparts. The process of updating identifies the drawbacks in the FE modelling and the updated FE model could be used to produce more reliable results in further dynamic analysis. In the last decade, the updating technology has been introduced into civil structural engineering. It can serve as an advanced tool for getting reliable modal properties of large structures. The updating process has four key phases: initial FE modelling, modal testing, manual model tuning and automatic updating (conducted using specialist software). However, the published literature does not connect well these phases, although this is crucial when implementing the updating technology. This paper therefore aims to clarify the importance of this linking and to describe the complete model updating process as applicable in civil structural engineering. The complete process consisting the four phases is outlined and brief theory is presented as appropriate. Then, the procedure is implemented on a lively steel box girder footbridge. It was found that even a very detailed initial FE model underestimated the natural frequencies of all seven experimentally identified modes of vibration, with the maximum error being almost 30%. Manual FE model tuning by trial and error found that flexible supports in the longitudinal direction should be introduced at the girder ends to improve correlation between the measured and FE-calculated modes. This significantly reduced the maximum frequency error to only 4%. It was demonstrated that only then could the FE model be automatically updated in a meaningful way. The automatic updating was successfully conducted by updating 22 uncertain structural parameters. Finally, a physical interpretation of all parameter changes is discussed. This interpretation is often missing in the published literature. It was found that the composite slabs were less stiff than originally assumed and that the asphalt layer contributed considerably to the deck stiffness.

  19. Research on effects of phase error in phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai

    2007-12-01

    Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.

  20. PID-based error signal modeling

    NASA Astrophysics Data System (ADS)

    Yohannes, Tesfay

    1997-10-01

    This paper introduces a PID based signal error modeling. The error modeling is based on the betterment process. The resulting iterative learning algorithm is introduced and a detailed proof is provided for both linear and nonlinear systems.

  1. Nonlinearity response correction in phase-shifting deflectometry

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh The; Kang, Pilseong; Ghim, Young-Sik; Rhee, Hyug-Gyo

    2018-04-01

    Owing to the nonlinearity response of digital devices such as screens and cameras in phase-shifting deflectometry, non-sinusoidal phase-shifted fringe patterns are generated and additional measurement errors are introduced. In this paper, a new deflectometry technique is described for overcoming these problems using a pre-distorted pattern combined with an advanced iterative algorithm. The experiment results show that this method can reconstruct the 3D surface map of a sample without fringe print-through caused by the nonlinearity response of digital devices. The proposed technique is verified by measuring the surface height variations in a deformable mirror and comparing them with the measurement result obtained using a coordinate measuring machine. The difference between the two measurement results is estimated to be less than 13 µm.

  2. Analyzing a stochastic time series obeying a second-order differential equation.

    PubMed

    Lehle, B; Peinke, J

    2015-06-01

    The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.

  3. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    PubMed Central

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-01-01

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405

  4. Monitoring by forward scatter radar techniques: an improved second-order analytical model

    NASA Astrophysics Data System (ADS)

    Falconi, Marta Tecla; Comite, Davide; Galli, Alessandro; Marzano, Frank S.; Pastina, Debora; Lombardo, Pierfrancesco

    2017-10-01

    In this work, a second-order phase approximation is introduced to provide an improved analytical model of the signal received in forward scatter radar systems. A typical configuration with a rectangular metallic object illuminated while crossing the baseline, in far- or near-field conditions, is considered. An improved second-order model is compared with a simplified one already proposed by the authors and based on a paraxial approximation. A phase error analysis is carried out to investigate benefits and limitations of the second-order modeling. The results are validated by developing full-wave numerical simulations implementing the relevant scattering problem on a commercial tool.

  5. The modulation and demodulation module of a high resolution MOEMS accelerometer

    NASA Astrophysics Data System (ADS)

    Jiao, Xufen; Bai, Jian; Lu, Qianbo; Lou, Shuqi

    2016-02-01

    A MOEMS accelerometer with high precision based on grating interferometer is demonstrated in this paper. In order to increase the signal-to-noise ratio (SNR) and accuracy, a specific modulator and an orthogonal phase-lock demodulator are proposed. Phase modulation is introduced to this accelerometer by applying a sinusoidal signal to a piezoelectric translator (PZT) amounted to the accelerometer. Phase demodulation module consists of a circuit design and a digital design. In the circuit design, the modulated light intensity signal is converted to a voltage signal and processed. In the digital part, the demodulator is mainly composed of a Band Pass Filter, two Phase-Sensitive Detectors, a phase shifter, and two Low Pass Filters based on virtual instrument. Simulation results indicate that this approach can decrease the noise greatly, and the SNR of this demodulator is 50dB and the relative error is less than 4%.

  6. Two-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    NASA Astrophysics Data System (ADS)

    Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos

    2016-11-01

    We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.

  7. An Analysis of Offset, Gain, and Phase Corrections in Analog to Digital Converters

    NASA Astrophysics Data System (ADS)

    Cody, Devin; Ford, John

    2015-01-01

    Many high-speed analog to digital converters (ADCs) use interwoven ADCs to greatly boost their sample rate. This interwoven architecture can introduce problems if the low speed ADCs do not have identical outputs. These errors are manifested as phantom frequencies that appear in the digitized signal although they never existed in the analog domain. Through the application of offset, gain, and phase (OGP) corrections to the ADC, this problem can be reduced. Here we report on an implementation of such a correction in a high speed ADC chip used for radio astronomy. While the corrections could not be implemented in the ADCs themselves, a partial solution was devised and implemented digitally inside of a signal processing field programmable gate array (FPGA). Positive results to contrived situations are shown, and null results are presented for implementation in an ADC083000 card with minimal error. Lastly, we discuss the implications of this method as well as its mathematical basis.

  8. Astrometry of OH/IR Stars Using 1612 MHz Hydroxyl Masers. I. Annual Parallaxes of WX Psc and OH138.0+7.2

    NASA Astrophysics Data System (ADS)

    Orosz, G.; Imai, H.; Dodson, R.; Rioja, M. J.; Frey, S.; Burns, R. A.; Etoka, S.; Nakagawa, A.; Nakanishi, H.; Asaki, Y.; Goldman, S. R.; Tafoya, D.

    2017-03-01

    We report on the measurement of the trigonometric parallaxes of 1612 MHz hydroxyl masers around two asymptotic giant branch stars, WX Psc and OH 138.0+7.2, using the NRAO Very Long Baseline Array with in-beam phase referencing calibration. We obtain a 3σ upper limit of ≤5.3 mas on the parallax of WX Psc, corresponding to a lower limit distance estimate of ≳190 pc. The obtained parallax of OH 138.0+7.2 is 0.52 ± 0.09 mas (±18%), corresponding to a distance of {1.9}-0.3+0.4 {kpc}, making this the first hydroxyl maser parallax below one milliarcsecond. We also introduce a new method of error analysis for detecting systematic errors in the astrometry. Finally, we compare our trigonometric distances to published phase-lag distances toward these stars and find a good agreement between the two methods.

  9. The capability of radial basis function to forecast the volume fractions of the annular three-phase flow of gas-oil-water.

    PubMed

    Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E

    2017-11-01

    The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Brain processing of visual information during fast eye movements maintains motor performance.

    PubMed

    Panouillères, Muriel; Gaveau, Valérie; Socasau, Camille; Urquizar, Christian; Pélisson, Denis

    2013-01-01

    Movement accuracy depends crucially on the ability to detect errors while actions are being performed. When inaccuracies occur repeatedly, both an immediate motor correction and a progressive adaptation of the motor command can unfold. Of all the movements in the motor repertoire of humans, saccadic eye movements are the fastest. Due to the high speed of saccades, and to the impairment of visual perception during saccades, a phenomenon called "saccadic suppression", it is widely believed that the adaptive mechanisms maintaining saccadic performance depend critically on visual error signals acquired after saccade completion. Here, we demonstrate that, contrary to this widespread view, saccadic adaptation can be based entirely on visual information presented during saccades. Our results show that visual error signals introduced during saccade execution--by shifting a visual target at saccade onset and blanking it at saccade offset--induce the same level of adaptation as error signals, presented for the same duration, but after saccade completion. In addition, they reveal that this processing of intra-saccadic visual information for adaptation depends critically on visual information presented during the deceleration phase, but not the acceleration phase, of the saccade. These findings demonstrate that the human central nervous system can use short intra-saccadic glimpses of visual information for motor adaptation, and they call for a reappraisal of current models of saccadic adaptation.

  11. Distance Measurement Error in Time-of-Flight Sensors Due to Shot Noise

    PubMed Central

    Illade-Quinteiro, Julio; Brea, Víctor M.; López, Paula; Cabello, Diego; Doménech-Asensi, Gines

    2015-01-01

    Unlike other noise sources, which can be reduced or eliminated by different signal processing techniques, shot noise is an ever-present noise component in any imaging system. In this paper, we present an in-depth study of the impact of shot noise on time-of-flight sensors in terms of the error introduced in the distance estimation. The paper addresses the effect of parameters, such as the size of the photosensor, the background and signal power or the integration time, and the resulting design trade-offs. The study is demonstrated with different numerical examples, which show that, in general, the phase shift determination technique with two background measurements approach is the most suitable for pixel arrays of large resolution. PMID:25723141

  12. Mixture-mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis.

    PubMed

    Borges, Cleber N; Bruns, Roy E; Almeida, Aline A; Scarminio, Ieda S

    2007-07-09

    A composite simplex centroid-simplex centroid mixture design is proposed for simultaneously optimizing two mixture systems. The complementary model is formed by multiplying special cubic models for the two systems. The design was applied to the simultaneous optimization of both mobile phase chromatographic mixtures and extraction mixtures for the Camellia sinensis Chinese tea plant. The extraction mixtures investigated contained varying proportions of ethyl acetate, ethanol and dichloromethane while the mobile phase was made up of varying proportions of methanol, acetonitrile and a methanol-acetonitrile-water (MAW) 15%:15%:70% mixture. The experiments were block randomized corresponding to a split-plot error structure to minimize laboratory work and reduce environmental impact. Coefficients of an initial saturated model were obtained using Scheffe-type equations. A cumulative probability graph was used to determine an approximate reduced model. The split-plot error structure was then introduced into the reduced model by applying generalized least square equations with variance components calculated using the restricted maximum likelihood approach. A model was developed to calculate the number of peaks observed with the chromatographic detector at 210 nm. A 20-term model contained essentially all the statistical information of the initial model and had a root mean square calibration error of 1.38. The model was used to predict the number of peaks eluted in chromatograms obtained from extraction solutions that correspond to axial points of the simplex centroid design. The significant model coefficients are interpreted in terms of interacting linear, quadratic and cubic effects of the mobile phase and extraction solution components.

  13. Analysis of phase error effects in multishot diffusion-prepared turbo spin echo imaging

    PubMed Central

    Cervantes, Barbara; Kooijman, Hendrik; Karampinos, Dimitrios C.

    2017-01-01

    Background To characterize the effect of phase errors on the magnitude and the phase of the diffusion-weighted (DW) signal acquired with diffusion-prepared turbo spin echo (dprep-TSE) sequences. Methods Motion and eddy currents were identified as the main sources of phase errors. An analytical expression for the effect of phase errors on the acquired signal was derived and verified using Bloch simulations, phantom, and in vivo experiments. Results Simulations and experiments showed that phase errors during the diffusion preparation cause both magnitude and phase modulation on the acquired data. When motion-induced phase error (MiPe) is accounted for (e.g., with motion-compensated diffusion encoding), the signal magnitude modulation due to the leftover eddy-current-induced phase error cannot be eliminated by the conventional phase cycling and sum-of-squares (SOS) method. By employing magnitude stabilizers, the phase-error-induced magnitude modulation, regardless of its cause, was removed but the phase modulation remained. The in vivo comparison between pulsed gradient and flow-compensated diffusion preparations showed that MiPe needed to be addressed in multi-shot dprep-TSE acquisitions employing magnitude stabilizers. Conclusions A comprehensive analysis of phase errors in dprep-TSE sequences showed that magnitude stabilizers are mandatory in removing the phase error induced magnitude modulation. Additionally, when multi-shot dprep-TSE is employed the inconsistent signal phase modulation across shots has to be resolved before shot-combination is performed. PMID:28516049

  14. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase‐corrected diffusion‐prepared 3D turbo spin echo

    PubMed Central

    Van, Anh T.; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J.; Gersing, Alexandra; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2018-01-01

    Purpose To perform in vivo isotropic‐resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase‐navigated diffusion‐prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase‐error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Methods Phase‐navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy‐current effects on the signal magnitude. Phase navigation of motion‐induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single‐shot echo planar imaging (ss‐EPI) in 13 subjects. Diffusion data were phase‐corrected per k z plane with respect to T2‐weighted data. The effects of motion‐induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss‐EPI. Results Non–phase‐corrected 3D TSE resulted in artifacts in diffusion‐weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss‐EPI DTI parameters (MD = 1.62 ± 0.21). Conclusion DP 3D TSE with phase correction allows distortion‐free isotropic diffusion imaging of lower back nerves with robustness to motion‐induced artifacts and DTI quantification errors. Magn Reson Med 80:609–618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29380414

  15. Differential Optical Synthetic Aperture Radar

    DOEpatents

    Stappaerts, Eddy A.

    2005-04-12

    A new differential technique for forming optical images using a synthetic aperture is introduced. This differential technique utilizes a single aperture to obtain unique (N) phases that can be processed to produce a synthetic aperture image at points along a trajectory. This is accomplished by dividing the aperture into two equal "subapertures", each having a width that is less than the actual aperture, along the direction of flight. As the platform flies along a given trajectory, a source illuminates objects and the two subapertures are configured to collect return signals. The techniques of the invention is designed to cancel common-mode errors, trajectory deviations from a straight line, and laser phase noise to provide the set of resultant (N) phases that can produce an image having a spatial resolution corresponding to a synthetic aperture.

  16. Method for transferring data from an unsecured computer to a secured computer

    DOEpatents

    Nilsen, Curt A.

    1997-01-01

    A method is described for transferring data from an unsecured computer to a secured computer. The method includes transmitting the data and then receiving the data. Next, the data is retransmitted and rereceived. Then, it is determined if errors were introduced when the data was transmitted by the unsecured computer or received by the secured computer. Similarly, it is determined if errors were introduced when the data was retransmitted by the unsecured computer or rereceived by the secured computer. A warning signal is emitted from a warning device coupled to the secured computer if (i) an error was introduced when the data was transmitted or received, and (ii) an error was introduced when the data was retransmitted or rereceived.

  17. Performance of the NASA Digitizing Core-Loss Instrumentation

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E. (Technical Monitor); Niedra, Janis M.

    2003-01-01

    The standard method of magnetic core loss measurement was implemented on a high frequency digitizing oscilloscope in order to explore the limits to accuracy when characterizing high Q cores at frequencies up to 1 MHz. This method computes core loss from the cycle mean of the product of the exciting current in a primary winding and induced voltage in a separate flux sensing winding. It is pointed out that just 20 percent accuracy for a Q of 100 core material requires a phase angle accuracy of 0.1 between the voltage and current measurements. Experiment shows that at 1 MHz, even high quality, high frequency current sensing transformers can introduce phase errors of a degree or more. Due to the fact that the Q of some quasilinear core materials can exceed 300 at frequencies below 100 kHz, phase angle errors can be a problem even at 50 kHz. Hence great care is necessary with current sensing and ground loops when measuring high Q cores. Best high frequency current sensing accuracy was obtained from a fabricated 0.1-ohm coaxial resistor, differentially sensed. Sample high frequency core loss data taken with the setup for a permeability-14 MPP core is presented.

  18. Photonic measurement of microwave frequency based on phase modulation.

    PubMed

    Zhou, Junqiang; Fu, Songnian; Shum, Perry Ping; Aditya, Sheel; Xia, Li; Li, Jianqiang; Sun, Xiaoqiang; Xu, Kun

    2009-04-27

    A photonic approach for microwave frequency measurement is proposed. In this approach, an optical carrier is modulated by an unknown microwave signal through a phase modulator. The modulated optical signal is then split into two parts; one part passes through a spool of polarization maintaining fiber (PMF) and the other one, through a dispersion compensation fiber (DCF), to introduce different microwave power penalties. After the microwave powers of the two parts are measured by two photodetectors, a fixed frequency-to-power mapping is established by obtaining an amplitude comparison function (ACF). A proof-of-concept experiment demonstrates frequency measurement over a range of 10.5 GHz, with measurement error less than +/-0.07 GHz.

  19. Optimizing correlation techniques for improved earthquake location

    USGS Publications Warehouse

    Schaff, D.P.; Bokelmann, G.H.R.; Ellsworth, W.L.; Zanzerkia, E.; Waldhauser, F.; Beroza, G.C.

    2004-01-01

    Earthquake location using relative arrival time measurements can lead to dramatically reduced location errors and a view of fault-zone processes with unprecedented detail. There are two principal reasons why this approach reduces location errors. The first is that the use of differenced arrival times to solve for the vector separation of earthquakes removes from the earthquake location problem much of the error due to unmodeled velocity structure. The second reason, on which we focus in this article, is that waveform cross correlation can substantially reduce measurement error. While cross correlation has long been used to determine relative arrival times with subsample precision, we extend correlation measurements to less similar waveforms, and we introduce a general quantitative means to assess when correlation data provide an improvement over catalog phase picks. We apply the technique to local earthquake data from the Calaveras Fault in northern California. Tests for an example streak of 243 earthquakes demonstrate that relative arrival times with normalized cross correlation coefficients as low as ???70%, interevent separation distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern California Seismic Network are more precise than relative arrival times determined from catalog phase data. Also discussed are improvements made to the correlation technique itself. We find that for large time offsets, our implementation of time-domain cross correlation is often more robust and that it recovers more observations than the cross spectral approach. Longer time windows give better results than shorter ones. Finally, we explain how thresholds and empirical weighting functions may be derived to optimize the location procedure for any given region of interest, taking advantage of the respective strengths of diverse correlation and catalog phase data on different length scales.

  20. New Treatment of Strongly Anisotropic Scattering Phase Functions: The Delta-M+ Method

    NASA Astrophysics Data System (ADS)

    Stamnes, K. H.; Lin, Z.; Chen, N.; Fan, Y.; Li, W.; Stamnes, S.

    2017-12-01

    The treatment of strongly anisotropic scattering phase functions is still a challenge for accurate radiance computations. The new Delta-M+ method resolves this problem by introducing a reliable, fast, accurate, and easy-to-use Legendre expansion of the scattering phase function with modified moments. Delta-M+ is an upgrade of the widely-used Delta-M method that truncates the forward scattering cone into a Dirac-delta-function (a direct beam), where the + symbol indicates that it essentially matches moments above the first 2M terms. Compared with the original Delta-M method, Delta-M+ has the same computational efficiency, but the accuracy has been increased dramatically. Tests show that the errors for strongly forward-peaked scattering phase functions are greatly reduced. Furthermore, the accuracy and stability of radiance computations are also significantly improved by applying the new Delta-M+ method.

  1. Phase-encoded measurement device independent quantum key distribution without a shared reference frame

    NASA Astrophysics Data System (ADS)

    Zhuo-Dan, Zhu; Shang-Hong, Zhao; Chen, Dong; Ying, Sun

    2018-07-01

    In this paper, a phase-encoded measurement device independent quantum key distribution (MDI-QKD) protocol without a shared reference frame is presented, which can generate secure keys between two parties while the quantum channel or interferometer introduces an unknown and slowly time-varying phase. The corresponding secret key rate and single photons bit error rate is analysed, respectively, with single photons source (SPS) and weak coherent source (WCS), taking finite-key analysis into account. The numerical simulations show that the modified phase-encoded MDI-QKD protocol has apparent superiority both in maximal secure transmission distance and key generation rate while possessing the improved robustness and practical security in the high-speed case. Moreover, the rejection of the frame-calibrating part will intrinsically reduce the consumption of resources as well as the potential security flaws of practical MDI-QKD systems.

  2. Performance of a Space-Based Wavelet Compressor for Plasma Count Data on the MMS Fast Plasma Investigation

    NASA Technical Reports Server (NTRS)

    Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.

    2017-01-01

    Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.

  3. Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.

    PubMed

    Hibino, Kenichi; Kim, Yangjin

    2016-08-10

    In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error.

  4. Atmospheric Phase Delay in Sentinel SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.

    2018-04-01

    The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation measurements.

  5. Ultrasound beam transmission using a discretely orthogonal Gaussian aperture basis

    NASA Astrophysics Data System (ADS)

    Roberts, R. A.

    2018-04-01

    Work is reported on development of a computational model for ultrasound beam transmission at an arbitrary geometry transmission interface for generally anisotropic materials. The work addresses problems encountered when the fundamental assumptions of ray theory do not hold, thereby introducing errors into ray-theory-based transmission models. Specifically, problems occur when the asymptotic integral analysis underlying ray theory encounters multiple stationary phase points in close proximity, due to focusing caused by concavity on either the entry surface or a material slowness surface. The approach presented here projects integrands over both the transducer aperture and the entry surface beam footprint onto a Gaussian-derived basis set, thereby distributing the integral over a summation of second-order phase integrals which are amenable to single stationary phase point analysis. Significantly, convergence is assured provided a sufficiently fine distribution of basis functions is used.

  6. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    NASA Astrophysics Data System (ADS)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  7. Statistics of the radiated field of a space-to-earth microwave power transfer system

    NASA Technical Reports Server (NTRS)

    Stevens, G. H.; Leininger, G.

    1976-01-01

    Statistics such as average power density pattern, variance of the power density pattern and variance of the beam pointing error are related to hardware parameters such as transmitter rms phase error and rms amplitude error. Also a limitation on spectral width of the phase reference for phase control was established. A 1 km diameter transmitter appears feasible provided the total rms insertion phase errors of the phase control modules does not exceed 10 deg, amplitude errors do not exceed 10% rms, and the phase reference spectral width does not exceed approximately 3 kHz. With these conditions the expected radiation pattern is virtually the same as the error free pattern, and the rms beam pointing error would be insignificant (approximately 10 meters).

  8. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Mao, Cuili; Lu, Rongsheng; Liu, Zhijian

    2018-07-01

    In fringe projection profilometry, the phase errors caused by the nonlinear intensity response of digital projectors needs to be correctly compensated. In this paper, a multi-frequency inverse-phase method is proposed. The theoretical model of periodical phase errors is analyzed. The periodical phase errors can be adaptively compensated in the wrapped maps by using a set of fringe patterns. The compensated phase is then unwrapped with multi-frequency method. Compared with conventional methods, the proposed method can greatly reduce the periodical phase error without calibrating measurement system. Some simulation and experimental results are presented to demonstrate the validity of the proposed approach.

  9. Parallel transmission pulse design with explicit control for the specific absorption rate in the presence of radiofrequency errors.

    PubMed

    Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L; Guerin, Bastien

    2016-06-01

    A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors ("worst-case SAR") is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled "worst-case SAR" in the presence of errors of this magnitude at minor cost of the excitation profile quality. Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. Magn Reson Med 75:2493-2504, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  11. Phase error statistics of a phase-locked loop synchronized direct detection optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Natarajan, Suresh; Gardner, C. S.

    1987-01-01

    Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.

  12. Towards Holography via Quantum Source-Channel Codes.

    PubMed

    Pastawski, Fernando; Eisert, Jens; Wilming, Henrik

    2017-07-14

    While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.

  13. Towards Holography via Quantum Source-Channel Codes

    NASA Astrophysics Data System (ADS)

    Pastawski, Fernando; Eisert, Jens; Wilming, Henrik

    2017-07-01

    While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.

  14. Self-spectral calibration for spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Xianling; Gao, Wanrong; Bian, Haiyi; Chen, Chaoliang; Liao, Jiuling

    2013-06-01

    A different real-time self-wavelength calibration method for spectral domain optical coherence tomography is presented in which interference spectra measured from two arbitrary points on the tissue surface are used for calibration. The method takes advantages of two favorable conditions of optical coherence tomography (OCT) signal. First, the signal back-scattered from the tissue surface is generally much stronger than that from positions in the tissue interior, so the spectral component of the surface interference could be extracted from the measured spectrum. Second, the tissue surface is not a plane and a phase difference exists between the light reflected from two different points on the surface. Compared with the zero-crossing automatic method, the introduced method has the advantage of removing the error due to dispersion mismatch or the common phase error. The method is tested experimentally to demonstrate the improved signal-to-noise ratio, higher axial resolution, and slower sensitivity degradation with depth when compared to the use of the zero-crossing method and applied to two-dimensional cross-sectional images of human finger skin.

  15. A Dual Frequency Carrier Phase Error Difference Checking Algorithm for the GNSS Compass.

    PubMed

    Liu, Shuo; Zhang, Lei; Li, Jian

    2016-11-24

    The performance of the Global Navigation Satellite System (GNSS) compass is related to the quality of carrier phase measurement. How to process the carrier phase error properly is important to improve the GNSS compass accuracy. In this work, we propose a dual frequency carrier phase error difference checking algorithm for the GNSS compass. The algorithm aims at eliminating large carrier phase error in dual frequency double differenced carrier phase measurement according to the error difference between two frequencies. The advantage of the proposed algorithm is that it does not need additional environment information and has a good performance on multiple large errors compared with previous research. The core of the proposed algorithm is removing the geographical distance from the dual frequency carrier phase measurement, then the carrier phase error is separated and detectable. We generate the Double Differenced Geometry-Free (DDGF) measurement according to the characteristic that the different frequency carrier phase measurements contain the same geometrical distance. Then, we propose the DDGF detection to detect the large carrier phase error difference between two frequencies. The theoretical performance of the proposed DDGF detection is analyzed. An open sky test, a manmade multipath test and an urban vehicle test were carried out to evaluate the performance of the proposed algorithm. The result shows that the proposed DDGF detection is able to detect large error in dual frequency carrier phase measurement by checking the error difference between two frequencies. After the DDGF detection, the accuracy of the baseline vector is improved in the GNSS compass.

  16. Effects of sharing information on drug administration errors in pediatric wards: a pre–post intervention study

    PubMed Central

    Chua, Siew-Siang; Choo, Sim-Mei; Sulaiman, Che Zuraini; Omar, Asma; Thong, Meow-Keong

    2017-01-01

    Background and purpose Drug administration errors are more likely to reach the patient than other medication errors. The main aim of this study was to determine whether the sharing of information on drug administration errors among health care providers would reduce such problems. Patients and methods This study involved direct, undisguised observations of drug administrations in two pediatric wards of a major teaching hospital in Kuala Lumpur, Malaysia. This study consisted of two phases: Phase 1 (pre-intervention) and Phase 2 (post-intervention). Data were collected by two observers over a 40-day period in both Phase 1 and Phase 2 of the study. Both observers were pharmacy graduates: Observer 1 just completed her undergraduate pharmacy degree, whereas Observer 2 was doing her one-year internship as a provisionally registered pharmacist in the hospital under study. A drug administration error was defined as a discrepancy between the drug regimen received by the patient and that intended by the prescriber and also drug administration procedures that did not follow standard hospital policies and procedures. Results from Phase 1 of the study were analyzed, presented and discussed with the ward staff before commencement of data collection in Phase 2. Results A total of 1,284 and 1,401 doses of drugs were administered in Phase 1 and Phase 2, respectively. The rate of drug administration errors reduced significantly from Phase 1 to Phase 2 (44.3% versus 28.6%, respectively; P<0.001). Logistic regression analysis showed that the adjusted odds of drug administration errors in Phase 1 of the study were almost three times that in Phase 2 (P<0.001). The most common types of errors were incorrect administration technique and incorrect drug preparation. Nasogastric and intravenous routes of drug administration contributed significantly to the rate of drug administration errors. Conclusion This study showed that sharing of the types of errors that had occurred was significantly associated with a reduction in drug administration errors. PMID:28356748

  17. Time-dependent phase error correction using digital waveform synthesis

    DOEpatents

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  18. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  19. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the application of BJI with a GA error model outperforms the hydrological parameters robustness (diminishing the divergence model phenomenon) and improves the reliability of the streamflow predictive distribution, in respect of the results of a bad error model as SLS. Finally, the most likely prediction in a validation period, for both BJI+GA and SLS error models shows a similar performance.

  20. Effects of stinger axial dynamics and mass compensation methods on experimental modal analysis

    NASA Astrophysics Data System (ADS)

    Hu, Ximing

    1992-06-01

    A longitudinal bar model that includes both stinger elastic and inertia properties is used to analyze the stinger's axial dynamics as well as the mass compensation that is required to obtain accurate input forces when a stinger is installed between the excitation source, force transducer, and the structure under test. Stinger motion transmissibility and force transmissibility, axial resonance and excitation energy transfer problems are discussed in detail. Stinger mass compensation problems occur when the force transducer is mounted on the exciter end of the stinger. These problems are studied theoretically, numerically, and experimentally. It is found that the measured Frequency Response Function (FRF) can be underestimated if mass compensation is based on the stinger exciter-end acceleration and can be overestimated if the mass compensation is based on the structure-end acceleration due to the stinger's compliance. A new mass compensation method that is based on two accelerations is introduced and is seen to improve the accuracy considerably. The effects of the force transducer's compliance on the mass compensation are also discussed. A theoretical model is developed that describes the measurement system's FRD around a test structure's resonance. The model shows that very large measurement errors occur when there is a small relative phase shift between the force and acceleration measurements. These errors can be in hundreds of percent corresponding to a phase error on the order of one or two degrees. The physical reasons for this unexpected error pattern are explained. This error is currently unknown to the experimental modal analysis community. Two sample structures consisting of a rigid mass and a double cantilever beam are used in the numerical calculations and experiments.

  1. Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase

    PubMed Central

    Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling

    2015-01-01

    In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate. PMID:26378533

  2. Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase.

    PubMed

    Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling

    2015-09-10

    In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate.

  3. Visible light high-resolution imaging system for large aperture telescope by liquid crystal adaptive optics with phase diversity technique.

    PubMed

    Xu, Zihao; Yang, Chengliang; Zhang, Peiguang; Zhang, Xingyun; Cao, Zhaoliang; Mu, Quanquan; Sun, Qiang; Xuan, Li

    2017-08-30

    There are more than eight large aperture telescopes (larger than eight meters) equipped with adaptive optics system in the world until now. Due to the limitations such as the difficulties of increasing actuator number of deformable mirror, most of them work in the infrared waveband. A novel two-step high-resolution optical imaging approach is proposed by applying phase diversity (PD) technique to the open-loop liquid crystal adaptive optics system (LC AOS) for visible light high-resolution adaptive imaging. Considering the traditional PD is not suitable for LC AOS, the novel PD strategy is proposed which can reduce the wavefront estimating error caused by non-modulated light generated by liquid crystal spatial light modulator (LC SLM) and make the residual distortions after open-loop correction to be smaller. Moreover, the LC SLM can introduce any aberration which realizes the free selection of phase diversity. The estimating errors are greatly reduced in both simulations and experiments. The resolution of the reconstructed image is greatly improved on both subjective visual effect and the highest discernible space resolution. Such technique can be widely used in large aperture telescopes for astronomical observations such as terrestrial planets, quasars and also can be used in other applications related to wavefront correction.

  4. A bundle with a preformatted medical order sheet and an introductory course to reduce prescription errors in neonates.

    PubMed

    Palmero, David; Di Paolo, Ermindo R; Beauport, Lydie; Pannatier, André; Tolsa, Jean-François

    2016-01-01

    The objective of this study was to assess whether the introduction of a new preformatted medical order sheet coupled with an introductory course affected prescription quality and the frequency of errors during the prescription stage in a neonatal intensive care unit (NICU). Two-phase observational study consisting of two consecutive 4-month phases: pre-intervention (phase 0) and post-intervention (phase I) conducted in an 11-bed NICU in a Swiss university hospital. Interventions consisted of the introduction of a new preformatted medical order sheet with explicit information supplied, coupled with a staff introductory course on appropriate prescription and medication errors. The main outcomes measured were formal aspects of prescription and frequency and nature of prescription errors. Eighty-three and 81 patients were included in phase 0 and phase I, respectively. A total of 505 handwritten prescriptions in phase 0 and 525 in phase I were analysed. The rate of prescription errors decreased significantly from 28.9% in phase 0 to 13.5% in phase I (p < 0.05). Compared with phase 0, dose errors, name confusion and errors in frequency and rate of drug administration decreased in phase I, from 5.4 to 2.7% (p < 0.05), 5.9 to 0.2% (p < 0.05), 3.6 to 0.2% (p < 0.05), and 4.7 to 2.1% (p < 0.05), respectively. The rate of incomplete and ambiguous prescriptions decreased from 44.2 to 25.7 and 8.5 to 3.2% (p < 0.05), respectively. Inexpensive and simple interventions can improve the intelligibility of prescriptions and reduce medication errors. Medication errors are frequent in NICUs and prescription is one of the most critical steps. CPOE reduce prescription errors, but their implementation is not available everywhere. Preformatted medical order sheet coupled with an introductory course decrease medication errors in a NICU. Preformatted medical order sheet is an inexpensive and readily implemented alternative to CPOE.

  5. Prevalence and reporting of recruitment, randomisation and treatment errors in clinical trials: A systematic review.

    PubMed

    Yelland, Lisa N; Kahan, Brennan C; Dent, Elsa; Lee, Katherine J; Voysey, Merryn; Forbes, Andrew B; Cook, Jonathan A

    2018-06-01

    Background/aims In clinical trials, it is not unusual for errors to occur during the process of recruiting, randomising and providing treatment to participants. For example, an ineligible participant may inadvertently be randomised, a participant may be randomised in the incorrect stratum, a participant may be randomised multiple times when only a single randomisation is permitted or the incorrect treatment may inadvertently be issued to a participant at randomisation. Such errors have the potential to introduce bias into treatment effect estimates and affect the validity of the trial, yet there is little motivation for researchers to report these errors and it is unclear how often they occur. The aim of this study is to assess the prevalence of recruitment, randomisation and treatment errors and review current approaches for reporting these errors in trials published in leading medical journals. Methods We conducted a systematic review of individually randomised, phase III, randomised controlled trials published in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Annals of Internal Medicine and British Medical Journal from January to March 2015. The number and type of recruitment, randomisation and treatment errors that were reported and how they were handled were recorded. The corresponding authors were contacted for a random sample of trials included in the review and asked to provide details on unreported errors that occurred during their trial. Results We identified 241 potentially eligible articles, of which 82 met the inclusion criteria and were included in the review. These trials involved a median of 24 centres and 650 participants, and 87% involved two treatment arms. Recruitment, randomisation or treatment errors were reported in 32 in 82 trials (39%) that had a median of eight errors. The most commonly reported error was ineligible participants inadvertently being randomised. No mention of recruitment, randomisation or treatment errors was found in the remaining 50 of 82 trials (61%). Based on responses from 9 of the 15 corresponding authors who were contacted regarding recruitment, randomisation and treatment errors, between 1% and 100% of the errors that occurred in their trials were reported in the trial publications. Conclusion Recruitment, randomisation and treatment errors are common in individually randomised, phase III trials published in leading medical journals, but reporting practices are inadequate and reporting standards are needed. We recommend researchers report all such errors that occurred during the trial and describe how they were handled in trial publications to improve transparency in reporting of clinical trials.

  6. Modeling high-efficiency extreme ultraviolet etched multilayer phase-shift masks

    NASA Astrophysics Data System (ADS)

    Sherwin, Stuart; Neureuther, Andrew; Naulleau, Patrick

    2017-10-01

    Achieving high-throughput extreme ultraviolet (EUV) patterning remains a major challenge due to low source power; phase-shift masks can help solve this challenge for dense features near the resolution limit by creating brighter images than traditional absorber masks when illuminated with the same source power. We explore applications of etched multilayer phase-shift masks for EUV lithography, both in the current-generation 0.33 NA and next-generation 0.55 NA systems. We derive analytic formulas for the thin-mask throughput gains, which are 2.42× for lines and spaces and 5.86× for contacts compared with an absorber mask with dipole and quadrupole illumination, respectively. Using rigorous finite-difference time-domain simulations, we quantify variations in these gains by pitch and orientation, finding 87% to 113% of the thin-mask value for lines and spaces and a 91% to 99% for contacts. We introduce an edge placement error metric, which accounts for CD errors, relative feature motion, and telecentricity errors, and use this metric both to optimize mask designs for individual features and to explore which features can be printed on the same mask. Furthermore, we find that although partial coherence shrinks the process window, at an achievable sigma of 0.2 we obtain a depth of focus of 340 nm and an exposure latitude of 39.2%, suggesting that partial coherence will not limit the feasibility of this technology. Finally, we show that many problems such as sensitivity to etch uniformity can be greatly mitigated using a central obscuration in the imaging pupil.

  7. Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves.

    PubMed

    Arndt, Stefan K; Irawan, Andi; Sanders, Gregor J

    2015-12-01

    Relative water content (RWC) and the osmotic potential (π) of plant leaves are important plant traits that can be used to assess drought tolerance or adaptation of plants. We estimated the magnitude of errors that are introduced by dilution of π from apoplastic water in osmometry methods and the errors that occur during rehydration of leaves for RWC and π in 14 different plant species from trees, grasses and herbs. Our data indicate that rehydration technique and length of rehydration can introduce significant errors in both RWC and π. Leaves from all species were fully turgid after 1-3 h of rehydration and increasing the rehydration time resulted in a significant underprediction of RWC. Standing rehydration via the petiole introduced the least errors while rehydration via floating disks and submerging leaves for rehydration led to a greater underprediction of RWC. The same effect was also observed for π. The π values following standing rehydration could be corrected by applying a dilution factor from apoplastic water dilution using an osmometric method but not by using apoplastic water fraction (AWF) from pressure volume (PV) curves. The apoplastic water dilution error was between 5 and 18%, while the two other rehydration methods introduced much greater errors. We recommend the use of the standing rehydration method because (1) the correct rehydration time can be evaluated by measuring water potential, (2) overhydration effects were smallest, and (3) π can be accurately corrected by using osmometric methods to estimate apoplastic water dilution. © 2015 Scandinavian Plant Physiology Society.

  8. Automated quantification of the synchrogram by recurrence plot analysis.

    PubMed

    Nguyen, Chinh Duc; Wilson, Stephen James; Crozier, Stuart

    2012-04-01

    Recently, the concept of phase synchronization of two weakly coupled oscillators has raised a great research interest and has been applied to characterize synchronization phenomenon in physiological data. Phase synchronization of cardiorespiratory coupling is often studied by a synchrogram analysis, a graphical tool investigating the relationship between instantaneous phases of two signals. Although several techniques have been proposed to automatically quantify the synchrogram, most of them require a preselection of a phase-locking ratio by trial and error. One technique does not require this information; however, it is based on the power spectrum of phase's distribution in the synchrogram, which is vulnerable to noise. This study aims to introduce a new technique to automatically quantify the synchrogram by studying its dynamic structure. Our technique exploits recurrence plot analysis, which is a well-established tool for characterizing recurring patterns and nonstationarities in experiments. We applied our technique to detect synchronization in simulated and measured infants' cardiorespiratory data. Our results suggest that the proposed technique is able to systematically detect synchronization in noisy and chaotic data without preselecting the phase-locking ratio. By embedding phase information of the synchrogram into phase space, the phase-locking ratio is automatically unveiled as the number of attractors.

  9. LOCSET Phase Locking: Operation, Diagnostics, and Applications

    NASA Astrophysics Data System (ADS)

    Pulford, Benjamin N.

    The aim of this dissertation is to discuss the theoretical and experimental work recently done with the Locking of Optical Coherence via Single-detector Electronic-frequency Tagging (LOCSET) phase locking technique developed and employed here are AFRL. The primary objectives of this effort are to detail the fundamental operation of the LOCSET phase locking technique, recognize the conditions in which the LOCSET control electronics optimally operate, demonstrate LOCSET phase locking with higher channel counts than ever before, and extend the LOCSET technique to correct for low order, atmospherically induced, phase aberrations introduced to the output of a tiled array of coherently combinable beams. The experimental work performed for this effort resulted in the coherent combination of 32 low power optical beams operating with unprecedented LOCSET phase error performance of lambda/71 RMS in a local loop beam combination configuration. The LOCSET phase locking technique was also successfully extended, for the first time, into an Object In the Loop (OIL) configuration by utilizing light scattered off of a remote object as the optical return signal for the LOCSET phase control electronics. Said LOCSET-OIL technique is capable of correcting for low order phase aberrations caused by atmospheric turbulence disturbances applied across a tiled array output.

  10. The isotropic-nematic phase transition of tangent hard-sphere chain fluids—Pure components

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim

    2013-07-01

    An extension of Onsager's second virial theory is developed to describe the isotropic-nematic phase transition of tangent hard-sphere chain fluids. Flexibility is introduced by the rod-coil model. The effect of chain-flexibility on the second virial coefficient is described using an accurate, analytical approximation for the orientation-dependent pair-excluded volume. The use of this approximation allows for an analytical treatment of intramolecular flexibility by using a single pure-component parameter. Two approaches to approximate the effect of the higher virial coefficients are considered, i.e., the Vega-Lago rescaling and Scaled Particle Theory (SPT). The Onsager trial function is employed to describe the orientational distribution function. Theoretical predictions for the equation of state and orientational order parameter are tested against the results from Monte Carlo (MC) simulations. For linear chains of length 9 and longer, theoretical results are in excellent agreement with MC data. For smaller chain lengths, small errors introduced by the approximation of the higher virial coefficients become apparent, leading to a small under- and overestimation of the pressure and density difference at the phase transition, respectively. For rod-coil fluids of reasonable rigidity, a quantitative comparison between theory and MC simulations is obtained. For more flexible chains, however, both the Vega-Lago rescaling and SPT lead to a small underestimation of the location of the phase transition.

  11. Theory of injection locking and rapid start-up of magnetrons, and effects of manufacturing errors in terahertz traveling wave tubes

    NASA Astrophysics Data System (ADS)

    Pengvanich, Phongphaeth

    In this thesis, several contemporary issues on coherent radiation sources are examined. They include the fast startup and the injection locking of microwave magnetrons, and the effects of random manufacturing errors on phase and small signal gain of terahertz traveling wave amplifiers. In response to the rapid startup and low noise magnetron experiments performed at the University of Michigan that employed periodic azimuthal perturbations in the axial magnetic field, a systematic study of single particle orbits is performed for a crossed electric and periodic magnetic field. A parametric instability in the orbits, which brings a fraction of the electrons from the cathode toward the anode, is discovered. This offers an explanation of the rapid startup observed in the experiments. A phase-locking model has been constructed from circuit theory to qualitatively explain various regimes observed in kilowatt magnetron injection-locking experiments, which were performed at the University of Michigan. These experiments utilize two continuous-wave magnetrons; one functions as an oscillator and the other as a driver. Time and frequency domain solutions are developed from the model, allowing investigations into growth, saturation, and frequency response of the output. The model qualitatively recovers many of the phase-locking frequency characteristics observed in the experiments. Effects of frequency chirp and frequency perturbation on the phase and lockability have also been quantified. Development of traveling wave amplifier operating at terahertz is a subject of current interest. The small circuit size has prompted a statistical analysis of the effects of random fabrication errors on phase and small signal gain of these amplifiers. The small signal theory is treated with a continuum model in which the electron beam is monoenergetic. Circuit perturbations that vary randomly along the beam axis are introduced through the dimensionless Pierce parameters describing the beam-wave velocity mismatch (b), the gain parameter (C), and the cold tube circuit loss ( d). Our study shows that perturbation in b dominates the other two in terms of power gain and phase shift. Extensive data show that standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C and d.

  12. Phase measurement error in summation of electron holography series.

    PubMed

    McLeod, Robert A; Bergen, Michael; Malac, Marek

    2014-06-01

    Off-axis electron holography is a method for the transmission electron microscope (TEM) that measures the electric and magnetic properties of a specimen. The electrostatic and magnetic potentials modulate the electron wavefront phase. The error in measurement of the phase therefore determines the smallest observable changes in electric and magnetic properties. Here we explore the summation of a hologram series to reduce the phase error and thereby improve the sensitivity of electron holography. Summation of hologram series requires independent registration and correction of image drift and phase wavefront drift, the consequences of which are discussed. Optimization of the electro-optical configuration of the TEM for the double biprism configuration is examined. An analytical model of image and phase drift, composed of a combination of linear drift and Brownian random-walk, is derived and experimentally verified. The accuracy of image registration via cross-correlation and phase registration is characterized by simulated hologram series. The model of series summation errors allows the optimization of phase error as a function of exposure time and fringe carrier frequency for a target spatial resolution. An experimental example of hologram series summation is provided on WS2 fullerenes. A metric is provided to measure the object phase error from experimental results and compared to analytical predictions. The ultimate experimental object root-mean-square phase error is 0.006 rad (2π/1050) at a spatial resolution less than 0.615 nm and a total exposure time of 900 s. The ultimate phase error in vacuum adjacent to the specimen is 0.0037 rad (2π/1700). The analytical prediction of phase error differs with the experimental metrics by +7% inside the object and -5% in the vacuum, indicating that the model can provide reliable quantitative predictions. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  13. Phase correction system for automatic focusing of synthetic aperture radar

    DOEpatents

    Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.

    1990-01-01

    A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.

  14. Digital filtering of plume emission spectra

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1990-01-01

    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

  15. System and method for phase retrieval for radio telescope and antenna control

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for radio phase retrieval. A system practicing the method gathers first data from radio waves associated with an object observed via a first aperture, gathers second data from radio waves associated with the object observed via an introduced second aperture associated with the first aperture, generates reduced noise data by incoherently subtracting the second data from the first data, and performs phase retrieval for the radio waves by modeling the reduced noise data using a single Fourier transform. The first and second apertures are at different positions, such as side by side. This approach can include determining a value Q which represents a ratio of wavelength times a focal ratio divided by pixel spacing. This information can be used to accurately measure and correct alignment errors or other optical system flaws in the apertures.

  16. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging.

    PubMed

    Remmersmann, Christian; Stürwald, Stephan; Kemper, Björn; Langehanenberg, Patrik; von Bally, Gert

    2009-03-10

    In temporal phase-shifting-based digital holographic microscopy, high-resolution phase contrast imaging requires optimized conditions for hologram recording and phase retrieval. To optimize the phase resolution, for the example of a variable three-step algorithm, a theoretical analysis on statistical errors, digitalization errors, uncorrelated errors, and errors due to a misaligned temporal phase shift is carried out. In a second step the theoretically predicted results are compared to the measured phase noise obtained from comparative experimental investigations with several coherent and partially coherent light sources. Finally, the applicability for noise reduction is demonstrated by quantitative phase contrast imaging of pancreas tumor cells.

  17. The Relationship between Occurrence Timing of Dispensing Errors and Subsequent Danger to Patients under the Situation According to the Classification of Drugs by Efficacy.

    PubMed

    Tsuji, Toshikazu; Nagata, Kenichiro; Kawashiri, Takehiro; Yamada, Takaaki; Irisa, Toshihiro; Murakami, Yuko; Kanaya, Akiko; Egashira, Nobuaki; Masuda, Satohiro

    2016-01-01

    There are many reports regarding various medical institutions' attempts at the prevention of dispensing errors. However, the relationship between occurrence timing of dispensing errors and subsequent danger to patients has not been studied under the situation according to the classification of drugs by efficacy. Therefore, we analyzed the relationship between position and time regarding the occurrence of dispensing errors. Furthermore, we investigated the relationship between occurrence timing of them and danger to patients. In this study, dispensing errors and incidents in three categories (drug name errors, drug strength errors, drug count errors) were classified into two groups in terms of its drug efficacy (efficacy similarity (-) group, efficacy similarity (+) group), into three classes in terms of the occurrence timing of dispensing errors (initial phase errors, middle phase errors, final phase errors). Then, the rates of damage shifting from "dispensing errors" to "damage to patients" were compared as an index of danger between two groups and among three classes. Consequently, the rate of damage in "efficacy similarity (-) group" was significantly higher than that in "efficacy similarity (+) group". Furthermore, the rate of damage is the highest in "initial phase errors", the lowest in "final phase errors" among three classes. From the results of this study, it became clear that the earlier the timing of dispensing errors occurs, the more severe the damage to patients becomes.

  18. Effects of measurement resolution on the analysis of temperature time series for stream-aquifer flux estimation

    NASA Astrophysics Data System (ADS)

    Soto-López, Carlos D.; Meixner, Thomas; Ferré, Ty P. A.

    2011-12-01

    From its inception in the mid-1960s, the use of temperature time series (thermographs) to estimate vertical fluxes has found increasing use in the hydrologic community. Beginning in 2000, researchers have examined the impacts of measurement and parameter uncertainty on the estimates of vertical fluxes. To date, the effects of temperature measurement discretization (resolution), a characteristic of all digital temperature loggers, on the determination of vertical fluxes has not been considered. In this technical note we expand the analysis of recently published work to include the effects of temperature measurement resolution on estimates of vertical fluxes using temperature amplitude and phase shift information. We show that errors in thermal front velocity estimation introduced by discretizing thermographs differ when amplitude or phase shift data are used to estimate vertical fluxes. We also show that under similar circumstances sensor resolution limits the range over which vertical velocities are accurately reproduced more than uncertainty in temperature measurements, uncertainty in sensor separation distance, and uncertainty in the thermal diffusivity combined. These effects represent the baseline error present and thus the best-case scenario when discrete temperature measurements are used to infer vertical fluxes. The errors associated with measurement resolution can be minimized by using the highest-resolution sensors available. But thoughtful experimental design could allow users to select the most cost-effective temperature sensors to fit their measurement needs.

  19. Error Cost Escalation Through the Project Life Cycle

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette M.; Dabney, Jim; Dick, Brandon; Haskins, Bill; Lovell, Randy; Moroney, Gregory

    2004-01-01

    It is well known that the costs to fix errors increase as the project matures, but how fast do those costs build? A study was performed to determine the relative cost of fixing errors discovered during various phases of a project life cycle. This study used three approaches to determine the relative costs: the bottom-up cost method, the total cost breakdown method, and the top-down hypothetical project method. The approaches and results described in this paper presume development of a hardware/software system having project characteristics similar to those used in the development of a large, complex spacecraft, a military aircraft, or a small communications satellite. The results show the degree to which costs escalate, as errors are discovered and fixed at later and later phases in the project life cycle. If the cost of fixing a requirements error discovered during the requirements phase is defined to be 1 unit, the cost to fix that error if found during the design phase increases to 3 - 8 units; at the manufacturing/build phase, the cost to fix the error is 7 - 16 units; at the integration and test phase, the cost to fix the error becomes 21 - 78 units; and at the operations phase, the cost to fix the requirements error ranged from 29 units to more than 1500 units

  20. Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive x-ray spectrometry.

    PubMed

    Vajda, E G; Skedros, J G; Bloebaum, R D

    1998-10-01

    Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.

  1. SVM-based multisensor data fusion for phase concentration measurement in biomass-coal co-combustion

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxin; Hu, Hongli; Jia, Huiqin; Tang, Kaihao

    2018-05-01

    In this paper, the electrical method combines the electrostatic sensor and capacitance sensor to measure the phase concentration of pulverized coal/biomass/air three-phase flow through data fusion technology. In order to eliminate the effects of flow regimes and improve the accuracy of the phase concentration measurement, the mel frequency cepstrum coefficient features extracted from electrostatic signals are used to train the Continuous Gaussian Mixture Hidden Markov Model (CGHMM) for flow regime identification. Support Vector Machine (SVM) is introduced to establish the concentration information fusion model under identified flow regimes. The CGHMM models and SVM models are transplanted on digital signal processing (DSP) to realize on-line accurate measurement. The DSP flow regime identification time is 1.4 ms, and the concentration predict time is 164 μs, which can fully meet the real-time requirement. The average absolute value of the relative error of the pulverized coal is about 1.5% and that of the biomass is about 2.2%.

  2. Effects of Optical-density and Phase Dispersion of an Imperfect Band-limited Occulting Mask on the Broadband Performance of a TPF Coronagraph

    NASA Technical Reports Server (NTRS)

    Sidiek, Erkin; Balasubramanian, Kunjithapatham

    2007-01-01

    Practical image-plane occulting masks required by high-contrast imaging systems such as the TPF-Coronagraph introduce phase errors into the transmitting beam., or, equivalently, diffracts the residual starlight into the area of the final image plane used for detecting exo-planets. Our group at JPL has recently proposed spatially Profiled metal masks that can be designed to have zero parasitic phase at the center wavelength of the incoming broadband light with small amounts of' 00 and phase dispersions at other wavelengths. Work is currently underway to design. fabricate and characterize such image-plane masks. In order to gain some understanding on the behaviors of these new imperfect band-limited occulting masks and clarify how such masks utilizing different metals or alloys compare with each other, we carried out some modeling and simulations on the contrast performance of the high-contrast imaging testbed (HCIT) at .JPL. In this paper we describe the details of our simulations and present our results.

  3. Methods for multiple-telescope beam imaging and guiding in the near-infrared

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Amorim, A.; Gordo, P.; Eisenhauer, F.; Pfuhl, O.; Haug, M.; Wieprecht, E.; Wiezorrek, E.; Lima, J.; Perrin, G.; Brandner, W.; Straubmeier, C.; Le Bouquin, J.-B.; Garcia, P. J. V.

    2018-05-01

    Atmospheric turbulence and precise measurement of the astrometric baseline vector between any two telescopes are two major challenges in implementing phase-referenced interferometric astrometry and imaging. They limit the performance of a fibre-fed interferometer by degrading the instrument sensitivity and the precision of astrometric measurements and by introducing image reconstruction errors due to inaccurate phases. A multiple-beam acquisition and guiding camera was built to meet these challenges for a recently commissioned four-beam combiner instrument, GRAVITY, at the European Southern Observatory Very Large Telescope Interferometer. For each telescope beam, it measures (a) field tip-tilts by imaging stars in the sky, (b) telescope pupil shifts by imaging pupil reference laser beacons installed on each telescope using a 2 × 2 lenslet and (c) higher-order aberrations using a 9 × 9 Shack-Hartmann. The telescope pupils are imaged to provide visual monitoring while observing. These measurements enable active field and pupil guiding by actuating a train of tip-tilt mirrors placed in the pupil and field planes, respectively. The Shack-Hartmann measured quasi-static aberrations are used to focus the auxiliary telescopes and allow the possibility of correcting the non-common path errors between the adaptive optics systems of the unit telescopes and GRAVITY. The guiding stabilizes the light injection into single-mode fibres, increasing sensitivity and reducing the astrometric and image reconstruction errors. The beam guiding enables us to achieve an astrometric error of less than 50 μas. Here, we report on the data reduction methods and laboratory tests of the multiple-beam acquisition and guiding camera and its performance on-sky.

  4. Errors in the Extra-Analytical Phases of Clinical Chemistry Laboratory Testing.

    PubMed

    Zemlin, Annalise E

    2018-04-01

    The total testing process consists of various phases from the pre-preanalytical to the post-postanalytical phase, the so-called brain-to-brain loop. With improvements in analytical techniques and efficient quality control programmes, most laboratory errors now occur in the extra-analytical phases. There has been recent interest in these errors with numerous publications highlighting their effect on service delivery, patient care and cost. This interest has led to the formation of various working groups whose mission is to develop standardized quality indicators which can be used to measure the performance of service of these phases. This will eventually lead to the development of external quality assessment schemes to monitor these phases in agreement with ISO15189:2012 recommendations. This review focuses on potential errors in the extra-analytical phases of clinical chemistry laboratory testing, some of the studies performed to assess the severity and impact of these errors and processes that are in place to address these errors. The aim of this review is to highlight the importance of these errors for the requesting clinician.

  5. Recursive Construction of Noiseless Subsystem for Qudits

    NASA Astrophysics Data System (ADS)

    Güngördü, Utkan; Li, Chi-Kwong; Nakahara, Mikio; Poon, Yiu-Tung; Sze, Nung-Sing

    2014-03-01

    When the environmental noise acting on the system has certain symmetries, a subsystem of the total system can avoid errors. Encoding information into such a subsystem is advantageous since it does not require any error syndrome measurements, which may introduce further errors to the system. However, utilizing such a subsystem for large systems gets impractical with the increasing number of qudits. A recursive scheme offers a solution to this problem. Here, we review the recursive construct introduced in, which can asymptotically protect 1/d of the qudits in system against collective errors.

  6. Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models

    NASA Astrophysics Data System (ADS)

    Lagman, Karl B.; Fennel, Katja; Thompson, Keith R.; Bianucci, Laura

    2014-09-01

    Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator-prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.

  7. Tunable ferroelectric meta-material phase shifter embedded inside low temperature co-fired ceramics (LTCC)

    NASA Astrophysics Data System (ADS)

    Tork, Hossam S.

    This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving directions for phased array antennas, reducing phase error, improving figure of merit (FOM) and phase shifter tunability around center frequency, and also enables the integration of the phase shifters with the microwave circuits on one substrate, thus substantially reducing the size, mass, and cost of the antennas.

  8. Using certification trails to achieve software fault tolerance

    NASA Technical Reports Server (NTRS)

    Sullivan, Gregory F.; Masson, Gerald M.

    1993-01-01

    A conceptually novel and powerful technique to achieve fault tolerance in hardware and software systems is introduced. When used for software fault tolerance, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance was formalized and it was illustrated by applying it to the fundamental problem of finding a minimum spanning tree. Cases in which the second phase can be run concorrectly with the first and act as a monitor are discussed. The certification trail approach was compared to other approaches to fault tolerance. Because of space limitations we have omitted examples of our technique applied to the Huffman tree, and convex hull problems. These can be found in the full version of this paper.

  9. Artifact-resistant superimposition of digital dental models and cone-beam computed tomography images.

    PubMed

    Lin, Hsiu-Hsia; Chiang, Wen-Chung; Lo, Lun-Jou; Sheng-Pin Hsu, Sam; Wang, Chien-Hsuan; Wan, Shu-Yen

    2013-11-01

    Combining the maxillofacial cone-beam computed tomography (CBCT) model with its corresponding digital dental model enables an integrated 3-dimensional (3D) representation of skeletal structures, teeth, and occlusions. Undesired artifacts, however, introduce difficulties in the superimposition of both models. We have proposed an artifact-resistant surface-based registration method that is robust and clinically applicable and that does not require markers. A CBCT bone model and a laser-scanned dental model obtained from the same patient were used in developing the method and examining the accuracy of the superimposition. Our method included 4 phases. The first phase was to segment the maxilla from the mandible in the CBCT model. The second phase was to conduct an initial registration to bring the digital dental model and the maxilla and mandible sufficiently close to each other. Third, we manually selected at least 3 corresponding regions on both models by smearing patches on the 3D surfaces. The last phase was to superimpose the digital dental model into the maxillofacial model. Each superimposition process was performed twice by 2 operators with the same object to investigate the intra- and interoperator differences. All collected objects were divided into 3 groups with various degrees of artifacts: artifact-free, critical artifacts, and severe artifacts. The mean errors and root-mean-square (RMS) errors were used to evaluate the accuracy of the superimposition results. Repeated measures analysis of variance and the Wilcoxon rank sum test were used to calculate the intraoperator reproducibility and interoperator reliability. Twenty-four maxilla and mandible objects for evaluation were obtained from 14 patients. The experimental results showed that the mean errors between the 2 original models in the residing fused model ranged from 0.10 to 0.43 mm and that the RMS errors ranged from 0.13 to 0.53 mm. These data were consistent with previously used methods and were clinically acceptable. All measurements of the proposed study exhibited desirable intraoperator reproducibility and interoperator reliability. Regarding the intra- and interoperator mean errors and RMS errors in the nonartifact or critical artifact group, no significant difference between the repeated trials or between operators (P < .05) was observed. The results of the present study have shown that the proposed regional surface-based registration can robustly and accurately superimpose a digital dental model into its corresponding CBCT model. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  10. A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2011-01-01

    Formal behavioral specifications written early in the system-design process and communicated across all design phases have been shown to increase the efficiency, consistency, and quality of the system under development. To prevent introducing design or verification errors, it is crucial to test specifications for satisfiability. Our focus here is on specifications expressed in linear temporal logic (LTL). We introduce a novel encoding of symbolic transition-based Buchi automata and a novel, "sloppy," transition encoding, both of which result in improved scalability. We also define novel BDD variable orders based on tree decomposition of formula parse trees. We describe and extensively test a new multi-encoding approach utilizing these novel encoding techniques to create 30 encoding variations. We show that our novel encodings translate to significant, sometimes exponential, improvement over the current standard encoding for symbolic LTL satisfiability checking.

  11. Inspection des pieces flexibles sans gabarit de conformation

    NASA Astrophysics Data System (ADS)

    Aidibe, Ali

    In this thesis, we focus on the automation of the fixtureless geometric inspection of non-rigid (or compliant) parts. The primary objective of this project is to handle virtually this type of component and their point cloud, which represents a scan taken in a Free State condition, by eliminating the use of very expensive and complicated specialized fixtures posing productivity problems for manufacturing companies. This topic is a very high interest in the transport sector and, more specifically, in the aerospace one in order to significantly improve its productivity and its degree of competitiveness. The thesis is organized by articles. The study is divided over four phases. The first three phases will be represented by three journal papers and the fourth phase is presented as an appendix. The first phase of this work is intended to improve the identification module of an existing inspection mathematical tool " IDI: The Iterative Displacement Inspection " which has been developed by the research team working under the supervision of professor Tahan at ETS. The identification module aims to distinguish between defects that are due to the manufacturing process and deformations that are due to the flexibility of the part (gravity and residual stress effects). We propose to replace the original module with a new one which is based on the extreme value statistical analysis. We demonstrate that the new module remarkably reduces the type I and type II errors. In addition, unlike the identification method of the IDI, the proposed one does not require a user-specified threshold based on a trial and error process. In the second phase of this study, we propose an original approach to measure the flexibility/rigidity of the mechanical components. We introduce a factor that represents the ratio between the maximum displacement resulting from the deformation of the part and its profile tolerance and we present the results in a logarithmic scale. Three different regions were defined as giving a clear idea to the manufacturing industry about the situation of the parts on the flexibility scale. Subsequently, we propose a new fixtureless inspection method for compliant parts: the IDB-CTB " Inspection of Deformable Bodies by Curvature and Thompson-Biweight " method. This approach combines the Gaussian curvature estimation, one of the intrinsic properties of the surface which is invariant under isometric transformations, with an identification method based on the extreme value statistics ( Thompson-Biweight Test). The low percentage of error in defect areas and in profile deviations estimated reflects the effectiveness of our approach. In the third phase of this thesis, we propose a novel method that can be considered as complementary to the IDB-CTB approach. In addition to the profile deviations, we aim to detect the localization defects. We introduce two criteria that correspond to the specification of compliant parts: the conservation of the curvilinear distance and the minimization between two objects (Hausdorff Distance). We adapt and automate the Coherent Point Drift; a powerful non-rigid registration algorithm widely used in medical imagery and animation, for satisfying these two criteria. We obtain satisfying results by applying the third approach on a typical aerospace sheet metal. The conclusion of this thesis summarizes the scientific contributions through our work on the fixtureless inspection of compliant parts and the perspective related with it. In the appendix, we introduce a graphical user interface (GUI) created to handle the proposed approaches as well as the case studies bank developed in the training at Bombardier Aerospace Inc.

  12. Financial model calibration using consistency hints.

    PubMed

    Abu-Mostafa, Y S

    2001-01-01

    We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the error function of curve fitting with consistency hint error functions based on the Kullback-Leibler distance. We introduce an efficient EM-type optimization algorithm tailored to this technique. We also introduce other consistency hints, and balance their weights using canonical errors. We calibrate the correlated multifactor Vasicek model of interest rates, and apply it successfully to Japanese Yen swaps market and US dollar yield market.

  13. Automatic Error Analysis Using Intervals

    ERIC Educational Resources Information Center

    Rothwell, E. J.; Cloud, M. J.

    2012-01-01

    A technique for automatic error analysis using interval mathematics is introduced. A comparison to standard error propagation methods shows that in cases involving complicated formulas, the interval approach gives comparable error estimates with much less effort. Several examples are considered, and numerical errors are computed using the INTLAB…

  14. Quantifying the impact of material-model error on macroscale quantities-of-interest using multiscale a posteriori error-estimation techniques

    DOE PAGES

    Brown, Judith A.; Bishop, Joseph E.

    2016-07-20

    An a posteriori error-estimation framework is introduced to quantify and reduce modeling errors resulting from approximating complex mesoscale material behavior with a simpler macroscale model. Such errors may be prevalent when modeling welds and additively manufactured structures, where spatial variations and material textures may be present in the microstructure. We consider a case where a <100> fiber texture develops in the longitudinal scanning direction of a weld. Transversely isotropic elastic properties are obtained through homogenization of a microstructural model with this texture and are considered the reference weld properties within the error-estimation framework. Conversely, isotropic elastic properties are considered approximatemore » weld properties since they contain no representation of texture. Errors introduced by using isotropic material properties to represent a weld are assessed through a quantified error bound in the elastic regime. Lastly, an adaptive error reduction scheme is used to determine the optimal spatial variation of the isotropic weld properties to reduce the error bound.« less

  15. Acquisition, representation, and transfer of models of visuo-motor error

    PubMed Central

    Zhang, Hang; Kulsa, Mila Kirstie C.; Maloney, Laurence T.

    2015-01-01

    We examined how human subjects acquire and represent models of visuo-motor error and how they transfer information about visuo-motor error from one task to a closely related one. The experiment consisted of three phases. In the training phase, subjects threw beanbags underhand towards targets displayed on a wall-mounted touch screen. The distribution of their endpoints was a vertically elongated bivariate Gaussian. In the subsequent choice phase, subjects repeatedly chose which of two targets varying in shape and size they would prefer to attempt to hit. Their choices allowed us to investigate their internal models of visuo-motor error distribution, including the coordinate system in which they represented visuo-motor error. In the transfer phase, subjects repeated the choice phase from a different vantage point, the same distance from the screen but with the throwing direction shifted 45°. From the new vantage point, visuo-motor error was effectively expanded horizontally by . We found that subjects incorrectly assumed an isotropic distribution in the choice phase but that the anisotropy they assumed in the transfer phase agreed with an objectively correct transfer. We also found that the coordinate system used in coding two-dimensional visuo-motor error in the choice phase was effectively one-dimensional. PMID:26057549

  16. Fault detection for hydraulic pump based on chaotic parallel RBF network

    NASA Astrophysics Data System (ADS)

    Lu, Chen; Ma, Ning; Wang, Zhipeng

    2011-12-01

    In this article, a parallel radial basis function network in conjunction with chaos theory (CPRBF network) is presented, and applied to practical fault detection for hydraulic pump, which is a critical component in aircraft. The CPRBF network consists of a number of radial basis function (RBF) subnets connected in parallel. The number of input nodes for each RBF subnet is determined by different embedding dimension based on chaotic phase-space reconstruction. The output of CPRBF is a weighted sum of all RBF subnets. It was first trained using the dataset from normal state without fault, and then a residual error generator was designed to detect failures based on the trained CPRBF network. Then, failure detection can be achieved by the analysis of the residual error. Finally, two case studies are introduced to compare the proposed CPRBF network with traditional RBF networks, in terms of prediction and detection accuracy.

  17. Attitude determination for high-accuracy submicroradian jitter pointing on space-based platforms

    NASA Astrophysics Data System (ADS)

    Gupta, Avanindra A.; van Houten, Charles N.; Germann, Lawrence M.

    1990-10-01

    A description of the requirement definition process is given for a new wideband attitude determination subsystem (ADS) for image motion compensation (IMC) systems. The subsystem consists of either lateral accelerometers functioning in differential pairs or gas-bearing gyros for high-frequency sensors using CCD-based star trackers for low-frequency sensors. To minimize error the sensor signals are combined so that the mixing filter does not allow phase distortion. The two ADS models are introduced in an IMC simulation to predict measurement error, correction capability, and residual image jitter for a variety of system parameters. The IMC three-axis testbed is utilized to simulate an incoming beam in inertial space. Results demonstrate that both mechanical and electronic IMC meet the requirements of image stabilization for space-based observation at submicroradian-jitter levels. Currently available technology may be employed to implement IMC systems.

  18. Software For Calibration Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce

    1994-01-01

    POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.

  19. Large-scale collision cross-section profiling on a travelling wave ion mobility mass spectrometer

    PubMed Central

    Lietz, Christopher B.; Yu, Qing; Li, Lingjun

    2014-01-01

    Ion mobility (IM) is a gas-phase electrophoretic method that separates ions according to charge and ion-neutral collision cross-section (CCS). Herein, we attempt to apply a travelling wave (TW) IM polyalanine calibration method to shotgun proteomics and create a large peptide CCS database. Mass spectrometry methods that utilize IM, such as HDMSE, often use high transmission voltages for sensitive analysis. However, polyalanine calibration has only been demonstrated with low voltage transmission used to prevent gas-phase activation. If polyalanine ions change conformation under higher transmission voltages used for HDMSE, the calibration may no longer be valid. Thus, we aimed to characterize the accuracy of calibration and CCS measurement under high transmission voltages on a TW IM instrument using the polyalanine calibration method and found that the additional error was not significant. We also evaluated the potential error introduced by liquid chromatography (LC)-HDMSE analysis, and found it to be insignificant as well, validating the calibration method. Finally, we demonstrated the utility of building a large-population peptide CCS database by investigating the effects of terminal lysine position, via LysC or LysN digestion, on the formation of two structural sub-families formed by triply charged ions. PMID:24845359

  20. Measurement of steep aspheric surfaces using improved two-wavelength phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiong; Wang, Shaopu; Hu, Yao; Hao, Qun

    2017-10-01

    Optical components with aspheric surfaces can improve the imaging quality of optical systems, and also provide extra advantages such as lighter weight, smaller volume and simper structure. In order to satisfy these performance requirements, the surface error of aspheric surfaces, especially high departure aspheric surfaces must be measured accurately and conveniently. The major obstacle of traditional null-interferometry for aspheric surface under test is that specific and complex null optics need to be designed to fully compensate for the normal aberration of the aspheric surface under test. However, non-null interferometry partially compensating for the aspheric normal aberration can test aspheric surfaces without specific null optics. In this work, a novel non-null test approach of measuring the deviation between aspheric surfaces and the best reference sphere by using improved two-wavelength phase shifting interferometer is described. With the help of the calibration based on reverse iteration optimization, we can effectively remove the retrace error and thus improve the accuracy. Simulation results demonstrate that this method can measure the aspheric surface with the departure of over tens of microns from the best reference sphere, which introduces approximately 500λ of wavefront aberration at the detector.

  1. Self-calibration method without joint iteration for distributed small satellite SAR systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan

    2013-12-01

    The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.

  2. Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother.

    PubMed

    Zhang, Qiuzhao; Yang, Wei; Zhang, Shubi; Liu, Xin

    2018-01-12

    Global Navigation Satellite System (GNSS) carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD) processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS) carrier phase data. The BeiDou navigation satellite System (BDS) multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF) and Rauch-Tung-Striebel Smoother (RTSS) was introduced to extract the multipath models from single difference (SD) residuals with traditional sidereal filter (SF). Wavelet filter and Empirical mode decomposition (EMD) were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U) components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.

  3. Airplane wing vibrations due to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Pastel, R. L.; Caruthers, J. E.; Frost, W.

    1981-01-01

    The magnitude of error introduced due to wing vibration when measuring atmospheric turbulence with a wind probe mounted at the wing tip was studied. It was also determined whether accelerometers mounted on the wing tip are needed to correct this error. A spectrum analysis approach is used to determine the error. Estimates of the B-57 wing characteristics are used to simulate the airplane wing, and von Karman's cross spectrum function is used to simulate atmospheric turbulence. It was found that wing vibration introduces large error in measured spectra of turbulence in the frequency's range close to the natural frequencies of the wing.

  4. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  5. Discretization vs. Rounding Error in Euler's Method

    ERIC Educational Resources Information Center

    Borges, Carlos F.

    2011-01-01

    Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…

  6. Strategies for Reduced-Order Models in Uncertainty Quantification of Complex Turbulent Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Qi, Di

    Turbulent dynamical systems are ubiquitous in science and engineering. Uncertainty quantification (UQ) in turbulent dynamical systems is a grand challenge where the goal is to obtain statistical estimates for key physical quantities. In the development of a proper UQ scheme for systems characterized by both a high-dimensional phase space and a large number of instabilities, significant model errors compared with the true natural signal are always unavoidable due to both the imperfect understanding of the underlying physical processes and the limited computational resources available. One central issue in contemporary research is the development of a systematic methodology for reduced order models that can recover the crucial features both with model fidelity in statistical equilibrium and with model sensitivity in response to perturbations. In the first part, we discuss a general mathematical framework to construct statistically accurate reduced-order models that have skill in capturing the statistical variability in the principal directions of a general class of complex systems with quadratic nonlinearity. A systematic hierarchy of simple statistical closure schemes, which are built through new global statistical energy conservation principles combined with statistical equilibrium fidelity, are designed and tested for UQ of these problems. Second, the capacity of imperfect low-order stochastic approximations to model extreme events in a passive scalar field advected by turbulent flows is investigated. The effects in complicated flow systems are considered including strong nonlinear and non-Gaussian interactions, and much simpler and cheaper imperfect models with model error are constructed to capture the crucial statistical features in the stationary tracer field. Several mathematical ideas are introduced to improve the prediction skill of the imperfect reduced-order models. Most importantly, empirical information theory and statistical linear response theory are applied in the training phase for calibrating model errors to achieve optimal imperfect model parameters; and total statistical energy dynamics are introduced to improve the model sensitivity in the prediction phase especially when strong external perturbations are exerted. The validity of reduced-order models for predicting statistical responses and intermittency is demonstrated on a series of instructive models with increasing complexity, including the stochastic triad model, the Lorenz '96 model, and models for barotropic and baroclinic turbulence. The skillful low-order modeling methods developed here should also be useful for other applications such as efficient algorithms for data assimilation.

  7. Motion-induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry.

    PubMed

    Li, Beiwen; Liu, Ziping; Zhang, Song

    2016-10-03

    We propose a hybrid computational framework to reduce motion-induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion-induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.

  8. Eliminating US hospital medical errors.

    PubMed

    Kumar, Sameer; Steinebach, Marc

    2008-01-01

    Healthcare costs in the USA have continued to rise steadily since the 1980s. Medical errors are one of the major causes of deaths and injuries of thousands of patients every year, contributing to soaring healthcare costs. The purpose of this study is to examine what has been done to deal with the medical-error problem in the last two decades and present a closed-loop mistake-proof operation system for surgery processes that would likely eliminate preventable medical errors. The design method used is a combination of creating a service blueprint, implementing the six sigma DMAIC cycle, developing cause-and-effect diagrams as well as devising poka-yokes in order to develop a robust surgery operation process for a typical US hospital. In the improve phase of the six sigma DMAIC cycle, a number of poka-yoke techniques are introduced to prevent typical medical errors (identified through cause-and-effect diagrams) that may occur in surgery operation processes in US hospitals. It is the authors' assertion that implementing the new service blueprint along with the poka-yokes, will likely result in the current medical error rate to significantly improve to the six-sigma level. Additionally, designing as many redundancies as possible in the delivery of care will help reduce medical errors. Primary healthcare providers should strongly consider investing in adequate doctor and nurse staffing, and improving their education related to the quality of service delivery to minimize clinical errors. This will lead to an increase in higher fixed costs, especially in the shorter time frame. This paper focuses additional attention needed to make a sound technical and business case for implementing six sigma tools to eliminate medical errors that will enable hospital managers to increase their hospital's profitability in the long run and also ensure patient safety.

  9. Effect of initial phase on error in electron energy obtained using paraxial approximation for a focused laser pulse in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kunwar Pal, E-mail: k-psingh@yahoo.com; Department of Physics, Shri Venkateshwara University, Gajraula, Amroha, Uttar Pradesh 244236; Arya, Rashmi

    2015-09-14

    We have investigated the effect of initial phase on error in electron energy obtained using paraxial approximation to study electron acceleration by a focused laser pulse in vacuum using a three dimensional test-particle simulation code. The error is obtained by comparing the energy of the electron for paraxial approximation and seventh-order correction description of the fields of Gaussian laser. The paraxial approximation predicts wrong laser divergence and wrong electron escape time from the pulse which leads to prediction of higher energy. The error shows strong phase dependence for the electrons lying along the axis of the laser for linearly polarizedmore » laser pulse. The relative error may be significant for some specific values of initial phase even at moderate values of laser spot sizes. The error does not show initial phase dependence for a circularly laser pulse.« less

  10. Research on calibration error of carrier phase against antenna arraying

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Hou, Xiaomin

    2016-11-01

    It is the technical difficulty of uplink antenna arraying that signals from various quarters can not be automatically aligned at the target in deep space. The size of the far-field power combining gain is directly determined by the accuracy of carrier phase calibration. It is necessary to analyze the entire arraying system in order to improve the accuracy of the phase calibration. This paper analyzes the factors affecting the calibration error of carrier phase of uplink antenna arraying system including the error of phase measurement and equipment, the error of the uplink channel phase shift, the position error of ground antenna, calibration receiver and target spacecraft, the error of the atmospheric turbulence disturbance. Discuss the spatial and temporal autocorrelation model of atmospheric disturbances. Each antenna of the uplink antenna arraying is no common reference signal for continuous calibration. So it must be a system of the periodic calibration. Calibration is refered to communication of one or more spacecrafts in a certain period. Because the deep space targets are not automatically aligned to multiplexing received signal. Therefore the aligned signal should be done in advance on the ground. Data is shown that the error can be controlled within the range of demand by the use of existing technology to meet the accuracy of carrier phase calibration. The total error can be controlled within a reasonable range.

  11. Quantitative measurement of thin phase objects: comparison of speckle deflectometry and defocus-variant lateral shear interferometry.

    PubMed

    Sjodahl, Mikael; Amer, Eynas

    2018-05-10

    The two techniques of lateral shear interferometry and speckle deflectometry are analyzed in a common optical system for their ability to measure phase gradient fields of a thin phase object. The optical system is designed to introduce a shear in the frequency domain of a telecentric imaging system that gives a sensitivity of both techniques in proportion to the defocus introduced. In this implementation, both techniques successfully measure the horizontal component of the phase gradient field. The response of both techniques scales linearly with the defocus distance, and the precision is comparative, with a random error in the order of a few rad/mm. It is further concluded that the precision of the two techniques relates to the transverse speckle size in opposite ways. While a large spatial coherence width, and correspondingly a large lateral speckle size, makes lateral shear interferometry less susceptible to defocus, a large lateral speckle size is detrimental for speckle correlation. The susceptibility for the magnitude of the defocus is larger for the lateral shear interferometry technique as compared to the speckle deflectometry technique. The two techniques provide the same type of information; however, there are a few fundamental differences. Lateral shear interferometry relies on a special hardware configuration in which the shear angle is intrinsically integrated into the system. The design of a system sensitive to both in-plane phase gradient components requires a more complex configuration and is not considered in this paper. Speckle deflectometry, on the other hand, requires no special hardware, and both components of the phase gradient field are given directly from the measured speckle deformation field.

  12. Technique for Radiometer and Antenna Array Calibration - TRAAC

    NASA Technical Reports Server (NTRS)

    Meyer, Paul; Sims, William; Varnavas, Kosta; McCracken, Jeff; Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Richeson. James

    2012-01-01

    Highly sensitive receivers are used to detect minute amounts of emitted electromagnetic energy. Calibration of these receivers is vital to the accuracy of the measurements. Traditional calibration techniques depend on calibration reference internal to the receivers as reference for the calibration of the observed electromagnetic energy. Such methods can only calibrate errors in measurement introduced by the receiver only. The disadvantage of these existing methods is that they cannot account for errors introduced by devices, such as antennas, used for capturing electromagnetic radiation. This severely limits the types of antennas that can be used to make measurements with a high degree of accuracy. Complex antenna systems, such as electronically steerable antennas (also known as phased arrays), while offering potentially significant advantages, suffer from a lack of a reliable and accurate calibration technique. The proximity of antenna elements in an array results in interaction between the electromagnetic fields radiated (or received) by the individual elements. This phenomenon is called mutual coupling. The new calibration method uses a known noise source as a calibration load to determine the instantaneous characteristics of the antenna. The noise source is emitted from one element of the antenna array and received by all the other elements due to mutual coupling. This received noise is used as a calibration standard to monitor the stability of the antenna electronics.

  13. Explicit approximations to estimate the perturbative diffusivity in the presence of convectivity and damping. I. Semi-infinite slab approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkel, M. van; Fellow of the Japan Society for the Promotion of Science; FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Association EURATOM- FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein

    2014-11-15

    In this paper, a number of new approximations are introduced to estimate the perturbative diffusivity (χ), convectivity (V), and damping (τ) in cylindrical geometry. For this purpose, the harmonic components of heat waves induced by localized deposition of modulated power are used. The approximations are based on semi-infinite slab approximations of the heat equation. The main result is the approximation of χ under the influence of V and τ based on the phase of two harmonics making the estimate less sensitive to calibration errors. To understand why the slab approximations can estimate χ well in cylindrical geometry, the relationships betweenmore » heat transport models in slab and cylindrical geometry are studied. In addition, the relationship between amplitude and phase with respect to their derivatives, used to estimate χ, is discussed. The results are presented in terms of the relative error for the different derived approximations for different values of frequency, transport coefficients, and dimensionless radius. The approximations show a significant region in which χ, V, and τ can be estimated well, but also regions in which the error is large. Also, it is shown that some compensation is necessary to estimate V and τ in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions are also discussed showing that estimating realistic values for V and τ based on infinite domains will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (outward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain, respectively, will be treated.« less

  14. Higher-order differential phase shift keyed modulation

    NASA Astrophysics Data System (ADS)

    Vanalphen, Deborah K.; Lindsey, William C.

    1994-02-01

    Advanced modulation/demodulation techniques which are robust in the presence of phase and frequency uncertainties continue to be of interest to communication engineers. We are particularly interested in techniques which accommodate slow channel phase and frequency variations with minimal performance degradation and which alleviate the need for phase and frequency tracking loops in the receiver. We investigate the performance sensitivity to frequency offsets of a modulation technique known as binary Double Differential Phase Shift Keying (DDPSK) and compare it to that of classical binary Differential Phase Shift Keying (DPSK). We also generalize our analytical results to include n(sup -th) order, M-ary DPSK. The DDPSK (n = 2) technique was first introduced in the Russian literature circa 1972 and was studied more thoroughly in the late 1970's by Pent and Okunev. Here, we present an expression for the symbol error probability that is easy to derive and to evaluate numerically. We also present graphical results that establish when, as a function of signal energy-to-noise ratio and normalized frequency offset, binary DDPSK is preferable to binary DPSK with respect to performance in additive white Gaussian noise. Finally, we provide insight into the optimum receiver from a detection theory viewpoint.

  15. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.

  16. Blind phase error suppression for color-encoded digital fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Ma, S.; Zhu, R.; Quan, C.; Li, B.; Tay, C. J.; Chen, L.

    2012-04-01

    Color-encoded digital fringe projection profilometry (CDFPP) has the advantage of fast speed, non-contact and full-field testing. It is one of the most important dynamic three-dimensional (3D) profile measurement techniques. However, due to factors such as color cross-talk and gamma distortion of electro-optical devices, phase errors arise when conventional phase-shifting algorithms with fixed phase shift values are utilized to retrieve phases. In this paper, a simple and effective blind phase error suppression approach based on isotropic n-dimensional fringe pattern normalization (INFPN) and carrier squeezing interferometry (CSI) is proposed. It does not require pre-calibration for the gamma and color-coupling coefficients or the phase shift values. Simulation and experimental works show that our proposed approach is able to effectively suppress phase errors and achieve accurate measurement results in CDFPP.

  17. Subaperture metrology technologies extend capabilities in optics manufacturing

    NASA Astrophysics Data System (ADS)

    Tricard, Marc; Forbes, Greg; Murphy, Paul

    2005-10-01

    Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.

  18. 3D measurement using combined Gray code and dual-frequency phase-shifting approach

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Liu, Xin

    2018-04-01

    The combined Gray code and phase-shifting approach is a commonly used 3D measurement technique. In this technique, an error that equals integer multiples of the phase-shifted fringe period, i.e. period jump error, often exists in the absolute analog code, which can lead to gross measurement errors. To overcome this problem, the present paper proposes 3D measurement using a combined Gray code and dual-frequency phase-shifting approach. Based on 3D measurement using the combined Gray code and phase-shifting approach, one set of low-frequency phase-shifted fringe patterns with an odd-numbered multiple of the original phase-shifted fringe period is added. Thus, the absolute analog code measured value can be obtained by the combined Gray code and phase-shifting approach, and the low-frequency absolute analog code measured value can also be obtained by adding low-frequency phase-shifted fringe patterns. Then, the corrected absolute analog code measured value can be obtained by correcting the former by the latter, and the period jump errors can be eliminated, resulting in reliable analog code unwrapping. For the proposed approach, we established its measurement model, analyzed its measurement principle, expounded the mechanism of eliminating period jump errors by error analysis, and determined its applicable conditions. Theoretical analysis and experimental results show that the proposed approach can effectively eliminate period jump errors, reliably perform analog code unwrapping, and improve the measurement accuracy.

  19. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zuo, Chao; Tao, Tianyang; Hu, Yan; Zhang, Minliang; Chen, Qian; Gu, Guohua

    2018-04-01

    Phase-shifting profilometry (PSP) is a widely used approach to high-accuracy three-dimensional shape measurements. However, when it comes to moving objects, phase errors induced by the movement often result in severe artifacts even though a high-speed camera is in use. From our observations, there are three kinds of motion artifacts: motion ripples, motion-induced phase unwrapping errors, and motion outliers. We present a novel motion-compensated PSP to remove the artifacts for dynamic measurements of rigid objects. The phase error of motion ripples is analyzed for the N-step phase-shifting algorithm and is compensated using the statistical nature of the fringes. The phase unwrapping errors are corrected exploiting adjacent reliable pixels, and the outliers are removed by comparing the original phase map with a smoothed phase map. Compared with the three-step PSP, our method can improve the accuracy by more than 95% for objects in motion.

  20. Full-order observer for direct torque control of induction motor based on constant V/F control technique.

    PubMed

    Pimkumwong, Narongrit; Wang, Ming-Shyan

    2018-02-01

    This paper presents another control method for the three-phase induction motor that is direct torque control based on constant voltage per frequency control technique. This method uses the magnitude of stator flux and torque errors to generate the stator voltage and phase angle references for controlling the induction motor by using constant voltage per frequency control method. Instead of hysteresis comparators and optimum switching table, the PI controllers and space vector modulation technique are used to reduce torque and stator-flux ripples and achieve constant switching frequency. Moreover, the coordinate transformations are not required. To implement this control method, a full-order observer is used to estimate stator flux and overcome the problems from drift and saturation in using pure integrator. The feedback gains are designed by simple manner to improve the convergence of stator flux estimation, especially in low speed range. Furthermore, the necessary conditions to maintain the stability for feedback gain design are introduced. The simulation and experimental results show accurate and stable operation of the introduced estimator and good dynamic response of the proposed control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Direct phase projection and transcranial focusing of ultrasound for brain therapy.

    PubMed

    Pinton, Gianmarco F; Aubry, Jean-Francois; Tanter, Mickaël

    2012-06-01

    Ultrasound can be used to noninvasively treat the human brain with hyperthermia by focusing through the skull. To obtain an accurate focus, especially at high frequencies (>500 kHz), the phase of the transmitted wave must be modified to correct the aberrations introduced by the patient's individual skull morphology. Currently, three-dimensional finite-difference time-domain simulations are used to model a point source at the target. The outward-propagating wave crosses the measured representation of the human skull and is recorded at the therapy array transducer locations. The signal is then time reversed and experimentally transmitted back to its origin. These simulations are resource intensive and add a significant delay to treatment planning. Ray propagation is computationally efficient because it neglects diffraction and only describes two propagation parameters: the wave's direction and the phase. We propose a minimal method that is based only on the phase. The phase information is projected from the external skull surface to the array locations. This replaces computationally expensive finite-difference computations with an almost instantaneous direct phase projection calculation. For the five human skull samples considered, the phase distribution outside of the skull is shown to vary by less than λ/20 as it propagates over a 5 cm distance and the validity of phase projection is established over these propagation distances. The phase aberration introduced by the skull is characterized and is shown to have a good correspondence with skull morphology. The shape of this aberration is shown to have little variation with propagation distance. The focusing quality with the proposed phase-projection algorithm is shown to be indistinguishable from the gold-standard full finite-difference simulation. In conclusion, a spherical wave that is aberrated by the skull has a phase propagation that can be accurately described as radial, even after it has been distorted. By combining finite-difference simulations with a phase-projection algorithm, the time required for treatment planning is significantly reduced. The correlation length of the phase is used to validate the algorithm and it can also be used to provide guiding parameters for clinical array transducer design in terms of transducer spacing and phase error.

  2. Tilt Error in Cryospheric Surface Radiation Measurements at High Latitudes: A Model Study

    NASA Astrophysics Data System (ADS)

    Bogren, W.; Kylling, A.; Burkhart, J. F.

    2015-12-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250nm to 4500nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60◦, a sensor tilted by 1, 3, and 5◦ can respectively introduce up to 2.6, 7.7, and 12.8% error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.

  3. Design of two-channel filter bank using nature inspired optimization based fractional derivative constraints.

    PubMed

    Kuldeep, B; Singh, V K; Kumar, A; Singh, G K

    2015-01-01

    In this article, a novel approach for 2-channel linear phase quadrature mirror filter (QMF) bank design based on a hybrid of gradient based optimization and optimization of fractional derivative constraints is introduced. For the purpose of this work, recently proposed nature inspired optimization techniques such as cuckoo search (CS), modified cuckoo search (MCS) and wind driven optimization (WDO) are explored for the design of QMF bank. 2-Channel QMF is also designed with particle swarm optimization (PSO) and artificial bee colony (ABC) nature inspired optimization techniques. The design problem is formulated in frequency domain as sum of L2 norm of error in passband, stopband and transition band at quadrature frequency. The contribution of this work is the novel hybrid combination of gradient based optimization (Lagrange multiplier method) and nature inspired optimization (CS, MCS, WDO, PSO and ABC) and its usage for optimizing the design problem. Performance of the proposed method is evaluated by passband error (ϕp), stopband error (ϕs), transition band error (ϕt), peak reconstruction error (PRE), stopband attenuation (As) and computational time. The design examples illustrate the ingenuity of the proposed method. Results are also compared with the other existing algorithms, and it was found that the proposed method gives best result in terms of peak reconstruction error and transition band error while it is comparable in terms of passband and stopband error. Results show that the proposed method is successful for both lower and higher order 2-channel QMF bank design. A comparative study of various nature inspired optimization techniques is also presented, and the study singles out CS as a best QMF optimization technique. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Recce imagery compression options

    NASA Astrophysics Data System (ADS)

    Healy, Donald J.

    1995-09-01

    The errors introduced into reconstructed RECCE imagery by ATARS DPCM compression are compared to those introduced by the more modern DCT-based JPEG compression algorithm. For storage applications in which uncompressed sensor data is available JPEG provides better mean-square-error performance while also providing more flexibility in the selection of compressed data rates. When ATARS DPCM compression has already been performed, lossless encoding techniques may be applied to the DPCM deltas to achieve further compression without introducing additional errors. The abilities of several lossless compression algorithms including Huffman, Lempel-Ziv, Lempel-Ziv-Welch, and Rice encoding to provide this additional compression of ATARS DPCM deltas are compared. It is shown that the amount of noise in the original imagery significantly affects these comparisons.

  5. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  6. Considerations for analysis of time-to-event outcomes measured with error: Bias and correction with SIMEX.

    PubMed

    Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A

    2018-04-15

    For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  8. Vibrational spectra from atomic fluctuations in dynamics simulations. I. Theory, limitations, and a sample application

    NASA Astrophysics Data System (ADS)

    Schmitz, Matthias; Tavan, Paul

    2004-12-01

    Hybrid molecular dynamics (MD) simulations, which combine density functional theory (DFT) descriptions of a molecule with a molecular mechanics (MM) modeling of its solvent environment, have opened the way towards accurate computations of solvation effects in the vibrational spectra of molecules. Recently, Wheeler et al. [ChemPhysChem 4, 382 (2002)] have suggested to compute these spectra from DFT/MM-MD trajectories by diagonalizing the covariance matrix of atomic fluctuations. This so-called principal mode analysis (PMA) allegedly can replace the well-established approaches, which are based on Fourier transform methods or on conventional normal mode analyses. By scrutinizing and revising the PMA approach we identify five conditions, which must be guaranteed if PMA is supposed to render exact vibrational frequencies. Besides specific choices of (a) coordinates and (b) coordinate systems, these conditions cover (c) a harmonic intramolecular potential, (d) a complete thermal equilibrium within the molecule, and (e) a molecular Hamiltonian independent of time. However, the PMA conditions [(c)-(d)] and [(c)-(e)] are generally violated in gas phase DFT-MD and liquid phase DFT/MM-MD trajectories, respectively. Based on a series of simple analytical model calculations and on the analysis of MD trajectories calculated for the formaldehyde molecule in the gas phase (DFT) and in liquid water (DFT/MM) we show that in both phases the violation of condition (d) can cause huge errors in PMA frequency computations, whereas the inevitable violations of conditions (c) and (e), the latter being generic to the liquid phase, imply systematic and sizable underestimates of the vibrational frequencies by PMA. We demonstrate that the huge errors, which are caused by an incomplete thermal equilibrium violating (d), can be avoided if one introduces mode-specific temperatures Tj and calculates the frequencies from a "generalized virial" (GV) expression instead from PMA. Concerning ways to additionally remove the remaining errors, which GV still shares with PMA, we refer to Paper II of this work [M. Schmitz and P. Tavan, J. Chem. Phys. 121, 12247 (2004)].

  9. Large radius of curvature measurement based on the evaluation of interferogram-quality metric in non-null interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Zhongming; Dou, Jiantai; Du, Jinyu; Gao, Zhishan

    2018-03-01

    Non-null interferometry could use to measure the radius of curvature (ROC), we have presented a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method for large ROC measurement (Yang et al., 2016). In this paper, we propose a large ROC measurement method based on the evaluation of the interferogram-quality metric by the non-null interferometer. With the multi-configuration model of the non-null interferometric system in ZEMAX, the retrace errors and the phase introduced by the test surface are reconstructed. The interferogram-quality metric is obtained by the normalized phase-shifted testing Newton rings with the spherical surface model in the non-null interferometric system. The radius curvature of the test spherical surface can be obtained until the minimum of the interferogram-quality metric is found. Simulations and experimental results are verified the feasibility of our proposed method. For a spherical mirror with a ROC of 41,400 mm, the measurement accuracy is better than 0.13%.

  10. History of the preanalytical phase: a personal view

    PubMed Central

    Guder, Walter G.

    2014-01-01

    In the 70ies of the last century, ther term “preanalytical phase” was introduced in the literature. This term describes all actions and aspects of the “brain to brain circle” of the medical laboratory diagnostic procedure happening before the analytical phase. The author describes his personal experiences in the early seventies and the following history of increasing awareness of this phase as the main cause of “laboratory errors”. This includes the definitions of influence and interference factors as well as the first publications in book, internet, CD-Rom and recent App form over the past 40 years. In addition, a short summary of previous developments as prerequesits of laboratory diagnostic actions is described from the middle age matula for urine collection to the blood collection tubes, anticoagulants and centrifuges. The short review gives a personal view on the possible causes of missing awareness of preanalytical causes of error and future aspects of new techniques in regulation of requests to introduction of quality assurance programs for preanalytical factors. PMID:24627712

  11. HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.

    PubMed

    Kim, J; Kasabov, N

    1999-11-01

    This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.

  12. Prevalence of Pre-Analytical Errors in Clinical Chemistry Diagnostic Labs in Sulaimani City of Iraqi Kurdistan

    PubMed Central

    2017-01-01

    Background Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical phase includes patient preparation, specimen transportation, specimen collection and storage. In the present study, we report the first comprehensive assessment of the frequency and types of pre-analytical errors at the Sulaimani diagnostic labs in Iraqi Kurdistan. Materials and Methods Over 2 months, 5500 venous blood samples were observed in 10 public diagnostic labs of Sulaimani City. The percentages of rejected samples and types of sample inappropriateness were evaluated. The percentage of each of the following pre-analytical errors were recorded: delay in sample transportation, clotted samples, expired reagents, hemolyzed samples, samples not on ice, incorrect sample identification, insufficient sample, tube broken in centrifuge, request procedure errors, sample mix-ups, communication conflicts, misinterpreted orders, lipemic samples, contaminated samples and missed physician’s request orders. The difference between the relative frequencies of errors observed in the hospitals considered was tested using a proportional Z test. In particular, the survey aimed to discover whether analytical errors were recorded and examine the types of platforms used in the selected diagnostic labs. Results The analysis showed a high prevalence of improper sample handling during the pre-analytical phase. In appropriate samples, the percentage error was as high as 39%. The major reasons for rejection were hemolyzed samples (9%), incorrect sample identification (8%) and clotted samples (6%). Most quality control schemes at Sulaimani hospitals focus only on the analytical phase, and none of the pre-analytical errors were recorded. Interestingly, none of the labs were internationally accredited; therefore, corrective actions are needed at these hospitals to ensure better health outcomes. Internal and External Quality Assessment Schemes (EQAS) for the pre-analytical phase at Sulaimani clinical laboratories should be implemented at public hospitals. Furthermore, lab personnel, particularly phlebotomists, need continuous training on the importance of sample quality to obtain accurate test results. PMID:28107395

  13. Prevalence of Pre-Analytical Errors in Clinical Chemistry Diagnostic Labs in Sulaimani City of Iraqi Kurdistan.

    PubMed

    Najat, Dereen

    2017-01-01

    Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical phase includes patient preparation, specimen transportation, specimen collection and storage. In the present study, we report the first comprehensive assessment of the frequency and types of pre-analytical errors at the Sulaimani diagnostic labs in Iraqi Kurdistan. Over 2 months, 5500 venous blood samples were observed in 10 public diagnostic labs of Sulaimani City. The percentages of rejected samples and types of sample inappropriateness were evaluated. The percentage of each of the following pre-analytical errors were recorded: delay in sample transportation, clotted samples, expired reagents, hemolyzed samples, samples not on ice, incorrect sample identification, insufficient sample, tube broken in centrifuge, request procedure errors, sample mix-ups, communication conflicts, misinterpreted orders, lipemic samples, contaminated samples and missed physician's request orders. The difference between the relative frequencies of errors observed in the hospitals considered was tested using a proportional Z test. In particular, the survey aimed to discover whether analytical errors were recorded and examine the types of platforms used in the selected diagnostic labs. The analysis showed a high prevalence of improper sample handling during the pre-analytical phase. In appropriate samples, the percentage error was as high as 39%. The major reasons for rejection were hemolyzed samples (9%), incorrect sample identification (8%) and clotted samples (6%). Most quality control schemes at Sulaimani hospitals focus only on the analytical phase, and none of the pre-analytical errors were recorded. Interestingly, none of the labs were internationally accredited; therefore, corrective actions are needed at these hospitals to ensure better health outcomes. Internal and External Quality Assessment Schemes (EQAS) for the pre-analytical phase at Sulaimani clinical laboratories should be implemented at public hospitals. Furthermore, lab personnel, particularly phlebotomists, need continuous training on the importance of sample quality to obtain accurate test results.

  14. Theta EEG dynamics of the error-related negativity.

    PubMed

    Trujillo, Logan T; Allen, John J B

    2007-03-01

    The error-related negativity (ERN) is a response-locked brain potential (ERP) occurring 80-100ms following response errors. This report contrasts three views of the genesis of the ERN, testing the classic view that time-locked phasic bursts give rise to the ERN against the view that the ERN arises from a pure phase-resetting of ongoing theta (4-7Hz) EEG activity and the view that the ERN is generated - at least in part - by a phase-resetting and amplitude enhancement of ongoing theta EEG activity. Time-domain ERP analyses were augmented with time-frequency investigations of phase-locked and non-phase-locked spectral power, and inter-trial phase coherence (ITPC) computed from individual EEG trials, examining time courses and scalp topographies. Simulations based on the assumptions of the classic, pure phase-resetting, and phase-resetting plus enhancement views, using parameters from each subject's empirical data, were used to contrast the time-frequency findings that could be expected if one or more of these hypotheses adequately modeled the data. Error responses produced larger amplitude activity than correct responses in time-domain ERPs immediately following responses, as expected. Time-frequency analyses revealed that significant error-related post-response increases in total spectral power (phase- and non-phase-locked), phase-locked power, and ITPC were primarily restricted to the theta range, with this effect located over midfrontocentral sites, with a temporal distribution from approximately 150-200ms prior to the button press and persisting up to 400ms post-button press. The increase in non-phase-locked power (total power minus phase-locked power) was larger than phase-locked power, indicating that the bulk of the theta event-related dynamics were not phase-locked to response. Results of the simulations revealed a good fit for data simulated according to the phase-locking with amplitude enhancement perspective, and a poor fit for data simulated according to the classic view and the pure phase-resetting view. Error responses produce not only phase-locked increases in theta EEG activity, but also increases in non-phase-locked theta, both of which share a similar topography. The findings are thus consistent with the notion advanced by Luu et al. [Luu P, Tucker DM, Makeig S. Frontal midline theta and the error-related negativity; neurophysiological mechanisms of action regulation. Clin Neurophysiol 2004;115:1821-35] that the ERN emerges, at least in part, from a phase-resetting and phase-locking of ongoing theta-band activity, in the context of a general increase in theta power following errors.

  15. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve

    2016-03-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.

  16. Full-Field Calibration of Color Camera Chromatic Aberration using Absolute Phase Maps.

    PubMed

    Liu, Xiaohong; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2017-05-06

    The refractive index of a lens varies for different wavelengths of light, and thus the same incident light with different wavelengths has different outgoing light. This characteristic of lenses causes images captured by a color camera to display chromatic aberration (CA), which seriously reduces image quality. Based on an analysis of the distribution of CA, a full-field calibration method based on absolute phase maps is proposed in this paper. Red, green, and blue closed sinusoidal fringe patterns are generated, consecutively displayed on an LCD (liquid crystal display), and captured by a color camera from the front viewpoint. The phase information of each color fringe is obtained using a four-step phase-shifting algorithm and optimum fringe number selection method. CA causes the unwrapped phase of the three channels to differ. These pixel deviations can be computed by comparing the unwrapped phase data of the red, blue, and green channels in polar coordinates. CA calibration is accomplished in Cartesian coordinates. The systematic errors introduced by the LCD are analyzed and corrected. Simulated results show the validity of the proposed method and experimental results demonstrate that the proposed full-field calibration method based on absolute phase maps will be useful for practical software-based CA calibration.

  17. Metrics for Business Process Models

    NASA Astrophysics Data System (ADS)

    Mendling, Jan

    Up until now, there has been little research on why people introduce errors in real-world business process models. In a more general context, Simon [404] points to the limitations of cognitive capabilities and concludes that humans act rationally only to a certain extent. Concerning modeling errors, this argument would imply that human modelers lose track of the interrelations of large and complex models due to their limited cognitive capabilities and introduce errors that they would not insert in a small model. A recent study by Mendling et al. [275] explores in how far certain complexity metrics of business process models have the potential to serve as error determinants. The authors conclude that complexity indeed appears to have an impact on error probability. Before we can test such a hypothesis in a more general setting, we have to establish an understanding of how we can define determinants that drive error probability and how we can measure them.

  18. Broadband Achromatic Phase Shifter for a Nulling Interferometer

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2011-01-01

    Nulling interferometry is a technique for imaging exoplanets in which light from the parent star is suppressed using destructive interference. Light from the star is divided into two beams and a phase shift of radians is introduced into one of the beams. When the beams are recombined, they destructively interfere to produce a deep null. For monochromatic light, this is implemented by introducing an optical path difference (OPD) between the two beams equal to lambda/2, where lambda is the wavelength of the light. For broadband light, however, a different phase shift will be introduced at each wavelength and the two beams will not effectively null when recombined. Various techniques have been devised to introduce an achromatic phase shift a phase shift that is uniform across a particular bandwidth. One popular technique is to use a series of dispersive elements to introduce a wavelength-dependent optical path in one or both of the arms of the interferometer. By intelligently choosing the number, material and thickness of a series of glass plates, a nearly uniform, arbitrary phase shift can be introduced between two arms of an interferometer. There are several constraints that make choosing the number, type, and thickness of materials a difficult problem, such as the size of the bandwidth to be nulled. Several solutions have been found for bandwidths on the order of 20 to 30 percent (Delta(lambda)/lambda(sub c)) in the mid-infrared region. However, uniform phase shifts over a larger bandwidth in the visible regime between 480 to 960 nm (67 percent) remain difficult to obtain at the tolerances necessary for exoplanet detection. A configuration of 10 dispersive glass plates was developed to be used as an achromatic phase shifter in nulling interferometry. Five glass plates were placed in each arm of the interferometer and an additional vacuum distance was also included in the second arm of the interferometer. This configuration creates a phase shift of pi radians with an average error of 5.97 x 10(exp -8) radians and standard deviation of 3.07 x 10(exp -4) radians. To reduce ghost reflections and interference effects from neighboring elements, the glass plates are tilted such that the beam does not strike each plate at normal incidence. Reflections will therefore walk out of the system and not contribute to the intensity when the beams are recombined. Tilting the glass plates, however, introduces several other problems that must be mitigated: (1) the polarization of a beam changes when refracted at an interface at non-normal incidence; (2) the beam experiences lateral chromatic spread as it traverses multiple glass plates; (3) at each surface, wavelength- dependent intensity losses will occur due to reflection. For a fixed angle of incidence, each of these effects must be balanced between each arm of the interferometer in order to ensure a deep null. The solution was found using a nonlinear optimization routine that minimized an objective function relating phase shift, intensity difference, chromatic beam spread, and polarization difference to the desired parameters: glass plate material and thickness. In addition to providing a uniform, broadband phase shift, the configuration achieves an average difference in intensity transmission between the two arms of the interferometer of 0.016 percent with a standard deviation of 3.64 x 10(exp -4) percent, an average difference in polarization between the two arms of the interferometer of 5.47 x 10(exp -5) percent with a standard deviation of 1.57 x 10(exp -6) percent, and an average chromatic beam shift between the two arms of the interferometer of -47.53 microns with a wavelength-by-wavelength spread of 0.389 microns.

  19. Optical coherence refractometry.

    PubMed

    Tomlins, Peter H; Woolliams, Peter; Hart, Christian; Beaumont, Andrew; Tedaldi, Matthew

    2008-10-01

    We introduce a novel approach to refractometry using a low coherence interferometer at multiple angles of incidence. We show that for plane parallel samples it is possible to measure their phase refractive index rather than the group index that is usually measured by interferometric methods. This is a significant development because it enables bulk refractive index measurement of scattering and soft samples, not relying on surface measurements that can be prone to error. Our technique is also noncontact and compatible with in situ refractive index measurements. Here, we demonstrate this new technique on a pure silica test piece and a highly scattering resin slab, comparing the results with standard critical angle refractometry.

  20. Error Control with Perfectly Matched Layer or Damping Layer Treatments for Computational Aeroacoustics with Jet Flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2009-01-01

    In this paper we show by means of numerical experiments that the error introduced in a numerical domain because of a Perfectly Matched Layer or Damping Layer boundary treatment can be controlled. These experimental demonstrations are for acoustic propagation with the Linearized Euler Equations with both uniform and steady jet flows. The propagating signal is driven by a time harmonic pressure source. Combinations of Perfectly Matched and Damping Layers are used with different damping profiles. These layer and profile combinations allow the relative error introduced by a layer to be kept as small as desired, in principle. Tradeoffs between error and cost are explored.

  1. Reliable absolute analog code retrieval approach for 3D measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun

    2017-11-01

    The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.

  2. Phase shifts in I = 2 ππ-scattering from two lattice approaches

    NASA Astrophysics Data System (ADS)

    Kurth, T.; Ishii, N.; Doi, T.; Aoki, S.; Hatsuda, T.

    2013-12-01

    We present a lattice QCD study of the phase shift of I = 2 ππ scattering on the basis of two different approaches: the standard finite volume approach by Lüscher and the recently introduced HAL QCD potential method. Quenched QCD simulations are performed on lattices with extents N s = 16 , 24 , 32 , 48 and N t = 128 as well as lattice spacing a ~ 0 .115 fm and a pion mass of m π ~ 940 MeV. The phase shift and the scattering length are calculated in these two methods. In the potential method, the error is dominated by the systematic uncertainty associated with the violation of rotational symmetry due to finite lattice spacing. In Lüscher's approach, such systematic uncertainty is difficult to be evaluated and thus is not included in this work. A systematic uncertainty attributed to the quenched approximation, however, is not evaluated in both methods. In case of the potential method, the phase shift can be calculated for arbitrary energies below the inelastic threshold. The energy dependence of the phase shift is also obtained from Lüscher's method using different volumes and/or nonrest-frame extension of it. The results are found to agree well with the potential method.

  3. Impact of electronic chemotherapy order forms on prescribing errors at an urban medical center: results from an interrupted time-series analysis.

    PubMed

    Elsaid, K; Truong, T; Monckeberg, M; McCarthy, H; Butera, J; Collins, C

    2013-12-01

    To evaluate the impact of electronic standardized chemotherapy templates on incidence and types of prescribing errors. A quasi-experimental interrupted time series with segmented regression. A 700-bed multidisciplinary tertiary care hospital with an ambulatory cancer center. A multidisciplinary team including oncology physicians, nurses, pharmacists and information technologists. Standardized, regimen-specific, chemotherapy prescribing forms were developed and implemented over a 32-month period. Trend of monthly prevented prescribing errors per 1000 chemotherapy doses during the pre-implementation phase (30 months), immediate change in the error rate from pre-implementation to implementation and trend of errors during the implementation phase. Errors were analyzed according to their types: errors in communication or transcription, errors in dosing calculation and errors in regimen frequency or treatment duration. Relative risk (RR) of errors in the post-implementation phase (28 months) compared with the pre-implementation phase was computed with 95% confidence interval (CI). Baseline monthly error rate was stable with 16.7 prevented errors per 1000 chemotherapy doses. A 30% reduction in prescribing errors was observed with initiating the intervention. With implementation, a negative change in the slope of prescribing errors was observed (coefficient = -0.338; 95% CI: -0.612 to -0.064). The estimated RR of transcription errors was 0.74; 95% CI (0.59-0.92). The estimated RR of dosing calculation errors was 0.06; 95% CI (0.03-0.10). The estimated RR of chemotherapy frequency/duration errors was 0.51; 95% CI (0.42-0.62). Implementing standardized chemotherapy-prescribing templates significantly reduced all types of prescribing errors and improved chemotherapy safety.

  4. SU-D-201-01: A Multi-Institutional Study Quantifying the Impact of Simulated Linear Accelerator VMAT Errors for Nasopharynx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, E; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW; Ingham Institute for Applied Medical Research, Sydney, NSW

    Purpose: To quantify the impact of differing magnitudes of simulated linear accelerator errors on the dose to the target volume and organs at risk for nasopharynx VMAT. Methods: Ten nasopharynx cancer patients were retrospectively replanned twice with one full arc VMAT by two institutions. Treatment uncertainties (gantry angle and collimator in degrees, MLC field size and MLC shifts in mm) were introduced into these plans at increments of 5,2,1,−1,−2 and −5. This was completed using an in-house Python script within Pinnacle3 and analysed using 3DVH and MatLab. The mean and maximum dose were calculated for the Planning Target Volume (PTV1),more » parotids, brainstem, and spinal cord and then compared to the original baseline plan. The D1cc was also calculated for the spinal cord and brainstem. Patient average results were compared across institutions. Results: Introduced gantry angle errors had the smallest effect of dose, no tolerances were exceeded for one institution, and the second institutions VMAT plans were only exceeded for gantry angle of ±5° affecting different sided parotids by 14–18%. PTV1, brainstem and spinal cord tolerances were exceeded for collimator angles of ±5 degrees, MLC shifts and MLC field sizes of ±1 and beyond, at the first institution. At the second institution, sensitivity to errors was marginally higher for some errors including the collimator error producing doses exceeding tolerances above ±2 degrees, and marginally lower with tolerances exceeded above MLC shifts of ±2. The largest differences occur with MLC field sizes, with both institutions reporting exceeded tolerances, for all introduced errors (±1 and beyond). Conclusion: The plan robustness for VMAT nasopharynx plans has been demonstrated. Gantry errors have the least impact on patient doses, however MLC field sizes exceed tolerances even with relatively low introduced errors and also produce the largest errors. This was consistent across both departments. The authors acknowledge funding support from the NSW Cancer Council.« less

  5. A MIMO radar quadrature and multi-channel amplitude-phase error combined correction method based on cross-correlation

    NASA Astrophysics Data System (ADS)

    Yun, Lingtong; Zhao, Hongzhong; Du, Mengyuan

    2018-04-01

    Quadrature and multi-channel amplitude-phase error have to be compensated in the I/Q quadrature sampling and signal through multi-channel. A new method that it doesn't need filter and standard signal is presented in this paper. And it can combined estimate quadrature and multi-channel amplitude-phase error. The method uses cross-correlation and amplitude ratio between the signal to estimate the two amplitude-phase errors simply and effectively. And the advantages of this method are verified by computer simulation. Finally, the superiority of the method is also verified by measure data of outfield experiments.

  6. A Non-Local, Energy-Optimized Kernel: Recovering Second-Order Exchange and Beyond in Extended Systems

    NASA Astrophysics Data System (ADS)

    Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn

    The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.

  7. The Lung Image Database Consortium (LIDC): ensuring the integrity of expert-defined "truth".

    PubMed

    Armato, Samuel G; Roberts, Rachael Y; McNitt-Gray, Michael F; Meyer, Charles R; Reeves, Anthony P; McLennan, Geoffrey; Engelmann, Roger M; Bland, Peyton H; Aberle, Denise R; Kazerooni, Ella A; MacMahon, Heber; van Beek, Edwin J R; Yankelevitz, David; Croft, Barbara Y; Clarke, Laurence P

    2007-12-01

    Computer-aided diagnostic (CAD) systems fundamentally require the opinions of expert human observers to establish "truth" for algorithm development, training, and testing. The integrity of this "truth," however, must be established before investigators commit to this "gold standard" as the basis for their research. The purpose of this study was to develop a quality assurance (QA) model as an integral component of the "truth" collection process concerning the location and spatial extent of lung nodules observed on computed tomography (CT) scans to be included in the Lung Image Database Consortium (LIDC) public database. One hundred CT scans were interpreted by four radiologists through a two-phase process. For the first of these reads (the "blinded read phase"), radiologists independently identified and annotated lesions, assigning each to one of three categories: "nodule >or=3 mm," "nodule <3 mm," or "non-nodule >or=3 mm." For the second read (the "unblinded read phase"), the same radiologists independently evaluated the same CT scans, but with all of the annotations from the previously performed blinded reads presented; each radiologist could add to, edit, or delete their own marks; change the lesion category of their own marks; or leave their marks unchanged. The post-unblinded read set of marks was grouped into discrete nodules and subjected to the QA process, which consisted of identification of potential errors introduced during the complete image annotation process and correction of those errors. Seven categories of potential error were defined; any nodule with a mark that satisfied the criterion for one of these categories was referred to the radiologist who assigned that mark for either correction or confirmation that the mark was intentional. A total of 105 QA issues were identified across 45 (45.0%) of the 100 CT scans. Radiologist review resulted in modifications to 101 (96.2%) of these potential errors. Twenty-one lesions erroneously marked as lung nodules after the unblinded reads had this designation removed through the QA process. The establishment of "truth" must incorporate a QA process to guarantee the integrity of the datasets that will provide the basis for the development, training, and testing of CAD systems.

  8. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.

    PubMed

    Spilker, R L; de Almeida, E S; Donzelli, P S

    1992-01-01

    This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.

  9. Multiple-instance ensemble learning for hyperspectral images

    NASA Astrophysics Data System (ADS)

    Ergul, Ugur; Bilgin, Gokhan

    2017-10-01

    An ensemble framework for multiple-instance (MI) learning (MIL) is introduced for use in hyperspectral images (HSIs) by inspiring the bagging (bootstrap aggregation) method in ensemble learning. Ensemble-based bagging is performed by a small percentage of training samples, and MI bags are formed by a local windowing process with variable window sizes on selected instances. In addition to bootstrap aggregation, random subspace is another method used to diversify base classifiers. The proposed method is implemented using four MIL classification algorithms. The classifier model learning phase is carried out with MI bags, and the estimation phase is performed over single-test instances. In the experimental part of the study, two different HSIs that have ground-truth information are used, and comparative results are demonstrated with state-of-the-art classification methods. In general, the MI ensemble approach produces more compact results in terms of both diversity and error compared to equipollent non-MIL algorithms.

  10. Offset-free rail-to-rail derandomizing peak detect-and-hold circuit

    DOEpatents

    DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand

    2003-01-01

    A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.

  11. [The investigation and simulation of a novel spatially modulated micro-Fourier transform spectrometer].

    PubMed

    Kong, Yan-mei; Liang, Jing-qiu; Wang, Bo; Liang, Zhong-zhu; Xu, Da-wei; Zhang, Jun

    2009-04-01

    Fourier transform spectrometer (FTS) is widely used in science and industry for the measurement of electromagnetic spectra, and it's trend of minimization is particularly pronounced in many applications. A novel model of a micro FTS with no moving parts is proposed and analyzed. During the analysis, the gradients which mainly introduce the phase error are accounted for in details. Based on these assumptions and the improved Mertz phase correcting method, the spectrum of the signal is simulated, given the real extended light source. The resolution can reach 3.43 nm@800 nm, with high SNR limiting resolving ability 6.8 dB. The novel micro FTS could be made by MOEMS technology, which has some advantages over the conventional micro dispersive spectrometers based on the traditional technology, and this method can also afford some new concepts on the design of spectrometers. The research work is underway to demonstrate the theory.

  12. Improved measurement of vibration amplitude in dynamic optical coherence elastography

    PubMed Central

    Kennedy, Brendan F.; Wojtkowski, Maciej; Szkulmowski, Maciej; Kennedy, Kelsey M.; Karnowski, Karol; Sampson, David D.

    2012-01-01

    Abstract: Optical coherence elastography employs optical coherence tomography (OCT) to measure the displacement of tissues under load and, thus, maps the resulting strain into an image, known as an elastogram. We present a new improved method to measure vibration amplitude in dynamic optical coherence elastography. The tissue vibration amplitude caused by sinusoidal loading is measured from the spread of the Doppler spectrum, which is extracted using joint spectral and time domain signal processing. At low OCT signal-to-noise ratio (SNR), the method provides more accurate vibration amplitude measurements than the currently used phase-sensitive method. For measurements performed on a mirror at OCT SNR = 5 dB, our method introduces <3% error, compared to >20% using the phase-sensitive method. We present elastograms of a tissue-mimicking phantom and excised porcine tissue that demonstrate improvements, including a 50% increase in the depth range of reliable vibration amplitude measurement. PMID:23243565

  13. Communication: hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering thermometry using a narrowband time-asymmetric probe pulse.

    PubMed

    Stauffer, Hans U; Miller, Joseph D; Roy, Sukesh; Gord, James R; Meyer, Terrence R

    2012-03-21

    A narrowband, time-asymmetric probe pulse is introduced into the hybrid femtosecond/picosecond rotational coherent anti-Stokes Raman scattering (fs/ps RCARS) technique to provide accurate and precise single-shot, high-repetition-rate gas-phase thermometric measurements. This narrowband pulse-generated by inserting a Fabry-Pérot étalon into the probe-pulse beam path-enables frequency-domain detection of pure-rotational transitions. The unique time-asymmetric nature of this pulse, in turn, allows for detection of resonant Raman-active rotational transitions free of signal contamination by nonresonant four-wave-mixing processes while still allowing detection at short probe-pulse delays, where collisional dephasing processes are negligible. We demonstrate that this approach provides excellent single-shot thermometric accuracy (<1% error) and precision (~2.5%) in gas-phase environments. © 2012 American Institute of Physics

  14. Precise signal amplitude retrieval for a non-homogeneous diagnostic beam using complex interferometry approach

    NASA Astrophysics Data System (ADS)

    Krupka, M.; Kalal, M.; Dostal, J.; Dudzak, R.; Juha, L.

    2017-08-01

    Classical interferometry became widely used method of active optical diagnostics. Its more advanced version, allowing reconstruction of three sets of data from just one especially designed interferogram (so called complex interferogram) was developed in the past and became known as complex interferometry. Along with the phase shift, which can be also retrieved using classical interferometry, the amplitude modifications of the probing part of the diagnostic beam caused by the object under study (to be called the signal amplitude) as well as the contrast of the interference fringes can be retrieved using the complex interferometry approach. In order to partially compensate for errors in the reconstruction due to imperfections in the diagnostic beam intensity structure as well as for errors caused by a non-ideal optical setup of the interferometer itself (including the quality of its optical components), a reference interferogram can be put to a good use. This method of interferogram analysis of experimental data has been successfully implemented in practice. However, in majority of interferometer setups (especially in the case of the ones employing the wavefront division) the probe and the reference part of the diagnostic beam would feature different intensity distributions over their respective cross sections. This introduces additional error into the reconstruction of the signal amplitude and the fringe contrast, which cannot be resolved using the reference interferogram only. In order to deal with this error it was found that additional separately recorded images of the intensity distribution of the probe and the reference part of the diagnostic beam (with no signal present) are needed. For the best results a sufficient shot-to-shot stability of the whole diagnostic system is required. In this paper, efficiency of the complex interferometry approach for obtaining the highest possible accuracy of the signal amplitude reconstruction is verified using the computer generated complex and reference interferograms containing artificially introduced intensity variations in the probe and the reference part of the diagnostic beam. These sets of data are subsequently analyzed and the errors of the signal amplitude reconstruction are evaluated.

  15. On the performance evaluation of LQAM-MPPM techniques over exponentiated Weibull fading free-space optical channels

    NASA Astrophysics Data System (ADS)

    Khallaf, Haitham S.; Elfiqi, Abdulaziz E.; Shalaby, Hossam M. H.; Sampei, Seiichi; Obayya, Salah S. A.

    2018-06-01

    We investigate the performance of hybrid L-ary quadrature-amplitude modulation-multi-pulse pulse-position modulation (LQAM-MPPM) techniques over exponentiated Weibull (EW) fading free-space optical (FSO) channel, considering both weather and pointing-error effects. Upper bound and approximate-tight upper bound expressions for the bit-error rate (BER) of LQAM-MPPM techniques over EW FSO channels are obtained, taking into account the effects of fog, beam divergence, and pointing-error. Setup block diagram for both the transmitter and receiver of the LQAM-MPPM/FSO system are introduced and illustrated. The BER expressions are evaluated numerically and the results reveal that LQAM-MPPM technique outperforms ordinary LQAM and MPPM schemes under different fading levels and weather conditions. Furthermore, the effect of modulation-index is investigated and it turned out that a modulation-index greater than 0.4 is required in order to optimize the system performance. Finally, the effect of pointing-error introduces a great power penalty on the LQAM-MPPM system performance. Specifically, at a BER of 10-9, pointing-error introduces power penalties of about 45 and 28 dB for receiver aperture sizes of DR = 50 and 200 mm, respectively.

  16. Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays

    PubMed Central

    2011-01-01

    Background Light-directed in situ synthesis of DNA microarrays using computer-controlled projection from a digital micromirror device--maskless array synthesis (MAS)--has proved to be successful at both commercial and laboratory scales. The chemical synthetic cycle in MAS is quite similar to that of conventional solid-phase synthesis of oligonucleotides, but the complexity of microarrays and unique synthesis kinetics on the glass substrate require a careful tuning of parameters and unique modifications to the synthesis cycle to obtain optimal deprotection and phosphoramidite coupling. In addition, unintended deprotection due to scattering and diffraction introduce insertion errors that contribute significantly to the overall error rate. Results Stepwise phosphoramidite coupling yields have been greatly improved and are now comparable to those obtained in solid phase synthesis of oligonucleotides. Extended chemical exposure in the synthesis of complex, long oligonucleotide arrays result in lower--but still high--final average yields which approach 99%. The new synthesis chemistry includes elimination of the standard oxidation until the final step, and improved coupling and light deprotection. Coupling Insertions due to stray light are the limiting factor in sequence quality for oligonucleotide synthesis for gene assembly. Diffraction and local flare are by far the largest contributors to loss of optical contrast. Conclusions Maskless array synthesis is an efficient and versatile method for synthesizing high density arrays of long oligonucleotides for hybridization- and other molecular binding-based experiments. For applications requiring high sequence purity, such as gene assembly, diffraction and flare remain significant obstacles, but can be significantly reduced with straightforward experimental strategies. PMID:22152062

  17. Ray tracing evaluation of a technique for correcting the refraction errors in satellite tracking data

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Rowlett, J. R.; Hendrickson, B. E.

    1978-01-01

    Errors may be introduced in satellite laser ranging data by atmospheric refractivity. Ray tracing data have indicated that horizontal refractivity gradients may introduce nearly 3-cm rms error when satellites are near 10-degree elevation. A correction formula to compensate for the horizontal gradients has been developed. Its accuracy is evaluated by comparing it to refractivity profiles. It is found that if both spherical and gradient correction formulas are employed in conjunction with meteorological measurements, a range resolution of one cm or less is feasible for satellite elevation angles above 10 degrees.

  18. Modeling, simulation, and estimation of optical turbulence

    NASA Astrophysics Data System (ADS)

    Formwalt, Byron Paul

    This dissertation documents three new contributions to simulation and modeling of optical turbulence. The first contribution is the formalization, optimization, and validation of a modeling technique called successively conditioned rendering (SCR). The SCR technique is empirically validated by comparing the statistical error of random phase screens generated with the technique. The second contribution is the derivation of the covariance delineation theorem, which provides theoretical bounds on the error associated with SCR. It is shown empirically that the theoretical bound may be used to predict relative algorithm performance. Therefore, the covariance delineation theorem is a powerful tool for optimizing SCR algorithms. For the third contribution, we introduce a new method for passively estimating optical turbulence parameters, and demonstrate the method using experimental data. The technique was demonstrated experimentally, using a 100 m horizontal path at 1.25 m above sun-heated tarmac on a clear afternoon. For this experiment, we estimated C2n ≈ 6.01 · 10-9 m-23 , l0 ≈ 17.9 mm, and L0 ≈ 15.5 m.

  19. Quantitative EEG analysis using error reduction ratio-causality test; validation on simulated and real EEG data.

    PubMed

    Sarrigiannis, Ptolemaios G; Zhao, Yifan; Wei, Hua-Liang; Billings, Stephen A; Fotheringham, Jayne; Hadjivassiliou, Marios

    2014-01-01

    To introduce a new method of quantitative EEG analysis in the time domain, the error reduction ratio (ERR)-causality test. To compare performance against cross-correlation and coherence with phase measures. A simulation example was used as a gold standard to assess the performance of ERR-causality, against cross-correlation and coherence. The methods were then applied to real EEG data. Analysis of both simulated and real EEG data demonstrates that ERR-causality successfully detects dynamically evolving changes between two signals, with very high time resolution, dependent on the sampling rate of the data. Our method can properly detect both linear and non-linear effects, encountered during analysis of focal and generalised seizures. We introduce a new quantitative EEG method of analysis. It detects real time levels of synchronisation in the linear and non-linear domains. It computes directionality of information flow with corresponding time lags. This novel dynamic real time EEG signal analysis unveils hidden neural network interactions with a very high time resolution. These interactions cannot be adequately resolved by the traditional methods of coherence and cross-correlation, which provide limited results in the presence of non-linear effects and lack fidelity for changes appearing over small periods of time. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Image Reconstruction for Interferometric Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    DeSantis, Zachary J.

    Imaging distant objects at a high resolution has always presented a challenge due to the diffraction limit. Larger apertures improve the resolution, but at some point the cost of engineering, building, and correcting phase aberrations of large apertures become prohibitive. Interferometric imaging uses the Van Cittert-Zernike theorem to form an image from measurements of spatial coherence. This effectively allows the synthesis of a large aperture from two or more smaller telescopes to improve the resolution. We apply this method to imaging geosynchronous satellites with a ground-based system. Imaging a dim object from the ground presents unique challenges. The atmosphere creates errors in the phase measurements. The measurements are taken simultaneously across a large bandwidth of light. The atmospheric piston error, therefore, manifests as a linear phase error across the spectral measurements. Because the objects are faint, many of the measurements are expected to have a poor signal-to-noise ratio (SNR). This eliminates possibility of use of commonly used techniques like closure phase, which is a standard technique in astronomical interferometric imaging for making partial phase measurements in the presence of atmospheric error. The bulk of our work has been focused on forming an image, using sub-Nyquist sampled data, in the presence of these linear phase errors without relying on closure phase techniques. We present an image reconstruction algorithm that successfully forms an image in the presence of these linear phase errors. We demonstrate our algorithm’s success in both simulation and in laboratory experiments.

  1. A hybrid method for synthetic aperture ladar phase-error compensation

    NASA Astrophysics Data System (ADS)

    Hua, Zhili; Li, Hongping; Gu, Yongjian

    2009-07-01

    As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.

  2. An Improved Computational Method for the Calculation of Mixture Liquid-Vapor Critical Points

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Panagiotis; Jia, Wenlong; Li, Changjun

    2014-05-01

    Knowledge of critical points is important to determine the phase behavior of a mixture. This work proposes a reliable and accurate method in order to locate the liquid-vapor critical point of a given mixture. The theoretical model is developed from the rigorous definition of critical points, based on the SRK equation of state (SRK EoS) or alternatively, on the PR EoS. In order to solve the resulting system of nonlinear equations, an improved method is introduced into an existing Newton-Raphson algorithm, which can calculate all the variables simultaneously in each iteration step. The improvements mainly focus on the derivatives of the Jacobian matrix, on the convergence criteria, and on the damping coefficient. As a result, all equations and related conditions required for the computation of the scheme are illustrated in this paper. Finally, experimental data for the critical points of 44 mixtures are adopted in order to validate the method. For the SRK EoS, average absolute errors of the predicted critical-pressure and critical-temperature values are 123.82 kPa and 3.11 K, respectively, whereas the commercial software package Calsep PVTSIM's prediction errors are 131.02 kPa and 3.24 K. For the PR EoS, the two above mentioned average absolute errors are 129.32 kPa and 2.45 K, while the PVTSIM's errors are 137.24 kPa and 2.55 K, respectively.

  3. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.

    PubMed

    Pogue, B W; Patterson, M S

    1994-07-01

    The goal of frequency-domain optical absorption spectroscopy is the non-invasive determination of the absorption coefficient of a specific tissue volume. Since this allows the concentration of endogenous and exogenous chromophores to be calculated, there is considerable potential for clinical application. The technique relies on the measurement of the phase and modulation of light, which is diffusely reflected or transmitted by the tissue when it is illuminated by an intensity-modulated source. A model of light propagation must then be used to deduce the absorption coefficient. For simplicity, it is usual to assume the tissue is either infinite in extent (for transmission measurements) or semi-infinite (for reflectance measurements). The goal of this paper is to examine the errors introduced by these assumptions when measurements are actually performed on finite volumes. Diffusion-theory calculations and experimental measurements were performed for slabs, cylinders and spheres with optical properties characteristic of soft tissues in the near infrared. The error in absorption coefficient is presented as a function of object size as a guideline to when the simple models may be used. For transmission measurements, the error is almost independent of the true absorption coefficient, which allows absolute changes in absorption to be measured accurately. The implications of these errors in absorption coefficient for two clinical problems--quantitation of an exogenous photosensitizer and measurement of haemoglobin oxygenation--are presented and discussed.

  4. Phase II design with sequential testing of hypotheses within each stage.

    PubMed

    Poulopoulou, Stavroula; Karlis, Dimitris; Yiannoutsos, Constantin T; Dafni, Urania

    2014-01-01

    The main goal of a Phase II clinical trial is to decide, whether a particular therapeutic regimen is effective enough to warrant further study. The hypothesis tested by Fleming's Phase II design (Fleming, 1982) is [Formula: see text] versus [Formula: see text], with level [Formula: see text] and with a power [Formula: see text] at [Formula: see text], where [Formula: see text] is chosen to represent the response probability achievable with standard treatment and [Formula: see text] is chosen such that the difference [Formula: see text] represents a targeted improvement with the new treatment. This hypothesis creates a misinterpretation mainly among clinicians that rejection of the null hypothesis is tantamount to accepting the alternative, and vice versa. As mentioned by Storer (1992), this introduces ambiguity in the evaluation of type I and II errors and the choice of the appropriate decision at the end of the study. Instead of testing this hypothesis, an alternative class of designs is proposed in which two hypotheses are tested sequentially. The hypothesis [Formula: see text] versus [Formula: see text] is tested first. If this null hypothesis is rejected, the hypothesis [Formula: see text] versus [Formula: see text] is tested next, in order to examine whether the therapy is effective enough to consider further testing in a Phase III study. For the derivation of the proposed design the exact binomial distribution is used to calculate the decision cut-points. The optimal design parameters are chosen, so as to minimize the average sample number (ASN) under specific upper bounds for error levels. The optimal values for the design were found using a simulated annealing method.

  5. An eight-octant phase-mask coronagraph for the Subaru coronagraphic extreme AO (SCExAO) system: system design and expected performance

    NASA Astrophysics Data System (ADS)

    Murakami, Naoshi; Guyon, Olivier; Martinache, Frantz; Matsuo, Taro; Yokochi, Kaito; Nishikawa, Jun; Tamura, Motohide; Kurokawa, Takashi; Baba, Naoshi; Vogt, Frédéric; Garrel, Vincent; Yoshikawa, Takashi

    2010-07-01

    An eight-octant phase-mask (EOPM) coronagraph is one of the highest performance coronagraphic concepts, and attains simultaneously high throughput, small inner working angle, and large discovery space. However, its application to ground-based telescopes such as the Subaru Telescope is challenging due to pupil geometry (thick spider vanes and large central obstruction) and residual tip-tilt errors. We show that the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system, scheduled to be installed onto the Subaru Telescope, includes key technologies which can solve these problems. SCExAO uses a spider removal plate which translates four parts of the pupil with tilted plane parallel plates. The pupil central obstruction can be removed by a pupil remapping system similar to the PIAA optics already in the SCExAO system, which could be redesigned with no amplitude apodization. The EOPM is inserted in the focal plane to divide a stellar image into eight-octant regions, and introduces a π-phase difference between adjacent octants. This causes a self-destructive interference inside the pupil area on a following reimaged pupil plane. By using a reflective mask instead of a conventional opaque Lyot stop, the stellar light diffracted outside the pupil can be used for a coronagraphic low-order wave-front sensor to accurately measure and correct tip-tilt errors. A modified inverse-PIAA system, located behind the reimaged pupil plane, is used to remove off-axis aberrations and deliver a wide field of view. We show that this EOPM coronagraph architecture enables high contrast imaging at small working angle on the Subaru Telescope. Our approach could be generalized to other phase-mask type coronagraphs and other ground-based telescopes.

  6. A Study on Mutil-Scale Background Error Covariances in 3D-Var Data Assimilation

    NASA Astrophysics Data System (ADS)

    Zhang, Xubin; Tan, Zhe-Min

    2017-04-01

    The construction of background error covariances is a key component of three-dimensional variational data assimilation. There are different scale background errors and interactions among them in the numerical weather Prediction. However, the influence of these errors and their interactions cannot be represented in the background error covariances statistics when estimated by the leading methods. So, it is necessary to construct background error covariances influenced by multi-scale interactions among errors. With the NMC method, this article firstly estimates the background error covariances at given model-resolution scales. And then the information of errors whose scales are larger and smaller than the given ones is introduced respectively, using different nesting techniques, to estimate the corresponding covariances. The comparisons of three background error covariances statistics influenced by information of errors at different scales reveal that, the background error variances enhance particularly at large scales and higher levels when introducing the information of larger-scale errors by the lateral boundary condition provided by a lower-resolution model. On the other hand, the variances reduce at medium scales at the higher levels, while those show slight improvement at lower levels in the nested domain, especially at medium and small scales, when introducing the information of smaller-scale errors by nesting a higher-resolution model. In addition, the introduction of information of larger- (smaller-) scale errors leads to larger (smaller) horizontal and vertical correlation scales of background errors. Considering the multivariate correlations, the Ekman coupling increases (decreases) with the information of larger- (smaller-) scale errors included, whereas the geostrophic coupling in free atmosphere weakens in both situations. The three covariances obtained in above work are used in a data assimilation and model forecast system respectively, and then the analysis-forecast cycles for a period of 1 month are conducted. Through the comparison of both analyses and forecasts from this system, it is found that the trends for variation in analysis increments with information of different scale errors introduced are consistent with those for variation in variances and correlations of background errors. In particular, introduction of smaller-scale errors leads to larger amplitude of analysis increments for winds at medium scales at the height of both high- and low- level jet. And analysis increments for both temperature and humidity are greater at the corresponding scales at middle and upper levels under this circumstance. These analysis increments improve the intensity of jet-convection system which includes jets at different levels and coupling between them associated with latent heat release, and these changes in analyses contribute to the better forecasts for winds and temperature in the corresponding areas. When smaller-scale errors are included, analysis increments for humidity enhance significantly at large scales at lower levels to moisten southern analyses. This humidification devotes to correcting dry bias there and eventually improves forecast skill of humidity. Moreover, inclusion of larger- (smaller-) scale errors is beneficial for forecast quality of heavy (light) precipitation at large (small) scales due to the amplification (diminution) of intensity and area in precipitation forecasts but tends to overestimate (underestimate) light (heavy) precipitation .

  7. Continued investigation of potential application of Omega navigation to civil aviation

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.

    1978-01-01

    Major attention is given to an analysis of receiver repeatability in measuring OMEGA phase data. Repeatability is defined as the ability of two like receivers which are co-located to achieve the same LOP phase readings. Specific data analysis is presented. A propagation model is described which has been used in the analysis of propagation anomalies. Composite OMEGA analysis is presented in terms of carrier phase correlation analysis and the determination of carrier phase weighting coefficients for minimizing composite phase variation. Differential OMEGA error analysis is presented for receiver separations. Three frequency analysis includes LOP error and position error based on three and four OMEGA transmissions. Results of phase amplitude correlation studies are presented.

  8. Near real-time PPP-based monitoring of the ionosphere using dual-frequency GPS/BDS/Galileo data

    NASA Astrophysics Data System (ADS)

    Liu, Zhinmin; Li, Yangyang; Li, Fei; Guo, Jinyun

    2018-03-01

    Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.

  9. Imaging phased telescope array study

    NASA Technical Reports Server (NTRS)

    Harvey, James E.

    1989-01-01

    The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.

  10. Dual-energy X-ray absorptiometry: analysis of pediatric fat estimate errors due to tissue hydration effects.

    PubMed

    Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B

    2000-12-01

    Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.

  11. Carrier recovery methods for a dual-mode modem: A design approach

    NASA Technical Reports Server (NTRS)

    Richards, C. W.; Wilson, S. G.

    1984-01-01

    A dual mode model with selectable QPSK or 16-QASK modulation schemes is discussed. The theoretical reasoning as well as the practical trade-offs made during the development of a modem are presented, with attention given to the carrier recovery method used for coherent demodulation. Particular attention is given to carrier recovery methods that can provide little degradation due to phase error for both QPSK and 16-QASK, while being insensitive to the amplitude characteristic of a 16-QASK modulation scheme. A computer analysis of the degradation is symbol error rate (SER) for QPSK and 16-QASK due to phase error is prresented. Results find that an energy increase of roughly 4 dB is needed to maintain a SER of 1X10(-5) for QPSK with 20 deg of phase error and 16-QASK with 7 deg phase error.

  12. Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool

    NASA Astrophysics Data System (ADS)

    Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo

    2017-05-01

    Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.

  13. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer.

    PubMed

    Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang

    2018-04-20

    Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.

  14. Real-time ultrasound-tagging to track the 2D motion of the common carotid artery wall in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahnd, Guillaume, E-mail: g.zahnd@erasmusmc.nl; Salles, Sébastien; Liebgott, Hervé

    2015-02-15

    Purpose: Tracking the motion of biological tissues represents an important issue in the field of medical ultrasound imaging. However, the longitudinal component of the motion (i.e., perpendicular to the beam axis) remains more challenging to extract due to the rather coarse resolution cell of ultrasound scanners along this direction. The aim of this study is to introduce a real-time beamforming strategy dedicated to acquire tagged images featuring a distinct pattern in the objective to ease the tracking. Methods: Under the conditions of the Fraunhofer approximation, a specific apodization function was applied to the received raw channel data, in real-time duringmore » image acquisition, in order to introduce a periodic oscillations pattern along the longitudinal direction of the radio frequency signal. Analytic signals were then extracted from the tagged images, and subpixel motion tracking of the intima–media complex was subsequently performed offline, by means of a previously introduced bidimensional analytic phase-based estimator. Results: The authors’ framework was applied in vivo on the common carotid artery from 20 young healthy volunteers and 6 elderly patients with high atherosclerosis risk. Cine-loops of tagged images were acquired during three cardiac cycles. Evaluated against reference trajectories manually generated by three experienced analysts, the mean absolute tracking error was 98 ± 84 μm and 55 ± 44 μm in the longitudinal and axial directions, respectively. These errors corresponded to 28% ± 23% and 13% ± 9% of the longitudinal and axial amplitude of the assessed motion, respectively. Conclusions: The proposed framework enables tagged ultrasound images of in vivo tissues to be acquired in real-time. Such unconventional beamforming strategy contributes to improve tracking accuracy and could potentially benefit to the interpretation and diagnosis of biomedical images.« less

  15. Amplitude and phase controlled adaptive optics system

    NASA Astrophysics Data System (ADS)

    Pham, Ich; Ma, Sam

    2006-06-01

    An adaptive optics (AO) system is used to control the deformable mirror (DM) actuators for compensating the optical effects introduced by the turbulence in the Earth's atmosphere and distortions produced by the optical elements between the distant object and its local sensor. The typical AO system commands the DM actuators while minimizing the measured wave front (WF) phase error. This is known as the phase conjugator system, which does not work well in the strong scintillation condition because both amplitude and phase are corrupted along the propagation path. In order to compensate for the wave front amplitude, a dual DM field conjugator system may be used. The first and second DM compensate for the amplitude and the phase respectively. The amplitude controller requires the mapping from DM1 actuator command to DM2 intensity. This can be obtained from either a calibration routine or an intensity transport equation, which relates the phase to the intensity. Instead of a dual-DM, a single Spatial Light Modulator (SLM) may control the amplitude and phase independently. The technique uses the spatial carrier frequency and the resulting intensity is related to the carrier modulation, while the phase is the average carrier phase. The dynamical AO performance using the carrier modulation is limited by the actuator frequency response and not by the computational load of the controller algorithm. Simulation of the proposed field conjugator systems show significant improvement for the on-axis performance compared to the phase conjugator system.

  16. Quantizing and sampling considerations in digital phased-locked loops

    NASA Technical Reports Server (NTRS)

    Hurst, G. T.; Gupta, S. C.

    1974-01-01

    The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.

  17. Quantization error of CCD cameras and their influence on phase calculation in fringe pattern analysis.

    PubMed

    Skydan, Oleksandr A; Lilley, Francis; Lalor, Michael J; Burton, David R

    2003-09-10

    We present an investigation into the phase errors that occur in fringe pattern analysis that are caused by quantization effects. When acquisition devices with a limited value of camera bit depth are used, there are a limited number of quantization levels available to record the signal. This may adversely affect the recorded signal and adds a potential source of instrumental error to the measurement system. Quantization effects also determine the accuracy that may be achieved by acquisition devices in a measurement system. We used the Fourier fringe analysis measurement technique. However, the principles can be applied equally well for other phase measuring techniques to yield a phase error distribution that is caused by the camera bit depth.

  18. Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.

    PubMed

    Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D

    2000-03-20

    The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.

  19. A root cause analysis project in a medication safety course.

    PubMed

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  20. False Operation of Static Random Access Memory Cells under Alternating Current Power Supply Voltage Variation

    NASA Astrophysics Data System (ADS)

    Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto

    2013-04-01

    Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.

  1. Quantum key distribution over a 72 dB channel loss using ultralow dark count superconducting single-photon detectors.

    PubMed

    Shibata, Hiroyuki; Honjo, Toshimori; Shimizu, Kaoru

    2014-09-01

    We report the first quantum key distribution (QKD) experiment over a 72 dB channel loss using superconducting nanowire single-photon detectors (SSPD, SNSPD) with the dark count rate (DCR) of 0.01 cps. The DCR of the SSPD, which is dominated by the blackbody radiation at room temperature, is blocked by introducing cold optical bandpass filter. We employ the differential phase shift QKD (DPS-QKD) scheme with a 1 GHz system clock rate. The quantum bit error rate (QBER) below 3% is achieved when the length of the dispersion shifted fiber (DSF) is 336 km (72 dB loss), which is low enough to generate secure keys.

  2. Noncoherent sampling technique for communications parameter estimations

    NASA Technical Reports Server (NTRS)

    Su, Y. T.; Choi, H. J.

    1985-01-01

    This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.

  3. Coupling efficiency of laser beam to multimode fiber

    NASA Astrophysics Data System (ADS)

    Niu, Jinfu; Xu, Jianqiu

    2007-06-01

    The coupling efficiency of laser beam to multimode fiber is given by geometrical optics, and the relation between the maximum coupling efficiency and the beam propagation factor M2 is analyzed. An equivalent factor MF2 for the multimode fiber is introduced to characterize the fiber coupling capability. The coupling efficiency of laser beam to multimode fiber is calculated in respect of the ratio M2/MF2 by the overlapping integral theory. The optimal coupling efficiency can be roughly estimated by the ratio of M2 to MF2 but with a large error range. The deviation comes from the lacks of information on the detail of phase and intensity profile in the beam factor M2.

  4. Insar Unwrapping Error Correction Based on Quasi-Accurate Detection of Gross Errors (quad)

    NASA Astrophysics Data System (ADS)

    Kang, Y.; Zhao, C. Y.; Zhang, Q.; Yang, C. S.

    2018-04-01

    Unwrapping error is a common error in the InSAR processing, which will seriously degrade the accuracy of the monitoring results. Based on a gross error correction method, Quasi-accurate detection (QUAD), the method for unwrapping errors automatic correction is established in this paper. This method identifies and corrects the unwrapping errors by establishing a functional model between the true errors and interferograms. The basic principle and processing steps are presented. Then this method is compared with the L1-norm method with simulated data. Results show that both methods can effectively suppress the unwrapping error when the ratio of the unwrapping errors is low, and the two methods can complement each other when the ratio of the unwrapping errors is relatively high. At last the real SAR data is tested for the phase unwrapping error correction. Results show that this new method can correct the phase unwrapping errors successfully in the practical application.

  5. Modified fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1992-01-01

    A method and the associated apparatus for estimating the amplitude, frequency, and phase of a signal of interest are presented. The method comprises the following steps: (1) inputting the signal of interest; (2) generating a reference signal with adjustable amplitude, frequency and phase at an output thereof; (3) mixing the signal of interest with the reference signal and a signal 90 deg out of phase with the reference signal to provide a pair of quadrature sample signals comprising respectively a difference between the signal of interest and the reference signal and a difference between the signal of interest and the signal 90 deg out of phase with the reference signal; (4) using the pair of quadrature sample signals to compute estimates of the amplitude, frequency, and phase of an error signal comprising the difference between the signal of interest and the reference signal employing a least squares estimation; (5) adjusting the amplitude, frequency, and phase of the reference signal from the numerically controlled oscillator in a manner which drives the error signal towards zero; and (6) outputting the estimates of the amplitude, frequency, and phase of the error signal in combination with the reference signal to produce a best estimate of the amplitude, frequency, and phase of the signal of interest. The preferred method includes the step of providing the error signal as a real time confidence measure as to the accuracy of the estimates wherein the closer the error signal is to zero, the higher the probability that the estimates are accurate. A matrix in the estimation algorithm provides an estimate of the variance of the estimation error.

  6. Coronagraphic mask design using Hermite functions.

    PubMed

    Cagigal, Manuel P; Canales, Vidal F; Valle, Pedro J; Oti, José E

    2009-10-26

    We introduce a stellar coronagraph that uses a coronagraphic mask described by a Hermite function or a combination of them. It allows the detection of exoplanets providing both deep starlight extinction and high angular resolution. This angular resolution depends on the order of the Hermite function used. An analysis of the coronagraph performance is carried out for different even order masks. Numerical simulations of the ideal case, with no phase errors and perfect telescope pointing, show that on-axis starlight is reduced to very low intensity levels corresponding to a gain of at least 25 magnitudes (10(-10) light intensity reduction). The coronagraphic throughput depends on the Hermite function or combination selected. The proposed mask series presents the same advantages of band limited masks along with the benefit of reducing the light diffracted by the mask border thanks to its particular shape. Nevertheless, for direct detection of Earth-like exoplanets it requires the use of adaptive optics facilities for compensating the perturbations introduced by the atmosphere and by the optical system.

  7. Statistical aspects of the TNK-S2B trial of tenecteplase versus alteplase in acute ischemic stroke: an efficient, dose-adaptive, seamless phase II/III design.

    PubMed

    Levin, Bruce; Thompson, John L P; Chakraborty, Bibhas; Levy, Gilberto; MacArthur, Robert; Haley, E Clarke

    2011-08-01

    TNK-S2B, an innovative, randomized, seamless phase II/III trial of tenecteplase versus rt-PA for acute ischemic stroke, terminated for slow enrollment before regulatory approval of use of phase II patients in phase III. (1) To review the trial design and comprehensive type I error rate simulations and (2) to discuss issues raised during regulatory review, to facilitate future approval of similar designs. In phase II, an early (24-h) outcome and adaptive sequential procedure selected one of three tenecteplase doses for phase III comparison with rt-PA. Decision rules comparing this dose to rt-PA would cause stopping for futility at phase II end, or continuation to phase III. Phase III incorporated two co-primary hypotheses, allowing for a treatment effect at either end of the trichotomized Rankin scale. Assuming no early termination, four interim analyses and one final analysis of 1908 patients provided an experiment-wise type I error rate of <0.05. Over 1,000 distribution scenarios, each involving 40,000 replications, the maximum type I error in phase III was 0.038. Inflation from the dose selection was more than offset by the one-half continuity correction in the test statistics. Inflation from repeated interim analyses was more than offset by the reduction from the clinical stopping rules for futility at the first interim analysis. Design complexity and evolving regulatory requirements lengthened the review process. (1) The design was innovative and efficient. Per protocol, type I error was well controlled for the co-primary phase III hypothesis tests, and experiment-wise. (2a) Time must be allowed for communications with regulatory reviewers from first design stages. (2b) Adequate type I error control must be demonstrated. (2c) Greater clarity is needed on (i) whether this includes demonstration of type I error control if the protocol is violated and (ii) whether simulations of type I error control are acceptable. (2d) Regulatory agency concerns that protocols for futility stopping may not be followed may be allayed by submitting interim analysis results to them as these analyses occur.

  8. A Review of Depth and Normal Fusion Algorithms

    PubMed Central

    Štolc, Svorad; Pock, Thomas

    2018-01-01

    Geometric surface information such as depth maps and surface normals can be acquired by various methods such as stereo light fields, shape from shading and photometric stereo techniques. We compare several algorithms which deal with the combination of depth with surface normal information in order to reconstruct a refined depth map. The reasons for performance differences are examined from the perspective of alternative formulations of surface normals for depth reconstruction. We review and analyze methods in a systematic way. Based on our findings, we introduce a new generalized fusion method, which is formulated as a least squares problem and outperforms previous methods in the depth error domain by introducing a novel normal weighting that performs closer to the geodesic distance measure. Furthermore, a novel method is introduced based on Total Generalized Variation (TGV) which further outperforms previous approaches in terms of the geodesic normal distance error and maintains comparable quality in the depth error domain. PMID:29389903

  9. A GPS Phase-Locked Loop Performance Metric Based on the Phase Discriminator Output

    PubMed Central

    Stevanovic, Stefan; Pervan, Boris

    2018-01-01

    We propose a novel GPS phase-lock loop (PLL) performance metric based on the standard deviation of tracking error (defined as the discriminator’s estimate of the true phase error), and explain its advantages over the popular phase jitter metric using theory, numerical simulation, and experimental results. We derive an augmented GPS phase-lock loop (PLL) linear model, which includes the effect of coherent averaging, to be used in conjunction with this proposed metric. The augmented linear model allows more accurate calculation of tracking error standard deviation in the presence of additive white Gaussian noise (AWGN) as compared to traditional linear models. The standard deviation of tracking error, with a threshold corresponding to half of the arctangent discriminator pull-in region, is shown to be a more reliable/robust measure of PLL performance under interference conditions than the phase jitter metric. In addition, the augmented linear model is shown to be valid up until this threshold, which facilitates efficient performance prediction, so that time-consuming direct simulations and costly experimental testing can be reserved for PLL designs that are much more likely to be successful. The effect of varying receiver reference oscillator quality on the tracking error metric is also considered. PMID:29351250

  10. Analysis of the PLL phase error in presence of simulated ionospheric scintillation events

    NASA Astrophysics Data System (ADS)

    Forte, B.

    2012-01-01

    The functioning of standard phase locked loops (PLL), including those used to track radio signals from Global Navigation Satellite Systems (GNSS), is based on a linear approximation which holds in presence of small phase errors. Such an approximation represents a reasonable assumption in most of the propagation channels. However, in presence of a fading channel the phase error may become large, making the linear approximation no longer valid. The PLL is then expected to operate in a non-linear regime. As PLLs are generally designed and expected to operate in their linear regime, whenever the non-linear regime comes into play, they will experience a serious limitation in their capability to track the corresponding signals. The phase error and the performance of a typical PLL embedded into a commercial multiconstellation GNSS receiver were analyzed in presence of simulated ionospheric scintillation. Large phase errors occurred during scintillation-induced signal fluctuations although cycle slips only occurred during the signal re-acquisition after a loss of lock. Losses of lock occurred whenever the signal faded below the minimumC/N0threshold allowed for tracking. The simulations were performed for different signals (GPS L1C/A, GPS L2C, GPS L5 and Galileo L1). L5 and L2C proved to be weaker than L1. It appeared evident that the conditions driving the PLL phase error in the specific case of GPS receivers in presence of scintillation-induced signal perturbations need to be evaluated in terms of the combination of the minimumC/N0 tracking threshold, lock detector thresholds, possible cycle slips in the tracking PLL and accuracy of the observables (i.e. the error propagation onto the observables stage).

  11. Temperature-fluctuation-sensitive accumulative effect of the phase measurement errors in low-coherence interferometry in characterizing arrayed waveguide gratings.

    PubMed

    Zhao, Changyun; Wei, Bing; Yang, Longzhi; Wang, Gencheng; Wang, Yuehai; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi

    2015-09-20

    We investigate the accumulative effect of the phase measurement errors in characterizing optical multipath components by low-coherence interferometry. The accumulative effect is caused by the fluctuation of the environment temperature, which leads to the variation of the refractive index of the device under test. The resulting phase measurement errors accumulate with the increasing of the phase difference between the two interferometer arms. Our experiments were carried out to demonstrate that the accumulative effect is still obvious even though the thermo-optical coefficient of the device under test is quite small. Shortening the measurement time to reduce the fluctuation of the environment temperature can effectively restrain the accumulative effect. The experiments show that when the scanning speed increases to 4.8 mm/s, the slope of the phase measurement errors decreases to 5.52×10(-8), which means the accumulative effect can be ignored.

  12. Application of least-squares fitting of ellipse and hyperbola for two dimensional data

    NASA Astrophysics Data System (ADS)

    Lawiyuniarti, M. P.; Rahmadiantri, E.; Alamsyah, I. M.; Rachmaputri, G.

    2018-01-01

    Application of the least-square method of ellipse and hyperbola for two-dimensional data has been applied to analyze the spatial continuity of coal deposits in the mining field, by using the fitting method introduced by Fitzgibbon, Pilu, and Fisher in 1996. This method uses 4{a_0}{a_2} - a_12 = 1 as a constrain function. Meanwhile, in 1994, Gander, Golub and Strebel have introduced ellipse and hyperbola fitting methods using the singular value decomposition approach. This SVD approach can be generalized into a three-dimensional fitting. In this research we, will discuss about those two fitting methods and apply it to four data content of coal that is in the form of ash, calorific value, sulfur and thickness of seam so as to produce form of ellipse or hyperbola. In addition, we compute the error difference resulting from each method and from that calculation, we conclude that although the errors are not much different, the error of the method introduced by Fitzgibbon et al is smaller than the fitting method that introduced by Golub et al.

  13. Carrier-separating demodulation of phase shifting self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Xia, Wei

    2017-03-01

    A carrier separating method associated with noise-elimination had been introduced into a sinusoidal phase-shifting self-mixing interferometer. The conventional sinusoidal phase shifting self-mixing interferometry was developed into a more competitive instrument with high computing efficiency and nanometer accuracy of λ / 100 in dynamical vibration measurement. The high slew rate electro-optic modulator induced a sinusoidal phase carrier with ultralow insertion loss in this paper. In order to extract phase-shift quickly and precisely, this paper employed the carrier-separating to directly generate quadrature signals without complicated frequency domain transforms. Moreover, most noises were evaluated and suppressed by a noise-elimination technology synthesizing empirical mode decomposition with wavelet transform. The overall laser system was described and inherent advantages such as high computational efficiency and decreased nonlinear errors of the established system were demonstrated. The experiment implemented on a high precision PZT (positioning accuracy was better than 1 nm) and compared with laser Doppler velocity meter. The good agreement of two instruments shown that the short-term resolution had improved from 10 nm to 1.5 nm in dynamic vibration measurement with reduced time expense. This was useful in precision measurement to improve the SMI with same sampling rate. The proposed signal processing was performed in pure time-domain requiring no preprocessing electronic circuits.

  14. Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor

    NASA Astrophysics Data System (ADS)

    Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei

    2013-08-01

    Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.

  15. Zero tolerance prescribing: a strategy to reduce prescribing errors on the paediatric intensive care unit.

    PubMed

    Booth, Rachelle; Sturgess, Emma; Taberner-Stokes, Alison; Peters, Mark

    2012-11-01

    To establish the baseline prescribing error rate in a tertiary paediatric intensive care unit (PICU) and to determine the impact of a zero tolerance prescribing (ZTP) policy incorporating a dedicated prescribing area and daily feedback of prescribing errors. A prospective, non-blinded, observational study was undertaken in a 12-bed tertiary PICU over a period of 134 weeks. Baseline prescribing error data were collected on weekdays for all patients for a period of 32 weeks, following which the ZTP policy was introduced. Daily error feedback was introduced after a further 12 months. Errors were sub-classified as 'clinical', 'non-clinical' and 'infusion prescription' errors and the effects of interventions considered separately. The baseline combined prescribing error rate was 892 (95 % confidence interval (CI) 765-1,019) errors per 1,000 PICU occupied bed days (OBDs), comprising 25.6 % clinical, 44 % non-clinical and 30.4 % infusion prescription errors. The combined interventions of ZTP plus daily error feedback were associated with a reduction in the combined prescribing error rate to 447 (95 % CI 389-504) errors per 1,000 OBDs (p < 0.0001), an absolute risk reduction of 44.5 % (95 % CI 40.8-48.0 %). Introduction of the ZTP policy was associated with a significant decrease in clinical and infusion prescription errors, while the introduction of daily error feedback was associated with a significant reduction in non-clinical prescribing errors. The combined interventions of ZTP and daily error feedback were associated with a significant reduction in prescribing errors in the PICU, in line with Department of Health requirements of a 40 % reduction within 5 years.

  16. A Demonstration of a Versatile Low-order Wavefront Sensor Tested on Multiple Coronographs

    NASA Astrophysics Data System (ADS)

    Singh, Garima; Lozi, Julien; Jovanovic, Nemanja; Guyon, Olivier; Baudoz, Pierre; Martinache, Frantz; Kudo, Tomoyuki

    2017-09-01

    Detecting faint companions in close proximity to stars is one of the major goals of current/planned ground- and space-based high-contrast imaging instruments. High-performance coronagraphs can suppress the diffraction features and gain access to companions at small angular separation. However, the uncontrolled pointing errors degrade the coronagraphic performance by leaking starlight around the coronagraphic focal-plane mask, preventing the detection of companions at small separations. A Lyot-stop low-order wavefront sensor (LLOWFS) was therefore introduced to calibrate and measure these aberrations for focal-plane phase mask coronagraphs. This sensor quantifies the variations in wavefront error decomposed into a few Zernike modes by reimaging the diffracted starlight rejected by a reflective Lyot stop. The technique was tested with several coronagraphs on the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system at the Subaru Telescope. The wavefront was decomposed into 15 and 35 Zernike modes with an occulting and focal-plane phase mask coronagraph, respectively, which were used to drive a closed-loop correction in the laboratory. Using a 2000-actuator deformable mirror, a closed-loop pointing stability between 10-3-10-4 λ/D was achieved in the laboratory in H-band, with sub nanometer residuals for the other Zernike modes (Noll index > 4). On-sky, the low-order control of 10+ Zernike modes for the phase-induced amplitude apodization and the vector vortex coronagraphs was demonstrated, with a closed-loop pointing stability of {10}-4λ /D under good seeing and {10}-3λ /D under moderate seeing conditions readily achievable.

  17. Using heuristic evaluations to assess the safety of health information systems.

    PubMed

    Carvalho, Christopher J; Borycki, Elizabeth M; Kushniruk, Andre W

    2009-01-01

    Health information systems (HISs) are typically seen as a mechanism for reducing medical errors. There is, however, evidence to prove that technology may actually be the cause of errors. As a result, it is crucial to fully test any system prior to its implementation. At present, evidence-based evaluation heuristics do not exist for assessing aspects of interface design that lead to medical errors. A three phase study was conducted to develop evidence-based heuristics for evaluating interfaces. Phase 1 consisted of a systematic review of the literature. In Phase 2 a comprehensive list of 33 evaluation heuristics was developed based on the review that could be used to test for potential technology induced errors. Phase 3 involved applying these healthcare specific heuristics to evaluate a HIS.

  18. A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.

    PubMed

    Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema

    2016-01-01

    A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.

  19. Moving beyond the total sea ice extent in gauging model biases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.

    Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less

  20. Moving beyond the total sea ice extent in gauging model biases

    DOE PAGES

    Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.; ...

    2016-11-29

    Here, reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differencesmore » between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.« less

  1. Interferometric phase measurement techniques for coherent beam combining

    NASA Astrophysics Data System (ADS)

    Antier, Marie; Bourderionnet, Jérôme; Larat, Christian; Lallier, Eric; Primot, Jérôme; Brignon, Arnaud

    2015-03-01

    Coherent beam combining of fiber amplifiers provides an attractive mean of reaching high power laser. In an interferometric phase measurement the beams issued for each fiber combined are imaged onto a sensor and interfere with a reference plane wave. This registration of interference patterns on a camera allows the measurement of the exact phase error of each fiber beam in a single shot. Therefore, this method is a promising candidate toward very large number of combined fibers. Based on this technique, several architectures can be proposed to coherently combine a high number of fibers. The first one based on digital holography transfers directly the image of the camera to spatial light modulator (SLM). The generated hologram is used to compensate the phase errors induced by the amplifiers. This architecture has therefore a collective phase measurement and correction. Unlike previous digital holography technique, the probe beams measuring the phase errors between the fibers are co-propagating with the phase-locked signal beams. This architecture is compatible with the use of multi-stage isolated amplifying fibers. In that case, only 20 pixels per fiber on the SLM are needed to obtain a residual phase shift error below λ/10rms. The second proposed architecture calculates the correction applied to each fiber channel by tracking the relative position of the interference finges. In this case, a phase modulator is placed on each channel. In that configuration, only 8 pixels per fiber on the camera is required for a stable close loop operation with a residual phase error of λ/20rms, which demonstrates the scalability of this concept.

  2. Extremal Optimization for estimation of the error threshold in topological subsystem codes at T = 0

    NASA Astrophysics Data System (ADS)

    Millán-Otoya, Jorge E.; Boettcher, Stefan

    2014-03-01

    Quantum decoherence is a problem that arises in implementations of quantum computing proposals. Topological subsystem codes (TSC) have been suggested as a way to overcome decoherence. These offer a higher optimal error tolerance when compared to typical error-correcting algorithms. A TSC has been translated into a planar Ising spin-glass with constrained bimodal three-spin couplings. This spin-glass has been considered at finite temperature to determine the phase boundary between the unstable phase and the stable phase, where error recovery is possible.[1] We approach the study of the error threshold problem by exploring ground states of this spin-glass with the Extremal Optimization algorithm (EO).[2] EO has proven to be a effective heuristic to explore ground state configurations of glassy spin-systems.[3

  3. Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network.

    PubMed

    An-Min Zou; Kumar, K D; Zeng-Guang Hou; Xi Liu

    2011-08-01

    A finite-time attitude tracking control scheme is proposed for spacecraft using terminal sliding mode and Chebyshev neural network (NN) (CNN). The four-parameter representations (quaternion) are used to describe the spacecraft attitude for global representation without singularities. The attitude state (i.e., attitude and velocity) error dynamics is transformed to a double integrator dynamics with a constraint on the spacecraft attitude. With consideration of this constraint, a novel terminal sliding manifold is proposed for the spacecraft. In order to guarantee that the output of the NN used in the controller is bounded by the corresponding bound of the approximated unknown function, a switch function is applied to generate a switching between the adaptive NN control and the robust controller. Meanwhile, a CNN, whose basis functions are implemented using only desired signals, is introduced to approximate the desired nonlinear function and bounded external disturbances online, and the robust term based on the hyperbolic tangent function is applied to counteract NN approximation errors in the adaptive neural control scheme. Most importantly, the finite-time stability in both the reaching phase and the sliding phase can be guaranteed by a Lyapunov-based approach. Finally, numerical simulations on the attitude tracking control of spacecraft in the presence of an unknown mass moment of inertia matrix, bounded external disturbances, and control input constraints are presented to demonstrate the performance of the proposed controller.

  4. Effect of ancilla's structure on quantum error correction using the seven-qubit Calderbank-Shor-Steane code

    NASA Astrophysics Data System (ADS)

    Salas, P. J.; Sanz, A. L.

    2004-05-01

    In this work we discuss the ability of different types of ancillas to control the decoherence of a qubit interacting with an environment. The error is introduced into the numerical simulation via a depolarizing isotropic channel. The ranges of values considered are 10-4 ⩽ɛ⩽ 10-2 for memory errors and 3× 10-5 ⩽γ/7⩽ 10-2 for gate errors. After the correction we calculate the fidelity as a quality criterion for the qubit recovered. We observe that a recovery method with a three-qubit ancilla provides reasonably good results bearing in mind its economy. If we want to go further, we have to use fault tolerant ancillas with a high degree of parallelism, even if this condition implies introducing additional ancilla verification qubits.

  5. Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling

    NASA Astrophysics Data System (ADS)

    Lau, Lawrence; Cross, Paul

    2007-11-01

    Multipath is one of the most important error sources in Global Navigation Satellite System (GNSS) carrier-phase-based precise relative positioning. Its theoretical maximum is a quarter of the carrier wavelength (about 4.8 cm for the Global Positioning System (GPS) L1 carrier) and, although it rarely reaches this size, it must clearly be mitigated if millimetre-accuracy positioning is to be achieved. In most static applications, this may be accomplished by averaging over a sufficiently long period of observation, but in kinematic applications, a modelling approach must be used. This paper is concerned with one such approach: the use of ray-tracing to reconstruct the error and therefore remove it. In order to apply such an approach, it is necessary to have a detailed understanding of the signal transmitted from the satellite, the reflection process, the antenna characteristics and the way that the reflected and direct signal are processed within the receiver. This paper reviews all of these and introduces a formal ray-tracing method for multipath estimation based on precise knowledge of the satellite reflector antenna geometry and of the reflector material and antenna characteristics. It is validated experimentally using GPS signals reflected from metal, water and a brick building, and is shown to be able to model most of the main multipath characteristics. The method will have important practical applications for correcting for multipath in well-constrained environments (such as at base stations for local area GPS networks, at International GNSS Service (IGS) reference stations, and on spacecraft), and it can be used to simulate realistic multipath errors for various performance analyses in high-precision positioning.

  6. Wide spectral range multiple orders and half-wave achromatic phase retarders fabricated from two lithium tantalite single crystal plates

    NASA Astrophysics Data System (ADS)

    Emam-Ismail, M.

    2015-11-01

    In a broad spectral range (300-2500 nm), we report the use of channeled spectra formed from the interference of polarized white light to extract the dispersion of the phase birefringence Δnp(λ) of the x- and y-cuts of lithium tantalite (LiTaO3:LT) plates. A new method named as wavenumber difference method is used to extract the spectral behavior of the phase birefringence of the x- and y- cuts of LT plates. The correctness of the obtained birefringence data is confirmed by using Jones vector method through recalculating the plates thicknesses. The spectral variation of the phase birefringence Δnp(λ) of the x- and y-cuts of LT plates is fitted to Cauchy dispersion function with relative error for both x- and y-cuts of order 2.4×10-4. The group birefringence dispersion Δng (λ) of the x- and y-cuts of LT plates is also calculated and fitted to Ghosh dispersion function with relative error for both x- and y-cuts of order 2.83×10-4. Furthermore, the phase retardation introduced by the x- and y-cuts of LT plates is also calculated. It is found that the amount of phase retardation confirms that the x- and y-cuts of LT plates can act as a multiple order half- and quarter-wave plates working at many different wavelengths through the spectral range 300-2500 nm. For the x- and y-cuts of LT plates, a large difference between group and phase birefringence is observed at a short wavelength (λ=300 nm); while such difference progressively diminished at longer wavelength (λ=2000 nm). In the near infrared region (NIR) region (700-2500 nm), a broad spectral full width at half maximum (FWHM) is observed for either x- or y-cut of LT plate which can act as if it is working as a zero order wave plate. Finally, an achromatic half-wave plate working at 598 nm and covering a wide spectral range (300-900 nm) is demonstrated experimentally by combining both x- and y-cuts of LT plates.

  7. Impact of Feedback on Three Phases of Performance Monitoring

    PubMed Central

    Appelgren, Alva; Penny, William; Bengtsson, Sara L

    2013-01-01

    We investigated if certain phases of performance monitoring show differential sensitivity to external feedback and thus rely on distinct mechanisms. The phases of interest were: the error phase (FE), the phase of the correct response after errors (FEC), and the phase of correct responses following corrects (FCC). We tested accuracy and reaction time (RT) on 12 conditions of a continuous-choice-response task; the 2-back task. External feedback was either presented or not in FE and FEC, and delivered on 0%, 20%, or 100% of FCC trials. The FCC20 was matched to FE and FEC in the number of sounds received so that we could investigate when external feedback was most valuable to the participants. We found that external feedback led to a reduction in accuracy when presented on all the correct responses. Moreover, RT was significantly reduced for FCC100, which in turn correlated with the accuracy reduction. Interestingly, the correct response after an error was particularly sensitive to external feedback since accuracy was reduced when external feedback was presented during this phase but not for FCC20. Notably, error-monitoring was not influenced by feedback-type. The results are in line with models suggesting that the internal error-monitoring system is sufficient in cognitively demanding tasks where performance is ∼ 80%, as well as theories stipulating that external feedback directs attention away from the task. Our data highlight the first correct response after an error as particularly sensitive to external feedback, suggesting that important consolidation of response strategy takes place here. PMID:24217138

  8. Impact of Forecast and Model Error Correlations In 4dvar Data Assimilation

    NASA Astrophysics Data System (ADS)

    Zupanski, M.; Zupanski, D.; Vukicevic, T.; Greenwald, T.; Eis, K.; Vonder Haar, T.

    A weak-constraint 4DVAR data assimilation system has been developed at Cooper- ative Institute for Research in the Atmosphere (CIRA), Colorado State University. It is based on the NCEP's ETA 4DVAR system, and it is fully parallel (MPI coding). The CIRA's 4DVAR system is aimed for satellite data assimilation research, with cur- rent focus on assimilation of cloudy radiances and microwave satellite measurements. Most important improvement over the previous 4DVAR system is a degree of gener- ality introduced into the new algorithm, namely for applications with different NWP models (e.g., RAMS, WRF, ETA, etc.), and for the choice of control variable. In cur- rent applications, the non-hydrostatic RAMS model and its adjoint are used, including all microphysical processess. The control variable includes potential temperature, ve- locity potential and stream function, vertical velocity, and seven mixing ratios with respect to all water phases. Since the statistics of the microphysical components of the control variable is not well known, a special attention will be paid to the impact of the forecast and model (prior) error correlations on the 4DVAR analysis. In particular, the sensitivity of the analysis with respect to decorrelation length will be examined. The prior error covariances are modelled using the compactly-supported, space-limited correlations developed at NASA DAO.

  9. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models.

    EPA Science Inventory

    BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of a...

  10. Superluminal Labview Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheat, Robert; Marksteiner, Quinn; Quenzer, Jonathan

    2012-03-26

    This labview code is used to set the phase and amplitudes on the 72 antenna of the superluminal machine, and to map out the radiation patter from the superluminal antenna.Each antenna radiates a modulated signal consisting of two separate frequencies, in the range of 2 GHz to 2.8 GHz. The phases and amplitudes from each antenna are controlled by a pair of AD8349 vector modulators (VMs). These VMs set the phase and amplitude of a high frequency signal using a set of four DC inputs, which are controlled by Linear Technologies LTC1990 digital to analog converters (DACs). The labview codemore » controls these DACs through an 8051 microcontroller.This code also monitors the phases and amplitudes of the 72 channels. Near each antenna, there is a coupler that channels a portion of the power into a binary network. Through a labview controlled switching array, any of the 72 coupled signals can be channeled in to the Tektronix TDS 7404 digital oscilloscope. Then the labview code takes an FFT of the signal, and compares it to the FFT of a reference signal in the oscilloscope to determine the magnitude and phase of each sideband of the signal. The code compensates for phase and amplitude errors introduced by differences in cable lengths.The labview code sets each of the 72 elements to a user determined phase and amplitude. For each element, the code runs an iterative procedure, where it adjusts the DACs until the correct phases and amplitudes have been reached.« less

  11. How to conduct External Quality Assessment Schemes for the pre-analytical phase?

    PubMed

    Kristensen, Gunn B B; Aakre, Kristin Moberg; Kristoffersen, Ann Helen; Sandberg, Sverre

    2014-01-01

    In laboratory medicine, several studies have described the most frequent errors in the different phases of the total testing process, and a large proportion of these errors occur in the pre-analytical phase. Schemes for registration of errors and subsequent feedback to the participants have been conducted for decades concerning the analytical phase by External Quality Assessment (EQA) organizations operating in most countries. The aim of the paper is to present an overview of different types of EQA schemes for the pre-analytical phase, and give examples of some existing schemes. So far, very few EQA organizations have focused on the pre-analytical phase, and most EQA organizations do not offer pre-analytical EQA schemes (EQAS). It is more difficult to perform and standardize pre-analytical EQAS and also, accreditation bodies do not ask the laboratories for results from such schemes. However, some ongoing EQA programs for the pre-analytical phase do exist, and some examples are given in this paper. The methods used can be divided into three different types; collecting information about pre-analytical laboratory procedures, circulating real samples to collect information about interferences that might affect the measurement procedure, or register actual laboratory errors and relate these to quality indicators. These three types have different focus and different challenges regarding implementation, and a combination of the three is probably necessary to be able to detect and monitor the wide range of errors occurring in the pre-analytical phase.

  12. Effects of Random Circuit Fabrication Errors on Small Signal Gain and on Output Phase In a Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Rittersdorf, I. M.; Antonsen, T. M., Jr.; Chernin, D.; Lau, Y. Y.

    2011-10-01

    Random fabrication errors may have detrimental effects on the performance of traveling-wave tubes (TWTs) of all types. A new scaling law for the modification in the average small signal gain and in the output phase is derived from the third order ordinary differential equation that governs the forward wave interaction in a TWT in the presence of random error that is distributed along the axis of the tube. Analytical results compare favorably with numerical results, in both gain and phase modifications as a result of random error in the phase velocity of the slow wave circuit. Results on the effect of the reverse-propagating circuit mode will be reported. This work supported by AFOSR, ONR, L-3 Communications Electron Devices, and Northrop Grumman Corporation.

  13. Optimal preview control for a linear continuous-time stochastic control system in finite-time horizon

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi

    2017-01-01

    This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.

  14. Advanced Control Algorithms for Compensating the Phase Distortion Due to Transport Delay in Human-Machine Systems

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.

    2007-01-01

    The desire to create more complex visual scenes in modern flight simulators outpaces recent increases in processor speed. As a result, simulation transport delay remains a problem. New approaches for compensating the transport delay in a flight simulator have been developed and are presented in this report. The lead/lag filter, the McFarland compensator and the Sobiski/Cardullo state space filter are three prominent compensators. The lead/lag filter provides some phase lead, while introducing significant gain distortion in the same frequency interval. The McFarland predictor can compensate for much longer delay and cause smaller gain error in low frequencies than the lead/lag filter, but the gain distortion beyond the design frequency interval is still significant, and it also causes large spikes in prediction. Though, theoretically, the Sobiski/Cardullo predictor, a state space filter, can compensate the longest delay with the least gain distortion among the three, it has remained in laboratory use due to several limitations. The first novel compensator is an adaptive predictor that makes use of the Kalman filter algorithm in a unique manner. In this manner the predictor can accurately provide the desired amount of prediction, while significantly reducing the large spikes caused by the McFarland predictor. Among several simplified online adaptive predictors, this report illustrates mathematically why the stochastic approximation algorithm achieves the best compensation results. A second novel approach employed a reference aircraft dynamics model to implement a state space predictor on a flight simulator. The practical implementation formed the filter state vector from the operator s control input and the aircraft states. The relationship between the reference model and the compensator performance was investigated in great detail, and the best performing reference model was selected for implementation in the final tests. Theoretical analyses of data from offline simulations with time delay compensation show that both novel predictors effectively suppress the large spikes caused by the McFarland compensator. The phase errors of the three predictors are not significant. The adaptive predictor yields greater gain errors than the McFarland predictor for short delays (96 and 138 ms), but shows smaller errors for long delays (186 and 282 ms). The advantage of the adaptive predictor becomes more obvious for a longer time delay. Conversely, the state space predictor results in substantially smaller gain error than the other two predictors for all four delay cases.

  15. Evaluation and error apportionment of an ensemble of ...

    EPA Pesticide Factsheets

    Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII.The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact

  16. Single-Event Upset Characterization of Common First- and Second-Order All-Digital Phase-Locked Loops

    NASA Astrophysics Data System (ADS)

    Chen, Y. P.; Massengill, L. W.; Kauppila, J. S.; Bhuva, B. L.; Holman, W. T.; Loveless, T. D.

    2017-08-01

    The single-event upset (SEU) vulnerability of common first- and second-order all-digital-phase-locked loops (ADPLLs) is investigated through field-programmable gate array-based fault injection experiments. SEUs in the highest order pole of the loop filter and fraction-based phase detectors (PDs) may result in the worst case error response, i.e., limit cycle errors, often requiring system restart. SEUs in integer-based linear PDs may result in loss-of-lock errors, while SEUs in bang-bang PDs only result in temporary-frequency errors. ADPLLs with the same frequency tuning range but fewer bits in the control word exhibit better overall SEU performance.

  17. Using total quality management approach to improve patient safety by preventing medication error incidences*.

    PubMed

    Yousef, Nadin; Yousef, Farah

    2017-09-04

    Whereas one of the predominant causes of medication errors is a drug administration error, a previous study related to our investigations and reviews estimated that the incidences of medication errors constituted 6.7 out of 100 administrated medication doses. Therefore, we aimed by using six sigma approach to propose a way that reduces these errors to become less than 1 out of 100 administrated medication doses by improving healthcare professional education and clearer handwritten prescriptions. The study was held in a General Government Hospital. First, we systematically studied the current medication use process. Second, we used six sigma approach by utilizing the five-step DMAIC process (Define, Measure, Analyze, Implement, Control) to find out the real reasons behind such errors. This was to figure out a useful solution to avoid medication error incidences in daily healthcare professional practice. Data sheet was used in Data tool and Pareto diagrams were used in Analyzing tool. In our investigation, we reached out the real cause behind administrated medication errors. As Pareto diagrams used in our study showed that the fault percentage in administrated phase was 24.8%, while the percentage of errors related to prescribing phase was 42.8%, 1.7 folds. This means that the mistakes in prescribing phase, especially because of the poor handwritten prescriptions whose percentage in this phase was 17.6%, are responsible for the consequent) mistakes in this treatment process later on. Therefore, we proposed in this study an effective low cost strategy based on the behavior of healthcare workers as Guideline Recommendations to be followed by the physicians. This method can be a prior caution to decrease errors in prescribing phase which may lead to decrease the administrated medication error incidences to less than 1%. This improvement way of behavior can be efficient to improve hand written prescriptions and decrease the consequent errors related to administrated medication doses to less than the global standard; as a result, it enhances patient safety. However, we hope other studies will be made later in hospitals to practically evaluate how much effective our proposed systematic strategy really is in comparison with other suggested remedies in this field.

  18. The NIRCam Optical Telescope Simulator (NOTES)

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hakun, Claef; Greeley, Bradford; Eichorn, William; Leviton, Douglas; Guishard, Corina; Gong, Qian; Warner, Thomas; Bugby, David; Robinson, Frederick; hide

    2007-01-01

    The Near Infra-Red Camera (NIRCam), the 0.6-5.0 micron imager and wavefront sensing instrument for the James Webb Space Telescope (JWST), will be used on orbit both as a science instrument, and to tune the alignment of the telescope. The NIRCam Optical Telescope Element Simulator (NOTES) will be used during ground testing to provide an external stimulus to verify wavefront error, imaging characteristics, and wavefront sensing performance of this crucial instrument. NOTES is being designed and built by NASA Goddard Space Flight Center with the help of Swales Aerospace and Orbital Sciences Corporation. It is a single-point imaging system that uses an elliptical mirror to form an U20 image of a point source. The point source will be fed via optical fibers from outside the vacuum chamber. A tip/tilt mirror is used to change the chief ray angle of the beam as it passes through the aperture stop and thus steer the image over NIRCam's field of view without moving the pupil or introducing field aberrations. Interchangeable aperture stop elements allow us to simulate perfect JWST wavefronts for wavefront error testing, or introduce transmissive phase plates to simulate a misaligned JWST segmented mirror for wavefront sensing verification. NOTES will be maintained at an operating temperature of 80K during testing using thermal switches, allowing it to operate within the same test chamber as the NIRCam instrument. We discuss NOTES' current design status and on-going development activities.

  19. Control of secondary electrons from ion beam impact using a positive potential electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, T. P., E-mail: tpcrowley@xanthotechnologies.com; Demers, D. R.; Fimognari, P. J.

    2016-11-15

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  20. Semiparametric modeling: Correcting low-dimensional model error in parametric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Tyrus, E-mail: thb11@psu.edu; Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013

    2016-03-01

    In this paper, a semiparametric modeling approach is introduced as a paradigm for addressing model error arising from unresolved physical phenomena. Our approach compensates for model error by learning an auxiliary dynamical model for the unknown parameters. Practically, the proposed approach consists of the following steps. Given a physics-based model and a noisy data set of historical observations, a Bayesian filtering algorithm is used to extract a time-series of the parameter values. Subsequently, the diffusion forecast algorithm is applied to the retrieved time-series in order to construct the auxiliary model for the time evolving parameters. The semiparametric forecasting algorithm consistsmore » of integrating the existing physics-based model with an ensemble of parameters sampled from the probability density function of the diffusion forecast. To specify initial conditions for the diffusion forecast, a Bayesian semiparametric filtering method that extends the Kalman-based filtering framework is introduced. In difficult test examples, which introduce chaotically and stochastically evolving hidden parameters into the Lorenz-96 model, we show that our approach can effectively compensate for model error, with forecasting skill comparable to that of the perfect model.« less

  1. Self-referenced locking of optical coherence by single-detector electronic-frequency tagging

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Benham, Vincent; Spring, Justin; Ward, Benjamin; Ghebremichael, F.; Culpepper, Mark A.; Sanchez, Anthony D.; Baker, J. T.; Pilkington, D.; Berdine, Richard

    2006-02-01

    We report a novel coherent beam combining technique. This is the first actively phase locked optical fiber array that eliminates the need for a separate reference beam. In addition, only a single photodetector is required. The far-field central spot of the array is imaged onto the photodetector to produce the phase control loop signals. Each leg of the fiber array is phase modulated with a separate RF frequency, thus tagging the optical phase shift for each leg by a separate RF frequency. The optical phase errors for the individual array legs are separated in the electronic domain. In contrast with the previous active phase locking techniques, in our system the reference beam is spatially overlapped with all the RF modulated fiber leg beams onto a single detector. The phase shift between the optical wave in the reference leg and in the RF modulated legs is measured separately in the electronic domain and the phase error signal is feedback to the LiNbO 3 phase modulator for that leg to minimize the phase error for that leg relative to the reference leg. The advantages of this technique are 1) the elimination of the reference beam and beam combination optics and 2) the electronic separation of the phase error signals without any degradation of the phase locking accuracy. We will present the first theoretical model for self-referenced LOCSET and describe experimental results for a 3 x 3 array.

  2. Blood pool and tissue phase patient motion effects on 82rubidium PET myocardial blood flow quantification.

    PubMed

    Lee, Benjamin C; Moody, Jonathan B; Poitrasson-Rivière, Alexis; Melvin, Amanda C; Weinberg, Richard L; Corbett, James R; Ficaro, Edward P; Murthy, Venkatesh L

    2018-03-23

    Patient motion can lead to misalignment of left ventricular volumes of interest and subsequently inaccurate quantification of myocardial blood flow (MBF) and flow reserve (MFR) from dynamic PET myocardial perfusion images. We aimed to identify the prevalence of patient motion in both blood and tissue phases and analyze the effects of this motion on MBF and MFR estimates. We selected 225 consecutive patients that underwent dynamic stress/rest rubidium-82 chloride ( 82 Rb) PET imaging. Dynamic image series were iteratively reconstructed with 5- to 10-second frame durations over the first 2 minutes for the blood phase and 10 to 80 seconds for the tissue phase. Motion shifts were assessed by 3 physician readers from the dynamic series and analyzed for frequency, magnitude, time, and direction of motion. The effects of this motion isolated in time, direction, and magnitude on global and regional MBF and MFR estimates were evaluated. Flow estimates derived from the motion corrected images were used as the error references. Mild to moderate motion (5-15 mm) was most prominent in the blood phase in 63% and 44% of the stress and rest studies, respectively. This motion was observed with frequencies of 75% in the septal and inferior directions for stress and 44% in the septal direction for rest. Images with blood phase isolated motion had mean global MBF and MFR errors of 2%-5%. Isolating blood phase motion in the inferior direction resulted in mean MBF and MFR errors of 29%-44% in the RCA territory. Flow errors due to tissue phase isolated motion were within 1%. Patient motion was most prevalent in the blood phase and MBF and MFR errors increased most substantially with motion in the inferior direction. Motion correction focused on these motions is needed to reduce MBF and MFR errors.

  3. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature

    PubMed Central

    MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard

    2016-01-01

    Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600

  4. On the robustness of bucket brigade quantum RAM

    NASA Astrophysics Data System (ADS)

    Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa

    2015-12-01

    We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.

  5. Developing and Validating Path-Dependent Uncertainty Estimates for use with the Regional Seismic Travel Time (RSTT) Model

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Anderson, D. N.; Phillips, W. S.; Myers, S. C.; Ballard, S.

    2016-12-01

    The Regional Seismic Travel Time (RSTT) tomography model has been developed to improve travel time predictions for regional phases (Pn, Sn, Pg, Lg) in order to increase seismic location accuracy, especially for explosion monitoring. The RSTT model is specifically designed to exploit regional phases for location, especially when combined with teleseismic arrivals. The latest RSTT model (version 201404um) has been released (http://www.sandia.gov/rstt). Travel time uncertainty estimates for RSTT are determined using one-dimensional (1D), distance-dependent error models, that have the benefit of being very fast to use in standard location algorithms, but do not account for path-dependent variations in error, and structural inadequacy of the RSTTT model (e.g., model error). Although global in extent, the RSTT tomography model is only defined in areas where data exist. A simple 1D error model does not accurately model areas where RSTT has not been calibrated. We are developing and validating a new error model for RSTT phase arrivals by mathematically deriving this multivariate model directly from a unified model of RSTT embedded into a statistical random effects model that captures distance, path and model error effects. An initial method developed is a two-dimensional path-distributed method using residuals. The goals for any RSTT uncertainty method are for it to be both readily useful for the standard RSTT user as well as improve travel time uncertainty estimates for location. We have successfully tested using the new error model for Pn phases and will demonstrate the method and validation of the error model for Sn, Pg, and Lg phases.

  6. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  7. Quartz crystal resonator g sensitivity measurement methods and recent results.

    PubMed

    Driscoll, M M

    1990-01-01

    A technique for accurate measurements of quartz crystal resonator vibration sensitivity is described. The technique utilizes a crystal oscillator circuit in which a prescribed length of coaxial cable is used to connect the resonator to the oscillator sustaining stage. A method is provided for determination and removal of measurement errors normally introduced as a result of cable vibration. In addition to oscillator-type measurements, it is also possible to perform similar vibration sensitivity measurements using a synthesized signal generator with the resonator installed in a passive phase bridge. Test results are reported for 40 and 50 MHz, fifth overtone AT-cut, and third overtone SC-cut crystals. Acceleration sensitivity (gamma vector) values for the SC-cut resonators were typically four times smaller (5x10(-10) per g) than for the AT-cut units. However, smaller unit-to-unit gamma vector magnitude variation was exhibited by the AT-cut resonators. Oscillator sustaining stage vibration sensitivity was characterized by an equivalent open-loop phase modulation of 10(-6) rad/g.

  8. Thermodynamic efficiency of nonimaging concentrators

    NASA Astrophysics Data System (ADS)

    Shatz, Narkis; Bortz, John; Winston, Roland

    2009-08-01

    The purpose of a nonimaging concentrator is to transfer maximal flux from the phase space of a source to that of a target. A concentrator's performance can be expressed relative to a thermodynamic reference. We discuss consequences of Fermat's principle of geometrical optics. We review étendue dilution and optical loss mechanisms associated with nonimaging concentrators, especially for the photovoltaic (PV) role. We introduce the concept of optical thermodynamic efficiency which is a performance metric combining the first and second laws of thermodynamics. The optical thermodynamic efficiency is a comprehensive metric that takes into account all loss mechanisms associated with transferring flux from the source to the target phase space, which may include losses due to inadequate design, non-ideal materials, fabrication errors, and less than maximal concentration. As such, this metric is a gold standard for evaluating the performance of nonimaging concentrators. Examples are provided to illustrate the use of this new metric. In particular we discuss concentrating PV systems for solar power applications.

  9. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1991-01-01

    Shannon's capacity bound shows that coding can achieve large reductions in the required signal to noise ratio per information bit (E sub b/N sub 0 where E sub b is the energy per bit and (N sub 0)/2 is the double sided noise density) in comparison to uncoded schemes. For bandwidth efficiencies of 2 bit/sym or greater, these improvements were obtained through the use of Trellis Coded Modulation and Block Coded Modulation. A method of obtaining these high efficiencies using multidimensional Multiple Phase Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) signal sets with trellis coding is described. These schemes have advantages in decoding speed, phase transparency, and coding gain in comparison to other trellis coding schemes. Finally, a general parity check equation for rotationally invariant trellis codes is introduced from which non-linear codes for two dimensional MPSK and QAM signal sets are found. These codes are fully transparent to all rotations of the signal set.

  10. The Chemical Modeling of Electronic Materials and Interconnections

    NASA Astrophysics Data System (ADS)

    Kivilahti, J. K.

    2002-12-01

    Thermodynamic and kinetic modeling, together with careful experimental work, is of great help for developing new electronic materials such as lead-free solders, their compatible metallizations and diffusion-barrier layers, as well as joining and bonding processes for advanced electronics manufacturing. When combined, these modeling techniques lead to a rationalization of the trial-and-error methods employed in the electronics industry, limiting experimentation and, thus, reducing significantly time-to-market of new products. This modeling provides useful information on the stabilities of phases (microstructures), driving forces for chemical reactions, and growth rates of reaction products occurring in interconnections or thin-film structures during processing, testing, and in longterm use of electronic devices. This is especially important when manufacturing advanced lead-free electronics where solder joint volumes are decreasing while the number of dissimilar reactive materials is increasing markedly. Therefore, a new concept of local nominal composition was introduced and applied together with the relevant ternary and multicomponent phase diagrams to some solder/conductor systems.

  11. Errors in Viking Lander Atmospheric Profiles Discovered Using MOLA Topography

    NASA Technical Reports Server (NTRS)

    Withers, Paul; Lorenz, R. D.; Neumann, G. A.

    2002-01-01

    Each Viking lander measured a topographic profile during entry. Comparing to MOLA (Mars Orbiter Laser Altimeter), we find a vertical error of 1-2 km in the Viking trajectory. This introduces a systematic error of 10-20% in the Viking densities and pressures at a given altitude. Additional information is contained in the original extended abstract.

  12. Numerical stability in problems of linear algebra.

    NASA Technical Reports Server (NTRS)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  13. Advanced technology development multi-color holography

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1994-01-01

    Several key aspects of multi-color holography and some non-conventional ways to study the holographic reconstructions are considered. The error analysis of three-color holography is considered in detail with particular example of a typical triglycine sulfate crystal growth situation. For the numerical analysis of the fringe patterns, a new algorithm is introduced with experimental verification using sugar-water solution. The role of the phase difference among component holograms is also critically considered with examples of several two- and three-color situations. The status of experimentation on two-color holography and fabrication of a small breadboard system is also reported. Finally, some successful demonstrations of unconventional ways to study holographic reconstructions are described. These methods are deflectometry and confocal optical processing using some Spacelab III holograms.

  14. Design and Optimization of the SPOT Primary Mirror Segment

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason G.; Michaels, Gregory J.

    2005-01-01

    The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit

  15. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer

    NASA Astrophysics Data System (ADS)

    Milione, Giovanni; Lavery, Martin P. J.; Huang, Hao; Ren, Yongxiong; Xie, Guodong; Nguyen, Thien An; Karimi, Ebrahim; Marrucci, Lorenzo; Nolan, Daniel A.; Alfano, Robert R.; Willner, Alan E.

    2015-05-01

    Vector modes are spatial modes that have spatially inhomogeneous states of polarization, such as, radial and azimuthal polarization. They can produce smaller spot sizes and stronger longitudinal polarization components upon focusing. As a result, they are used for many applications, including optical trapping and nanoscale imaging. In this work, vector modes are used to increase the information capacity of free space optical communication via the method of optical communication referred to as mode division multiplexing. A mode (de)multiplexer for vector modes based on a liquid crystal technology referred to as a q-plate is introduced. As a proof of principle, using the mode (de)multiplexer four vector modes each carrying a 20 Gbit/s quadrature phase shift keying signal on a single wavelength channel (~1550nm), comprising an aggregate 80 Gbit/s, were transmitted ~1m over the lab table with <-16.4 dB (<2%) mode crosstalk. Bit error rates for all vector modes were measured at the forward error correction threshold with power penalties < 3.41dB.

  16. Infrared/microwave (IR/MW) micromirror array beam combiner design and analysis.

    PubMed

    Tian, Yi; Lv, Lijun; Jiang, Liwei; Wang, Xin; Li, Yanhong; Yu, Haiming; Feng, Xiaochen; Li, Qi; Zhang, Li; Li, Zhuo

    2013-08-01

    We investigated the design method of an infrared (IR)/microwave (MW) micromirror array type of beam combiner. The size of micromirror is in microscopic levels and comparable to MW wavelengths, so that the MW will not react in these dimensions, whereas the much shorter optical wavelengths will be reflected by them. Hence, the MW multilayered substrate was simplified and designed using transmission line theory. The beam combiner used an IR wavefront-division imaging technique to reflect the IR radiation image to the unit under test (UUT)'s pupil in a parallel light path. In addition, the boresight error detected by phase monopulse radar was analyzed using a moment-of method (MoM) and multilevel fast multipole method (MLFMM) acceleration technique. The boresight error introduced by the finite size of the beam combiner was less than 1°. Finally, in order to verify the wavefront-division imaging technique, a prototype of a micromirror array was fabricated, and IR images were tested. The IR images obtained by the thermal imager verified the correctness of the wavefront-division imaging technique.

  17. Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.

    2018-05-01

    In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.

  18. A description of medication errors reported by pharmacists in a neonatal intensive care unit.

    PubMed

    Pawluk, Shane; Jaam, Myriam; Hazi, Fatima; Al Hail, Moza Sulaiman; El Kassem, Wessam; Khalifa, Hanan; Thomas, Binny; Abdul Rouf, Pallivalappila

    2017-02-01

    Background Patients in the Neonatal Intensive Care Unit (NICU) are at an increased risk for medication errors. Objective The objective of this study is to describe the nature and setting of medication errors occurring in patients admitted to an NICU in Qatar based on a standard electronic system reported by pharmacists. Setting Neonatal intensive care unit, Doha, Qatar. Method This was a retrospective cross-sectional study on medication errors reported electronically by pharmacists in the NICU between January 1, 2014 and April 30, 2015. Main outcome measure Data collected included patient information, and incident details including error category, medications involved, and follow-up completed. Results A total of 201 NICU pharmacists-reported medication errors were submitted during the study period. All reported errors did not reach the patient and did not cause harm. Of the errors reported, 98.5% occurred in the prescribing phase of the medication process with 58.7% being due to calculation errors. Overall, 53 different medications were documented in error reports with the anti-infective agents being the most frequently cited. The majority of incidents indicated that the primary prescriber was contacted and the error was resolved before reaching the next phase of the medication process. Conclusion Medication errors reported by pharmacists occur most frequently in the prescribing phase of the medication process. Our data suggest that error reporting systems need to be specific to the population involved. Special attention should be paid to frequently used medications in the NICU as these were responsible for the greatest numbers of medication errors.

  19. Adaptive Sparse Representation for Source Localization with Gain/Phase Errors

    PubMed Central

    Sun, Ke; Liu, Yimin; Meng, Huadong; Wang, Xiqin

    2011-01-01

    Sparse representation (SR) algorithms can be implemented for high-resolution direction of arrival (DOA) estimation. Additionally, SR can effectively separate the coherent signal sources because the spectrum estimation is based on the optimization technique, such as the L1 norm minimization, but not on subspace orthogonality. However, in the actual source localization scenario, an unknown gain/phase error between the array sensors is inevitable. Due to this nonideal factor, the predefined overcomplete basis mismatches the actual array manifold so that the estimation performance is degraded in SR. In this paper, an adaptive SR algorithm is proposed to improve the robustness with respect to the gain/phase error, where the overcomplete basis is dynamically adjusted using multiple snapshots and the sparse solution is adaptively acquired to match with the actual scenario. The simulation results demonstrate the estimation robustness to the gain/phase error using the proposed method. PMID:22163875

  20. X-ray focusing with efficient high-NA multilayer Laue lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajt, Sasa; Prasciolu, Mauro; Fleckenstein, Holger

    Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary withmore » layer thickness. We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm 2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. Furthermore, an error analysis indicates the possibility of achieving 1 nm focusing.« less

  1. X-ray focusing with efficient high-NA multilayer Laue lenses

    DOE PAGES

    Bajt, Sasa; Prasciolu, Mauro; Fleckenstein, Holger; ...

    2018-03-23

    Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary withmore » layer thickness. We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm 2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. Furthermore, an error analysis indicates the possibility of achieving 1 nm focusing.« less

  2. Reed-Solomon error-correction as a software patch mechanism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendley, Kevin D.

    This report explores how error-correction data generated by a Reed-Solomon code may be used as a mechanism to apply changes to an existing installed codebase. Using the Reed-Solomon code to generate error-correction data for a changed or updated codebase will allow the error-correction data to be applied to an existing codebase to both validate and introduce changes or updates from some upstream source to the existing installed codebase.

  3. An all digital phase locked loop for synchronization of a sinusoidal signal embedded in white Gaussian noise

    NASA Technical Reports Server (NTRS)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.

  4. Steady-state phase error for a phase-locked loop subjected to periodic Doppler inputs

    NASA Technical Reports Server (NTRS)

    Chen, C.-C.; Win, M. Z.

    1991-01-01

    The performance of a carrier phase locked loop (PLL) driven by a periodic Doppler input is studied. By expanding the Doppler input into a Fourier series and applying the linearized PLL approximations, it is easy to show that, for periodic frequency disturbances, the resulting steady state phase error is also periodic. Compared to the method of expanding frequency excursion into a power series, the Fourier expansion method can be used to predict the maximum phase error excursion for a periodic Doppler input. For systems with a large Doppler rate fluctuation, such as an optical transponder aboard an Earth orbiting spacecraft, the method can be applied to test whether a lower order tracking loop can provide satisfactory tracking and thereby save the effect of a higher order loop design.

  5. Using First Differences to Reduce Inhomogeneity in Radiosonde Temperature Datasets.

    NASA Astrophysics Data System (ADS)

    Free, Melissa; Angell, James K.; Durre, Imke; Lanzante, John; Peterson, Thomas C.; Seidel, Dian J.

    2004-11-01

    The utility of a “first difference” method for producing temporally homogeneous large-scale mean time series is assessed. Starting with monthly averages, the method involves dropping data around the time of suspected discontinuities and then calculating differences in temperature from one year to the next, resulting in a time series of year-to-year differences for each month at each station. These first difference time series are then combined to form large-scale means, and mean temperature time series are constructed from the first difference series. When applied to radiosonde temperature data, the method introduces random errors that decrease with the number of station time series used to create the large-scale time series and increase with the number of temporal gaps in the station time series. Root-mean-square errors for annual means of datasets produced with this method using over 500 stations are estimated at no more than 0.03 K, with errors in trends less than 0.02 K decade-1 for 1960 97 at 500 mb. For a 50-station dataset, errors in trends in annual global means introduced by the first differencing procedure may be as large as 0.06 K decade-1 (for six breaks per series), which is greater than the standard error of the trend. Although the first difference method offers significant resource and labor advantages over methods that attempt to adjust the data, it introduces an error in large-scale mean time series that may be unacceptable in some cases.


  6. Quantum biological channel modeling and capacity calculation.

    PubMed

    Djordjevic, Ivan B

    2012-12-10

    Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general.

  7. Evaluation of Two Computational Techniques of Calculating Multipath Using Global Positioning System Carrier Phase Measurements

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.

    1996-01-01

    Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.

  8. Optimal threshold of error decision related to non-uniform phase distribution QAM signals generated from MZM based on OCS

    NASA Astrophysics Data System (ADS)

    Han, Xifeng; Zhou, Wen

    2018-03-01

    Optical vector radio-frequency (RF) signal generation based on optical carrier suppression (OCS) in one Mach-Zehnder modulator (MZM) can realize frequency-doubling. In order to match the phase or amplitude of the recovered quadrature amplitude modulation (QAM) signal, phase or amplitude pre-coding is necessary in the transmitter side. The detected QAM signals usually have one non-uniform phase distribution after square-law detection at the photodiode because of the imperfect characteristics of the optical and electrical devices. We propose to use optimal threshold of error decision for non-uniform phase contribution to reduce the bit error rate (BER). By employing this scheme, the BER of 16 Gbaud (32 Gbit/s) quadrature-phase-shift-keying (QPSK) millimeter wave signal at 36 GHz is improved from 1 × 10-3 to 1 × 10-4 at - 4 . 6 dBm input power into the photodiode.

  9. Effect of photogrammetric reading error on slope-frequency distributions. [obtained from Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Wu, S. C.

    1973-01-01

    The effect of reading error on two hypothetical slope frequency distributions and two slope frequency distributions from actual lunar data in order to ensure that these errors do not cause excessive overestimates of algebraic standard deviations for the slope frequency distributions. The errors introduced are insignificant when the reading error is small and the slope length is large. A method for correcting the errors in slope frequency distributions is presented and applied to 11 distributions obtained from Apollo 15, 16, and 17 panoramic camera photographs and Apollo 16 metric camera photographs.

  10. Error-Based Design Space Windowing

    NASA Technical Reports Server (NTRS)

    Papila, Melih; Papila, Nilay U.; Shyy, Wei; Haftka, Raphael T.; Fitz-Coy, Norman

    2002-01-01

    Windowing of design space is considered in order to reduce the bias errors due to low-order polynomial response surfaces (RS). Standard design space windowing (DSW) uses a region of interest by setting a requirement on response level and checks it by a global RS predictions over the design space. This approach, however, is vulnerable since RS modeling errors may lead to the wrong region to zoom on. The approach is modified by introducing an eigenvalue error measure based on point-to-point mean squared error criterion. Two examples are presented to demonstrate the benefit of the error-based DSW.

  11. Purification of Logic-Qubit Entanglement.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-07-05

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.

  12. Multisensor data fusion for enhanced respiratory rate estimation in thermal videos.

    PubMed

    Pereira, Carina B; Xinchi Yu; Blazek, Vladimir; Venema, Boudewijn; Leonhardt, Steffen

    2016-08-01

    Scientific studies have demonstrated that an atypical respiratory rate (RR) is frequently one of the earliest and major indicators of physiological distress. However, it is also described in the literature as "the neglected vital parameter", mainly due to shortcomings of clinical available monitoring techniques, which require attachment of sensors to the patient's body. The current paper introduces a novel approach that uses multisensor data fusion for an enhanced RR estimation in thermal videos. It considers not only the temperature variation around nostrils and mouth, but the upward and downward movement of both shoulders. In order to analyze the performance of our approach, two experiments were carried out on five healthy candidates. While during phase A, the subjects breathed normally, during phase B they simulated different breathing patterns. Thoracic effort was the gold standard elected to validate our algorithm. Our results show an excellent agreement between infrared thermography (IRT) and ground truth. While in phase A a mean correlation of 0.983 and a root-mean-square error of 0.240 bpm (breaths per minute) was obtained, in phase B they hovered around 0.995 and 0.890 bpm, respectively. In sum, IRT may be a promising clinical alternative to conventional sensors. Additionally, multisensor data fusion contributes to an enhancement of RR estimation and robustness.

  13. Effects of structural error on the estimates of parameters of dynamical systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1986-01-01

    In this paper, the notion of 'near-equivalence in probability' is introduced for identifying a system in the presence of several error sources. Following some basic definitions, necessary and sufficient conditions for the identifiability of parameters are given. The effects of structural error on the parameter estimates for both the deterministic and stochastic cases are considered.

  14. Star centroiding error compensation for intensified star sensors.

    PubMed

    Jiang, Jie; Xiong, Kun; Yu, Wenbo; Yan, Jinyun; Zhang, Guangjun

    2016-12-26

    A star sensor provides high-precision attitude information by capturing a stellar image; however, the traditional star sensor has poor dynamic performance, which is attributed to its low sensitivity. Regarding the intensified star sensor, the image intensifier is utilized to improve the sensitivity, thereby further improving the dynamic performance of the star sensor. However, the introduction of image intensifier results in star centroiding accuracy decrease, further influencing the attitude measurement precision of the star sensor. A star centroiding error compensation method for intensified star sensors is proposed in this paper to reduce the influences. First, the imaging model of the intensified detector, which includes the deformation parameter of the optical fiber panel, is established based on the orthographic projection through the analysis of errors introduced by the image intensifier. Thereafter, the position errors at the target points based on the model are obtained by using the Levenberg-Marquardt (LM) optimization method. Last, the nearest trigonometric interpolation method is presented to compensate for the arbitrary centroiding error of the image plane. Laboratory calibration result and night sky experiment result show that the compensation method effectively eliminates the error introduced by the image intensifier, thus remarkably improving the precision of the intensified star sensors.

  15. Image processing methods to compensate for IFOV errors in microgrid imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Boger, James K.; Fetrow, Matthew P.; Tyo, J. Scott; Black, Wiley T.

    2006-05-01

    Long-wave infrared imaging Stokes vector polarimeters are used in many remote sensing applications. Imaging polarimeters require that several measurements be made under optically different conditions in order to estimate the polarization signature at a given scene point. This multiple-measurement requirement introduces error in the signature estimates, and the errors differ depending upon the type of measurement scheme used. Here, we investigate a LWIR linear microgrid polarimeter. This type of instrument consists of a mosaic of micropolarizers at different orientations that are masked directly onto a focal plane array sensor. In this scheme, each polarization measurement is acquired spatially and hence each is made at a different point in the scene. This is a significant source of error, as it violates the requirement that each polarization measurement have the same instantaneous field-of-view (IFOV). In this paper, we first study the amount of error introduced by the IFOV handicap in microgrid instruments. We then proceed to investigate means for mitigating the effects of these errors to improve the quality of polarimetric imagery. In particular, we examine different interpolation schemes and gauge their performance. These studies are completed through the use of both real instrumental and modeled data.

  16. Digital Mirror Device Application in Reduction of Wave-front Phase Errors

    PubMed Central

    Zhang, Yaping; Liu, Yan; Wang, Shuxue

    2009-01-01

    In order to correct the image distortion created by the mixing/shear layer, creative and effectual correction methods are necessary. First, a method combining adaptive optics (AO) correction with a digital micro-mirror device (DMD) is presented. Second, performance of an AO system using the Phase Diverse Speckle (PDS) principle is characterized in detail. Through combining the DMD method with PDS, a significant reduction in wavefront phase error is achieved in simulations and experiments. This kind of complex correction principle can be used to recovery the degraded images caused by unforeseen error sources. PMID:22574016

  17. Multipath induced errors in meteorological Doppler/interferometer location systems

    NASA Technical Reports Server (NTRS)

    Wallace, R. G.

    1984-01-01

    One application of an RF interferometer aboard a low-orbiting spacecraft to determine the location of ground-based transmitters is in tracking high-altitude balloons for meteorological studies. A source of error in this application is reflection of the signal from the sea surface. Through propagating and signal analysis, the magnitude of the reflection-induced error in both Doppler frequency measurements and interferometer phase measurements was estimated. The theory of diffuse scattering from random surfaces was applied to obtain the power spectral density of the reflected signal. The processing of the combined direct and reflected signals was then analyzed to find the statistics of the measurement error. It was found that the error varies greatly during the satellite overpass and attains its maximum value at closest approach. The maximum values of interferometer phase error and Doppler frequency error found for the system configuration considered were comparable to thermal noise-induced error.

  18. Network Adjustment of Orbit Errors in SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Bahr, Hermann; Hanssen, Ramon

    2010-03-01

    Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.

  19. Magnetic-field sensing with quantum error detection under the effect of energy relaxation

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Benjamin, Simon

    2017-03-01

    A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.

  20. Evaluation of quality indicators in a laboratory supporting tertiary cancer care facilities in India.

    PubMed

    Kumar, Savitha Anil; Jayanna, Prashanth; Prabhudesai, Shilpa; Kumar, Ajai

    2014-01-01

    To collect and tabulate errors and nonconformities in the preanalytical, analytical, and postanalytical process phases in a diagnostic clinical laboratory that supports a super-specialty cancer center in India, and identify areas of potential improvement in patient services. We collected data from our laboratory during a period of 24 months. Departments in the study included clinical biochemistry, hematology, clinical pathology, microbiology and serology, surgical pathology, and molecular pathology. We had initiated quality assessment based on international standards in our laboratory in 2010, with the aim of obtaining accreditation by national and international governing bodies. We followed the guidelines specified by International Organization for Standardization (ISO) 15189:2007 to identify noncompliant elements of our processes. Among a total of 144,030 specimens that our referral laboratory received during the 2-year period of our study, we uncovered an overall error rate for all 3 process phases of 1.23%; all of our error rates closely approximated the results from our peer institutions. Errors were most common in the preanalytical phase in both years of study; preanalytical- and postanalytical-phase errors constituted more than 90% of all errors. Further improvements are warranted in laboratory services and are contingent on adequate training and interdepartmental communication and cooperation. Copyright© by the American Society for Clinical Pathology (ASCP).

  1. Systematic Error in Leaf Water Potential Measurements with a Thermocouple Psychrometer.

    PubMed

    Rawlins, S L

    1964-10-30

    To allow for the error in measurement of water potentials in leaves, introduced by the presence of a water droplet in the chamber of the psychrometer, a correction must be made for the permeability of the leaf.

  2. A Comparison of Three PML Treatments for CAA (and CFD)

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2008-01-01

    In this paper we compare three Perfectly Matched Layer (PML) treatments by means of a series of numerical experiments, using common numerical algorithms, computational grids, and code implementations. These comparisons are with the Linearized Euler Equations, for base uniform base flow. We see that there are two very good PML candidates, and that can both control the introduced error. Furthermore, we also show that corners can be handled with essentially no increase in the introduced error, and that with a good PML, the outer boundary is the most significant source of err

  3. Phase processing for quantitative susceptibility mapping of regions with large susceptibility and lack of signal.

    PubMed

    Fortier, Véronique; Levesque, Ives R

    2018-06-01

    Phase processing impacts the accuracy of quantitative susceptibility mapping (QSM). Techniques for phase unwrapping and background removal have been proposed and demonstrated mostly in brain. In this work, phase processing was evaluated in the context of large susceptibility variations (Δχ) and negligible signal, in particular for susceptibility estimation using the iterative phase replacement (IPR) algorithm. Continuous Laplacian, region-growing, and quality-guided unwrapping were evaluated. For background removal, Laplacian boundary value (LBV), projection onto dipole fields (PDF), sophisticated harmonic artifact reduction for phase data (SHARP), variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP), regularization enabled sophisticated harmonic artifact reduction for phase data (RESHARP), and 3D quadratic polynomial field removal were studied. Each algorithm was quantitatively evaluated in simulation and qualitatively in vivo. Additionally, IPR-QSM maps were produced to evaluate the impact of phase processing on the susceptibility in the context of large Δχ with negligible signal. Quality-guided unwrapping was the most accurate technique, whereas continuous Laplacian performed poorly in this context. All background removal algorithms tested resulted in important phase inaccuracies, suggesting that techniques used for brain do not translate well to situations where large Δχ and no or low signal are expected. LBV produced the smallest errors, followed closely by PDF. Results suggest that quality-guided unwrapping should be preferred, with PDF or LBV for background removal, for QSM in regions with large Δχ and negligible signal. This reduces the susceptibility inaccuracy introduced by phase processing. Accurate background removal remains an open question. Magn Reson Med 79:3103-3113, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Unifying error structures in commonly used biotracer mixing models.

    PubMed

    Stock, Brian C; Semmens, Brice X

    2016-10-01

    Mixing models are statistical tools that use biotracers to probabilistically estimate the contribution of multiple sources to a mixture. These biotracers may include contaminants, fatty acids, or stable isotopes, the latter of which are widely used in trophic ecology to estimate the mixed diet of consumers. Bayesian implementations of mixing models using stable isotopes (e.g., MixSIR, SIAR) are regularly used by ecologists for this purpose, but basic questions remain about when each is most appropriate. In this study, we describe the structural differences between common mixing model error formulations in terms of their assumptions about the predation process. We then introduce a new parameterization that unifies these mixing model error structures, as well as implicitly estimates the rate at which consumers sample from source populations (i.e., consumption rate). Using simulations and previously published mixing model datasets, we demonstrate that the new error parameterization outperforms existing models and provides an estimate of consumption. Our results suggest that the error structure introduced here will improve future mixing model estimates of animal diet. © 2016 by the Ecological Society of America.

  5. Laboratory errors and patient safety.

    PubMed

    Miligy, Dawlat A

    2015-01-01

    Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that evaluated the encountered laboratory errors and launch the great need for universal standardization and bench marking measures to control the laboratory work.

  6. Universality and tails of long-range interactions in one dimension

    NASA Astrophysics Data System (ADS)

    Valiente, Manuel; Öhberg, Patrik

    2017-07-01

    Long-range interactions and, in particular, two-body potentials with power-law long-distance tails are ubiquitous in nature. For two bosons or fermions in one spatial dimension, the latter case being formally equivalent to three-dimensional s -wave scattering, we show how generic asymptotic interaction tails can be accounted for in the long-distance limit of scattering wave functions. This is made possible by introducing a generalization of the collisional phase shifts to include space dependence. We show that this distance dependence is universal, in that it does not depend on short-distance details of the interaction. The energy dependence is also universal, and is fully determined by the asymptotic tails of the two-body potential. As an important application of our findings, we describe how to eliminate finite-size effects with long-range potentials in the calculation of scattering phase shifts from exact diagonalization. We show that even with moderately small system sizes it is possible to accurately extract phase shifts that would otherwise be plagued with finite-size errors. We also consider multichannel scattering, focusing on the estimation of open channel asymptotic interaction strengths via finite-size analysis.

  7. Sample interval modulation for the simultaneous acquisition of displacement vector data in magnetic resonance elastography: theory and application

    NASA Astrophysics Data System (ADS)

    Klatt, Dieter; Yasar, Temel K.; Royston, Thomas J.; Magin, Richard L.

    2013-12-01

    SampLe Interval Modulation-magnetic resonance elastography (SLIM-MRE) is introduced for simultaneously encoding all three displacement projections of a monofrequency vibration into the MR signal phase. In SLIM-MRE, the individual displacement components are observed using different sample intervals. In doing so, the components are modulated with different apparent frequencies in the MR signal phase expressed as a harmonic function of the start time of the motion encoding gradients and can thus be decomposed by applying a Fourier transform to the sampled multidirectional MR phases. In this work, the theoretical foundations of SLIM-MRE are presented and the new idea is implemented using a high field (11.7 T) vertical bore magnetic resonance imaging system on an inhomogeneous agarose gel phantom sample. The local frequency estimation-derived stiffness values were the same within the error margins for both the new SLIM-MRE method and for conventional MRE, while the number of temporally-resolved MRE experiments needed for each study was reduced from three to one. In this work, we present for the first time, monofrequency displacement data along three sensitization directions that were acquired simultaneously and stored in the same k-space.

  8. Sample interval modulation for the simultaneous acquisition of displacement vector data in magnetic resonance elastography: theory and application.

    PubMed

    Klatt, Dieter; Yasar, Temel K; Royston, Thomas J; Magin, Richard L

    2013-12-21

    SampLe Interval Modulation-magnetic resonance elastography (SLIM-MRE) is introduced for simultaneously encoding all three displacement projections of a monofrequency vibration into the MR signal phase. In SLIM-MRE, the individual displacement components are observed using different sample intervals. In doing so, the components are modulated with different apparent frequencies in the MR signal phase expressed as a harmonic function of the start time of the motion encoding gradients and can thus be decomposed by applying a Fourier transform to the sampled multidirectional MR phases. In this work, the theoretical foundations of SLIM-MRE are presented and the new idea is implemented using a high field (11.7 T) vertical bore magnetic resonance imaging system on an inhomogeneous agarose gel phantom sample. The local frequency estimation-derived stiffness values were the same within the error margins for both the new SLIM-MRE method and for conventional MRE, while the number of temporally-resolved MRE experiments needed for each study was reduced from three to one. In this work, we present for the first time, monofrequency displacement data along three sensitization directions that were acquired simultaneously and stored in the same k-space.

  9. An optimal stratified Simon two-stage design.

    PubMed

    Parashar, Deepak; Bowden, Jack; Starr, Colin; Wernisch, Lorenz; Mander, Adrian

    2016-07-01

    In Phase II oncology trials, therapies are increasingly being evaluated for their effectiveness in specific populations of interest. Such targeted trials require designs that allow for stratification based on the participants' molecular characterisation. A targeted design proposed by Jones and Holmgren (JH) Jones CL, Holmgren E: 'An adaptive Simon two-stage design for phase 2 studies of targeted therapies', Contemporary Clinical Trials 28 (2007) 654-661.determines whether a drug only has activity in a disease sub-population or in the wider disease population. Their adaptive design uses results from a single interim analysis to decide whether to enrich the study population with a subgroup or not; it is based on two parallel Simon two-stage designs. We study the JH design in detail and extend it by providing a few alternative ways to control the familywise error rate, in the weak sense as well as the strong sense. We also introduce a novel optimal design by minimising the expected sample size. Our extended design contributes to the much needed framework for conducting Phase II trials in stratified medicine. © 2016 The Authors Pharmaceutical Statistics Published by John Wiley & Sons Ltd. © 2016 The Authors Pharmaceutical Statistics Published by John Wiley & Sons Ltd.

  10. Accurate phase extraction algorithm based on Gram–Schmidt orthonormalization and least square ellipse fitting method

    NASA Astrophysics Data System (ADS)

    Lei, Hebing; Yao, Yong; Liu, Haopeng; Tian, Yiting; Yang, Yanfu; Gu, Yinglong

    2018-06-01

    An accurate algorithm by combing Gram-Schmidt orthonormalization and least square ellipse fitting technology is proposed, which could be used for phase extraction from two or three interferograms. The DC term of background intensity is suppressed by subtraction operation on three interferograms or by high-pass filter on two interferograms. Performing Gram-Schmidt orthonormalization on pre-processing interferograms, the phase shift error is corrected and a general ellipse form is derived. Then the background intensity error and the corrected error could be compensated by least square ellipse fitting method. Finally, the phase could be extracted rapidly. The algorithm could cope with the two or three interferograms with environmental disturbance, low fringe number or small phase shifts. The accuracy and effectiveness of the proposed algorithm are verified by both of the numerical simulations and experiments.

  11. Calibration of misalignment errors in the non-null interferometry based on reverse iteration optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xinmu; Hao, Qun; Hu, Yao; Wang, Shaopu; Ning, Yan; Li, Tengfei; Chen, Shufen

    2017-10-01

    With no necessity of compensating the whole aberration introduced by the aspheric surfaces, non-null test has the advantage over null test in applicability. However, retrace error, which is brought by the path difference between the rays reflected from the surface under test (SUT) and the incident rays, is introduced into the measurement and makes up of the residual wavefront aberrations (RWAs) along with surface figure error (SFE), misalignment error and other influences. Being difficult to separate from RWAs, the misalignment error may remain after measurement and it is hard to identify whether it is removed or not. It is a primary task to study the removal of misalignment error. A brief demonstration of digital Moiré interferometric technique is presented and a calibration method for misalignment error on the basis of reverse iteration optimization (RIO) algorithm in non-null test method is addressed. The proposed method operates mostly in the virtual system, and requires no accurate adjustment in the real interferometer, which is of significant advantage in reducing the errors brought by repeating complicated manual adjustment, furthermore improving the accuracy of the aspheric surface test. Simulation verification is done in this paper. The calibration accuracy of the position and attitude can achieve at least a magnitude of 10-5 mm and 0.0056×10-6rad, respectively. The simulation demonstrates that the influence of misalignment error can be precisely calculated and removed after calibration.

  12. New GRACE-Derived Storage Change Estimates Using Empirical Mode Extraction

    NASA Astrophysics Data System (ADS)

    Aierken, A.; Lee, H.; Yu, H.; Ate, P.; Hossain, F.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Shum, C. K.

    2017-12-01

    Estimated mass change from GRACE spherical harmonic solutions have north/south stripes and east/west banded errors due to random noise and modeling errors. Low pass filters like decorrelation and Gaussian smoothing are typically applied to reduce noise and errors. However, these filters introduce leakage errors that need to be addressed. GRACE mascon estimates (JPL and CSR mascon solutions) do not need decorrelation or Gaussian smoothing and offer larger signal magnitudes compared to the GRACE spherical harmonics (SH) filtered results. However, a recent study [Chen et al., JGR, 2017] demonstrated that both JPL and CSR mascon solutions also have leakage errors. We developed a new postprocessing method based on empirical mode decomposition to estimate mass change from GRACE SH solutions without decorrelation and Gaussian smoothing, the two main sources of leakage errors. We found that, without any post processing, the noise and errors in spherical harmonic solutions introduced very clear high frequency components in the spatial domain. By removing these high frequency components and reserve the overall pattern of the signal, we obtained better mass estimates with minimum leakage errors. The new global mass change estimates captured all the signals observed by GRACE without the stripe errors. Results were compared with traditional methods over the Tonle Sap Basin in Cambodia, Northwestern India, Central Valley in California, and the Caspian Sea. Our results provide larger signal magnitudes which are in good agreement with the leakage corrected (forward modeled) SH results.

  13. Evaluation of lens distortion errors in video-based motion analysis

    NASA Technical Reports Server (NTRS)

    Poliner, Jeffrey; Wilmington, Robert; Klute, Glenn K.; Micocci, Angelo

    1993-01-01

    In an effort to study lens distortion errors, a grid of points of known dimensions was constructed and videotaped using a standard and a wide-angle lens. Recorded images were played back on a VCR and stored on a personal computer. Using these stored images, two experiments were conducted. Errors were calculated as the difference in distance from the known coordinates of the points to the calculated coordinates. The purposes of this project were as follows: (1) to develop the methodology to evaluate errors introduced by lens distortion; (2) to quantify and compare errors introduced by use of both a 'standard' and a wide-angle lens; (3) to investigate techniques to minimize lens-induced errors; and (4) to determine the most effective use of calibration points when using a wide-angle lens with a significant amount of distortion. It was seen that when using a wide-angle lens, errors from lens distortion could be as high as 10 percent of the size of the entire field of view. Even with a standard lens, there was a small amount of lens distortion. It was also found that the choice of calibration points influenced the lens distortion error. By properly selecting the calibration points and avoidance of the outermost regions of a wide-angle lens, the error from lens distortion can be kept below approximately 0.5 percent with a standard lens and 1.5 percent with a wide-angle lens.

  14. Effect of cephalometer misalignment on calculations of facial asymmetry.

    PubMed

    Lee, Ki-Heon; Hwang, Hyeon-Shik; Curry, Sean; Boyd, Robert L; Norris, Kevin; Baumrind, Sheldon

    2007-07-01

    In this study, we evaluated errors introduced into the interpretation of facial asymmetry on posteroanterior (PA) cephalograms due to malpositioning of the x-ray emitter focal spot. We tested the hypothesis that horizontal displacements of the emitter from its ideal position would produce systematic displacements of skull landmarks that could be fully accounted for by the rules of projective geometry alone. A representative dry skull with 22 metal markers was used to generate a series of PA images from different emitter positions by using a fully calibrated stereo cephalometer. Empirical measurements of the resulting cephalograms were compared with mathematical predictions based solely on geometric rules. The empirical measurements matched the mathematical predictions within the limits of measurement error (x= 0.23 mm), thus supporting the hypothesis. Based upon this finding, we generated a completely symmetrical mathematical skull and calculated the expected errors for focal spots of several different magnitudes. Quantitative data were computed for focal spot displacements of different magnitudes. Misalignment of the x-ray emitter focal spot introduces systematic errors into the interpretation of facial asymmetry on PA cephalograms. For misalignments of less than 20 mm, the effect is small in individual cases. However, misalignments as small as 10 mm can introduce spurious statistical findings of significant asymmetry when mean values for large groups of PA images are evaluated.

  15. [Research advances in mathematical model of coniferous trees cold hardiness].

    PubMed

    Zhang, Gang; Wang, Ai-Fang

    2007-07-01

    Plant cold hardiness has complicated attributes. This paper introduced the research advances in establishing the dynamic models of coniferous trees cold hardiness, with the advantages and disadvantages of the models presented and the further studies suggested. In the models established initially, temperature was concerned as the only environmental factor affecting the cold hardiness, and the concept of stationary level of cold hardiness was introduced. Due to the obvious prediction errors of these models, the stationary level of cold hardiness was modeled later by assuming the existence of an additive effect of temperature and photoperiod on the increase of cold hardiness. Furthermore, the responses of the annual development phases for cold hardiness to environment were considered. The model researchers have paid more attention to the additive effect models, and run some experiments to test the additivity principle. However, the research results on Scots pine (Pinus sylvestris) indicated that its organs did not support the presumption of an additive response of cold hardiness by temperature and photoperiod, and the interaction between environmental factors should be taken into account. The mathematical models of cold hardiness need to be developed and improved.

  16. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences. Copyright 2000 Academic Press.

  17. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  18. Sensitivity analysis and optimization method for the fabrication of one-dimensional beam-splitting phase gratings

    PubMed Central

    Pacheco, Shaun; Brand, Jonathan F.; Zaverton, Melissa; Milster, Tom; Liang, Rongguang

    2015-01-01

    A method to design one-dimensional beam-spitting phase gratings with low sensitivity to fabrication errors is described. The method optimizes the phase function of a grating by minimizing the integrated variance of the energy of each output beam over a range of fabrication errors. Numerical results for three 1x9 beam splitting phase gratings are given. Two optimized gratings with low sensitivity to fabrication errors were compared with a grating designed for optimal efficiency. These three gratings were fabricated using gray-scale photolithography. The standard deviation of the 9 outgoing beam energies in the optimized gratings were 2.3 and 3.4 times lower than the optimal efficiency grating. PMID:25969268

  19. Effects of upstream-biased third-order space correction terms on multidimensional Crowley advection schemes

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1985-01-01

    The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.

  20. The effects of center of rotation errors on cardiac SPECT imaging

    NASA Astrophysics Data System (ADS)

    Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.

    2003-10-01

    In SPECT imaging, center of rotation (COR) errors lead to the misalignment of projection data and can potentially degrade the quality of the reconstructed images. In this work, we study the effects of COR errors on cardiac SPECT imaging using simulation, point source, cardiac phantom, and patient studies. For simulation studies, we generate projection data using a uniform MCAT phantom first without modeling any physical effects (NPH), then with the modeling of detector response effect (DR) alone. We then corrupt the projection data with simulated sinusoid and step COR errors. For other studies, we introduce sinusoid COR errors to projection data acquired on SPECT systems. An OSEM algorithm is used for image reconstruction without detector response correction, but with nonuniform attenuation correction when needed. The simulation studies show that, when COR errors increase from 0 to 0.96 cm: 1) sinusoid COR errors in axial direction lead to intensity decrease in the inferoapical region; 2) step COR errors in axial direction lead to intensity decrease in the distal anterior region. The intensity decrease is more severe in images reconstructed from projection data with NPH than with DR; and 3) the effects of COR errors in transaxial direction seem to be insignificant. In other studies, COR errors slightly degrade point source resolution; COR errors of 0.64 cm or above introduce visible but insignificant nonuniformity in the images of uniform cardiac phantom; COR errors up to 0.96 cm in transaxial direction affect the lesion-to-background contrast (LBC) insignificantly in the images of cardiac phantom with defects, and COR errors up to 0.64 cm in axial direction only slightly decrease the LBC. For the patient studies with COR errors up to 0.96 cm, images have the same diagnostic/prognostic values as those without COR errors. This work suggests that COR errors of up to 0.64 cm are not likely to change the clinical applications of cardiac SPECT imaging when using iterative reconstruction algorithm without detector response correction.

  1. Alternating phase-shifting masks: phase determination and impact of quartz defects--theoretical and experimental results

    NASA Astrophysics Data System (ADS)

    Griesinger, Uwe A.; Dettmann, Wolfgang; Hennig, Mario; Heumann, Jan P.; Koehle, Roderick; Ludwig, Ralf; Verbeek, Martin; Zarrabian, Mardjan

    2002-07-01

    In optical lithography balancing the aerial image of an alternating phase shifting mask (alt. PSM) is a major challenge. For the exposure wavelengths (currently 248nm and 193nm) an optimum etching method is necessary to overcome imbalance effects. Defects play an important role in the imbalances of the aerial image. In this contribution defects will be discussed by using the methodology of global phase imbalance control also for local imbalances which are a result of quartz defects. The effective phase error can be determined with an AIMS-system by measuring the CD width between the images of deep- and shallow trenches at different focus settings. The AIMS results are analyzed in comparison to the simulated and lithographic print results of the alternating structures. For the analysis of local aerial image imbalances it is necessary to investigate the capability of detecting these phase defects with state of the art inspection systems. Alternating PSMs containing programmed defects were inspected with different algorithms to investigate the capture rate of special phase defects in dependence on the defect size. Besides inspection also repair of phase defects is an important task. In this contribution we show the effect of repair on the optical behavior of phase defects. Due to the limited accuracy of the repair tools the repaired area still shows a certain local phase error. This error can be caused either by residual quartz material or a substrate damage. The influence of such repair induced phase errors on the aerial image were investigated.

  2. Introducing causality violation for improved DPOAE component unmixing

    NASA Astrophysics Data System (ADS)

    Moleti, Arturo; Sisto, Renata; Shera, Christopher A.

    2018-05-01

    The DPOAE response consists of the linear superposition of two components, a nonlinear distortion component generated in the overlap region, and a reflection component generated by roughness in the DP resonant region. Due to approximate scaling symmetry, the DPOAE distortion component has approximately constant phase. As the reflection component may be considered as a SFOAE generated by the forward DP traveling wave, it has rapidly rotating phase, relative to that of its source, which is also equal to the phase of the DPOAE distortion component. This different phase behavior permits effective separation of the DPOAE components (unmixing), using time-domain or time-frequency domain filtering. Departures from scaling symmetry imply fluctuations around zero delay of the distortion component, which may seriously jeopardize the accuracy of these filtering techniques. The differential phase-gradient delay of the reflection component obeys causality requirements, i.e., the delay is positive only, and the fine-structure oscillations of amplitude and phase are correlated to each other, as happens for TEOAEs and SFOAEs relative to their stimulus phase. Performing the inverse Fourier (or wavelet) transform of a modified DPOAE complex spectrum, in which a constant phase function is substituted for the measured one, the time (or time-frequency) distribution shows a peak at (exactly) zero delay and long-latency specular symmetric components, with a modified (positive and negative) delay, which is that relative to that of the distortion component in the original response. Component separation, applied to this symmetrized distribution, becomes insensitive to systematic errors associated with violation of the scaling symmetry in specific frequency ranges.

  3. A digital, constant-frequency pulsed phase-locked-loop instrument for real-time, absolute ultrasonic phase measurements

    NASA Astrophysics Data System (ADS)

    Haldren, H. A.; Perey, D. F.; Yost, W. T.; Cramer, K. E.; Gupta, M. C.

    2018-05-01

    A digitally controlled instrument for conducting single-frequency and swept-frequency ultrasonic phase measurements has been developed based on a constant-frequency pulsed phase-locked-loop (CFPPLL) design. This instrument uses a pair of direct digital synthesizers to generate an ultrasonically transceived tone-burst and an internal reference wave for phase comparison. Real-time, constant-frequency phase tracking in an interrogated specimen is possible with a resolution of 0.000 38 rad (0.022°), and swept-frequency phase measurements can be obtained. Using phase measurements, an absolute thickness in borosilicate glass is presented to show the instrument's efficacy, and these results are compared to conventional ultrasonic pulse-echo time-of-flight (ToF) measurements. The newly developed instrument predicted the thickness with a mean error of -0.04 μm and a standard deviation of error of 1.35 μm. Additionally, the CFPPLL instrument shows a lower measured phase error in the absence of changing temperature and couplant thickness than high-resolution cross-correlation ToF measurements at a similar signal-to-noise ratio. By showing higher accuracy and precision than conventional pulse-echo ToF measurements and lower phase errors than cross-correlation ToF measurements, the new digitally controlled CFPPLL instrument provides high-resolution absolute ultrasonic velocity or path-length measurements in solids or liquids, as well as tracking of material property changes with high sensitivity. The ability to obtain absolute phase measurements allows for many new applications than possible with previous ultrasonic pulsed phase-locked loop instruments. In addition to improved resolution, swept-frequency phase measurements add useful capability in measuring properties of layered structures, such as bonded joints, or materials which exhibit non-linear frequency-dependent behavior, such as dispersive media.

  4. Automatic Alignment of Displacement-Measuring Interferometer

    NASA Technical Reports Server (NTRS)

    Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer

    2006-01-01

    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.

  5. AQMEII3 evaluation of regional NA/EU simulations and ...

    EPA Pesticide Factsheets

    Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impac

  6. EEG oscillatory patterns are associated with error prediction during music performance and are altered in musician's dystonia.

    PubMed

    Ruiz, María Herrojo; Strübing, Felix; Jabusch, Hans-Christian; Altenmüller, Eckart

    2011-04-15

    Skilled performance requires the ability to monitor ongoing behavior, detect errors in advance and modify the performance accordingly. The acquisition of fast predictive mechanisms might be possible due to the extensive training characterizing expertise performance. Recent EEG studies on piano performance reported a negative event-related potential (ERP) triggered in the ACC 70 ms before performance errors (pitch errors due to incorrect keypress). This ERP component, termed pre-error related negativity (pre-ERN), was assumed to reflect processes of error detection in advance. However, some questions remained to be addressed: (i) Does the electrophysiological marker prior to errors reflect an error signal itself or is it related instead to the implementation of control mechanisms? (ii) Does the posterior frontomedial cortex (pFMC, including ACC) interact with other brain regions to implement control adjustments following motor prediction of an upcoming error? (iii) Can we gain insight into the electrophysiological correlates of error prediction and control by assessing the local neuronal synchronization and phase interaction among neuronal populations? (iv) Finally, are error detection and control mechanisms defective in pianists with musician's dystonia (MD), a focal task-specific dystonia resulting from dysfunction of the basal ganglia-thalamic-frontal circuits? Consequently, we investigated the EEG oscillatory and phase synchronization correlates of error detection and control during piano performances in healthy pianists and in a group of pianists with MD. In healthy pianists, the main outcomes were increased pre-error theta and beta band oscillations over the pFMC and 13-15 Hz phase synchronization, between the pFMC and the right lateral prefrontal cortex, which predicted corrective mechanisms. In MD patients, the pattern of phase synchronization appeared in a different frequency band (6-8 Hz) and correlated with the severity of the disorder. The present findings shed new light on the neural mechanisms, which might implement motor prediction by means of forward control processes, as they function in healthy pianists and in their altered form in patients with MD. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Nonlinear calibration for petroleum water content measurement using PSO

    NASA Astrophysics Data System (ADS)

    Li, Mingbao; Zhang, Jiawei

    2008-10-01

    A new algorithmic for strapdown inertial navigation system (SINS) state estimation based on neural networks is introduced. In training strategy, the error vector and its delay are introduced. This error vector is made of the position and velocity difference between the estimations of system and the outputs of GPS. After state prediction and state update, the states of the system are estimated. After off-line training, the network can approach the status switching of SINS and after on-line training, the state estimate precision can be improved further by reducing network output errors. Then the network convergence is discussed. In the end, several simulations with different noise are given. The results show that the neural network state estimator has lower noise sensitivity and better noise immunity than Kalman filter.

  8. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  9. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  10. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE PAGES

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; ...

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  11. Iterative updating of model error for Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Calvetti, Daniela; Dunlop, Matthew; Somersalo, Erkki; Stuart, Andrew

    2018-02-01

    In computational inverse problems, it is common that a detailed and accurate forward model is approximated by a computationally less challenging substitute. The model reduction may be necessary to meet constraints in computing time when optimization algorithms are used to find a single estimate, or to speed up Markov chain Monte Carlo (MCMC) calculations in the Bayesian framework. The use of an approximate model introduces a discrepancy, or modeling error, that may have a detrimental effect on the solution of the ill-posed inverse problem, or it may severely distort the estimate of the posterior distribution. In the Bayesian paradigm, the modeling error can be considered as a random variable, and by using an estimate of the probability distribution of the unknown, one may estimate the probability distribution of the modeling error and incorporate it into the inversion. We introduce an algorithm which iterates this idea to update the distribution of the model error, leading to a sequence of posterior distributions that are demonstrated empirically to capture the underlying truth with increasing accuracy. Since the algorithm is not based on rejections, it requires only limited full model evaluations. We show analytically that, in the linear Gaussian case, the algorithm converges geometrically fast with respect to the number of iterations when the data is finite dimensional. For more general models, we introduce particle approximations of the iteratively generated sequence of distributions; we also prove that each element of the sequence converges in the large particle limit under a simplifying assumption. We show numerically that, as in the linear case, rapid convergence occurs with respect to the number of iterations. Additionally, we show through computed examples that point estimates obtained from this iterative algorithm are superior to those obtained by neglecting the model error.

  12. Accounting for nonsampling error in estimates of HIV epidemic trends from antenatal clinic sentinel surveillance

    PubMed Central

    Eaton, Jeffrey W.; Bao, Le

    2017-01-01

    Objectives The aim of the study was to propose and demonstrate an approach to allow additional nonsampling uncertainty about HIV prevalence measured at antenatal clinic sentinel surveillance (ANC-SS) in model-based inferences about trends in HIV incidence and prevalence. Design Mathematical model fitted to surveillance data with Bayesian inference. Methods We introduce a variance inflation parameter σinfl2 that accounts for the uncertainty of nonsampling errors in ANC-SS prevalence. It is additive to the sampling error variance. Three approaches are tested for estimating σinfl2 using ANC-SS and household survey data from 40 subnational regions in nine countries in sub-Saharan, as defined in UNAIDS 2016 estimates. Methods were compared using in-sample fit and out-of-sample prediction of ANC-SS data, fit to household survey prevalence data, and the computational implications. Results Introducing the additional variance parameter σinfl2 increased the error variance around ANC-SS prevalence observations by a median of 2.7 times (interquartile range 1.9–3.8). Using only sampling error in ANC-SS prevalence ( σinfl2=0), coverage of 95% prediction intervals was 69% in out-of-sample prediction tests. This increased to 90% after introducing the additional variance parameter σinfl2. The revised probabilistic model improved model fit to household survey prevalence and increased epidemic uncertainty intervals most during the early epidemic period before 2005. Estimating σinfl2 did not increase the computational cost of model fitting. Conclusions: We recommend estimating nonsampling error in ANC-SS as an additional parameter in Bayesian inference using the Estimation and Projection Package model. This approach may prove useful for incorporating other data sources such as routine prevalence from Prevention of mother-to-child transmission testing into future epidemic estimates. PMID:28296801

  13. Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging

    PubMed Central

    Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.

    2014-01-01

    Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532

  14. Error response test system and method using test mask variable

    NASA Technical Reports Server (NTRS)

    Gender, Thomas K. (Inventor)

    2006-01-01

    An error response test system and method with increased functionality and improved performance is provided. The error response test system provides the ability to inject errors into the application under test to test the error response of the application under test in an automated and efficient manner. The error response system injects errors into the application through a test mask variable. The test mask variable is added to the application under test. During normal operation, the test mask variable is set to allow the application under test to operate normally. During testing, the error response test system can change the test mask variable to introduce an error into the application under test. The error response system can then monitor the application under test to determine whether the application has the correct response to the error.

  15. Fringe-period selection for a multifrequency fringe-projection phase unwrapping method

    NASA Astrophysics Data System (ADS)

    Zhang, Chunwei; Zhao, Hong; Jiang, Kejian

    2016-08-01

    The multi-frequency fringe-projection phase unwrapping method (MFPPUM) is a typical phase unwrapping algorithm for fringe projection profilometry. It has the advantage of being capable of correctly accomplishing phase unwrapping even in the presence of surface discontinuities. If the fringe frequency ratio of the MFPPUM is too large, fringe order error (FOE) may be triggered. FOE will result in phase unwrapping error. It is preferable for the phase unwrapping to be kept correct while the fewest sets of lower frequency fringe patterns are used. To achieve this goal, in this paper a parameter called fringe order inaccuracy (FOI) is defined, dominant factors which may induce FOE are theoretically analyzed, a method to optimally select the fringe periods for the MFPPUM is proposed with the aid of FOI, and experiments are conducted to research the impact of the dominant factors in phase unwrapping and demonstrate the validity of the proposed method. Some novel phenomena are revealed by these experiments. The proposed method helps to optimally select the fringe periods and detect the phase unwrapping error for the MFPPUM.

  16. Microscopic optical path length difference and polarization measurement system for cell analysis

    NASA Astrophysics Data System (ADS)

    Satake, H.; Ikeda, K.; Kowa, H.; Hoshiba, T.; Watanabe, E.

    2018-03-01

    In recent years, noninvasive, nonstaining, and nondestructive quantitative cell measurement techniques have become increasingly important in the medical field. These cell measurement techniques enable the quantitative analysis of living cells, and are therefore applied to various cell identification processes, such as those determining the passage number limit during cell culturing in regenerative medicine. To enable cell measurement, we developed a quantitative microscopic phase imaging system based on a Mach-Zehnder interferometer that measures the optical path length difference distribution without phase unwrapping using optical phase locking. The applicability of our phase imaging system was demonstrated by successful identification of breast cancer cells amongst normal cells. However, the cell identification method using this phase imaging system exhibited a false identification rate of approximately 7%. In this study, we implemented a polarimetric imaging system by introducing a polarimetric module to one arm of the Mach-Zehnder interferometer of our conventional phase imaging system. This module was comprised of a quarter wave plate and a rotational polarizer on the illumination side of the sample, and a linear polarizer on the optical detector side. In addition, we developed correction methods for the measurement errors of the optical path length and birefringence phase differences that arose through the influence of elements other than cells, such as the Petri dish. As the Petri dish holding the fluid specimens was transparent, it did not affect the amplitude information; however, the optical path length and birefringence phase differences were affected. Therefore, we proposed correction of the optical path length and birefringence phase for the influence of elements other than cells, as a prerequisite for obtaining highly precise phase and polarimetric images.

  17. Demonstrating the robustness of population surveillance data: implications of error rates on demographic and mortality estimates.

    PubMed

    Fottrell, Edward; Byass, Peter; Berhane, Yemane

    2008-03-25

    As in any measurement process, a certain amount of error may be expected in routine population surveillance operations such as those in demographic surveillance sites (DSSs). Vital events are likely to be missed and errors made no matter what method of data capture is used or what quality control procedures are in place. The extent to which random errors in large, longitudinal datasets affect overall health and demographic profiles has important implications for the role of DSSs as platforms for public health research and clinical trials. Such knowledge is also of particular importance if the outputs of DSSs are to be extrapolated and aggregated with realistic margins of error and validity. This study uses the first 10-year dataset from the Butajira Rural Health Project (BRHP) DSS, Ethiopia, covering approximately 336,000 person-years of data. Simple programmes were written to introduce random errors and omissions into new versions of the definitive 10-year Butajira dataset. Key parameters of sex, age, death, literacy and roof material (an indicator of poverty) were selected for the introduction of errors based on their obvious importance in demographic and health surveillance and their established significant associations with mortality. Defining the original 10-year dataset as the 'gold standard' for the purposes of this investigation, population, age and sex compositions and Poisson regression models of mortality rate ratios were compared between each of the intentionally erroneous datasets and the original 'gold standard' 10-year data. The composition of the Butajira population was well represented despite introducing random errors, and differences between population pyramids based on the derived datasets were subtle. Regression analyses of well-established mortality risk factors were largely unaffected even by relatively high levels of random errors in the data. The low sensitivity of parameter estimates and regression analyses to significant amounts of randomly introduced errors indicates a high level of robustness of the dataset. This apparent inertia of population parameter estimates to simulated errors is largely due to the size of the dataset. Tolerable margins of random error in DSS data may exceed 20%. While this is not an argument in favour of poor quality data, reducing the time and valuable resources spent on detecting and correcting random errors in routine DSS operations may be justifiable as the returns from such procedures diminish with increasing overall accuracy. The money and effort currently spent on endlessly correcting DSS datasets would perhaps be better spent on increasing the surveillance population size and geographic spread of DSSs and analysing and disseminating research findings.

  18. Linearizing feedforward/feedback attitude control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  19. On higher order discrete phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Gupta, S. C.

    1972-01-01

    An exact mathematical model is developed for a discrete loop of a general order particularly suitable for digital computation. The deterministic response of the loop to the phase step and the frequency step is investigated. The design of the digital filter for the second-order loop is considered. Use is made of the incremental phase plane to study the phase error behavior of the loop. The model of the noisy loop is derived and the optimization of the loop filter for minimum mean-square error is considered.

  20. Investigation of the Dynamic Contact Angle Using a Direct Numerical Simulation Method.

    PubMed

    Zhu, Guangpu; Yao, Jun; Zhang, Lei; Sun, Hai; Li, Aifen; Shams, Bilal

    2016-11-15

    A large amount of residual oil, which exists as isolated oil slugs, remains trapped in reservoirs after water flooding. Numerous numerical studies are performed to investigate the fundamental flow mechanism of oil slugs to improve flooding efficiency. Dynamic contact angle models are usually introduced to simulate an accurate contact angle and meniscus displacement of oil slugs under a high capillary number. Nevertheless, in the oil slug flow simulation process, it is unnecessary to introduce the dynamic contact angle model because of a negligible change in the meniscus displacement after using the dynamic contact angle model when the capillary number is small. Therefore, a critical capillary number should be introduced to judge whether the dynamic contact model should be incorporated into simulations. In this study, a direct numerical simulation method is employed to simulate the oil slug flow in a capillary tube at the pore scale. The position of the interface between water and the oil slug is determined using the phase-field method. The capacity and accuracy of the model are validated using a classical benchmark: a dynamic capillary filling process. Then, different dynamic contact angle models and the factors that affect the dynamic contact angle are analyzed. The meniscus displacements of oil slugs with a dynamic contact angle and a static contact angle (SCA) are obtained during simulations, and the relative error between them is calculated automatically. The relative error limit has been defined to be 5%, beyond which the dynamic contact angle model needs to be incorporated into the simulation to approach the realistic displacement. Thus, the desired critical capillary number can be determined. A three-dimensional universal chart of critical capillary number, which functions as static contact angle and viscosity ratio, is given to provide a guideline for oil slug simulation. Also, a fitting formula is presented for ease of use.

  1. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yanni; Cervone, Guido; Barkley, Zachary

    Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less

  2. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    DOE PAGES

    Cao, Yanni; Cervone, Guido; Barkley, Zachary; ...

    2017-09-19

    Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studiesmore » have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.« less

  3. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling

    NASA Astrophysics Data System (ADS)

    Cao, Yanni; Cervone, Guido; Barkley, Zachary; Lauvaux, Thomas; Deng, Aijun; Taylor, Alan

    2017-09-01

    Most atmospheric models, including the Weather Research and Forecasting (WRF) model, use a spherical geographic coordinate system to internally represent input data and perform computations. However, most geographic information system (GIS) input data used by the models are based on a spheroid datum because it better represents the actual geometry of the earth. WRF and other atmospheric models use these GIS input layers as if they were in a spherical coordinate system without accounting for the difference in datum. When GIS layers are not properly reprojected, latitudinal errors of up to 21 km in the midlatitudes are introduced. Recent studies have suggested that for very high-resolution applications, the difference in datum in the GIS input data (e.g., terrain land use, orography) should be taken into account. However, the magnitude of errors introduced by the difference in coordinate systems remains unclear. This research quantifies the effect of using a spherical vs. a spheroid datum for the input GIS layers used by WRF to study greenhouse gas transport and dispersion in northeast Pennsylvania.

  4. EnKF with closed-eye period - bridging intermittent model structural errors in soil hydrology

    NASA Astrophysics Data System (ADS)

    Bauser, Hannes H.; Jaumann, Stefan; Berg, Daniel; Roth, Kurt

    2017-04-01

    The representation of soil water movement exposes uncertainties in all model components, namely dynamics, forcing, subscale physics and the state itself. Especially model structural errors in the description of the dynamics are difficult to represent and can lead to an inconsistent estimation of the other components. We address the challenge of a consistent aggregation of information for a manageable specific hydraulic situation: a 1D soil profile with TDR-measured water contents during a time period of less than 2 months. We assess the uncertainties for this situation and detect initial condition, soil hydraulic parameters, small-scale heterogeneity, upper boundary condition, and (during rain events) the local equilibrium assumption by the Richards equation as the most important ones. We employ an iterative Ensemble Kalman Filter (EnKF) with an augmented state. Based on a single rain event, we are able to reduce all uncertainties directly, except for the intermittent violation of the local equilibrium assumption. We detect these times by analyzing the temporal evolution of estimated parameters. By introducing a closed-eye period - during which we do not estimate parameters, but only guide the state based on measurements - we can bridge these times. The introduced closed-eye period ensured constant parameters, suggesting that they resemble the believed true material properties. The closed-eye period improves predictions during periods when the local equilibrium assumption is met, but consequently worsens predictions when the assumption is violated. Such a prediction requires a description of the dynamics during local non-equilibrium phases, which remains an open challenge.

  5. ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection

    PubMed Central

    Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros

    2013-01-01

    Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709

  6. ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection.

    PubMed

    Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros

    2013-01-01

    Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.

  7. The efficacy of three objective systems for identifying beef cuts that can be guaranteed tender.

    PubMed

    Wheeler, T L; Vote, D; Leheska, J M; Shackelford, S D; Belk, K E; Wulf, D M; Gwartney, B L; Koohmaraie, M

    2002-12-01

    The objective of this study was to determine the accuracy of three objective systems (prototype BeefCam, colorimeter, and slice shear force) for identifying guaranteed tender beef. In Phase I, 308 carcasses (105 Top Choice, 101 Low Choice, and 102 Select) from two commercial plants were tested. In Phase II, 400 carcasses (200 rolled USDA Select and 200 rolled USDA Choice) from one commercial plant were tested. The three systems were evaluated based on progressive certification of the longissimus as "tender" in 10% increments (the best 10, 20, 30%, etc., certified as "tender" by each technology; 100% certification would mean no sorting for tenderness). In Phase I, the error (percentage of carcasses certified as tender that had Warner-Bratzler shear force of > or = 5 kg at 14 d postmortem) for 100% certification using all carcasses was 14.1%. All certification levels up to 80% (slice shear force) and up to 70% (colorimeter) had less error (P < 0.05) than 100% certification. Errors in all levels of certification by prototype BeefCam (13.8 to 9.7%) were not different (P > 0.05) from 100% certification. In Phase I, the error for 100% certification for USDA Select carcasses was 30.7%. For Select carcasses, all slice shear force certification levels up to 60% (0 to 14.8%) had less error (P < 0.05) than 100% certification. For Select carcasses, errors in all levels of certification by colorimeter (20.0 to 29.6%) and by BeefCam (27.5 to 31.4%) were not different (P > 0.05) from 100% certification. In Phase II, the error for 100% certification for all carcasses was 9.3%. For all levels of slice shear force certification less than 90% (for all carcasses) or less than 80% (Select carcasses), errors in tenderness certification were less than (P < 0.05) for 100% certification. In Phase II, for all carcasses or Select carcasses, colorimeter and prototype BeefCam certifications did not significantly reduce errors (P > 0.05) compared to 100% certification. Thus, the direct measure of tenderness provided by slice shear force results in more accurate identification of "tender" beef carcasses than either of the indirect technologies, prototype BeefCam, or colorimeter, particularly for USDA Select carcasses. As tested in this study, slice shear force, but not the prototype BeefCam or colorimeter systems, accurately identified "tender" beef.

  8. Deformation Estimation In Non-Urban Areas Exploiting High Resolution SAR Data

    NASA Astrophysics Data System (ADS)

    Goel, Kanika; Adam, Nico

    2012-01-01

    Advanced techniques such as the Small Baseline Subset Algorithm (SBAS) have been developed for terrain motion mapping in non-urban areas with a focus on extracting information from distributed scatterers (DSs). SBAS uses small baseline differential interferograms (to limit the effects of geometric decorrelation) and these are typically multilooked to reduce phase noise, resulting in loss of resolution. Various error sources e.g. phase unwrapping errors, topographic errors, temporal decorrelation and atmospheric effects also affect the interferometric phase. The aim of our work is an improved deformation monitoring in non-urban areas exploiting high resolution SAR data. The paper provides technical details and a processing example of a newly developed technique which incorporates an adaptive spatial phase filtering algorithm for an accurate high resolution differential interferometric stacking, followed by deformation retrieval via the SBAS approach where we perform the phase inversion using a more robust L1 norm minimization.

  9. Postfabrication Phase Error Correction of Silicon Photonic Circuits by Single Femtosecond Laser Pulses

    DOE PAGES

    Bachman, Daniel; Chen, Zhijiang; Wang, Christopher; ...

    2016-11-29

    Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less

  10. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    PubMed

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  11. Crosstalk mitigation using pilot assisted least square algorithm in OFDM-carrying orbital angular momentum multiplexed free-space-optical communication links.

    PubMed

    Sun, Tengfen; Liu, Minwen; Li, Yingchun; Wang, Min

    2017-10-16

    In this paper, we experimentally investigate the performance of crosstalk mitigation for 16-ary quadrature amplitude modulation orthogonal frequency division multiplexing (16QAM-OFDM) signals carrying orbital angular momentum (OAM) multiplexed free-space-optical communication (FSO) links using the pilot assisted Least Square (LS) algorithm. At the demodulating spatial light modulators (SLMs), we launch the distorted phase holograms which have the information of atmospheric turbulence obeying the modified Hill spectrum. And crosstalk can be introduced by these holograms with the experimental verification. The pilot assisted LS algorithm can efficiently improve the quality of system performance, the points of constellations get closer to the reference points and around two orders of magnitude improvement of bit-error rate (BER) is obtained.

  12. Investigation of the validity of quasilinear theory for electron Landau damping in a tokamak using a broad-band wave effect

    DOE PAGES

    Lee, Jungpyo; Bonoli, Paul; Wright, John

    2011-01-01

    The quasilinear diffusion coefficient assuming a constant magnetic field along the electron orbit is widely used to describe electron Landau damping of waves in a tokamak where the magnitude of the magnetic field varies on a flux surface. To understand the impact of violating the constant magnetic field assumption, we introduce the effect of a broad-bandwidth wave spectrum which has been used in the past to validate quasilinear theory for the fast decorrelation process between resonances. By the reevaluation of the diffusion coefficient through the level of the phase integral for the tokamak geometry with the broad-band wave effect included,more » we identify the three acceptable errors for the use of the quasilinear diffusion coefficient.« less

  13. Quantum memory receiver for superadditive communication using binary coherent states

    NASA Astrophysics Data System (ADS)

    Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-11-01

    We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.

  14. Quantum memory receiver for superadditive communication using binary coherent states.

    PubMed

    Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2016-11-12

    We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011 , 106 , 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.

  15. Facilitated sequence counting and assembly by template mutagenesis

    PubMed Central

    Levy, Dan; Wigler, Michael

    2014-01-01

    Presently, inferring the long-range structure of the DNA templates is limited by short read lengths. Accurate template counts suffer from distortions occurring during PCR amplification. We explore the utility of introducing random mutations in identical or nearly identical templates to create distinguishable patterns that are inherited during subsequent copying. We simulate the applications of this process under assumptions of error-free sequencing and perfect mapping, using cytosine deamination as a model for mutation. The simulations demonstrate that within readily achievable conditions of nucleotide conversion and sequence coverage, we can accurately count the number of otherwise identical molecules as well as connect variants separated by long spans of identical sequence. We discuss many potential applications, such as transcript profiling, isoform assembly, haplotype phasing, and de novo genome assembly. PMID:25313059

  16. Signal location using generalized linear constraints

    NASA Astrophysics Data System (ADS)

    Griffiths, Lloyd J.; Feldman, D. D.

    1992-01-01

    This report has presented a two-part method for estimating the directions of arrival of uncorrelated narrowband sources when there are arbitrary phase errors and angle independent gain errors. The signal steering vectors are estimated in the first part of the method; in the second part, the arrival directions are estimated. It should be noted that the second part of the method can be tailored to incorporate additional information about the nature of the phase errors. For example, if the phase errors are known to be caused solely by element misplacement, the element locations can be estimated concurrently with the DOA's by trying to match the theoretical steering vectors to the estimated ones. Simulation results suggest that, for general perturbation, the method can resolve closely spaced sources under conditions for which a standard high-resolution DOA method such as MUSIC fails.

  17. Analysis of Choice Stepping with Visual Interference Can Detect Prolonged Postural Preparation in Older Adults with Mild Cognitive Impairment at High Risk of Falling.

    PubMed

    Uemura, Kazuki; Hasegawa, Takashi; Tougou, Hiroki; Shuhei, Takahashi; Uchiyama, Yasushi

    2015-01-01

    We aimed to clarify postural control deficits in older adults with mild cognitive impairment (MCI) at high risk of falling by addressing the inhibitory process. This study involved 376 community-dwelling older adults with MCI. Participants were instructed to execute forward stepping on the side indicated by the central arrow while ignoring the 2 flanking arrows on each side (→→→→→, congruent, or →→←→→, incongruent). Initial weight transfer direction errors [anticipatory postural adjustment (APA) errors], step execution times, and divided phases (reaction, APA, and swing phases) were measured from vertical force data. Participants were categorized as fallers (n = 37) and non-fallers (n = 339) based on fall experiences in the last 12 months. There were no differences in the step execution times, swing phases, step error rates, and APA error rates between groups, but fallers had a significantly longer APA phase relative to non-fallers in trials of the incongruent condition with APA errors (p = 0.005). Fallers also had a longer reaction phase in trials with the correct APA, regardless of the condition (p = 0.01). Analyses of choice stepping with visual interference can detect prolonged postural preparation as a specific falling-associated deficit in older adults with MCI. © 2015 S. Karger AG, Basel.

  18. Impact of SST Anomaly Events over the Kuroshio-Oyashio Extension on the "Summer Prediction Barrier"

    NASA Astrophysics Data System (ADS)

    Wu, Yujie; Duan, Wansuo

    2018-04-01

    The "summer prediction barrier" (SPB) of SST anomalies (SSTA) over the Kuroshio-Oyashio Extension (KOE) refers to the phenomenon that prediction errors of KOE-SSTA tend to increase rapidly during boreal summer, resulting in large prediction uncertainties. The fast error growth associated with the SPB occurs in the mature-to-decaying transition phase, which is usually during the August-September-October (ASO) season, of the KOE-SSTA events to be predicted. Thus, the role of KOE-SSTA evolutionary characteristics in the transition phase in inducing the SPB is explored by performing perfect model predictability experiments in a coupled model, indicating that the SSTA events with larger mature-to-decaying transition rates (Category-1) favor a greater possibility of yielding a more significant SPB than those events with smaller transition rates (Category-2). The KOE-SSTA events in Category-1 tend to have more significant anomalous Ekman pumping in their transition phase, resulting in larger prediction errors of vertical oceanic temperature advection associated with the SSTA events. Consequently, Category-1 events possess faster error growth and larger prediction errors. In addition, the anomalous Ekman upwelling (downwelling) in the ASO season also causes SSTA cooling (warming), accelerating the transition rates of warm (cold) KOE-SSTA events. Therefore, the SSTA transition rate and error growth rate are both related with the anomalous Ekman pumping of the SSTA events to be predicted in their transition phase. This may explain why the SSTA events transferring more rapidly from the mature to decaying phase tend to have a greater possibility of yielding a more significant SPB.

  19. Quantitative, Comparable Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy: Correcting Errors in Phase Retrieval

    PubMed Central

    Camp, Charles H.; Lee, Young Jong; Cicerone, Marcus T.

    2017-01-01

    Coherent anti-Stokes Raman scattering (CARS) microspectroscopy has demonstrated significant potential for biological and materials imaging. To date, however, the primary mechanism of disseminating CARS spectroscopic information is through pseudocolor imagery, which explicitly neglects a vast majority of the hyperspectral data. Furthermore, current paradigms in CARS spectral processing do not lend themselves to quantitative sample-to-sample comparability. The primary limitation stems from the need to accurately measure the so-called nonresonant background (NRB) that is used to extract the chemically-sensitive Raman information from the raw spectra. Measurement of the NRB on a pixel-by-pixel basis is a nontrivial task; thus, reference NRB from glass or water are typically utilized, resulting in error between the actual and estimated amplitude and phase. In this manuscript, we present a new methodology for extracting the Raman spectral features that significantly suppresses these errors through phase detrending and scaling. Classic methods of error-correction, such as baseline detrending, are demonstrated to be inaccurate and to simply mask the underlying errors. The theoretical justification is presented by re-developing the theory of phase retrieval via the Kramers-Kronig relation, and we demonstrate that these results are also applicable to maximum entropy method-based phase retrieval. This new error-correction approach is experimentally applied to glycerol spectra and tissue images, demonstrating marked consistency between spectra obtained using different NRB estimates, and between spectra obtained on different instruments. Additionally, in order to facilitate implementation of these approaches, we have made many of the tools described herein available free for download. PMID:28819335

  20. Recognizing and Reducing Analytical Errors and Sources of Variation in Clinical Pathology Data in Safety Assessment Studies.

    PubMed

    Schultze, A E; Irizarry, A R

    2017-02-01

    Veterinary clinical pathologists are well positioned via education and training to assist in investigations of unexpected results or increased variation in clinical pathology data. Errors in testing and unexpected variability in clinical pathology data are sometimes referred to as "laboratory errors." These alterations may occur in the preanalytical, analytical, or postanalytical phases of studies. Most of the errors or variability in clinical pathology data occur in the preanalytical or postanalytical phases. True analytical errors occur within the laboratory and are usually the result of operator or instrument error. Analytical errors are often ≤10% of all errors in diagnostic testing, and the frequency of these types of errors has decreased in the last decade. Analytical errors and increased data variability may result from instrument malfunctions, inability to follow proper procedures, undetected failures in quality control, sample misidentification, and/or test interference. This article (1) illustrates several different types of analytical errors and situations within laboratories that may result in increased variability in data, (2) provides recommendations regarding prevention of testing errors and techniques to control variation, and (3) provides a list of references that describe and advise how to deal with increased data variability.

  1. Enhancing interferometer phase estimation, sensing sensitivity, and resolution using robust entangled states

    NASA Astrophysics Data System (ADS)

    Smith, James F.

    2017-11-01

    With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.

  2. Frequency spectrum analyzer with phase-lock

    DOEpatents

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  3. Quality Measures in Pre-Analytical Phase of Tissue Processing: Understanding Its Value in Histopathology.

    PubMed

    Rao, Shalinee; Masilamani, Suresh; Sundaram, Sandhya; Duvuru, Prathiba; Swaminathan, Rajendiran

    2016-01-01

    Quality monitoring in histopathology unit is categorized into three phases, pre-analytical, analytical and post-analytical, to cover various steps in the entire test cycle. Review of literature on quality evaluation studies pertaining to histopathology revealed that earlier reports were mainly focused on analytical aspects with limited studies on assessment of pre-analytical phase. Pre-analytical phase encompasses several processing steps and handling of specimen/sample by multiple individuals, thus allowing enough scope for errors. Due to its critical nature and limited studies in the past to assess quality in pre-analytical phase, it deserves more attention. This study was undertaken to analyse and assess the quality parameters in pre-analytical phase in a histopathology laboratory. This was a retrospective study done on pre-analytical parameters in histopathology laboratory of a tertiary care centre on 18,626 tissue specimens received in 34 months. Registers and records were checked for efficiency and errors for pre-analytical quality variables: specimen identification, specimen in appropriate fixatives, lost specimens, daily internal quality control performance on staining, performance in inter-laboratory quality assessment program {External quality assurance program (EQAS)} and evaluation of internal non-conformities (NC) for other errors. The study revealed incorrect specimen labelling in 0.04%, 0.01% and 0.01% in 2007, 2008 and 2009 respectively. About 0.04%, 0.07% and 0.18% specimens were not sent in fixatives in 2007, 2008 and 2009 respectively. There was no incidence of specimen lost. A total of 113 non-conformities were identified out of which 92.9% belonged to the pre-analytical phase. The predominant NC (any deviation from normal standard which may generate an error and result in compromising with quality standards) identified was wrong labelling of slides. Performance in EQAS for pre-analytical phase was satisfactory in 6 of 9 cycles. A low incidence of errors in pre-analytical phase implies that a satisfactory level of quality standards was being practiced with still scope for improvement.

  4. An adaptive reentry guidance method considering the influence of blackout zone

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yao, Jianyao; Qu, Xiangju

    2018-01-01

    Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.

  5. The Swiss cheese model of adverse event occurrence--Closing the holes.

    PubMed

    Stein, James E; Heiss, Kurt

    2015-12-01

    Traditional surgical attitude regarding error and complications has focused on individual failings. Human factors research has brought new and significant insights into the occurrence of error in healthcare, helping us identify systemic problems that injure patients while enhancing individual accountability and teamwork. This article introduces human factors science and its applicability to teamwork, surgical culture, medical error, and individual accountability. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Phase-shift parametrization and extraction of asymptotic normalization constants from elastic-scattering data

    NASA Astrophysics Data System (ADS)

    Ramírez Suárez, O. L.; Sparenberg, J.-M.

    2017-09-01

    We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.

  7. Combined Henyey-Greenstein and Rayleigh phase function.

    PubMed

    Liu, Quanhua; Weng, Fuzhong

    2006-10-01

    The phase function is an important parameter that affects the distribution of scattered radiation. In Rayleigh scattering, a scatterer is approximated by a dipole, and its phase function is analytically related to the scattering angle. For the Henyey-Greenstein (HG) approximation, the phase function preserves only the correct asymmetry factor (i.e., the first moment), which is essentially important for anisotropic scattering. When the HG function is applied to small particles, it produces a significant error in radiance. In addition, the HG function is applied only for an intensity radiative transfer. We develop a combined HG and Rayleigh (HG-Rayleigh) phase function. The HG phase function plays the role of modulator extending the application of the Rayleigh phase function for small asymmetry scattering. The HG-Rayleigh phase function guarantees the correct asymmetry factor and is valid for a polarization radiative transfer. It approaches the Rayleigh phase function for small particles. Thus the HG-Rayleigh phase function has wider applications for both intensity and polarimetric radiative transfers. For microwave radiative transfer modeling in this study, the largest errors in the brightness temperature calculations for weak asymmetry scattering are generally below 0.02 K by using the HG-Rayleigh phase function. The errors can be much larger, in the 1-3 K range, if the Rayleigh and HG functions are applied separately.

  8. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions.

    PubMed

    Nouraei, Mehdi; Acosta, Edgar J

    2017-06-01

    Fully dilutable microemulsions (μEs), used to design self-microemulsifying delivery system (SMEDS), are formulated as concentrate solutions containing oil and surfactants, without water. As water is added to dilute these systems, various μEs are produced (water-swollen reverse micelles, bicontinuous systems, and oil-swollen micelles), without the onset of phase separation. Currently, the formulation dilutable μEs follows a trial and error approach that has had a limited success. The objective of this work is to introduce the use of the hydrophilic-lipophilic-difference (HLD) and net-average-curvature (NAC) frameworks to predict the solubilisation features of ternary phase diagrams of lecithin-linker μEs and the use of these predictions to guide the formulation of dilutable μEs. To this end, the characteristic curvatures (Cc) of soybean lecithin (surfactant), glycerol monooleate (lipophilic linker) and polyglycerol caprylate (hydrophilic linker) and the equivalent alkane carbon number (EACN) of ethyl caprate (oil) were obtained via phase scans with reference surfactant-oil systems. These parameters were then used to calculate the HLD of lecithin-linkers-ethyl caprate microemulsions. The calculated HLDs were able to predict the phase transitions observed in the phase scans. The NAC was then used to fit and predict phase volumes obtained from salinity phase scans, and to predict the solubilisation features of ternary phase diagrams of the lecithin-linker formulations. The HLD-NAC predictions were reasonably accurate, and indicated that the largest region for dilutable μEs was obtained with slightly negative HLD values. The NAC framework also predicted, and explained, the changes in microemulsion properties along dilution lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. File Assignment in a Central Server Computer Network.

    DTIC Science & Technology

    1979-01-01

    somewhat artificial for many applications. Sometimes important variables must be known in advance when they are more appropriately decision variables... intellegently , we must have some notion of the errors that may be introduced. We must account for two types of er:ors. The first is the error

  10. Continuous Process Improvement Transformation Guidebook

    DTIC Science & Technology

    2006-05-01

    except full-scale im- plementation. Error Proofing ( Poka Yoke ) Finding and correcting defects caused by errors costs more and more as a system or...proofing. Shigeo Shingo introduced the concept of Poka - Yoke at Toyota Motor Corporation. Poka Yoke (pronounced “poh-kah yoh-kay”) translates to “avoid

  11. Partial scan artifact reduction (PSAR) for the assessment of cardiac perfusion in dynamic phase-correlated CT.

    PubMed

    Stenner, Philip; Schmidt, Bernhard; Bruder, Herbert; Allmendinger, Thomas; Haberland, Ulrike; Flohr, Thomas; Kachelriess, Marc

    2009-12-01

    Cardiac CT achieves its high temporal resolution by lowering the scan range from 2pi to pi plus fan angle (partial scan). This, however, introduces CT-value variations, depending on the angular position of the pi range. These partial scan artifacts are of the order of a few HU and prevent the quantitative evaluation of perfusion measurements. The authors present the new algorithm partial scan artifact reduction (PSAR) that corrects a dynamic phase-correlated scan without a priori information. In general, a full scan does not suffer from partial scan artifacts since all projections in [0, 2pi] contribute to the data. To maintain the optimum temporal resolution and the phase correlation, PSAR creates an artificial full scan pn(AF) by projectionwise averaging a set of neighboring partial scans pn(P) from the same perfusion examination (typically N approximately 30 phase-correlated partial scans distributed over 20 s and n = 1, ..., N). Corresponding to the angular range of each partial scan, the authors extract virtual partial scans pn(V) from the artificial full scan pn(AF). A standard reconstruction yields the corresponding images fn(P), fn(AF), and fn(V). Subtracting the virtual partial scan image fn(V) from the artificial full scan image fn(AF) yields an artifact image that can be used to correct the original partial scan image: fn(C) = fn(P) - fn(V) + fn(AF), where fn(C) is the corrected image. The authors evaluated the effects of scattered radiation on the partial scan artifacts using simulated and measured water phantoms and found a strong correlation. The PSAR algorithm has been validated with a simulated semianthropomorphic heart phantom and with measurements of a dynamic biological perfusion phantom. For the stationary phantoms, real full scans have been performed to provide theoretical reference values. The improvement in the root mean square errors between the full and the partial scans with respect to the errors between the full and the corrected scans is up to 54% for the simulations and 90% for the measurements. The phase-correlated data now appear accurate enough for a quantitative analysis of cardiac perfusion.

  12. A method to compute SEU fault probabilities in memory arrays with error correction

    NASA Technical Reports Server (NTRS)

    Gercek, Gokhan

    1994-01-01

    With the increasing packing densities in VLSI technology, Single Event Upsets (SEU) due to cosmic radiations are becoming more of a critical issue in the design of space avionics systems. In this paper, a method is introduced to compute the fault (mishap) probability for a computer memory of size M words. It is assumed that a Hamming code is used for each word to provide single error correction. It is also assumed that every time a memory location is read, single errors are corrected. Memory is read randomly whose distribution is assumed to be known. In such a scenario, a mishap is defined as two SEU's corrupting the same memory location prior to a read. The paper introduces a method to compute the overall mishap probability for the entire memory for a mission duration of T hours.

  13. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  14. Short-term saccadic adaptation in the macaque monkey: a binocular mechanism

    PubMed Central

    Schultz, K. P.

    2013-01-01

    Saccadic eye movements are rapid transfers of gaze between objects of interest. Their duration is too short for the visual system to be able to follow their progress in time. Adaptive mechanisms constantly recalibrate the saccadic responses by detecting how close the landings are to the selected targets. The double-step saccadic paradigm is a common method to simulate alterations in saccadic gain. While the subject is responding to a first target shift, a second shift is introduced in the middle of this movement, which masks it from visual detection. The error in landing introduced by the second shift is interpreted by the brain as an error in the programming of the initial response, with gradual gain changes aimed at compensating the apparent sensorimotor mismatch. A second shift applied dichoptically to only one eye introduces disconjugate landing errors between the two eyes. A monocular adaptive system would independently modify only the gain of the eye exposed to the second shift in order to reestablish binocular alignment. Our results support a binocular mechanism. A version-based saccadic adaptive process detects postsaccadic version errors and generates compensatory conjugate gain alterations. A vergence-based saccadic adaptive process detects postsaccadic disparity errors and generates corrective nonvisual disparity signals that are sent to the vergence system to regain binocularity. This results in striking dynamical similarities between visually driven combined saccade-vergence gaze transfers, where the disparity is given by the visual targets, and the double-step adaptive disconjugate responses, where an adaptive disparity signal is generated internally by the saccadic system. PMID:23076111

  15. A method to map errors in the deformable registration of 4DCT images1

    PubMed Central

    Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.

    2010-01-01

    Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288

  16. CrowdPhase: crowdsourcing the phase problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O., E-mail: yeates@mbi.ucla.edu

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborativemore » online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.« less

  17. Exploring the initial steps of the testing process: frequency and nature of pre-preanalytic errors.

    PubMed

    Carraro, Paolo; Zago, Tatiana; Plebani, Mario

    2012-03-01

    Few data are available on the nature of errors in the so-called pre-preanalytic phase, the initial steps of the testing process. We therefore sought to evaluate pre-preanalytic errors using a study design that enabled us to observe the initial procedures performed in the ward, from the physician's test request to the delivery of specimens in the clinical laboratory. After a 1-week direct observational phase designed to identify the operating procedures followed in 3 clinical wards, we recorded all nonconformities and errors occurring over a 6-month period. Overall, the study considered 8547 test requests, for which 15 917 blood sample tubes were collected and 52 982 tests undertaken. No significant differences in error rates were found between the observational phase and the overall study period, but underfilling of coagulation tubes was found to occur more frequently in the direct observational phase (P = 0.043). In the overall study period, the frequency of errors was found to be particularly high regarding order transmission [29 916 parts per million (ppm)] and hemolysed samples (2537 ppm). The frequency of patient misidentification was 352 ppm, and the most frequent nonconformities were test requests recorded in the diary without the patient's name and failure to check the patient's identity at the time of blood draw. The data collected in our study confirm the relative frequency of pre-preanalytic errors and underline the need to consensually prepare and adopt effective standard operating procedures in the initial steps of laboratory testing and to monitor compliance with these procedures over time.

  18. Basic Studies on High Pressure Air Plasmas

    DTIC Science & Technology

    2006-08-30

    which must be added a 1.5 month salary to A. Bugayev for assistance in laser and optic techniques. 2 Part II Technical report Plasma-induced phase shift...two-wavelength heterodyne interferometry applied to atmospheric pressure air plasma 11.1 .A. Plasma-induced phase shift - Electron density...a driver, since the error on the frequency leads to an error on the phase shift. (c) Optical elements Mirrors Protected mirrors must be used to stand

  19. An approach to the analysis of performance of quasi-optimum digital phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Polk, D. R.; Gupta, S. C.

    1973-01-01

    An approach to the analysis of performance of quasi-optimum digital phase-locked loops (DPLL's) is presented. An expression for the characteristic function of the prior error in the state estimate is derived, and from this expression an infinite dimensional equation for the prior error variance is obtained. The prior error-variance equation is a function of the communication system model and the DPLL gain and is independent of the method used to derive the DPLL gain. Two approximations are discussed for reducing the prior error-variance equation to finite dimension. The effectiveness of one approximation in analyzing DPLL performance is studied.

  20. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  1. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes

    NASA Astrophysics Data System (ADS)

    Marvian, Milad; Lidar, Daniel A.

    2017-01-01

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  2. Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes.

    PubMed

    Marvian, Milad; Lidar, Daniel A

    2017-01-20

    We present general conditions for quantum error suppression for Hamiltonian-based quantum computation using subsystem codes. This involves encoding the Hamiltonian performing the computation using an error detecting subsystem code and the addition of a penalty term that commutes with the encoded Hamiltonian. The scheme is general and includes the stabilizer formalism of both subspace and subsystem codes as special cases. We derive performance bounds and show that complete error suppression results in the large penalty limit. To illustrate the power of subsystem-based error suppression, we introduce fully two-local constructions for protection against local errors of the swap gate of adiabatic gate teleportation and the Ising chain in a transverse field.

  3. A Quantum Theoretical Explanation for Probability Judgment Errors

    ERIC Educational Resources Information Center

    Busemeyer, Jerome R.; Pothos, Emmanuel M.; Franco, Riccardo; Trueblood, Jennifer S.

    2011-01-01

    A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector…

  4. INCREASING THE ACCURACY OF MAYFIELD ESTIMATES USING KNOWLEDGE OF NEST AGE

    EPA Science Inventory

    This presentation will focus on the error introduced in nest-survival modeling when nest-cycles are assumed to be of constant length. I will present the types of error that may occur, including biases resulting from incorrect estimates of expected values, as well as biases that o...

  5. Introduction to Forward-Error-Correcting Coding

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    1996-01-01

    This reference publication introduces forward error correcting (FEC) and stresses definitions and basic calculations for use by engineers. The seven chapters include 41 example problems, worked in detail to illustrate points. A glossary of terms is included, as well as an appendix on the Q function. Block and convolutional codes are covered.

  6. A class of optimum digital phase locked loops for the DSN advanced receiver

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Kumar, R.

    1985-01-01

    A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.

  7. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  8. Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform

    PubMed Central

    Liu, Yuexin; Lee, Young Jong; Cicerone, Marcus T.

    2014-01-01

    We describe a closed-form approach for performing a Kramers–Kronig (KK) transform that can be used to rapidly and reliably retrieve the phase, and thus the resonant imaginary component, from a broadband coherent anti-Stokes Raman scattering (CARS) spectrum with a nonflat background. In this approach we transform the frequency-domain data to the time domain, perform an operation that ensures a causality criterion is met, then transform back to the frequency domain. The fact that this method handles causality in the time domain allows us to conveniently account for spectrally varying nonresonant background from CARS as a response function with a finite rise time. A phase error accompanies KK transform of data with finite frequency range. In examples shown here, that phase error leads to small (<1%) errors in the retrieved resonant spectra. PMID:19412273

  9. Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains

    NASA Astrophysics Data System (ADS)

    Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.

    2004-07-01

    Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.

  10. Pixel-super-resolved lensfree holography using adaptive relaxation factor and positional error correction

    NASA Astrophysics Data System (ADS)

    Zhang, Jialin; Chen, Qian; Sun, Jiasong; Li, Jiaji; Zuo, Chao

    2018-01-01

    Lensfree holography provides a new way to effectively bypass the intrinsical trade-off between the spatial resolution and field-of-view (FOV) of conventional lens-based microscopes. Unfortunately, due to the limited sensor pixel-size, unpredictable disturbance during image acquisition, and sub-optimum solution to the phase retrieval problem, typical lensfree microscopes only produce compromised imaging quality in terms of lateral resolution and signal-to-noise ratio (SNR). In this paper, we propose an adaptive pixel-super-resolved lensfree imaging (APLI) method to address the pixel aliasing problem by Z-scanning only, without resorting to subpixel shifting or beam-angle manipulation. Furthermore, an automatic positional error correction algorithm and adaptive relaxation strategy are introduced to enhance the robustness and SNR of reconstruction significantly. Based on APLI, we perform full-FOV reconstruction of a USAF resolution target across a wide imaging area of {29.85 mm2 and achieve half-pitch lateral resolution of 770 nm, surpassing 2.17 times of the theoretical Nyquist-Shannon sampling resolution limit imposed by the sensor pixel-size (1.67 μm). Full-FOV imaging result of a typical dicot root is also provided to demonstrate its promising potential applications in biologic imaging.

  11. Validation of an automated colony counting system for group A Streptococcus.

    PubMed

    Frost, H R; Tsoi, S K; Baker, C A; Laho, D; Sanderson-Smith, M L; Steer, A C; Smeesters, P R

    2016-02-08

    The practice of counting bacterial colony forming units on agar plates has long been used as a method to estimate the concentration of live bacteria in culture. However, due to the laborious and potentially error prone nature of this measurement technique, an alternative method is desirable. Recent technologic advancements have facilitated the development of automated colony counting systems, which reduce errors introduced during the manual counting process and recording of information. An additional benefit is the significant reduction in time taken to analyse colony counting data. Whilst automated counting procedures have been validated for a number of microorganisms, the process has not been successful for all bacteria due to the requirement for a relatively high contrast between bacterial colonies and growth medium. The purpose of this study was to validate an automated counting system for use with group A Streptococcus (GAS). Twenty-one different GAS strains, representative of major emm-types, were selected for assessment. In order to introduce the required contrast for automated counting, 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) dye was added to Todd-Hewitt broth with yeast extract (THY) agar. Growth on THY agar with TTC was compared with growth on blood agar and THY agar to ensure the dye was not detrimental to bacterial growth. Automated colony counts using a ProtoCOL 3 instrument were compared with manual counting to confirm accuracy over the stages of the growth cycle (latent, mid-log and stationary phases) and in a number of different assays. The average percentage differences between plating and counting methods were analysed using the Bland-Altman method. A percentage difference of ±10 % was determined as the cut-off for a critical difference between plating and counting methods. All strains measured had an average difference of less than 10 % when plated on THY agar with TTC. This consistency was also observed over all phases of the growth cycle and when plated in blood following bactericidal assays. Agreement between these methods suggest the use of an automated colony counting technique for GAS will significantly reduce time spent counting bacteria to enable a more efficient and accurate measurement of bacteria concentration in culture.

  12. Control method of Three-phase Four-leg converter based on repetitive control

    NASA Astrophysics Data System (ADS)

    Hui, Wang

    2018-03-01

    The research chose the magnetic levitation force of wind power generation system as the object. In order to improve the power quality problem caused by unbalanced load in power supply system, we combined the characteristics and repetitive control principle of magnetic levitation wind power generation system, and then an independent control strategy for three-phase four-leg converter was proposed. In this paper, based on the symmetric component method, the second order generalized integrator was used to generate the positive and negative sequence of signals, and the decoupling control was carried out under the synchronous rotating reference frame, in which the positive and negative sequence voltage is PI double closed loop, and a PI regulator with repetitive control was introduced to eliminate the static error regarding the fundamental frequency fluctuation characteristic of zero sequence component. The simulation results based on Matlab/Simulink show that the proposed control project can effectively suppress the disturbance caused by unbalanced loads and maintain the load voltage balance. The project is easy to be achieved and remarkably improves the quality of the independent power supply system.

  13. A convenient technique for polarimetric calibration of single-antenna radar systems

    NASA Technical Reports Server (NTRS)

    Sarabandi, Kamal; Ulaby, Fawwaz T.

    1990-01-01

    A practical technique for calibrating single-antenna polarimetric radar systems is introduced. This technique requires only a single calibration target such as a conducting sphere or a trihedral corner reflector to calibrate the radar system, both in amplitude and phase, for all linear polarization configurations. By using a metal sphere, which is orientation independent, error in calibration measurement is minimized while simultaneously calibrating the crosspolarization channels. The antenna system and two orthogonal channels (in free space) are modeled as a four-port passive network. Upon using the reciprocity relations for the passive network and assuming the crosscoupling terms of the antenna to be equal, the crosstalk factors of the antenna system and the transmit and receive channel imbalances can be obtained from measurement of the backscatter from a metal sphere. For an X-band radar system with crosspolarization isolation of 25 dB, comparison of values measured for a sphere and a cylinder with theoretical values shows agreement within 0.4 dB in magnitude and 5 deg in phase. An effective polarization isolation of 50 dB is achieved using this calibration technique.

  14. The Gaussian beam mode analysis of classical phase aberrations in diffraction-limited optical systems

    NASA Astrophysics Data System (ADS)

    Trappe, Neil; Murphy, J. Anthony; Withington, Stafford

    2003-07-01

    Gaussian beam mode analysis (GBMA) offers a more intuitive physical insight into how light beams evolve as they propagate than the conventional Fresnel diffraction integral approach. In this paper we illustrate that GBMA is a computationally efficient, alternative technique for tracing the evolution of a diffracting coherent beam. In previous papers we demonstrated the straightforward application of GBMA to the computation of the classical diffraction patterns associated with a range of standard apertures. In this paper we show how the GBMA technique can be expanded to investigate the effects of aberrations in the presence of diffraction by introducing the appropriate phase error term into the propagating quasi-optical beam. We compare our technique to the standard diffraction integral calculation for coma, astigmatism and spherical aberration, taking—for comparison—examples from the classic text 'Principles of Optics' by Born and Wolf. We show the advantages of GBMA for allowing the defocusing of an aberrated image to be evaluated quickly, which is particularly important and useful for probing the consequences of astigmatism and spherical aberration.

  15. Effect of exit beam phase aberrations on coherent x-ray reconstructions of Au nanocrystals

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, Stephan; Harder, Ross; Fuoss, Paul

    2010-03-01

    Current studies in coherent x-ray diffractive imaging (CXDI) are focusing on in-situ imaging under a variety of environmental conditions. Such studies often involve environmental sample chambers through which the x-ray beam must pass before and after interacting with the sample: i.e. cryostats or high pressure cells. Such sample chambers usually contain polycrystalline x-ray windows with structural imperfections that can in turn interact with the diffracted beam. A phase object in the near field that interacts with the beam exiting the sample can introduce distortions at the detector plane that may affect coherent reconstructions. We investigate the effects of a thin beryllium membrane on the coherent exit beam of a gold nanoparticle. We compare three dimensional reconstructions from experimental diffraction patterns measured with and without a 380 micron thick Be dome and find that the reconstructions are reproducible within experimental errors. Simulated near-field distortions of the exit beam consistent with micron sized voids in Be establish a ``worst case scenario'' where distorted diffraction patterns inhibit accurate inversions.

  16. A Singular Perturbation Approach for Time-Domain Assessment of Phase Margin

    NASA Technical Reports Server (NTRS)

    Zhu, J. Jim; Yang, Xiaojing; Hodel, A Scottedward

    2010-01-01

    This paper considers the problem of time-domain assessment of the Phase Margin (PM) of a Single Input Single Output (SISO) Linear Time-Invariant (LTI) system using a singular perturbation approach, where a SISO LTI fast loop system, whose phase lag increases monotonically with frequency, is introduced into the loop as a singular perturbation with a singular perturbation (time-scale separation) parameter Epsilon. First, a bijective relationship between the Singular Perturbation Margin (SPM) max and the PM of the nominal (slow) system is established with an approximation error on the order of Epsilon(exp 2). In proving this result, relationships between the singular perturbation parameter Epsilon, PM of the perturbed system, PM and SPM of the nominal system, and the (monotonically increasing) phase of the fast system are also revealed. These results make it possible to assess the PM of the nominal system in the time-domain for SISO LTI systems using the SPM with a standardized testing system called "PM-gauge," as demonstrated by examples. PM is a widely used stability margin for LTI control system design and certification. Unfortunately, it is not applicable to Linear Time-Varying (LTV) and Nonlinear Time-Varying (NLTV) systems. The approach developed here can be used to establish a theoretical as well as practical metric of stability margin for LTV and NLTV systems using a standardized SPM that is backward compatible with PM.

  17. Evaluation of quadrature-phase-shift-keying signal characteristics in W-band radio-over-fiber transmission using direct in-phase/quadrature-phase conversion technique

    NASA Astrophysics Data System (ADS)

    Suzuki, Meisaku; Kanno, Atsushi; Yamamoto, Naokatsu; Sotobayashi, Hideyuki

    2016-02-01

    The effects of in-phase/quadrature-phase (IQ) imbalances are evaluated with a direct IQ down-converter in the W-band (75-110 GHz). The IQ imbalance of the converter is measured within a range of +/-10 degrees in an intermediate frequency of DC-26.5 GHz. 1-8-G-baud quadrature phase-shift keying (QPSK) signals are transmitted successfully with observed bit error rates within a forward error correction limit of 2×10-3 using radio over fiber (RoF) techniques. The direct down-conversion technique is applicable to next-generation high-speed wireless access communication systems in the millimeter-wave band.

  18. Magnetospheric Multiscale (MMS) Mission Commissioning Phase Orbit Determination Error Analysis

    NASA Technical Reports Server (NTRS)

    Chung, Lauren R.; Novak, Stefan; Long, Anne; Gramling, Cheryl

    2009-01-01

    The Magnetospheric MultiScale (MMS) mission commissioning phase starts in a 185 km altitude x 12 Earth radii (RE) injection orbit and lasts until the Phase 1 mission orbits and orientation to the Earth-Sun li ne are achieved. During a limited time period in the early part of co mmissioning, five maneuvers are performed to raise the perigee radius to 1.2 R E, with a maneuver every other apogee. The current baseline is for the Goddard Space Flight Center Flight Dynamics Facility to p rovide MMS orbit determination support during the early commissioning phase using all available two-way range and Doppler tracking from bo th the Deep Space Network and Space Network. This paper summarizes th e results from a linear covariance analysis to determine the type and amount of tracking data required to accurately estimate the spacecraf t state, plan each perigee raising maneuver, and support thruster cal ibration during this phase. The primary focus of this study is the na vigation accuracy required to plan the first and the final perigee ra ising maneuvers. Absolute and relative position and velocity error hi stories are generated for all cases and summarized in terms of the ma ximum root-sum-square consider and measurement noise error contributi ons over the definitive and predictive arcs and at discrete times inc luding the maneuver planning and execution times. Details of the meth odology, orbital characteristics, maneuver timeline, error models, and error sensitivities are provided.

  19. The two errors of using the within-subject standard deviation (WSD) as the standard error of a reliable change index.

    PubMed

    Maassen, Gerard H

    2010-08-01

    In this Journal, Lewis and colleagues introduced a new Reliable Change Index (RCI(WSD)), which incorporated the within-subject standard deviation (WSD) of a repeated measurement design as the standard error. In this note, two opposite errors in using WSD this way are demonstrated. First, being the standard error of measurement of only a single assessment makes WSD too small when practice effects are absent. Then, too many individuals will be designated reliably changed. Second, WSD can grow unlimitedly to the extent that differential practice effects occur. This can even make RCI(WSD) unable to detect any reliable change.

  20. Automatic Estimation of Verified Floating-Point Round-Off Errors via Static Analysis

    NASA Technical Reports Server (NTRS)

    Moscato, Mariano; Titolo, Laura; Dutle, Aaron; Munoz, Cesar A.

    2017-01-01

    This paper introduces a static analysis technique for computing formally verified round-off error bounds of floating-point functional expressions. The technique is based on a denotational semantics that computes a symbolic estimation of floating-point round-o errors along with a proof certificate that ensures its correctness. The symbolic estimation can be evaluated on concrete inputs using rigorous enclosure methods to produce formally verified numerical error bounds. The proposed technique is implemented in the prototype research tool PRECiSA (Program Round-o Error Certifier via Static Analysis) and used in the verification of floating-point programs of interest to NASA.

  1. Uncertainty of InSAR velocity fields for measuring long-wavelength displacement

    NASA Astrophysics Data System (ADS)

    Fattahi, H.; Amelung, F.

    2014-12-01

    Long-wavelength artifacts in InSAR data are the main limitation to measure long-wavelength displacement; they are traditionally attributed mainly to the inaccuracy of the satellite orbits (orbital errors). However, most satellites are precisely tracked resulting in uncertainties of orbits of 2-10 cm. Orbits of these satellites are thus precise enough to obtain precise velocity fields with uncertainties better than 1 mm/yr/100 km for older satellites (e.g. Envisat) and better than 0.2 mm/yr/100 km for modern satellites (e.g. TerraSAR-X and Sentinel-1) [Fattahi & Amelung, 2014]. Such accurate velocity fields are achievable if long-wavelength artifacts from sources other than orbital errors are identified and corrected for. We present a modified Small Baseline approach to measure long-wavelength deformation and evaluate the uncertainty of these measurements. We use a redundant network of interferograms for detection and correction of unwrapping errors to ensure the unbiased estimation of phase history. We distinguish between different sources of long-wavelength artifacts and correct those introduced by atmospheric delay, topographic residuals, timing errors, processing approximations and hardware issues. We evaluate the uncertainty of the velocity fields using a covariance matrix with the contributions from orbital errors and residual atmospheric delay. For contributions from the orbital errors we consider the standard deviation of velocity gradients in range and azimuth directions as a function of orbital uncertainty. For contributions from the residual atmospheric delay we use several approaches including the structure functions of InSAR time-series epochs, the predicted delay from numerical weather models and estimated wet delay from optical imagery. We validate this InSAR approach for measuring long-wavelength deformation by comparing InSAR velocity fields over ~500 km long swath across the southern San Andreas fault system with independent GPS velocities and examine the estimated uncertainties in several non-deforming areas. We show the efficiency of the approach to study the continental deformation across the Chaman fault system at the western Indian plate boundary. Ref: Fattahi, H., & Amelung, F., (2014), InSAR uncertainty due to orbital errors, Geophys, J. Int (in press).

  2. Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.

    PubMed

    O'Shea, Jacinta; Gaveau, Valérie; Kandel, Matthieu; Koga, Kazuo; Susami, Kenji; Prablanc, Claude; Rossetti, Yves

    2014-03-01

    This study investigated the motor control mechanisms that enable healthy individuals to adapt their pointing movements during prism exposure to a rightward optical shift. In the prism adaptation literature, two processes are typically distinguished. Strategic motor adjustments are thought to drive the pattern of rapid endpoint error correction typically observed during the early stage of prism exposure. This is distinguished from so-called 'true sensorimotor realignment', normally measured with a different pointing task, at the end of prism exposure, which reveals a compensatory leftward 'prism after-effect'. Here, we tested whether each mode of motor compensation - strategic adjustments versus 'true sensorimotor realignment' - could be distinguished, by analyzing patterns of kinematic change during prism exposure. We hypothesized that fast feedforward versus slower feedback error corrective processes would map onto two distinct phases of the reach trajectory. Specifically, we predicted that feedforward adjustments would drive rapid compensation of the initial (acceleration) phase of the reach, resulting in the rapid reduction of endpoint errors typically observed early during prism exposure. By contrast, we expected visual-proprioceptive realignment to unfold more slowly and to reflect feedback influences during the terminal (deceleration) phase of the reach. The results confirmed these hypotheses. Rapid error reduction during the early stage of prism exposure was achieved by trial-by-trial adjustments of the motor plan, which were proportional to the endpoint error feedback from the previous trial. By contrast, compensation of the terminal reach phase unfolded slowly across the duration of prism exposure. Even after 100 trials of pointing through prisms, adaptation was incomplete, with participants continuing to exhibit a small rightward shift in both the reach endpoints and in the terminal phase of reach trajectories. Individual differences in the degree of adaptation of the terminal reach phase predicted the magnitude of prism after-effects. In summary, this study identifies distinct kinematic signatures of fast strategic versus slow sensorimotor realignment processes, which combine to adjust motor performance to compensate for a prismatic shift. © 2013 Elsevier Ltd. All rights reserved.

  3. Increased instrument intelligence--can it reduce laboratory error?

    PubMed

    Jekelis, Albert W

    2005-01-01

    Recent literature has focused on the reduction of laboratory errors and the potential impact on patient management. This study assessed the intelligent, automated preanalytical process-control abilities in newer generation analyzers as compared with older analyzers and the impact on error reduction. Three generations of immuno-chemistry analyzers were challenged with pooled human serum samples for a 3-week period. One of the three analyzers had an intelligent process of fluidics checks, including bubble detection. Bubbles can cause erroneous results due to incomplete sample aspiration. This variable was chosen because it is the most easily controlled sample defect that can be introduced. Traditionally, lab technicians have had to visually inspect each sample for the presence of bubbles. This is time consuming and introduces the possibility of human error. Instruments with bubble detection may be able to eliminate the human factor and reduce errors associated with the presence of bubbles. Specific samples were vortexed daily to introduce a visible quantity of bubbles, then immediately placed in the daily run. Errors were defined as a reported result greater than three standard deviations below the mean and associated with incomplete sample aspiration of the analyte of the individual analyzer Three standard deviations represented the target limits of proficiency testing. The results of the assays were examined for accuracy and precision. Efficiency, measured as process throughput, was also measured to associate a cost factor and potential impact of the error detection on the overall process. The analyzer performance stratified according to their level of internal process control The older analyzers without bubble detection reported 23 erred results. The newest analyzer with bubble detection reported one specimen incorrectly. The precision and accuracy of the nonvortexed specimens were excellent and acceptable for all three analyzers. No errors were found in the nonvortexed specimens. There were no significant differences in overall process time for any of the analyzers when tests were arranged in an optimal configuration. The analyzer with advanced fluidic intelligence demostrated the greatest ability to appropriately deal with an incomplete aspiration by not processing and reporting a result for the sample. This study suggests that preanalytical process-control capabilities could reduce errors. By association, it implies that similar intelligent process controls could favorably impact the error rate and, in the case of this instrument, do it without negatively impacting process throughput. Other improvements may be realized as a result of having an intelligent error-detection process including further reduction in misreported results, fewer repeats, less operator intervention, and less reagent waste.

  4. Three filters for visualization of phase objects with large variations of phase gradients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagan, Arkadiusz; Antosiewicz, Tomasz J.; Szoplik, Tomasz

    2009-02-20

    We propose three amplitude filters for visualization of phase objects. They interact with the spectra of pure-phase objects in the frequency plane and are based on tangent and error functions as well as antisymmetric combination of square roots. The error function is a normalized form of the Gaussian function. The antisymmetric square-root filter is composed of two square-root filters to widen its spatial frequency spectral range. Their advantage over other known amplitude frequency-domain filters, such as linear or square-root graded ones, is that they allow high-contrast visualization of objects with large variations of phase gradients.

  5. Analytical estimation of laser phase noise induced BER floor in coherent receiver with digital signal processing.

    PubMed

    Vanin, Evgeny; Jacobsen, Gunnar

    2010-03-01

    The Bit-Error-Ratio (BER) floor caused by the laser phase noise in the optical fiber communication system with differential quadrature phase shift keying (DQPSK) and coherent detection followed by digital signal processing (DSP) is analytically evaluated. An in-phase and quadrature (I&Q) receiver with a carrier phase recovery using DSP is considered. The carrier phase recovery is based on a phase estimation of a finite sum (block) of the signal samples raised to the power of four and the phase unwrapping at transitions between blocks. It is demonstrated that errors generated at block transitions cause the dominating contribution to the system BER floor when the impact of the additive noise is negligibly small in comparison with the effect of the laser phase noise. Even the BER floor in the case when the phase unwrapping is omitted is analytically derived and applied to emphasize the crucial importance of this signal processing operation. The analytical results are verified by full Monte Carlo simulations. The BER for another type of DQPSK receiver operation, which is based on differential phase detection, is also obtained in the analytical form using the principle of conditional probability. The principle of conditional probability is justified in the case of differential phase detection due to statistical independency of the laser phase noise induced signal phase error and the additive noise contributions. Based on the achieved analytical results the laser linewidth tolerance is calculated for different system cases.

  6. Liquid crystal point diffraction interferometer. Ph.D. Thesis - Arizona Univ., 1995

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1995-01-01

    A new instrument, the liquid crystal point diffraction-interferometer (LCPDI), has been developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point diffraction interferometer (PDI) and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with very high data density and with automated data reduction. This dissertation describes the theory of both the PDI and liquid crystal phase control. The design considerations for the LCPDI are presented, including manufacturing considerations. The operation and performance of the LCPDI are discussed, including sections regarding alignment, calibration, and amplitude modulation effects. The LCPDI is then demonstrated using two phase objects: defocus difference wavefront, and a temperature distribution across a heated chamber filled with silicone oil. The measured results are compared to theoretical or independently measured results and show excellent agreement. A computer simulation of the LCPDI was performed to verify the source of observed periodic phase measurement error. The error stems from intensity variations caused by dye molecules rotating within the liquid crystal layer. Methods are discussed for reducing this error. Algorithms are presented which reduce this error; they are also useful for any phase-stepping interferometer that has unwanted intensity fluctuations, such as those caused by unregulated lasers.

  7. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two opticalmore » telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.« less

  8. Differential detection in quadrature-quadrature phase shift keying (Q2PSK) systems

    NASA Astrophysics Data System (ADS)

    El-Ghandour, Osama M.; Saha, Debabrata

    1991-05-01

    A generalized quadrature-quadrature phase shift keying (Q2PSK) signaling format is considered for differential encoding and differential detection. Performance in the presence of additive white Gaussian noise (AWGN) is analyzed. Symbol error rate is found to be approximately twice the symbol error rate in a quaternary DPSK system operating at the same Eb/N0. However, the bandwidth efficiency of differential Q2PSK is substantially higher than that of quaternary DPSK. When the error is due to AWGN, the ratio of double error rate to single error rate can be very high, and the ratio may approach zero at high SNR. To improve error rate, differential detection through maximum-likelihood decoding based on multiple or N symbol observations is considered. If N and SNR are large this decoding gives a 3-dB advantage in error rate over conventional N = 2 differential detection, fully recovering the energy loss (as compared to coherent detection) if the observation is extended to a large number of symbol durations.

  9. Testing and Calibration of Phase Plates for JWST Optical Simulator

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Chu, Jenny; Tournois, Severine; Eichhorn, William; Kubalak, David

    2011-01-01

    Three phase plates were designed to simulate the JWST segmented primary mirror wavefront at three on-orbit alignment stages: coarse phasing, intermediate phasing, and fine phasing. The purpose is to verify JWST's on-orbit wavefront sensing capability. Amongst the three stages, coarse alignment is defined to have piston error between adjacent segments being 30 m to 300 m, intermediate being 0.4 m to 10 m, and fine is below 0.4 m. The phase plates were made of fused silica, and were assembled in JWST Optical Simulator (OSIM). The piston difference was realized by the thickness difference of two adjacent segments. The two important parameters to phase plates are piston and wavefront errors. Dispersed Fringe Sensor (DFS) method was used for initial coarse piston evaluation, which is the emphasis of this paper. Point Diffraction Interferometer (PDI) is used for fine piston and wavefront error. In order to remove piston's 2 pi uncertainty with PDI, three laser wavelengths, 640nm, 660nm, and 780nm, are used for the measurement. The DHS test setup, analysis algorithm and results are presented. The phase plate design concept and its application (i.e. verifying the JWST on-orbit alignment algorithm) are described. The layout of JWST OSIM and the function of phase plates in OSIM are also addressed briefly.

  10. Writing executable assertions to test flight software

    NASA Technical Reports Server (NTRS)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.

  11. Predictability of CFSv2 in the tropical Indo-Pacific region, at daily and subseasonal time scales

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, V.

    2018-06-01

    The predictability of a coupled climate model is evaluated at daily and intraseasonal time scales in the tropical Indo-Pacific region during boreal summer and winter. This study has assessed the daily retrospective forecasts of the Climate Forecast System version 2 from the National Centers of Environmental Prediction for the period 1982-2010. The growth of errors in the forecasts of daily precipitation, monsoon intraseasonal oscillation (MISO) and the Madden-Julian oscillation (MJO) is studied. The seasonal cycle of the daily climatology of precipitation is reasonably well predicted except for the underestimation during the peak of summer. The anomalies follow the typical pattern of error growth in nonlinear systems and show no difference between summer and winter. The initial errors in all the cases are found to be in the nonlinear phase of the error growth. The doubling time of small errors is estimated by applying Lorenz error formula. For summer and winter, the doubling time of the forecast errors is in the range of 4-7 and 5-14 days while the doubling time of the predictability errors is 6-8 and 8-14 days, respectively. The doubling time in MISO during the summer and MJO during the winter is in the range of 12-14 days, indicating higher predictability and providing optimism for long-range prediction. There is no significant difference in the growth of forecasts errors originating from different phases of MISO and MJO, although the prediction of the active phase seems to be slightly better.

  12. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert; Yoo, Jung-Moon

    1998-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz) from sequential, sun-synchronous, polar-orbiting NOAA satellites contain small systematic errors. Some of these errors are time-dependent and some are time-independent. Small errors in Ch 2 data of successive satellites arise from calibration differences. Also, successive NOAA satellites tend to have different Local Equatorial Crossing Times (LECT), which introduce differences in Ch 2 data due to the diurnal cycle. These two sources of systematic error are largely time independent. However, because of atmospheric drag, there can be a drift in the LECT of a given satellite, which introduces time-dependent systematic errors. One of these errors is due to the progressive chance in the diurnal cycle and the other is due to associated chances in instrument heating by the sun. In order to infer global temperature trend from the these MSU data, we have eliminated explicitly the time-independent systematic errors. Both of the time-dependent errors cannot be assessed from each satellite. For this reason, their cumulative effect on the global temperature trend is evaluated implicitly. Christy et al. (1998) (CSL). based on their method of analysis of the MSU Ch 2 data, infer a global temperature cooling trend (-0.046 K per decade) from 1979 to 1997, although their near nadir measurements yield near zero trend (0.003 K/decade). Utilising an independent method of analysis, we infer global temperature warmed by 0.12 +/- 0.06 C per decade from the observations of the MSU Ch 2 during the period 1980 to 1997.

  13. FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order

    NASA Astrophysics Data System (ADS)

    Gavin, Ryan; Li, Ye; Petriello, Frank; Quackenbush, Seth

    2011-11-01

    We introduce an improved version of the simulation code FEWZ ( Fully Exclusive W and Z Production) for hadron collider production of lepton pairs through the Drell-Yan process at next-to-next-to-leading order (NNLO) in the strong coupling constant. The program is fully differential in the phase space of leptons and additional hadronic radiation. The new version offers users significantly more options for customization. FEWZ now bins multiple, user-selectable histograms during a single run, and produces parton distribution function (PDF) errors automatically. It also features a significantly improved integration routine, and can take advantage of multiple processor cores locally or on the Condor distributed computing system. We illustrate the new features of FEWZ by presenting numerous phenomenological results for LHC physics. We compare NNLO QCD with initial ATLAS and CMS results, and discuss in detail the effects of detector acceptance on the measurement of angular quantities associated with Z-boson production. We address the issue of technical precision in the presence of severe phase-space cuts. Program summaryProgram title: FEWZ Catalogue identifier: AEJP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6 280 771 No. of bytes in distributed program, including test data, etc.: 173 027 645 Distribution format: tar.gz Programming language: Fortran 77, C++, Python Computer: Mac, PC Operating system: Mac OSX, Unix/Linux Has the code been vectorized or parallelized?: Yes. User-selectable, 1 to 219 RAM: 200 Mbytes for common parton distribution functions Classification: 11.1 External routines: CUBA numerical integration library, numerous parton distribution sets (see text); these are provided with the code. Nature of problem: Determination of the Drell-Yan Z/photon production cross section and decay into leptons, with kinematic distributions of leptons and jets including full spin correlations, at next-to-next-to-leading order in the strong coupling constant. Solution method: Virtual loop integrals are decomposed into master integrals using automated techniques. Singularities are extracted from real radiation terms via sector decomposition, which separates singularities and maps onto suitable phase space variables. Result is convoluted with parton distribution functions. Each piece is numerically integrated over phase space, which allows arbitrary cuts on the observed particles. Each sample point may be binned during numerical integration, providing histograms, and reweighted by parton distribution function error eigenvectors, which provides PDF errors. Restrictions: Output does not correspond to unweighted events, and cannot be interfaced with a shower Monte Carlo. Additional comments: !!!!! The distribution file for this program is over 170 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: One day for total cross sections with 0.1% integration errors assuming typical cuts, up to 1 week for smooth kinematic distributions with sub-percent integration errors for each bin.

  14. WE-H-207A-02: Attenuation Correction in 4D-PET Using a Single-Phase Attenuation Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalantari, F; Wang, J

    2016-06-15

    Purpose: 4D-PET imaging has been proposed as a potential solution to the respiratory motion effect in thoracic region. CT-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference of 4D-PET and a single breath-hold CT, motion artifacts are observed in the attenuation-corrected PET images that can lead to error in tumor shape and uptake. We introduce a practical method for aligning single-phase CT to all other 4D-PET phases using a penalized non-rigid demons registration. Methods: Individual 4D-PET frames were reconstructed without AC. Non-rigid Demons registration was used to derive deformation vectormore » fields (DVFs) between the PET matched with CT phase and other 4D-PET images. While attenuated PET images provide enough useful data for organ borders such as lung and liver, tumors are not distinguishable from background due to loss of contrast. To preserve tumor shape in different phases, from CT image an ROI covering tumor was excluded from non-rigid transformation. Mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of tumor along with a non-rigid transformation of other organs. 4D XCAT phantom with spherical tumors in lung with diameters ranging from 10 to 40 mm was used to evaluate the algorithm. Results: Motion related induced artifacts in attenuation-corrected 4D-PET images were significantly reduced. For tumors smaller than 20 mm, non-rigid transformation was capable to provide quantitative results. However, for larger tumors, where tumor self-attenuation is considerable, our combined method yields superior results. Conclusion: We introduced a practical method for deforming a single CT to match all 4D-PET images for accurate AC. Although 4D-PET data include insignificant anatomical information, we showed that they are still useful to estimate DVFs for aligning attenuation map and accurate AC.« less

  15. Ensemble codes involving hippocampal neurons are at risk during delayed performance tests.

    PubMed

    Hampson, R E; Deadwyler, S A

    1996-11-26

    Multielectrode recording techniques were used to record ensemble activity from 10 to 16 simultaneously active CA1 and CA3 neurons in the rat hippocampus during performance of a spatial delayed-nonmatch-to-sample task. Extracted sources of variance were used to assess the nature of two different types of errors that accounted for 30% of total trials. The two types of errors included ensemble "miscodes" of sample phase information and errors associated with delay-dependent corruption or disappearance of sample information at the time of the nonmatch response. Statistical assessment of trial sequences and associated "strength" of hippocampal ensemble codes revealed that miscoded error trials always followed delay-dependent error trials in which encoding was "weak," indicating that the two types of errors were "linked." It was determined that the occurrence of weakly encoded, delay-dependent error trials initiated an ensemble encoding "strategy" that increased the chances of being correct on the next trial and avoided the occurrence of further delay-dependent errors. Unexpectedly, the strategy involved "strongly" encoding response position information from the prior (delay-dependent) error trial and carrying it forward to the sample phase of the next trial. This produced a miscode type error on trials in which the "carried over" information obliterated encoding of the sample phase response on the next trial. Application of this strategy, irrespective of outcome, was sufficient to reorient the animal to the proper between trial sequence of response contingencies (nonmatch-to-sample) and boost performance to 73% correct on subsequent trials. The capacity for ensemble analyses of strength of information encoding combined with statistical assessment of trial sequences therefore provided unique insight into the "dynamic" nature of the role hippocampus plays in delay type memory tasks.

  16. Chemotherapy Order Entry by a Clinical Support Pharmacy Technician in an Outpatient Medical Day Unit

    PubMed Central

    Neville, Heather; Broadfield, Larry; Harding, Claudia; Heukshorst, Shelley; Sweetapple, Jennifer; Rolle, Megan

    2016-01-01

    Background: Pharmacy technicians are expanding their scope of practice, often in partnership with pharmacists. In oncology, such a shift in responsibilities may lead to workflow efficiencies, but may also cause concerns about patient risk and medication errors. Objectives: The primary objective was to compare the time spent on order entry and order-entry checking before and after training of a clinical support pharmacy technician (CSPT) to perform chemotherapy order entry. The secondary objectives were to document workflow interruptions and to assess medication errors. Methods: This before-and-after observational study investigated chemotherapy order entry for ambulatory oncology patients. Order entry was performed by pharmacists before the process change (phase 1) and by 1 CSPT after the change (phase 2); order-entry checking was performed by a pharmacist during both phases. The tasks were timed by an independent observer using a personal digital assistant. A convenience sample of 125 orders was targeted for each phase. Data were exported to Microsoft Excel software, and timing differences for each task were tested with an unpaired t test. Results: Totals of 143 and 128 individual orders were timed for order entry during phase 1 (pharmacist) and phase 2 (CSPT), respectively. The mean total time to perform order entry was greater during phase 1 (1:37 min versus 1:20 min; p = 0.044). Totals of 144 and 122 individual orders were timed for order-entry checking (by a pharmacist) in phases 1 and 2, respectively, and there was no difference in mean total time for order-entry checking (1:21 min versus 1:20 min; p = 0.69). There were 33 interruptions not related to order entry (totalling 39:38 min) during phase 1 and 25 interruptions (totalling 30:08 min) during phase 2. Three errors were observed during order entry in phase 1 and one error during order-entry checking in phase 2; the errors were rated as having no effect on patient care. Conclusions: Chemotherapy order entry by a trained CSPT appeared to be just as safe and efficient as order entry by a pharmacist. Changes in pharmacy technicians’ scope of practice could increase the amount of time available for pharmacists to provide direct patient care in the oncology setting. PMID:27402999

  17. Chemotherapy Order Entry by a Clinical Support Pharmacy Technician in an Outpatient Medical Day Unit.

    PubMed

    Neville, Heather; Broadfield, Larry; Harding, Claudia; Heukshorst, Shelley; Sweetapple, Jennifer; Rolle, Megan

    2016-01-01

    Pharmacy technicians are expanding their scope of practice, often in partnership with pharmacists. In oncology, such a shift in responsibilities may lead to workflow efficiencies, but may also cause concerns about patient risk and medication errors. The primary objective was to compare the time spent on order entry and order-entry checking before and after training of a clinical support pharmacy technician (CSPT) to perform chemotherapy order entry. The secondary objectives were to document workflow interruptions and to assess medication errors. This before-and-after observational study investigated chemotherapy order entry for ambulatory oncology patients. Order entry was performed by pharmacists before the process change (phase 1) and by 1 CSPT after the change (phase 2); order-entry checking was performed by a pharmacist during both phases. The tasks were timed by an independent observer using a personal digital assistant. A convenience sample of 125 orders was targeted for each phase. Data were exported to Microsoft Excel software, and timing differences for each task were tested with an unpaired t test. Totals of 143 and 128 individual orders were timed for order entry during phase 1 (pharmacist) and phase 2 (CSPT), respectively. The mean total time to perform order entry was greater during phase 1 (1:37 min versus 1:20 min; p = 0.044). Totals of 144 and 122 individual orders were timed for order-entry checking (by a pharmacist) in phases 1 and 2, respectively, and there was no difference in mean total time for order-entry checking (1:21 min versus 1:20 min; p = 0.69). There were 33 interruptions not related to order entry (totalling 39:38 min) during phase 1 and 25 interruptions (totalling 30:08 min) during phase 2. Three errors were observed during order entry in phase 1 and one error during order-entry checking in phase 2; the errors were rated as having no effect on patient care. Chemotherapy order entry by a trained CSPT appeared to be just as safe and efficient as order entry by a pharmacist. Changes in pharmacy technicians' scope of practice could increase the amount of time available for pharmacists to provide direct patient care in the oncology setting.

  18. Decentralized control of sound radiation using iterative loop recovery.

    PubMed

    Schiller, Noah H; Cabell, Randolph H; Fuller, Chris R

    2010-10-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.

  19. The effects of missing data on global ozone estimates

    NASA Technical Reports Server (NTRS)

    Drewry, J. W.; Robbins, J. L.

    1981-01-01

    The effects of missing data and model truncation on estimates of the global mean, zonal distribution, and global distribution of ozone are considered. It is shown that missing data can introduce biased estimates with errors that are not accounted for in the accuracy calculations of empirical modeling techniques. Data-fill techniques are introduced and used for evaluating error bounds and constraining the estimate in areas of sparse and missing data. It is found that the accuracy of the global mean estimate is more dependent on data distribution than model size. Zonal features can be accurately described by 7th order models over regions of adequate data distribution. Data variance accounted for by higher order models appears to represent climatological features of columnar ozone rather than pure error. Data-fill techniques can prevent artificial feature generation in regions of sparse or missing data without degrading high order estimates over dense data regions.

  20. Decentralized Control of Sound Radiation Using Iterative Loop Recovery

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.

    2009-01-01

    A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.

  1. Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation.

    PubMed

    Luu, Phan; Tucker, Don M; Makeig, Scott

    2004-08-01

    The error-related negativity (ERN) is an event-related potential (ERP) peak occurring between 50 and 100 ms after the commission of a speeded motor response that the subject immediately realizes to be in error. The ERN is believed to index brain processes that monitor action outcomes. Our previous analyses of ERP and EEG data suggested that the ERN is dominated by partial phase-locking of intermittent theta-band EEG activity. In this paper, this possibility is further evaluated. The possibility that the ERN is produced by phase-locking of theta-band EEG activity was examined by analyzing the single-trial EEG traces from a forced-choice speeded response paradigm before and after applying theta-band (4-7 Hz) filtering and by comparing the averaged and single-trial phase-locked (ERP) and non-phase-locked (other) EEG data. Electrical source analyses were used to estimate the brain sources involved in the generation of the ERN. Beginning just before incorrect button presses in a speeded choice response paradigm, midfrontal theta-band activity increased in amplitude and became partially and transiently phase-locked to the subject's motor response, accounting for 57% of ERN peak amplitude. The portion of the theta-EEG activity increase remaining after subtracting the response-locked ERP from each trial was larger and longer lasting after error responses than after correct responses, extending on average 400 ms beyond the ERN peak. Multiple equivalent-dipole source analysis suggested 3 possible equivalent dipole sources of the theta-bandpassed ERN, while the scalp distribution of non-phase-locked theta amplitude suggested the presence of additional frontal theta-EEG sources. These results appear consistent with a body of research that demonstrates a relationship between limbic theta activity and action regulation, including error monitoring and learning.

  2. Review of Pre-Analytical Errors in Oral Glucose Tolerance Testing in a Tertiary Care Hospital.

    PubMed

    Nanda, Rachita; Patel, Suprava; Sahoo, Sibashish; Mohapatra, Eli

    2018-03-13

    The pre-pre-analytical and pre-analytical phases form a major chunk of the errors in a laboratory. The process has taken into consideration a very common procedure which is the oral glucose tolerance test to identify the pre-pre-analytical errors. Quality indicators provide evidence of quality, support accountability and help in the decision making of laboratory personnel. The aim of this research is to evaluate pre-analytical performance of the oral glucose tolerance test procedure. An observational study that was conducted overa period of three months, in the phlebotomy and accessioning unit of our laboratory using questionnaire that examined the pre-pre-analytical errors through a scoring system. The pre-analytical phase was analyzed for each sample collected as per seven quality indicators. About 25% of the population gave wrong answer with regard to the question that tested the knowledge of patient preparation. The appropriateness of test result QI-1 had the most error. Although QI-5 for sample collection had a low error rate, it is a very important indicator as any wrongly collected sample can alter the test result. Evaluating the pre-analytical and pre-pre-analytical phase is essential and must be conducted routinely on a yearly basis to identify errors and take corrective action and to facilitate their gradual introduction into routine practice.

  3. Impact of number of co-existing rotors and inter-electrode distance on accuracy of rotor localization☆,☆☆

    PubMed Central

    Aronis, Konstantinos N.; Ashikaga, Hiroshi

    2018-01-01

    Background Conflicting evidence exists on the efficacy of focal impulse and rotor modulation on atrial fibrillation ablation. A potential explanation is inaccurate rotor localization from multiple rotors coexistence and a relatively large (9–11 mm) inter-electrode distance (IED) of the multi-electrode basket catheter. Methods and results We studied a numerical model of cardiac action potential to reproduce one through seven rotors in a two-dimensional lattice. We estimated rotor location using phase singularity, Shannon entropy and dominant frequency. We then spatially downsampled the time series to create IEDs of 2–30 mm. The error of rotor localization was measured with reference to the dynamics of phase singularity at the original spatial resolution (IED = 1 mm). IED has a significant impact on the error using all the methods. When only one rotor is present, the error increases exponentially as a function of IED. At the clinical IED of 10 mm, the error is 3.8 mm (phase singularity), 3.7 mm (dominant frequency), and 11.8 mm (Shannon entropy). When there are more than one rotors, the error of rotor localization increases 10-fold. The error based on the phase singularity method at the clinical IED of 10 mm ranges from 30.0 mm (two rotors) to 96.1 mm (five rotors). Conclusions The magnitude of error of rotor localization using a clinically available basket catheter, in the presence of multiple rotors might be high enough to impact the accuracy of targeting during AF ablation. Improvement of catheter design and development of high-density mapping catheters may improve clinical outcomes of FIRM-guided AF ablation. PMID:28988690

  4. Impact of number of co-existing rotors and inter-electrode distance on accuracy of rotor localization.

    PubMed

    Aronis, Konstantinos N; Ashikaga, Hiroshi

    Conflicting evidence exists on the efficacy of focal impulse and rotor modulation on atrial fibrillation ablation. A potential explanation is inaccurate rotor localization from multiple rotors coexistence and a relatively large (9-11mm) inter-electrode distance (IED) of the multi-electrode basket catheter. We studied a numerical model of cardiac action potential to reproduce one through seven rotors in a two-dimensional lattice. We estimated rotor location using phase singularity, Shannon entropy and dominant frequency. We then spatially downsampled the time series to create IEDs of 2-30mm. The error of rotor localization was measured with reference to the dynamics of phase singularity at the original spatial resolution (IED=1mm). IED has a significant impact on the error using all the methods. When only one rotor is present, the error increases exponentially as a function of IED. At the clinical IED of 10mm, the error is 3.8mm (phase singularity), 3.7mm (dominant frequency), and 11.8mm (Shannon entropy). When there are more than one rotors, the error of rotor localization increases 10-fold. The error based on the phase singularity method at the clinical IED of 10mm ranges from 30.0mm (two rotors) to 96.1mm (five rotors). The magnitude of error of rotor localization using a clinically available basket catheter, in the presence of multiple rotors might be high enough to impact the accuracy of targeting during AF ablation. Improvement of catheter design and development of high-density mapping catheters may improve clinical outcomes of FIRM-guided AF ablation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu

    2016-11-01

    Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.

  6. High-Resolution Multi-Shot Spiral Diffusion Tensor Imaging with Inherent Correction of Motion-Induced Phase Errors

    PubMed Central

    Truong, Trong-Kha; Guidon, Arnaud

    2014-01-01

    Purpose To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multi-shot spiral diffusion tensor imaging (DTI) without requiring a variable-density spiral trajectory or a navigator echo. Theory and Methods The first method simply averages magnitude images reconstructed with sensitivity encoding (SENSE) from each shot, whereas the second and third methods rely on SENSE to estimate the motion-induced phase error for each shot, and subsequently use either a direct phase subtraction or an iterative conjugate gradient (CG) algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. Results The first two methods suffer from a low signal-to-noise ratio (SNR) or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution DTI results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. Conclusion The proposed SENSE+CG method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multi-shot spiral DTI, without increasing the scan time or reducing the SNR. PMID:23450457

  7. Reliability of a Longitudinal Sequence of Scale Ratings

    ERIC Educational Resources Information Center

    Laenen, Annouschka; Alonso, Ariel; Molenberghs, Geert; Vangeneugden, Tony

    2009-01-01

    Reliability captures the influence of error on a measurement and, in the classical setting, is defined as one minus the ratio of the error variance to the total variance. Laenen, Alonso, and Molenberghs ("Psychometrika" 73:443-448, 2007) proposed an axiomatic definition of reliability and introduced the R[subscript T] coefficient, a measure of…

  8. Advanced GIS Exercise: Performing Error Analysis in ArcGIS ModelBuilder

    ERIC Educational Resources Information Center

    Hall, Steven T.; Post, Christopher J.

    2009-01-01

    Knowledge of Geographic Information Systems is quickly becoming an integral part of the natural resource professionals' skill set. With the growing need of professionals with these skills, we created an advanced geographic information systems (GIS) exercise for students at Clemson University to introduce them to the concept of error analysis,…

  9. Quality Control of an OSCE Using Generalizability Theory and Many-Faceted Rasch Measurement

    ERIC Educational Resources Information Center

    Iramaneerat, Cherdsak; Yudkowsky, Rachel; Myford, Carol M.; Downing, Steven M.

    2008-01-01

    An Objective Structured Clinical Examination (OSCE) is an effective method for evaluating competencies. However, scores obtained from an OSCE are vulnerable to many potential measurement errors that cases, items, or standardized patients (SPs) can introduce. Monitoring these sources of errors is an important quality control mechanism to ensure…

  10. Having Fun with Error Analysis

    ERIC Educational Resources Information Center

    Siegel, Peter

    2007-01-01

    We present a fun activity that can be used to introduce students to error analysis: the M&M game. Students are told to estimate the number of individual candies plus uncertainty in a bag of M&M's. The winner is the group whose estimate brackets the actual number with the smallest uncertainty. The exercise produces enthusiastic discussions and…

  11. Apparatus and Method to Enable Precision and Fast Laser Frequency Tuning

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R. (Inventor); Numata, Kenji (Inventor); Wu, Stewart T. (Inventor); Yang, Guangning (Inventor)

    2015-01-01

    An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports.

  12. Error catastrophe and phase transition in the empirical fitness landscape of HIV

    NASA Astrophysics Data System (ADS)

    Hart, Gregory R.; Ferguson, Andrew L.

    2015-03-01

    We have translated clinical sequence databases of the p6 HIV protein into an empirical fitness landscape quantifying viral replicative capacity as a function of the amino acid sequence. We show that the viral population resides close to a phase transition in sequence space corresponding to an "error catastrophe" beyond which there is lethal accumulation of mutations. Our model predicts that the phase transition may be induced by drug therapies that elevate the mutation rate, or by forcing mutations at particular amino acids. Applying immune pressure to any combination of killer T-cell targets cannot induce the transition, providing a rationale for why the viral protein can exist close to the error catastrophe without sustaining fatal fitness penalties due to adaptive immunity.

  13. Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information

    NASA Astrophysics Data System (ADS)

    Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom

    2011-01-01

    In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.

  14. 3D shape reconstruction of specular surfaces by using phase measuring deflectometry

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-10-01

    The existing estimation methods for recovering height information from surface gradient are mainly divided into Modal and Zonal techniques. Since specular surfaces used in the industry always have complex and large areas, considerations must be given to both the improvement of measurement accuracy and the acceleration of on-line processing speed, which beyond the capacity of existing estimations. Incorporating the Modal and Zonal approaches into a unifying scheme, we introduce an improved 3D shape reconstruction version of specular surfaces based on Phase Measuring Deflectometry in this paper. The Modal estimation is firstly implemented to derive the coarse height information of the measured surface as initial iteration values. Then the real shape can be recovered utilizing a modified Zonal wave-front reconstruction algorithm. By combining the advantages of Modal and Zonal estimations, the proposed method simultaneously achieves consistently high accuracy and dramatically rapid convergence. Moreover, the iterative process based on an advanced successive overrelaxation technique shows a consistent rejection of measurement errors, guaranteeing the stability and robustness in practical applications. Both simulation and experimentally measurement demonstrate the validity and efficiency of the proposed improved method. According to the experimental result, the computation time decreases approximately 74.92% in contrast to the Zonal estimation and the surface error is about 6.68 μm with reconstruction points of 391×529 pixels of an experimentally measured sphere mirror. In general, this method can be conducted with fast convergence speed and high accuracy, providing an efficient, stable and real-time approach for the shape reconstruction of specular surfaces in practical situations.

  15. A separate phase drag model and a surrogate approximation for simulation of the steam assisted gravity drainage (SAGD) process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian

    General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less

  16. High Resolution Deformation Time Series Estimation for Distributed Scatterers Using Terrasar-X Data

    NASA Astrophysics Data System (ADS)

    Goel, K.; Adam, N.

    2012-07-01

    In recent years, several SAR satellites such as TerraSAR-X, COSMO-SkyMed and Radarsat-2 have been launched. These satellites provide high resolution data suitable for sophisticated interferometric applications. With shorter repeat cycles, smaller orbital tubes and higher bandwidth of the satellites; deformation time series analysis of distributed scatterers (DSs) is now supported by a practical data basis. Techniques for exploiting DSs in non-urban (rural) areas include the Small Baseline Subset Algorithm (SBAS). However, it involves spatial phase unwrapping, and phase unwrapping errors are typically encountered in rural areas and are difficult to detect. In addition, the SBAS technique involves a rectangular multilooking of the differential interferograms to reduce phase noise, resulting in a loss of resolution and superposition of different objects on ground. In this paper, we introduce a new approach for deformation monitoring with a focus on DSs, wherein, there is no need to unwrap the differential interferograms and the deformation is mapped at object resolution. It is based on a robust object adaptive parameter estimation using single look differential interferograms, where, the local tilts of deformation velocity and local slopes of residual DEM in range and azimuth directions are estimated. We present here the technical details and a processing example of this newly developed algorithm.

  17. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    PubMed Central

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  18. Long-range prediction of the low-frequency mode in the low-level Indian monsoon circulation with a simple statistical method

    NASA Astrophysics Data System (ADS)

    Chen, Tsing-Chang; Yen, Ming-Cheng; Wu, Kuang-Der; Ng, Thomas

    1992-08-01

    The time evolution of the Indian monsoon is closely related to locations of the northward migrating monsoon troughs and ridges which can be well depicted with the 30 60day filtered 850-mb streamfunction. Thus, long-range forecasts of the large-scale low-level monsoon can be obtained from those of the filtered 850-mb streamfunction. These long-range forecasts were made in this study in terms of the Auto Regressive (AR) Moving-Average process. The historical series of the AR model were constructed with the 30 60day filtered 850-mb streamfunction [˜ψ (850mb)] time series of 4months. However, the phase of the last low-frequency cycle in the ˜ψ (850mb) time series can be skewed by the bandpass filtering. To reduce this phase skewness, a simple scheme is introduced. With this phase modification of the filtered 850-mb streamfunction, we performed the pilot forecast experiments of three summers with the AR forecast process. The forecast errors in the positions of the northward propagating monsoon troughs and ridges at Day 20 are generally within the range of 1~2days behind the observed, except in some extreme cases.

  19. A separate phase drag model and a surrogate approximation for simulation of the steam assisted gravity drainage (SAGD) process

    DOE PAGES

    Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; ...

    2016-01-01

    General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less

  20. Motion artifact detection in four-dimensional computed tomography images

    NASA Astrophysics Data System (ADS)

    Bouilhol, G.; Ayadi, M.; Pinho, R.; Rit, S.; Sarrut, D.

    2014-03-01

    Motion artifacts appear in four-dimensional computed tomography (4DCT) images because of suboptimal acquisition parameters or patient breathing irregularities. Frequency of motion artifacts is high and they may introduce errors in radiation therapy treatment planning. Motion artifact detection can be useful for image quality assessment and 4D reconstruction improvement but manual detection in many images is a tedious process. We propose a novel method to evaluate the quality of 4DCT images by automatic detection of motion artifacts. The method was used to evaluate the impact of the optimization of acquisition parameters on image quality at our institute. 4DCT images of 114 lung cancer patients were analyzed. Acquisitions were performed with a rotation period of 0.5 seconds and a pitch of 0.1 (74 patients) or 0.081 (40 patients). A sensitivity of 0.70 and a specificity of 0.97 were observed. End-exhale phases were less prone to motion artifacts. In phases where motion speed is high, the number of detected artifacts was systematically reduced with a pitch of 0.081 instead of 0.1 and the mean reduction was 0.79. The increase of the number of patients with no artifact detected was statistically significant for the 10%, 70% and 80% respiratory phases, indicating a substantial image quality improvement.

  1. Loss Tolerance in One-Way Quantum Computation via Counterfactual Error Correction

    NASA Astrophysics Data System (ADS)

    Varnava, Michael; Browne, Daniel E.; Rudolph, Terry

    2006-09-01

    We introduce a scheme for fault tolerantly dealing with losses (or other “leakage” errors) in cluster state computation that can tolerate up to 50% qubit loss. This is achieved passively using an adaptive strategy of measurement—no coherent measurements or coherent correction is required. Since the scheme relies on inferring information about what would have been the outcome of a measurement had one been able to carry it out, we call this counterfactual error correction.

  2. An analysis of carrier phase jitter in an MPSK receiver utilizing map estimation. Ph.D. Thesis Semiannual Status Report, Jul. 1993 - Jan. 1994

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1994-01-01

    The use of 8 and 16 PSK TCM to support satellite communications in an effort to achieve more bandwidth efficiency in a power-limited channel has been proposed. This project addresses the problem of carrier phase jitter in an M-PSK receiver utilizing the high SNR approximation to the maximum aposteriori estimation of carrier phase. In particular, numerical solutions to the 8 and 16 PSK self-noise and phase detector gain in the carrier tracking loop are presented. The effect of changing SNR on the loop noise bandwidth is also discussed. These data are then used to compute variance of phase error as a function of SNR. Simulation and hardware data are used to verify these calculations. The results show that there is a threshold in the variance of phase error versus SNR curves that is a strong function of SNR and a weak function of loop bandwidth. The M-PSK variance thresholds occur at SNR's in the range of practical interest for the use of 8 and 16-PSK TCM. This suggests that phase error variance is an important consideration in the design of these systems.

  3. Some aspects of stratospheric chemical response to solar particle precipitations. I - Potential roles of N2/A3Sigma/ and ion-chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.

    1979-01-01

    Large amounts of long lived N2(A3Sigma) are created by the energy degradation of precipitating solar particles. Laboratory data suggest that in the stratosphere N2(A3Sigma) are efficiently converted into N2O. Through reactions with O(1D), N2O may gradually release NO and thereby influence the long term aspects of stratospheric chemical response. During the daytime, negative ions may transform an active NO(x) into an inactive HNO3. At night both negative and positive ion chemistry generate HO(x). Omission of ionic chemistry results in considerable underestimation of O3 depletion during the initial phases of solar particle events, and thereby introduces significant error in the estimation of the nature of the prompt response.

  4. Ultra-fast quantitative imaging using ptychographic iterative engine based digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Sun, Aihui; Tian, Xiaolin; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng

    2018-01-01

    As a lensfree imaging technique, ptychographic iterative engine (PIE) method can provide both quantitative sample amplitude and phase distributions avoiding aberration. However, it requires field of view (FoV) scanning often relying on mechanical translation, which not only slows down measuring speed, but also introduces mechanical errors decreasing both resolution and accuracy in retrieved information. In order to achieve high-accurate quantitative imaging with fast speed, digital micromirror device (DMD) is adopted in PIE for large FoV scanning controlled by on/off state coding by DMD. Measurements were implemented using biological samples as well as USAF resolution target, proving high resolution in quantitative imaging using the proposed system. Considering its fast and accurate imaging capability, it is believed the DMD based PIE technique provides a potential solution for medical observation and measurements.

  5. Majorana fermion surface code for universal quantum computation

    DOE PAGES

    Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang

    2015-12-10

    In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z 2 topological order with a Z 2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physicalmore » ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less

  6. Method of excess fractions with application to absolute distance metrology: wavelength selection and the effects of common error sources.

    PubMed

    Falaggis, Konstantinos; Towers, David P; Towers, Catherine E

    2012-09-20

    Multiwavelength interferometry (MWI) is a well established technique in the field of optical metrology. Previously, we have reported a theoretical analysis of the method of excess fractions that describes the mutual dependence of unambiguous measurement range, reliability, and the measurement wavelengths. In this paper wavelength, selection strategies are introduced that are built on the theoretical description and maximize the reliability in the calculated fringe order for a given measurement range, number of wavelengths, and level of phase noise. Practical implementation issues for an MWI interferometer are analyzed theoretically. It is shown that dispersion compensation is best implemented by use of reference measurements around absolute zero in the interferometer. Furthermore, the effects of wavelength uncertainty allow the ultimate performance of an MWI interferometer to be estimated.

  7. Differential phase measurements of D-region partial reflections

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Sechrist, C. F., Jr.

    1972-01-01

    Differential phase partial reflection measurements were used to deduce D region electron density profiles. The phase difference was measured by taking sums and differences of amplitudes received on an array of crossed dipoles. The reflection model used was derived from Fresnel reflection theory. Seven profiles obtained over the period from 13 October 1971 to 5 November 1971 are presented, along with the results from simultaneous measurements of differential absorption. Some possible sources of error and error propagation are discussed. A collision frequency profile was deduced from the electron concentration calculated from differential phase and differential absorption.

  8. Precise Aperture-Dependent Motion Compensation with Frequency Domain Fast Back-Projection Algorithm.

    PubMed

    Zhang, Man; Wang, Guanyong; Zhang, Lei

    2017-10-26

    Precise azimuth-variant motion compensation (MOCO) is an essential and difficult task for high-resolution synthetic aperture radar (SAR) imagery. In conventional post-filtering approaches, residual azimuth-variant motion errors are generally compensated through a set of spatial post-filters, where the coarse-focused image is segmented into overlapped blocks concerning the azimuth-dependent residual errors. However, image domain post-filtering approaches, such as precise topography- and aperture-dependent motion compensation algorithm (PTA), have difficulty of robustness in declining, when strong motion errors are involved in the coarse-focused image. In this case, in order to capture the complete motion blurring function within each image block, both the block size and the overlapped part need necessary extension leading to degeneration of efficiency and robustness inevitably. Herein, a frequency domain fast back-projection algorithm (FDFBPA) is introduced to deal with strong azimuth-variant motion errors. FDFBPA disposes of the azimuth-variant motion errors based on a precise azimuth spectrum expression in the azimuth wavenumber domain. First, a wavenumber domain sub-aperture processing strategy is introduced to accelerate computation. After that, the azimuth wavenumber spectrum is partitioned into a set of wavenumber blocks, and each block is formed into a sub-aperture coarse resolution image via the back-projection integral. Then, the sub-aperture images are straightforwardly fused together in azimuth wavenumber domain to obtain a full resolution image. Moreover, chirp-Z transform (CZT) is also introduced to implement the sub-aperture back-projection integral, increasing the efficiency of the algorithm. By disusing the image domain post-filtering strategy, robustness of the proposed algorithm is improved. Both simulation and real-measured data experiments demonstrate the effectiveness and superiority of the proposal.

  9. Dynamic testbed demonstration of WFIRST coronagraph low order wavefront sensing and control (LOWFS/C)

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Cady, Eric; Seo, Byoung-Joon; An, Xin; Balasubramanian, Kunjithapatham; Kern, Brian; Lam, Raymond; Marx, David; Moody, Dwight; Mejia Prada, Camilo; Patterson, Keith; Poberezhskiy, Ilya; Shields, Joel; Sidick, Erkin; Tang, Hong; Trauger, John; Truong, Tuan; White, Victor; Wilson, Daniel; Zhou, Hanying

    2017-09-01

    To maintain the required performance of WFIRST Coronagraph in a realistic space environment, a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem is necessary. The LOWFS/C uses a Zernike wavefront sensor (ZWFS) with the phase shifting disk combined with the starlight rejecting occulting mask. For wavefront error corrections, WFIRST LOWFS/C uses a fast steering mirror (FSM) for line-of-sight (LoS) correction, a focusing mirror for focus drift correction, and one of the two deformable mirrors (DM) for other low order wavefront error (WFE) correction. As a part of technology development and demonstration for WFIRST Coronagraph, a dedicated Occulting Mask Coronagraph (OMC) testbed has been built and commissioned. With its configuration similar to the WFIRST flight coronagraph instrument the OMC testbed consists of two coronagraph modes, Shaped Pupil Coronagraph (SPC) and Hybrid Lyot Coronagraph (HLC), a low order wavefront sensor (LOWFS), and an optical telescope assembly (OTA) simulator which can generate realistic LoS drift and jitter as well as low order wavefront error that would be induced by the WFIRST telescope's vibration and thermal changes. In this paper, we will introduce the concept of WFIRST LOWFS/C, describe the OMC testbed, and present the testbed results of LOWFS sensor performance. We will also present our recent results from the dynamic coronagraph tests in which we have demonstrated of using LOWFS/C to maintain the coronagraph contrast with the presence of WFIRST-like line-of-sight and low order wavefront disturbances.

  10. Loran digital phase-locked loop and RF front-end system error analysis

    NASA Technical Reports Server (NTRS)

    Mccall, D. L.

    1979-01-01

    An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.

  11. Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach

    NASA Astrophysics Data System (ADS)

    Bähr, Hermann; Hanssen, Ramon F.

    2012-12-01

    An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.

  12. Learning without Borders: A Review of the Implementation of Medical Error Reporting in Médecins Sans Frontières

    PubMed Central

    Shanks, Leslie; Bil, Karla; Fernhout, Jena

    2015-01-01

    Objective To analyse the results from the first 3 years of implementation of a medical error reporting system in Médecins Sans Frontières-Operational Centre Amsterdam (MSF) programs. Methodology A medical error reporting policy was developed with input from frontline workers and introduced to the organisation in June 2010. The definition of medical error used was “the failure of a planned action to be completed as intended or the use of a wrong plan to achieve an aim.” All confirmed error reports were entered into a database without the use of personal identifiers. Results 179 errors were reported from 38 projects in 18 countries over the period of June 2010 to May 2013. The rate of reporting was 31, 42, and 106 incidents/year for reporting year 1, 2 and 3 respectively. The majority of errors were categorized as dispensing errors (62 cases or 34.6%), errors or delays in diagnosis (24 cases or 13.4%) and inappropriate treatment (19 cases or 10.6%). The impact of the error was categorized as no harm (58, 32.4%), harm (70, 39.1%), death (42, 23.5%) and unknown in 9 (5.0%) reports. Disclosure to the patient took place in 34 cases (19.0%), did not take place in 46 (25.7%), was not applicable for 5 (2.8%) cases and not reported for 94 (52.5%). Remedial actions introduced at headquarters level included guideline revisions and changes to medical supply procedures. At field level improvements included increased training and supervision, adjustments in staffing levels, and adaptations to the organization of the pharmacy. Conclusion It was feasible to implement a voluntary reporting system for medical errors despite the complex contexts in which MSF intervenes. The reporting policy led to system changes that improved patient safety and accountability to patients. Challenges remain in achieving widespread acceptance of the policy as evidenced by the low reporting and disclosure rates. PMID:26381622

  13. An Improved Approach for RSSI-Based only Calibration-Free Real-Time Indoor Localization on IEEE 802.11 and 802.15.4 Wireless Networks.

    PubMed

    Passafiume, Marco; Maddio, Stefano; Cidronali, Alessandro

    2017-03-29

    Assuming a reliable and responsive spatial contextualization service is a must-have in IEEE 802.11 and 802.15.4 wireless networks, a suitable approach consists of the implementation of localization capabilities, as an additional application layer to the communication protocol stack. Considering the applicative scenario where satellite-based positioning applications are denied, such as indoor environments, and excluding data packet arrivals time measurements due to lack of time resolution, received signal strength indicator (RSSI) measurements, obtained according to IEEE 802.11 and 802.15.4 data access technologies, are the unique data sources suitable for indoor geo-referencing using COTS devices. In the existing literature, many RSSI based localization systems are introduced and experimentally validated, nevertheless they require periodic calibrations and significant information fusion from different sensors that dramatically decrease overall systems reliability and their effective availability. This motivates the work presented in this paper, which introduces an approach for an RSSI-based calibration-free and real-time indoor localization. While switched-beam array-based hardware (compliant with IEEE 802.15.4 router functionality) has already been presented by the author, the focus of this paper is the creation of an algorithmic layer for use with the pre-existing hardware capable to enable full localization and data contextualization over a standard 802.15.4 wireless sensor network using only RSSI information without the need of lengthy offline calibration phase. System validation reports the localization results in a typical indoor site, where the system has shown high accuracy, leading to a sub-metrical overall mean error and an almost 100% site coverage within 1 m localization error.

  14. An Improved Approach for RSSI-Based only Calibration-Free Real-Time Indoor Localization on IEEE 802.11 and 802.15.4 Wireless Networks

    PubMed Central

    Passafiume, Marco; Maddio, Stefano; Cidronali, Alessandro

    2017-01-01

    Assuming a reliable and responsive spatial contextualization service is a must-have in IEEE 802.11 and 802.15.4 wireless networks, a suitable approach consists of the implementation of localization capabilities, as an additional application layer to the communication protocol stack. Considering the applicative scenario where satellite-based positioning applications are denied, such as indoor environments, and excluding data packet arrivals time measurements due to lack of time resolution, received signal strength indicator (RSSI) measurements, obtained according to IEEE 802.11 and 802.15.4 data access technologies, are the unique data sources suitable for indoor geo-referencing using COTS devices. In the existing literature, many RSSI based localization systems are introduced and experimentally validated, nevertheless they require periodic calibrations and significant information fusion from different sensors that dramatically decrease overall systems reliability and their effective availability. This motivates the work presented in this paper, which introduces an approach for an RSSI-based calibration-free and real-time indoor localization. While switched-beam array-based hardware (compliant with IEEE 802.15.4 router functionality) has already been presented by the author, the focus of this paper is the creation of an algorithmic layer for use with the pre-existing hardware capable to enable full localization and data contextualization over a standard 802.15.4 wireless sensor network using only RSSI information without the need of lengthy offline calibration phase. System validation reports the localization results in a typical indoor site, where the system has shown high accuracy, leading to a sub-metrical overall mean error and an almost 100% site coverage within 1 m localization error. PMID:28353676

  15. Addressing Angular Single-Event Effects in the Estimation of On-Orbit Error Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, David S.; Swift, Gary M.; Wirthlin, Michael J.

    2015-12-01

    Our study describes complications introduced by angular direct ionization events on space error rate predictions. In particular, prevalence of multiple-cell upsets and a breakdown in the application of effective linear energy transfer in modern-scale devices can skew error rates approximated from currently available estimation models. Moreover, this paper highlights the importance of angular testing and proposes a methodology to extend existing error estimation tools to properly consider angular strikes in modern-scale devices. Finally, these techniques are illustrated with test data provided from a modern 28 nm SRAM-based device.

  16. Practical aspects and applications of the biological effective dose three-dimensional calculation for multi-phase radiotherapy treatment plans

    NASA Astrophysics Data System (ADS)

    Kauweloa, Kevin Ikaika

    The approximate BED (BEDA) is calculated for multi-phase cases due to current treatment planning systems (TPSs) being incapable of performing BED calculations. There has been no study on the mathematical accuracy and precision of BEDA relative to the true BED (BEDT), and how that might negatively impact patient care. The purpose of the first aim was to study the mathematical accuracy and precision in both hypothetical and clinical situations, while the next two aims were to create multi-phase BED optimization ideas for both multi-target liver stereotactic body radiation therapy (SBRT) cases, and gynecological cases where patients are treated with high-dose rate (HDR) brachytherapy along with external beam radiotherapy (EBRT). MATLAB algorithms created for this work were used to mathematically analyze the accuracy and precision of BEDA relative to BEDT in both hypothetical and clinical situations on a 3D basis. The organs-at-risk (OARs) of ten head & neck and ten prostate cancer patients were studied for the clinical situations. The accuracy of BEDA was shown to vary between OARs as well as between patients. The percentage of patients with an overall BEDA percent error less than 1% were, 50% for the Optic Chiasm and Brainstem, 70% for the Left and Right Optic Nerves, as well as the Rectum and Bladder, and 80% for the Normal Brain and Spinal Cord. As seen for each OAR among different patients, there were always cases where the percent error was greater than 1%. This is a cause for concern since the goal of radiation therapy is to reduce the overall uncertainty of treatment, and calculating BEDA distributions increases the treatment uncertainty with percent errors greater than 1%. The revealed inaccuracy and imprecision of BEDA supports the argument to use BEDT. The multi-target liver study involved applying BEDT in order to reduce the number of dose limits to one rather than have one for each fractionation scheme in multi-target liver SBRT treatments. A BEDT limit was found using the current, clinically accepted dose limits, allowing the BEDT distributions to be calculated, which could be used to determine whether at least 700 cc of the healthy liver did not receive the BEDT limit. Three previously multi-target liver cancer patients were studied. For each case, it was shown that the conventional treatment plans were relatively conservative and that more than 700 cc of the healthy liver received less than the BED T limit. These results show that greater doses can be delivered to the targets without exceeding the BEDT limit to the healthy tissue, which typically causes radiation toxicity. When applying BEDT to gynecological cases, the BEDT can reveal the relative effect each treatment would have individually hence the cumulative BEDT would better inform the physician of the potential results with the patient's treatment. The problem presented for these cases, however, is the method in summing dose distributions together when there is significant motion between treatments and the presence of applicators for the HDR phase. One way to calculate the cumulative BEDT is to use structure guided deformable image registration (SG-DIR) that only focuses on the anatomical contours, to avoid errors introduced by the applicators. Eighteen gynecological patients were studied and VelocityAI was used to perform this SG- DIR. In addition, formalism was developed to assess and characterize the remnant dose-mapping error from this approach, from the shortest distance between contour points (SDBP). The results revealed that warping errors rendered relatively large normal tissue complication probability (NTCP) values which are certainly non negligible and does render this method not clinically viable. However, a more accurate SG-DIR algorithm could improve the accuracy of BEDT distributions in these multi-phase cases.

  17. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  18. Sustainability of protocolized handover of pediatric cardiac surgery patients to the intensive care unit.

    PubMed

    Chenault, Kristin; Moga, Michael-Alice; Shin, Minah; Petersen, Emily; Backer, Carl; De Oliveira, Gildasio S; Suresh, Santhanam

    2016-05-01

    Transfer of patient care among clinicians (handovers) is a common source of medical errors. While the immediate efficacy of these initiatives is well documented, sustainability of practice changes that results in better processes of care is largely understudied. The objective of the current investigation was to evaluate the sustainability of a protocolized handover process in pediatric patients from the operating room after cardiac surgery to the intensive care unit. This was a prospective study with direct observation assessment of handover performance conducted in the cardiac ICU (CICU) of a free-standing, tertiary care children's hospital in the United States. Patient transitions from the operating room to the CICU, including the verbal handoff, were directly observed by a single independent observer in all phases of the study. A checklist of key elements identified errors classified as: (1) technical, (2) information omissions, and (3) realized errors. Total number of errors was compared across the different times of the study (preintervention, postintervention, and the current sustainability phase). A total of 119 handovers were studied: 41 preintervention, 38 postintervention, and 40 in the current sustainability phase. The median [Interquartile range (IQR)] number of technical errors was significantly reduced in the sustainability phase compared to the preintervention and postintervention phase, 2 (1-3), 6 (5-7), and 2.5 (2-4), respectively P = 0.0001. Similarly, the median (IQR) number of verbal information omissions was also significantly reduced in the sustainability phase compared to the preintervention and postintervention phases, 1 (1-1), 4 (3-5) and 2 (1-3), respectively. We demonstrate sustainability of an improved handover process using a checklist in children being transferred to the intensive care unit after cardiac surgery. Standardized handover processes can be a sustainable strategy to improve patient safety after pediatric cardiac surgery. © 2016 John Wiley & Sons Ltd.

  19. Dual-phase-shift spherical Fizeau interferometer for reduction of noise due to internally scattered light

    NASA Astrophysics Data System (ADS)

    Kumagai, Toshiki; Hibino, Kenichi; Nagaike, Yasunari

    2017-03-01

    Internally scattered light in a Fizeau interferometer is generated from dust, defects, imperfect coating of the optical components, and multiple reflections inside the collimator lens. It produces additional noise fringes in the observed interference image and degrades the repeatability of the phase measurement. A method to reduce the phase measurement error is proposed, in which the test surface is mechanically translated between each phase measurement in addition to an ordinary phase shift of the reference surface. It is shown that a linear combination of several measured phases at different test surface positions can reduce the phase errors caused by the scattered light. The combination can also compensate for the nonuniformity of the phase shift that occurs in spherical tests. A symmetric sampling of the phase measurements can cancel the additional primary spherical aberrations that occur when the test surface is out of the null position of the confocal configuration.

  20. Pre-cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control

    PubMed Central

    Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071

  1. Biparticle fluidized bed reactor

    DOEpatents

    Scott, Charles D.; Marasco, Joseph A.

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  2. Biparticle fluidized bed reactor

    DOEpatents

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  3. In-Situ Cameras for Radiometric Correction of Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Kautz, Jess S.

    The atmosphere distorts the spectrum of remotely sensed data, negatively affecting all forms of investigating Earth's surface. To gather reliable data, it is vital that atmospheric corrections are accurate. The current state of the field of atmospheric correction does not account well for the benefits and costs of different correction algorithms. Ground spectral data are required to evaluate these algorithms better. This dissertation explores using cameras as radiometers as a means of gathering ground spectral data. I introduce techniques to implement a camera systems for atmospheric correction using off the shelf parts. To aid the design of future camera systems for radiometric correction, methods for estimating the system error prior to construction, calibration and testing of the resulting camera system are explored. Simulations are used to investigate the relationship between the reflectance accuracy of the camera system and the quality of atmospheric correction. In the design phase, read noise and filter choice are found to be the strongest sources of system error. I explain the calibration methods for the camera system, showing the problems of pixel to angle calibration, and adapting the web camera for scientific work. The camera system is tested in the field to estimate its ability to recover directional reflectance from BRF data. I estimate the error in the system due to the experimental set up, then explore how the system error changes with different cameras, environmental set-ups and inversions. With these experiments, I learn about the importance of the dynamic range of the camera, and the input ranges used for the PROSAIL inversion. Evidence that the camera can perform within the specification set for ELM correction in this dissertation is evaluated. The analysis is concluded by simulating an ELM correction of a scene using various numbers of calibration targets, and levels of system error, to find the number of cameras needed for a full-scale implementation.

  4. Selecting a restoration technique to minimize OCR error.

    PubMed

    Cannon, M; Fugate, M; Hush, D R; Scovel, C

    2003-01-01

    This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.

  5. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  6. Learning by observation: insights from Williams syndrome.

    PubMed

    Foti, Francesca; Menghini, Deny; Mandolesi, Laura; Federico, Francesca; Vicari, Stefano; Petrosini, Laura

    2013-01-01

    Observing another person performing a complex action accelerates the observer's acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence) in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for acquiring competencies, since it primed subjects' interest in the actions to be performed and functioned as a catalyst for executed action.

  7. Velocity encoding with the slice select refocusing gradient for faster imaging and reduced chemical shift-induced phase errors.

    PubMed

    Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B

    2014-06-01

    To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.

  8. Analysis of the error of the developed method of determination the active conductivity reducing the insulation level between one phase of the network and ground, and insulation parameters in a non-symmetric network with isolated neutral with voltage above 1000 V

    NASA Astrophysics Data System (ADS)

    Utegulov, B. B.

    2018-02-01

    In the work the study of the developed method was carried out for reliability by analyzing the error in indirect determination of the insulation parameters in an asymmetric network with an isolated neutral voltage above 1000 V. The conducted studies of the random relative mean square errors show that the accuracy of indirect measurements in the developed method can be effectively regulated not only by selecting a capacitive additional conductivity, which are connected between phases of the electrical network and the ground, but also by the selection of measuring instruments according to the accuracy class. When choosing meters with accuracy class of 0.5 with the correct selection of capacitive additional conductivity that are connected between the phases of the electrical network and the ground, the errors in measuring the insulation parameters will not exceed 10%.

  9. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells.

    PubMed

    Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang

    2016-10-14

    First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5-60 m³/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2-60 m³/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow.

  10. Novel Downhole Electromagnetic Flowmeter for Oil-Water Two-Phase Flow in High-Water-Cut Oil-Producing Wells

    PubMed Central

    Wang, Yanjun; Li, Haoyu; Liu, Xingbin; Zhang, Yuhui; Xie, Ronghua; Huang, Chunhui; Hu, Jinhai; Deng, Gang

    2016-01-01

    First, the measuring principle, the weight function, and the magnetic field of the novel downhole inserted electromagnetic flowmeter (EMF) are described. Second, the basic design of the EMF is described. Third, the dynamic experiments of two EMFs in oil-water two-phase flow are carried out. The experimental errors are analyzed in detail. The experimental results show that the maximum absolute value of the full-scale errors is better than 5%, the total flowrate is 5–60 m3/d, and the water-cut is higher than 60%. The maximum absolute value of the full-scale errors is better than 7%, the total flowrate is 2–60 m3/d, and the water-cut is higher than 70%. Finally, onsite experiments in high-water-cut oil-producing wells are conducted, and the possible reasons for the errors in the onsite experiments are analyzed. It is found that the EMF can provide an effective technology for measuring downhole oil-water two-phase flow. PMID:27754412

  11. Adaptive feedforward control of non-minimum phase structural systems

    NASA Astrophysics Data System (ADS)

    Vipperman, J. S.; Burdisso, R. A.

    1995-06-01

    Adaptive feedforward control algorithms have been effectively applied to stationary disturbance rejection. For structural systems, the ideal feedforward compensator is a recursive filter which is a function of the transfer functions between the disturbance and control inputs and the error sensor output. Unfortunately, most control configurations result in a non-minimum phase control path; even a collocated control actuator and error sensor will not necessarily produce a minimum phase control path in the discrete domain. Therefore, the common practice is to choose a suitable approximation of the ideal compensator. In particular, all-zero finite impulse response (FIR) filters are desirable because of their inherent stability for adaptive control approaches. However, for highly resonant systems, large order filters are required for broadband applications. In this work, a control configuration is investigated for controlling non-minimum phase lightly damped structural systems. The control approach uses low order FIR filters as feedforward compensators in a configuration that has one more control actuator than error sensors. The performance of the controller was experimentally evaluated on a simply supported plate under white noise excitation for a two-input, one-output (2I1O) system. The results show excellent error signal reduction, attesting to the effectiveness of the method.

  12. Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.

    PubMed

    Kienle, A; Patterson, M S

    1997-09-01

    We investigate theoretically the errors in determining the reduced scattering and absorption coefficients of semi-infinite turbid media from frequency-domain reflectance measurements made at small distances between the source and the detector(s). The errors are due to the uncertainties in the measurement of the phase, the modulation and the steady-state reflectance as well as to the diffusion approximation which is used as a theoretical model to describe light propagation in tissue. Configurations using one and two detectors are examined for the measurement of the phase and the modulation and for the measurement of the phase and the steady-state reflectance. Three solutions of the diffusion equation are investigated. We show that measurements of the phase and the steady-state reflectance at two different distances are best suited for the determination of the optical properties close to the source. For this arrangement the errors in the absorption coefficient due to typical uncertainties in the measurement are greater than those resulting from the application of the diffusion approximation at a modulation frequency of 200 MHz. A Monte Carlo approach is also examined; this avoids the errors due to the diffusion approximation.

  13. Stochastic goal-oriented error estimation with memory

    NASA Astrophysics Data System (ADS)

    Ackmann, Jan; Marotzke, Jochem; Korn, Peter

    2017-11-01

    We propose a stochastic dual-weighted error estimator for the viscous shallow-water equation with boundaries. For this purpose, previous work on memory-less stochastic dual-weighted error estimation is extended by incorporating memory effects. The memory is introduced by describing the local truncation error as a sum of time-correlated random variables. The random variables itself represent the temporal fluctuations in local truncation errors and are estimated from high-resolution information at near-initial times. The resulting error estimator is evaluated experimentally in two classical ocean-type experiments, the Munk gyre and the flow around an island. In these experiments, the stochastic process is adapted locally to the respective dynamical flow regime. Our stochastic dual-weighted error estimator is shown to provide meaningful error bounds for a range of physically relevant goals. We prove, as well as show numerically, that our approach can be interpreted as a linearized stochastic-physics ensemble.

  14. Characteristics of pediatric chemotherapy medication errors in a national error reporting database.

    PubMed

    Rinke, Michael L; Shore, Andrew D; Morlock, Laura; Hicks, Rodney W; Miller, Marlene R

    2007-07-01

    Little is known regarding chemotherapy medication errors in pediatrics despite studies suggesting high rates of overall pediatric medication errors. In this study, the authors examined patterns in pediatric chemotherapy errors. The authors queried the United States Pharmacopeia MEDMARX database, a national, voluntary, Internet-accessible error reporting system, for all error reports from 1999 through 2004 that involved chemotherapy medications and patients aged <18 years. Of the 310 pediatric chemotherapy error reports, 85% reached the patient, and 15.6% required additional patient monitoring or therapeutic intervention. Forty-eight percent of errors originated in the administering phase of medication delivery, and 30% originated in the drug-dispensing phase. Of the 387 medications cited, 39.5% were antimetabolites, 14.0% were alkylating agents, 9.3% were anthracyclines, and 9.3% were topoisomerase inhibitors. The most commonly involved chemotherapeutic agents were methotrexate (15.3%), cytarabine (12.1%), and etoposide (8.3%). The most common error types were improper dose/quantity (22.9% of 327 cited error types), wrong time (22.6%), omission error (14.1%), and wrong administration technique/wrong route (12.2%). The most common error causes were performance deficit (41.3% of 547 cited error causes), equipment and medication delivery devices (12.4%), communication (8.8%), knowledge deficit (6.8%), and written order errors (5.5%). Four of the 5 most serious errors occurred at community hospitals. Pediatric chemotherapy errors often reached the patient, potentially were harmful, and differed in quality between outpatient and inpatient areas. This study indicated which chemotherapeutic agents most often were involved in errors and that administering errors were common. Investigation is needed regarding targeted medication administration safeguards for these high-risk medications. Copyright (c) 2007 American Cancer Society.

  15. Microdensitometer errors: Their effect on photometric data reduction

    NASA Technical Reports Server (NTRS)

    Bozyan, E. P.; Opal, C. B.

    1984-01-01

    The performance of densitometers used for photometric data reduction of high dynamic range electrographic plate material is analyzed. Densitometer repeatability is tested by comparing two scans of one plate. Internal densitometer errors are examined by constructing histograms of digitized densities and finding inoperative bits and differential nonlinearity in the analog to digital converter. Such problems appear common to the four densitometers used in this investigation and introduce systematic algorithm dependent errors in the results. Strategies to improve densitometer performance are suggested.

  16. Efficient detection of dangling pointer error for C/C++ programs

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhe

    2017-08-01

    Dangling pointer error is pervasive in C/C++ programs and it is very hard to detect. This paper introduces an efficient detector to detect dangling pointer error in C/C++ programs. By selectively leave some memory accesses unmonitored, our method could reduce the memory monitoring overhead and thus achieves better performance over previous methods. Experiments show that our method could achieve an average speed up of 9% over previous compiler instrumentation based method and more than 50% over previous page protection based method.

  17. Observations on Polar Coding with CRC-Aided List Decoding

    DTIC Science & Technology

    2016-09-01

    9 v 1. INTRODUCTION Polar codes are a new type of forward error correction (FEC) codes, introduced by Arikan in [1], in which he...error correction (FEC) currently used and planned for use in Navy wireless communication systems. The project’s results from FY14 and FY15 are...good error- correction per- formance. We used the Tal/Vardy method of [5]. The polar encoder uses a row vector u of length N . Let uA be the subvector

  18. Impact of errors in short wave radiation and its attenuation on modeled upper ocean heat content

    DTIC Science & Technology

    Photosynthetically available radiation (PAR) and its attenuation with the depth represent a forcing (source) term in the governing equation for the...and vertical attenuation of PAR have on the upper ocean model heat content. In the Monterey Bay area, we show that with a decrease in water clarity...attenuation coefficient. For Jerlov’s type IA water (attenuation coefficient is 0.049 m1), the relative error in surface PAR introduces an error

  19. Design and tolerance analysis of a transmission sphere by interferometer model

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Jei; Ho, Cheng-Fong; Lin, Wen-Lung; Yu, Zong-Ru; Huang, Chien-Yao; Hsu, Wei-Yao

    2015-09-01

    The design of a 6-in, f/2.2 transmission sphere for Fizeau interferometry is presented in this paper. To predict the actual performance during design phase, we build an interferometer model combined with tolerance analysis in Zemax. Evaluating focus imaging is not enough for a double pass optical system. Thus, we study the interferometer model that includes system error, wavefronts reflected from reference surface and tested surface. Firstly, we generate a deformation map of the tested surface. Because of multiple configurations in Zemax, we can get the test wavefront and the reference wavefront reflected from the tested surface and the reference surface of transmission sphere respectively. According to the theory of interferometry, we subtract both wavefronts to acquire the phase of tested surface. Zernike polynomial is applied to transfer the map from phase to sag and to remove piston, tilt and power. The restored map is the same as original map; because of no system error exists. Secondly, perturbed tolerances including fabrication of lenses and assembly are considered. The system error occurs because the test and reference beam are no longer common path perfectly. The restored map is inaccurate while the system error is added. Although the system error can be subtracted by calibration, it should be still controlled within a small range to avoid calibration error. Generally the reference wavefront error including the system error and the irregularity of the reference surface of 6-in transmission sphere is measured within peak-to-valley (PV) 0.1 λ (λ=0.6328 um), which is not easy to approach. Consequently, it is necessary to predict the value of system error before manufacture. Finally, a prototype is developed and tested by a reference surface with PV 0.1 λ irregularity.

  20. Fringe projection profilometry with portable consumer devices

    NASA Astrophysics Data System (ADS)

    Liu, Danji; Pan, Zhipeng; Wu, Yuxiang; Yue, Huimin

    2018-01-01

    A fringe projection profilometry (FPP) using portable consumer devices is attractive because it can realize optical three dimensional (3D) measurement for ordinary consumers in their daily lives. We demonstrate a FPP using a camera in a smart mobile phone and a digital consumer mini projector. In our experiment of testing the smart phone (iphone7) camera performance, the rare-facing camera in the iphone7 causes the FPP to have a fringe contrast ratio of 0.546, nonlinear carrier phase aberration value of 0.6 rad, and nonlinear phase error of 0.08 rad and RMS random phase error of 0.033 rad. In contrast, the FPP using the industrial camera has a fringe contrast ratio of 0.715, nonlinear carrier phase aberration value of 0.5 rad, nonlinear phase error of 0.05 rad and RMS random phase error of 0.011 rad. Good performance is achieved by using the FPP composed of an iphone7 and a mini projector. 3D information of a facemask with a size for an adult is also measured by using the FPP that uses portable consumer devices. After the system calibration, the 3D absolute information of the facemask is obtained. The measured results are in good agreement with the ones that are carried out in a traditional way. Our results show that it is possible to use portable consumer devices to construct a good FPP, which is useful for ordinary people to get 3D information in their daily lives.

Top