Sample records for phase experimental determination

  1. 43 CFR 11.63 - Injury determination phase-pathway determination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Injury determination phase-pathway... resource are similar to experimental conditions of the previous studies. In the absence of this information... discharged or released under experimental conditions similar to the hydraulic, chemical, and biological...

  2. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  3. Desynchronization of stochastically synchronized chemical oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snari, Razan; Tinsley, Mark R., E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh

    Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.

  4. Wave transmission approach based on modal analysis for embedded mechanical systems

    NASA Astrophysics Data System (ADS)

    Cretu, Nicolae; Nita, Gelu; Ioan Pop, Mihail

    2013-09-01

    An experimental method for determining the phase velocity in small solid samples is proposed. The method is based on measuring the resonant frequencies of a binary or ternary solid elastic system comprising the small sample of interest and a gauge material of manageable size. The wave transmission matrix of the combined system is derived and the theoretical values of its eigenvalues are used to determine the expected eigenfrequencies that, equated with the measured values, allow for the numerical estimation of the phase velocities in both materials. The known phase velocity of the gauge material is then used to asses the accuracy of the method. Using computer simulation and the experimental values for phase velocities, the theoretical values for the eigenfrequencies of the eigenmodes of the embedded elastic system are obtained, to validate the method. We conclude that the proposed experimental method may be reliably used to determine the elastic properties of small solid samples whose geometries do not allow a direct measurement of their resonant frequencies.

  5. Determination of 200 °C Isothermal Section of Al-Ag-Ga Phase Diagram by Microanalysis, X-ray Diffraction, Hardness and Electrical Conductivity Measurements

    NASA Astrophysics Data System (ADS)

    Premović, Milena; Tomović, Milica; Minić, Duško; Manasijević, Dragan; Živković, Dragana; Ćosović, Vladan; Grković, Vladan; Đorđević, Aleksandar

    2017-04-01

    Ternary Al-Ag-Ga system at 200 °C was experimentally and thermodynamically assessed. Isothermal section was extrapolated using optimized thermodynamic parameters for constitutive binary systems. Microstructure and phase composition of the selected alloy samples were analyzed using light microscopy, scanning electron microscopy combined with energy-dispersive spectrometry and x-ray powder diffraction technique. The obtained experimental results were found to be in a close agreement with the predicted phase equilibria. Hardness and electrical conductivity of the alloy samples from four vertical sections Al-Ag80Ga20, Al-Ag60Ga40, Ag-Al80Ga20 and Ag-Al60Ga40 of the ternary Al-Ag-Ga system at 200 °C were experimentally determined using Brinell method and eddy current measurements. Additionally, hardness of the individual phases present in the microstructure of the studied alloy samples was determined using Vickers microhardness test. Based on experimentally obtained results, isolines of Brinell hardness and electrical conductivity were calculated for the alloys from isothermal section of the ternary Al-Ag-Ga system at 200 °C.

  6. Observation of nonadditive mixed-state phases with polarized neutrons.

    PubMed

    Klepp, Jürgen; Sponar, Stephan; Filipp, Stefan; Lettner, Matthias; Badurek, Gerald; Hasegawa, Yuji

    2008-10-10

    In a neutron polarimetry experiment the mixed-state relative phases between spin eigenstates are determined from the maxima and minima of measured intensity oscillations. We consider evolutions leading to purely geometric, purely dynamical, and combined phases. It is experimentally demonstrated that the sum of the individually determined geometric and dynamical phases is not equal to the associated total phase which is obtained from a single measurement, unless the system is in a pure state.

  7. Small Angle Neutron Scattering (sans) Studies on "SIDE-END FIXED" and "SIDE-ON FIXED" Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Hardouin, F.; Noirez, L.; Keller, P.; Leroux, N.; Cotton, J. P.

    The following sections are included: * Introduction * Experimental * Results and discussion * Determination of the backbone conformation in the nematic and smectic A phases of "side-end fixed" L.C. polymethacrylates (PMA) or polyacrylates (PA) * Determination of the global and backbone conformation in the nematic and smectic A phases of "side-end fixed" L.C. polysiloxanes (PMS) * Determination of the backbone conformation in the unique nematic phase (without smectic A phase) or in the reentrant nematic phase (below smectic A phase) of "side-end fixed" L.C. polyacrylates (PA) * Determination of the global conformation in the nematic phase of "side-on fixed" L.C. polysiloxanes (PMS) * Determination of the global conformation in the nematic phase of "diluted side-on fixed" L.C. copolysiloxanes * Determination of the backbone conformation in the nematic phase of "side-on fixed" L.C. polyacrylates * Conclusions * References

  8. Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V A; Volkov, M V; Garanin, S G

    2013-09-30

    The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth ofmore » 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)« less

  9. EXPERIMENTAL PROTOCOL FOR DETERMINING PROTOLYSIS REACTION RATE CONSTANTS

    EPA Science Inventory

    An experimental protocol to determine photolysis rates of chemicals which photolyze relatively rapidly in the gas phase has been developed. This procedure provides a basis for evaluating the relative importance of one atmospheric reaction pathway (i.e., photolysis) for organic su...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frame, E.A.

    The objectives of this project were: (1) to determine the feasibility of adding a vapor-phase corrosion inhibitor (VCI) component to improve the preservation performance of MIL-L-21260 and (2) to evaluate a less complicated engine preservation procedure. A simultaneous two-phase approach was conducted. Phase 1 involved the formulation and evaluation of experimental VCI oils, while Phase 2 was the evaluation of a simplified engine preservation procedure. VCI oil formulation was conducted by Ronco Laboratory under subcontract. Compatibility of the experimental VCI oils with metal coupons, elastomers, and fuel filters was determined. Effectiveness of the experimental VCI oil was evaluated in amore » 3-year outdoor engine storage test. The engines were preserved using an experimental, simplified preservation procedure. The simplified engine preservation procedure proved to be acceptable as engines stored for 3 years in a very severe environment were judged to have been adequately preserved. Engine oil meeting specification MIL-L-21260 provided satisfactory protection during the 3-year storage test. The experimental VCI oil also provided satisfactory storage protection during this test; however, there was no observable advantage for the VCI oil. The VCI oil had acceptable compatibility with an elastomeric flex ring, metal coupons (except lead), and fuel filters.« less

  11. The Study of the Phase Characteristics of Bragg Cells for Acousto-Optic Signal Processing

    DTIC Science & Technology

    1998-01-01

    contractor will determine the relationship of phase characteristics between TeO2 and GaAs cells with their constructive and technical parameters. Design a...Braggcell TeO2 with minimal phase distortions operating near 100 MHz. Experimentally investigate the phase characteristics for a Bragg cell on TeO2 ...follows: The contractor will determine the relationship of phase characteristics between TeO2 and GaAs cells with their constructive and technical

  12. Lipophilicity Assessment of Ruthenium(II)-Arene Complexes by the Means of Reversed-Phase Thin-Layer Chromatography and DFT Calculations

    PubMed Central

    Shweshein, Khalil Salem A. M.; Andrić, Filip; Radoičić, Aleksandra; Gruden-Pavlović, Maja; Tešić, Živoslav; Milojković-Opsenica, Dušanka

    2014-01-01

    The lipophilicity of ten ruthenium(II)-arene complexes was assessed by reversed-phase thin-layer chromatography (RP-TLC) on octadecyl silica stationary phase. The binary solvent systems composed of water and acetonitrile were used as mobile phase in order to determine chromatographic descriptors for lipophilicity estimation. Octanol-water partition coefficient, logK OW, of tested complexes was experimentally determined using twenty-eight standard solutes which were analyzed under the same chromatographic conditions as target substances. In addition, ab initio density functional theory (DFT) computational approach was employed to calculate logK OW values from the differences in Gibbs' free solvation energies of the solute transfer from n-octanol to water. A good overall agreement between DFT calculated and experimentally determined logK OW values was established (R 2 = 0.8024–0.9658). PMID:24587761

  13. Self-addressed diffractive lens schemes for the characterization of LCoS displays

    NASA Astrophysics Data System (ADS)

    Zhang, Haolin; Lizana, Angel; Iemmi, Claudio; Monroy-Ramírez, Freddy A.; Marquez, Andrés.; Moreno, Ignacio; Campos, Juan

    2018-02-01

    We proposed a self-calibration method to calibrate both the phase-voltage look-up table and the screen phase distribution of Liquid Crystal on Silicon (LCoS) displays by implementing different lens configurations on the studied device within a same optical scheme. On the one hand, the phase-voltage relation is determined from interferometric measurements, which are obtained by addressing split-lens phase distributions on the LCoS display. On the other hand, the surface profile is retrieved by self-addressing a diffractive micro-lens array to the LCoS display, in a way that we configure a Shack-Hartmann wavefront sensor that self-determines the screen spatial variations. Moreover, both the phase-voltage response and the surface phase inhomogeneity of the LCoS are measured within the same experimental set-up, without the necessity of further adjustments. Experimental results prove the usefulness of the above-mentioned technique for LCoS displays characterization.

  14. Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors

    DOE PAGES

    Li, Linglong; Yang, Yaodong; Zhang, Dawei; ...

    2018-03-30

    Exploration of phase transitions and construction of associated phase diagrams are of fundamental importance for condensed matter physics and materials science alike, and remain the focus of extensive research for both theoretical and experimental studies. For the latter, comprehensive studies involving scattering, thermodynamics, and modeling are typically required. We present a new approach to data mining multiple realizations of collective dynamics, measured through piezoelectric relaxation studies, to identify the onset of a structural phase transition in nanometer-scale volumes, that is, the probed volume of an atomic force microscope tip. Machine learning is used to analyze the multidimensional data sets describingmore » relaxation to voltage and thermal stimuli, producing the temperature-bias phase diagram for a relaxor crystal without the need to measure (or know) the order parameter. The suitability of the approach to determine the phase diagram is shown with simulations based on a two-dimensional Ising model. Finally, these results indicate that machine learning approaches can be used to determine phase transitions in ferroelectrics, providing a general, statistically significant, and robust approach toward determining the presence of critical regimes and phase boundaries.« less

  15. Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Linglong; Yang, Yaodong; Zhang, Dawei

    Exploration of phase transitions and construction of associated phase diagrams are of fundamental importance for condensed matter physics and materials science alike, and remain the focus of extensive research for both theoretical and experimental studies. For the latter, comprehensive studies involving scattering, thermodynamics, and modeling are typically required. We present a new approach to data mining multiple realizations of collective dynamics, measured through piezoelectric relaxation studies, to identify the onset of a structural phase transition in nanometer-scale volumes, that is, the probed volume of an atomic force microscope tip. Machine learning is used to analyze the multidimensional data sets describingmore » relaxation to voltage and thermal stimuli, producing the temperature-bias phase diagram for a relaxor crystal without the need to measure (or know) the order parameter. The suitability of the approach to determine the phase diagram is shown with simulations based on a two-dimensional Ising model. Finally, these results indicate that machine learning approaches can be used to determine phase transitions in ferroelectrics, providing a general, statistically significant, and robust approach toward determining the presence of critical regimes and phase boundaries.« less

  16. Experimental and computational study on the molecular energetics of indoline and indole.

    PubMed

    da Silva, Manuel A V Ribeiro; Cabral, Joana I T A; Gomes, José R B

    2008-11-27

    Static bomb calorimetry, Calvet microcalorimetry and the Knudsen effusion technique were used to determine the standard molar enthalpy of formation in the gas phase, at T = 298.15 K, of the indole and indoline heterocyclic compounds. The values obtained were 164.3 +/- 1.3 kJ x mol(-1) and 120.0 +/- 2.9 kJ x mol(-1), respectively. Several different computational approaches and different working reactions were used to estimate the gas-phase enthalpies of formation for indole and indoline. The computational approaches support the experimental results reported. The calculations were further extended to the determination of other properties such as bond dissociation enthalpies, gas-phase acidities, proton and electron affinities and ionization energies. The agreement between theoretical and experimental data for indole is very good supporting the data calculated for indoline.

  17. Analytical and experimental study of high phase order induction motors

    NASA Technical Reports Server (NTRS)

    Klingshirn, Eugene A.

    1989-01-01

    Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.

  18. 43 CFR 11.62 - Injury determination phase-injury definition.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Injury determination phase-injury definition. 11.62 Section 11.62 Public Lands: Interior Office of the Secretary of the Interior NATURAL... experimental conditions are insufficient to establish correlation with exposure occurring in a natural...

  19. Adiabatic compressibility of an immiscible molten NaCl-AgI salt mixture

    NASA Astrophysics Data System (ADS)

    Stepanov, V. P.; Tkachev, N. K.; Kulik, N. P.; Peshkina, K. G.

    2016-08-01

    Adiabatic compressibility β of an immiscible 0.5NaCl + 0.5AgI liquid mixture in the immiscibility range is studied experimentally and theoretically using the model of charged hard spheres. The compressibility is calculated by the relationship β = 1/ u 2ρ studied using sound velocity u measured by a pulse method and density ρ determined by hydrostatic weighing. It is shown that the compressibility of the upper phase decreases and that of the lower phase increases when the temperature increases because of the superposition of the effects of the thermal motion of ions and the phase compositions. The temperature dependence of the difference between the compressibilities of the equilibrium phases is described using the empirical equation Δβ = ( T c- T)0.442, which is close to the mean-field theory description. The results of the model calculations adequately reproduce the experimentally observed temperature dependence of the compressibility of the coexisting phases. However, the theoretically predicted critical exponent (1/2) differs from the experimentally determined exponent by 13%. These results are discussed in terms of the nature of chemical bond in silver iodide.

  20. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  1. Phase transitions in MgSiO3 at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Ono, S.

    2017-12-01

    As olivine, pyroxene and garnet are major minerals in the upper mantle, understanding the dynamics and evolution of the mantle requires knowledge of MgSiO3, which is an end-member of pyroxene. Therefore, phase relations in MgSiO3 have been repeatedly investigated by a number of authors. However, the transition sequence of the MgSiO3 mineral remains as yet unconfirmed. The discrepancy among researchers is likely due to the accuracy of phase boundary determinations related with the stability field of two phases, wadsleyite + stishovite or ringwoodite + stishovite.High-pressure experiments were carried out using multi-anvil high-pressure apparatus installed at the synchrotron facilities of KEK and SPring-8 in Japan. Experimental details were described elsewhere [e.g., 1,2]. A mixture of the powdered MgSiO3 and gold was used. Experimental pressures were determined from the unit cell volumes of gold. All recovered samples were investigated by an electron microprobe analyzer to identify the stable phase in each experimental run.Experimental runs were performed at pressures between 15 and 21 GPa. Two types of recovered samples, single (MgSiO3) and two phases (Mg2SiO4 + SiO2), were confirmed. The single phase was high-pressure clinoenstatite or akimotoite, and two phases were wadsleyite + stishovite or ringwoodite + stishovite. According to experimental data, two reaction boundaries were determined. The reaction boundary between high-pressure clinoenstatite and wadsleyite + stishovite has a positive dP/dT gradient, 0.0064 GPa/K [3]. In contrast, the reaction boundary between ringwoodite + stishovite and akimotoite has a negative dP/dT gradient, -0.0012 GPa/K [4]. This study indicates that the stability field of wadsleyite + stishovite expands to a low temperature region corresponding to the P-T path in the subducted slab. Moreover, a triple point of wadsleyite + stishovite-ringwoodite + stishovite-akimotoite is located at a temperature slightly lower than the geotherm. These experimental results can reconcile the inconsistency recorded between previous studies regarding the phase relation in MgSiO3.[1] Ono et al., Phys. Chem. Minerals, 40, 811-816 (2013)[2] Ono et al., Phys. Earth Planet. Inter., 264, 1-6 (2017)[3] Ono et al., (under review)[4] Ono et al., Phys. Chem. Minerals, 44, 425-430 (2017)

  2. Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuinier, R.; de Kruif, C. G.

    1999-05-01

    Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.

  3. Thermochemical Studies of Epoxides and Related Compounds

    PubMed Central

    Morgan, Kathleen M.; Ellis, Jamie A.; Lee, Joseph; Fulton, Ashley; Wilson, Shavonda L.; Dupart, Patrick S.; Dastoori, Rosanna

    2013-01-01

    Gas phase heats of formation for the our butene oxide isomers are reported. They were obtained by measuring the condensed-phase heat of reduction to the corresponding alcohol using reaction calorimetry. Heats of vaporization were determined, and allow gas-phase heats of formation to be obtained. The experimental measurements are compared to calculations obtained using a variety of computational methods. Overall, the G3 and CBS-APNO methods agree quite well with the experimental data. The influence of alkyl substituents on epoxide stability is discussed. Comparisons to alkenes, cyclopropanes, aziridines, thiiranes and phosphiranes are also made. Isodesmic-type reactions were used to determine strain energies of the epoxides and related compounds with various substituents. PMID:23551240

  4. Phase Transitions of MgO Along the Hugoniot (Invited)

    NASA Astrophysics Data System (ADS)

    Root, S.; Shulenburger, L.; Lemke, R. W.; Cochrane, K. R.; Mattsson, T. R.

    2013-12-01

    The formation of terrestrial planets and planetary structure has become of great interest because of recent exoplanet discoveries of super earths. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants such as Jupiter, and likely constitutes the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine single crystal MgO under shock compression utilizing experimental and density functional theory (DFT) methods to determine phase transformations along the Hugoniot. We perform plate impact experiments using Sandia's Z - facility on MgO up to 11.6 Mbar. The plate impact experiments generate highly accurate Hugoniot state data. The experimental results show the B1 - B2 solid - solid phase transition occurs near 4 Mbar on the Hugoniot. The solid - liquid transition is determined to be near 7 Mbar with a large region of B2-liquid coexistence. Using DFT methods, we also determine melt along the B1 and B2 solid phase boundaries as well as along the Hugoniot. The combined experimental and DFT results have determined the phase boundaries along the Hugoniot, which can be implemented into new planetary and EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  5. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction.

    PubMed

    Jonker, Michiel T O

    2016-06-01

    Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.

  6. AM363 martensitic stainless steel: A multiphase equation of state

    NASA Astrophysics Data System (ADS)

    De Lorenzi-Venneri, Giulia; Crockett, Scott D.

    2017-01-01

    A multiphase equation of state for stainless steel AM363 has been developed within the Opensesame approach and has been entered as material 4295 in the LANL-SESAME Library. Three phases were constructed separately: the low pressure martensitic phase, the austenitic phase and the liquid. Room temperature data and the explicit introduction of a magnetic contribution to the free energy determined the martensitic phase, while shock Hugoniot data was used to determine the austenitic phase and the phase boundaries. More experimental data or First Principles calculations would be useful to better characterize the liquid.

  7. Determination of Thermal Conductivity of Silicate Matrix for Applications in Effective Media Theory

    NASA Astrophysics Data System (ADS)

    Fiala, Lukáš; Jerman, Miloš; Reiterman, Pavel; Černý, Robert

    2018-02-01

    Silicate materials have an irreplaceable role in the construction industry. They are mainly represented by cement-based- or lime-based materials, such as concrete, cement mortar, or lime plaster, and consist of three phases: the solid matrix and air and water present in the pores. Therefore, their effective thermal conductivity depends on thermal conductivities of the involved phases. Due to the time-consuming experimental determination of the effective thermal conductivity, its calculation by means of homogenization techniques presents a reasonable alternative. In the homogenization theory, both volumetric content and particular property of each phase need to be identified. For porous materials the most problematic part is to accurately identify thermal conductivity of the solid matrix. Due to the complex composition of silicate materials, the thermal conductivity of the matrix can be determined only approximately, based on the knowledge of thermal conductivities of its major compounds. In this paper, the thermal conductivity of silicate matrix is determined using the measurement of a sufficiently large set of experimental data. Cement pastes with different open porosities are prepared, dried, and their effective thermal conductivity is determined using a transient heat-pulse method. The thermal conductivity of the matrix is calculated by means of extrapolation of the effective thermal conductivity versus porosity functions to zero porosity. Its practical applicability is demonstrated by calculating the effective thermal conductivity of a three-phase silicate material and comparing it with experimental data.

  8. The Co-Sb-Ga System: Isoplethal Section and Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Gierlotka, Wojciech; Chen, Sinn-wen; Chen, Wei-an; Chang, Jui-shen; Snyder, G. Jeffrey; Tang, Yinglu

    2015-04-01

    The Co-Sb-Ga ternary system is an important thermoelectric material system, and its phase equilibria are in need of further understanding. The CoSb3-GaSb isoplethal section is experimentally determined in this study. Phase equilibria of the ternary Co-Sb-Ga system are assessed, and the system's thermodynamic models are developed. In addition to the terminal phases and liquid phase, there are six binary intermediate phases and a ternary Co3Sb2Ga4 phase. The Ga solution in the CoSb3 compound is described by a dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model. Phase diagrams are calculated using the developed thermodynamic models, and a reaction scheme is proposed based on the calculation results. The calculated results are in good agreement with the experimentally determined phase diagrams, including the CoSb3-GaSb isoplethal section, the liquidus projection, and an isothermal section at 923 K (650 °C). The dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model gives good descriptions of both phase equilibria and thermoelectric properties of the CoSb3 phase with Ga doping.

  9. Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems

    NASA Astrophysics Data System (ADS)

    Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen

    2016-12-01

    This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.

  10. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JiangTao Cheng; Ping Yu; William Headley

    2001-12-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally and theoretically that the optical coherence imaging system is optimized for sandstone. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures that are statistically similar to real porous media has shown the existence of a unique relationship among these hydraulic parameters. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, has the same length-scale as the values of IAV determined for the two-dimensional micro-models.« less

  11. Random technique to encode complex valued holograms with on axis reconstruction onto phase-only displays.

    PubMed

    Luis Martínez Fuentes, Jose; Moreno, Ignacio

    2018-03-05

    A new technique for encoding the amplitude and phase of diffracted fields in digital holography is proposed. It is based on a random spatial multiplexing of two phase-only diffractive patterns. The first one is the phase information of the intended pattern, while the second one is a diverging optical element whose purpose is the control of the amplitude. A random number determines the choice between these two diffractive patterns at each pixel, and the amplitude information of the desired field governs its discrimination threshold. This proposed technique is computationally fast and does not require iterative methods, and the complex field reconstruction appears on axis. We experimentally demonstrate this new encoding technique with holograms implemented onto a flicker-free phase-only spatial light modulator (SLM), which allows the axial generation of such holograms. The experimental verification includes the phase measurement of generated patterns with a phase-shifting polarization interferometer implemented in the same experimental setup.

  12. Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.

    2012-01-01

    Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.

  13. Comparison of actual vs synthesized ternary phase diagrams for solutes of cryobiological interest☆

    PubMed Central

    Kleinhans, F.W.; Mazur, Peter

    2009-01-01

    Phase diagrams are of great utility in cryobiology, especially those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPA's. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA + salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt % concentrations exceeded 30% for DMSO and 55% for glycerol and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue. PMID:17350609

  14. Comparison of actual vs. synthesized ternary phase diagrams for solutes of cryobiological interest.

    PubMed

    Kleinhans, F W; Mazur, Peter

    2007-04-01

    Phase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA+salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt% concentrations exceeded 30% for DMSO and 55% for glycerol, and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue.

  15. Simple mechanisms that impede the Berry phase identification from magneto-oscillations

    NASA Astrophysics Data System (ADS)

    Kuntsevich, A. Yu.; Shupletsov, A. V.; Minkov, G. M.

    2018-05-01

    The phase of quantum magneto-oscillations is often associated with the Berry phase and is widely used to argue in favor of topological nontriviality of the system (Berry phase 2 π n +π ). Nevertheless, the experimentally determined value may deviate from 2 π n +π arbitrarily, therefore more care should be made analyzing the phase of magneto-oscillations to distinguish trivial systems from nontrivial. In this paper we suggest two simple mechanisms dramatically affecting the experimentally observed value of the phase in three-dimensional topological insulators: (i) magnetic field dependence of the chemical potential, and (ii) possible nonuniformity of the system. These mechanisms are not limited to topological insulators and can be extended to other topologically trivial and nontrivial systems.

  16. Thermodynamic assessment of the U–La–O system

    DOE PAGES

    McMurray, J. W.; Shin, D.; Besmann, T. M.

    2014-10-03

    The CALPHAD methodology was used to develop a thermodynamic assessment of the U-La-O system. The solid solution and liquid phases are described with the compound energy formalism and the partially ionic two-sublattice liquid model respectively. A density functional theory (DFT) calculation for the lattice stability of the fictive lanthanum oxide fluorite structure compound is used to determine the Gibbs energies for the La containing end-members in the CEF model for U 1-yLa yO 2+x. Experimental thermodynamic and phase equilibria data were then used in optimizations to develop representations of the phases in the system that can be extended to includemore » other actinide and fission products to develop multi-component models. The models that comprise this assessment very well reproduce experimentally determined oxygen potentials and the observed phase relations for the U-La-O system.« less

  17. High-pressure phase transitions - Examples of classical predictability

    NASA Astrophysics Data System (ADS)

    Celebonovic, Vladan

    1992-09-01

    The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.

  18. Regimes of Two-Phase Flow in Short Rectangular Channel

    NASA Astrophysics Data System (ADS)

    Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.

    2009-08-01

    Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.

  19. Macroscopic aspects of interfacial reactions

    NASA Technical Reports Server (NTRS)

    Heckel, R. W.

    1976-01-01

    The extent of interdiffusion and formation of new phases is determined by the constitution diagram of the alloy system, the interdiffusion coefficients of the phases present, and the thermal conditions (temperature and time) associated with the bonding process and/or subsequent use of the bonded structure. In many instance, the kinetics of interdiffusion and phase formation can be predicted from known parameters using numerical methods and computer techniques. Predictions are compared with experimentally determined parameters for a variety of metallurgical alloy systems.

  20. Interferometric millimeter wave and THz wave doppler radar

    DOEpatents

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  1. Phase diagram of electron systems near the superconductor-insulator transition.

    PubMed

    Pokrovsky, V L; Falco, G M; Nattermann, T

    2010-12-31

    The zero temperature phase diagram of Cooper pairs exposed to disorder and a magnetic field is determined theoretically from a variational approach. Four distinct phases are found: a Bose and a Fermi insulating, a metallic, and a superconducting phase, respectively. The results explain the giant negative magnetoresistance found experimentally in In-O, TiN, Be and high-T(c) materials.

  2. Experimental investigation of the phase equilibria and thermodynamic assessment in the U-Ga and U-Al-Ga systems

    NASA Astrophysics Data System (ADS)

    Moussa, Chantal; Berche, Alexandre; Barbosa, José; Pasturel, Mathieu; Stepnik, Bertrand; Tougait, Olivier

    2018-02-01

    The phase relations in the binary U-Ga and ternary U-Al-Ga systems were established as an isopleth section and two isothermal sections at 900 K and 1150 K for the whole concentration range, respectively. They were experimentally determined by means of powder and single crystal XRD, SEM-EDS analyses on both as-cast and heat-treated samples and DTA measurements. Both systems were thermodynamically assessed using the Calphad method based on the available data, i.e. phase relations and thermodynamic properties. The new description of the U-Ga phase diagram improves the composition-temperature description for most of invariant reactions. The U-Al-Ga system is characterized by large ternary extensions of the binary phases and the absence of ternary intermediate phase at both 900 K and 1150 K. These experimental results are nicely reproduced by the Calphad assessment, allowing to extract the thermodynamic parameters further used to calculate the liquidus projection and the invariant reactions along with their temperature.

  3. Simultaneous determination of apparent tortuosity and microstructure length scale and shape: Application to rigid open cell foams

    NASA Astrophysics Data System (ADS)

    Gómez Álvarez-Arenas, T. E.; de la Fuente, S.; González Gómez, I.

    2006-05-01

    A novel experimental technique based on phase spectroscopy and through transmission of high-frequency airborne ultrasonic pulses is used to study rigid open cell foams. Phase velocity shows an anomalous relaxation like behavior which is attributed to a frequency variation of the apparent tortuosity. An explanation is proposed in terms of the relationship between the different length scales involved: microstructure and macroscopic behavior. The experimental technique together with the proposed apparent tortuosity scheme provides a novel and unique procedure to determine simultaneously tortuosity and characteristic length dimension and shape of the solid constituent of foams and porous materials in general.

  4. Soap film vibration: origin of the dissipation.

    PubMed

    Acharige, Sébastien Kosgodagan; Elias, Florence; Derec, Caroline

    2014-11-07

    We investigate the complex dispersion relationship of a transverse antisymmetric wave on a horizontal soap film. Experimentally, the complex wave number k at a fixed forcing frequency is determined by measuring the vibrating amplitude of the soap film: the wavelength (linked to the real part of k) is determined by the spatial variation of the amplitude; the decay length (linked to the imaginary part of k) is determined by analyzing the resonance curves of the vibrating wave as a function of frequency. Theoretically, we compute the complex dispersion relationship taking into account the physical properties of the bulk liquid and gas phase, and of the gas-liquid interfaces. The comparison between the computation (developed to the leading order under our experimental conditions) and the experimental results confirms that the phase velocity is fixed by the interplay between surface tension, and liquid and air inertia, as reported in previous studies. Moreover, we show that the attenuation of the transverse antisymmetric wave originates from the viscous dissipation in the gas phase surrounding the liquid film. This result is an important step in understanding the propagation of an acoustic wave in liquid foam, using a bottom-up approach.

  5. Experimental Determination of the Phase Diagram of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 System

    NASA Astrophysics Data System (ADS)

    Shi, Junjie; Sun, Lifeng; Zhang, Bo; Liu, Xuqiang; Qiu, Jiyu; Wang, Zhaoyun; Jiang, Maofa

    2016-02-01

    Ti-bearing CaO-SiO2-MgO-Al2O3-TiO2 slags are important for the smelting of vanadium-titanium bearing magnetite. In the current study, the pseudo-melting temperatures were determined by the single-hot thermocouple technique for the specified content of 5 to 25 pct TiO2 in the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 phase diagram system. The 1573 K to 1773 K (1300 °C to 1500 °C) liquidus lines were first calculated based on the pseudo-melting temperatures according to thermodynamic equations in the specific primary crystal field. The phase equilibria at 1573 K (1300 °C) were determined experimentally using the high-temperature equilibrium and quench method followed by X-ray fluorescence, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectroscope analysis; the liquid phase, melilite solid solution phase (C2MS2,C2AS)ss, and perovskite phase of CaO·TiO2 were found. Therefore, the phase diagram was constructed for the specified region of the CaO-SiO2-5 pctMgO-10 pctAl2O3-TiO2 system.

  6. Properties of iron under core conditions

    NASA Astrophysics Data System (ADS)

    Brown, J. M.

    2003-04-01

    Underlying an understanding of the geodynamo and evolution of the core is knowledge of the physical and chemical properties of iron and iron mixtures under high pressure and temperature conditions. Key properties include the viscosity of the fluid outer core, thermal diffusivity, equations-of-state, elastic properties of solid phases, and phase equilibria for iron and iron-dominated mixtures. As is expected for work that continues to tax technological and intellectual limits, controversy has followed both experimental and theoretical progress in this field. However, estimates for the melting temperature of the inner core show convergence and the equation-of-state for iron as determined in independent experiments and theories are in remarkable accord. Furthermore, although the structure and elastic properties of the solid inner-core phase remains uncertain, theoretical and experimental underpinnings are better understood and substantial progress is likely in the near future. This talk will focus on an identification of properties that are reasonably well known and those that merit further detailed study. In particular, both theoretical and experimental (static and shock wave) determinations of the density of iron under extreme conditions are in agreement at the 1% or better level. The behavior of the Gruneisen parameter (which determines the geothermal gradient and controls much of the outer core heat flux) is constrained by experiment and theory under core conditions for both solid and liquid phases. Recent experiments and theory are suggestive of structure or structures other than the high-pressure hexagonal close-packed (HCP) phase. Various theories and experiments for the elasticity of HCP iron remain in poor accord. Uncontroversial constraints on core chemistry will likely never be possible. However, reasonable bounds are possible on the basis of seismic profiles, geochemical arguments, and determinations of sound velocities and densities at high pressure and temperature.

  7. Phase measurement error in summation of electron holography series.

    PubMed

    McLeod, Robert A; Bergen, Michael; Malac, Marek

    2014-06-01

    Off-axis electron holography is a method for the transmission electron microscope (TEM) that measures the electric and magnetic properties of a specimen. The electrostatic and magnetic potentials modulate the electron wavefront phase. The error in measurement of the phase therefore determines the smallest observable changes in electric and magnetic properties. Here we explore the summation of a hologram series to reduce the phase error and thereby improve the sensitivity of electron holography. Summation of hologram series requires independent registration and correction of image drift and phase wavefront drift, the consequences of which are discussed. Optimization of the electro-optical configuration of the TEM for the double biprism configuration is examined. An analytical model of image and phase drift, composed of a combination of linear drift and Brownian random-walk, is derived and experimentally verified. The accuracy of image registration via cross-correlation and phase registration is characterized by simulated hologram series. The model of series summation errors allows the optimization of phase error as a function of exposure time and fringe carrier frequency for a target spatial resolution. An experimental example of hologram series summation is provided on WS2 fullerenes. A metric is provided to measure the object phase error from experimental results and compared to analytical predictions. The ultimate experimental object root-mean-square phase error is 0.006 rad (2π/1050) at a spatial resolution less than 0.615 nm and a total exposure time of 900 s. The ultimate phase error in vacuum adjacent to the specimen is 0.0037 rad (2π/1700). The analytical prediction of phase error differs with the experimental metrics by +7% inside the object and -5% in the vacuum, indicating that the model can provide reliable quantitative predictions. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. Phase Relations in Ternary Systems in the Subsolidus Region: Methods to Formulate Solid Solution Equations and to Find Particular Compositions

    ERIC Educational Resources Information Center

    Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.

    2017-01-01

    A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…

  9. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura J. Pyrak-Nolte; Ping Yu; JiangTao Cheng

    2002-12-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally that the coherence detection can be performed in a borescope. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures has shown the existence of a unique relationship among these hydraulic parameters for different pore geometry. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, is essentially completed for imbibition conditions.« less

  10. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    NASA Astrophysics Data System (ADS)

    Tipton, William W.; Bealing, Clive R.; Mathew, Kiran; Hennig, Richard G.

    2013-05-01

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase.

  11. Direct determination of three-phase contact line properties on nearly molecular scale

    DOE PAGES

    Winkler, P. M.; McGraw, R. L.; Bauer, P. S.; ...

    2016-05-17

    Wetting phenomena in multi-phase systems govern the shape of the contact line which separates the different phases. For liquids in contact with solid surfaces wetting is typically described in terms of contact angle. While in macroscopic systems the contact angle can be determined experimentally, on the molecular scale contact angles are hardly accessible. Here we report the first direct experimental determination of contact angles as well as contact line curvature on a scale of the order of 1nm. For water nucleating heterogeneously on Ag nanoparticles we find contact angles around 15 degrees compared to 90 degrees for the corresponding macroscopicallymore » measured equilibrium angle. The obtained microscopic contact angles can be attributed to negative line tension in the order of –10 –10 J/m that becomes increasingly dominant with increasing curvature of the contact line. Furthermore, these results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.« less

  12. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1MPa

    USGS Publications Warehouse

    Kong, W.G.; Wang, A.; Chou, I.-Ming

    2011-01-01

    Recent findings of various ferric sulfates on Mars emphasize the importance of understanding the fundamental properties of ferric sulfates at temperatures relevant to that of Martian surface. In this study, the phase boundary between kornelite (Fe2(SO4)3.7H2O) and pentahydrated ferric sulfate (Fe2(SO4)3.5H2O) was experimentally determined using the humidity-buffer technique together with gravimetric measurements and Raman spectroscopy at 0.1MPa in the 36-56??C temperature range. Through the thermodynamic analysis of our experimental data, the enthalpy change (-290.8??0.3kJ/mol) and the Gibbs free energy change (-238.82??0.02kJ/mol) for each water molecule of crystallization in the rehydration of pentahydrated ferric sulfate to kornelite were obtained. ?? 2011 Elsevier B.V.

  13. Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes.

    PubMed

    Salameh, Samir; van der Veen, Monique A; Kappl, Michael; van Ommen, J Ruud

    2017-03-14

    In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles.

  14. Superconducting scanning tunneling microscopy tips in a magnetic field: Geometry-controlled order of the phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eltschka, Matthias, E-mail: m.eltschka@fkf.mpg.de; Jäck, Berthold; Assig, Maximilian

    The properties of geometrically confined superconductors significantly differ from their bulk counterparts. Here, we demonstrate the geometrical impact for superconducting scanning tunneling microscopy (STM) tips, where the confinement ranges from the atomic to the mesoscopic scale. To this end, we compare the experimentally determined magnetic field dependence for several vanadium tips to microscopic calculations based on the Usadel equation. For our theoretical model of a superconducting cone, we find a direct correlation between the geometry and the order of the superconducting phase transition. Increasing the opening angle of the cone changes the phase transition from first to second order. Comparingmore » our experimental findings to the theory reveals first and second order quantum phase transitions in the vanadium STM tips. In addition, the theory also explains experimentally observed broadening effects by the specific tip geometry.« less

  15. Behavior of a PCM at Varying Heating Rates: Experimental and Theoretical Study with an Aim at Temperature Moderation in Radionuclide Concrete Encasements

    NASA Astrophysics Data System (ADS)

    Medved', Igor; Trník, Anton

    2018-07-01

    Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between 0.1°C\\cdot min^{-1} and 1°C\\cdot min^{-1}, corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.

  16. Experimental and computational thermochemical study and solid-phase structure of 5,5-dimethylbarbituric acid.

    PubMed

    Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P

    2010-03-18

    This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.

  17. Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis

    PubMed Central

    Williams, Alex H.; Kwiatkowski, Molly A.; Mortimer, Adam L.; Marder, Eve; Zeeman, Mary Lou

    2013-01-01

    The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: “small cells” (SCs) and “large cells” (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. PMID:23446690

  18. Experimental Investigation of two-phase nitrogen Cryo transfer line

    NASA Astrophysics Data System (ADS)

    Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.

  19. LEPER: Library of Experimental PhasE Relations

    NASA Astrophysics Data System (ADS)

    Davis, F.; Gordon, S.; Mukherjee, S.; Hirschmann, M.; Ghiorso, M.

    2006-12-01

    The Library of Experimental PhasE Relations (LEPER) seeks to compile published experimental determinations of magmatic phase equilibria and provide those data on the web with a searchable and downloadable interface. Compiled experimental data include the conditions and durations of experiments, the bulk compositions of experimental charges, and the identity, compositions and proportions of phases observed, and, where available, estimates of experimental and analytical uncertainties. Also included are metadata such as the type of experimental device, capsule material, and method(s) of quantitative analysis. The database may be of use to practicing experimentalists as well as the wider Earth science community. Experimentalists may find the data useful for planning new experiments and will easily be able to compare their results to the full body of previous experimentnal data. Geologists may use LEPER to compare rocks sampled in the field with experiments performed on similar bulk composition or with experiments that produced similar-composition product phases. Modelers may use LEPER to parameterize partial melting of various lithologies. One motivation for compiling LEPER is for calibration of updated and revised versions of MELTS, however, it is hoped that the availability of LEPER will facilitate formulation and calibration of additional thermodynamic or empirical models of magmatic phase relations and phase equilibria, geothermometers and more. Data entry for LEPER is occuring presently: As of August, 2006, >6200 experiments have been entered, chiefly from work published between 1997 and 2005. A prototype web interface has been written and beta release on the web is anticipated in Fall, 2006. Eventually, experimentalists will be able to submit their new experimental data to the database via the web. At present, the database contains only data pertaining to the phase equilibria of silicate melts, but extension to other experimental data involving other fluids or sub-solidus phase equilibria may be contemplated. Also, the data are at present limited to natural or near-natural systems, but in the future, extension to synthetic (i.e., CMAS, etc.) systems is also possible. Each would depend in part on whether there is community demand for such databases. A trace element adjunct to LEPER is presently in planning stages.

  20. An iterative method for near-field Fresnel region polychromatic phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.

    2017-07-01

    We present an iterative method for polychromatic phase contrast imaging that is suitable for broadband illumination and which allows for the quantitative determination of the thickness of an object given the refractive index of the sample material. Experimental and simulation results suggest the iterative method provides comparable image quality and quantitative object thickness determination when compared to the analytical polychromatic transport of intensity and contrast transfer function methods. The ability of the iterative method to work over a wider range of experimental conditions means the iterative method is a suitable candidate for use with polychromatic illumination and may deliver more utility for laboratory-based x-ray sources, which typically have a broad spectrum.

  1. Determination of wavefront structure for a Hartmann wavefront sensor using a phase-retrieval method.

    PubMed

    Polo, A; Kutchoukov, V; Bociort, F; Pereira, S F; Urbach, H P

    2012-03-26

    We apply a phase retrieval algorithm to the intensity pattern of a Hartmann wavefront sensor to measure with enhanced accuracy the phase structure of a Hartmann hole array. It is shown that the rms wavefront error achieved by phase reconstruction is one order of magnitude smaller than the one obtained from a typical centroid algorithm. Experimental results are consistent with a phase measurement performed independently using a Shack-Hartmann wavefront sensor.

  2. T- P Phase Diagram of Nitrogen at High Pressures

    NASA Astrophysics Data System (ADS)

    Algul, G.; Enginer, Y.; Yurtseven, H.

    2018-05-01

    By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

  3. [Separation and determination of eight plant hormones by reversed-phase high performance liquid chromatography].

    PubMed

    Fang, N; Hou, S; Shao, X; He, Y; Zhao, G

    1998-09-01

    In this paper, reversed-phase high performance liquid chromatographic technique was used for the separation and determination of eight plant hormones. Methanol-water-acetic acid system was chosen as the mobile phase. The effects of different separation conditions, such as the methanol and acetic acid concentrations in mobile phase, on the retention behaviours of eight plant hormones in this system were studied. The general trends in retention behaviours could be correlated to the methanol concentration in mobile phase. The experimental results showed that the optimum separation was achieved with following gradient elution condition: 0-3 minutes, 70% (water percentage in mobile phase), 3-13 minutes, 70%-20%, 13-48 minutes, 20%. Benzene was added to be as the internal standard. Under this experimental condition, the eight plant hormones could be separated completely and detected quantitatively at 260 nm within 16 minutes. The calibration curves for the eight compounds gave linearity over a wide range. The correlation coefficients of each components were r(ZT) = 0.9971, r(GAs) = 0.9999, r(K) = 0.9997, r(BA) = 0.9995, r(IAA) = 0.9998, r(IPA) = 0.9982, r(IBA) = 0.9995 and r(NAA) = 0.9995. The method is rapid, simple and efficient. It is a suitable method for the accurate determination of gibberellic acid (GA) and alpha-naphthaleneacetic acid (alpha-NAA) in products for agricultural use.

  4. Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2.

    PubMed

    Winkler, Florian; Tavabi, Amir H; Barthel, Juri; Duchamp, Martial; Yucelen, Emrah; Borghardt, Sven; Kardynal, Beata E; Dunin-Borkowski, Rafal E

    2017-07-01

    The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe 2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe 2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe 2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Ionizing laser propagation and spectral phase determination

    NASA Astrophysics Data System (ADS)

    Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H.-S.; Daniels, J.; Dale, N.; Swanson, K. K.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Ionization-induced blueshifting is investigated through INF&RNO simulations and experimental studies at the Berkeley Laboratory Laser Accelerator (BELLA) Center. The effects of spectral phase and optical compression are explored. An in-situ method for verifying the spectral phase of an intense laser pulse at focus is presented, based on the effects of optical compression on the morphology of the blueshifted laser spectra.

  6. Influence of experimental parameters on the microencapsulation of a photopolymerizable phase.

    PubMed

    Pernot, J M; Brun, H; Pouyet, B; Sergent, M; Phan-Tan-Luu, R

    1993-01-01

    Conditions of microencapsulation by in situ polycondensation, using melamine-formaldehyde as wall material, are influenced by the chemical nature of the core to encapsulate. In our study concerning the encapsulation of a photopolymerizable phase containing an electrically charged compound, it was necessary to modify the experimental process to obtain capsules of good quality. We used the factorial design method of screening by utilization of an asymmetric matrix, according to the collapsing principle of Addleman. The advantage of this method is that it allows determination of the simultaneous influences of the 11 experimental parameters involved in this preparation. The calculation method can be applied to more than two levels for some of the factors. The continuously varying parameters were altered between two extreme levels, chosen to allow encapsulation. For discontinuous factors, such as the molecular weight of the modifying system or nature of the aminoplast, we used the commercially available compounds, respectively three and four kinds. The results of the obtained capsules were determined by comparing microphotographic pictures. With 16 experiments we found four more factors influencing quality of capsules. We also determined the most favourable levels for the other seven parameters. The results allowed us to find optimal conditions in the experimental field. We obtained capsules of a satisfactory quality for this purpose, using only minimum experimentation.

  7. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    PubMed

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity.

  8. Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding

    PubMed Central

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-01-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity. PMID:25679780

  9. Analysis and test of a 16-foot radial rib reflector developmental model

    NASA Technical Reports Server (NTRS)

    Birchenough, Shawn A.

    1989-01-01

    Analytical and experimental modal tests were performed to determine the vibrational characteristics of a 16-foot diameter radial rib reflector model. Single rib analyses and experimental tests provided preliminary information relating to the reflector. A finite element model predicted mode shapes and frequencies of the reflector. The analyses correlated well with the experimental tests, verifying the modeling method used. The results indicate that five related, characteristic mode shapes form a group. The frequencies of the modes are determined by the relative phase of the radial ribs.

  10. A three-level advanced static VAr compensator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekanayake, J.B.; Jenkins, N.

    1996-01-01

    An Advanced Static VAr Compensator (ASVC) employing a three level inverter has been investigated for three phase applications. The paper describes the operating principles of the ASVC using an elementary single phase ASVC circuit. The construction of a hardware model of the three phase, three level ASVC is then presented. The performance of the ASVC is obtained from an experimental study carried out on this laboratory model. The use of the selective harmonic elimination modulation (SHEM) technique to minimize harmonics is explored. Experimental studies have been carried out to determine the speed of response of the scheme by controlling itmore » in a closed loop.« less

  11. Theoretical and experimental studies of the structure and vibrational spectra of NTO

    NASA Astrophysics Data System (ADS)

    Sorescu, Dan C.; Sutton, Teressa R. L.; Thompson, Donald L.; Beardall, David; Wight, Charles A.

    1996-10-01

    The structure and vibrational spectra of the high explosive 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) have been determined by ab initio molecular orbital calculations at the Hartree-Fock and second-order Møller-Plesset levels and by density functional theory (B3LYP). Experimental frequencies for the molecule have been determined from infrared spectra of pure NTO films and NTO molecules isolated in an argon matrix at 21 K. A force field for gas phase NTO has been obtained based on calculated results at the MP2/6-311G∗∗ level. In addition, a force field for solid state NTO has been constructed using the experimental vibrational frequencies for NTO films and scaled ab initio vibrational frequencies. Differences between the solid state and gas phase results indicate that the environment and preparation procedure exert a marked influence on the spectral characteristics of the NTO molecule.

  12. Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes

    PubMed Central

    2017-01-01

    In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles. PMID:28186771

  13. Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry

    NASA Astrophysics Data System (ADS)

    Jin, Chengying; Li, Dahai; Kewei, E.; Li, Mengyang; Chen, Pengyu; Wang, Ruiyang; Xiong, Zhao

    2018-06-01

    In phase measuring deflectometry, two orthogonal sinusoidal fringe patterns are separately projected on the test surface and the distorted fringes reflected by the surface are recorded, each with a sequential phase shift. Then the two components of the local surface gradients are obtained by triangulation. It usually involves some complicated and time-consuming procedures (fringe projection in the orthogonal directions). In addition, the digital light devices (e.g. LCD screen and CCD camera) are not error free. There are quantization errors for each pixel of both LCD and CCD. Therefore, to avoid the complex process and improve the reliability of the phase distribution, a phase extraction algorithm with five-frame crossed fringes is presented in this paper. It is based on a least-squares iterative process. Using the proposed algorithm, phase distributions and phase shift amounts in two orthogonal directions can be simultaneously and successfully determined through an iterative procedure. Both a numerical simulation and a preliminary experiment are conducted to verify the validity and performance of this algorithm. Experimental results obtained by our method are shown, and comparisons between our experimental results and those obtained by the traditional 16-step phase-shifting algorithm and between our experimental results and those measured by the Fizeau interferometer are made.

  14. The influence of muscles on knee flexion during the swing phase of gait.

    PubMed

    Piazza, S J; Delp, S L

    1996-06-01

    Although the movement of the leg during swing phase is often compared to the unforced motion of a compound pendulum, the muscles of the leg are active during swing and presumably influence its motion. To examine the roles of muscles in determining swing phase knee flexion, we developed a muscle-actuated forward dynamic simulation of the swing phase of normal gait. Joint angles and angular velocities at toe-off were derived from experimental measurements, as were pelvis motions and muscle excitations. Joint angles and joint moments resulting from the simulation corresponded to experimental measurements made during normal gait. Muscular joint moments and initial joint angular velocities were altered to determine the effects of each upon peak knee flexion in swing phase. As expected, the simulation demonstrated that either increasing knee extension moment or decreasing toe-off knee flexion velocity decreased peak knee flexion. Decreasing hip flexion moment or increasing toe-off hip flexion velocity also caused substantial decreases in peak knee flexion. The rectus femoris muscle played an important role in regulating knee flexion; removal of the rectus femoris actuator from the model resulted in hyperflexion of the knee, whereas an increase in the excitation input to the rectus femoris actuator reduced knee flexion. These findings confirm that reduced knee flexion during the swing phase (stiff-knee gait) may be caused by overactivity of the rectus femoris. The simulations also suggest that weakened hip flexors and stance phase factors that determine the angular velocities of the knee and hip at toe-off may be responsible for decreased knee flexion during swing phase.

  15. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  16. Comparison of ozone determinations by ultraviolet photometry and gas-phase titration

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Patapoff, M.

    1976-01-01

    A comparison of ozone determinations based on ultraviolet absorption photometry and gas-phase titration (GPT) shows good agreement between the two methods. Together with other results, these findings indicate that three candidate reference methods for ozone, UV photometry, IR photometry, and GPT are in substantial agreement. However, the GPT method is not recommended for routine use by air pollution agencies for calibration of ozone monitors because of susceptibility to experimental error.

  17. Determining the Kinetic Parameters Characteristic of Microalgal Growth.

    ERIC Educational Resources Information Center

    Martinez Sancho, Maria Eugenie; And Others

    1991-01-01

    An activity in which students obtain a growth curve for algae, identify the exponential and linear growth phases, and calculate the parameters which characterize both phases is described. The procedure, a list of required materials, experimental conditions, analytical technique, and a discussion of the interpretations of individual results are…

  18. Neutral, ion gas-phase energetics and structural properties of hydroxybenzophenones.

    PubMed

    Dávalos, Juan Z; Guerrero, Andrés; Herrero, Rebeca; Jimenez, Pilar; Chana, Antonio; Abboud, José Luis M; Lima, Carlos F R A C; Santos, Luís M N B F; Lago, Alexsandre F

    2010-04-16

    We have carried out a study of the energetics, structural, and physical properties of o-, m-, and p-hydroxybenzophenone neutral molecules, C(13)H(10)O(2), and their corresponding anions. In particular, the standard enthalpies of formation in the gas phase at 298.15 K for all of these species were determined. A reliable experimental estimation of the enthalpy associated with intramolecular hydrogen bonding in chelated species was experimentally obtained. The gas-phase acidities (GA) of benzophenones, substituted phenols, and several aliphatic alcohols are compared with the corresponding aqueous acidities (pK(a)), covering a range of 278 kJ.mol(-1) in GA and 11.4 in pK(a). A computational study of the various species shed light on structural effects and further confirmed the self-consistency of the experimental results.

  19. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.

    PubMed

    He, A; Deepan, B; Quan, C

    2017-09-01

    A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

  20. Transformation of BCC and B2 High Temperature Phases to HCP and Orthorhombic Structures in the Ti-Al-Nb System. Part I: Microstructural Predictions Based on a Subgroup Relation Between Phases

    PubMed Central

    Bendersky, L. A.; Roytburd, A.; Boettinger, W. J.

    1993-01-01

    Possible paths for the constant composition coherent transformation of BCC or B2 high temperature phases to low temperature HCP or Orthorhombic phases in the Ti-Al-Nb system are analyzed using a sequence of ciystallographic structural relationships developed from subgroup symmetry relations. Symmetry elements lost in each step of the sequence determine the possibilities for variants of the low symmetry phase and domains that can be present in the microstructure. The orientation of interdomain interfaces is determined by requiring the existence of a strain-free interface between the domains. Polydomain structures are also determined that minimize elastic energy. Microstructural predictions are made for comparison to experimental results given by Benderslcy and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 585 (1993)]. PMID:28053487

  1. Microstructure based simulations for prediction of flow curves and selection of process parameters for inter-critical annealing in DP steel

    NASA Astrophysics Data System (ADS)

    Deepu, M. J.; Farivar, H.; Prahl, U.; Phanikumar, G.

    2017-04-01

    Dual phase steels are versatile advanced high strength steels that are being used for sheet metal applications in automotive industry. It also has the potential for application in bulk components like gear. The inter-critical annealing in dual phase steels is one of the crucial steps that determine the mechanical properties of the material. Selection of the process parameters for inter-critical annealing, in particular, the inter-critical annealing temperature and time is important as it plays a major role in determining the volume fractions of ferrite and martensite, which in turn determines the mechanical properties. Selection of these process parameters to obtain a particular required mechanical property requires large number of experimental trials. Simulation of microstructure evolution and virtual compression/tensile testing can help in reducing the number of such experimental trials. In the present work, phase field modeling implemented in the commercial software Micress® is used to predict the microstructure evolution during inter-critical annealing. Virtual compression tests are performed on the simulated microstructure using finite element method implemented in the commercial software, to obtain the effective flow curve of the macroscopic material. The flow curves obtained by simulation are experimentally validated with physical simulation in Gleeble® and compared with that obtained using linear rule of mixture. The methodology could be used in determining the inter-critical annealing process parameters required for achieving a particular flow curve.

  2. The Effect of CaO on Gas/Slag/Matte/Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473 K (1200 °C) and P(SO2) = 0.25 Atm

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO2/SO2/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO2 ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system.

  3. Origin and control of instability in SCR/triac three-phase motor controllers

    NASA Technical Reports Server (NTRS)

    Dearth, J. J.

    1982-01-01

    The energy savings and reactive power reduction functions initiated by the power factor controller (PFC) are discussed. A three-phase PFC with soft start is examined analytically and experimentally to determine how well it controls the open loop instability and other possible modes of instability. The detailed mechanism of the open loop instability is determined and shown to impose design constraints on the closed loop system. The design is shown to meet those constraints.

  4. A novel method for measuring polymer-water partition coefficients.

    PubMed

    Zhu, Tengyi; Jafvert, Chad T; Fu, Dafang; Hu, Yue

    2015-11-01

    Low density polyethylene (LDPE) often is used as the sorbent material in passive sampling devices to estimate the average temporal chemical concentration in water bodies or sediment pore water. To calculate water phase chemical concentrations from LDPE concentrations accurately, it is necessary to know the LDPE-water partition coefficients (KPE-w) of the chemicals of interest. However, even moderately hydrophobic chemicals have large KPE-w values, making direct measurement experimentally difficult. In this study we evaluated a simple three phase system from which KPE-w can be determined easily and accurately. In the method, chemical equilibrium distribution between LDPE and a surfactant micelle pseudo-phase is measured, with the ratio of these concentrations equal to the LDPE-micelle partition coefficient (KPE-mic). By employing sufficient mass of polymer and surfactant (Brij 30), the mass of chemical in the water phase remains negligible, albeit in equilibrium. In parallel, the micelle-water partition coefficient (Kmic-w) is determined experimentally. KPE-w is the product of KPE-mic and Kmic-w. The method was applied to measure values of KPE-w for 17 polycyclic aromatic hydrocarbons, 37 polychlorinated biphenyls, and 9 polybrominated diphenylethers. These values were compared to literature values. Mass fraction-based chemical activity coefficients (γ) were determined in each phase and showed that for each chemical, the micelles and LDPE had nearly identical affinity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Self-Organization of Blood Pressure Regulation: Experimental Evidence

    PubMed Central

    Fortrat, Jacques-Olivier; Levrard, Thibaud; Courcinous, Sandrine; Victor, Jacques

    2016-01-01

    Blood pressure regulation is a prime example of homeostatic regulation. However, some characteristics of the cardiovascular system better match a non-linear self-organized system than a homeostatic one. To determine whether blood pressure regulation is self-organized, we repeated the seminal demonstration of self-organized control of movement, but applied it to the cardiovascular system. We looked for two distinctive features peculiar to self-organization: non-equilibrium phase transitions and hysteresis in their occurrence when the system is challenged. We challenged the cardiovascular system by means of slow, 20-min Tilt-Up and Tilt-Down tilt table tests in random order. We continuously determined the phase between oscillations at the breathing frequency of Total Peripheral Resistances and Heart Rate Variability by means of cross-spectral analysis. We looked for a significant phase drift during these procedures, which signed a non-equilibrium phase transition. We determined at which head-up tilt angle it occurred. We checked that this angle was significantly different between Tilt-Up and Tilt-Down to demonstrate hysteresis. We observed a significant non-equilibrium phase transition in nine healthy volunteers out of 11 with significant hysteresis (48.1 ± 7.5° and 21.8 ± 3.9° during Tilt-Up and Tilt-Down, respectively, p < 0.05). Our study shows experimental evidence of self-organized short-term blood pressure regulation. It provides new insights into blood pressure regulation and its related disorders. PMID:27065880

  6. Metallic scattering lifetime measurements with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Lea, Graham Bryce

    The momentum scattering lifetime is a fundamental parameter of metallic conduction that can be measured with terahertz time-domain spectroscopy. This technique has an important strength over optical reflectance spectroscopy: it is capable of measuring both the phase and the amplitude of the probing radiation. This allows simultaneous, independent measurements of the scattering lifetime and resistivity. Broadly, it is the precision of the phase measurement that determines the precision of scattering lifetime measurements. This thesis describes milliradian-level phase measurement refinements in the experimental technique and measures the conductivity anisotropy in the correlated electron system CaRuO3. These phase measurement refinements translate to femtosecond-level refinements in scattering lifetime measurements of thin metallic films. Keywords: terahertz time-domain spectroscopy, calcium ruthenate, ruthenium oxides, correlated electrons, experimental technique.

  7. Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions

    DOE PAGES

    Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.

    2016-11-08

    We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less

  8. Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.

    We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less

  9. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, J. E.

    1975-01-01

    A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.

  10. Thick phase holographic gratings recorded on BB-640 and PFG-01 silver halide materials

    NASA Astrophysics Data System (ADS)

    Neipp, Cristian; Márquez, Andrés; Pascual, Inmaculada; Beléndez, Augusto

    2003-09-01

    Photographic emulsions are still widely used to record holographic optical elements. In particular, if high diffraction efficiencies are needed, phase volume holograms are preferably recorded on these emulsions. Two particular techniques producing high-quality volume phase holograms are fixation-free rehalogenating bleaching and the use of silver-halide-sensitized gelatin. In this work we compare these two particular techniques applied to three different red-sensitive emulsions: Agfa 8E75 HD, BB-640, and Slavich PFG-01 emulsions. The differences between these emulsions determine the particular experimental conditions needed to record high-quality volume holograms on them. In this work these differences are analysed, and also their influence on the experimental procedure.

  11. Semi-experimental equilibrium structure of pyrazinamide from gas-phase electron diffraction. How much experimental is it?

    NASA Astrophysics Data System (ADS)

    Tikhonov, Denis S.; Vishnevskiy, Yury V.; Rykov, Anatolii N.; Grikina, Olga E.; Khaikin, Leonid S.

    2017-03-01

    A semi-experimental equilibrium structure of free molecules of pyrazinamide has been determined for the first time using gas electron diffraction method. The refinement was carried using regularization of geometry by calculated quantum chemical parameters. It is discussed to which extent is the final structure experimental. A numerical approach for estimation of the amount of experimental information in the refined parameters is suggested. The following values of selected internuclear distances were determined (values are in Å with 1σ in the parentheses): re(Cpyrazine-Cpyrazine)av = 1.397(2), re(Npyrazine-Cpyrazine)av = 1.332(3), re(Cpyrazine-Camide) = 1.493(1), re(Namide-Camide) = 1.335(2), re(Oamide-Camide) = 1.219(1). The given standard deviations represent pure experimental uncertainties without the influence of regularization.

  12. Experimental investigation of the critical magnetic fields of transition metal superconductors

    NASA Technical Reports Server (NTRS)

    Mcevoy, J. P.

    1973-01-01

    The isothermal magnetic transitions of a type 2 superconductor have been studied by AC susceptibility techniques as a function of the amplitude and frequency of the exciting field. The field variation of the complex susceptibility was used to determine the critical fields. The research was planned to clarify the determination (both experimentally and theoretically) of the maximum field at which the superconductive phase spontaneously nucleates in the bulk and on the surface of the metal.

  13. Experimental Study of the Triplet Synchronization of Coupled Nonidentical Mechanical Metronomes

    PubMed Central

    Jia, Ji; Song, Zhiwen; Liu, Weiqing; Kurths, Jürgen; Xiao, Jinghua

    2015-01-01

    Triplet synchrony is an interesting state when the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. Experimental observation of triplet synchrony is firstly realized in three coupled nonidentical mechanical metronomes. A more direct method based on the phase diagram is proposed to observe and determine triplet synchronization. Our results show that the stable triplet synchrony is observed in several intervals of the parameter space. Moreover, the experimental results are verified according to the theoretical model of the coupled metronomes. The outcomes are useful to understand the inner regimes of collective dynamics in coupled oscillators. PMID:26598175

  14. Experimental Determination of Spinel/Melt, Olivine/Melt, and Pyroxene/Melt Partition Coefficients for Re, Ru, Pd, Au, and Pt

    NASA Technical Reports Server (NTRS)

    Righter, K.; Campbell, A. J.; Humayun, M.

    2003-01-01

    Experimental studies have identified spinels as important hosts phases for many of the highly siderophile elements (HSE). Yet experimental studies involving chromite or Cr-rich spinel have been lacking. Experimental studies of partitioning of HSEs between silicate, oxides and silicate melt are plagued by low solubilities and the presence of small metallic nuggets at oxygen fugacities relevant to magmas, which interfere with analysis of the phases of interest. We have circumvented these problems in two ways: 1) performing experiments at oxidized conditions, which are still relevant to natural systems but in which nuggets are not observed, and 2) analysis of run products with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), allowing a combination of high sensitivity and good spatial resolution.

  15. Development and Testing of an Experimental Mobile Instructional Facility for Applied Courses in Engineering Technology.

    ERIC Educational Resources Information Center

    Kleine, Louis W.

    The experimental pilot project was conducted to determine whether students who take the laboratory phase of an engineering technology applied electricity course in a mobile laboratory at branch schools demonstrate proficiency comparable to students who take the applied electricity course in permanent facilities at the parent institution. The…

  16. [Determination of seven phenoxyacid herbicides in environmental water by high performance liquid chromatography coupled with three phase hollow fiber liquid phase microextraction].

    PubMed

    Peng, Xiaojun; Pang, Jinshan; Deng, Aihua

    2011-12-01

    A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.

  17. Numerical and Experimental Investigation of Stratified Gas-Liquid Two-Phase Flow in Horizontal Circular Pipes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccini, J.L.H.; Sampaio, P.A.B. de; Su, J.

    This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier Stokes equations (RANS) with the k-{omega} model for a fully developed stratified gas-liquid two-phase flow are solved by using the finite element method. A smooth and horizontal interface surface is assumed without considering the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the nonlinear equations. Themore » Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. The interface position in a 51.2 mm ID circular pipe was measured experimentally by the ultrasonic pulse-echo technique. The numerical results were also compared with experimental results in a 21 mm ID circular pipe reported by Masala [1]. The good agreement between the numerical and experimental results indicates that the k-{omega} model can be applied for the numerical simulation of stratified gas-liquid two-phase flow. (authors)« less

  18. [Radiotherapy phase I trials' methodology: Features].

    PubMed

    Rivoirard, R; Vallard, A; Langrand-Escure, J; Guy, J-B; Ben Mrad, M; Yaoxiong, X; Diao, P; Méry, B; Pigne, G; Rancoule, C; Magné, N

    2016-12-01

    In clinical research, biostatistical methods allow the rigorous analysis of data collection and should be defined from the trial design to obtain the appropriate experimental approach. Thus, if the main purpose of phase I is to determine the dose to use during phase II, methodology should be finely adjusted to experimental treatment(s). Today, the methodology for chemotherapy and targeted therapy is well known. For radiotherapy and chemoradiotherapy phase I trials, the primary endpoint must reflect both effectiveness and potential treatment toxicities. Methodology should probably be complex to limit failures in the following phases. However, there are very few data about methodology design in the literature. The present study focuses on these particular trials and their characteristics. It should help to raise existing methodological patterns shortcomings in order to propose new and better-suited designs. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  19. Growth and Morphology of Phase Separating Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves

    1996-01-01

    The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.

  20. In situ high temperature X-Ray diffraction study of the phase equilibria in the UO2-PuO2-Pu2O3 system

    NASA Astrophysics Data System (ADS)

    Belin, Renaud C.; Strach, Michal; Truphémus, Thibaut; Guéneau, Christine; Richaud, Jean-Christophe; Rogez, Jacques

    2015-10-01

    The region of the U-Pu-O phase diagram delimited by the compounds UO2-PuO2-Pu2O3 is known to exhibit a miscibility gap at low temperature. Consequently, MOX fuels with a composition entering this region could decompose into two fluorite phases and thus exhibit chemical heterogeneities. The experimental data on this domain found in the literature are scarce and usually provided using DTA that is not suitable for the investigation of such decomposition phenomena. In the present work, new experimental data, i.e. crystallographic phases, lattice parameters, phase fractions and temperature of phase separation, were measured in the composition range 0.14 < Pu/(U + Pu) < 0.62 and 1.85 < O/(U + Pu) < 2 from 298 to 1750 K using a novel in situ high temperature X-ray diffraction apparatus. A very good agreement is found between the temperature of phase separation determined from our results and using the thermodynamic model of the U-Pu-O system based on the CALPHAD method. Also, the combined use of thermodynamic calculations and XRD results refinement proved helpful in the determination of the O/M ratio of the samples during cooling. The methodology used in the current work might be useful to investigate other oxides systems exhibiting a miscibility gap.

  1. Comparison of the Intensity of Ventilation at Windows Exchange in the Room - Case Study

    NASA Astrophysics Data System (ADS)

    Kapalo, Peter; Voznyak, Orest

    2017-06-01

    Doing the replacement of old wooden windows in a new plastic windows, in the old buildings, we get the great reducing of the building heat loss. Simpler maintenance and attendance of window is the next advantage. New windows are characterized by better tightness. The aim of the article is determination due to the performed experimental measurements, how much more are reduce the uncontrolled ventilation that is caused of the infiltration windows. In the article there is presented the experimental measurement of indoor air quality in the room in two phases. In the first phase there is the room installed by 55 year old wood window. In the second phase there is the same room installed by new plastic window. Due to the experimental measurement of indoor air quality it is calculated intensity of ventilation - infiltration. These results of ventilation intensity are reciprocally compared.

  2. Generation and propagation of a sine-azimuthal wavefront modulated Gaussian beam

    PubMed Central

    Lao, Guanming; Zhang, Zhaohui; Luo, Meilan; Zhao, Daomu

    2016-01-01

    We introduce a method for modulating the Gaussian beam by means of sine-azimuthal wavefront and carry out the experimental generation. The analytical propagation formula of such a beam passing through a paraxial ABCD optical system is derived, by which the intensity properties of the sine-azimuthal wavefront modulated Gaussian (SWMG) beam are examined both theoretically and experimentally. Both of the experimental and theoretical results show that the SWMG beam goes through the process from beam splitting to a Gaussian-like profile, which is closely determined by the phase factor and the propagation distance. Appropriate phase factor and short distance are helpful for the splitting of beam. However, in the cases of large phase factor and focal plane, the intensity distributions tend to take a Gaussian form. Such unique features may be of importance in particle trapping and medical applications. PMID:27443798

  3. Computational findings of metastable ferroelectric phases of squaric acid

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji; Horiuchi, Sachio; Kumai, Reiji

    2018-05-01

    Antiferroelectric-to-ferroelectric transitions in squaric acid are simulated by computationally applying a static electric field. Depending on the direction of the electric field, two different metastable ferroelectric (and piezoelectric) phases have been found. One of them corresponds to the experimentally confirmed phase, whereas the other is an optimally polarized phase. The structural details of these phases have been determined as a function of the electric field. The spontaneous polarization values of the phases are 14.5 and 20.5 μ C /cm2, respectively, and are relatively high among those of the existing organic ferroelectrics.

  4. Experimental Determination of One-Atmosphere Phase Relations of Rhyodacite Pumice Erupted from Chaos Crags, Lassen Volcanic Center, California

    NASA Astrophysics Data System (ADS)

    Quinn, E. T.; Schwab, B. E.

    2012-12-01

    A series of one-atmosphere high-temperature anhydrous phase equilibrium melting experiments was performed on a natural rhyodacite pumice from the 1103±13 years BP pyroclastic flow from the Chaos Crags, Lassen Volcanic Center, California. The pumice (CCP) is the most silicic product known of the 1103 eruption of Chaos Crags. All experimental runs were performed in a Deltech VT-31 one-atmosphere gas-mixing furnace at the Experimental Petrology Lab, Humboldt State University, Arcata, California. Six ~90-99 hour runs were conducted at 35-55°C intervals, with target temperatures from 1000°C to 1200°C at the Ni-NiO buffer. The nominally anhydrous liquidus of the rhyodacite pumice is >1196°C and solidus is <998°C, outside the investigated temperature range. All experimental run products contain glass, plagioclase, quartz, and Fe-Ti oxides. Amphibole with breakdown textures is observed at temperatures ≤1159°C, and appears more stable in lower temperature runs. At 998°C, amphibole appears most stable, with only minor breakdown texture. Biotite, a major phase in starting material, is not observed in any run products. Based on comparison between experimental and natural phase assemblages and glass, plagioclase, and amphibole compositions, the Chaos Crags rhyodacite pumice erupted at a temperature <998°C, the lowest experimental run temperature investigated. Additional experimental runs at temperatures <998°C are currently being conducted.

  5. The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot system

    NASA Astrophysics Data System (ADS)

    Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara

    2015-02-01

    The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and 250 MPa.

  6. Experimental Determination of Dynamical Lee-Yang Zeros

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Maisi, Ville F.; Pekola, Jukka P.; Garrahan, Juan P.; Flindt, Christian

    2017-05-01

    Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros—complex singularities of the free energy in systems of finite size—have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize nonequilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such nonequilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.

  7. Experimental Investigation of the Turbulent Large Scale Temporal Flow in the Wing-Body Junction.

    DTIC Science & Technology

    1984-03-01

    densities, the coherence, and the relative phase were experimentally obtained and used to determine the space-time extent of the temporal flow . Oil dot...Cenedese, A., Cerri, G., and Ianeta, S., " Experimental Analysis of the Wake behind an Isolated Cambered Airfoil," Unsteady Turbulent Shear Flows , IUTAM...ARD-A139 836 EXPERIMENTAL INVESTIGATION OF THE TURBULENT LARGE SCALE 1/3 TEMPORAL FLOW IN T.. (U) CATHOLIC UNIV OF AMERICA WASHINGTON DC SCHOOL OF

  8. Phase-measuring laser holographic interferometer for use in high speed flows

    NASA Astrophysics Data System (ADS)

    Yanta, William J.; Spring, W. Charles, III; Gross, Kimberly Uhrich; McArthur, J. Craig

    Phase-measurement techniques have been applied to a dual-plate laser holographic interferometer (LHI). This interferometer has been used to determine the flowfield densities in a variety of two-dimensional and axisymmetric flows. In particular, LHI has been applied in three different experiments: flowfield measurements inside a two-dimensional scramjet inlet, flow over a blunt cone, and flow over an indented nose shape. Comparisons of experimentally determined densities with computational results indicate that, when phase-measurement techniques are used in conjunction with state-of-the-art image-processing instrumentation, holographic interferometry can be a diagnostic tool with high resolution, high accuracy, and rapid data retrieval.

  9. Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology.

    PubMed

    Almenningen, Stian; Flatlandsmo, Josef; Kovscek, Anthony R; Ersland, Geir; Fernø, Martin A

    2017-11-21

    We present an experimental protocol for fast determination of hydrate stability in porous media for a range of pressure and temperature (P, T) conditions. Using a lab-on-a-chip approach, we gain direct optical access to dynamic pore-scale hydrate formation and dissociation events to study the hydrate phase equilibria in sediments. Optical pore-scale observations of phase behavior reproduce the theoretical hydrate stability line with methane gas and distilled water, and demonstrate the accuracy of the new method. The procedure is applicable for any kind of hydrate transitions in sediments, and may be used to map gas hydrate stability zones in nature.

  10. Analysis of elliptically polarized maximally entangled states for bell inequality tests

    NASA Astrophysics Data System (ADS)

    Martin, A.; Smirr, J.-L.; Kaiser, F.; Diamanti, E.; Issautier, A.; Alibart, O.; Frey, R.; Zaquine, I.; Tanzilli, S.

    2012-06-01

    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.

  11. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats.

    PubMed

    Jia, L; Cepurna, W O; Johnson, E C; Morrison, J C

    2000-05-01

    To determine the diural intraocular pressure (IOP) response of Brown Norway rat eyes after sclerosis of the aqueous humor outflow pathways and its relationship to optic nerve damage. Hypertonic saline was injected into a single episcleral vein in 17 animals and awake IOP measured in both the light and dark phases of the circadian cycle for 34 days. Mean IOP for light and dark phases during the experimental period were compared with the respective pressures of the uninjected fellow eyes. Optic nerve cross sections from each nerve were graded for injury by five independent masked observers. For fellow eyes, mean light- and dark-phase IOP was 21 +/- 1 and 31 +/- 1 mm Hg, respectively. For four experimental eyes, mean IOPs for both phases were not altered. Six eyes demonstrated significant mean IOP elevations only during the dark phase. Of these, five showed persistent, large circadian oscillations, and four had partial optic nerve lesions. The remaining seven eyes experienced significant IOP elevations during both phases, and all had extensive optic nerve damage. Episcleral vein injection of hypertonic saline is more likely to increase IOP during the dark phase than the light. This is consistent with aqueous outflow obstruction superimposed on a circadian rhythm of aqueous humor production. Because these periodic IOP elevations produced optic nerve lesions, both light- and dark-phase IOP determinations are necessary for accurate correlation of IOP history to optic nerve damage in animals housed in a light- dark environment.

  12. Determinations of gas-liquid partition coefficients using capillary chromatographic columns. Alkanols in squalane.

    PubMed

    Tascon, Marcos; Romero, Lílian M; Acquaviva, Agustín; Keunchkarian, Sonia; Castells, Cecilia

    2013-06-14

    This study focused on an investigation into the experimental quantities inherent in the determination of partition coefficients from gas-liquid chromatographic measurements through the use of capillary columns. We prepared several squalane - (2,6,10,15,19,23-hexamethyltetracosane) - containing columns with very precisely known phase ratios and determined solute retention and hold-up times at 30, 40, 50 and 60°C. We calculated infinite dilution partition coefficients from the slopes of the linear regression of retention factors as a function of the reciprocal of the phase ratio by means of fundamental chromatographic equations. In order to minimize gas-solid and liquid-solid interface contributions to retention, the surface of the capillary inner wall was pretreated to guarantee a uniform coat of stationary phase. The validity of the proposed approach was first tested by estimating the partition coefficients of n-alkanes between n-pentane and n-nonane, for which compounds data from the literature were available. Then partition coefficients of sixteen aliphatic alcohols in squalane were determined at those four temperatures. We deliberately chose these highly challenging systems: alcohols in the reference paraffinic stationary phase. These solutes exhibited adsorption in the gas-liquid interface that contributed to retention. The corresponding adsorption constant values were estimated. We fully discuss here the uncertainties associated with each experimental measurement and how these fundamental determinations can be performed precisely by circumventing the main drawbacks. The proposed strategy is reliable and much simpler than the classical chromatographic method employing packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Equilibrium magnetic states in individual hemispherical permalloy caps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Schmidt, Oliver G.; Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz

    2012-09-24

    The magnetization distributions in individual soft magnetic permalloy caps on non-magnetic spherical particles with sizes ranging from 50 to 800 nm are investigated. We experimentally visualize the magnetic structures at the resolution limit of the x-ray magnetic circular dichroism photoelectron emission microscopy (XMCD-PEEM). By analyzing the so-called tail contrast in XMCD-PEEM, the spatial resolution is significantly enhanced, which allowed us to explore magnetic vortices and their displacement on curved surfaces. Furthermore, cap nanostructures are modeled as extruded hemispheres to determine theoretically the phase diagram of equilibrium magnetic states. The calculated phase diagram agrees well with the experimental observations.

  14. Solution properties of almandine-pyrope garnet as determined by phase equilibrium experiments

    USGS Publications Warehouse

    Koziol, A.M.; Bohlen, S.R.

    1992-01-01

    The thermodynamic mixing properties of almandine-pyrope garnet were derived from phase equilibrium experiments at temperatures of 900 and 1000??C and pressures from 8 to 14 kbar. Almandine has essentially ideal behavior in almandine-pyrope garnet over the composition range Alm89-Alm61 at the above experimental conditions. In all experimental products a systematic partitioning of Fe and Mg between garnet and ilmenite was seen with ln Kd ??? 1.59 which was not temperature sensitive. The results support the use of garnet mixing models that incorporate ideal or nearly ideal Fe-Mg parameters. -from Authors

  15. Fringe order correction for the absolute phase recovered by two selected spatial frequency fringe projections in fringe projection profilometry.

    PubMed

    Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun

    2017-08-01

    The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.

  16. In-house zinc SAD phasing at Cu Kα edge.

    PubMed

    Kim, Min-Kyu; Lee, Sangmin; An, Young Jun; Jeong, Chang-Sook; Ji, Chang-Jun; Lee, Jin-Won; Cha, Sun-Shin

    2013-07-01

    De novo zinc single-wavelength anomalous dispersion (Zn-SAD) phasing has been demonstrated with the 1.9 Å resolution data of glucose isomerase and 2.6 Å resolution data of Staphylococcus aureus Fur (SaFur) collected using in-house Cu Kα X-ray source. The successful in-house Zn-SAD phasing of glucose isomerase, based on the anomalous signals of both zinc ions introduced to crystals by soaking and native sulfur atoms, drove us to determine the structure of SaFur, a zinc-containing transcription factor, by Zn-SAD phasing using in-house X-ray source. The abundance of zinc-containing proteins in nature, the easy zinc derivatization of the protein surface, no need of synchrotron access, and the successful experimental phasing with the modest 2.6 Å resolution SAD data indicate that inhouse Zn-SAD phasing can be widely applicable to structure determination.

  17. Two-phase flow pressure drop and heat transfer during condensation in microchannels with uniform and converging cross-sections

    NASA Astrophysics Data System (ADS)

    Kuo, Ching Yi; Pan, Chin

    2010-09-01

    This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.

  18. Determination of 1-octanol-air partition coefficient using gaseous diffusion in the air boundary layer.

    PubMed

    Ha, Yeonjeong; Kwon, Jung-Hwan

    2010-04-15

    Exact determination of the partition coefficient between 1-octanol and air (K(OA)) is very important because it is a key descriptor for describing the thermodynamic partitioning between the air and organic phases. In spite of its importance, the number and quality of experimental K(OA) values for hydrophobic organic chemicals are limited because of experimental difficulties. Thus, to measure K(OA) values, a high-throughput method was developed that used liquid-phase extraction with 1-octanol drop at the tip of a microsyringe needle. The concentration in the headspace surrounding the 1 muL octanol drop was equilibrated with liquid octanol containing polycyclic aromatic hydrocarbons (PAHs). The change in concentrations of PAHs in the octanol drop was measured to obtain mass transfer rate constants, and these rate constants were then converted into K(OA) values using a film diffusion model. Thirteen polycyclic aromatic hydrocarbons with log K(OA) between 5 and 12 were chosen for the proof of the principle. Experimental determination of log K(OA) was accomplished in 30 h for PAHs with their log K(OA) less than 11. The measured log K(OA) values were very close to those obtained by various experimental and estimation methods in the literature, suggesting that this new method can provide a fast and easy determination of log K(OA) values for many chemicals of environmental interests. In addition, the applicability of the method can be extended to determine Henry's law constant for compounds with low vapor pressure and to estimate gaseous transfer rate of semivolatile compounds for environmental fate modeling.

  19. High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene

    DOE PAGES

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang; ...

    2015-12-03

    Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less

  20. High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang

    Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less

  1. Angular quasi-phase-matching experiments and determination of accurate Sellmeier equations for 5%MgO:PPLN.

    PubMed

    Brand, Pierre; Boulanger, Benoît; Segonds, Patricia; Petit, Yannick; Félix, Corinne; Ménaert, Bertrand; Taira, Takunori; Ishizuki, Hideki

    2009-09-01

    We validated the theory of angular quasi-phase-matching (AQPM) by performing measurements of second-harmonic generation and difference-frequency generation. A nonlinear least-squares fitting of these experimental data led to refine the Sellmeier equations of 5%MgO:PPLN that are now valid over the complete transparency range of the crystal. We also showed that AQPM exhibits complementary spectral ranges and acceptances compared with birefringence phase matching.

  2. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.

    2015-05-01

    The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of 980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.

  3. Experimental formation enthalpies for intermetallic phases and other inorganic compounds

    PubMed Central

    Kim, George; Meschel, S. V.; Nash, Philip; Chen, Wei

    2017-01-01

    The standard enthalpy of formation of a compound is the energy associated with the reaction to form the compound from its component elements. The standard enthalpy of formation is a fundamental thermodynamic property that determines its phase stability, which can be coupled with other thermodynamic data to calculate phase diagrams. Calorimetry provides the only direct method by which the standard enthalpy of formation is experimentally measured. However, the measurement is often a time and energy intensive process. We present a dataset of enthalpies of formation measured by high-temperature calorimetry. The phases measured in this dataset include intermetallic compounds with transition metal and rare-earth elements, metal borides, metal carbides, and metallic silicides. These measurements were collected from over 50 years of calorimetric experiments. The dataset contains 1,276 entries on experimental enthalpy of formation values and structural information. Most of the entries are for binary compounds but ternary and quaternary compounds are being added as they become available. The dataset also contains predictions of enthalpy of formation from first-principles calculations for comparison. PMID:29064466

  4. Clinical evaluation of seven anticalculus dentifrice formulations.

    PubMed

    Scruggs, R R; Stewart, P W; Samuels, M S; Stamm, J W

    1991-01-01

    One hundred ninety-two subjects completed a clinical trial to determine the effects of seven dentifrice formulations on calculus inhibition. The double-blind study involved a ten-day control phase and a ten-day experimental phase. For the control phase, subjects were evaluated for calculus present, received a prophylaxis and had pre-weighed mylar strips attached to the lingual surfaces of the mandibular incisors to harvest mineral deposits. Subjects were then assigned the placebo dentifrice for unsupervised twice-daily use and were required to report once a day for a supervised mouthrinse using a 1:3 dilution of the dentrifice. The experimental phase was identical except that subjects were allocated the experimental dentifices using a stratified random assignment based on age, gender and the initial presence of calculus. Simple linear regression analyses of the dry and ash log weights obtained from the strips were performed. The results showed no statistically significant differences among the test products; however, two formulations containing zinc citrate showed some calculus inhibition-potential suggesting that further research and development of such products may be warranted.

  5. A critical review of three methods used for the measurement of mercury (Hg2+)-dissolved organic matter stability constants

    USGS Publications Warehouse

    Gasper, J.D.; Aiken, G.R.; Ryan, J.N.

    2007-01-01

    Three experimental techniques - ion exchange, liquid-liquid extraction with competitive ligand exchange, and solid-phase extraction with competitive ligand exchange (CLE-SPE) - were evaluated as methods for determining conditional stability constants (K) for the binding of mercury (Hg2+) to dissolved organic matter (DOM). To determine the utility of a given method to measure stability constants at environmentally relevant experimental conditions, experimental results should meet three criteria: (1) the data must be experimentally valid, in that they were acquired under conditions that meet all the requirements of the experimental method, (2) the Hg:DOM ratio should be determined and it should fall within levels that are consistent with environmental conditions, and (3) the stability constants must fall within the detection window of the method. The ion exchange method was found to be limited by its detection window, which constrains the method to stability constants with log K values less than about 14. The liquid-liquid extraction method was found to be complicated by the ability of Hg-DOM complexes to partition into the organic phase. The CLE-SPE method was found to be the most suitable of these methods for the measurement of Hg-DOM stability constants. Stability constants for DOM isolates measured using the CLE-SPE method at environmentally relevant Hg:DOM ratios were log K = 25-30 (M-1). These values are consistent with the strong Hg2+ binding expected for reduced S-containing binding sites. ?? 2007 Elsevier Ltd. All rights reserved.

  6. The Intramolecular Hydrogen Bond N-H···S in 2,2'-Diaminodiphenyl Disulfide: Experimental and Computational Thermochemistry.

    PubMed

    Ramos, Fernando; Flores, Henoc; Hernández-Pérez, Julio M; Sandoval-Lira, Jacinto; Camarillo, E Adriana

    2018-01-11

    The intramolecular hydrogen bond of the N-H···S type has been investigated sparingly by thermochemical and computational methods. In order to study this interaction, the standard molar enthalpies of formation in gaseous phase of diphenyl disulfide, 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide at T = 298.15 K were determined by experimental thermochemical methods and computational calculations. The experimental enthalpies of formation in gas-phase were obtained from enthalpies of formation in crystalline phase and enthalpies of sublimation. Enthalpies of formation in crystalline phase were obtained using rotatory bomb combustion calorimetry. By thermogravimetry, enthalpies of vaporization were obtained, and by combining them with enthalpies of fusion, the enthalpies of sublimation were calculated. The Gaussian-4 procedure and the atomization method were applied to obtain enthalpies of formation in gas-phase of the compounds under study. Theoretical and experimental values are in good agreement. Through natural bond orbital (NBO) analysis and a topological analysis of the electronic density, the intramolecular hydrogen bridge (N-H···S) in the 2,2'-diaminodiphenyl disulfide was confirmed. Finally, an enthalpic difference of 11.8 kJ·mol -1 between the 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide was found, which is attributed to the intramolecular N-H···S interaction.

  7. Direct Measurements of Quantum Kinetic Energy Tensor in Stable and Metastable Water near the Triple Point: An Experimental Benchmark.

    PubMed

    Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto

    2016-06-16

    This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.

  8. Experimental determination of ice sublimation energies

    NASA Astrophysics Data System (ADS)

    Luna, R.; Canto, J.; Satorre, M. A.; Domingo, M.

    2011-11-01

    In Astrophysics, the study of ices is important due to the wide range of scenarios in which they are present. Their physical and chemical characteristics play an important role in the study of the interstellar medium (ISM). The assessment of the energy of sublimation allows us to improve our understanding of physical and/or chemical processes that take place where ices are present. The energy of sublimation E_sub is defined as the change of energy between solid and gas phase of certain molecule. This value is important to determinate other thermodynamical parameters such as the reticular energy of ionic compounds, the energy of formation in gas phase from the energy of formation in condensed phase, or to estimate the sublimation rate, which is very important in determining the evolution of surfaces of astrophysical objects.

  9. Experimental determination of pore shapes using phase retrieval from q -space NMR diffraction

    NASA Astrophysics Data System (ADS)

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q -space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  10. Experimental determination of pore shapes using phase retrieval from q-space NMR diffraction.

    PubMed

    Demberg, Kerstin; Laun, Frederik Bernd; Bertleff, Marco; Bachert, Peter; Kuder, Tristan Anselm

    2018-05-01

    This paper presents an approach to solving the phase problem in nuclear magnetic resonance (NMR) diffusion pore imaging, a method that allows imaging the shape of arbitrary closed pores filled with an NMR-detectable medium for investigation of the microstructure of biological tissue and porous materials. Classical q-space imaging composed of two short diffusion-encoding gradient pulses yields, analogously to diffraction experiments, the modulus squared of the Fourier transform of the pore image which entails an inversion problem: An unambiguous reconstruction of the pore image requires both magnitude and phase. Here the phase information is recovered from the Fourier modulus by applying a phase retrieval algorithm. This allows omitting experimentally challenging phase measurements using specialized temporal gradient profiles. A combination of the hybrid input-output algorithm and the error reduction algorithm was used with dynamically adapting support (shrinkwrap extension). No a priori knowledge on the pore shape was fed to the algorithm except for a finite pore extent. The phase retrieval approach proved successful for simulated data with and without noise and was validated in phantom experiments with well-defined pores using hyperpolarized xenon gas.

  11. Phase recovery from a single interferogram with closed fringes by phase unwrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Maciel, Jesus; Casillas-Rodriguez, Francisco J.; Mora-Gonzalez, Miguel

    2011-01-01

    We describe a new algorithm for phase determination from a single interferogram with closed fringes based on an unwrapping procedure. Here we use bandpass filtering in the Fourier domain, obtaining two wrapped phases with sign changes corresponding to the orientation of the applied filters. An unwrapping scheme that corrects the sign ambiguities by comparing the local derivatives is then proposed. This can be done, assuming that the phase derivatives do not change abruptly among adjacent areas as occurs with smooth continuous phase maps. The proposed algorithm works fast and is robust against noise, as demonstrated in experimental and simulated data.

  12. Effects of methoxy and formyl substituents on the energetics and reactivity of α-naphthalenes: a calorimetric and computational study.

    PubMed

    Silva, Ana L R; Freitas, Vera L S; Ribeiro da Silva, Maria D M C

    2014-07-01

    A combined experimental and computational study was developed to evaluate and understand the energetics and reactivity of formyl and methoxy α-naphthalene derivatives. Static bomb combustion calorimetry and the Calvet microcalorimetry were the experimental techniques used to determine the standard (p(o)=0.1 MPa) molar enthalpies of formation, in the liquid phase, ΔfHm(o)(l), and of vaporization, Δl(g)Hm(o), at T=298.15K, respectively, of the two liquid naphthalene derivatives. Those experimental values were used to derive the values of the experimental standard molar enthalpies of formation, in the gaseous phase, ΔfHm(o)(g), of 1-methoxynaphthalene, (-3.0 ± 3.1)kJmol(-1), and of 1-formylnaphthalene, (36.3 ± 4.1)kJ mol(-1). High-level quantum chemical calculations at the composite G3(MP2)//B3LYP level were performed to estimate the values of the ΔfHm(o)(g) of the two compounds studied resulting in values in very good agreement with experimental ones. Natural bond orbital (NBO) calculations were also performed to determine more about the structure and reactivity of this class of compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura J. Pyrak-Nolte; Nicholas J. Giordano; David D. Nolte

    2004-03-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. This project on the experimental investigation of relative permeability upscaling has produced a unique combination of three quite different technical approaches to the upscaling problem of obtaining pore-related microscopic properties and using them to predict macroscopic behavior. Several important ''firsts'' have been achieved during the course of the project. (1) Optical coherence imaging, a laser-based ranging and imaging technique, has produced the first images of grain and pore structure up to 1 mm beneath the surface of the sandstone and in a laboratory borehole. (2) Woods metal injection has connected for the first time microscopic pore-scale geometric measurements with macroscopic saturation in real sandstone cores. (3) The micro-model technique has produced the first invertible relationship between saturation and capillary pressure--showing that interfacial area per volume (IAV) provides the linking parameter. IAV is a key element in upscaling theories, so this experimental finding may represent the most important result of this project, with wide ramifications for predictions of fluid behavior in porous media.« less

  14. Microgravity experiments on the effect of internal flow on solidification of Fe-Cr-Ni stainless steels.

    PubMed

    Hanlon, Alaina B; Matson, Douglas M; Hyers, Robert W

    2006-09-01

    A new hypothesis has been developed to explain the effect of internal fluid flow on the lifetime of a metastable phase in solidifying Fe-Cr-Ni alloys. The hypothesis shows excellent agreement with available experimental results, but microgravity experiments are required for complete validation. Certain Fe-Cr-Ni stainless steel alloys solidify from an undercooled melt by a two-step process in which the metastable ferrite phase forms first followed by the stable austenite phase. Recent experiments using containerless processing techniques have shown that the lifetime of the metastable phase is strongly influenced by flow within the molten sample. Simulations using a commercial computational fluid dynamics (CFD) package, FIDAP, were performed to determine the time required for collision of dendrites and compared to experimental delay time. If the convective velocities are strong enough to bend the primary arms, then the secondary arms of adjacent dendrites can touch. The points of collision form low-angle boundaries and result in high-energy sites that can serve as nuclei for the transformation to the stable phase. It has been determined that the convective velocities in electrostatic levitation (ESL) are not strong enough to cause collision. However, in ground-based electromagnetic levitation (EML), the convective velocities are strong enough to cause the dendrites to deflect so that the secondary arms of adjacent dendrites collide. There is quantitative agreement between the numerically determined time to collision and the experimentally observed delay time in EML. The strong internal velocity due to convection within the EML samples is the reason for the observed difference in delay times between ESL and EML. Microgravity testing is essential because the significant change in nucleation behavior occurs between the ranges accessible by ground-based ESL and EML. Testing in microgravity using EML will permit a large range of internal convective velocities including those that are inaccessible in 1 g.

  15. A novel evaluation method for extrapolated retention factor in determination of n-octanol/water partition coefficient of halogenated organic pollutants by reversed-phase high performance liquid chromatography.

    PubMed

    Han, Shu-ying; Liang, Chao; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan

    2012-02-03

    The retention factor corresponding to pure water in reversed-phase high performance liquid chromatography (RP-HPLC), k(w), was commonly obtained by extrapolation of retention factor (k) in a mixture of organic modifier and water as mobile phase in tedious experiments. In this paper, a relationship between logk(w) and logk for directly determining k(w) has been proposed for the first time. With a satisfactory validation, the approach was confirmed to enable easy and accurate evaluation of k(w) for compounds in question with similar structure to model compounds. Eight PCB congeners with different degree of chlorination were selected as a training set for modeling the logk(w)-logk correlation on both silica-based C(8) and C(18) stationary phases to evaluate logk(w) of sample compounds including seven PCB, six PBB and eight PBDE congeners. These eight model PCBs were subsequently combined with seven structure-similar benzene derivatives possessing reliable experimental K(ow) values as a whole training set for logK(ow)-logk(w) regressions on the two stationary phases. Consequently, the evaluated logk(w) values of sample compounds were used to determine their logK(ow) by the derived logK(ow)-logk(w) models. The logK(ow) values obtained by these evaluated logk(w) were well comparable with those obtained by experimental-extrapolated logk(w), demonstrating that the proposed method for logk(w) evaluation in this present study could be an effective means in lipophilicity study of environmental contaminants with numerous congeners. As a result, logK(ow) data of many PCBs, PBBs and PBDEs could be offered. These contaminants are considered to widely exist in the environment, but there have been no reliable experimental K(ow) data available yet. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Prediction of new ground-state crystal structure of T a2O5

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Kawazoe, Yoshiyuki

    2018-03-01

    Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.

  17. Reliable absolute analog code retrieval approach for 3D measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun

    2017-11-01

    The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.

  18. A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach

    USGS Publications Warehouse

    Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.

    1996-01-01

    A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.

  19. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    PubMed

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).

  20. Phase Transitions and Domain Structure in Mixed Tetragonal-Rhombohedral BiFeO3 thin films using Raman Spectroscopy and Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Vlahos, E.; Kumar, A.; Denev, S.; Melville, A.; Adamo, C.; Ihlefeld, J. F.; Sheng, G.; Zeches, R. J.; Zhang, J. X.; He, Q.; Yang, C. H.; Erni, R.; Rossell, M. D.; J, A.; Hatt; Chu, Y.-H.; Wang, C. H.; Ederer, C.; Gopalan, V.; Chen, L. Q.; Schlom, D. G.; Spaldin, N. A.; Martin, L. W.; Ramesh, R.; Tenne, Dmitri

    2010-03-01

    We have shown that biaxially strained BiFeO3 thin films can undergo an isosymmetric phase transition from a rhombohedral-like to a tetragonal-like phase. This talk discusses the evolution of the tetragonal and the mixed phases in BiFeO3/YAlO3 thin films with varying film thickness using optical second harmonic generation (SHG) and Raman spectroscopy. 25nm, 75nm, and 225 nm thick films were studied; thinner films are dominated by the tetragonal phase, whereas thicker films exhibit both tetragonal and rhombohedral phases. The evolution of these phases as function of film thickness and temperature was experimentally determined.

  1. Thermal desorption of metals from tungsten single crystal surfaces

    NASA Technical Reports Server (NTRS)

    Bauer, E.; Bonczek, F.; Poppa, H.; Todd, G.

    1975-01-01

    After a short review of experimental methods used to determine desorption energies and frequencies the assumptions underlying the theoretical analysis of experimental data are discussed. Recent experimental results on the flash desorption of Cu, Ag, and Au from clean, well characterized W (110) and (100) surfaces are presented and analyzed in detail with respect to the coverage dependence. The results obtained clearly reveal the limitations of previous analytical methods and of the experimental technique per se (such as structure and phase changes below and in the temperature region in which desorption occurs).

  2. Liquid-liquid extraction of ethanol from aqueous solutions with amyl acetate, benzyl alcohol, and methyl isobutyl ketone at 298. 15. Kappa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solimo, H.N.; Martinez, H.E.; Riggio, R.

    1989-04-01

    Experimental mutual solubility and tie-line data were determined for three ternary liquid-liquid systems containing water, ethanol, and amyl acetate, benzyl alcohol, and methyl isobutyl ketone at 298.15{Kappa} in order to obtain their complete phase diagrams and to determine which is the most suitable solvent for extraction of ethanol from aqueous solutions. Tie lines were determined correlating the density of the binodal curve as a function of composition and the plait points using the Othmer and Tobias method. The experimental data were also correlated with the UNIFAC group contribution method. A qualitative agreement was obtained. Experimental results show that amyl acetatemore » is a better solvent than methyl isobutyl ketone and benzyl alcohol.« less

  3. Effect of hyoscine-N-butyl bromide rectal suppository on labor progress in primigravid women: randomized double-blind placebo-controlled clinical trial.

    PubMed

    Makvandi, Somayeh; Tadayon, Mitra; Abbaspour, Mohammadreza

    2011-04-15

    To determine the effects of hyoscine-N-butyl bromide (HBB) rectal suppository on labor progress in primigravid women. A randomized double-blind placebo-controlled clinical trial was carried out on 130 primigravid women admitted for spontaneous labor. The women were recruited based on the inclusion and exclusion criteria and randomized into the experimental (n=65) and control group (n=65). In the beginning of the active phase of labor, 20 mg of HBB rectal suppository was administered to the experimental group, while a placebo suppository was administered to the control group. Cervical dilatation and duration of active phase and second stage of labor were recorded. The rate of cervical dilatation was 2.6 cm/h in the experimental and 1.5 cm/h in the control group (P<0.001). The active phase and the second stage of labor were significantly shorter in the experimental group (P=0.001 and P<0.001, respectively). There was no significant difference between the two groups in the fetal heart rate, maternal pulse rate, blood pressure, and the APGAR score 1 and 5 minutes after birth. Use of HBB rectal suppository in the active management of labor can shorten both the active phase and second stage of labor without significant side-effects.

  4. Gel phase in hydrated calcium dipicolinate

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Krishnamoorthy, Aravind; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2017-11-01

    The mineralization of dipicolinic acid (DPA) molecules in bacterial spore cores with Ca2+ ions to form Ca-DPA is critical to the wet-heat resistance of spores. This resistance to "wet-heat" also depends on the physical properties of water and DPA in the hydrated Ca-DPA-rich protoplasm. Using reactive molecular dynamics simulations, we have determined the phase diagram of hydrated Ca-DPA as a function of temperature and water concentration, which shows the existence of a gel phase along with distinct solid-gel and gel-liquid phase transitions. Simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing hydration, which explains the experimental trend of wet-heat resistance of bacterial spores. Our observation of different phases of water also reconciles previous conflicting experimental findings on the state of water in bacterial spores. Further comparison with an unmineralized hydrated DPA system allows us to quantify the importance of Ca mineralization in decreasing diffusivity and increasing the heat resistance of the spore.

  5. Glass Formation, Phase Equilibria, and Thermodynamic Assessment of the Al-Ce-Co System Assisted by First-Principles Energy Calculations

    NASA Astrophysics Data System (ADS)

    Gao, Michael C.; Ünlü, Necip; Mihalkovic, Marek; Widom, Michael; Shiflet, G. J.

    2007-10-01

    This study investigates glass formation, phase equilibria, and thermodynamic descriptions of the Al-rich Al-Ce-Co ternary system using a novel approach that combines critical experiments, CALPHAD modeling, and first-principles (FP) calculations. The glass formation range (GFR) and a partial 500 °C isotherm are determined using a range of experimental techniques including melt spinning, transmission electron microscopy (TEM), electron probe microanalysis (EPMA), X-ray diffraction, and differential thermal analysis (DTA). Three stable ternary phases are confirmed, namely, Al8CeCo2, Al4CeCo, and AlCeCo, while a metastable phase, Al5CeCo2, was discovered. The equilibrium and metastable phases identified by the present and earlier reported experiments, together with many hypothetical ternary compounds, are further studied by FP calculations. Based on new experimental data and FP calculations, the thermodynamics of the Al-rich Al-Co-Ce system is optimized using the CALPHAD method. Application to glass formation is discussed in light of present studies.

  6. The permanent electric dipole moment of chromium monoxide

    NASA Technical Reports Server (NTRS)

    Steimle, Timothy C.; Nachman, David F.; Shirley, Jeffrey E.; Bauschlicher, Charles W.; Langhoff, Stephen R.

    1989-01-01

    The permanent electric dipole moments for the X 5Pi and B 5pi states of gas-phase CrO have been experimentally determined using the sub-Doppler optical technique of intermodulated fluorescence spectroscopy in conjunction with the Stark effect. The measured values are 3.88 + or - 0.13 and 4.1 + or - 1.8 D for the X and B states, respectively. The theoretical values determined for the X state using multireference CI iterative-natural-orbital and finite-field calculations are in excellent agreement with the experimental value.

  7. Determination of molar enthalpy of sublimation in case of orotic acid as obtained from experimental and computational data

    NASA Astrophysics Data System (ADS)

    Marochkin, Ilya I.; Altova, Ekaterina P.; Chilingarov, Norbert S.; Vilkova, Anna L.; Shishkov, Igor F.

    2018-03-01

    Saturated vapor pressure, ln(p/Pa) = (-21316 ± 511)/(T/K)+(41.64 ± 0.11), and enthalpy of sublimation of orotic acid, Δsub Hm0 (Tm) = 177 ± 4 kJ/mol, were determined by means of Knudsen effusion mass spectrometry in the temperature range of 423÷493 K. The computational approaches supported the experimental results reported. The theoretical estimation of the gas-phase enthalpy of formation for orotic acid was done with different working reactions used.

  8. Zak phase induced multiband waveguide by two-dimensional photonic crystals.

    PubMed

    Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong

    2017-08-15

    Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.

  9. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1997-01-01

    In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.

  10. A Computer Simulation for Teaching Diagnosis of Secondary Ignition Problems

    ERIC Educational Resources Information Center

    Diedrick, Walter; Thomas, Rex

    1977-01-01

    Presents the methodology and findings of an experimental project to determine the viability of computer assisted as opposed to more traditional methods of instruction for teaching one phase of automotive troubleshooting. (Editor)

  11. Water, Water, Everywhere.

    ERIC Educational Resources Information Center

    Selinger, Ben

    1979-01-01

    Water is a major component in many consumer products. Azeotropic distillation of products such as detergents and foodstuffs to form a two-phase distillate is a simple experimental method to determine the percentage of water in the product. (Author/GA)

  12. The Effect of Electronic Structure on the Phases Present in High Entropy Alloys

    PubMed Central

    Leong, Zhaoyuan; Wróbel, Jan S.; Dudarev, Sergei L.; Goodall, Russell; Todd, Iain; Nguyen-Manh, Duc

    2017-01-01

    Multicomponent systems, termed High Entropy Alloys (HEAs), with predominantly single solid solution phases are a current area of focus in alloy development. Although different empirical rules have been introduced to understand phase formation and determine what the dominant phases may be in these systems, experimental investigation has revealed that in many cases their structure is not a single solid solution phase, and that the rules may not accurately distinguish the stability of the phase boundaries. Here, a combined modelling and experimental approach that looks into the electronic structure is proposed to improve accuracy of the predictions of the majority phase. To do this, the Rigid Band model is generalised for magnetic systems in prediction of the majority phase most likely to be found. Good agreement is found when the predictions are confronted with data from experiments, including a new magnetic HEA system (CoFeNiV). This also includes predicting the structural transition with varying levels of constituent elements, as a function of the valence electron concentration, n, obtained from the integrated spin-polarised density of states. This method is suitable as a new predictive technique to identify compositions for further screening, in particular for magnetic HEAs. PMID:28059106

  13. The Effect of Electronic Structure on the Phases Present in High Entropy Alloys.

    PubMed

    Leong, Zhaoyuan; Wróbel, Jan S; Dudarev, Sergei L; Goodall, Russell; Todd, Iain; Nguyen-Manh, Duc

    2017-01-06

    Multicomponent systems, termed High Entropy Alloys (HEAs), with predominantly single solid solution phases are a current area of focus in alloy development. Although different empirical rules have been introduced to understand phase formation and determine what the dominant phases may be in these systems, experimental investigation has revealed that in many cases their structure is not a single solid solution phase, and that the rules may not accurately distinguish the stability of the phase boundaries. Here, a combined modelling and experimental approach that looks into the electronic structure is proposed to improve accuracy of the predictions of the majority phase. To do this, the Rigid Band model is generalised for magnetic systems in prediction of the majority phase most likely to be found. Good agreement is found when the predictions are confronted with data from experiments, including a new magnetic HEA system (CoFeNiV). This also includes predicting the structural transition with varying levels of constituent elements, as a function of the valence electron concentration, n, obtained from the integrated spin-polarised density of states. This method is suitable as a new predictive technique to identify compositions for further screening, in particular for magnetic HEAs.

  14. EXPERIMENTAL STUDY ON THE EFFECT OF SO2 ON PCDD/F EMISSIONS: DETERMINATION OF THE IMPORTANCE OF GAS-PHASE VERSUS SOLID-PHASE REACTIONS IN PCDD/F FORMATION

    EPA Science Inventory

    Co-firing coal in municipal solid waste incinerators (MSWIs) has previously been reported to reduce PCDD/F emissions due to increasing the flue gas SO2 concentration due to the fossil fuel addition. The present study was focused on understanding the mechanism predomina...

  15. Preliminary results of the large experimental wind turbine phase of the national wind energy program

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Sholes, T.; Sholes, J. E.

    1975-01-01

    The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.

  16. Computational Thermodynamic Study to Predict Complex Phase Equilibria in the Nickel-Base Superalloy Rene N6

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.; Ritzert, Frank J.

    2001-01-01

    A previous study by Ritzert et al. on the formation and prediction of topologically closed packed (TCP) phases in the nickel-base superalloy Rene' N6 is re-examined with computational thermodynamics. The experimental data on phase distribution in forty-four alloys with a composition within the patent limits of the nickel-base superalloy Rene' N6 provide a good basis for comparison to and validation of a commercial nickel superalloy database used with ThermoCalc. Volume fraction of the phases and partitioning of the elements are determined for the forty-four alloys in this dataset. The baseline heat treatment of 400 h at 1366 K was used. This composition set is particularly interesting since small composition differences lead to dramatic changes in phase composition. In general the calculated values follow the experimental trends. However, the calculations indicated no TCP phase formation when the experimental measurements gave a volume percent of TCP phase less than 2 percent. When TCP phases were predicted, the calculations under-predict the volume percent of TCP phases by a factor of 2 to 8. The calculated compositions of the gamma and gamma' phases show fair agreement with the measurements. However, the calculated compositions of the P Phase do not agree with those measured. This may be due to inaccuracies in the model parameters for P phase and/or issues with the microprobe analyses of these phases. In addition, phase fraction diagrams and sigma and P phase solvus temperatures are calculated for each of the alloys. These calculations indicate that P phase is the primary TCP phase formed for the alloys considered here at 1366 K. Finally, a series of isopleths are calculated for each of the seven alloying elements. These show the effect of each alloying element on creating TCP phases.

  17. Physical and chemical interactions at the interface between atmospheric pressure plasmas and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Byrns, Brandon; Knappe, Detlef; Graves, David; Shannon, Steven

    2014-10-01

    Transport and reactions of charged species, neutrals, and photons at the interface between plasmas and liquids must be better quantified. The work presented here combines theoretical and experimental investigations of conditions in the gas and liquid phases in proximity to the interface for various discharges. OES is used to determine rotational and vibrational temperatures of OH, NO, and N2+; the relationship between these temperatures that characterize the distribution of internal energy states and gas and electron kinetic temperatures is considered. The deviation of OH rotational states from equilibrium under high humidity conditions is also presented. In contradiction with findings of other groups, high energy rotational states appear to become underpopulated with increasing humidity. In the aqueous phase, concentrations of longer-lived species such as nitrate, nitrite, hydrogen peroxide, and ozone are determined using ion chromatography and colorimetric methods. Spin-traps and electron paramagnetic resonance (EPR) are investigated for characterization of short-lived aqueous radicals like OH, O2-, NO, and ONOO-. Finally, experimental results are compared to a numerical model which couples transport and reactions within and between the bulk gas and liquid phases.

  18. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.

    PubMed

    Nadobny, Jacek; Fähling, Horst; Hagmann, Mark J; Turner, Paul F; Wlodarczyk, Waldemar; Gellermann, Johanna M; Deuflhard, Peter; Wust, Peter

    2002-11-01

    Experimental and numerical methods were used to determine the coupling of energy in a multichannel three-dimensional hyperthermia applicator (SIGMA-Eye), consisting of 12 short dipole antenna pairs with stubs for impedance matching. The relationship between the amplitudes and phases of the forward waves from the amplifiers, to the resulting amplitudes and phases at the antenna feed-points was determined in terms of interaction matrices. Three measuring methods were used: 1) a differential probe soldered directly at the antenna feed-points; 2) an E-field sensor placed near the feed-points; and 3) measurements were made at the outputs of the amplifier. The measured data were compared with finite-difference time-domain (FDTD) calculations made with three different models. The first model assumes that single antennas are fed independently. The second model simulates antenna pairs connected to the transmission lines. The measured data correlate best with the latter FDTD model, resulting in an improvement of more than 20% and 20 degrees (average difference in amplitudes and phases) when compared with the two simpler FDTD models.

  19. Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water

    NASA Astrophysics Data System (ADS)

    Limmer, David; Chandler, David

    2011-03-01

    To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.

  20. Intensity noise limit in a phase-sensitive optical time-domain reflectometer with a semiconductor laser source

    NASA Astrophysics Data System (ADS)

    E Alekseev, A.; Tezadov, Ya A.; Potapov, V. T.

    2017-05-01

    In the present paper we perform, for the first time, the analysis of the average intensity noise power level at the output of a coherent phase-sensitive optical time-domain reflectometer (phase-OTDR) with a semiconductor laser source. The origin of the considered intensity noise lies in random phase fluctuations of a semiconductor laser source field. These phase fluctuations are converted to intensity noise in the process of interference of backscattered light. This intensity noise inevitably emerges in every phase-OTDR spatial channel and limits its sensitivity to external phase actions. The analysis of intensity noise in a phase-OTDR was based on the study of a fiber scattered-light interferometer (FSLI) which is treated as the constituent part of OTDR. When considered independently, FSLI has a broad intensity noise spectrum at its output; when FSLI is treated as a part of a phase-OTDR, due to aliasing effect, the wide FSLI noise spectrum is folded within the spectral band, determined by the probe pulse repetition frequency. In the analysis one of the conventional phase-OTDR schemes with rectangular dual-pulse probe signal was considered, the FSLI, which corresponds to this OTDR scheme, has two scattering fiber segments with additional time delay introduced between backscattered fields. The average intensity noise power and resulting noise spectrum at the output of this FSLI are determined by the degree of coherence of the semiconductor laser source, the length of the scattering fiber segments and by the additional time delay between the scattering segments. The average intensity noise characteristics at the output of the corresponding phase-OTDR are determined by the analogous parameters: the source coherence, the lengths of the parts constituting the dual-pulse and the time interval which separates the parts of the dual-pulse. In the paper the expression for the average noise power spectral density (NPSD) at the output of FSLI was theoretically derived and experimentally verified. Based on the found average NPSD of FSLI, a simple relation connecting the phase-OTDR parameters and the limiting level of full average intensity noise power at its output was derived. This relation was verified by experimental measurement of the average noise power at the output of phase-OTDR. The limiting noise level, considered in the paper, determines the fundamental noise floor for the phase-OTDR with given parameters of the source coherence, probe pulse length and time delay between two pulses constituting the dual-pulse.

  1. Overview: Experimental studies of crystal nucleation: Metals and colloids.

    PubMed

    Herlach, Dieter M; Palberg, Thomas; Klassen, Ina; Klein, Stefan; Kobold, Raphael

    2016-12-07

    Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal nucleation.

  2. Determination of torque speed current characteristics of a brushless DC motor by utilizing back-EMF of non-energized phase

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Yeom, J. H.; Kim, M. G.

    2007-03-01

    This paper presents a method to determine the torque constant and the torque-speed-current characteristics of a brushless DC (BLDC) motor by utilizing back-EMF variation of nonenergized phase. It also develops a BLDC motor controller with a digital signal processor (DSP) to monitor its current, voltage and speed in real time. Torque-speed-current characteristics of a BLDC motor are determined by using the proposed method and the developed controller. They are compared with the torque-speed-current characteristics measured by dynamometer experimentally. This research shows that the proposed method is an effective method to determine the torque constant and the torque-speed-current characteristics of the BLDC motor without using dynamometer.

  3. Hilbert and Blaschke phases in the temporal coherence function of stationary broadband light.

    PubMed

    Fernández-Pousa, Carlos R; Maestre, Haroldo; Torregrosa, Adrián J; Capmany, Juan

    2008-10-27

    We show that the minimal phase of the temporal coherence function gamma (tau) of stationary light having a partially-coherent symmetric spectral peak can be computed as a relative logarithmic Hilbert transform of its amplitude with respect to its asymptotic behavior. The procedure is applied to experimental data from amplified spontaneous emission broadband sources in the 1.55 microm band with subpicosecond coherence times, providing examples of degrees of coherence with both minimal and non-minimal phase. In the latter case, the Blaschke phase is retrieved and the position of the Blaschke zeros determined.

  4. A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants.

    PubMed

    Bellur, K; Médici, E F; Kulshreshtha, M; Konduru, V; Tyrewala, D; Tamilarasan, A; McQuillen, J; Leao, J; Hussey, D S; Jacobson, D L; Scherschligt, J; Hermanson, J C; Choi, C K; Allen, J S

    2016-03-01

    Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide.

  5. A New Experiment for Investigating Evaporation and Condensation of Cryogenic Propellants

    PubMed Central

    Bellur, K.; Médici, E. F.; Kulshreshtha, M.; Konduru, V.; Tyrewala, D.; Tamilarasan, A.; McQuillen, J.; Leao, J.; Hussey, D. S.; Jacobson, D. L.; Scherschligt, J.; Hermanson, J. C.; Choi, C. K.; Allen, J. S.

    2016-01-01

    Passive and active technologies have been used to control propellant boil-off, but the current state of understanding of cryogenic evaporation and condensation in microgravity is insufficient for designing large cryogenic depots critical to the long-term space exploration missions. One of the key factors limiting the ability to design such systems is the uncertainty in the accommodation coefficients (evaporation and condensation), which are inputs for kinetic modeling of phase change. A novel, combined experimental and computational approach is being used to determine the accommodation coefficients for liquid hydrogen and liquid methane. The experimental effort utilizes the Neutron Imaging Facility located at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to image evaporation and condensation of hydrogenated propellants inside of metallic containers. The computational effort includes numerical solution of a model for phase change in the contact line and thin film regions as well as an CFD effort for determining the appropriate thermal boundary conditions for the numerical solution of the evaporating and condensing liquid. Using all three methods, there is the possibility of extracting the accommodation coefficients from the experimental observations. The experiments are the first known observation of a liquid hydrogen menisci condensing and evaporating inside aluminum and stainless steel cylinders. The experimental technique, complimentary computational thermal model and meniscus shape determination are reported. The computational thermal model has been shown to accurately track the transient thermal response of the test cells. The meniscus shape determination suggests the presence of a finite contact angle, albeit very small, between liquid hydrogen and aluminum oxide. PMID:28154426

  6. Phase Equilibria in the ZnO-"FeO"-SiO2 System in Reducing Atmosphere and in the ZnO-"FeO"-SiO2-"Cu2O" System in Equilibrium with Liquid Copper Metal at 1250 °C (1523 K)

    NASA Astrophysics Data System (ADS)

    Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni

    2018-05-01

    Recent experimental studies in the ZnO-"FeO"-SiO2 system in reducing atmosphere demonstrated significant discrepancies with the current FactSage thermodynamic model developed using previous experimental data in this system in equilibrium with metallic iron and air. The present experimental study on phase equilibria in the ZnO-"FeO"-SiO2-"Cu2O" system in equilibrium with liquid copper at 1250 °C (1523 K) at low copper oxide concentrations in slag was initiated and undertaken to resolve these discrepancies. A high-temperature equilibration-rapid quenching-electron-probe X-ray microanalysis (EPMA) technique using a primary phase substrate support and closed system approach with Cu metal introduced to determine effective equilibrium oxygen partial pressure from the Cumetal/Cu2Oslag equilibria was applied to provide accurate information on the liquidus and corresponding solid compositions in the spinel, willemite, and tridymite primary phase fields. The present results confirmed the accuracy of the FactSage model, resolved discrepancies, and demonstrated significant uncertainties in the recent studies by other authors on the system in the open reducing atmosphere. The present study shows how this closed system approach can be used to obtain key thermodynamic data on phase equilibria in systems containing volatile metal species, overcoming the limitations and uncertainties encountered in conventional open gas/condensed phase equilibration with these systems. The study highlights the importance of the focus on obtaining accurate experimental data and the risks of misleading information from inadequate experimental control and analysis. The study also demonstrates that continuing in-depth critical review and analysis of the elemental reactions taking place in complex systems is an essential step in phase equilibrium research.

  7. Experimental and Theoretical Investigation of Sodiated Multimers of Steroid Epimers with Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chouinard, Christopher D.; Cruzeiro, Vinícius Wilian D.; Roitberg, Adrian E.; Yost, Richard A.

    2017-02-01

    Ion mobility-mass spectrometry (IM-MS) has recently seen increased use in the analysis of small molecules, especially in the field of metabolomics, for increased breadth of information and improved separation of isomers. In this study, steroid epimers androsterone and trans-androsterone were analyzed with IM-MS to investigate differences in their relative mobilities. Although sodiated monomers exhibited very similar collision cross-sections (CCS), baseline separation was observed for the sodiated dimer species (RS = 1.81), with measured CCS of 242.6 and 256.3 Å2, respectively. Theoretical modeling was performed to determine the most energetically stable structures of solution-phase and gas-phase monomer and dimer structures. It was revealed that these epimers differ in their preferred dimer binding mode in solution phase: androsterone adopts a R=O - Na+ - OH—R' configuration, whereas trans-androsterone adopts a R=O - Na+ - O=R' configuration. This difference contributes to a significant structural variation, and subsequent CCS calculations based on these structures relaxed in the gas phase were in agreement with experimentally measured values (ΔCCS 5%). Additionally, these calculations accurately predicted the relative difference in mobility between the epimers. This study illustrates the power of combining experimental and theoretical results to better elucidate gas-phase structures.

  8. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-15

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zeromore » and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.« less

  9. Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Gas Atmosphere: Experimental Results at 1523 K (1250 °C) and P(SO2) = 0.25 atm

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    To assist in the optimization of copper smelting and converting processes, accurate new measurements of the phase equilibria of the Cu-Fe-O-S-Si system have been undertaken. The experimental investigation was focused on the characterization of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1523 K (1250 °C), P(SO2) = 0.25 atm, and a range of P(O2)s. The experimental methodology, developed in PYROSEARCH, includes high-temperature equilibration of samples on substrate made from the silica primary phase in controlled gas atmospheres (CO/CO2/SO2/Ar) followed by rapid quenching of the equilibrium condensed phases and direct measurement of the phase compositions with electron-probe X-ray microanalysis (EPMA). The data provided in the present study at 1523 K (1250 °C) and the previous study by the authors at 1473 K (1200 °C) has enabled the determination of the effects of temperature on the phase equilibria of the multicomponent multiphase system, including such characteristics as the chemically dissolved copper in slag and Fe/SiO2 ratio at silica saturation as a function of copper concentration in matte. The new data will be used in the optimization of the thermodynamic database for the copper-containing systems.

  10. Phase accuracy evaluation for phase-shifting fringe projection profilometry based on uniform-phase coded image

    NASA Astrophysics Data System (ADS)

    Zhang, Chunwei; Zhao, Hong; Zhu, Qian; Zhou, Changquan; Qiao, Jiacheng; Zhang, Lu

    2018-06-01

    Phase-shifting fringe projection profilometry (PSFPP) is a three-dimensional (3D) measurement technique widely adopted in industry measurement. It recovers the 3D profile of measured objects with the aid of the fringe phase. The phase accuracy is among the dominant factors that determine the 3D measurement accuracy. Evaluation of the phase accuracy helps refine adjustable measurement parameters, contributes to evaluating the 3D measurement accuracy, and facilitates improvement of the measurement accuracy. Although PSFPP has been deeply researched, an effective, easy-to-use phase accuracy evaluation method remains to be explored. In this paper, methods based on the uniform-phase coded image (UCI) are presented to accomplish phase accuracy evaluation for PSFPP. These methods work on the principle that the phase value of a UCI can be manually set to be any value, and once the phase value of a UCI pixel is the same as that of a pixel of a corresponding sinusoidal fringe pattern, their phase accuracy values are approximate. The proposed methods provide feasible approaches to evaluating the phase accuracy for PSFPP. Furthermore, they can be used to experimentally research the property of the random and gamma phase errors in PSFPP without the aid of a mathematical model to express random phase error or a large-step phase-shifting algorithm. In this paper, some novel and interesting phenomena are experimentally uncovered with the aid of the proposed methods.

  11. A semi-empirical model for the complete orientation dependence of the growth rate for vapor phase epitaxy - Chloride VPE of GaAs

    NASA Technical Reports Server (NTRS)

    Seidel-Salinas, L. K.; Jones, S. H.; Duva, J. M.

    1992-01-01

    A semi-empirical model has been developed to determine the complete crystallographic orientation dependence of the growth rate for vapor phase epitaxy (VPE). Previous researchers have been able to determine this dependence for a limited range of orientations; however, our model yields relative growth rate information for any orientation. This model for diamond and zincblende structure materials is based on experimental growth rate data, gas phase diffusion, and surface reactions. Data for GaAs chloride VPE is used to illustrate the model. The resulting growth rate polar diagrams are used in conjunction with Wulff constructions to simulate epitaxial layer shapes as grown on patterned substrates. In general, this model can be applied to a variety of materials and vapor phase epitaxy systems.

  12. Investigation of oscillating cascade aerodynamics by an experimental influence coefficient technique

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1988-01-01

    Fundamental experiments are performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate the torsion mode unsteady aerodynamics of a biconvex airfoil cascade at realistic values of the reduced frequency for all interblade phase angles at a specified mean flow condition. In particular, an unsteady aerodynamic influence coefficient technique is developed and utilized in which only one airfoil in the cascade is oscillated at a time and the resulting airfoil surface unsteady pressure distribution measured on one dynamically instrumented airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils oscillating at a specified interblade phase angle are then determined through a vector summation of these data. These influence coefficient determined oscillation cascade data are correlated with data obtained in this cascade with all airfoils oscillating at several interblade phase angle values. The influence coefficients are then utilized to determine the unsteady aerodynamics of the cascade for all interblade phase angles, with these unique data subsequently correlated with predictions from a linearized unsteady cascade model.

  13. Determining the VLF/ULF source height using phase measurements

    NASA Astrophysics Data System (ADS)

    Ryabov, A.; Kotik, D. S.

    2012-12-01

    Generation of ULF/VLF waves in the ionosphere using powerful RF facilities has been studied for the last 40 years, both theoretically and experimentally. During this time, it was proposed several mechanisms for explaining the experimental results: modulation of ionospheric currents based on thermal nonlinearity, ponderomotive mechanisms for generation both VLF and ULF signals, cubic nonlinearity, etc. According mentioned above mechanisms the VLF/ULF signal source could be located in the lower or upper ionosphere. The group velocity of signal propagation in the ionosphere is significantly smaller than speed of light. As a result the appreciable time delay of the received signals will occur at the earth surface. This time delay could be determine by measuring the phase difference between received and reference signals, which are GPS synchronized. The experiment on determining the time delay of ULF signal propagation from the ionospheric source was carried out at SURA facility in 2012 and the results are presented in this paper. The comparison with numerical simulation of the time delay using the adjusted IRI model and ionosonde data shows well agreement with the experimental observations. The work was supported by RFBR grant 11-02-00419-a and RF Ministry of education and science by state contract 16.518.11.7066.

  14. Fractional-order Fourier analysis for ultrashort pulse characterization.

    PubMed

    Brunel, Marc; Coetmellec, Sébastien; Lelek, Mickael; Louradour, Frédéric

    2007-06-01

    We report what we believe to be the first experimental demonstration of ultrashort pulse characterization using fractional-order Fourier analysis. The analysis is applied to the interpretation of spectral interferometry resolved in time (SPIRIT) traces [which are spectral phase interferometry for direct electric field reconstruction (SPIDER)-like interferograms]. First, the fractional-order Fourier transformation is shown to naturally allow the determination of the cubic spectral phase coefficient of pulses to be analyzed. A simultaneous determination of both cubic and quadratic spectral phase coefficients of the pulses using the fractional-order Fourier series expansion is further demonstrated. This latter technique consists of localizing relative maxima in a 2D cartography representing decomposition coefficients. It is further used to reconstruct or filter SPIRIT traces.

  15. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO2-water systems.

    PubMed

    Warr, Oliver; Rochelle, Christopher A; Masters, Andrew J; Ballentine, Christopher J

    2016-01-01

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO2-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magnetic stirrer and high-pressure liquid chromatography pump, respectively.

  16. Multiphase flow calculation software

    DOEpatents

    Fincke, James R.

    2003-04-15

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  17. [Improvement of the determination method of benzene, toluene, ethylbenzene and xylene(BTEX) in water using activated carbon fiber solid-phase microextraction/gas chromatography-mass spectrometry(GC-MS)].

    PubMed

    Jia, Jin-ping; Feng, Xue; Fang, Neng-hu; Huang, Jia-liang

    2002-01-01

    The methods of direct injection, carbon disulfide extraction and activated carbon fiber solid-phase microextraction/GC-MS, usually used in the determination of BTEX in water matrix, are compared and discussed. Experimental data of linearity, precision and limit of detection illustrate that the last one is better than the two other methods. This method was tested by the practical sample experiments and expected to be a simple and sensitive new method for the analysis of BTEX in water.

  18. Towards phasing using high X-ray intensity

    DOE PAGES

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; ...

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore » is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  19. Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.

    The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.

  20. Computational Simulation of Vibrational Overtone Spectral Regions: Sarin

    DTIC Science & Technology

    2006-12-01

    level have been used to determine the vapour phase local mode parameters, [ and Dx, for each oscillator in the two spectrally significant conformers...approach to spectral simulation reported herein should be undertaken by acquiring the experimental spectral regions of several CWAs in the vapour and liquid...33 viii DRDC Suffield TR 2006-220 List of figures Figure 1: The vapour phase structures of the three lowest energy conformers of sarin, calculated

  1. Evaporation of binary mixtures in microgravity

    NASA Technical Reports Server (NTRS)

    Girgis, Morris; Matta, Nabil; Kolli, Kiran; Brown, Leon; Chubb, Kevin

    1995-01-01

    The motivation of this research is to obtain a better understanding of phase-change heat transfer within single and binary liquid meniscii, both in 1-g and 0-g environments. During phase 1 and part of phase 2, in a glass test cell with an inclined heated plate, 1-6 experiments on pentane with additions of decane up to 3% were conducted to determine the optimum concentration that will exhibit the maximum heat transfer and stability. During phase 2 emphasis was given to explore fundamental research issues and to ultimately develop a reliable capillary pumped loop (CPL) device for low gravity. In related experimental work, it was found that thermocapillary stresses near the contract line could result in a degraded wettability which ultimately could explain the observed failure of CPL devices in zero-gravity environment. Therefore, the current experimental effort investigates the effect of adding binary constituents in improving the thermocapillary characteristics near the contact line within the loop configuration. Achievements during second phase include: (1) Further enhancement of Central State University's Microgravity Laboratory by adding or improving upon capabilities of photography, video imaging, fluid visualization, and general experimental testing capabilities; (2) Experimental results for the inclined plate cell; (3) Modeling effort with a detailed scaling analysis; (4) Additional testing with a tube loop configuration to extend experimental work by Dickens, et al.; (5) Fabrication of a capillary loop to be tested using binary fluid (pentane/decane). The device that has been recently completed will be set up horizontally so that the effect of gravity on the performance is negligible. Testing will cover a wide range of parameters such as decane/pentane concentration, heat input value, heat input location (below or above meniscus), and loop temperature.

  2. Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel

    NASA Astrophysics Data System (ADS)

    Guckenberger, Achim; Kihm, Alexander; John, Thomas; Wagner, Christian; Gekle, Stephan

    Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in-vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm/s) and high velocities (>3 mm/s) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.

  3. Experimental and theoretical investigation of LNAPL movement in stratified media during soil remediation.

    PubMed

    Lashanizadegan, A; Ayatollahi, Sh; Kazemi, H

    2007-07-01

    The saturation distribution and clean up efficiency of light non-aqueous phase liquid (LNAPL) in the strata beneath the earth has been the subject of many studies. Better understanding of LNAPL infiltration into layered soil is important for the effective design of remediation strategies. The objective of this study was to simulate LNAPL movement in homogenous and stratified porous media using gravity assisted inert gas injection (GAIGI) process as a cleaning technique. We used homogeneous and layered sandpacked transparent models that allows for visual observation of LNAPL movement in order to study LNAPL redistribution in a layered porous medium. Pore volume, porosity, absolute permeability, connate water saturation, and oil saturation of the models were determined experimentally. Seasonal water table movement and contaminated zone were established and then, under GAIGI process, clean up efficiency was determined. The downward displacement of LNAPL by gas drive resulted in very high LNAPL clean up efficiency. Using the contaminant production history in the homogeneous model, the LNAPL relative permeability was calculated and the results were extended to layered media. The numerical multi-phase flow model in porous media was validated with regard to the experimental results. This model is able to adequately reproduce the experimental LNAPL saturation profile and clean up efficiency.

  4. Theoretical model for the discrete flexoelectric effect and a description for the sequence of intermediate smectic phases with increasing periodicity.

    PubMed

    Emelyanenko, A V; Osipov, M A

    2003-11-01

    A general phenomenological description and a simple molecular model is proposed for the "discrete" flexoelectric effect in tilted smectic liquid crystal phases. This effect defines a polarization in a smectic layer induced by a difference of director orientations in the two smectic layers adjacent to it. It is shown that the "discrete" flexoelectric effect is determined by electrostatic dipole-quadrupole interaction between positionally correlated molecules located in adjacent smectic layers, while the corresponding dipole-dipole interaction is responsible for a coupling between polarization vectors in neighboring layers. It is shown that a simple phenomenological model of a ferrielectric smectic liquid crystal, which has recently been proposed in the literature, can be used to describe the whole sequence of intermediate chiral smectic C* phases with increasing periods, and to determine the nonplanar structure of each phase without additional assumptions. In this sequence the phases with three- and four-layer periodicities have the same structure, as observed in the experiment. The theory predicts also the structure of intermediate phases with longer periods that have not been studied experimentally so far. The structures of intermediate phases with periodicities of up to nine layers are presented together with the phase diagrams, and a relationship between molecular chirality and the three-dimensional structure of intermediate phases is discussed. It is considered also how the coupling between the spontaneous polarization determined by molecular chirality and the induced polarization determined by the discrete flexoelectric effect stabilizes the nonplanar structure of intermediate phases.

  5. Analysis and design of a second-order digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Blasche, P. R.

    1979-01-01

    A specific second-order digital phase-locked loop (DPLL) was modeled as a first-order Markov chain with alternatives. From the matrix of transition probabilities of the Markov chain, the steady-state phase error of the DPLL was determined. In a similar manner the loop's response was calculated for a fading input. Additionally, a hardware DPLL was constructed and tested to provide a comparison to the results obtained from the Markov chain model. In all cases tested, good agreement was found between the theoretical predictions and the experimental data.

  6. Synthesis of MAX Phases in the Hf-Al-C System.

    PubMed

    Lapauw, Thomas; Tunca, Bensu; Cabioc'h, Thierry; Lu, Jun; Persson, Per O Å; Lambrinou, Konstantina; Vleugels, Jozef

    2016-11-07

    For the first time, MAX phases in the Hf-Al-C system were experimentally synthesized using reactive hot pressing. HfC was observed as the main competing phase. The lattice parameters of Hf 2 AlC and Hf 3 AlC 2 were determined by Rietveld refinement based on the X-ray diffraction data. The atomic stacking sequence was revealed by high-resolution scanning transmission electron microscopy. Mixtures of 211 and 312 stacking were observed within the same grain, including 523 layers. This transition in atomic structure is discussed.

  7. Comparison of Theoretical and Experimental Unsteady Aerodynamics of Linear Oscillating Cascade With Supersonic Leading-Edge Locus

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Erwin, Dan

    2004-01-01

    An experimental influence coefficient technique was used to obtain unsteady aerodynamic influence coefficients and, consequently, unsteady pressures for a cascade of symmetric airfoils oscillating in pitch about mid-chord. Stagger angles of 0 deg and 10 deg were investigated for a cascade with a gap-to-chord ratio of 0.417 operating at an axial Mach number of 1.9, resulting in a supersonic leading-edge locus. Reduced frequencies ranged from 0.056 to 0.2. The influence coefficients obtained determine the unsteady pressures for any interblade phase angle. The unsteady pressures were compared with those predicted by several algorithms for interblade phase angles of 0 deg and 180 deg.

  8. Spectral determinations for discrete sources with EGRET

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Nolan, P. L.

    1990-01-01

    The ability of the EGRET (Energetic Gamma-Ray Experimental Telescope) to determine the spectral parameters of point sources in 14-day exposures, as planned for the initial survey phase of the GRO (Gamma Ray Observatory) mission, is explored by numerical simulation. Results are given for both galactic and extragalactic objects as a function of source strength and for representative levels of diffuse background emission.

  9. Griffiths phase and long-range correlations in a biologically motivated visual cortex model

    NASA Astrophysics Data System (ADS)

    Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-07-01

    Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.

  10. Selectivity assessment of DB-200 and DB-VRX open-tubular capillary columns.

    PubMed

    Kiridena, W; Koziola, W W; Poole, C F

    2001-10-12

    The solvation parameter model is used to study the influence of composition and temperature on the selectivity of two poly(siloxane) stationary phases used for open-tubular capillary column gas chromatography. The poly(methyltrifluoropropyldimethylsiloxane) stationary phase, DB-200, has low cohesion, intermediate dipolarity/polarizability, low hydrogen-bond basicity, no hydrogen-bond acidity, and repulsive electron lone pair interactions. The DB-VRX stationary phase has low cohesion, low dipolarity/polarizability, low hydrogen-bond basicity and no hydrogen-bond acidity and no capacity for electron lone pair interactions. The selectivity of the two stationary phases is complementary to those in a database of 11 stationary phase chemistries determined under the same experimental conditions.

  11. Experimental evidence of phase coherence of magnetohydrodynamic turbulence in the solar wind: GEOTAIL satellite data.

    PubMed

    Koga, D; Chian, A C-L; Hada, T; Rempel, E L

    2008-02-13

    Magnetohydrodynamic (MHD) turbulence is commonly observed in the solar wind. Nonlinear interactions among MHD waves are likely to produce finite correlation of the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in the quasi-linear theory) or have a finite coherence. Using a method based on the surrogate data technique, we analysed the GEOTAIL magnetic field data to evaluate the phase coherence in MHD turbulence in the Earth's foreshock region. The results demonstrate the existence of finite phase correlation, indicating that nonlinear wave-wave interactions are in progress.

  12. Phase transitions in core-collapse supernova matter at sub-saturation densities

    NASA Astrophysics Data System (ADS)

    Pais, Helena; Newton, William G.; Stone, Jirina R.

    2014-12-01

    Phase transitions in hot, dense matter in the collapsing cores of massive stars have an important impact on the core-collapse supernova mechanism as they absorb heat, disrupt homology, and so weaken the developing shock. We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock (SHF) study of inhomogeneous nuclear matter to determine the critical density and temperature for the phase transition between the pasta phase and homogeneous matter and its properties. We employ four different parametrizations of the Skyrme nuclear energy-density functional, SkM*, SLy4, NRAPR, and SQMC700, which span a range of saturation-density symmetry energy behaviors constrained by a variety of nuclear experimental probes. For each of these interactions we calculate free energy, pressure, entropy, and chemical potentials in the range of particle number densities where the nuclear pasta phases are expected to exist, 0.02-0.12 fm-3, temperatures 2-8 MeV, and a proton fraction of 0.3. We find unambiguous evidence for a first-order phase transition to uniform matter, unsoftened by the presence of the pasta phases. No conclusive signs of a first-order phase transition between the pasta phases is observed, and it is argued that the thermodynamic quantities vary continuously right up to the first-order phase transition to uniform matter. We compare our results with thermodynamic spinodals calculated using the same Skyrme parametrizations, finding that the effect of short-range Coulomb correlations and quantum shell effects included in our model leads to the pasta phases existing at densities up to 0.01 fm-3 above the spinodal boundaries, thus increasing the transition density to uniform matter by the same amount. The transition density is otherwise shown to be insensitive to the symmetry energy at saturation density within the range constrained by the concordance of a variety of experimental constraints, and can be taken to be a well determined quantity.

  13. Determination of ideal-gas enthalpies of formation for key compounds:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, W.V.; Chirico, R.D.; Nguyen, A.

    1991-10-01

    The results of a study aimed at improvement of group-contribution methodology for estimation of thermodynamic properties of organic and organosilicon substances are reported. Specific weaknesses where particular group-contribution terms were unknown, or estimated because of lack of experimental data, are addressed by experimental studies of enthalpies of combustion in the condensed phase, vapor-pressure measurements, and differential scanning calorimetric (d.s.c.) heat-capacity measurements. Ideal-gas enthalpies of formation of ({plus minus})-butan-2-ol, tetradecan-1-ol, hexan-1,6-diol, methacrylamide, benzoyl formic acid, naphthalene-2,6-dicarboxylic acid dimethyl ester, and tetraethylsilane are reported. A crystalline-phase enthalpy of formation at 298.15 K was determined for naphthalene-2,6-dicarboxylic acid, which decomposed at 695 Kmore » before melting. The combustion calorimetry of tetraethylsilane used the proven fluorine-additivity methodology. Critical temperature and critical density were determined for tetraethylsilane with differential scanning calorimeter and the critical pressure was derived. Group-additivity parameters useful in the application of group- contribution correlations are derived. 112 refs., 13 figs., 19 tabs.« less

  14. Electron microscope phase enhancement

    DOEpatents

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  15. An Examination of the Phase Transition Thermodynamics of (S)- and (RS)-Naproxen as a Basis for the Design of Enantioselective Crystallization Processes.

    PubMed

    Buchholz, Hannes; Emel'yanenko, Vladimir N; Lorenz, Heike; Verevkin, Sergey P

    2016-05-01

    A detailed experimental analysis of the phase transition thermodynamics of (S)-naproxen and (RS)-naproxen is reported. Vapor pressures were determined experimentally via the transpiration method. Sublimation enthalpies were obtained from the vapor pressures and from independent TGA measurements. Thermodynamics of fusion which have been well-studied in the literature were systematically remeasured by DSC. Both sublimation and fusion enthalpies were adjusted to one reference temperature, T = 298 K, using measured heat capacities of the solid and the melt phase by DSC. Average values from the measurements and from literature data were suggested for the sublimation and fusion enthalpies. In order to prove consistency of the proposed values the vaporization enthalpies obtained by combination of both were compared to vaporization enthalpies obtained by the group-additivity method and the correlation-gas chromatography method. The importance of reliable and precise phase transition data for thermochemical calculations such as the prediction of solid/liquid phase behaviour of chiral compounds is highlighted. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Influence of Al content on non-equilibrium solidification behavior of Ni-Al-Ta model single crystal alloys

    NASA Astrophysics Data System (ADS)

    Ai, Cheng; Zhou, Jian; Zhang, Heng; Zhao, Xinbao; Pei, Yanling; Li, Shusuo; Gong, Shengkai

    2016-01-01

    The non-equilibrium solidification behaviors of five Ni-Al-Ta ternary model single crystal alloys with different Al contents were investigated by experimental analysis and theoretical calculation (by JMatPro) in this study. These model alloys respectively represented the γ' phase with various volume fractions (100%, 75%, 50%, 25% and 0%) at 900 °C. It was found that with decreasing Al content, liquidus temperature of experimental alloys first decreased and then increased. Meanwhile, the solidification range showed a continued downward trend. In addition, with decreasing Al content, the primary phases of non-equilibrium solidified model alloys gradually transformed from γ' phase to γ phase, and the area fraction of which first decreased and then increased. Moreover, the interdendritic/intercellular precipitation of model alloys changed from β phase (for 100% γ') to (γ+γ')Eutectic (for 75% γ'), (γ+γ')Eutectic+γ' (for 50% γ' and 25% γ') and none interdendritic precipitation (for 0% γ'), and the last stage non-equilibrium solidification sequence of model alloys was determined by the nominal Al content and different microsegregation behaviors of Al element.

  17. Role of Molecular Structure on X-ray Diffraction in Thermotropic Uniaxial and Biaxial Nematic Liquid Crystal Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena

    2009-08-27

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution functionmore » is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.« less

  18. Role of Molecular Structure on X-ray Diffraction in Uniaxial and Biaxial Phases of Thermotropic Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena

    2009-04-29

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution functionmore » is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.« less

  19. The magic triangle goes MAD: experimental phasing with a bromine derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Tobias, E-mail: tbeck@shelx.uni-ac.gwdg.de; Gruene, Tim; Sheldrick, George M.

    2010-04-01

    5-Amino-2, 4, 6-tribromoisophthalic acid is used as a phasing tool for protein structure determination by MAD phasing. It is the second representative of a novel class of compounds for heavy-atom derivatization that combine heavy atoms with amino and carboxyl groups for binding to proteins. Experimental phasing is an essential technique for the solution of macromolecular structures. Since many heavy-atom ion soaks suffer from nonspecific binding, a novel class of compounds has been developed that combines heavy atoms with functional groups for binding to proteins. The phasing tool 5-amino-2, 4, 6-tribromoisophthalic acid (B3C) contains three functional groups (two carboxylate groups andmore » one amino group) that interact with proteins via hydrogen bonds. Three Br atoms suitable for anomalous dispersion phasing are arranged in an equilateral triangle and are thus readily identified in the heavy-atom substructure. B3C was incorporated into proteinase K and a multiwavelength anomalous dispersion (MAD) experiment at the Br K edge was successfully carried out. Radiation damage to the bromine–carbon bond was investigated. A comparison with the phasing tool I3C that contains three I atoms for single-wavelength anomalous dispersion (SAD) phasing was also carried out.« less

  20. Comparison of different coatings in solid-phase microextraction for the determination of organochlorine pesticides in ground water.

    PubMed

    Pérez-Trujillo, J P; Frías, S; Conde, J E; Rodríguez-Delgado, M A

    2002-07-19

    A solid-phase microextraction (SPME) procedure using three commercialised fibers (Carbowax-divinylbenzene, Carboxen-polydimethylsiloxane and divinylbenzene-Carboxen-polydimethylsiloxane) is presented for the determination of a selected group of organochlorine compounds in water samples. The extraction performances of these compounds were compared using fibers with two and three coatings. The optimal experimental procedures for the adsorption and desorption of pesticides were determined. The limits of detection with the divinylbenzene-Carboxen-polydimethylsiloxane fiber at levels below ng l(-1) were similar or lower than values presented in the literature for several of these compounds using polydimethylsiloxane fiber. The advantages of using this fiber, such as no salt addition, are discussed. Finally, the optimised procedures were applied successfully for the determination of these compounds in polluted ground water samples.

  1. The interplay of hydrogen bonding and dispersion in phenol dimer and trimer: structures from broadband rotational spectroscopy.

    PubMed

    Seifert, Nathan A; Steber, Amanda L; Neill, Justin L; Pérez, Cristóbal; Zaleski, Daniel P; Pate, Brooks H; Lesarri, Alberto

    2013-07-21

    The structures of the phenol dimer and phenol trimer complexes in the gas phase have been determined using chirped-pulse Fourier transform microwave spectroscopy in the 2-8 GHz band. All fourteen (13)C and (18)O phenol dimer isotopologues were assigned in natural abundance. A full heavy atom experimental substitution structure was determined, and a least-squares fit ground state r0 structure was determined by proper constraint of the M06-2X/6-311++g(d,p) ab initio structure. The structure of phenol dimer features a water dimer-like hydrogen bond, as well as a cooperative contribution from inter-ring dispersion. Comparisons between the experimental structure and previously determined experimental structures, as well as ab initio structures from various levels of theory, are discussed. For phenol trimer, a C3 symmetric barrel-like structure is found, and an experimental substitution structure was determined via measurement of the six unique (13)C isotopologues. The least-squares fit rm((1)) structure reveals a similar interplay between hydrogen bonding and dispersion in the trimer, with water trimer-like hydrogen bonding and C-H···π interactions.

  2. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    PubMed

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  3. Experimental Study of Heating of a Liquid Cathode and Transfer of Its Components into the Gas Phase under the Action of a DC Discharge

    NASA Astrophysics Data System (ADS)

    Sirotkin, N. A.; Titov, V. A.

    2018-04-01

    An atmospheric-pressure dc discharge in air ( i = 10-50 mA) with metal and liquid electrolyte electrodes was studied experimentally. An aqueous solution of sodium chloride (0.5 mol/L) was used as the cathode or anode. The electric field strength in the plasma and the cathode (anode) voltage drops were obtained from the measured dependences of the discharge voltage on the electrode gap length. The gas temperature was deduced from the spectral distribution of nitrogen emission in the band N2( C 3Π u → B 3Π g , 0-2). The time dependences of the temperatures of the liquid electrolyte electrodes during the discharge and in its afterglow, as well as the evaporation rate of the solution, were determined experimentally. The contributions of ion bombardment and heat flux from the plasma to the heating of the liquid electrode and transfer of solvent (water) into the gas phase are discussed using the experimental data obtained.

  4. Hidden disorder in the α '→δ transformation of Pu-1.9 at.% Ga

    DOE PAGES

    Jeffries, J. R.; Manley, M. E.; Wall, M. A.; ...

    2012-06-06

    Enthalpy and entropy are thermodynamic quantities critical to determining how and at what temperature a phase transition occurs. At a phase transition, the enthalpy and temperature-weighted entropy differences between two phases are equal (ΔH=TΔS), but there are materials where this balance has not been experimentally or theoretically realized, leading to the idea of hidden order and disorder. In a Pu-1.9 at. % Ga alloy, the δ phase is retained as a metastable state at room temperature, but at low temperatures, the δ phase yields to a mixed-phase microstructure of δ- and α'-Pu. The previously measured sources of entropy associated withmore » the α'→δ transformation fail to sum to the entropy predicted theoretically. We report an experimental measurement of the entropy of the α'→δ transformation that corroborates the theoretical prediction, and implies that only about 65% of the entropy stabilizing the δ phase is accounted for, leaving a missing entropy of about 0.5 k B/atom. Some previously proposed mechanisms for generating entropy are discussed, but none seem capable of providing the necessary disorder to stabilize the δ phase. This hidden disorder represents multiple accessible states per atom within the δ phase of Pu that may not be included in our current understanding of the properties and phase stability of δ-Pu.« less

  5. An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization

    NASA Astrophysics Data System (ADS)

    Chen, Li; Weng, Zhiqiang; Goh, LaiYoong; Garland, Marc

    2002-09-01

    A new algorithm for automatic phase correction of NMR spectra based on entropy minimization is proposed. The optimal zero-order and first-order phase corrections for a NMR spectrum are determined by minimizing entropy. The objective function is constructed using a Shannon-type information entropy measure. Entropy is defined as the normalized derivative of the NMR spectral data. The algorithm has been successfully applied to experimental 1H NMR spectra. The results of automatic phase correction are found to be comparable to, or perhaps better than, manual phase correction. The advantages of this automatic phase correction algorithm include its simple mathematical basis and the straightforward, reproducible, and efficient optimization procedure. The algorithm is implemented in the Matlab program ACME—Automated phase Correction based on Minimization of Entropy.

  6. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer.

    PubMed

    Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang

    2018-04-20

    Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.

  7. Ionic liquid-salt aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of sulfonamides in water and food.

    PubMed

    Han, Juan; Wang, Yun; Liu, Yan; Li, Yanfang; Lu, Yang; Yan, Yongsheng; Ni, Liang

    2013-02-01

    Ionic liquid-salt aqueous two-phase extraction coupled with high-performance liquid chromatography with ultraviolet detection was developed for the determination of sulfonamides in water and food samples. In the procedure, the analytes were extracted from the aqueous samples into the ionic liquid top phase in one step. Three sulfonamides, sulfamerazine, sulfamethoxazole, and sulfamethizole were selected here as model compounds for developing and evaluating the method. The effects of various experimental parameters in extraction step were studied using two optimization methods, one variable at a time and Box-Behnken design. The results showed that the amount of sulfonamides did not have effect on the extraction efficiency. Therefore, a three-level Box-Behnken experimental design with three factors, which combined the response surface modeling, was used to optimize sulfonamides extraction. Under the most favorable extraction parameters, the detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 0.15-0.3 ng/mL and 0.5-1.0 ng/mL from spiked samples, respectively, which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Finally, the proposed method was successfully applied to the determination of sulfonamide compounds in different water and food samples and satisfactory recoveries of spiked target compounds in real samples were obtained.

  8. Simultaneous concentration and purification through gradient deformation chromatography

    NASA Technical Reports Server (NTRS)

    Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.

  9. Experimental Investigation of Gas/Slag/Matte/Tridymite Equilibria in the Cu-Fe-O-S-Si System in Controlled Gas Atmospheres: Experimental Results at 1473 K (1200 °C) and P(SO2) = 0.25 atm

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni

    2017-12-01

    Experimental studies were undertaken to determine the gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C), P(SO2) = 0.25 atm, and a range of P(O2)'s. The experimental methodology involved high-temperature equilibration using a substrate support technique in controlled gas atmospheres (CO/CO2/SO2/Ar), rapid quenching of equilibrium phases, followed by direct measurement of the chemical compositions of the phases with Electron Probe X-ray Microanalysis (EPMA). The experimental data for slag and matte were presented as a function of copper concentration in matte (matte grade). The data provided are essential for the evaluation of the effect of oxygen potential under controlled atmosphere on the matte grade, liquidus composition of slag and chemically dissolved copper in slag. The new data provide important accurate and reliable quantitative foundation for improvement of the thermodynamic databases for copper-containing systems.

  10. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.

    PubMed

    Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen

    2015-09-01

    The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A Semiempirical Model for Sigma-Phase Precipitation in Duplex and Superduplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ferro, P.; Bonollo, F.

    2012-04-01

    Sigma phase is known to reduce the mechanical properties and corrosion resistance of duplex and superduplex stainless steels. Therefore, heat treatments and welding must be carefully performed so as to avoid the appearance of such a detrimental phase, and clearly, models suitable to faithfully predict σ-phase precipitation are very useful tools. Most fully analytical models are based on thermodynamic calculations whose agreement with experimental results is not always good, so that such models should be used for qualitative purposes only. Alternatively, it is possible to exploit semiempirical models, where time-temperature-transformation (TTT) diagrams are empirically determined for a given alloy and the continuous-cooling-transformation (CCT) diagram is calculated from the TTT diagram. In this work, a semiempirical model for σ-phase precipitation in duplex and superduplex stainless steels, under both isothermal and unisothermal conditions, is proposed. Model parameters are calculated from empirical data and CCT diagrams are obtained by means of the additivity rule, whereas experimental measurements for model validation are taken from the literature. This model gives a satisfactory estimation of σ-phase precipitates during both isothermal aging and the continuous cooling process.

  12. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC-12 INCINERATION

    EPA Science Inventory

    The report gives results of experiments to determine the effect of flame zone temperature on gas-phase flame formation and destruction of products of incomplete combustion (PICS) during dichlorodi-fluoromethane (CFC-12) incineration. The effect of water injection into the flame ...

  13. Solubility limits in quaternary SnTe-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.

    2017-01-01

    A combined theoretical and experimental approach was used to determine the equilibrium as well as non-equilibrium solubility lines in the quaternary Sn 1-yMn yTe 1-xSe xalloy space, revealing a large area of accessible metastable phase space.

  14. Simple Spreadsheet Models For Interpretation Of Fractured Media Tracer Tests

    EPA Science Inventory

    An analysis of a gas-phase partitioning tracer test conducted through fractured media is discussed within this paper. The analysis employed matching eight simple mathematical models to the experimental data to determine transport parameters. All of the models tested; two porous...

  15. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects.

    PubMed

    Titus, Michael S; Rhein, Robert K; Wells, Peter B; Dodge, Philip C; Viswanathan, Gopal Babu; Mills, Michael J; Van der Ven, Anton; Pollock, Tresa M

    2016-12-01

    It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4-atomic-layer-thick phase, where segregation has occurred, compared to the approximately 35-atomic-layer-thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties.

  16. Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects

    PubMed Central

    Titus, Michael S.; Rhein, Robert K.; Wells, Peter B.; Dodge, Philip C.; Viswanathan, Gopal Babu; Mills, Michael J.; Van der Ven, Anton; Pollock, Tresa M.

    2016-01-01

    It has long been known that solute segregation at crystalline defects can have profound effects on material properties. Nevertheless, quantifying the extent of solute segregation at nanoscale defects has proven challenging due to experimental limitations. A combined experimental and first-principles approach has been used to study solute segregation at extended intermetallic phases ranging from 4 to 35 atomic layers in thickness. Chemical mapping by both atom probe tomography and high-resolution scanning transmission electron microscopy demonstrates a markedly different composition for the 4–atomic-layer–thick phase, where segregation has occurred, compared to the approximately 35–atomic-layer–thick bulk phase of the same crystal structure. First-principles predictions of bulk free energies in conjunction with direct atomistic simulations of the intermetallic structure and chemistry demonstrate the breakdown of bulk thermodynamics at nanometer dimensions and highlight the importance of symmetry breaking due to the proximity of interfaces in determining equilibrium properties. PMID:28028543

  17. Optimization of a fiber optic flexible disk microphone

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Yu, Benli; Wang, Hui; Liu, Fei; Peng, Jun; Wu, Xuqiang

    2011-11-01

    An optimized design of a fiber optic flexible disk microphone is presented and verified experimentally. The phase sensitivity of optical fiber microphone (both the ideal model with a simply supported disk (SSD) and the model with a clamped disk (CLD)) is analyzed by utilizing theory of plates and shells. The results show that the microphones have an optimum length of the sensing arm when inner radius of the fiber coils, radius and Poisson's radio of the flexible disk have been determined. Under a typical condition depicted in this paper, an optimum phase sensitivity for SSD model of 27.72 rad/Pa (-91.14 dB re 1 rad/μPa) and an optimum phase sensitivity for CLD model of 3.18 rad/Pa (-109.95 dB re 1 rad/μPa), can be achieved in theory. Several sample microphones are fabricated and tested. The experimental results are basically consistent with the theoretical analysis.

  18. Free-space laser communication technologies IV; Proceedings of the 4th Conference, Los Angeles, CA, Jan. 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1992-01-01

    Papers included in this volume are grouped under topics of receivers; laser transmitters; components; system analysis, performance, and applications; and beam control (pointing, acquisition, and tracking). Papers are presented on an experimental determination of power penalty contributions in an optical Costas-type phase-locked loop receiver, a resonant laser receiver for free-space laser communications, a simple low-loss technique for frequency-locking lasers, direct phase modulation of laser diodes, and a silex beacon. Particular attention is given to experimental results on an optical array antenna for nonmechanical beam steering, a potassium Faraday anomalous dispersion optical filter, a 100-Mbps resonant cavity phase modulator for coherent optical communications, a numerical simulation of a 325-Mbit/s QPPM optical communication system, design options for an optical multiple-access data relay terminal, CCD-based optical tracking loop design trades, and an analysis of a spatial-tracking subsystem for optical communications.

  19. Ab initio study on structural stability of uranium carbide

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.

    2013-06-01

    First principles calculations have been performed using plane wave pseudopotential and full potential linearized augmented plane wave (FP-LAPW) methods to analyze structural, elastic and dynamic stability of UC under hydrostatic compression. Our calculations within pseudopotential method suggest that the rocksalt (B1) structure will transform to body centered orthorhombic (bco) structure at ˜21.5 GPa. The FP-LAPW calculations put this transition at 23 GPa. The transition pressures determined from our calculations though agree reasonably with the experimental value of 27 GPa, the high pressure bco structure suggested by theory differs slightly from the experimentally reported pseudo bco phase. The elastic stability analysis of B1 phase suggests that the B1 to bco transition is driven by the failure of C44 modulus. This finding is further substantiated by the lattice dynamic calculations which demonstrate that the B1 phase becomes dynamically unstable around the transition pressure and the instability is of long wavelength nature.

  20. Protein Denaturation on p-T Axes--Thermodynamics and Analysis.

    PubMed

    Smeller, László

    2015-01-01

    Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.

  1. A novel sorbent based on carbon nanotube/amino-functionalized sol-gel for the headspace solid-phase microextraction of α-bisabolol from medicinal plant samples using experimental design.

    PubMed

    Yarazavi, Mina; Noroozian, Ebrahim

    2018-02-13

    A novel sol-gel coating on a stainless-steel fiber was developed for the first time for the headspace solid-phase microextraction and determination of α-bisabolol with gas chromatography and flame ionization detection. The parameters influencing the efficiency of solid-phase microextraction process, such as extraction time and temperature, pH, and ionic strength, were optimized by the experimental design method. Under optimized conditions, the linear range was between 0.0027 and 100 μg/mL. The relative standard deviations determined at 0.01 and 1.0 μg/mL concentration levels (n = 3), respectively, were as follows: intraday relative standard deviations 3.4 and 3.3%; interday relative standard deviations 5.0 and 4.3%; and fiber-to-fiber relative standard deviations 6.0 and 3.5%. The relative recovery values were 90.3 and 101.4% at 0.01 and 1.0 μg/mL spiking levels, respectively. The proposed method was successfully applied to various real samples containing α-bisabolol. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Note: A dual temperature closed loop batch reactor for determining the partitioning of trace gases within CO{sub 2}-water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warr, Oliver, E-mail: oliver.warr@earth.ox.ac.uk; Ballentine, Christopher J.; Rochelle, Christopher A.

    An experimental approach is presented which can be used to determine partitioning of trace gases within CO{sub 2}-water systems. The key advantages of this system are (1) The system can be isolated with no external exchange, making it ideal for experiments with conservative tracers. (2) Both phases can be sampled concurrently to give an accurate composition at each phase at any given time. (3) Use of a lower temperature flow loop outside of the reactor removes contamination and facilitates sampling. (4) Rapid equilibration at given pressure/temperature conditions is significantly aided by stirring and circulating the water phase using a magneticmore » stirrer and high-pressure liquid chromatography pump, respectively.« less

  3. Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images.

    PubMed

    Vadnjal, Ana Laura; Etchepareborda, Pablo; Federico, Alejandro; Kaufmann, Guillermo H

    2013-03-20

    We present a method to determine micro and nano in-plane displacements based on the phase singularities generated by application of directional wavelet transforms to speckle pattern images. The spatial distribution of the obtained phase singularities by the wavelet transform configures a network, which is characterized by two quasi-orthogonal directions. The displacement value is determined by identifying the intersection points of the network before and after the displacement produced by the tested object. The performance of this method is evaluated using simulated speckle patterns and experimental data. The proposed approach is compared with the optical vortex metrology and digital image correlation methods in terms of performance and noise robustness, and the advantages and limitations associated to each method are also discussed.

  4. Phase Equilibria and Thermodynamic Descriptions of Ag-Ge and Ag-Ge-Ni Systems

    NASA Astrophysics Data System (ADS)

    Rajkumar, V. B.; Chen, Sinn-Wen

    2018-07-01

    Gibbs energy modeling of Ag-Ge and Ag-Ge-Ni systems was done using the calculation of the phase diagram method with associated data from this work and relevant literature information. In the Ag-Ge system, the solidus temperatures of Ag-rich alloys are measured using differential thermal analysis, and the energy of mixing for the FCC_A1 phase is calculated using the special quasi-random structures technique. The isothermal sections of the Ag-Ge-Ni system at 1023 K and 673 K are also experimentally determined. These data and findings in the relevant literature are used to model the Gibbs energy of the Ag-Ge and Ag-Ge- Ni systems. A reaction scheme and a liquidus projection of the Ag-Ge-Ni system are determined.

  5. Controlling the growth of multiple ordered heteromolecular phases by utilizing intermolecular repulsion

    NASA Astrophysics Data System (ADS)

    Henneke, Caroline; Felter, Janina; Schwarz, Daniel; Stefan Tautz, F.; Kumpf, Christian

    2017-06-01

    Metal/organic interfaces and their structural, electronic, spintronic and thermodynamic properties have been investigated intensively, aiming to improve and develop future electronic devices. In this context, heteromolecular phases add new design opportunities simply by combining different molecules. However, controlling the desired phases in such complex systems is a challenging task. Here, we report an effective way of steering the growth of a bimolecular system composed of adsorbate species with opposite intermolecular interactions--repulsive and attractive, respectively. The repulsive species forms a two-dimensional lattice gas, the density of which controls which crystalline phases are stable. Critical gas phase densities determine the constant-area phase diagram that describes our experimental observations, including eutectic regions with three coexisting phases. We anticipate the general validity of this type of phase diagram for binary systems containing two-dimensional gas phases, and also show that the density of the gas phase allows engineering of the interface structure.

  6. Pressure-Induced Phase Transitions of n-Tridecane

    NASA Astrophysics Data System (ADS)

    Yamashita, Motoi

    Pressure-induced phase transition behavior of n-tridecane from the ordered phase through the rotator phase into the liquid phase has been investigated by using Fourier transform infrared spectroscopy at 25 °C. The transition between the ordered and rotator phases has been observed in the pressure range of 270-220 MPa and the transition between the rotator and liquid phases has been observed in the pressure range of 171-112 MPa, within the experimental error of ±50 MPa. The populations of the -gtg- + -gtg'-, -gg- and gt- defects determined from the methylene wagging mode are smaller in the rotator phase than in the liquid phase and are smaller under higher pressure in both of the rotator and liquid phases. A relationship has been found between the conformation and the intensity of the 890 cm-1 band, which has been assigned as the methyl rocking mode and has been considered as insensitive to conformation.

  7. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices.

    PubMed

    Rajabi, Maryam; Sabzalian, Sedigheh; Barfi, Behruz; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2015-12-18

    A novel, simple, fast, and miniaturized method, termed in-line micro-matrix solid-phase dispersion (in-line MMSPD), coupled with high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of Sudan dyes (i.e. Sudan I-IV, Sudan orange G, Sudan black B, and Sudan red G) with the aid of an experimental design strategy. In this method, a matrix solid-phase dispersion (MSPD) column including a suitable mixture of polar sorbents was inserted in the mobile phase pathway, and while the interfering compounds were retained, the analytes were eluted and entered into the analytical column. In this way, the extraction, elution, and separation of the analytes were performed sequentially. Under the optimal experimental conditions (including the amount of sample, 0.0426g; amount of dispersant phase, 0.0216g of florisil, 0.0227g of silica, 0.0141g of alumina; and blending time, 112s), the limits of detection (LODs), limits of quantification, linear dynamic ranges, and recoveries were obtained to be 0.3-15.3μgkg(-1), 1-50μgkg(-1), 50-28,000μgkg(-1), and 94.5-99.1%, respectively. The results obtained showed that determination of the selected Sudan dyes in food samples using an enough sensitive and a simple analytically validated method like in-line MMSPD may offer a suitable screening method, which could be useful for food analysis and adulteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Gas/solid particulate phthalic esters (PAEs) in Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils.

    PubMed

    Wang, Wen-xin; Fan, Chinbay Q

    2014-07-15

    Phthalic acid esters (PAEs) are used in many branches of industry and are produced in huge amounts throughout the world. An investigation on particulate- and gas-phase distribution of PAEs has been conducted between January 2011 and December 2012 in Nanjing (China). Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils were sampled from urban to suburban/remote sites, to investigate the pine needle/soil distribution of PAEs. The results showed that the average total PAE concentration (gas+particle) was 97.0ngm(-3). The six PAE congeners considered predominantly existed in the gas phase and the average contribution of gas phase to total PAEs ranged from 75.0% to 89.1%. The PAE concentrations in rhizosphere soils and pine needles were positively correlated with their particulate- and gas-phase concentrations, respectively, which suggested that surface soils accumulated PAEs mainly through gravity deposition of particles and pine needle stomata absorbed PAEs mainly from the gas phase. The gas/particle partitioning (KP) and soil-pine needle ratio (Rs/n) were determined. Experimentally determined KP values correlated well with the subcooled liquid vapor pressures (PL). A set of interesting relationships of logRs/n-logKP-logPL was employed to explain the experimental findings of PAEs deposition to surface soils and to needles. This data set offered a unique perspective into the influence that Rs/n played in KP and correlated with PL. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function.

    PubMed

    Punyatanasakchai, Piyaphan; Sophonsritsuk, Areephan; Weerakiet, Sawaek; Wansumrit, Surapee; Chompurat, Deonthip

    2008-11-01

    To compare the effects of cryopreserved sperm in vapor and liquid phases of liquid nitrogen on sperm motility, morphology, and sperm function. Experimental study. Andrology laboratory at Ramathibodi Hospital, Thailand. Thirty-eight semen samples with normal motility and sperm count were collected from 38 men who were either patients of an infertility clinic or had donated sperm for research. Each semen sample was divided into two aliquots. Samples were frozen with static-phase vapor cooling. One aliquot was plunged into liquid nitrogen (-196 degrees C), and the other was stored in vapor-phase nitrogen (-179 degrees C) for 3 days. Thawing was performed at room temperature. Motility was determined by using computer-assisted semen analysis, sperm morphology was determined by using eosin-methylene blue staining, and sperm function was determined by using a hemizona binding test. Most of the motility parameters of sperm stored in the vapor phase were not significantly different from those stored in the liquid phase of liquid nitrogen, except in amplitude of lateral head displacement. The percentages of normal sperm morphology in both vapor and liquid phases also were not significantly different. There was no significant difference in the number of bound sperm in hemizona between sperm cryopreserved in both vapor and liquid phases of liquid nitrogen. Cryopreservation of human sperm in a vapor phase of liquid nitrogen was comparable to cryopreservation in a liquid phase of liquid nitrogen.

  10. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.

    PubMed

    Mante, Pierre-Adrien; Lehmann, Sebastian; Anttu, Nicklas; Dick, Kimberly A; Yartsev, Arkady

    2016-08-10

    We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials.

  11. A Correlation for Forced Convective Boiling Heat Transfer of Refrigerants in a Microfin Tube

    NASA Astrophysics Data System (ADS)

    Momoki, Satoru; Yu, Jian; Koyama, Shigeru; Fujii, Tetsu; Honda, Hiroshi

    The experimental study is reported on the forced convective boiling of pure refrigerants HCFC22, HFC134a and HCFC123 flowing in a horizontal microfin tube. The local heat transfer coefficient defined based on the actual inside surface area is measured in the ranges of mass velocity of 200 to 400 kg/m2s, heat flux of 5 to 64 kW/m2 and reduced pressure of 0.07 to 0.24. Using the Chen-type model, a new correlation for microfin tubes is proposed considering the enhancement effect of microfins on both the convective heat transfer and the nucleate boiling components. In the convective heat transfer component, the correlation to predict the heat transfer coefficient of liquid-only flow is determined from preliminary experiments on single-phase flow in microfin tubes, and the two-phase flow enhancement factor is determined from the present experimental data. For the nucleate boiling component, the correlation of Takamatsu et al. for smooth tube is modified. The prediction of the present correlation agrees well with present experimental data, and is available for several microfin tubes which were tested by other researchers.

  12. Carbon Solubility in Metallic Iron and Melting Relations in the Fe-C System at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fei, Y.

    2006-05-01

    Carbon has been proposed to be one of the light elements in the Earth's core. Knowledge of phase relations in the Fe-C system at high pressure and temperature is needed to understand the carbon content in the core and its effect on the physical properties and the temperature of the core. Experimental data in this system at high pressure and temperature are limited. In this study we report new experimental data on melting relations up to 25 GPa. The experiments were performed using piston-cylinder and multi-anvil devices at the Geophysical Laboratory. Mixtures of fine power of pure iron and graphite with different carbon content were prepared as starting materials. The starting materials were loaded into MgO capsules and then compressed to the desired pressures, using various high-pressure cell assemblies that have been calibrated at high pressure. High temperatures were achieved using either graphite heater (<6 GPa) or rhenium heater at higher pressures and measured with a tungsten-rhenium thermocouple. Melting relations were determined with a JEOL JXA-8900 electron microprobe, based on quench textures and chemical composition of the quenched phases. Powder X- ray diffraction technique was also used to identify phases and determine unit cell parameters. A positive slope between the solubility of carbon in metallic iron and pressure was found at elevated temperatures. The eutectic temperature increases with increasing pressure. The liquidus temperature determined in this study is significantly lower than the calculated value in previous study. Our study presents directly experimental measurements of the melting relations in the Fe-C system at high pressure and temperature, which provides better constraints on composition and temperature of the Earth's core.

  13. Evaluation of Contact Heat Transfer Coefficient and Phase Transformation during Hot Stamping of a Hat-Type Part

    PubMed Central

    Kim, Heung-Kyu; Lee, Seong Hyeon; Choi, Hyunjoo

    2015-01-01

    Using an inverse analysis technique, the heat transfer coefficient on the die-workpiece contact surface of a hot stamping process was evaluated as a power law function of contact pressure. This evaluation was to determine whether the heat transfer coefficient on the contact surface could be used for finite element analysis of the entire hot stamping process. By comparing results of the finite element analysis and experimental measurements of the phase transformation, an evaluation was performed to determine whether the obtained heat transfer coefficient function could provide reasonable finite element prediction for workpiece properties affected by the hot stamping process. PMID:28788046

  14. Gas-assisted dispersive liquid-phase microextraction using ionic liquid as extracting solvent for spectrophotometric speciation of copper.

    PubMed

    Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M

    2016-07-01

    Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Experimental pretesting of public health campaigns: a case study.

    PubMed

    Whittingham, Jill; Ruiter, Robert A C; Zimbile, Filippo; Kok, Gerjo

    2008-01-01

    The aim of the present study is to demonstrate the merits of evaluating new public health campaign materials in the developmental phase using an experimental design. This is referred to as experimental pretesting. In practice, most new materials are tested only after they have been distributed using nonexperimental or quasiexperimental designs. In cases where materials are pretested prior to distribution, pretesting is usually done using qualitative research methods such as focus groups. Although these methods are useful, they cannot reliably predict the effectiveness of new campaign materials in a developmental phase. Therefore, we suggest when pretesting new materials, not only qualitative research methods but also experimental research methods must be used. The present study discusses an experimental pretest study of new campaign materials intended for distribution in a national sexually transmitted infection (STI) AIDS prevention campaign in the Netherlands. The campaign material tested was the storyline of a planned television commercial on safe sex. A storyboard that consisted of drawings and text was presented to members of the target population, namely, students between the ages of 14 and 16 enrolled in vocational schools. Results showed positive effects on targeted determinants of safe sexual behavior. The advantages, practical implications, and limitations of experimental pretesting are discussed.

  16. Comparison of the Experimental Performance of Ferroelectric CPW Circuits with Method of Moment Simulations and Conformal Mapping

    NASA Technical Reports Server (NTRS)

    VanKeuls, Fred W.; Chevalier, Chris T.; Miranda, Felix A.; Carlson, C. M.; Rivkin, T. V.; Parilla, P. A.; Perkins, J. D.; Ginley, D. S.

    2001-01-01

    Experimental measurements of coplanar waveguide (CPW) circuits atop thin films of ferroelectric Ba(x)Sr(1-x)TiO3 (BST) were made as a function bias from 0 to 200 V and frequency from 0.045 to 20 GHz. The resulting phase shifts are compared with method of moments electromagnetic simulations and a conformal mapping analysis to determine the dielectric constant of the BST films. Based on the correlation between the experimental and the modeled data, an analysis of the extent to which the electromagnetic simulators provide reliable values for the dielectric constant of the ferroelectric in these structures has been performed. In addition, to determine how well the modeled data compare with experimental data, the dielectric constant values were also compared to low frequency measurements of interdigitated capacitor circuits on the same films. Results of these comparisons will be presented.

  17. Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique.

    PubMed

    Baig, Jameel A; Kazi, Tasneem G; Shah, Abdul Q; Arain, Mohammad B; Afridi, Hassan I; Kandhro, Ghulam A; Khan, Sumaira

    2009-09-28

    The simple and rapid pre-concentration techniques viz. cloud point extraction (CPE) and solid phase extraction (SPE) were applied for the determination of As(3+) and total inorganic arsenic (iAs) in surface and ground water samples. The As(3+) was formed complex with ammonium pyrrolidinedithiocarbamate (APDC) and extracted by surfactant-rich phases in the non-ionic surfactant Triton X-114, after centrifugation the surfactant-rich phase was diluted with 0.1 mol L(-1) HNO(3) in methanol. While total iAs in water samples was adsorbed on titanium dioxide (TiO(2)); after centrifugation, the solid phase was prepared to be slurry for determination. The extracted As species were determined by electrothermal atomic absorption spectrometry. The multivariate strategy was applied to estimate the optimum values of experimental factors for the recovery of As(3+) and total iAs by CPE and SPE. The standard addition method was used to validate the optimized methods. The obtained result showed sufficient recoveries for As(3+) and iAs (>98.0%). The concentration factor in both cases was found to be 40.

  18. Characteristics of phase-change materials containing oxide nano-additives for thermal storage.

    PubMed

    Teng, Tun-Ping; Yu, Chao-Chieh

    2012-11-06

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

  19. Cryogenic fluid flow instabilities in heat exchangers

    NASA Technical Reports Server (NTRS)

    Fleming, R. B.; Staub, F. W.

    1969-01-01

    Analytical and experimental investigation determines the nature of oscillations and instabilities that occur in the flow of two-phase cryogenic fluids at both subcritical and supercritical pressures in heat exchangers. Test results with varying system parameters suggest certain design approaches with regard to heat exchanger geometry.

  20. Optimization of headspace solid-phase microextraction by means of an experimental design for the determination of methyl tert.-butyl ether in water by gas chromatography-flame ionization detection.

    PubMed

    Dron, Julien; Garcia, Rosa; Millán, Esmeralda

    2002-07-19

    A procedure for determination of methyl tert.-butyl ether (MTBE) in water by headspace solid-phase microextraction (HS-SPME) has been developed. The analysis was carried out by gas chromatography with flame ionization detection. The extraction procedure, using a 65-microm poly(dimethylsiloxane)-divinylbenzene SPME fiber, was optimized following experimental design. A fractional factorial design for screening and a central composite design for optimizing the significant variables were applied. Extraction temperature and sodium chloride concentration were significant variables, and 20 degrees C and 300 g/l were, respectively chosen for the best extraction response. With these conditions, an extraction time of 5 min was sufficient to extract MTBE. The calibration linear range for MTBE was 5-500 microg/l and the detection limit 0.45 microg/l. The relative standard deviation, for seven replicates of 250 microg/l MTBE in water, was 6.3%.

  1. Experimental validation of a 0-D numerical model for phase change thermal management systems in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Schweitzer, Ben; Wilke, Stephen; Khateeb, Siddique; Al-Hallaj, Said

    2015-08-01

    A lumped (0-D) numerical model has been developed for simulating the thermal response of a lithium-ion battery pack with a phase-change composite (PCC™) thermal management system. A small 10s4p battery pack utilizing PCC material was constructed and subjected to discharge at various C-rates in order to validate the lumped model. The 18650 size Li-ion cells used in the pack were electrically characterized to determine their heat generation, and various PCC materials were thermally characterized to determine their apparent specific heat as a function of temperature. Additionally, a 2-D FEA thermal model was constructed to help understand the magnitude of spatial temperature variation in the pack, and to understand the limitations of the lumped model. Overall, good agreement is seen between experimentally measured pack temperatures and the 0-D model, and the 2-D FEA model predicts minimal spatial temperature variation for PCC-based packs at C-rates of 1C and below.

  2. A combined experimental and computational thermodynamic study of difluoronitrobenzene isomers.

    PubMed

    Ribeiro da Silva, Manuel A V; Monte, Manuel J S; Lobo Ferreira, Ana I M C; Oliveira, Juliana A S A; Cimas, Álvaro

    2010-10-14

    This work reports the experimental and computational thermochemical study performed on three difluorinated nitrobenzene isomers: 2,4-difluoronitrobenzene (2,4-DFNB), 2,5-difluoronitrobenzene (2,5-DFNB), and 3,4-difluoronitrobenzene (3,4-DFNB). The standard (p° = 0.1 MPa) molar enthalpies of formation in the liquid phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. A static method was used to perform the vapor pressure study of the referred compounds allowing the construction of the phase diagrams and determination of the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation, and fusion for two of the isomers (2,4-DFNB and 3,4-DFNB). For 2,5-difluoronitrobenzene, only liquid vapor pressures were measured enabling the determination of the standard molar enthalpies of vaporization. Combining the thermodynamic parameters of the compounds studied, the following standard (p° = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived: Δ(f)H(m)° (2,4-DFNB, g) = -(296.3 ± 1.8) kJ · mol⁻¹, Δ(f)H(m)° (2,5-DFNB, g) = -(288.2 ± 2.1) kJ · mol⁻¹, and Δ(f)H(m)° (3,4-DFNB, g) = -(302.4 ± 2.1) kJ · mol⁻¹. Using the empirical scheme developed by Cox, several approaches were evaluated in order to identify the best method for estimating the standard molar gas phase enthalpies of formation of these compounds. The estimated values were compared to the ones obtained experimentally, and the approach providing the best comparison with experiment was used to estimate the thermodynamic behavior of the other difluorinated nitrobenzene isomers not included in this study. Additionally, the enthalpies of formation of these compounds along with the enthalpies of formation of the other isomers not studied experimentally, i.e., 2,3-DFNB, 2,6-DFNB, and 3,5-DFNB, were estimated using the composite G3MP2B3 approach together with adequate gas-phase working reactions. Furthermore, we also used this computational approach to calculate the gas-phase basicities, proton and electron affinities, and, finally, adiabatic ionization enthalpies.

  3. Atomistic simulation of solid-liquid coexistence for molecular systems: application to triazole and benzene.

    PubMed

    Eike, David M; Maginn, Edward J

    2006-04-28

    A method recently developed to rigorously determine solid-liquid equilibrium using a free-energy-based analysis has been extended to analyze multiatom molecular systems. This method is based on using a pseudosupercritical transformation path to reversibly transform between solid and liquid phases. Integration along this path yields the free energy difference at a single state point, which can then be used to determine the free energy difference as a function of temperature and therefore locate the coexistence temperature at a fixed pressure. The primary extension reported here is the introduction of an external potential field capable of inducing center of mass order along with secondary orientational order for molecules. The method is used to calculate the melting point of 1-H-1,2,4-triazole and benzene. Despite the fact that the triazole model gives accurate bulk densities for the liquid and crystal phases, it is found to do a poor job of reproducing the experimental crystal structure and heat of fusion. Consequently, it yields a melting point that is 100 K lower than the experimental value. On the other hand, the benzene model has been parametrized extensively to match a wide range of properties and yields a melting point that is only 20 K lower than the experimental value. Previous work in which a simple "direct heating" method was used actually found that the melting point of the benzene model was 50 K higher than the experimental value. This demonstrates the importance of using proper free energy methods to compute phase behavior. It also shows that the melting point is a very sensitive measure of force field quality that should be considered in parametrization efforts. The method described here provides a relatively simple approach for computing melting points of molecular systems.

  4. High performance mode locking characteristics of single section quantum dash lasers.

    PubMed

    Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim

    2012-04-09

    Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

  5. Crystal growth and electronic structure of low-temperature phase SrMgF{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, Victor V.; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090

    2016-04-15

    Using the vertical Bridgman method, the single crystal of low temperature phase SrMgF{sub 4} is obtained. The crystal is in a very good optical quality with the size of 10×7×5 mm{sup 3}. Detailed photoemission spectra of the element core levels are determined by a monochromatic AlKa (1486.6 eV) X-ray source. Moreover, the first-principles calculations are performed to investigate the electronic structure of SrMgF{sub 4}. A good agreement between experimental and calculated results is achieved. It is demonstrated that almost all the electronic orbitals are strongly localized and the hybridization with the others is very small, but the Mg–F bonds covalencymore » is relatively stronger than that of Sr–F bonds. - Graphical abstract: Large size of low-temperature phase SrMgF{sub 4} crystal was obtained (right) and its electronic structure was investigated by X-ray photoelectron spectroscopy and first-principles calculation (left). - Highlights: • Large size single crystal of low-temperature phase SrMgF{sub 4} is obtained. • Electronic structure of SrMgF{sub 4} is measured by X-ray photoelectron spectroscopy. • Partial densities of states are determined by first-principles calculation. • Good agreement between experimental and calculated results is achieved. • Strong ionic characteristics of chemical bonds are exhibited in SrMgF{sub 4}.« less

  6. Experimental determination of the phase relationships in Zr/2.5 8.0 at% Nb/0 6.7 at% Al alloys with 750 at ppm 0 and 250 at ppm N between 730 900° C

    NASA Astrophysics Data System (ADS)

    Peruzzi, A.; Bolcich, J.

    1990-11-01

    Zr alloys with 2.5 to 8.0 at% Nb and 0 to 6.7 at% Al were subjected to dynamic and static treatments between 730-900° C and studied by qualitative and quantitative optical metallography, electrical resistance, X-ray diffractometry and electron microanalysis. The experimental data were analyzed by taking into account the effects of oxygen and nitrogen impurities. The main results for Zn-Nb-Al alloys with 750 at ppm O and 250 at ppm N are the following: (i) Equilibrium relationships are established between the α (hcp), β (bcc) and Zr 3Al (Cu 3Au) phases along isothermal sections at 730, 771 and 800°C. (ii) The β/ α + β boundaries are determined along iso-aluminum vertical sections at 6.7, 3.3 and 0 at% Al. (iii) The addition of Al to Zr-Nb alloys increases the solubility of Nb in the α phase, its maximum value at 730° C being about 0.7-0.8 at% for 4 at% Al. (iv) Solubility values for Al in the α-phase of Zr-Al were estimated by extrapolation from ternary alloys. These estimates help to solve an existing discrepancy in the Zr-Al system.

  7. Application of an experimental design for the optimization and validation of a new HPLC method for the determination of vancomycin in an extemporaneous ophthalmic solution.

    PubMed

    Enrique, Montse; García-Montoya, Encarna; Miñarro, Montserrat; Orriols, Anna; Ticó, Joseph Ramon; Suñé-Negre, Joseph Maria; Pérez-Lozano, Pilar

    2008-10-01

    An experimental design has been used to develop and optimize a new high-performance liquid chromatographic (HPLC) method for the determination of Vancomycin in an extemporaneous ophthalmic solution. After the preliminary studies and literature review, the optimized method was carried out on a second generation of a C18 reverse-phase column (Luna 150 x 4.6 mm i.d., 5 microm particle size) and using methanol as organic phase, a less toxic solvent than acetonitrile, described in the extended literature. The experimental design consisted of a Placket-Burman design where six different variables were studied (flow rate, mL/min; temperature, degrees C; pH mobile phase; % buffer solution; wavelength; and injection volume) to obtain the best suitability parameters (Capacity factor-K', tailing factor, resolution, and theoretical plates). After the optimization of the chromatographic conditions and statistical treatment of the obtained results, the final method uses a mixture of a buffer solution of water-phosphoric acid (85%) (99.83:0.17, v/v) adjusted to pH 3.0 using triethylamine and mixed with methanol (87:13, v/v). The separation is achieved using a flow rate of 1.0 mL/min at 35 degrees C. The UV detector was operated at 280 nm. The validation study carried out, demonstrates the viability of the method, obtaining a good selectivity, linearity, precision, accuracy, and sensitivity.

  8. Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX.

    PubMed

    Thorn, Andrea

    2017-01-01

    This chapter describes experimental phasing methods as implemented in SHELX. After introducing fundamental concepts underlying all experimental phasing approaches, the methods used by SHELXC/D/E are described in greater detail, such as dual-space direct methods, Patterson seeding and density modification with the sphere of influence algorithm. Intensity differences from data for experimental phasing can also be used for the generation and usage of difference maps with ANODE for validation and phasing purposes. A short section describes how molecular replacement can be combined with experimental phasing methods. The second half covers practical challenges, such as prerequisites for successful experimental phasing, evaluation of potential solutions, and what to do if substructure search or density modification fails. It is also shown how auto-tracing in SHELXE can improve automation and how it ties in with automatic model building after phasing.

  9. Leptonic CP phase determined by an equation involving PMNS matrix elements

    NASA Astrophysics Data System (ADS)

    Ke, Hong-Wei; Zhou, Jia-Hui; Li, Xue-Qian

    2017-04-01

    Several approximate equalities among the matrix elements of the Cabibbo-Kobayashi-Maskawa (CKM) and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrices imply that hidden symmetries may exist and be common for both quark and neutrino sectors. The charge parity (CP) phase of the CKM matrix ({δ }{CKM}) is involved in these equalities and can be investigated when these equalities turn into several equations. As we substitute those experimentally measured values of the three mixing angles into the equations for quarks, it is noted that one of the equations which holds exactly has a solution {δ }{CKM}=({68.95}-1.15+1.15)^\\circ . That value accords with ({69.1}-3.85+2.02)^\\circ determined from available data. Generalizing the scenario to the lepton sector, the same equality determines the leptonic CP phase {δ }{PMNS} to be ({275.20}-1.15+1.15)^\\circ . Thus we predict the value of {δ }{PMNS} from the equation. So far there is no direct measurement on {δ }{PMNS}, but a recent analysis based on the neutrino oscillation data prefers a phase close to 270°.

  10. Quasi-Phase-Matched Supercontinuum Generation in Photonic Waveguides

    NASA Astrophysics Data System (ADS)

    Hickstein, Daniel D.; Kerber, Grace C.; Carlson, David R.; Chang, Lin; Westly, Daron; Srinivasan, Kartik; Kowligy, Abijith; Bowers, John E.; Diddams, Scott A.; Papp, Scott B.

    2018-02-01

    Supercontinuum generation (SCG) in integrated photonic waveguides is a versatile source of broadband light, and the generated spectrum is largely determined by the phase-matching conditions. Here we show that quasi-phase-matching via periodic modulations of the waveguide structure provides a useful mechanism to control the evolution of ultrafast pulses during supercontinuum generation. We experimentally demonstrate a quasi-phase-matched supercontinuum to the TE20 and TE00 waveguide modes, which enhances the intensity of the SCG in specific spectral regions by as much as 20 dB. We utilize higher-order quasi-phase-matching (up to the 16th order) to enhance the intensity in numerous locations across the spectrum. Quasi-phase-matching adds a unique dimension to the design space for SCG waveguides, allowing the spectrum to be engineered for specific applications.

  11. An experimental and theoretical investigation of the liquefaction dynamics of a phase change material in a normal gravity environment

    NASA Technical Reports Server (NTRS)

    Bain, R. L.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Experimental and theoretical investigations were undertaken to determine the role of gravity-induced free convection upon the liquefaction dynamics of a cylindrical paraffin slab under normal gravity conditions. The experimental equipment consisted of a test cell, a fluid-loop heating system, and a multipoint recorder. The test chamber was annular in shape with an effective radius of 1.585 cm and a length of 5.08 cm. The heating chamber was a 1.906 cm diameter tube going through the center of the test chamber, and connected to the fluid loop heating system. All experimental runs were made with the longitudinal axis of the test cell in the vertical direction to insure that convection was not a function of the angular axis of the cell. Ten melting runs were made at various hot wall temperatures. Also, two pure conduction solidification runs were made to determine an experimental latent heat of fusion.

  12. Gibbs free energy difference between the undercooled liquid and the beta phase of a Ti-Cr alloy

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.

    1992-01-01

    The heat of fusion and the specific heats of the solid and liquid have been experimentally determined for a Ti60Cr40 alloy. The data are used to evaluate the Gibbs free energy difference, delta-G, between the liquid and the beta phase as a function of temperature to verify a reported spontaneous vitrification (SV) of the beta phase in Ti-Cr alloys. The results show that SV of an undistorted beta phase in the Ti60Cr40 alloy at 873 K is not feasible because delta-G is positive at the temperature. However, delta-G may become negative with additional excess free energy to the beta phase in the form of defects.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Brian James

    There is a scientific need to obtain new data to constrain and refine next generation multi-phase equation-of-state (EOS) for metals. Experiments are needed to locate phase boundaries, determine transition kinetic times, and to obtain EOS and Hugoniot data for relevant phases. The objectives of the current work was to examine the multiphase properties for cerium including the dynamic melt boundary and the low-pressure solid-solid phase transition through the critical point. These objectives were addressed by performing plate impact experiment that used multiple experimental configuration including front-surface impact experiments to directly measure transition kinetics, multislug experiments that used the overtake methodmore » to measure sound speeds at pressure, and preheat experiments to map out phase boundaries. Preliminary data and analysis obtained for cerium will be presented.« less

  14. Effect of hyoscine-N-butyl bromide rectal suppository on labor progress in primigravid women: a randomized double-blind placebo-controlled clinical trial

    PubMed Central

    Makvandi, Somayeh; Tadayon, Mitra; Abbaspour, Mohammadreza

    2011-01-01

    Aim To determine the effects of hyoscine-N-butyl bromide (HBB) rectal suppository on labor progress in primigravid women. Methods A randomized double-blind placebo-controlled clinical trial was carried out on 130 primigravid women admitted for spontaneous labor. The women were recruited based on the inclusion and exclusion criteria and randomized into the experimental (n = 65) and control group (n = 65). In the beginning of the active phase of labor, 20 mg of HBB rectal suppository was administered to the experimental group, while a placebo suppository was administered to the control group. Cervical dilatation and duration of active phase and second stage of labor were recorded. Results The rate of cervical dilatation was 2.6 cm/h in the experimental and 1.5 cm/h in the control group (P < 0.001). The active phase and the second stage of labor were significantly shorter in the experimental group (P = 0.001 and P < 0.001, respectively). There was no significant difference between the two groups in the fetal heart rate, maternal pulse rate, blood pressure, and the APGAR score 1 and 5 minutes after birth. Conclusion Use of HBB rectal suppository in the active management of labor can shorten both the active phase and second stage of labor without significant side-effects. Registration No IRCT138804282204N1. PMID:21495198

  15. The differential path phase comparison method for determining pressure derivatives of elastic constants of solids

    NASA Astrophysics Data System (ADS)

    Peselnick, L.

    1982-08-01

    An ultrasonic method is presented which combines features of the differential path and the phase comparison methods. The proposed differential path phase comparison method, referred to as the `hybrid' method for brevity, eliminates errors resulting from phase changes in the bond between the sample and buffer rod. Define r(P) [and R(P)] as the square of the normalized frequency for cancellation of sample waves for shear [and for compressional] waves. Define N as the number of wavelengths in twice the sample length. The pressure derivatives r'(P) and R' (P) for samples of Alcoa 2024-T4 aluminum were obtained by using the phase comparison and the hybrid methods. The values of the pressure derivatives obtained by using the phase comparison method show variations by as much as 40% for small values of N (N < 50). The pressure derivatives as determined from the hybrid method are reproducible to within ±2% independent of N. The values of the pressure derivatives determined by the phase comparison method for large N are the same as those determined by the hybrid method. Advantages of the hybrid method are (1) no pressure dependent phase shift at the buffer-sample interface, (2) elimination of deviatoric stress in the sample portion of the sample assembly with application of hydrostatic pressure, and (3) operation at lower ultrasonic frequencies (for comparable sample lengths), which eliminates detrimental high frequency ultrasonic problems. A reduction of the uncertainties of the pressure derivatives of single crystals and of low porosity polycrystals permits extrapolation of such experimental data to deeper mantle depths.

  16. Gas-phase conformations of 2-methyl-1,3-dithiolane investigated by microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Van, Vinh; Stahl, Wolfgang; Schwell, Martin; Nguyen, Ha Vinh Lam

    2018-03-01

    The conformational analysis of 2-methyl-1,3-dithiolane using quantum chemical calculations at some levels of theory yielded only one stable conformer with envelope geometry. However, other levels of theory indicated two envelope conformers. Analysis of the microwave spectrum recorded using two molecular jet Fourier transform microwave spectrometers covering the frequency range from 2 to 40 GHz confirms that only one conformer exists under jet conditions. The experimental spectrum was reproduced using a rigid-rotor model with centrifugal distortion correction within the measurement accuracy of 1.5 kHz, and molecular parameters were determined with very high accuracy. The gas phase structure of the title molecule is compared with the structures of other related molecules studied under the same experimental conditions.

  17. Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients

    NASA Astrophysics Data System (ADS)

    Anderson, Richard L.; Bray, David J.; Ferrante, Andrea S.; Noro, Massimo G.; Stott, Ian P.; Warren, Patrick B.

    2017-09-01

    We present a systematic, top-down, thermodynamic parametrization scheme for dissipative particle dynamics (DPD) using water-octanol partition coefficients, supplemented by water-octanol phase equilibria and pure liquid phase density data. We demonstrate the feasibility of computing the required partition coefficients in DPD using brute-force simulation, within an adaptive semi-automatic staged optimization scheme. We test the methodology by fitting to experimental partition coefficient data for twenty one small molecules in five classes comprising alcohols and poly-alcohols, amines, ethers and simple aromatics, and alkanes (i.e., hexane). Finally, we illustrate the transferability of a subset of the determined parameters by calculating the critical micelle concentrations and mean aggregation numbers of selected alkyl ethoxylate surfactants, in good agreement with reported experimental values.

  18. Magnetic Phase Diagram of Heusler Alloy System Ni2Mn1-xCrxGa

    NASA Astrophysics Data System (ADS)

    Adachi, Yoshiya; Kouta, Ryuji; Fujio, Mitsuhiro; Kanomata, Takeshi; Umetsu, Rie Y.; Xu, Xiao; Kainuma, Ryosuke

    The temperature dependence of the electrical resistivity ρ of Ni2Mn1-xCrxGa (x=0.05∼0.25) was measured. Two anomalies corresponding to the magnetic and structural phase transitions at TC and TM were observed on the ρ-T curves for each sample, respectively. The kinks corresponding to the premartensitic transition at Tp were observed for all samples except x=0.25. On the basis of the experimental results, the T vs. x phase diagram of Ni2Mn1-xCrxGa was determined.

  19. InP-based millimeter-wave PIN diodes for switching and phase-shifting application

    NASA Astrophysics Data System (ADS)

    Pavlidis, Dimitris; Alekseev, Egor; Hong, Kyushik; Cui, Delong

    1997-10-01

    InP-based PIN design, technology and circuit implementation were addressed and successfully applied to millimeter-wave MMIC switches and phase shifters. A wet etchant based via technology was developed and applied to InP MMIC fabrication. MOCVD and MBE material growth was used for PIN realization and PIN specific growth optimization is discussed. Experimentally determined electrical characteristics and good performance is presented for a variety of InP-based PIN MMICs including coplanar and microstrip Ka-band SPST switches, W-band microstrip SPST switches and a 90-degree phase shifter.

  20. Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes.

    PubMed

    Santos, Ana Filipa L O M; Oliveira, Juliana A S A; Ribeiro da Silva, Maria D M C; Monte, Manuel J S

    2016-03-01

    This work reports the experimental determination of relevant thermodynamic properties and the characterization of luminescence properties of the following polycyclic aromatic hydrocarbons (PAHs): 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene. The standard (p(o) = 0.1 MPa) molar enthalpies of combustion, ΔcHm(o), of the three compounds were determined using static bomb combustion calorimetry. The vapor pressures of the crystalline phase of 2,6-diisopropylnaphthalene and 2,6-di-tert-butylnaphthalene were measured at different temperatures using the Knudsen effusion method and the vapor pressures of both liquid and crystalline phases of 2,6-diethylnaphthalene were measured by means of a static method. The temperatures and the molar enthalpies of fusion of the three compounds were determined using differential scanning calorimetry. The gas-phase molar heat capacities and absolute entropies of the three 2,6-dialkylnaphthalenes studied were determined computationally. The thermodynamic stability of the compounds in both the crystalline and gaseous phases was evaluated by the determination of the Gibbs energies of formation and compared with the ones reported in the literature for 2,6-dimethylnaphthalene. From fluorescence spectroscopy measurements, the optical properties of the compounds studied and of naphthalene were evaluated in solution and in the solid state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Labyrinth Seal Analysis. Volume 3. Analytical and Experimental Development of a Design Model for Labyrinth Seals

    DTIC Science & Technology

    1986-01-01

    the information that has been determined experimentally. The Labyrinth Seal Analysis program was, therefore, directed to the develop - ment of an...labyrinth seal performance, the program included the development of an improved empirical design model to pro- j. .,’ vide the calculation of the flow... program . * Phase I was directed to the analytical development of both an *analysis* model and an improvwd empirical *design" model. Supporting rig tests

  2. The dryout region in frictionally heated sliding contacts

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, J.; Arp, V.; Giarratano, P. J.

    1982-01-01

    Some conditions under which boiling and two-phase flow can occur in or near a wet sliding contact are determined and illustrated. The experimental apparatus consisted of a tool pressed against an instrumented slider plate and motion picture sequences at 4000 frames/sec. The temperature and photographic data demonstrated surface conditions of boiling, drying, trapped gas evolution (solutions), and volatility of fluid mixture components. The theoretical modeling and analysis are in reasonable agreement with experimental data.

  3. Neutrino oscillations: The rise of the PMNS paradigm

    NASA Astrophysics Data System (ADS)

    Giganti, C.; Lavignac, S.; Zito, M.

    2018-01-01

    Since the discovery of neutrino oscillations, the experimental progress in the last two decades has been very fast, with the precision measurements of the neutrino squared-mass differences and of the mixing angles, including the last unknown mixing angle θ13. Today a very large set of oscillation results obtained with a variety of experimental configurations and techniques can be interpreted in the framework of three active massive neutrinos, whose mass and flavour eigenstates are related by a 3 × 3 unitary mixing matrix, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, parametrized by three mixing angles θ12, θ23, θ13 and a CP-violating phase δCP. The additional parameters governing neutrino oscillations are the squared-mass differences Δ mji2 = mj2 - mi2, where mi is the mass of the ith neutrino mass eigenstate. This review covers the rise of the PMNS three-neutrino mixing paradigm and the current status of the experimental determination of its parameters. The next years will continue to see a rich program of experimental endeavour coming to fruition and addressing the three missing pieces of the puzzle, namely the determination of the octant and precise value of the mixing angle θ23, the unveiling of the neutrino mass ordering (whether m1

  4. Effect of Convection on Formation of Adsorbed Surfactant Film under Dynamic Change of Solution Surface Area

    NASA Astrophysics Data System (ADS)

    Mizev, A. I.; Bratsun, D. A.; Shmyrova, A. I.

    2017-12-01

    The dynamics of the formation of a surface phase in aqueous solutions of surfactants in a tray with the Langmuir barrier system during one compression-expansion cycle of the interface boundary is investigated both experimentally and theoretically. Organic salts of fatty acids such as potassium laurate, caprylate, and acetate, which are members of the same homologous series, were used as surfactants. It is experimentally determined that the dependence of the surface pressure increment measured under the maximum compression of the surface on the volume concentration has a maximum, the position of which is different for all the studied surfactant solutions. It is shown that the position of the maximum corresponds to the concentration value at which a saturated monolayer of surfactant molecules is formed at the interface boundary. A theoretical model that considers the effect of the forced convection arisen in the bulk of the solution upon changing the surface area is proposed for the interpretation of the experimental results. The model allows one to render the main kinetic characteristics of the adsorption/desorption processes involving the compounds under study. A good agreement between the theoretical and experimental results is observed, but there is a discrepancy between them when diffusion is considered to be the only way surfactant molecules are transferred into the bulk phase. Based on the data, a new method for determination of the Langmuir-Shishkovsky constant is proposed.

  5. Magneto-electronic phase separation in doped cobaltites

    NASA Astrophysics Data System (ADS)

    He, Chunyong

    This thesis work mainly focuses on magneto-electronic phase separation (MEPS), an effect where chemically homogeneous materials display inhomogeneous magnetic and electronic properties. A model system La1-xSrxCoO3 (LSCO) is chosen for the study of MEPS. The doping evolution of MEPS in LSCO single crystals is extensively studied through complementary experimental techniques including heat capacity, small angle neutron scattering, magnetometry, and transport. It is found that there exists a finite doping range over which MEPS occurs. The doping range determined from different experimental techniques is found to be in good agreement. Also, this same doping range is reproduced by statistical simulations incorporating local compositional fluctuations. The excellent agreement between experimental data and statistical simulations leads to the conclusion that the MEPS in LSCO is driven solely by inevitable local compositional fluctuations at nanoscopic length scales. Such a conclusion indicates that nanoscopic MEPS is doping fluctuation-driven rather than electronically-driven in LSCO. The effect of microscopic magneto-electronic phase separation on electrical transport in LSCO is also examined. It is demonstrated (i) that the T = 0 metal-insulator transition can be understood within double exchange-modified percolation framework, and, (ii) that the onset of a phase-pure low T ferromagnetic state at high x has a profound effect on the high T transport. In addition, a new origin for finite spin Co ions in LaCoO3 is revealed via a Schottky Anomaly in the heat capacity, which was not previously known. Such a discovery casts a new understanding of the spin state at low temperature. Via small-angle neutron scattering and d.c. susceptibility, it is revealed that short-range ordered FM clusters exist below a well-defined temperature (T*) in highly doped LSCO. It is demonstrated that the characteristics of this clustered state appear quite unlike those of a Griffiths phase. Finally, through magenetometry and SANS, the magneto-crystalline anisotropy of highly doped LSCO is studied and the easy and hard magnetization axes are determined.

  6. The solid-solution region for the langasite-type Ca3TaGa3Si2O14 crystal as determined by a lever rule

    NASA Astrophysics Data System (ADS)

    Zhao, Hengyu; Uda, Satoshi; Maeda, Kensaku; Nozawa, Jun; Koizumi, Haruhiko; Fujiwara, Kozo

    2015-04-01

    A lever rule was applied to data concerning the compositions and proportions of secondary phases coexisting with a Ca3TaGa3Si2O14 (CTGS) matrix to determine the boundary compositions of the solid-solution region for CTGS at 1320 °C, as a means of ascertaining the solid-solution for the langasite-type phase in the quaternary CaO-Ta2O5-Ga2O3-SiO2 system. The compositions and proportions of secondary phases were assessed by electron probe micro-analysis as well as through back-scattered electron images. The experimental results showed that the narrow solid-solution region for CTGS is located in a Ta-poor, Ga-poor and Si-rich region relative to its stoichiometric composition.

  7. The influence of voxel size on atom probe tomography data.

    PubMed

    Torres, K L; Daniil, M; Willard, M A; Thompson, G B

    2011-05-01

    A methodology for determining the optimal voxel size for phase thresholding in nanostructured materials was developed using an atom simulator and a model system of a fixed two-phase composition and volume fraction. The voxel size range was banded by the atom count within each voxel. Some voxel edge lengths were found to be too large, resulting in an averaging of compositional fluctuations; others were too small with concomitant decreases in the signal-to-noise ratio for phase identification. The simulated methodology was then applied to the more complex experimentally determined data set collected from a (Co(0.95)Fe(0.05))(88)Zr(6)Hf(1)B(4)Cu(1) two-phase nanocomposite alloy to validate the approach. In this alloy, Zr and Hf segregated to an intergranular amorphous phase while Fe preferentially segregated to a crystalline phase during the isothermal annealing step that promoted primary crystallization. The atom probe data analysis of the volume fraction was compared to transmission electron microscopy (TEM) dark-field imaging analysis and a lever rule analysis of the volume fraction within the amorphous and crystalline phases of the ribbon. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.

    PubMed

    Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L

    2011-09-01

    This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRgHIFU treatment.

  9. Ordered phases of ethylene adsorbed on charged fullerenes and their aggregates☆

    PubMed Central

    Zöttl, Samuel; Kaiser, Alexander; Daxner, Matthias; Goulart, Marcelo; Mauracher, Andreas; Probst, Michael; Hagelberg, Frank; Denifl, Stephan; Scheier, Paul; Echt, Olof

    2014-01-01

    In spite of extensive investigations of ethylene adsorbed on graphite, bundles of nanotubes, and crystals of fullerenes, little is known about the existence of commensurate phases; they have escaped detection in almost all previous work. Here we present a combined experimental and theoretical study of ethylene adsorbed on free C60 and its aggregates. The ion yield of (C60)m(C2H4)n+ measured by mass spectrometry reveals a propensity to form a structurally ordered phase on monomers, dimers and trimers of C60 in which all sterically accessible hollow sites over carbon rings are occupied. Presumably the enhancement of the corrugation by the curvature of the fullerene surface favors this phase which is akin to a hypothetical 1 × 1 phase on graphite. Experimental data also reveal the number of molecules in groove sites of the C60 dimer through tetramer. The identity of the sites, adsorption energies and orientations of the adsorbed molecules are determined by molecular dynamics calculations based on quantum chemical potentials, as well as density functional theory. The decrease in orientational order with increasing temperature is also explored in the simulations whereas in the experiment it is impossible to vary the temperature. PMID:25843960

  10. Effects of plasticization and shear stress on phase structure development and properties of soy protein blends.

    PubMed

    Chen, Feng; Zhang, Jinwen

    2010-11-01

    In this study, soy protein concentrate (SPC) was used as a plastic component to blend with poly(butylene adipate-co-terephthalate) (PBAT). Effects of SPC plasticization and blend composition on its deformation during mixing were studied in detail. Influence of using water as the major plasticizer and glycerol as the co-plasticizer on the deformation of the SPC phase during mixing was explored. The effect of shear stress, as affected by SPC loading level, on the phase structure of SPC in the blends was also investigated. Quantitative analysis of the aspect ratio of SPC particles was conducted by using ImageJ software, and an empirical model predicting the formation of percolated structure was applied. The experimental results and the model prediction showed a fairly good agreement. The experimental results and statistic analysis suggest that both SPC loading level and its water content prior to compounding had significant influences on development of the SPC phase structure and were correlated in determining the morphological structures of the resulting blends. Consequently, physical and mechanical properties of the blends greatly depended on the phase morphology and PBAT/SPC ratio of the blends.

  11. Effects of Al2O3 and CaO/SiO2 Ratio on Phase Equilbria in the ZnO-"FeO"-Al2O3-CaO-SiO2 System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-02-01

    The phase equilibria and liquidus temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2 system in equilibrium with metallic iron have been determined experimentally in the temperature range 1383 K to 1573 K (1150 °C to 1300 °C). The experimental conditions were selected to characterize lead blast furnace and imperial smelting furnace slags. The results are presented in a form of pseudoternary sections ZnO-"FeO"-(Al2O3 + CaO + SiO2) with fixed CaO/SiO2 and (CaO + SiO2)/Al2O3 ratios. It was found that wustite and spinel are the major primary phases in the composition range investigated. Effects of Al2O3 concentration as well as the CaO/SiO2 ratio on the primary phase field, the liquidus temperature, and the partitioning of ZnO between liquid and solid phases have been discussed for zinc-containing slags.

  12. Phase Equilibria Studies in the System ZnO-``FeO''-Al2O3-CaO-SiO2 Relevant to Imperial Smelting Furnace Slags: Part I

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2010-04-01

    The phase equilibria and liquidus temperatures in the system ZnO-“FeO”-Al2O3-CaO-SiO2 in equilibrium with metallic iron have been determined experimentally in the temperature range of 1423 K to 1553 K. The experimental conditions were focused on the composition range relevant to Imperial Smelting Furnace slags. The results are presented in the form of a pseudo-ternary section ZnO-“FeO”-(CaO + SiO2 + Al2O3) in which CaO/SiO2 = 0.93 and (CaO + SiO2)/Al2O3 = 7.0. It was found that wustite and spinel are the major primary phases and that zincite and melilite are also present in the composition range investigated. Wustite (Fe2+,Zn)O and spinel (Fe2+,Zn)O (A1,Fe3+)2O3 solid solutions are formed in this system, and the ZnO concentration in the spinel phase is found to be much greater than in the liquid phase.

  13. BRIEF COMMUNICATIONS: Q switching of a resonator by the metal-semiconductor phase transition

    NASA Astrophysics Data System (ADS)

    Bugaev, A. A.; Zakharchenya, Boris P.; Chudnovskiĭ, F. A.

    1981-12-01

    An experimental study was made of Q switching in a resonator by a mirror with a nonlinear reflection coefficient. This mirror was an interference reflecting structure containing a vanadium oxide film capable of undergoing a metal-semiconductor transition. The nonlinearity of the reflection coefficient was due to initiation of this phase transition by laser radiation. A determination was made of the parameters of a giant radiation pulse obtained using such a passive switch with a vanadium oxide film.

  14. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 4 - Phase 1 Implementation of the Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Abbott, David; Batten, Adam; Carpenter, David; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter; hide

    2008-01-01

    This report describes the first phase of the implementation of the Concept Demonstrator. The Concept Demonstrator system is a powerful and flexible experimental test-bed platform for developing sensors, communications systems, and multi-agent based algorithms for an intelligent vehicle health monitoring system for deployment in aerospace vehicles. The Concept Demonstrator contains sensors and processing hardware distributed throughout the structure, and uses multi-agent algorithms to characterize impacts and determine an appropriate response to these impacts.

  15. VLF phase and amplitude: daytime ionospheric parameters

    NASA Astrophysics Data System (ADS)

    McRae, W. M.; Thomson, N. R.

    2000-05-01

    Experimental observations of the daytime variations of VLF phase and amplitude over a variety of long subionospheric paths have been found to be satisfactorily modelled with a D-region ionosphere, described by the two traditional parameters, H' and /β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively). This VLF radio modelling uses the NOSC Earth-ionosphere waveguide programs but with an experimentally deduced dependence of these two ionospheric parameters on solar zenith angle. Phase and amplitude measurements from several VLF Omega and MSK stations were compared with calculations from the programs LWPC and Modefinder using values of H' and /β determined previously from amplitude only data. This led to refined curves for the diurnal variations of H' and /β which, when used in these programs, give not only calculated amplitudes but also, for the first time, calculated phase variations that agree well with a series of observations at Dunedin, New Zealand, of VLF signals from Omega Japan, Omega Hawaii, NPM (Hawaii) and NLK (Seattle) covering a frequency range of 10-25 kHz.

  16. Effect of temperature on anoxic sulfide oxidation and denitrification in the bulk wastewater phase of sewer networks.

    PubMed

    Mathioudakis, V L; Aivasidis, A

    2009-01-01

    Artificial dosage of nitrate in sewer networks is considered as one of the most effective methods for odor and corrosion control. However, there is limited knowledge on the effect of temperature on the transformations that takes place during anoxic conditions. Thus, two groups of batch experiments were conducted to gain insight in the involved processes in bulk phase of a septic municipal wastewater. It can be concluded that sewer denitrification, in bulk phase, can be simplified in three stages. According to the experimental results, nitrate or nitrite is utilized for autotrophic denitrification with sulfide, while heterotrophic utilization is initiated after the completion of anoxic sulfide oxidation. Moreover, temperature is proved to have a significant impact on sewer denitrification kinetic profile, as it determines the extent of temporal nitrite accumulation. The temperature coefficient of each anoxic process, including sulfide oxidation, nitrate utilization and denitrification/nitrite utilization is experimentally calculated and temperature dependent equations are developed, providing the rate of all anoxic processes in bulk phase of sewer wastewater, in any given temperature.

  17. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  18. An orientation sensitive approach in biomolecule interaction quantitative structure-activity relationship modeling and its application in ion-exchange chromatography.

    PubMed

    Kittelmann, Jörg; Lang, Katharina M H; Ottens, Marcel; Hubbuch, Jürgen

    2017-01-27

    Quantitative structure-activity relationship (QSAR) modeling for prediction of biomolecule parameters has become an established technique in chromatographic purification process design. Unfortunately available descriptor sets fail to describe the orientation of biomolecules and the effects of ionic strength in the mobile phase on the interaction with the stationary phase. The literature describes several special descriptors used for chromatographic retention modeling, all of these do not describe the screening of electrostatic potential by the mobile phase in use. In this work we introduce two new approaches of descriptor calculations, namely surface patches and plane projection, which capture an oriented binding to charged surfaces and steric hindrance of the interaction with chromatographic ligands with regard to electrostatic potential screening by mobile phase ions. We present the use of the developed descriptor sets for predictive modeling of Langmuir isotherms for proteins at different pH values between pH 5 and 10 and varying ionic strength in the range of 10-100mM. The resulting model has a high correlation of calculated descriptors and experimental results, with a coefficient of determination of 0.82 and a predictive coefficient of determination of 0.92 for unknown molecular structures and conditions. The agreement of calculated molecular interaction orientations with both, experimental results as well as molecular dynamic simulations from literature is shown. The developed descriptors provide the means for improved QSAR models of chromatographic processes, as they reflect the complex interactions of biomolecules with chromatographic phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids.

    PubMed

    Mohanan, Sharika; Srivastava, Atul

    2014-04-10

    The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent noise in the interferometric data do not affect the resultant phase values. Brief comparisons of the accuracy of the WFT with other standard techniques such as conventional Fourier-filtering methods are also presented.

  20. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    DOE PAGES

    Beane, S. R.; Chang, E.; Detmold, W.; ...

    2012-02-16

    The π +π + s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m π ≈ 390 MeV with an anisotropic n f = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b s ≈ 0.123 fm in the spatial direction and b t b s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π +π + systems with both zero and non-zero total momentum in the latticemore » volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m π 2 a r = 3+O(m π 2/Λ χ 2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less

  1. Measurement of the E1/E3 phase in 226Ra

    NASA Astrophysics Data System (ADS)

    Amzal, N.; Butler, P. A.; Hawcroft, D.; Hammond, N. J.; Herzberg, R.-D.; Jones, G. D.; Scholey, C.; Stezowski, O.; Czosnyka, T.; Iwanicki, J.; Napiorkowski, P. J.; Julin, R.; Mach, H.; Cerderka¨Ll, J.; Fraile, L. M.; Fynbo, H. O. U.; Isolde Collaboration

    2004-04-01

    We report experimental attempts to determine the sign of the electric dipole moment (relative to the electric octupole moment) in the octupole deformed nucleus 226Ra. Sensitivity to this quantity is observed in the measured yields of γ-ray transitions following very low energy Coulomb excitation.

  2. Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.

    ERIC Educational Resources Information Center

    Tasic, Aleksandar Z.; Djordjevic, Bojan D.

    1983-01-01

    Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…

  3. Light clusters and pasta phases in warm and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Avancini, Sidney S.; Ferreira, Márcio; Pais, Helena; Providência, Constança; Röpke, Gerd

    2017-04-01

    The pasta phases are calculated for warm stellar matter in a framework of relativistic mean-field models, including the possibility of light cluster formation. Results from three different semiclassical approaches are compared with a quantum statistical calculation. Light clusters are considered as point-like particles, and their abundances are determined from the minimization of the free energy. The couplings of the light clusters to mesons are determined from experimental chemical equilibrium constants and many-body quantum statistical calculations. The effect of these light clusters on the chemical potentials is also discussed. It is shown that, by including heavy clusters, light clusters are present up to larger nucleonic densities, although with smaller mass fractions.

  4. Partial wave analysis for folded differential cross sections

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; McEachran, R. P.

    2018-03-01

    The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.

  5. Fizeau simultaneous phase-shifting interferometry based on extended source

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  6. Phase equilibrium modeling for high temperature metallization on GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Chung, M. A.; Davison, J. E.; Smith, S. R.

    1991-01-01

    Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.

  7. Modeling pH-zone refining countercurrent chromatography: a dynamic approach.

    PubMed

    Kotland, Alexis; Chollet, Sébastien; Autret, Jean-Marie; Diard, Catherine; Marchal, Luc; Renault, Jean-Hugues

    2015-04-24

    A model based on mass transfer resistances and acid-base equilibriums at the liquid-liquid interface was developed for the pH-zone refining mode when it is used in countercurrent chromatography (CCC). The binary separation of catharanthine and vindoline, two alkaloids used as starting material for the semi-synthesis of chemotherapy drugs, was chosen for the model validation. Toluene/CH3CN/water (4/1/5, v/v/v) was selected as biphasic solvent system. First, hydrodynamics and mass transfer were studied by using chemical tracers. Trypan blue only present in the aqueous phase allowed the determination of the parameters τextra and Pe for hydrodynamic characterization whereas acetone, which partitioned between the two phases, allowed the determination of the transfer parameter k0a. It was shown that mass transfer was improved by increasing both flow rate and rotational speed, which is consistent with the observed mobile phase dispersion. Then, the different transfer parameters of the model (i.e. the local transfer coefficient for the different species involved in the process) were determined by fitting experimental concentration profiles. The model accurately predicted both equilibrium and dynamics factors (i.e. local mass transfer coefficients and acid-base equilibrium constant) variation with the CCC operating conditions (cell number, flow rate, rotational speed and thus stationary phase retention). The initial hypotheses (the acid-base reactions occurs instantaneously at the interface and the process is mainly governed by mass transfer) are thus validated. Finally, the model was used as a tool for catharanthine and vindoline separation prediction in the whole experimental domain that corresponded to a flow rate between 20 and 60 mL/min and rotational speeds from 900 and 2100 rotation per minutes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Analysis of imazaquin in soybeans by solid-phase extraction and high-performance liquid chromatography.

    PubMed

    Guo, C; Hu, J-Y; Chen, X-Y; Li, J-Z

    2008-02-01

    An analytical method for the determination imazaquin residues in soybeans was developed. The developed liquid/liquid partition and strong anion exchange solid-phase extraction procedures provide the effective cleanup, removing the greatest number of sample matrix interferences. By optimizing mobile-phase pH water/acetonitrile conditions with phosphoric acid, using a C-18 reverse-phase chromatographic column and employing ultraviolet detection, excellent peak resolution was achieved. The combined cleanup and chromatographic method steps reported herein were sensitive and reliable for determining the imazaquin residues in soybean samples. This method is characterized by recovery >88.4%, precision <6.7% CV, and sensitivity of 0.005 ppm, in agreement with directives for method validation in residue analysis. Imazaquin residues in soybeans were further confirmed by high performance liquid chromatography-mass spectrometry (LC-MS). The proposed method was successfully applied to the analysis of imazaquin residues in soybean samples grown in an experimental field after treatments of imazaquin formulation.

  9. Determination of the thickness of the embedding phase in 0D nanocomposites

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, D.; Sánchez-López, J. C.

    2017-11-01

    0D nanocomposites formed by small nanoparticles embedded in a second phase are very interesting systems which may show properties that are beyond those observed in the original constituents alone. One of the main parameters to understand the behavior of such nanocomposites is the determination of the separation between two adjacent nanoparticles, in other words, the thickness of the embedding phase. However, its experimental measurement is extremely complicated. Therefore, its evaluation is performed by an indirect approach using geometrical models. The ones typically used represent the nanoparticles by cubes or spheres. In this paper the used geometrical models are revised, and additional geometrical models based in other parallelohedra (hexagonal prism, rhombic and elongated dodecahedron and truncated octahedron) are presented. Additionally, a hybrid model that shows a transition between the spherical and tessellated models is proposed. Finally, the different approaches are tested on a set of titanium carbide/amorphous carbon (TiC/a-C) nanocomposite films to estimate the thickness of the a-C phase and explain the observed hardness properties.

  10. Two-phase flow regimes in a horizontal microchannel with the height of 50 μm and width of 10 mm

    NASA Astrophysics Data System (ADS)

    Fina, V. P.; Ronshin, F. V.

    2017-11-01

    Two-phase flows of distilled deionized nanofiltered water and nitrogen gas in a microchannel with a height of 50 μm and a width of 10 mm have been investigated experimentally. The schlieren method has been used to determine main features of the two-phase flow in the microchannel. This method allows detecting the liquid film on the lower and upper walls of the microchannel as well as droplets of various shapes and sizes or vertical liquid bridges. Two-phase flow regimes have been observed, and their boundaries precisely determined using post-processing of the recordings. The following flow regimes have been distinguished: bubble, churn, jet, stratified and annular. Comparison of regime maps for channels of different widths has been carried out, and this parameter showed to have a significant impact on the boundaries between the regimes in microchannels of a height of less than 100 μm.

  11. Thermodynamic Modeling of Ag-Ni System Combining Experiments and Molecular Dynamic Simulation

    NASA Astrophysics Data System (ADS)

    Rajkumar, V. B.; Chen, Sinn-wen

    2017-04-01

    Ag-Ni is a simple and important system with immiscible liquids and (Ag,Ni) phases. Previously, this system has been thermodynamically modeled utilizing certain thermochemical and phase equilibria information based on conjecture. An attempt is made in this study to determine the missing information which are difficult to measure experimentally. The boundaries of the liquid miscibility gap at high temperatures are determined using a pyrometer. The temperature of the liquid ⇌ (Ag) + (Ni) eutectic reaction is measured using differential thermal analysis. Tie-lines of the Ag-Ni system at 1023 K and 1473 K are measured using a conventional metallurgical method. The enthalpy of mixing of the liquid at 1773 K and the (Ag,Ni) at 973 K is calculated by molecular dynamics simulation using a large-scale atomic/molecular massively parallel simulator. These results along with literature information are used to model the Gibbs energy of the liquid and (Ag,Ni) by a calculation of phase diagrams approach, and the Ag-Ni phase diagram is then calculated.

  12. High-throughput determination of structural phase diagram and constituent phases using GRENDEL

    NASA Astrophysics Data System (ADS)

    Kusne, A. G.; Keller, D.; Anderson, A.; Zaban, A.; Takeuchi, I.

    2015-11-01

    Advances in high-throughput materials fabrication and characterization techniques have resulted in faster rates of data collection and rapidly growing volumes of experimental data. To convert this mass of information into actionable knowledge of material process-structure-property relationships requires high-throughput data analysis techniques. This work explores the use of the Graph-based endmember extraction and labeling (GRENDEL) algorithm as a high-throughput method for analyzing structural data from combinatorial libraries, specifically, to determine phase diagrams and constituent phases from both x-ray diffraction and Raman spectral data. The GRENDEL algorithm utilizes a set of physical constraints to optimize results and provides a framework by which additional physics-based constraints can be easily incorporated. GRENDEL also permits the integration of database data as shown by the use of critically evaluated data from the Inorganic Crystal Structure Database in the x-ray diffraction data analysis. Also the Sunburst radial tree map is demonstrated as a tool to visualize material structure-property relationships found through graph based analysis.

  13. Micelle Morphology and Mechanical Response of Triblock Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, Michelle E.; Burghardt, Wesley R.; Shull, Kenneth R.

    2010-01-12

    The effect of polymer concentration on mechanical response and micelle morphology of ABA and AB copolymers in B-selective solvents has been systematically studied. Micelle morphology was determined using a combination of small-angle X-ray scattering, shear, and birefringence while mechanical response at low and high strains was determined using indentation techniques. Self-consistent field theory calculations were used to determine micelle volume fraction profiles and to construct an equilibrium phase map. The transition from spherical to cylindrical micelles increases the triblock gel modulus and energy dissipation. Combining knowledge of gel relaxation time, which determines the rate at which the gel can equilibratemore » its micelle structure, with the equilibrium phase map allows estimation of the experimental temperatures and time scales over which kinetic trapping will arrest micelle structure evolution. Kinetic trapping enables cylindrical morphologies to be obtained at significantly lower polymer fractions than is possible in equilibrated systems.« less

  14. Determination of solute descriptors by chromatographic methods.

    PubMed

    Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K

    2009-10-12

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  15. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    NASA Astrophysics Data System (ADS)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water, and NaCl in permafrost conditions are presented to illustrate the predictive capabilities of the multi-scale GHC equation. In particular, we show that the GHC equation correctly predicts 1) The density of 1h ice and methane hydrate to within 1%. 2) The melting curve for hexagonal ice. 3) The hydrate-gas phase co-existence curve. 4) Various phase equilibrium involving ice and hydrate phases. We also show that the GHC equation approach can be readily incorporated into subsurface flow simulation programs like FEHM to predict the behavior of permafrost and other reservoirs where ice and/or hydrates are present. Many geometric illustrations are used to elucidate key concepts. References A. Lucia, A Multi-Scale Gibbs Helmholtz Constrained Cubic Equation of State. J. Thermodynamics: Special Issue on Advances in Gas Hydrate Thermodynamics and Transport Properties. Available on-line [doi:10.1155/2010/238365]. A. Lucia, B.M. Bonk, A. Roy and R.R. Waterman, A Multi-Scale Framework for Multi-Phase Equilibrium Flash. Comput. Chem. Engng. In press.

  16. Exploration of phase transition in ThS under pressure: An ab-initio investigation

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.

    2018-04-01

    The ab-initio total energy calculations have been performed in thorium sulphide (ThS) to explore its high pressure phase stability. Our calculations predict a phase transformation from ambient rocksalt type structure (B1 phase) to a rhombohedral structure (R-3m phase) at ˜ 15 GPa and subsequently R-3m phase transforms to CsCl type structure (B2 phase) at ˜ 45 GPa. The first phase transition has been identified as second order type; whereas, the second transition is of first order type with volume discontinuity of 6.5%. The predicted high pressure R-3m phase is analogous to the experimentally observed hexagonal (distorted fcc) phase (Benedict et al., J. Less-Common Met., 1984) above 20 GPa. Further, using these calculations we have derived the equation of state which has been utilized to determine various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus at ambient conditions.

  17. High pressure and high temperature in situ X-ray diffraction studies in the Paris-Edinburgh cell using a laboratory X-ray source†

    NASA Astrophysics Data System (ADS)

    Toulemonde, Pierre; Goujon, Céline; Laversenne, Laetitia; Bordet, Pierre; Bruyère, Rémy; Legendre, Murielle; Leynaud, Olivier; Prat, Alain; Mezouar, Mohamed

    2014-04-01

    We have developed a new laboratory experimental set-up to study in situ the pressure-temperature phase diagram of a given pure element or compound, its associated phase transitions, or the chemical reactions involved at high pressure and high temperature (HP-HT) between different solids and liquids. This new tool allows laboratory studies before conducting further detailed experiments using more brilliant synchrotron X-ray sources or before kinetic studies. This device uses the diffraction of X-rays produced by a quasi-monochromatic micro-beam source operating at the silver radiation (λ(Ag)Kα 1, 2≈0.56 Å). The experimental set-up is based on a VX Paris-Edinburgh cell equipped with tungsten carbide or sintered diamond anvils and uses standard B-epoxy 5 or 7 mm gaskets. The diffracted signal coming from the compressed (and heated) sample is collected on an image plate. The pressure and temperature calibrations were performed by diffraction, using conventional calibrants (BN, NaCl and MgO) for determination of the pressure, and by crossing isochores of BN, NaCl, Cu or Au for the determination of the temperature. The first examples of studies performed with this new laboratory set-up are presented in the article: determination of the melting point of germanium and magnesium under HP-HT, synthesis of MgB2 or C-diamond and partial study of the P, T phase diagram of MgH2.

  18. Computation of Kinetics for the Hydrogen/Oxygen System Using the Thermodynamic Method

    NASA Technical Reports Server (NTRS)

    Marek, C. John

    1996-01-01

    A new method for predicting chemical rate constants using thermodynamics has been applied to the hydrogen/oxygen system. This method is based on using the gradient of the Gibbs free energy and a single proportionality constant D to determine the kinetic rate constants. Using this method the rate constants for any gas phase reaction can be computed from thermodynamic properties. A modified reaction set for the H/O system is determined. A11 of the third body efficiencies M are taken to be unity. Good agreement was obtained between the thermodynamic method and the experimental shock tube data. In addition, the hydrogen bromide experimental data presented in previous work is recomputed with M's of unity.

  19. Experiment plans to study preignition processes of a pool fire in low gravity. M.S. Thesis - 1988 Final Report

    NASA Technical Reports Server (NTRS)

    Schiller, David N.

    1989-01-01

    Science requirements are specified to guide experimental studies of transient heat transfer and fluid flow in an enclosure containing a two-layer gas-and-liquid system heated unevenly from above. Specifications are provided for experiments in three separate settings: (1) a normal gravity laboratory, (2) the NASA-LeRC Drop towers, and (3) a space-based laboratory (e.g., Shuttle, Space Station). A rationale is developed for both minimum and desired requirement levels. The principal objective of the experimental effort is to validate a computational model of the enclosed liquid fuel pool during the preignition phase and to determine via measurement the role of gravity on the behavior of the system. Preliminary results of single-phase normal gravity experiments and simulations are also presented.

  20. Interference modelling, experimental design and pre-concentration steps in validation of the Fenton's reagent for pesticides determination.

    PubMed

    Ostra, Miren; Ubide, Carlos; Zuriarrain, Juan

    2007-02-12

    The determination of atrazine in real samples (commercial pesticide preparations and water matrices) shows how the Fenton's reagent can be used with analytical purposes when kinetic methodology and multivariate calibration methods are applied. Also, binary mixtures of atrazine-alachlor and atrazine-bentazone in pesticide preparations have been resolved. The work shows the way in which interferences and the matrix effect can be modelled. Experimental design has been used to optimize experimental conditions, including the effect of solvent (methanol) used for extraction of atrazine from the sample. The determination of pesticides in commercial preparations was accomplished without any pre-treatment of sample apart from evaporation of solvent; the calibration model was developed for concentration ranges between 0.46 and 11.6 x 10(-5) mol L(-1) with mean relative errors under 4%. Solid-phase extraction is used for pre-concentration of atrazine in water samples through C(18) disks, and the concentration range for determination was established between 4 and 115 microg L(-1) approximately. Satisfactory results for recuperation of atrazine were always obtained.

  1. First determination of the valence band dispersion of CH3NH3PbI3 hybrid organic-inorganic perovskite

    NASA Astrophysics Data System (ADS)

    Lee, Min-I.; Barragán, Ana; Nair, Maya N.; Jacques, Vincent L. R.; Le Bolloc'h, David; Fertey, Pierre; Jemli, Khaoula; Lédée, Ferdinand; Trippé-Allard, Gaëlle; Deleporte, Emmanuelle; Taleb-Ibrahimi, Amina; Tejeda, Antonio

    2017-07-01

    The family of hybrid organic-inorganic halide perovskites is in the limelight because of their recently discovered high photovoltaic efficiency. These materials combine photovoltaic energy conversion efficiencies exceeding 22% and low-temperature and low-cost processing in solution; a breakthrough in the panorama of renewable energy. Solar cell operation relies on the excitation of the valence band electrons to the conduction band by solar photons. One factor strongly impacting the absorption efficiency is the band dispersion. The band dispersion has been extensively studied theoretically, but no experimental information was available. Herein, we present the first experimental determination of the valence band dispersion of methylammonium lead halide in the tetragonal phase. Our results pave the way for contrasting the electronic hopping or the electron effective masses in different theories by comparing to our experimental bands. We also show a significant broadening of the electronic states, promoting relaxed conditions for photon absorption, and demonstrate that the tetragonal structure associated to the octahedra network distortion below 50 °C induces only a minor modification of the electronic bands, with respect to the cubic phase at high temperature, thus minimizing the impact of the cubic-tetragonal transition on solar cell efficiencies.

  2. Investigation of Dispersed and Dispersed Annular (rivulet or Thin Film) Flow Phase Separation in Tees.

    NASA Astrophysics Data System (ADS)

    McCreery, Glenn Ernest

    An experimental and analytical investigation of dispersed and dispersed-annular (rivulet or thin film) flow phase separation in tees has been successfully completed. The research was directed at, but is not specific to, determining flow conditions, following a loss of coolant accident, in the large rectangular passageways leading to vacuum buildings in the containment envelope of some CANDU nuclear reactors. The primary objectives of the research were to: (1) obtain experimental data to help formulate and test mechanistic analytical models of phase separation, and (2) develop the analytical models in computer programs which predict phase separation from upstream flow and pressure conditions and downstream and side branch pressure boundary conditions. To meet these objectives an air-water experimental apparatus was constructed, and consists of large air blowers attached to a long rectangular duct leading to a tee in the horizontal plane. A variety of phenomena was investigated including, for comparison with computer predictions, air streamlines and eddy boundary geometry, drop size spectra, macroscopic mass balances, liquid rivulet pathlines, and trajectories of drops of known size and velocity. Four separate computer programs were developed to analyze phase separation. Three of the programs are used sequentially to calculate dispersed mist phase separation in a tee. The fourth is used to calculate rivulet or thin film pathlines. Macroscopic mass balances are calculated from a summation of mass balances for drops with representative sizes (and masses) spaced across the drop size spectrum. The programs are tested against experimental data, and accurately predict gas flow fields, drop trajectories, rivulet pathlines and macroscopic mass balances. In addition to development of the computer programs, analysis was performed to specify the scaling of dispersed mist and rivulet or thin film flow, to investigate pressure losses in tees, and the inter-relationship of loss coefficients, contraction coefficients, and eddy geometry. The important transient effects of liquid storage in eddies were also analyzed.

  3. Characteristics of phase-change materials containing oxide nano-additives for thermal storage

    PubMed Central

    2012-01-01

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224

  4. Experimental sleep restriction causes endothelial dysfunction in healthy humans.

    PubMed

    Calvin, Andrew D; Covassin, Naima; Kremers, Walter K; Adachi, Taro; Macedo, Paula; Albuquerque, Felipe N; Bukartyk, Jan; Davison, Diane E; Levine, James A; Singh, Prachi; Wang, Shihan; Somers, Virend K

    2014-11-25

    Epidemiologic evidence suggests a link between short sleep duration and cardiovascular risk, although the nature of any relationship and mechanisms remain unclear. Short sleep duration has also been linked to an increase in cardiovascular events. Endothelial dysfunction has itself been implicated as a mediator of heightened cardiovascular risk. We sought to determine the effect of 8 days/8 nights of partial sleep restriction on endothelial function in healthy humans. Sixteen healthy volunteers underwent a randomized study of usual sleep versus sleep restriction of two-thirds normal sleep time for 8 days/8 nights in a hospital-based clinical research unit. The main outcome was endothelial function measured by flow-mediated brachial artery vasodilatation (FMD). Those randomized to sleep restriction slept 5.1 hours/night during the experimental period compared with 6.9 hours/night in the control group. Sleep restriction was associated with significant impairment in FMD (8.6±4.6% during the initial pre-randomization acclimation phase versus 5.2±3.4% during the randomized experimental phase, P=0.01) whereas no change was seen in the control group (5.0±3.0 during the acclimation phase versus 6.73±2.9% during the experimental phase, P=0.10) for a between-groups difference of -4.40% (95% CI -7.00 to -1.81%, P=0.003). No change was seen in non-flow mediated vasodilatation (NFMD) in either group. In healthy individuals, moderate sleep restriction causes endothelial dysfunction. ClinicalTrials.gov. Unique identifier: NCT01334788. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  5. Development of method for experimental determination of wheel-rail contact forces and contact point position by using instrumented wheelset

    NASA Astrophysics Data System (ADS)

    Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.

    2017-07-01

    This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.

  6. Enthalpies of Formation of Hydrazine and Its Derivatives.

    PubMed

    Dorofeeva, Olga V; Ryzhova, Oxana N; Suchkova, Taisiya A

    2017-07-20

    Enthalpies of formation, Δ f H 298 ° , in both the gas and condensed phase, and enthalpies of sublimation or vaporization have been estimated for hydrazine, NH 2 NH 2 , and its 36 various derivatives using quantum chemical calculations. The composite G4 method has been used along with isodesmic reaction schemes to derive a set of self-consistent high-accuracy gas-phase enthalpies of formation. To estimate the enthalpies of sublimation and vaporization with reasonable accuracy (5-20 kJ/mol), the method of molecular electrostatic potential (MEP) has been used. The value of Δ f H 298 ° (NH 2 NH 2 ,g) = 97.0 ± 3.0 kJ/mol was determined from 75 isogyric reactions involving about 50 reference species; for most of these species, the accurate Δ f H 298 ° (g) values are available in Active Thermochemical Tables (ATcT). The calculated value is in excellent agreement with the reported results of the most accurate models based on coupled cluster theory (97.3 kJ/mol, the average of six calculations). Thus, the difference between the values predicted by high-level theoretical calculations and the experimental value of Δ f H 298 ° (NH 2 NH 2 ,g) = 95.55 ± 0.19 kJ/mol recommended in the ATcT and other comprehensive reference sources is sufficiently large and requires further investigation. Different hydrazine derivatives have been also considered in this work. For some of them, both the enthalpy of formation in the condensed phase and the enthalpy of sublimation or vaporization are available; for other compounds, experimental data for only one of these properties exist. Evidence of accuracy of experimental data for the first group of compounds was provided by the agreement with theoretical Δ f H 298 ° (g) value. The unknown property for the second group of compounds was predicted using the MEP model. This paper presents a systematic comparison of experimentally determined enthalpies of formation and enthalpies of sublimation or vaporization with the results of calculations. Because of relatively large uncertainty in the estimated enthalpies of sublimation, it was not always possible to evaluate the accuracy of the experimental values; however, this model allowed us to detect large errors in the experimental data, as in the case of 5,5'-hydrazinebistetrazole. The enthalpies of formation and enthalpies of sublimation or vaporization have been predicted for the first time for ten hydrazine derivatives with no experimental data. A recommended set of self-consistent experimental and calculated gas-phase enthalpies of formation of hydrazine derivatives can be used as reference Δ f H 298 ° (g) values to predict the enthalpies of formation of various hydrazines by means of isodesmic reactions.

  7. A new experimental method to determine the sorption isotherm of a liquid in a porous medium.

    PubMed

    Ouoba, Samuel; Cherblanc, Fabien; Cousin, Bruno; Bénet, Jean-Claude

    2010-08-01

    Sorption from the vapor phase is an important factor controlling the transport of volatile organic compounds (VOCs) in the vadose zone. Therefore, an accurate description of sorption behavior is essential to predict the ultimate fate of contaminants. Several measurement techniques are available in the case of water, however, when dealing with VOCs, the determination of sorption characteristics generally relies on gas chromatography. To avoid some drawbacks associated with this technology, we propose a new method to determine the sorption isotherm of any liquid compounds adsorbed in a soil. This method is based on standard and costless transducers (gas pressure, temperature) leading to a simple and transportable experimental device. A numerical estimation underlines the good accuracy and this technique is validated on two examples. Finally, this method is applied to determine the sorption isotherm of three liquid compounds (water, heptane, and trichloroethylene) in a clayey soil.

  8. Determination of the θ23 octant in long baseline neutrino experiments within and beyond the standard model

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Pulido, João; Maalampi, Jukka; Vihonen, Sampsa

    2018-02-01

    The recent data indicate that the neutrino mixing angle θ23 deviates from the maximal-mixing value of 45°, showing two nearly degenerate solutions, one in the lower octant (LO) (θ23<4 5 ° ) and one in the higher octant (HO) (θ23>4 5 ° ). We investigate, using numerical simulations, the prospects for determining the octant of θ23 in the future long baseline oscillation experiments. We present our results as contour plots on the (θ23-4 5 ° , δ )-plane, where δ is the C P phase, showing the true values of θ23 for which the octant can be experimentally determined at 3 σ , 2 σ and 1 σ confidence level. In particular, we study the impact of the possible nonunitarity of neutrino mixing on the experimental determination of θ23 in those experiments.

  9. Non-linear second harmonic generation (SHG) studies of BaTiO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    Vlahos, Eftihia; Lee, Che-Hui; Wu, Pingping; Wung Bark, Chung; Jang, Ho Won; Folkman, Chad; Hyub Baek, Seung; Park, J. W.; Biegalski, Mike; Tenne, Dmitri; Schlom, Darrell; Chen, Long-Qing; Eom, Chang-Beom; Gopalan, Venkatraman

    2010-03-01

    Theoretical phase-field simulations predict that certain types of superlattices consisting of alternating (BaTiO3)n/(SrTiO3)n layers have novel vortex domain wall configurations which give rise to exceptionally high polarization tunability combined with negligible polarization hysteresis. Optical second harmonic generation (SHG) was used to probe the phase and transition temperatures of multilayer (BaTiO3)m/(SrTiO3)n superlattices, as a function of epitaxial strain. In addition, in-plane electro-optic measurements were carried out. The experimental results are in excellent agreement both with theoretical predictions, as well as the temperature-strain phase diagram obtained experimentally from UV Raman studies. The ferroelectric, in-plane SHG signal, from the tensile strained SrTiO3 layers reveals an mm2 point group symmetry, whereas the point group symmetry of the compressively strained BaTiO3 layers, was determined to be 4mm.

  10. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.

  11. The impact of mathematical models of teaching materials on square and rectangle concepts to improve students' mathematical connection ability and mathematical disposition in middle school

    NASA Astrophysics Data System (ADS)

    Afrizal, Irfan Mufti; Dachlan, Jarnawi Afghani

    2017-05-01

    The aim of this study was to determine design of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition in middle school through experimental studies. The design in this study was quasi-experimental with non-equivalent control group type. This study consisted of two phases, the first phase was identify students' learning obstacle on square and rectangle concepts to obtain the appropriate design of teaching materials, beside that there were internalization of the values or characters expected to appear on students through the teaching materials. Second phase was experiments on the effectiveness and efficiency of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition. The result of this study are 1) Students' learning obstacle that have identified was categorized as an epistemological obstacle. 2) The improvement of students' mathematical connection ability and mathematical disposition who used mathematical teaching materials is better than the students who used conventional learning.

  12. Quantitative hard x-ray phase contrast imaging of micropipes in SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, V. G.; Argunova, T. S.; Je, J. H., E-mail: jhje@postech.ac.kr

    2013-12-15

    Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating themore » diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters.« less

  13. Weyl-Kondo semimetal in heavy-fermion systems

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Grefe, Sarah E.; Paschen, Silke; Si, Qimiao

    2018-01-01

    Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy-fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here, we advance a Weyl-Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy-fermion semimetal Ce3Bi4Pd3. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations and open up an avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.

  14. An assessment of the accuracy of orthotropic photoelasticity

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Liu, D. H.

    1984-01-01

    The accuracy of orthotropic photoelasticity was studied. The study consisted of both theoretical and experimental phases. In the theoretical phase a stress-optic law was developed. The stress-optic law included the effects of residual birefringence in the relation between applied stress and the material's optical response. The experimental phase had several portions. First, it was shown that four-point bending tests and the concept of an optical neutral axis could be conveniently used to calibrate the stress-optic behavior of the material. Second, the actual optical response of an orthotropic disk in diametral compression was compared with theoretical predictions. Third, the stresses in the disk were determined from the observed optical response, the stress-optic law, and a finite-difference form of the plane stress equilibrium equations. It was concluded that orthotropic photoelasticity is not as accurate as isotropic photoelasticity. This is believed to be due to the lack of good fringe resolution and the low sensitivity of most orthotropic photoelastic materials.

  15. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  16. HAMLET -Human Model MATROSHKA for Radiation Exposure Determination of Astronauts -Current status and results

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Burmeister, Soenke; Labrenz, Johannes; Hager, Luke; Palfalvi, Jozsef K.; Hajek, Michael; Puchalska, Monika; Sihver, Lembit

    The exploration of space as seen in specific projects from the European Space Agency (ESA) acts as groundwork for human long duration space missions. One of the main constraints for long duration human missions is radiation. The radiation load on astronauts and cosmonauts in space (as for the ISS) is a factor of 100 higher than the natural radiation on Earth and will further increase should humans travel to Mars. In preparation for long duration space missions it is important to evaluate the impact of space radiation in order to secure the safety of the astronauts and minimize their radiation risks. To determine the radiation risk on humans one has to measure the radiation doses to radiosensitive organs within the human body. One way to approach this is the ESA facility MATROSHKA (MTR), under the scientific and project lead of DLR. It is dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS), and was launched in January 2004. MTR is currently preparing for its fourth experimental phase inside the Japanese Experimental Module (JEM) in summer 2010. MTR, which mimics a human head and torso, is an anthropomorphic phantom containing over 6000 radiation detectors to determine the depth dose and organ dose distribution in the body. It is the largest international research initiative ever performed in the field of space dosimetry and combines the expertise of leading research institutions around the world, thereby generating a huge pool of data of potentially immense value for research. Aiming at optimal scientific exploitation, the FP7 project HAMLET aims to process and compile the data acquired individually by the participating laboratories of the MATROSHKA experiment. Based on experimental input from the MATROSHKA experiment phases as well as on radiation transport calculations, a three-dimensional model for the distribution of radiation dose in an astronaut's body will be built up. The scientific achievements contribute essentially to radiation risk estimations for future interplanetary space exploration by humans, putting them on a solid experimental and theoretical basis. The talk will give an overview of the current status of the MATROSHKA data evaluation and results and comparisons of the first three MTR experimental phases (MTR-1, 2A and 2B). The HAMLET project is funded by the European Commission under the EUs Seventh Frame-work Programme (FP7) under Project Nr: 218817 and coordinated by the German Aerospace Center (DLR) http://www-fp7-hamlet.eu

  17. Structural analysis of a set of proteins resulting from a bacterial genomics project.

    PubMed

    Badger, J; Sauder, J M; Adams, J M; Antonysamy, S; Bain, K; Bergseid, M G; Buchanan, S G; Buchanan, M D; Batiyenko, Y; Christopher, J A; Emtage, S; Eroshkina, A; Feil, I; Furlong, E B; Gajiwala, K S; Gao, X; He, D; Hendle, J; Huber, A; Hoda, K; Kearins, P; Kissinger, C; Laubert, B; Lewis, H A; Lin, J; Loomis, K; Lorimer, D; Louie, G; Maletic, M; Marsh, C D; Miller, I; Molinari, J; Muller-Dieckmann, H J; Newman, J M; Noland, B W; Pagarigan, B; Park, F; Peat, T S; Post, K W; Radojicic, S; Ramos, A; Romero, R; Rutter, M E; Sanderson, W E; Schwinn, K D; Tresser, J; Winhoven, J; Wright, T A; Wu, L; Xu, J; Harris, T J R

    2005-09-01

    The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. Copyright 2005 Wiley-Liss, Inc.

  18. Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.

    2017-12-01

    The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m-2·s-1 to 70 kg·m-2·s-1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.

  19. Effect of annealing temperature on titania nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manikandan, K., E-mail: sanjaymani367@gmail.com; Arumugam, S., E-mail: sanjaymani367@gmail.com; Chandrasekaran, G.

    2014-04-24

    Titania polycrystalline samples are prepared by using sol-gel route hydrolyzing a alkoxide titanium precursor under acidic conditions. The as prepared samples are treated with different calcination temperatures. The anatase phase of titania forms when treated below 600°C, above that temperature the anatase phase tends to transform into the rutile phase of titania. The experimental determination of average grain size, phase formation, lattice parameters and the crystal structures of titania samples at different calcinations is done using X-ray diffraction (XRD). Fourier Transform Infra-red Spectroscopy (FTIR), UV-vis-NIR spectroscopy and Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-ray are used to characterizemore » the samples to bring impact on the respective properties.« less

  20. Si-Ge-metal ternary phase diagram calculations

    NASA Technical Reports Server (NTRS)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  1. Two-Phase Eutectic Growth in Al-Cu and Al-Cu-Ag

    NASA Astrophysics Data System (ADS)

    Senninger, Oriane; Peters, Matthew; Voorhees, Peter W.

    2018-02-01

    The microstructure developed by two-phase lamellar eutectics (α ) -(θ {-Al}2{Cu}) in Al-Cu and Al-Cu-Ag alloys is analyzed. A model of two-phase eutectic growth in multicomponent alloys is used to determine the scaling law of the eutectic microstructure using the alloy thermophysical properties. The application of the model to these alloys shows that the addition of Ag to Al-Cu alloys does not significantly change the length scale of the microstructure, which is in agreement with previous experimental studies. This is explained by the combined phenomena of the decrease in interface energies with the addition of Ag and the superheating of the (α ) phase interface induced by the Ag composition profile.

  2. Miniature infrared data acquisition and telemetry system

    NASA Technical Reports Server (NTRS)

    Stokes, J. H.; Ward, S. M.

    1985-01-01

    The Miniature Infrared Data Acquisition and Telemetry (MIRDAT) Phase 1 study was performed to determine the technical and commercial feasibility of producing a miniaturized electro-optical telemetry system. This system acquires and transmits experimental data from aircraft scale models for realtime monitoring in wind tunnels. During the Phase 1 study, miniature prototype MIRDAT telemetry devices were constructed, successfully tested in the laboratory and delivered to the user for wind tunnel testing. A search was conducted for commercially available components and advanced hybrid techniques to further miniaturize the system during Phase 2 development. A design specification was generated from laboratory testing, user requirements and discussions with component manufacturers. Finally, a preliminary design of the proposed MIRDAT system was documented for Phase 2 development.

  3. Vacancy-mediated fcc/bcc phase separation in Fe1 -xNix ultrathin films

    NASA Astrophysics Data System (ADS)

    Menteş, T. O.; Stojić, N.; Vescovo, E.; Ablett, J. M.; Niño, M. A.; Locatelli, A.

    2016-08-01

    The phase separation occurring in Fe-Ni thin films near the Invar composition is studied by using high-resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 ∘C ,Fe0.70Ni0.30 films on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the diffusing species in forming the chemical heterogeneity. The experimentally determined energy barrier of 1.59 ±0.09 eV is identified as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separation process is attributed to vacancy creation without interstitials.

  4. System of multifunctional Jones matrix tomography of phase anisotropy in diagnostics of endometriosis

    NASA Astrophysics Data System (ADS)

    Ushenko, V. O.; Koval, G. D.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Vanchuliak, O.; Motrich, A. V.; Gorsky, M. P.; Meglinskiy, I.

    2017-09-01

    The paper presents the results of Jones-matrix mapping of uterine wall histological sections with second-degree and third-degree endometriosis. The technique of experimental measurement of coordinate distributions of the modulus and phase values of Jones matrix elements is suggested. Within the statistical and cross-correlation approaches the modulus and phase maps of Jones matrix images of optically thin biological layers of polycrystalline films of plasma and cerebrospinal fluid are analyzed. A set of objective parameters (statistical and generalized correlation moments), which are the most sensitive to changes in the phase of anisotropy, associated with the features of polycrystalline structure of uterine wall histological sections with second-degree and third-degree endometriosis are determined.

  5. Experimental analysis of pressure controlled atomization process (PCAP) coatings for replacement of hard chromium plating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierney, J.C.; Glovan, R.J.; Witt, S.J.

    1995-12-31

    A four-phase experimental design was utilized to evaluate the abrasive wear and corrosion protection characteristics of VERSAlloy 50 coatings applied to AISI 4130 steel sheet. The coatings were applied with the Pressure Controlled Atomization Process (PCAP), a new thermal spray process being developed for the United States Air Force to replace hard chromium plating. Phase 1 of the design consisted of an evaluation of deposit profiles that were sprayed at five different standoff distances. Profile measurements yielded standard deviations ({sigma}) of the plume at each of the spray distances. Phase 2 consisted of a completely randomized series of eight spraymore » tests in which the track gap or distance between consecutive spray passes was varied by amounts of 0.5{sigma}, 1{sigma}, 2{sigma}, and 3{sigma}. The sprayed test coupons were then evaluated for corrosion protection, abrasive wear resistance, microhardness, and porosity. Results from Phase 2 were used to determine the best track gap or overlap for Phase 3 and Phase 4 testing. Phase 3 consisted of 22-run central composite design. The test coupons were evaluated the same as in Phase 2. Statistical analysis of Phase 3 data revealed that the optimal system operating parameters produced coatings that would either provide superior corrosion protection or resistance to abrasive wear. Phase 4 consisted of four spray tests to validate the results obtained in Phase 3. Phase 4 test coupons were again evaluated with the same analysis as in Phases 2 and 3. The validation tests indicated that PCAP system operating parameters could be controlled to produce VERSAlloy 50 coatings with superior corrosion protection or resistance to abrasive wear.« less

  6. Determination of phase from the ridge of CWT using generalized Morse wavelet

    NASA Astrophysics Data System (ADS)

    Kocahan, Ozlem; Tiryaki, Erhan; Coskun, Emre; Ozder, Serhat

    2018-03-01

    The selection of wavelet is an important step in order to determine the phase from the fringe patterns. In the present work, a new wavelet for phase retrieval from the ridge of continuous wavelet transform (CWT) is presented. The phase distributions have been extracted from the optical fringe pattern by choosing the zero order generalized morse wavelet (GMW) as a mother wavelet. The aim of the study is to reveal the ways in which the two varying parameters of GMW affect the phase calculation. To show the validity of this method, an experimental study has been conducted by using the diffraction phase microscopy (DPM) setup; consequently, the profiles of red blood cells have been retrieved. The results for the CWT ridge technique with GMW have been compared with the results for the Morlet wavelet and the Paul wavelet; the results are almost identical for Paul and zero order GMW because of their degree of freedom. Also, for further discussion, the Fourier transform and the Stockwell transform have been applied comparatively. The outcome of the comparison reveals that GMWs are highly applicable to the research in various areas, predominantly biomedicine.

  7. Determination of the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system and a comparison between two theoretical methods for synthetic phase diagrams

    PubMed Central

    Han, Xu; Liu, Yang; Critser, John K.

    2010-01-01

    Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a “mass redemption” method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system. PMID:20447385

  8. Communication: Protonation process of formic acid from the ionization and fragmentation of dimers induced by synchrotron radiation in the valence region

    NASA Astrophysics Data System (ADS)

    Arruda, Manuela S.; Medina, Aline; Sousa, Josenilton N.; Mendes, Luiz A. V.; Marinho, Ricardo R. T.; Prudente, Frederico V.

    2016-04-01

    The ionization and fragmentation of monomers of organic molecules have been extensively studied in the gas phase using mass spectroscopy. In the spectra of these molecules it is possible to identify the presence of protonated cations, which have a mass-to-charge ratio one unit larger than the parent ion. In this work, we investigate this protonation process as a result of dimers photofragmentation. Experimental photoionization and photofragmentation results of doubly deuterated formic acid (DCOOD) in the gas phase by photons in the vacuum ultraviolet region are presented. The experiment was performed by using a time-of-flight mass spectrometer installed at the Brazilian Synchrotron Light Laboratory and spectra for different pressure values in the experimental chamber were obtained. The coupled cluster approach with single and double substitutions was employed to assist the experimental analysis. Results indicate that protonated formic acid ions are originated from dimer dissociation, and the threshold photoionization of (DCOOD)ṡD+ is also determined.

  9. Enthalpy of Formation of N 2 H 4 (Hydrazine) Revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, David; Bross, David H.; Ruscic, Branko

    2017-08-02

    In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57more » ± 0.47 kJ/mol at 0 K (97.41 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and FPD enthalpies.« less

  10. Enthalpy of Formation of N2H4 (Hydrazine) Revisited.

    PubMed

    Feller, David; Bross, David H; Ruscic, Branko

    2017-08-17

    In order to address the accuracy of the long-standing experimental enthalpy of formation of gas-phase hydrazine, fully confirmed in earlier versions of Active Thermochemical Tables (ATcT), the provenance of that value is re-examined in light of new high-end calculations of the Feller-Peterson-Dixon (FPD) variety. An overly optimistic determination of the vaporization enthalpy of hydrazine, which created an unrealistically strong connection between the gas phase thermochemistry and the calorimetric results defining the thermochemistry of liquid hydrazine, was identified as the probable culprit. The new enthalpy of formation of gas-phase hydrazine, based on balancing all available knowledge, was determined to be 111.57 ± 0.47 kJ/mol at 0 K (97.42 ± 0.47 kJ/mol at 298.15 K). Close agreement was found between the ATcT (even excluding the latest theoretical result) and the FPD enthalpy.

  11. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.

  12. Using SANS with Contrast-Matched Lipid Bicontinuous Cubic Phases To Determine the Location of Encapsulated Peptides, Proteins, and Other Biomolecules.

    PubMed

    van 't Hag, Leonie; de Campo, Liliana; Garvey, Christopher J; Feast, George C; Leung, Anna E; Yepuri, Nageshwar Rao; Knott, Robert; Greaves, Tamar L; Tran, Nhiem; Gras, Sally L; Drummond, Calum J; Conn, Charlotte E

    2016-07-21

    An understanding of the location of peptides, proteins, and other biomolecules within the bicontinuous cubic phase is crucial for understanding and evolving biological and biomedical applications of these hybrid biomolecule-lipid materials, including during in meso crystallization and drug delivery. While theoretical modeling has indicated that proteins and additive lipids might phase separate locally and adopt a preferred location in the cubic phase, this has never been experimentally confirmed. We have demonstrated that perfectly contrast-matched cubic phases in D2O can be studied using small-angle neutron scattering by mixing fully deuterated and hydrogenated lipid at an appropriate ratio. The model transmembrane peptide WALP21 showed no preferential location in the membrane of the diamond cubic phase of phytanoyl monoethanolamide and was not incorporated in the gyroid cubic phase. While deuteration had a small effect on the phase behavior of the cubic phase forming lipids, the changes did not significantly affect our results.

  13. Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka

    2011-07-01

    A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.

  14. Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Boedeker, Laurence R.

    1993-01-01

    Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman scattering excited by a KrF excimer laser pulse was investigated for SSME exit plane temperature and major species concentration measurements. The relative concentrations of molecular hydrogen and water vapor would be determined by measuring the integrated Q-branch scattering signals through narrow bandpass filters in front of photomultipliers. The temperature would be determined by comparing the signal from a single hydrogen rotational Raman line to the total hydrogen Q-branch signal. The rotational Raman line would be isolated by a monochromator and detected with a PMT.

  15. Phase Equilibria of the Ternary Sn-Pb-Co System at 250°C and Interfacial Reactions of Co with Sn-Pb Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Chao-hong; Kuo, Chun-yi; Yang, Nian-cih

    2015-11-01

    The isothermal section of the ternary Sn-Pb-Co system at 250°C was experimentally determined through a series of the equilibrated Sn-Pb-Co alloys of various compositions. The equilibrium phases were identified on the basis of compositional analysis. For the Sn-Co intermetallic compounds (IMCs), CoSn3, CoSn2, CoSn and Co3Sn2, the Pb solubility was very limited. There exist five tie-triangle regions. The Co-Pb system involves one monotectic reaction, so the phase separation of liquid alloys near the Co-Pb side occurred prior to solidification. The immiscibility field was also determined. Additionally, interfacial reactions between Co and Sn-Pb alloys were conducted. The reaction phase for the Sn-48 at.%Pb and Sn-58 at.%Pb at 250°C was CoSn3 and CoSn2, respectively. Both of them were simultaneously formed in the Sn-53 at.%Pb/Co. The formed IMCs were closely associated to the phase equilibria relationship of the liquid-CoSn3-CoSn2 tie-triangle. Furthermore, with increasing temperatures, the phase formed in equilibrium with Sn-37 wt.%Pb was found to transit from CoSn3 to CoSn2 at 275°C. We propose a simple method of examining the phase transition temperature in the interfacial reactions to determine the boundaries of the liquid-CoSn3-CoSn2 tie-triangles at different temperatures.

  16. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y., E-mail: flemming@kemi.dtu.dk

    2016-04-14

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for allmore » water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 10{sup 8}–10{sup 9} V m{sup −1}, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ∼1 V (∼2 ⋅ 10{sup 8} V m{sup −1}) when in the fluid phase with a monovalent counter-ion and ∼1.4 V (∼2.8 ⋅ 10{sup 8} V m{sup −1}) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) membranes but comparable to the number inferred for 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) membranes. Some of the properties of the DMPG membrane are compared with those of the neutral zwitterionic DMPC bilayer membrane at 303 K and 1 atm, which is the same reduced temperature with respect to the gel-to-fluid transition temperature as 310 K is for the DMPG bilayer membrane.« less

  17. Experimental investigation of particle surface interactions for turbomachinery application

    NASA Astrophysics Data System (ADS)

    Hamed, A.; Tabakoff, W.

    This paper describes an experimental investigation to determine the particle restitution characteristics after impacting solid targets in a particulate flow wind tunnel. The tests simulate the two phase flow conditions encountered in turbomachinery operating in particle laden flow environments. Both incoming and rebounding velocities are measured using a three color Argon Ion laser in backward scattered mode through a window in the tunnel section containing the impact target. The experimental results are presented for ash particles impinging on RENE 41 targets at different impact conditions. The presented results are applicable to particle dynamics simulations in gas turbine engines and to the prediction of the associated blade surface erosion.

  18. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  19. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    NASA Astrophysics Data System (ADS)

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh

    2016-03-01

    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  20. Phononic band gaps and phase singularities in the ultrasonic response from toughened composites

    NASA Astrophysics Data System (ADS)

    Smith, Robert A.; Nelson, Luke J.; Mienczakowski, Martin J.

    2018-04-01

    Ultrasonic 3D characterization of ply-level features in layered composites, such as out-of-plane wrinkles and ply drops, is now possible with carefully applied analytic-signal analysis. Study of instantaneous amplitude, phase and frequency in the ultrasonic response has revealed some interesting effects, which become more problematic for 3D characterization as the inter-ply resin-layer thicknesses increase. In modern particle-toughened laminates, the thicker resin layers cause phase singularities to be observed; these are locations where the instantaneous amplitude is zero, so the instantaneous phase is undefined. The depth at which these occur has been observed experimentally to vary with resin- layer thickness, such that a phase-singularity surface is formed; beyond this surface, the ultrasonic response is reduced and significantly more difficult to interpret, so a method for removing the effect would be advantageous. The underlying physics has been studied using an analytical one-dimensional multi-layer model. This has been sufficient to determine that the cause is linked to a phononic band gap in the ultrasound transmitted through multiple equally-spaced partial reflectors. As a result, the phase singularity also depends on input-pulse center frequency and bandwidth. Various methods for overcoming the confusing effects in the data have been proposed and subsequently investigated using the analytical model. This paper will show experimental and modelled evidence of phase-singularities and phase-singularity surfaces, as well as the success of methods for reducing their effects.

  1. Hysteresis of liquid adsorption in porous media by coarse-grained Monte Carlo with direct experimental validation

    NASA Astrophysics Data System (ADS)

    Zeidman, Benjamin D.; Lu, Ning; Wu, David T.

    2016-05-01

    The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres and a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images.

  2. Hysteresis of liquid adsorption in porous media by coarse-grained Monte Carlo with direct experimental validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeidman, Benjamin D.; Lu, Ning; Wu, David T., E-mail: dwu@mines.edu

    2016-05-07

    The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres andmore » a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images.« less

  3. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Christopher A.

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulatemore » the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.« less

  4. The hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the evaluation of hepatic fibrosis and early liver cirrhosis in a rat model: an experimental study.

    PubMed

    Ma, Chunmei; Liu, Ailian; Wang, Yuanyuan; Geng, Xiaoling; Hao, Li; Song, Qingwei; Sun, Bo; Wang, Heqing; Zhao, Gang

    2014-07-17

    To evaluate the hepatocyte phase of Gd-EOB-DTPA-enhanced MRI in the early diagnosis of hepatic fibrosis and cirrhosis and assessment of liver function in a rat model. In 2 groups of SD rats, liver fibrosis was induced in experimental animals by repetitive carbon tetrachloride injections, while the control group received saline injections. Five experimental rats and 2 control rats were randomly selected at weeks 4, 8, 12. One week after carbon tetrachloride administration, MRI (FIRM T1WI) scan was performed. Gd-EOB-DTPA (0.08mL) was injected into the rat's tail vein and hepatocyte phase images were obtained after 20min. The pre-enhanced phase and hepatocyte phase signal intensities (SI) were measured, and the relative contrast enhancement index (RCEI) was calculated. ANOVA analysis (LSD) of RCEI values in controls (n=6), hepatic fibrosis (n=7), and histopathologically-determined early cirrhosis group (n=6) was performed. RECI values showed a decreasing trend in the control group, hepatic fibrosis and early cirrhosis groups (1.11±0.43, 0.96±0.22, and 0.57±0.33, respectively). While the difference between the control and early cirrhosis groups was statistically significant (p=0.013), there was no significant difference in the hepatic fibrosis group vs the control (p=0.416) and the hepatic fibrosis group vs the early cirrhosis group (p=0.054). Hepatocyte phase RCEI values obtained with Gd-EOB-DTPA-enhanced MRI scan indicate liver injury in hepatic fibrosis and early cirrhosis. RCEI values are helpful for early diagnosis of liver cirrhosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Phase Control in Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo

    The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References

  6. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  7. ESR imaging investigations of two-phase systems.

    PubMed

    Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert

    2007-06-01

    The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.

  8. Exploration of phase transition in Th2C under pressure: An Ab-initio investigation

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.

    2018-05-01

    With the motivation of searching for new compounds in the Th-C system, we have performed ab initio evolutionary searches for all the stable compounds in this binary system in the pressure range of 0-100 GPa. We have found previously unknown, thermodynamically stable, composition Th2C along with experimentally known ThC, ThC2 and Th2C3 phases at 0 GPa. Interestingly at pressure of 13 GPa the predicted ground state orthorhombic (SG no. 59, Pmmn) phase of Th2C transforms to trigonal (SG no. 164, P-3m1) phase. We also find the mechanical and dynamical stability of both the phases. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of Pmmn phase at ambient conditions.

  9. Acquisition and Tracking Behavior of Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Viterbi, A. J.

    1958-01-01

    Phase-locked or APC loops have found increasing applications in recent years as tracking filters, synchronizing devices, and narrowband FM discriminators. Considerable work has been performed to determine the noise-squelching properties of the loop when it is operating in or near phase lock and is functioning as a linear coherent detector. However, insufficient consideration has been devoted to the non-linear behavior of the loop when it is out of lock and in the process of pulling in. Experimental evidence has indicated that there is a strong tendency for phase-locked loops to achieve lock under most circumstances. However, the analysis which has appeared in the literature iis limited to the acquisition of a constant frequency reference signal with only one phase-locked loop filter configuration. This work represents an investigation of frequency acquisition properties of phase-locked loops for a variety of reference-signal behavior and loop configurations

  10. Instability of Insulators near Quantum Phase Transitions

    NASA Astrophysics Data System (ADS)

    Doron, A.; Tamir, I.; Levinson, T.; Ovadia, M.; Sacépé, B.; Shahar, D.

    2017-12-01

    Thin films of amorphous indium oxide undergo a magnetic field driven superconducting to insulator quantum phase transition. In the insulating phase, the current-voltage characteristics show large current discontinuities due to overheating of electrons. We show that the onset voltage for the discontinuities vanishes as we approach the quantum critical point. As a result, the insulating phase becomes unstable with respect to any applied voltage making it, at least experimentally, immeasurable. We emphasize that unlike previous reports of the absence of linear response near quantum phase transitions, in our system, the departure from equilibrium is discontinuous. Because the conditions for these discontinuities are satisfied in most insulators at low temperatures, and due to the decay of all characteristic energy scales near quantum phase transitions, we believe that this instability is general and should occur in various systems while approaching their quantum critical point. Accounting for this instability is crucial for determining the critical behavior of systems near the transition.

  11. Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Marker, Cassie

    An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database ensuring that the sublattice models are compatible with each other. For subsystems, such as the Sn-Ta system, where no thermodynamic description had been evaluated and minimal experimental data was available, first-principles calculations based on DFT were used. The Sn-Ta system has two intermetallic phases, TaSn2 and Ta3Sn, with three solution phases: bcc, body centered tetragonal (bct) and diamond. First-principles calculations were completed on the intermetallic and solution phases. Special quasirandom structures (SQS) were used to obtain information about the solution phases across the entire composition range. The Debye-Gruneisen approach, as well as the quasiharmonic phonon method, were used to obtain the finite-temperature data. Results from the first-principles calculations and experiments were used to complete the thermodynamic description. The resulting phase diagram reproduced the first-principles calculations and experimental data accurately. In order to determine the effect of alloying on the elastic properties, first-principles calculations based on DFT were systematically done on the pure elements, five Ti-X binary systems and Ti-X-Y ternary systems (X ≠ Y = Mo, Nb, Sn, Ta Zr) in the bcc phase. The first-principles calculations predicted the single crystal elastic stiffness constants cij 's. Correspondingly, the polycrystalline aggregate properties were also estimated from the cij's, including bulk modulus B, shear modulus G and Young's modulus E. The calculated results showed good agreement with experimental results. The CALPHAD method was then adapted to assist in the database development of the elastic properties as a function of composition. On average, the database predicted the elastic properties of higher order Ti-alloys within 5 GPa of the experimental results. Finally, the formation of the metastable phases, o and alpha" was studied in the Ti-Ta and Ti-Nb systems. The formation energy of these phases, calculated from first-principles at 0 K, showed that the phases have similar formation energies to the bcc and hcp phases. Inelastic neutron scattering was completed on four different Ti-Nb compositions to study the entropy of the phases as well as the transformations occurring when the phases form and the phase fractions. Ongoing work is being done to use the experimental information to introduce thermodynamic descriptions for these two phases in the Ti-Nb system in order to be able to predict the formation and phase fractions. DFT based first-principles were used to predict the effect these phases have on the elastic properties and a rule of mixtures was used to determine the elastic properties of multi-phase alloys. The results were compared with experiments and showed that if the ongoing modeling can predict the phase fraction, the elastic database can accurately predict the elastic properties of the o and alpha" phases. This thesis provides a knowledge base of the thermodynamic and elastic properties of Ti-alloys from computational thermodynamics. The databases created will impact research activities on Ti-alloys and specifically efforts focused on Ti-alloys for biomedical applications.

  12. Refractive-index profile and physical process determination in thick gratings in electrooptic crystals

    NASA Technical Reports Server (NTRS)

    Su, S. F.; Gaylord, T. K.

    1976-01-01

    A method for determining the refractive index profile of thick phase gratings in linear electrooptic crystals is presented. This method also determines the effective photovoltaic electric field and the relative contributions of diffusion and drift during hologram recording. The method requires only a knowledge of the modulation ratio during hologram recording and the fundamental and the higher-order diffraction efficiencies of the grating. As an illustration of the method, the refractive index profile, the effective photovoltaic field, and the relative contributions of diffusion and drift are determined from experimental measurements for a lithium niobate holographic grating.

  13. Experimental spectroscopy for the high-school Physics curriculum

    NASA Astrophysics Data System (ADS)

    Kinra, Rajeev; Karpetis, Adonios

    2008-11-01

    The present work explores the feasibility of including spectroscopic experiments in high-school physics curricula. Two experimental optics ``modules'' were constructed for this purpose: (a) a simple CCD detector, in combination with appropriate filters, was used for the measurement of solar spectra and the determination of the sun's surface temperature; (b) the same detector was used, in combination with a transmissive diffraction grating and some miniature optics, to form a spectrophotometer that can be used for the determination of spectra with high resolution. Both modules were designed and constructed with portability and low cost in mind, and their objective is to introduce experimental spectroscopy to high school students in an intriguing, educational and phase-appropriate manner without sacrificing scientific rigor. A large variety of experiments may be designed around the basic devices that were built during this work, and a number of possible examples will be presented, from research on plant phototropism to human color cognition.

  14. Determination of polyparameter linear free energy relationship (pp-LFER) substance descriptors for established and alternative flame retardants.

    PubMed

    Stenzel, Angelika; Goss, Kai-Uwe; Endo, Satoshi

    2013-02-05

    Polyparameter linear free energy relationships (pp-LFERs) can predict partition coefficients for a multitude of environmental and biological phases with high accuracy. In this work, the pp-LFER substance descriptors of 40 established and alternative flame retardants (e.g., polybrominated diphenyl ethers, hexabromocyclododecane, bromobenzenes, trialkyl phosphates) were determined experimentally. In total, 251 data for gas-chromatographic (GC) retention times and liquid/liquid partition coefficients (K) were measured and used to calibrate the pp-LFER substance descriptors. Substance descriptors were validated through a comparison between predicted and experimental log K for the systems octanol/water (K(ow)), water/air (K(wa)), organic carbon/water (K(oc)) and liposome/water (K(lipw)), revealing a high reliability of pp-LFER predictions based on our descriptors. For instance, the difference between predicted and experimental log K(ow) was <0.3 log units for 17 out of 21 compounds for which experimental values were available. Moreover, we found an indication that the H-bond acceptor value (B) depends on the solvent for some compounds. Thus, for predicting environmentally relevant partition coefficients it is important to determine B values using measurements in aqueous systems. The pp-LFER descriptors calibrated in this study can be used to predict partition coefficients for which experimental data are unavailable, and the predicted values can serve as references for further experimental measurements.

  15. Solid-liquid phase equilibria in the ternary system (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K

    NASA Astrophysics Data System (ADS)

    Wang, Shi-qiang; Guo, Ya-fei; Yang, Jian-sen; Deng, Tian-long

    2015-12-01

    Experimental studies on the solubilities and physicochemical properties including density, refractive index and pH value in the ternary systems (LiBO2 + Li2CO3 + H2O) at 288.15 and 298.15 K were determined with the method of isothermal dissolution equilibrium. Based on the experimental results, the phase diagrams and their corresponding physicochemical properties versus composition diagram in the system were plotted. In the phase diagrams of the ternary system at 288.15 and 298.15 K, there are one eutectic point and two crystallization regions corresponding to lithium metaborate octahydrate (LiBO2 · 8H2O) and lithium carbonate (Li2CO3), respectively. This system at both temperatures belongs to hydrate type I, and neither double salt nor solid solution was found. A comparison of the phase diagrams for this ternary system at 288.15 and 298.15 K shows that the solid phase numbers and exist minerals are the same, and the area of crystallization region of Li2CO3 is increased obviously with the increasing temperature while that of LiBO2 · 8H2O is decreased. The physicochemical properties (density, pH value and refractive index) of the solutions of the ternary system at two temperatures changes regularly with the increasing lithium carbonate concentration. The calculated values of density and refractive index using empirical equations of the ternary system are in good agreement with the experimental values.

  16. Implementation and outcome evaluation of high-fidelity simulation scenarios to integrate cognitive and psychomotor skills for Korean nursing students.

    PubMed

    Ahn, Heejung; Kim, Hyun-Young

    2015-05-01

    This study is involved in designing high-fidelity simulations reflecting the Korean nursing education environment. In addition, it evaluated the simulations by nursing students' learning outcomes and perceptions of the simulation design features. A quantitative design was used in two separate phases. For the first phase, five nursing experts participated in verifying the appropriateness of two simulation scenarios that reflected the intended learning objectives. For the second phase, 69 nursing students in the third year of a bachelor's degree at a nursing school participated in evaluating the simulations and were randomized according to their previous course grades. The first phase verified the two simulation scenarios using a questionnaire. The second phase evaluated students' perceptions of the simulation design, self-confidence, and critical thinking skills using a quasi-experimental post-test design. ANCOVA was used to compare the experimental and control groups, and correlation coefficient analysis was used to determine the correlation among them. We created 2 simulation scenarios to integrate cognitive and psychomotor skills according to the learning objectives and clinical environment in Korea. The experimental group had significantly higher scores on self-confidence in the first scenario. The positive correlations between perceptions of the simulation design features, self-confidence, and critical thinking skill scores were statistically significant. Students with a more positive perception of the design features of the simulations had better learning outcomes. Based on this result, simulations need to be designed and implemented with more differentiation in order to be perceived more appropriately by students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Characterization and Evaluation of TiB2-AlN Composites for Armor Applications

    DTIC Science & Technology

    2013-09-01

    identified structural defects and studied the fracture mechanisms (15, 16). 2 2. Experimental One TiB2 powder was used for this study. The TiB2...on phase formation and grain size effects compounded with residual stress on the fracture mechanisms . However, it was determined that the composite...Temperature. Annu. Book ASTM Stand. 2002, Vol. 15.01. 18. ASTM C 1421-10. Standard Test Methods for Determination of Fracture Toughness of

  18. Three-dimensional video imaging of drainage and imbibition processes in model porous medium

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, Sabyasachi

    2011-03-01

    We report experimental results where we have performed three dimensional video imaging of the displacement of an oil phase by an aqueous phase and vice versa in a model porous medium. The stability of the oil water interface was studied as a function of their viscosity ratios, the wettability of the porous medium and the variation in the pore size distribution. Our experiments captures the pore scale information of the displacement process and its role in determining the long time structure of the interface.

  19. Phase diagram of single vesicle dynamical states in shear flow.

    PubMed

    Deschamps, J; Kantsler, V; Steinberg, V

    2009-03-20

    We report the first experimental phase diagram of vesicle dynamical states in a shear flow presented in a space of two dimensionless parameters suggested recently by V. Lebedev et al. To reduce errors in the control parameters, 3D geometrical reconstruction and determination of the viscosity contrast of a vesicle in situ in a plane Couette flow device prior to the experiment are developed. Our results are in accord with the theory predicting three distinctly separating regions of vesicle dynamical states in the plane of just two self-similar parameters.

  20. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    DOE PAGES

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; ...

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less

  1. Scaling of Two-Phase Flows to Partial-Earth Gravity

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Witte, Larry C.

    2003-01-01

    A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.

  2. Gas-phase acidities of cysteine-polyalanine peptides I: A(3,4)CSH and HSCA(3,4).

    PubMed

    Ren, Jianhua; Tan, John P; Harper, Robert T

    2009-10-15

    The gas-phase acidities of four cysteine-polyalanine peptides, A(3,4)CSH and HSCA(3,4), were determined using the extended Cooks kinetic method with full entropy analysis. A triple-quadrupole mass spectrometer with an electrospray interface was employed for the experimental study. The ion activation was achieved via collision-induced dissociation (CID) experiments. The deprotonation enthalpies (Delta(acid)H) of the peptides were determined to be 332.2 +/- 2.0 kcal/mol (A(3)CSH), 325.9 +/- 2.0 kcal/mol (A(4)CSH), 319.3 +/- 3.0 kcal/mol (HSCA(3)), and 319.2 +/- 4.0 kcal/mol (HSCA(4)). The deprotonation entropies (Delta(acid)S) of the peptides were estimated based on the entropy term (Delta(DeltaS)) and the deprotonation entropies of the reference acids. By using the deprotonation enthalpies and entropies, the gas-phase acidities (Delta(acid)G) of the peptides were derived: 325.0 +/- 2.0 kcal/mol (A(3)CSH), 320.2 +/- 2.0 kcal/mol (A(4)CSH), 316.3 +/- 3.0 kcal/mol (HSCA(3)), and 315.4 +/- 4.0 kcal/mol (HSCA(4)). Conformations and energetic information of the peptides were calculated through simulated annealing (Tripos), geometry optimization (AM1), and single-point energy calculations (B3LYP/6-31+G(d)), respectively. The calculated theoretical deprotonation enthalpies (Delta(acid)H) of 334.2 kcal/mol (A(3)CSH), 327.7 kcal/mol (A(4)CSH), 320.6 kcal/mol (HSCA(3)), and 318.6 kcal/mol (HSCA(4)) are in good agreement with the experimentally determined values. Both the experimental and computational studies suggest that the two N-terminal cysteine peptides, HSCA(3,4), are significantly more acidic than the corresponding C-terminal ones, A(3,4)CSH. The high acidities of the former are likely due to the helical conformational effects for which the thiolate anion may be strongly stabilized by the interaction with the helix macrodipole.

  3. Probing the growth and melting pathways of a decagonal quasicrystal in real-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Insung; Xiao, Xianghui; Shahani, Ashwin J.

    How does a quasicrystal grow? Despite the decades of research that have been dedicated to this area of study, it remains one of the fundamental puzzles in the field of crystal growth. Although there has been no lack of theoretical studies on quasicrystal growth, there have been very few experimental investigations with which to test their various hypotheses. In particular, evidence of the in situ and three-dimensional (3D) growth of a quasicrystal from a parent liquid phase is lacking. To fill-in-the-gaps in our understanding of the solidification and melting pathways of quasicrystals, we performed synchrotron-based X-ray imaging experiments on amore » decagonal phase with composition of Al-15at%Ni-15at%Co. High-flux X-ray tomography enabled us to observe both growth and melting morphologies of the 3D quasicrystal at temperature. We determined that there is no time-reversal symmetry upon growth and melting of the decagonal quasicrystal. While quasicrystal growth is predominantly dominated by the attachment kinetics of atomic clusters in the liquid phase, melting is instead barrier-less and limited by buoyancy-driven convection. These experimental results provide the much-needed benchmark data that can be used to validate simulations of phase transformations involving this unique phase of matter.« less

  4. Probing the growth and melting pathways of a decagonal quasicrystal in real-time

    DOE PAGES

    Han, Insung; Xiao, Xianghui; Shahani, Ashwin J.

    2017-12-12

    How does a quasicrystal grow? Despite the decades of research that have been dedicated to this area of study, it remains one of the fundamental puzzles in the field of crystal growth. Although there has been no lack of theoretical studies on quasicrystal growth, there have been very few experimental investigations with which to test their various hypotheses. In particular, evidence of the in situ and three-dimensional (3D) growth of a quasicrystal from a parent liquid phase is lacking. To fill-in-the-gaps in our understanding of the solidification and melting pathways of quasicrystals, we performed synchrotron-based X-ray imaging experiments on amore » decagonal phase with composition of Al-15at%Ni-15at%Co. High-flux X-ray tomography enabled us to observe both growth and melting morphologies of the 3D quasicrystal at temperature. We determined that there is no time-reversal symmetry upon growth and melting of the decagonal quasicrystal. While quasicrystal growth is predominantly dominated by the attachment kinetics of atomic clusters in the liquid phase, melting is instead barrier-less and limited by buoyancy-driven convection. These experimental results provide the much-needed benchmark data that can be used to validate simulations of phase transformations involving this unique phase of matter.« less

  5. Biomechanical studies on the effect of iatrogenic dentin removal on vertical root fractures.

    PubMed

    Ossareh, A; Rosentritt, M; Kishen, A

    2018-01-01

    The aim of this study was to understand the mechanism by which iatrogenic root dentin removal influences radicular stress distribution and subsequently affects the resistance to vertical root fractures (VRF) in endodontically treated teeth. The experiments were conducted in two phases. Phase 1: freshly extracted premolar teeth maintained in phosphate-buffered saline were instrumented to simulate three different degrees of dentin removal, designated as low, medium, and extreme groups. Micro-Ct analyzes were performed to quantitatively determine: (a) the amount of dentin removed, (b) the remaining dentin volume, and (c) the moment of inertia of root dentin. The specimens were then subjected to thermomechanical cycling and continuous loading to determine (a) the mechanical load to fracture and (b) dentin microcracking (fractography) using scanning electron microscopy. Phase 2: Finite element analysis was used to evaluate the influence of dentin removal on the stress distribution pattern in root dentin. The data obtained were analyzed using one-way ANOVA and Tukey's post hoc test ( P < 0.05). Phase 1: A significantly greater volume of dentin was removed from teeth in extreme group when compared to low group ( P < 0.01). The mechanical analysis showed that the load to fracture was significantly lower in teeth from extreme group ( P < 0.05). A linear relationship was observed between the moment of inertia and load to fracture in all experimental groups ( R 2 = 0.52). Fractography showed that most microcracks were initiated from the root canal walls in extreme group. Phase 2: The numerical analysis showed that the radicular stress distribution increased apically and buccolingually with greater degree of root canal dentin removal. The combined experimental/numerical analyses highlighted the influence of remaining root dentin volume on the radicular bending resistance, stress distribution pattern, and subsequent propensity to VRF.

  6. Geraniol modulates tongue and hepatic phase I and phase II conjugation activities and may contribute directly to the chemopreventive activity against experimental oral carcinogenesis.

    PubMed

    Madankumar, Arumugam; Jayakumar, Subramaniyan; Gokuladhas, Krishnan; Rajan, Balan; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam

    2013-04-05

    Xenobiotic metabolizing enzymes are chief determinants in both the susceptibility to mutagenic effect of chemical carcinogens and in the response of tumors to chemotherapy. The present study was aimed to analyze the effect of geraniol administration on the activity of phase I and phase II carcinogen metabolizing enzymes through the nuclear factor erythroid 2-related factor-2 (Nrf2) activation against 4-niroquinoline-1-oxide (4NQO) induced oral carcinogenesis. The well-known chemical carcinogen 4NQO (50 ppm) was used to induce oral carcinogenesis through drinking water for 4, 12, and 20 weeks. The degree of cancer progression at each stage was confirmed by histological examination. At the end of the experimental period, 100% tumor formation was observed in the oral cavity of 4NQO induced animals with significant (P<0.05) alteration in the status of tumor markers, tongue and liver phase I and phase II drug metabolizing enzymes indicating progression of disease. Oral administration of geraniol at the dose of 200 mg/kg b.wt., thrice a week to 4NQO induced animals was able to inhibit tumor formation and thereby delayed the progression of oral carcinogenesis by modulating tongue and liver phase I and phase II drug metabolizing enzymes, as substantiated further by the histological and transmission electron microscopic studies. Our results demonstrate that geraniol exerts its chemopreventive potential by altering activities of phases I and II drug metabolizing enzymes to achieve minimum bioactivation of carcinogen and maximum detoxification. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Temperature and magnetic field induced multiple magnetic transitions in DyAg(2).

    PubMed

    Arora, Parul; Chattopadhyay, M K; Sharath Chandra, L S; Sharma, V K; Roy, S B

    2011-02-09

    The magnetic properties of the rare-earth intermetallic compound DyAg(2) are studied in detail with the help of magnetization and heat capacity measurements. It is shown that the multiple magnetic phase transitions can be induced in DyAg(2) both by temperature and magnetic field. The detailed magnetic phase diagram of DyAg(2) is determined experimentally. It was already known that DyAg(2) undergoes an incommensurate to commensurate antiferromagnetic phase transition close to 10 K. The present experimental results highlight the first order nature of this phase transition, and show that this transition can be induced by magnetic field as well. It is further shown that another isothermal magnetic field induced transition or metamagnetic transition exhibited by DyAg(2) at still lower temperatures is also of first order nature. The multiple magnetic phase transitions in DyAg(2) give rise to large peaks in the temperature dependence of the heat capacity below 17 K, which indicates its potential as a magnetic regenerator material for cryocooler related applications. In addition it is found that because of the presence of the temperature and field induced magnetic phase transitions, and because of short range magnetic correlations deep inside the paramagnetic regime, DyAg(2) exhibits a fairly large magnetocaloric effect over a wide temperature window, e.g., between 10 and 60 K.

  8. Phase-field simulations of GaN growth by selective area epitaxy on complex mask geometries

    DOE PAGES

    Aagesen, Larry K.; Coltrin, Michael Elliott; Han, Jung; ...

    2015-05-15

    Three-dimensional phase-field simulations of GaN growth by selective area epitaxy were performed. Furthermore, this model includes a crystallographic-orientation-dependent deposition rate and arbitrarily complex mask geometries. The orientation-dependent deposition rate can be determined from experimental measurements of the relative growth rates of low-index crystallographic facets. Growth on various complex mask geometries was simulated on both c-plane and a-plane template layers. Agreement was observed between simulations and experiment, including complex phenomena occurring at the intersections between facets. The sources of the discrepancies between simulated and experimental morphologies were also investigated. We found that the model provides a route to optimize masks andmore » processing conditions during materials synthesis for solar cells, light-emitting diodes, and other electronic and opto-electronic applications.« less

  9. Turbine-99 unsteady simulations - Validation

    NASA Astrophysics Data System (ADS)

    Cervantes, M. J.; Andersson, U.; Lövgren, H. M.

    2010-08-01

    The Turbine-99 test case, a Kaplan draft tube model, aimed to determine the state of the art within draft tube simulation. Three workshops were organized on the matter in 1999, 2001 and 2005 where the geometry and experimental data were provided as boundary conditions to the participants. Since the last workshop, computational power and flow modelling have been developed and the available data completed with unsteady pressure measurements and phase resolved velocity measurements in the cone. Such new set of data together with the corresponding phase resolved velocity boundary conditions offer new possibilities to validate unsteady numerical simulations in Kaplan draft tube. The present work presents simulation of the Turbine-99 test case with time dependent angular resolved inlet velocity boundary conditions. Different grids and time steps are investigated. The results are compared to experimental time dependent pressure and velocity measurements.

  10. About the Transformation Phase Zones of Shape Memory Alloys' Fracture Tests on Single Edge-Cracked Specimen

    NASA Astrophysics Data System (ADS)

    Taillebot, V.; Lexcellent, C.; Vacher, P.

    2012-03-01

    The thermomechanical behavior of shape memory alloys is now well mastered. However, a hindrance to their sustainable use is the lack of knowledge of their fracture behavior. With the aim of filling this partial gap, fracture tests on edge-cracked specimens in NiTi have been made. Particular attention was paid to determine the phase transformation zones in the vicinity of the crack tip. In one hand, experimental kinematic fields are observed using digital image correlation showing strain localization around the crack tip. In the other hand, an analytical prediction, based on a modified equivalent stress criterion and taking into account the asymmetric behavior of shape memory alloys in tension-compression, provides shape and size of transformation outset zones. Experimental results are relatively in agreement with our analytical modeling.

  11. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H.H.; Jin, Z.P.

    Little information for the phase equilibria in the ternary system Cr-Ni-Ti is available, and the phase relationships in isothermal section are uncertain. Taylor presented two determined isothermal sections at 750 C and 1,000 C for the Ni-corner. Kornilov et al. reported the solubility of Ti in Ni varying with temperature under the condition of constant Cr content (10 at% and 20 at% Cr respectively). Gupta et al. proposed a schematic liquidus projection diagram. Kaufman calculated three isothermal sections (1,300, 1,550 and 1,625 K) of the system Cr-Ni-Ti. All in all, the experimental data for the system are rather sparse. Themore » purpose of the present work is to gain experimental information of the isothermal section at 1,200K in the system Cr-Ni-Ti by means of a diffusion triple technique.« less

  13. Factorial design optimization of experimental variables in the on-line separation/preconcentration of copper in water samples using solid phase extraction and ICP-OES determination.

    PubMed

    Escudero, Luis A; Cerutti, S; Olsina, R A; Salonia, J A; Gasquez, J A

    2010-11-15

    An on-line preconcentration procedure using solid phase extraction (SPE) for the determination of copper in different water samples by inductively coupled plasma optical emission spectrometry (ICP-OES) is proposed. The copper was retained on a minicolumn filled with ethyl vinyl acetate (EVA) at pH 8.0 without using any complexing reagent. The experimental optimization step was performed using a two-level full factorial design. The results showed that pH, sample loading flow rate, and their interaction (at the tested levels) were statistically significant. In order to determine the best conditions for preconcentration and determination of copper, a final optimization of the significant factors was carried out using a central composite design (CCD). The calibration graph was linear with a regression coefficient of 0.995 at levels near the detection limit up to at least 300 μg L(-1). An enrichment factor (EF) of 54 with a preconcentration time of 187.5 s was obtained. The limit of detection (3σ) was 0.26 μg L(-1). The sampling frequency for the developed methodology was about 15 samples/h. The relative standard deviation (RSD) for six replicates containing 50 μg L(-1) of copper was 3.76%. The methodology was successfully applied to the determination of Cu in tap, mineral, river water samples, and in a certified VKI standard reference material. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Grassmann phase space theory and the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.

    2013-07-01

    The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions-that are also equivalent to the canonical Grassmann distribution function-to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum-atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum-atom optics.

  15. The thermochemistry of cubane 50 years after its synthesis: a high-level theoretical study of cubane and its derivatives.

    PubMed

    Agapito, Filipe; Santos, Rui C; Borges dos Santos, Rui M; Martinho Simões, José A

    2015-03-26

    The gas-phase enthalpy of formation of cubane (603.4 ± 4 kJ mol(-1)) was calculated using an explicitly correlated composite method (W1-F12). The result obtained for cubane, together with the experimental value for the enthalpy of sublimation, 54.8 ± 2.0 kJ mol(-1), led to 548.6 ± 4.5 kJ mol(-1) for the solid-phase enthalpy of formation. This value is only 6.8 kJ mol(-1) higher than the 50-year-old original calorimetric result. The carbon-hydrogen bond dissociation enthalpy (C-H BDE) of cubane (438.4 ± 4 kJ mol(-1)), together with properties relevant for its experimental determination using gas-phase ion thermochemistry, namely the cubane gas-phase acidity (1704.6 ± 4 kJ mol(-1)), cubyl radical electron affinity (45.8 ± 4 kJ mol(-1)), cubane ionization energy (1435.1 ± 4 kJ mol(-1)), cubyl radical cation proton affinity (918.8 ± 4 kJ mol(-1)), cubane cation appearance energy (1099.6 ± 4 kJ mol(-1)), and cubyl ionization energy (661.2 ± 4 kJ mol(-1)), were also determined. These values were compared with those calculated for unstrained hydrocarbons (viz., methane, ethane, and isobutane). The strain energy of cubane (667.2 kJ mol(-1)) and cubyl radical (689.4 kJ mol(-1)) were independently estimated via quasihomodesmotic reactions. These values were related via a simple model to the C-H BDE in cubane. Taking into account the accuracy of the computational method, the comparison with high-precision experimental results, and the data consistency afforded by the relevant thermodynamic cycles, we claim an uncertainty better than ±4 kJ mol(-1) for the new enthalpy of formation values presented.

  16. The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study

    NASA Astrophysics Data System (ADS)

    Ballhaus, C.; Ryan, C. G.; Mernagh, T. P.; Green, D. H.

    1994-01-01

    This paper describes new experimental and analytical techniques to study element partitioning behavior between crystalline material and a late- to post-magmatic fluid phase. Samples of the fluid phase are isolated at experimental run conditions as synthetic fluid in quartz. Individual fluid inclusions are later analyzed for dissolved metals using Proton Induced X-ray Emission (PIXE). Back reactions between fluid and solid phases during quenching are prevented because the fluid is isolated at the experimental pressure, temperature ( P, T) conditions before quenching occurs. The technique is applied to study the partitioning of chalcophile elements (Fe, Ni, Cu, Pt and Au) between sulfide phases, metal alloys and supercritical SiO 2-NaCl-saturated H2O ± CH4- CO2- H2S fluids. Synthetic Ni-Cu-rich monosulfide solid solution (mss) doped with PtS or Au is packed in a quartz capsule and, together with a hydrogen buffer capsule and compounds to generate a fluid phase, welded shut in an outer Pt or Au metal capsule. The fluid phase is generated by combustion and reaction of various C-H-O fluid components during heating. Depending on capsule material and sample composition, the run products consist of platiniferous or auriferous mss, Pt-Fe, or ( Au, Cu) alloy phases, PtS, Fe 3O 4, sometimes a Cu-rich sulfide melt, and a fluid phase. Samples of the fluid are trapped in the walls of the quartz sample capsule as polyphase fluid inclusions. All phases are now available for analysis: fluid speciation is analyzed by piercing the outer metal capsule under vacuum and feeding the released fluid into a mass spectrometer. Phases and components within fluid inclusions are identified with Raman spectroscopy. Platinum and gold in solid solution in mss are determined with a CAMECA SX50 electron microanalyser. Metal contents trapped in selected fluid inclusions are determined quantitatively by in situ analysis with a proton microprobe using PIXE and a correction procedure specifically developed for quantitative fluid inclusion analysis. Initial results of metal solubilities in the fluid are as follows. Iron decreases from above 6,000 ppm under reduced conditions in the presence of H 2S in the fluid, to less than 1,000 ppm if hematite is stable in the crystalline run product. Copper and gold concentrations in the fluid range from about 600 to over 1200 and from 150 to about 270 ppm, respectively. The solubilities of these two metals in NaCl-saturated fluids are apparently independent of fluid speciations covered here. Nickel is mostly below detection limit (<10 ppm) and apparently poorly soluble in high-temperature fluid phases. Platinum concentrations in fluid inclusions are highly variable even among fluid inclusions of single runs, possibly because Pt tends to form multi-atom complexes in fluid phases.

  17. Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination

    NASA Astrophysics Data System (ADS)

    Dalstein, L.; Revel, A.; Humbert, C.; Busson, B.

    2018-04-01

    We experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range.

  18. Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.

    PubMed

    Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher

    2012-05-14

    We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    NASA Astrophysics Data System (ADS)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alba, Paolo; Alberico, Wanda; Bellwied, Rene

    We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.

  1. Thawing of ice in porous space of building materials: Experimental monitoring and computational modelling

    NASA Astrophysics Data System (ADS)

    Kočí, Jan; Maděra, Jiří; Kočí, Václav; Hlaváčová, Zuzana; Černý, Robert

    2017-11-01

    A simple laboratory experiment for the determination of thermal response of a studied sample during thawing is described in the paper. The sample made of autoclaved aerated concrete was partially water saturated and frozen. Then, the temperature development during thawing was recorded, allowing to identify the time scale of the phase change process taking place inside the sample. The experimental data was then used in the inverse analysis, in order to find unknown parameters of the smoothed effective specific heat capacity model.

  2. Solid phase extraction of gold(III) on attapulgite modified with triocarbohydrazide prior to its determination in environmental samples by ICP-OES.

    PubMed

    Zhang, Li; Li, Zhenhua; Hu, Zheng; Chang, Xijun

    2011-09-01

    The first study on the high efficiency of triocarbohydrazide modified attapulgite as solid-phase extractant for preconcentration of trace Au(III) prior to the measurement by inductively coupled plasma optical emission spectrometry (ICP-OES) has been reported. Experimental conditions for effective adsorption of trace levels of Au(III) were optimized with respect to different experimental parameters using batch and column procedures in detail. At pH 3, Au(III) could be quantitatively adsorbed on the new sorbent, and the adsorbed Au(III) could be completely eluted from the sorbent surface by 2.0mL 1.0molL(-1) of HCl+2% CS(NH(2))(2) solution. An enrichment factor of 150 was accomplished. Moreover, common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the sorbent for Au(III) was found to be 66.7mgg(-1). The detection limit (3σ) of this method was 0.32μgL(-1) and the relative standard deviation (RSD) was 3.3% (n=8). The method, with high selectivity, sensitivity and reproducibility, was validated using certified reference materials, and had been applied for the determination of trace Au(III) with satisfactory results. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  4. Direction-dependent stability of skyrmion lattice in helimagnets induced by exchange anisotropy

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan

    2018-06-01

    Exchange anisotropy provides a direction dependent mechanism for the stability of the skyrmion lattice phase in noncentrosymmetric bulk chiral magnets. Based on the Fourier representation of the skyrmion lattice, we explain the direction dependence of the temperature-magnetic field phase diagram for bulk MnSi through a phenomenological mean-field model incorporating exchange anisotropy. Through quantitative comparison with experimental results, we clarify that the stability of the skyrmion lattice phase in bulk MnSi is determined by a combined effect of negative exchange anisotropy and thermal fluctuation. The effect of exchange anisotropy and the order of Fourier representation on the equilibrium properties of the skyrmion lattice is discussed in detail.

  5. Determination of total selenium in food samples by d-CPE and HG-AFS.

    PubMed

    Wang, Mei; Zhong, Yizhou; Qin, Jinpeng; Zhang, Zehua; Li, Shan; Yang, Bingyi

    2017-07-15

    A dual-cloud point extraction (d-CPE) procedure was developed for the simultaneous preconcentration and determination of trace level Se in food samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). The Se(IV) was complexed with ammonium pyrrolidinedithiocarbamate (APDC) in a Triton X-114 surfactant-rich phase, which was then treated with a mixture of 16% (v/v) HCl and 20% (v/v) H 2 O 2 . This converted the Se(IV)-APDC into free Se(IV), which was back extracted into an aqueous phase at the second cloud point extraction stage. This aqueous phase was analyzed directly by HG-AFS. Optimization of the experimental conditions gave a limit of detection of 0.023μgL -1 with an enhancement factor of 11.8 when 50mL of sample solution was preconcentrated to 3mL. The relative standard deviation was 4.04% (c=6.0μgL -1 , n=10). The proposed method was applied to determine the Se contents in twelve food samples with satisfactory recoveries of 95.6-105.2%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Experimental evidence of body centered cubic iron in Earth's core

    NASA Astrophysics Data System (ADS)

    Hrubiak, R.; Meng, Y.; Shen, G.

    2017-12-01

    The Earth's core is mainly composed of iron. While seismic evidence has shown a liquid outer core and a solid inner core, the crystalline nature of the solid iron at the core condition remains debated, largely due to the difficulties in experimental determination of exact polymorphs at corresponding pressure-temperature conditions. We have examined crystal structures of iron up to 220 GPa and 6000 K with x-ray diffraction using a double-sided laser heating system at HPCAT, Advanced Photon Source. The iron sample is confined in a small chamber surrounded by single crystal MgO. The laser power can be modulated together with temperature measurements. The modulated heating of iron in an MgO single crystal matrix allows for microstructure analysis during heating and after the sample is quenched. We present experimental evidence of a body-centered-cubic (BCC) iron from about 100 GPa and 3000 K to at least 220 GPa and 4000 K. The observed BCC phase may be consistent with a theoretically predicted BCC phase that is dynamically stable in similar pressure-temperature conditions [1]. We will discuss the stability region of the BCC phase and the melting curve of iron and their implications in the nature of the Earth's inner core. References: A. B. Belonoshko et al., Nat. Geosci., 1-6 (2017).

  7. Analytical and experimental studies of an optimum multisegment phased liner noise suppression concept

    NASA Technical Reports Server (NTRS)

    Sawdy, D. T.; Beckemeyer, R. J.; Patterson, J. D.

    1976-01-01

    Results are presented from detailed analytical studies made to define methods for obtaining improved multisegment lining performance by taking advantage of relative placement of each lining segment. Properly phased liner segments reflect and spatially redistribute the incident acoustic energy and thus provide additional attenuation. A mathematical model was developed for rectangular ducts with uniform mean flow. Segmented acoustic fields were represented by duct eigenfunction expansions, and mode-matching was used to ensure continuity of the total field. Parametric studies were performed to identify attenuation mechanisms and define preliminary liner configurations. An optimization procedure was used to determine optimum liner impedance values for a given total lining length, Mach number, and incident modal distribution. Optimal segmented liners are presented and it is shown that, provided the sound source is well-defined and flow environment is known, conventional infinite duct optimum attenuation rates can be improved. To confirm these results, an experimental program was conducted in a laboratory test facility. The measured data are presented in the form of analytical-experimental correlations. Excellent agreement between theory and experiment verifies and substantiates the analytical prediction techniques. The results indicate that phased liners may be of immediate benefit in the development of improved aircraft exhaust duct noise suppressors.

  8. Vacancy-mediated fcc/bcc phase separation in Fe 1-xNi x ultrathin films

    DOE PAGES

    Mentes, T. O.; Stojic, N.; Vescovo, E.; ...

    2016-08-01

    The phase separation occurring in Fe-Ni thin lms near the Invar composition is studied by using high resolution spectromicroscopy techniques and density functional theory calculations. Annealed at temperatures around 300 C, Fe 0.70Ni 0.30 lms on W(110) break into micron-sized bcc and fcc domains with compositions in agreement with the bulk Fe-Ni phase diagram. Ni is found to be the di using species in forming the chemical heterogeneity. The experimentally-determined energy barrier of 1.59 0.09 eV is identi ed as the vacancy formation energy via density functional theory calculations. Thus, the principal role of the surface in the phase separationmore » process is attributed to vacancy creation without interstitials.« less

  9. Polarization-phase diagnostics of latent course of cholelithiasis in patients with chronic cholecystitis combined with diabetes mellitus type 2

    NASA Astrophysics Data System (ADS)

    Fediv, O. I.; Ivashchuk, O. I.; Marchuk, Yu. F.; Andriychuk, D. R.

    2011-09-01

    The principles of optical model of human bile polycrystalline structure are described. The three optical levels - isotropic, liquid-crystal and solid-crystal have been proposed. It has been introduced and proposed the scenarios of phase distribution formation in the boundary field of laser radiation, transformed by bile layers. The experimental scheme of direct measurement of coordinate phase distributions has been presented. The results of investigating the interrelation between the values of correlation and fractal parameters are presented. They characterize the coordinate distributions of phase shifts between the orthogonal components of the amplitude in the points of laser images of bile smears of cholelithiasis patients in combination with other pathologies. The diagnostic criteria of the cholelithiasis nascency and its severity degree differentiation are determined.

  10. Preliminary evaluation of the role of K2S in MHD hot stream seed recovery

    NASA Technical Reports Server (NTRS)

    Bennett, J. E.; Kohl, F. J.

    1979-01-01

    Results are presented for recent analytical and experimental studies of the role of K2S in MHD hot stream seed recovery. The existing thermodynamic data base was found to contain large uncertainties and to be nonexistent for vapor phase K2S. Knudsen cell mass spectrometric experiments were undertaken to determine the vapor species in equilibrium with K2S(c). K atoms and S2 molecules ere found to be the major vapor phase species in vacuum, accounting for greater than 99 percent of the vapor phase. Combustion gas deposition studies using No. 2 Diesel fuel were also undertaken and revealed that condensed phase K2SO3 may potentially be an important compound in the MHD stream at near-stoichiometric combustion.

  11. Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Dutta, B.; ćakır, A.; Giacobbe, C.; Al-Zubi, A.; Hickel, T.; Acet, M.; Neugebauer, J.

    2016-01-01

    Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.

  12. Ab initio Prediction of Martensitic and Intermartensitic Phase Boundaries in Ni-Mn-Ga.

    PubMed

    Dutta, B; Çakır, A; Giacobbe, C; Al-Zubi, A; Hickel, T; Acet, M; Neugebauer, J

    2016-01-15

    Despite the importance of martensitic transformations of Ni-Mn-Ga Heusler alloys for their magnetocaloric and shape-memory properties, the martensitic part of their phase diagrams is not well determined. Using an ab initio approach that includes the interplay of lattice and vibrational degrees of freedom we identify an intermartensitic transformation between a modulated and a nonmodulated phase as a function of excess Ni and Mn content. Based on an evaluation of the theoretical findings and experimental x-ray diffraction data for Mn-rich alloys, we are able to predict the phase diagram for Ni-rich alloys. In contrast to other mechanisms discussed for various material systems in the literature, we herewith show that the intermartensitic transformation can be understood solely using thermodynamic concepts.

  13. Experimental and theoretical study on Raman spectra of magnesium fluoride clusters and solids.

    PubMed

    Neelamraju, S; Bach, A; Schön, J C; Fischer, D; Jansen, M

    2012-11-21

    In this study, the Raman and IR spectra of a large number of isomers of MgF(2) clusters and of possible bulk polymorphs of MgF(2) are calculated and compared with experimental data observed using a low-temperature atom beam deposition. The bulk polymorphs were taken from earlier work, while the cluster modifications for the neutral (MgF(2))(n) (n = 1-10) clusters and charged clusters (up to the trimer anion and cation, (Mg(3)F(7))(-) and (Mg(3)F(5))(+), respectively) are determined in the present work by global energy landscape explorations using simulated annealing. These theoretical calculations are complemented by an experimental study on both the vapor phase and the deposited films of MgF(2), which are generated in a low-temperature atom beam deposition setup for the synthesis of MgF(2) bulk phases. The MgF(2) vapor and film are characterized via Raman spectroscopy of the MgF(2) gas phase species embedded in an Ar-matrix and of the MgF(2)-films deposited onto a cooled substrate, respectively. We find that, in the vapor phase, there are monomers and dimers and charged species to be present in our experimental setup. Furthermore, the results suggest that in the amorphous bulk MgF(2), rutile-like domains are present and MgF(2) clusters similar to those in the matrix. Finally, peaks at about 800 cm(-1), which are in the same range as the A(g) modes of clusters with dangling fluorine atoms connected to three-coordinated Mg atoms, indicate that such dangling bonds are also present in amorphous MgF(2).

  14. Effects of two types of foot orthoses on lower limb muscle activity before and after a one-month period of wear.

    PubMed

    Moisan, Gabriel; Cantin, Vincent

    2016-05-01

    The purpose of this study was to quantify the effects of two types of foot orthoses (FOs) on muscle activity during walking. Twenty-one healthy participants were recruited to walk on a five-meter walkway with a control condition (no FOs) and two experimental conditions (FOs and FOs with lateral bar). The experimental protocol was performed before and after a one-month period of wear for each experimental condition. Electromyographic signals were recorded for six muscles (gluteus medius, vastus lateralis, medial gastrocnemius, lateral gastrocnemius, peroneus longus and tibialis anterior). Mean muscle activity was analyzed during the contact, the combined midstance/terminal stance and the pre-swing phases of gait. Peak amplitude and time to peak amplitude were quantified during the stance phase. Unacceptable level of variability was observed between the testing sessions. Therefore, no comparisons were performed to compare the effects of the experimental conditions between testing sessions. After a one-month period of wear, FOs with lateral bar decreased peak amplitude and mean activity of the peroneus longus muscle during the combined midstance/terminal stance phase and FOs decreased peak amplitude and mean activity of the tibialis anterior muscle during the contact phase compared to a control condition. In conclusion, repeated-test design should be used with caution when assessing the muscular adaptation to the wear of FOs for a certain period of time. More studies are needed to determine if the decreased activity of the peroneus longus muscle could be of benefit to treat pathologies such as peroneal tendinopathy or lateral ankle instability. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electron ionization and dissociation of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  16. Application of real rock pore-threat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakibul, M.; Sarker, H.; McIntyre, D.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data.« less

  17. Application of real rock pore-throat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, M.R.; McIntyre, D.; Ferer, M.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data. Introduction« less

  18. Determination of N,N-dimethyltryptamine in Mimosa tenuiflora inner barks by matrix solid-phase dispersion procedure and GC-MS.

    PubMed

    Gaujac, Alain; Aquino, Adriano; Navickiene, Sandro; de Andrade, Jailson Bittencourt

    2012-01-15

    N,N-dimethyltryptamine (DMT) is a potent hallucinogen found in beverages consumed in religion rituals and neo-shamanic practices over the world. Two of these religions, Santo Daime and União do Vegetal (UDV), are represented in countries including Australia, the United States and several European nations. In some of this countries there have been legal disputes concerning the legalization of ayahuasca consumption during religious rituals, a beverage rich in DMT. In Brazil, even children and pregnant women are legally authorized to consume ayahuasca in a religious context. A simple and low-cost method based on matrix solid-phase dispersion (MSPD) and gas chromatography with mass spectrometric detection (GC-MS) has been optimized for the determination of N,N-dimethyltryptamine in Mimosa tenuiflora inner bark. The experimental variables that affect the MSPD method, such as the amounts of solid-phase and herbal sample, solvent nature, eluate volume and NaOH concentration were optimized using an experimental design. The method showed good linearity (r = 0.9962) and repeatability (RSD < 7.4%) for DMT compound, with detection limit of 0.12 mg/g. The proposed method was used to analyze 24 samples obtained locally. The results showed that concentrations of the target compound in M. tenuiflora barks, ranged from 1.26 to 9.35 mg/g for these samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Determination of gas-liquid partition coefficients of several organic solutes in trihexyl(tetradecyl)phosphonium bromide using capillary gas chromatography columns.

    PubMed

    Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B

    2017-06-09

    In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao

    2014-12-01

    Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.

  1. Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach

    NASA Astrophysics Data System (ADS)

    Vu, Nam H.; Le, Hieu V.; Cao, Thi M.; Pham, Viet V.; Le, Hung M.; Nguyen-Manh, Duc

    2012-10-01

    The anatase-rutile phase transformation of TiO2 bulk material is investigated using a density functional theory (DFT) approach in this study. According to the calculations employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with the Vanderbilt ultrasoft pseudopotential, it is suggested that the anatase phase is more energetically stable than rutile, which is in variance with the experimental observations. Consequently, the DFT + U method is employed in order to predict the correct structural stability in titania from electronic-structure-based total energy calculations. The Hubbard U term is determined by examining the band structure of rutile with various values of U from 3 to 10 eV. At U = 5 eV, a theoretical bandgap for rutile is obtained as 3.12 eV, which is in very good agreement with the reported experimental bandgap. Hence, we choose the DFT + U method (with U = 5 eV) to investigate the transformation pathway using the newly-developed solid-state nudged elastic band (ss-NEB) method, and consequently obtain an intermediate transition structure that is 9.794 eV per four-TiO2 above the anatase phase. When the Ti-O bonds in the transition state are examined using charge density analysis, seven Ti-O bonds (out of 24 bonds in the anatase unit cell) are broken, and this result is in excellent agreement with a previous experimental study (Penn and Banfield 1999 Am. Miner. 84 871-6).

  2. Rapid experimental SAD phasing and hot-spot identification with halogenated fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, Joseph D.; Harrison, Jerry Joe E. K.; Arnold, Eddy

    2016-01-01

    Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a `magic bullet' that is capable of binding at many of the ligand `hot spots' found in HIV-1 reverse transcriptase (RT). The binding locations can be in pockets that are `hidden' in the unliganded crystal form, allowing rapid identification of these sites forin silicoscreening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structuresmore » of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K) by single-wavelength anomalous dispersion (SAD) from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals.« less

  3. Determination of Benzyl-hexadecyldimethylammonium 1,4-Bis(2-ethylhexyl)sulfosuccinate Vesicle Permeability by Using Square Wave Voltammetry and an Enzymatic Reaction.

    PubMed

    Cobo Solis, Airam K; Correa, N Mariano; Molina, Patricia G

    2017-10-31

    This report describes the studies performed to determine the permeability coefficient value (P) of 1-naphthyl phosphate (1-NP) through the benzyl-hexadecyldimethylammonium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT-BHD) vesicle bilayer. 1-NP was added in the external phase and must cross the bilayer of the vesicle to react with the encapsulated enzyme (alkaline phosphatase) to yield 1-naphtholate (NPh - ), the product of the enzymatic hydrolysis. This product is electrochemically detected, at basic pH value, by a square wave voltammetry technique, which can be a good alternative over the spectroscopic one, to measure the vesicle solutions because scattering (due to its turbidity) does not make any influence in the electrochemical signal. The experimental data allow us to propose a mathematical model, and a value of P = (1.00 ± 0.15) × 10 -9 cm s -1 was obtained. Also, a value of P = (2.0 ± 0.5) × 10 -9 cm s -1 was found by using an independent technique, ultraviolet-visible spectroscopy, for comparison. It is evident that the P values obtained from both the techniques are comparable (within the experimental error of both techniques) under the same experimental conditions. This study constitutes the first report of the 1-NP permeability determination in this new vesicle. We want to highlight the importance of the introduction of a new method and the electrochemical response of the product generated through an enzymatic reaction that occurs in the inner aqueous phase of the vesicle, where the enzyme is placed.

  4. Equation of state of zircon- and scheelite-type dysprosium orthovanadates: a combined experimental and theoretical study.

    PubMed

    Paszkowicz, Wojciech; Ermakova, Olga; López-Solano, Javier; Mujica, Andrés; Muñoz, Alfonso; Minikayev, Roman; Lathe, Christian; Gierlotka, Stanisław; Nikolaenko, Irina; Dabkowska, Hanna

    2014-01-15

    Dysprosium orthovanadate, DyVO4, belongs to a family of zircon-type orthovanadates showing a phase transition to scheelite-type structures at moderate pressures below 10 GPa. In the present study, the equations of state (EOSs) for both these phases were determined for the first time using high-pressure x-ray diffraction experiments and ab initio calculations based on the density functional theory. Structural parameters for scheelite-type DyVO4 were calculated from x-ray powder diffraction data as well. The high-pressure experiments were performed under pseudo-hydrostatic conditions at pressures up to 8.44 GPa and 5.5 GPa for the stable zircon-type and metastable (quenched) scheelite-type samples, respectively. Assuming as a compression model the Birch-Murnaghan EOS, we obtained the EOS parameters for both phases. The experimental bulk moduli (K0) for zircon-type and scheelite-type DyVO4 are 118(4) GPa and 153(6) GPa, respectively. Theoretical equations of state were determined by ab initio calculations using the PBE exchange-correlation energy functional of Perdew, Burke, and Ernzerhof. These calculations provide K0 values of 126.1 GPa and 142.9 GPa for zircon-type and scheelite-type DyVO4, respectively. The reliability of the present experimental and theoretical results is supported by (i) the consistency between the values yielded by the two methods (the discrepancy in K0 is as low as about 7% for each of the studied polymorphs) and (ii) their similarity to results obtained under similar compression conditions (hydrostatic or pseudo-hydrostatic) for other rare-earth orthovanadates, such as YVO4 and TbVO4.

  5. Classical and Quantum-Mechanical State Reconstruction

    ERIC Educational Resources Information Center

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  6. Experimental Phase Equilibria Studies of the Pb-Fe-O System in Air, in Equilibrium with Metallic Lead and at Intermediate Oxygen Potentials

    NASA Astrophysics Data System (ADS)

    Shevchenko, M.; Jak, E.

    2017-12-01

    The phase equilibria information on the Pb-Fe-O system is of practical importance for the improvement of the existing thermodynamic database of lead-containing slag systems (Pb-Zn-Fe-Cu-Si-Ca-Al-Mg-O). Phase equilibria of the Pb-Fe-O system have been investigated: (a) in air at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); (b) in equilibrium with metallic lead at temperatures between 1053 K and 1373 K (780 °C and 1100 °C); and (c) at intermediate oxidation conditions for the liquid slag in equilibrium with two solids (spinel + magnetoplumbite), at temperatures between 1093 K and 1373 K (820 °C and 1100 °C). The high-temperature equilibration/quenching/electron probe X-ray microanalysis technique has been used to accurately determine the compositions of the phases in equilibrium in the system. The Pb and Fe concentrations in the phases were determined directly; preliminary thermodynamic modeling with FactSage was used to estimate the ferrous-to-ferric ratios and to present the results in the ternary diagram.

  7. Phase transition thermodynamics of bisphenols.

    PubMed

    Costa, José C S; Dávalos, Juan Z; Santos, Luís M N B F

    2014-10-16

    Herein we have studied, presented, and analyzed the phase equilibria thermodynamics of a bisphenols (BP-A, BP-E, BP-F, BP-AP, and BP-S) series. In particular, the heat capacities, melting temperatures, and vapor pressures at different temperatures as well as the standard enthalpies, entropies, and Gibbs energies of phase transition (fusion and sublimation) were experimentally determined. Also, we have presented the phase diagrams of each bisphenol derivative and investigated the key parameters related to the thermodynamic stability of the condensed phases. When all the bisphenol derivatives are compared at the same conditions, solids BP-AP and BP-S present lower volatilities (higher Gibbs energy of sublimation) and high melting temperatures due to the higher stability of their solid phases. Solids BP-A and BP-F present similar stabilities, whereas BP-E is more volatile. The introduction of -CH3 groups in BP-F (giving BP-E and BP-A) leads an entropic differentiation in the solid phase, whereas in the isotropic liquids the enthalpic and entropic differentiations are negligible.

  8. Optical determination of crystal phase in semiconductor nanocrystals

    PubMed Central

    Lim, Sung Jun; Schleife, André; Smith, Andrew M.

    2017-01-01

    Optical, electronic and structural properties of nanocrystals fundamentally derive from crystal phase. This is especially important for polymorphic II–VI, III–V and I-III-VI2 semiconductor materials such as cadmium selenide, which exist as two stable phases, cubic and hexagonal, each with distinct properties. However, standard crystallographic characterization through diffraction yields ambiguous phase signatures when nanocrystals are small or polytypic. Moreover, diffraction methods are low-throughput, incompatible with solution samples and require large sample quantities. Here we report the identification of unambiguous optical signatures of cubic and hexagonal phases in II–VI nanocrystals using absorption spectroscopy and first-principles electronic-structure theory. High-energy spectral features allow rapid identification of phase, even in small nanocrystals (∼2 nm), and may help predict polytypic nanocrystals from differential phase contributions. These theoretical and experimental insights provide simple and accurate optical crystallographic analysis for liquid-dispersed nanomaterials, to improve the precision of nanocrystal engineering and improve our understanding of nanocrystal reactions. PMID:28513577

  9. Sequencing sit-to-stand and upright posture for mobility limitation assessment: determination of the timing of the task phases from force platform data.

    PubMed

    Mazzà, Claudia; Zok, Mounir; Della Croce, Ugo

    2005-06-01

    The identification of quantitative tools to assess an individual's mobility limitation is a complex and challenging task. Several motor tasks have been designated as potential indicators of mobility limitation. In this study, a multiple motor task obtained by sequencing sit-to-stand and upright posture was used. Algorithms based on data obtained exclusively from a single force platform were developed to detect the timing of the motor task phases (sit-to-stand, preparation to the upright posture and upright posture). To test these algorithms, an experimental protocol inducing predictable changes in the acquired signals was designed. Twenty-two young, able-bodied subjects performed the task in four different conditions: self-selected natural and high speed with feet kept together, and self-selected natural and high speed with feet pelvis-width apart. The proposed algorithms effectively detected the timing of the task phases, the duration of which was sensitive to the four different experimental conditions. As expected, the duration of the sit-to-stand was sensitive to the speed of the task and not to the foot position, while the duration of the preparation to the upright posture was sensitive to foot position but not to speed. In addition to providing a simple and effective description of the execution of the motor task, the correct timing of the studied multiple task could facilitate the accurate determination of variables descriptive of the single isolated phases, allowing for a more thorough description of the motor task and therefore could contribute to the development of effective quantitative functional evaluation tests.

  10. Stable, Metastable, and Kinetically Trapped Amyloid Aggregate Phases

    PubMed Central

    2015-01-01

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer’s disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid–liquid phase separation of proteins and to surfactant aggregation are discussed. PMID:25469942

  11. Stable, metastable, and kinetically trapped amyloid aggregate phases.

    PubMed

    Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin

    2015-01-12

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.

  12. Mutagenic analysis of the nucleation propensity of oxidized Alzheimer's beta-amyloid peptide.

    PubMed

    Christopeit, Tony; Hortschansky, Peter; Schroeckh, Volker; Gührs, Karlheinz; Zandomeneghi, Giorgia; Fändrich, Marcus

    2005-08-01

    The formation of polypeptide aggregates represents a nucleated polymerization reaction in which an initial nucleation event (lag phase) is followed by the extension of newly formed nuclei into larger aggregates, including fibrils (growth phase). The efficiencies of these reactions relate to the lag time (lag phase) and to the rate of aggregation (growth phase), which can be determined from experimental aggregation curves. Here we present a mutagenic analysis in which we replace valine 18 of the Alzheimer's Abeta (1-40) peptide with 17 different amino acids and determine its effect on the lag time, and therefore, on the propensity of nucleation. Comparison with various physico-chemical properties shows that nucleation is affected in a predictable manner depending on the beta-sheet propensity and hydrophobicity of residue 18. In addition, we observe a direct proportionality between the lag time and the rate of aggregation. These data imply that the two reactions, nucleation and polymerization, are governed by very similar physicochemical principles and that they involve the formation of the same types of noncovalent interactions.

  13. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank.

    PubMed

    Nootz, Gero; Matt, Silvia; Kanaev, Andrey; Judd, Kyle P; Hou, Weilin

    2017-08-01

    The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5  m×0.5  m×0.5  m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.

  14. Solid-gas phase equilibria and thermodynamic properties of cadmium selenide.

    NASA Technical Reports Server (NTRS)

    Sigai, A. G.; Wiedemeier, H.

    1972-01-01

    Accurate vapor pressures are determined through direct weight loss measurements using the Knudsen effusion technique. The experimental data are evaluated by establishing the mode of vaporization and determining the heat capacity of cadmium selenide at elevated temperatures. Additional information is obtained through a second- and third-law evaluation of data, namely, the heat of formation and the absolute entropy of cadmium selenide. A preferential loss of selenium during the initial heating of CdSe is observed, which leads to a deviation in stoichiometry.

  15. Proceedings of the Symposium on GPS Applications in Space (2nd) Held in Bedford, Massachusetts on 10-11 October 1989. Volume 1

    DTIC Science & Technology

    1990-02-13

    Freedom GPS Implementation Plans - An Overview, Penny E. Saunders . . . . . .................. 95 Recent Results In High-Precision GPS Orbit Determination...Upperstages" 7. Penny Saunders (NASA Johnson Space Center): "Space Station GPS Implementation Plans and Overview" 12:00 - 13:30 LUNCH NCO Club vii 13...and design. In this phase we plan to do a ground demon- stration to determine experimentally what sort of attitude accuracy we can get from this

  16. Development of techniques for advanced optical contamination measurement with internal reflection spectroscopy, phase 1, volume 1

    NASA Technical Reports Server (NTRS)

    Hayes, J. D.

    1972-01-01

    The feasibility of monitoring volatile contaminants in a large space simulation chamber using techniques of internal reflection spectroscopy was demonstrated analytically and experimentally. The infrared spectral region was selected as the operational spectral range in order to provide unique identification of the contaminants along with sufficient sensitivity to detect trace contaminant concentrations. It was determined theoretically that a monolayer of the contaminants could be detected and identified using optimized experimental procedures. This ability was verified experimentally. Procedures were developed to correct the attenuated total reflectance spectra for thick sample distortion. However, by using two different element designs the need for such correction can be avoided.

  17. Simulating the SOA formation of isoprene from partitioning and aerosol phase reactions in the presence of inorganics

    NASA Astrophysics Data System (ADS)

    Beardsley, Ross L.; Jang, Myoseon

    2016-05-01

    The secondary organic aerosol (SOA) produced by the photooxidation of isoprene with and without inorganic seed is simulated using the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model. Recent work has found the SOA formation of isoprene to be sensitive to both aerosol acidity ([H+], mol L-1) and aerosol liquid water content (LWC) with the presence of either leading to significant aerosol phase organic mass generation and large growth in SOA yields (YSOA). Classical partitioning models alone are insufficient to predict isoprene SOA formation due to the high volatility of photooxidation products and sensitivity of their mass yields to variations in inorganic aerosol composition. UNIPAR utilizes the chemical structures provided by a near-explicit chemical mechanism to estimate the thermodynamic properties of the gas phase products, which are lumped based on their calculated vapor pressure (eight groups) and aerosol phase reactivity (six groups). UNIPAR then determines the SOA formation of each lumping group from both partitioning and aerosol phase reactions (oligomerization, acid-catalyzed reactions and organosulfate formation) assuming a single homogeneously mixed organic-inorganic phase as a function of inorganic composition and VOC / NOx (VOC - volatile organic compound). The model is validated using isoprene photooxidation experiments performed in the dual, outdoor University of Florida Atmospheric PHotochemical Outdoor Reactor (UF APHOR) chambers. UNIPAR is able to predict the experimental SOA formation of isoprene without seed, with H2SO4 seed gradually titrated by ammonia, and with the acidic seed generated by SO2 oxidation. Oligomeric mass is predicted to account for more than 65 % of the total organic mass formed in all cases and over 85 % in the presence of strongly acidic seed. The model is run to determine the sensitivity of YSOA to [H+], LWC and VOC / NOx, and it is determined that the SOA formation of isoprene is most strongly related to [H+] but is dynamically related to all three parameters. For VOC / NOx > 10, with increasing NOx both experimental and simulated YSOA increase and are found to be more sensitive to [H+] and LWC. For atmospherically relevant conditions, YSOA is found to be more than 150 % higher in partially titrated acidic seeds (NH4HSO4) than in effloresced inorganics or in isoprene only.

  18. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Csernica, Stephen N.

    The demand for renewable forms of energy has increased tremendously over the past two decades. Of all the different forms of renewable energy, biodiesel, a liquid fuel, has emerged as one of the more viable possibilities. This is in large part due to the fact that biodiesel can readily be used in modern day diesel engines with nearly no engine modifications. It is commonly blended with conventional petroleum-derived diesel but it can also be used neat. As a result of the continued growth of the industry, there has been a correspondingly large increase in the scientific and technical research conducted on the subject. Much of the research has been conducted on the feasibility of using different types of feedstocks, which generally vary with respect to geographic locale, as well as different types of catalysts. Much of the work of the present study was involved with the investigation of the binary liquid-liquid nature of the system and its effects on the reaction kinetics. Initially, the development of an analytical method for the analysis of the compounds present in transesterification reaction mixtures using high performance liquid chromatography (HPLC) was developed. The use of UV(205 nm) as well as refractive index detection (RID) were shown capable to detect the various different types of components associated with transesterification reactions. Reversed-phase chromatography with isocratic elution was primarily used. Using a unique experimental apparatus enabling the simultaneous analysis of both liquid phases throughout the reaction, an experimental method was developed for measuring the reaction rate under both mass transfer control and reaction control. The transesterification reaction rate under each controlling mechanism was subsequently evaluated and compared. It was determined that the reaction rate is directly proportional to the concentration of triglycerides in the methanol phase. Furthermore, the reaction rate accelerates rapidly as the system transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style plug flow reactors (PFR). Despite this fact, the use of CSTRs is more common than the use of PFRs. This is mostly due to the fact that the two initial reactant phases are relatively immiscible and significant agitation is generally supplied to initiate the reaction. Based on the theoretical results, however, the use of a packed-bed tubular flow reactor was investigated experimentally. A series of two tubular flow reactors was built in the laboratory. The first reactor was of the shell and tube variety and also functioned as a preheater. The second reactor was larger and contained a packed-bed. Two different flow configurations were invested, upflow-upflow and downflow-downflow. It was determined that the downflow-downflow configuration provided significantly better triglyceride conversions that the upflow-upflow configuration.

  19. Influence of defect distribution on the thermoelectric properties of FeNbSb based materials.

    PubMed

    Guo, Shuping; Yang, Kaishuai; Zeng, Zhi; Zhang, Yongsheng

    2018-05-21

    Doping and alloying are important methodologies to improve the thermoelectric performance of FeNbSb based materials. To fully understand the influence of point defects on the thermoelectric properties, we have used density functional calculations in combination with the cluster expansion and Monte Carlo methods to examine the defect distribution behaviors in the mesoscopic FeNb1-xVxSb and FeNb1-xTixSb systems. We find that V and Ti exhibit different distribution behaviors in FeNbSb at low temperature: forming the FeNbSb-FeVSb phase separations in the FeNb1-xVxSb system but two thermodynamically stable phases in FeNb1-xTixSb. Based on the calculated effective mass and band degeneracy, it seems the doping concentration of V or Ti in FeNbSb has little effect on the electrical properties, except for one of the theoretically predicted stable Ti phases (Fe6Nb5Ti1Sb6). Thus, an essential methodology to improve the thermoelectric performance of FeNbSb should rely on phonon scattering to decrease the thermal conductivity. According to the theoretically determined phase diagrams of Fe(Nb,V)Sb and Fe(Nb,Ti)Sb, we propose the (composition, temperature) conditions for the experimental synthesis to improve the thermoelectric performance of FeNbSb based materials: lowering the experimental preparation temperature to around the phase boundary to form a mixture of the solid solution and phase separation. The point defects in the solid solution effectively scatter the short-wavelength phonons and the (coherent or incoherent) interfaces introduced by the phase separation can additionally scatter the middle-wavelength phonons to further decrease the thermal conductivity. Moreover, the induced interfaces could enhance the Seebeck coefficient as well, through the energy filtering effect. Our results give insight into the understanding of the impact of the defect distribution on the thermoelectric performance of materials and strengthen the connection between theoretical predictions and experimental measurements.

  20. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    NASA Astrophysics Data System (ADS)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  1. Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2003-12-10

    We evaluate the use of a smoothed space-frequency distribution (SSFD) to retrieve optical phase maps in digital speckle pattern interferometry (DSPI). The performance of this method is tested by use of computer-simulated DSPI fringes. Phase gradients are found along a pixel path from a single DSPI image, and the phase map is finally determined by integration. This technique does not need the application of a phase unwrapping algorithm or the introduction of carrier fringes in the interferometer. It is shown that a Wigner-Ville distribution with a smoothing Gaussian kernel gives more-accurate results than methods based on the continuous wavelet transform. We also discuss the influence of filtering on smoothing of the DSPI fringes and some additional limitations that emerge when this technique is applied. The performance of the SSFD method for processing experimental data is then illustrated.

  2. Three-dimensional surface contouring of macroscopic objects by means of phase-difference images.

    PubMed

    Velásquez Prieto, Daniel; Garcia-Sucerquia, Jorge

    2006-09-01

    We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2pi phase map in any contouring process is obtained by means of the direct subtraction of two phase-contrast images under different illumination angles to create a phase-difference image of a still object. Obtaining the phase-difference images is only possible by using the capability of numerical reconstruction of the complex optical field provided by digital holography. This unique characteristic leads us to a robust, reliable, and fast procedure that requires only two images. A theoretical analysis of the contouring system is shown, with verification by means of numerical and experimental results.

  3. Phase relations of Fe Ni alloys at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Mao, Wendy L.; Campbell, Andrew J.; Heinz, Dion L.; Shen, Guoyin

    2006-04-01

    Using a diamond anvil cell and double-sided laser-heating coupled with synchrotron X-ray diffraction, we determined phase relations for three compositions of Fe-rich FeNi alloys in situ at high pressure and high temperature. We studied Fe with 5, 15, and 20 wt.% Ni to 55, 62, and 72 GPa, respectively, at temperatures up to ˜3000 K. Ni stabilizes the face-centered cubic phase to lower temperatures and higher pressure, and this effect increases with increasing pressure. Extrapolation of our experimental results for Fe with 15 wt.% Ni suggests that the stable phase at inner core conditions is hexagonal close packed, although if the temperature at the inner core boundary is higher than ˜6400 K, a two phase outer region may also exist. Comparison to previous laser-heated diamond anvil cell studies demonstrates the importance of kinetics even at high temperatures.

  4. Applicability of solid-phase microextraction combined with gas chromatography atomic emission detection (GC-MIP AED) for the determination of butyltin compounds in sediment samples.

    PubMed

    Carpinteiro, J; Rodríguez, I; Cela, R

    2004-11-01

    The performance of solid-phase microextraction (SPME) applied to the determination of butyltin compounds in sediment samples is systematically evaluated. Matrix effects and influence of blank signals on the detection limits of the method are studied in detail. The interval of linear response is also evaluated in order to assess the applicability of the method to sediments polluted with butyltin compounds over a large range of concentrations. Advantages and drawbacks of including an SPME step, instead of the classic liquid-liquid extraction of the derivatized analytes, in the determination of butyltin compounds in sediment samples are considered in terms of achieved detection limits and experimental effort. Analytes were extracted from the samples by sonication using glacial acetic acid. An aliquot of the centrifuged extract was placed on a vial where compounds were ethylated and concentrated on a PDMS fiber using the headspace mode. Determinations were carried out using GC-MIP AED.

  5. Simultaneous Determination of Potassium Sorbate, Sodium Benzoate, Quinoline Yellow and Sunset Yellow in Lemonades and Lemon Sauces by HPLC Using Experimental Design.

    PubMed

    Dinç Zor, Şule; Aşçı, Bürge; Aksu Dönmez, Özlem; Yıldırım Küçükkaraca, Dilek

    2016-07-01

    In this study, development and validation of a HPLC method was described for simultaneous determination of potassium sorbate, sodium benzoate, quinoline yellow and sunset yellow. A Box-Behnken design using three variables at three levels was employed to determine the optimum conditions of chromatographic separation: pH of mobile phase, 6.0-7.0; flow rate, 0.8-1.2 mL min(-1) and the ratio of mobile phase composed of a 0.025 M sodium acetate/acetic acid buffer, 80-90%. Resolution was chosen as a response. The optimized method was validated for linearity, the limits of detection and quantification, accuracy, precision and stability. All the validation parameters were within the acceptance range. The applicability of the developed method to the determination of these food additives in commercial lemonade and lemon sauce samples was successfully demonstrated. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent

    PubMed Central

    Nakane, Takanori; Hanashima, Shinya; Suzuki, Mamoru; Saiki, Haruka; Hayashi, Taichi; Kakinouchi, Keisuke; Sugiyama, Shigeru; Kawatake, Satoshi; Matsuoka, Shigeru; Matsumori, Nobuaki; Nango, Eriko; Kobayashi, Jun; Shimamura, Tatsuro; Kimura, Kanako; Mori, Chihiro; Kunishima, Naoki; Sugahara, Michihiro; Takakyu, Yoko; Inoue, Shigeyuki; Masuda, Tetsuya; Hosaka, Toshiaki; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Inoue, Tsuyoshi; Nureki, Osamu; Iwata, So; Murata, Michio; Mizohata, Eiichi

    2016-01-01

    The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams. PMID:27799539

  7. Membrane protein structure determination by SAD, SIR, or SIRAS phasing in serial femtosecond crystallography using an iododetergent.

    PubMed

    Nakane, Takanori; Hanashima, Shinya; Suzuki, Mamoru; Saiki, Haruka; Hayashi, Taichi; Kakinouchi, Keisuke; Sugiyama, Shigeru; Kawatake, Satoshi; Matsuoka, Shigeru; Matsumori, Nobuaki; Nango, Eriko; Kobayashi, Jun; Shimamura, Tatsuro; Kimura, Kanako; Mori, Chihiro; Kunishima, Naoki; Sugahara, Michihiro; Takakyu, Yoko; Inoue, Shigeyuki; Masuda, Tetsuya; Hosaka, Toshiaki; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Inoue, Tsuyoshi; Nureki, Osamu; Iwata, So; Murata, Michio; Mizohata, Eiichi

    2016-11-15

    The 3D structure determination of biological macromolecules by X-ray crystallography suffers from a phase problem: to perform Fourier transformation to calculate real space density maps, both intensities and phases of structure factors are necessary; however, measured diffraction patterns give only intensities. Although serial femtosecond crystallography (SFX) using X-ray free electron lasers (XFELs) has been steadily developed since 2009, experimental phasing still remains challenging. Here, using 7.0-keV (1.771 Å) X-ray pulses from the SPring-8 Angstrom Compact Free Electron Laser (SACLA), iodine single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), and single isomorphous replacement with anomalous scattering (SIRAS) phasing were performed in an SFX regime for a model membrane protein bacteriorhodopsin (bR). The crystals grown in bicelles were derivatized with an iodine-labeled detergent heavy-atom additive 13a (HAD13a), which contains the magic triangle, I3C head group with three iodine atoms. The alkyl tail was essential for binding of the detergent to the surface of bR. Strong anomalous and isomorphous difference signals from HAD13a enabled successful phasing using reflections up to 2.1-Å resolution from only 3,000 and 4,000 indexed images from native and derivative crystals, respectively. When more images were merged, structure solution was possible with data truncated at 3.3-Å resolution, which is the lowest resolution among the reported cases of SFX phasing. Moreover, preliminary SFX experiment showed that HAD13a successfully derivatized the G protein-coupled A2a adenosine receptor crystallized in lipidic cubic phases. These results pave the way for de novo structure determination of membrane proteins, which often diffract poorly, even with the brightest XFEL beams.

  8. Phase behaviors of supramolecular graft copolymers with reversible bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao

    2013-11-14

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less

  9. Enhanced Night Visibility Series, Volume XII : Overview of Phase II and Development of Phase III Experimental Plan

    DOT National Transportation Integrated Search

    2005-12-01

    This volume provides an overview of the six studies that compose Phase II of the Enhanced Night Visibility project and the experimental plan for its third and final portion, Phase III. The Phase II studies evaluated up to 12 vision enhancement system...

  10. High-pressure structural study of MnF 2

    DOE PAGES

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...

    2015-02-01

    In this study, manganese fluoride (MnF 2) with the tetragonal rutile-type structure has been studied using a synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell up to 60 GPa at room temperature combined with first-principles density functional calculations. The experimental data reveal two pressure-induced structural phase transitions with the following sequence: rutile → SrI 2 type (3 GPa)→ α–PbCl 2 type (13 GPa). Complete structural information, including interatomic distances, has been determined in the case of MnF 2 including the exact structure of the debated first high-pressure phase. First-principles density functional calculations confirm this phasemore » transition sequence, and the two calculated transition pressures are in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phases. The results are discussed in line with the possible practical use of rutile-type fluorides in general and specifically MnF 2 as a model compound to reveal the HP structural behavior of rutile-type SiO 2 (Stishovite).« less

  11. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    NASA Astrophysics Data System (ADS)

    Frear, D. R.; Burchett, S. N.; Rashid, M. M.

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue. We present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.

  12. Evaluation between residual stresses obtained by neutron diffraction and simulation for dual phase steel welded by laser process

    NASA Astrophysics Data System (ADS)

    Kouadri-Henni, Afia; Malard, Benoit

    2018-05-01

    This study aimed at characterizing the residual stresses (RS) distribution of a Dual Phase Steel (DP600) undergoing a Laser Beam Welding (LBW) with two different laser parameters. The RS in the ferritic phase have been experimentally determined by the use of the neutrons diffraction technique. The results confirmed a gradient of RS among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the Base Metal (BM) close to the Heat Affected Zone (HAZ) whereas high tensile stresses were observed in the Fusion Zone (FZ). Numerical results showed a difference in the RS distribution depending on the model used. In the end, it appears that the high temperature gradient, specific to the laser beam, is the main factor governing the RS. Our results suggest as well that the approach regarding the RS should consider not only the temperature but also process parameters. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.

  13. Effect of Off-Body Laser Discharge on Drag Reduction of Hemisphere Cylinder in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Kianvashrad, Nadia; Knight, Doyle; Wilkinson, Stephen P.; Chou, Amanda; Horne, Robert A.; Herring, Gregory C.; Beeler, George B.; Jangda, Moazzam

    2017-01-01

    The interaction of an off-body laser discharge with a hemisphere cylinder in supersonic flow is investigated. The objectives are 1) experimental determination of the drag reduction and energetic efficiency of the laser discharge, and 2) assessment of the capability for accurate simulation of the interaction. The combined computational and experimental study comprises two phases. In the first phase, laser discharge in quiescent air was examined. The temporal behavior of the shock wave formed by the laser discharge was compared between experiment and simulation and good agreement is observed. In the second phase, the interaction of the laser discharge with a hemisphere cylinder was investigated numerically. Details of the pressure drag reduction and the physics of the interaction of the heated region with the bow shock are included. The drag reduction due to this interaction persisted for about five characteristic times where one characteristic time represents the time for the flow to move a distance equal to the hemisphere radius. The energetic efficiency of laser discharge for the case with 50 mJ energy absorbed by the gas is calculated as 3.22.

  14. A study of the effects of solid phase reactions on the thermal degradation and ballistic properties of solid propellants

    NASA Technical Reports Server (NTRS)

    Schmidt, W. G.

    1974-01-01

    The thermal stability of perchlorate composite propellants was studied at 135 and 170 C. The experimental efforts were concentrated on determining the importance of heterogeneous oxidizer-fuel reactions in the thermal degradation process. The experimental approach used to elucidate the mechanisms by which the oxidizer fuel composites thermally degrade was divided into two parts: (1) keeping the fuel constant and varying the nature of the oxidizers, and (2) holding the oxidizer constant and varying the fuel components. The fuel component primarily utilized in the first phase was polyethylene. Oxidizers included KClO4, KClO3, NH4ClO4 and NH4ClO4 doped with materials such as chlorate, phosphate and arsenate. In the second phase the oxidizer used was primarily NH4ClO4 while the fuels included saturated and unsaturated polybutadiene prepolymers and a series of bonding agents. Techniques employed in the current study include thermogravimetric measurements, differential thermal analysis, infrared, mass spectrometry, electron microscopy, and appropriate wet chemical analysis.

  15. Structural, bonding, and electronic properties of the hexagonal ferroelectric and paraelectric phases of LuMnO{sub 3} compound: A density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousa, A. M.; Coutinho, W. S.; Lima, A. F.

    2015-02-21

    We have investigated the structural, bonding, and electronic properties of both ferroelectric (FE) and paraelectric (PE) phases of the hexagonal LuMnO{sub 3} compound using calculations based on density functional theory. The structural properties have been determined by employing the generalized gradient approximation with Perdew-Burke-Ernzerhof and Wu-Cohen parameterization. The bonding and electronic properties have been treated by recently developed modified Becke-Johnson exchange potential, which succeeded to open a band gap for both PE and FE phases, in agreement with experimental predictions. The Bader’s topological analysis of electronic density showed that the character of the Lu–O axial bonds changes when the crystalmore » exhibits the PE → FE structural transition. This fact is in agreement with experimental findings. The covalent character of the Lu–O bond significantly increases due to orbital hybridization between the Lu 5d{sub z}{sup 2} and O 2p{sub z}-states. This bonding mechanism causes the ferroelectricity in the hexagonal LuMnO{sub 3} compound.« less

  16. Atmospheric contamination by pesticides: Determination in the liquid, gaseous and particulate phases.

    PubMed

    Millet, M; Wortham, H; Sanusi, A; Mirabel, P

    1997-01-01

    Between 1991 and 1993, 18 fogwater samples, 31 rainwater samples and 17 atmosphere (gas and particles) samples were analysed for 13 pesticides (pp'DDT,pp'DDD,pp'DDE, aldrin, dieldrin, lindane, hexachlorobenzene, fenpropathrin, mecoprop, methyl-parathion, atrazine, isoproturon and aldicarb). The samples were collected in a rural area where some of the compounds are in use (experimental INRA farm, "Institut National de la Recherche Agronomique" in Colmar, Eastern France, 80,000 inhabitants). This paper briefly presents the analytical methodology used and, in detail, the contamination level of the different atmospheric phases. The contamination levels are roughly constant throughout the year in all the atmospheric phases and the most abundant pesticides are those commonly used on the experimental INRA farm and other surrounding farms. Nevertheless, some pesticides not used since the 1970s such as 1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (pp'DDT) and 2,2-Bis(4-chlorophenyl)-1,1-dichloroethane (pp 'DDD) are also detected in the atmosphere of Colmar. A small increase in the pesticide concentrations in the atmosphere (gas and particles) was observed during treatments.

  17. High pressure cosmochemistry applied to major planetary interiors: Experimental studies

    NASA Technical Reports Server (NTRS)

    Nicol, M. F.; Johnson, M.; Koumvakalis, A. S.

    1984-01-01

    Progress is reported on a project to determine the properties and boundaries of high pressure phases of the H2-He-H2O-NH3-CH4 system that are needed to constrain theoretical models of the interiors of the major planets. This project is one of the first attempts to measure phase equilibria in binary fluid-solid systems in diamond anvil cells. Vibrational spectroscopy, direct visual observations, and X-ray diffraction crystallography of materials confined in externally heated cells are the primary experimental probes. Adiabats of these materials are also measured in order to constrain models of heat flow in these bodies and to detect phase transitions by thermal anomalies. Initial efforts involve the NH3-H2O binary. This system is especially relevant to models for surface reconstruction of the icy satellites of Jupiter and Saturn. Thermal analysis experiments were completed for the P-X space, p4GPa:0 or = 0.50, near room temperature. The cryostat, sample handling equipment, and optics needed to extend the optical P-T-X work below room temperature was completed.

  18. Determination of Young's modulus of epoxy coated polyethylene micro-cantilever using phase-shift shadow moiré method

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Ratnam, M. M.; Azid, I. A.; Mutharasu, D.

    2011-11-01

    Young's moduli of various epoxy coated polyethylene terephthalate (PET) micro-cantilevers were determined from the deflection results obtained using the phase-shift shadow moiré (PSSM) method. The filler materials for epoxy coatings were aluminum and graphite powders that were mixed with epoxy at various percentages. Young's moduli were calculated from theory based on the deflection results. The PET micro-cantilever coated with aluminum-epoxy coating showed increasing value of Young's modulus when the ratios of the aluminum-epoxy were increased. The graphite-epoxy coating on the PET micro-cantilever also showed the same trend. The experimental results also show that Young's modulus of the graphite-epoxy coating is higher than aluminum-epoxy coating in comparison at the same mixing ratio.

  19. Experimentally determined solidi in the Ca-bearing granite system NaAlSi3O8-CaAl2Si2O8-KAlSi3O8-SiO2-H2O-CO2

    USGS Publications Warehouse

    Bohlen, S.R.; Eckert, J.O.; Hankins, W.B.

    1995-01-01

    The phase relationships of melting of synthetic granite in the presence of an H2O-CO2 fluid were determined. These results provide constraints on the maximum temperatures of regional metamorphism attainable in vapor-saturated metapelitic and quartzofeldspathic rocks that escaped widespread melting. At pressures below 10 kbar, a fluid phase of XH2O = 0.75, 0.5, and 0.25 limits temperatures to below ~700-725, ~800-825, and ~850-875??C, respectively. As a consequence, the formation of granulite does not require CO2 concentrations in a coexisting fluid to exceed an XCO2 of 0.25-0.5. -from Authors

  20. Experimental evaluation of LPG tank explosion hazards.

    PubMed

    Stawczyk, Jan

    2003-01-31

    Liquefied-pressure gases (LPG) are transported and stored in the liquid phase in closed tanks under sufficiently high pressure. In the case of an accident, an abrupt tank unsealing may release enormous quantity of evaporating gas and energy that has a destructive effect on the tank and its surroundings. In this paper, experiments with explosions of small LPG tanks are described. The data acquisition equipment applied in the tests provided a chance to learn dynamics of the process and determine hazard factors. The tests enabled a determination of temperature and pressure at which tanks containing LPG disrupt. The results enable a reconstruction of consecutive phases of the explosion and identification of hazards resulting from damage of the tanks. An explanation of the tank unsealing process with fluid parameters above critical point is given.

  1. An Indirect Method for Vapor Pressure and Phase Change Enthalpy Determination by Thermogravimetry

    NASA Astrophysics Data System (ADS)

    Giani, Samuele; Riesen, Rudolf; Schawe, Jürgen E. K.

    2018-07-01

    Vapor pressure is a fundamental property of a pure substance. This property is the pressure of a compound's vapor in thermodynamic equilibrium with its condensed phase (solid or liquid). When phase equilibrium condition is met, phase coexistence of a pure substance involves a continuum interplay of vaporization or sublimation to gas and condensation back to their liquid or solid form, respectively. Thermogravimetric analysis (TGA) techniques are based on mass loss determination and are well suited for the study of such phenomena. In this work, it is shown that TGA method using a reference substance is a suitable technique for vapor pressure determination. This method is easy and fast because it involves a series of isothermal segments. In contrast to original Knudsen's approach, where the use of high vacuum is mandatory, adopting the proposed method a given experimental setup is calibrated under ambient pressure conditions. The theoretical framework of this method is based on a generalization of Langmuir equation of free evaporation: The real strength of the proposed method is the ability to determine the vapor pressure independently of the molecular mass of the vapor. A demonstration of this method has been performed using the Clausius-Clapeyron equation of state to derive the working equation. This algorithm, however, is adaptive and admits the use of other equations of state. The results of a series of experiments with organic molecules indicate that the average difference of the measured and the literature vapor pressure amounts to about 5 %. Vapor pressure determined in this study spans from few mPa up to several kPa. Once the p versus T diagram is obtained, phase transition enthalpy can additionally be calculated from the data.

  2. Alternating phase-shifting masks: phase determination and impact of quartz defects--theoretical and experimental results

    NASA Astrophysics Data System (ADS)

    Griesinger, Uwe A.; Dettmann, Wolfgang; Hennig, Mario; Heumann, Jan P.; Koehle, Roderick; Ludwig, Ralf; Verbeek, Martin; Zarrabian, Mardjan

    2002-07-01

    In optical lithography balancing the aerial image of an alternating phase shifting mask (alt. PSM) is a major challenge. For the exposure wavelengths (currently 248nm and 193nm) an optimum etching method is necessary to overcome imbalance effects. Defects play an important role in the imbalances of the aerial image. In this contribution defects will be discussed by using the methodology of global phase imbalance control also for local imbalances which are a result of quartz defects. The effective phase error can be determined with an AIMS-system by measuring the CD width between the images of deep- and shallow trenches at different focus settings. The AIMS results are analyzed in comparison to the simulated and lithographic print results of the alternating structures. For the analysis of local aerial image imbalances it is necessary to investigate the capability of detecting these phase defects with state of the art inspection systems. Alternating PSMs containing programmed defects were inspected with different algorithms to investigate the capture rate of special phase defects in dependence on the defect size. Besides inspection also repair of phase defects is an important task. In this contribution we show the effect of repair on the optical behavior of phase defects. Due to the limited accuracy of the repair tools the repaired area still shows a certain local phase error. This error can be caused either by residual quartz material or a substrate damage. The influence of such repair induced phase errors on the aerial image were investigated.

  3. Applying the relaxation model of interfacial heat transfer to calculate the liquid outflow with supercritical initial parameters

    NASA Astrophysics Data System (ADS)

    Alekseev, M. V.; Vozhakov, I. S.; Lezhnin, S. I.; Pribaturin, N. A.

    2017-09-01

    A comparative numerical simulation of the supercritical fluid outflow on the thermodynamic equilibrium and non-equilibrium relaxation models of phase transition for different times of relaxation has been performed. The model for the fixed relaxation time based on the experimentally determined radius of liquid droplets was compared with the model of dynamically changing relaxation time, calculated by the formula (7) and depending on local parameters. It is shown that the relaxation time varies significantly depending on the thermodynamic conditions of the two-phase medium in the course of outflowing. The application of the proposed model with dynamic relaxation time leads to qualitatively correct results. The model can be used for both vaporization and condensation processes. It is shown that the model can be improved on the basis of processing experimental data on the distribution of the droplet sizes formed during the breaking up of the liquid jet.

  4. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji

    2014-09-15

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understandingmore » the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.« less

  5. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    NASA Astrophysics Data System (ADS)

    Fisher, I. R.; Degiorgi, L.; Shen, Z. X.

    2011-12-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Néel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  6. Fatigue crack localization with near-field acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Zhang, Yunfeng

    2013-04-01

    This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.

  7. Multisite occupation of divalent dopants in barium and strontium titanates

    NASA Astrophysics Data System (ADS)

    Zulueta, Yohandys A.; Nguyen, Minh Tho

    2018-10-01

    Based on recent experimental and theoretical proofs of calcium multisite occupation in barium titanate, we investigated a mixed incorporation mechanism for divalent dopants in barium and strontium titanates (BaTiO3 and SrTiO3). Our present theoretical results demonstrated the multisite occupation of divalent dopants in both perovskite structures. We determined the dependences of the solution, binding energies, and final solution energies with respect to the ionic radii of the dopants. Calculated results obtained based on classical simulations showed that the divalent dopants can occupy both A- and Ti- cation sites in ATiO3 perovskite structures. Such a multisite occupation has direct implications for other experimental findings regarding BaTiO3, such as non-stabilization of the tetragonal phase, shifts in the Curie temperature, intensification of the diffuse phase transition, and shifts in the absorption of ultraviolet light to the visible range in photocatalytic applications related to solar cells for producing energy.

  8. Droplet size in flow: Theoretical model and application to polymer blends

    NASA Astrophysics Data System (ADS)

    Fortelný, Ivan; Jůza, Josef

    2017-05-01

    The paper is focused on prediction of the average droplet radius, R, in flowing polymer blends where the droplet size is determined by dynamic equilibrium between the droplet breakup and coalescence. Expressions for the droplet breakup frequency in systems with low and high contents of the dispersed phase are derived using available theoretical and experimental results for model blends. Dependences of the coalescence probability, Pc, on system parameters, following from recent theories, is considered and approximate equation for Pc in a system with a low polydispersity in the droplet size is proposed. Equations for R in systems with low and high contents of the dispersed phase are derived. Combination of these equations predicts realistic dependence of R on the volume fraction of dispersed droplets, φ. Theoretical prediction of the ratio of R to the critical droplet radius at breakup agrees fairly well with experimental values for steadily mixed polymer blends.

  9. Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram.

    PubMed

    Biben, Thierry; Farutin, Alexander; Misbah, Chaouqi

    2011-03-01

    The study of vesicles under flow, a model system for red blood cells (RBCs), is an essential step in understanding various intricate dynamics exhibited by RBCs in vivo and in vitro. Quantitative three-dimensional analyses of vesicles under flow are presented. The regions of parameters to produce tumbling (TB), tank-treating, vacillating-breathing (VB), and even kayaking (or spinning) modes are determined. New qualitative features are found: (i) a significant widening of the VB mode region in parameter space upon increasing shear rate γ and (ii) a robustness of normalized period of TB and VB with γ. Analytical support is also provided. We make a comparison with existing experimental results. In particular, we find that the phase diagram of the various dynamics depends on three dimensionless control parameters, while a recent experimental work reported that only two are sufficient.

  10. Thermodynamic assessment of oxygen diffusion in non-stoichiometric UO2±x from experimental data and Frenkel pair modeling

    NASA Astrophysics Data System (ADS)

    Berthinier, C.; Rado, C.; Chatillon, C.; Hodaj, F.

    2013-02-01

    The self and chemical diffusion of oxygen in the non-stoichiometric domain of the UO2 compound is analyzed from the point of view of experimental determinations and modeling from Frenkel pair defects. The correlation between the self-diffusion and the chemical diffusion coefficients is analyzed using the Darken coefficient calculated from a thermodynamic description of the UO2±x phase. This description was obtained from an optimization of thermodynamic and phase diagram data and modeling with different point defects, including the Frenkel pair point defects. The proposed diffusion coefficients correspond to the 300-2300 K temperature range and to the full composition range of the non stoichiometric UO2 compound. These values will be used for the simulation of the oxidation and ignition of the uranium carbide in different oxygen atmospheres that starts at temperatures as low as 400 K.

  11. Simultaneous determination of effective carrier lifetime and resistivity of Si wafers using the nonlinear nature of photocarrier radiometric signals

    NASA Astrophysics Data System (ADS)

    Sun, Qiming; Melnikov, Alexander; Wang, Jing; Mandelis, Andreas

    2018-04-01

    A rigorous treatment of the nonlinear behavior of photocarrier radiometric (PCR) signals is presented theoretically and experimentally for the quantitative characterization of semiconductor photocarrier recombination and transport properties. A frequency-domain model based on the carrier rate equation and the classical carrier radiative recombination theory was developed. The derived concise expression reveals different functionalities of the PCR amplitude and phase channels: the phase bears direct quantitative correlation with the carrier effective lifetime, while the amplitude versus the estimated photocarrier density dependence can be used to extract the equilibrium majority carrier density and thus, resistivity. An experimental ‘ripple’ optical excitation mode (small modulation depth compared to the dc level) was introduced to bypass the complicated ‘modulated lifetime’ problem so as to simplify theoretical interpretation and guarantee measurement self-consistency and reliability. Two Si wafers with known resistivity values were tested to validate the method.

  12. Heterodyne interferometry method for calibration of a Soleil-Babinet compensator.

    PubMed

    Zhang, Wenjing; Zhang, Zhiwei

    2016-05-20

    A method based on the common-path heterodyne interferometer system is proposed for the calibration of a Soleil-Babinet compensator. In this heterodyne interferometer system, which consists of two acousto-optic modulators, the compensator being calibrated is inserted into the signal path. By using the reference beam as the benchmark and a lock-in amplifier (SR844) as the phase retardation collector, retardations of 0 and λ (one wavelength) can be located accurately, and an arbitrary retardation between 0 and λ can also be measured accurately and continuously. By fitting a straight line to the experimental data, we obtained a linear correlation coefficient (R) of 0.995, which indicates that this system is capable of linear phase detection. The experimental results demonstrate determination accuracies of 0.212° and 0.26° and measurement precisions of 0.054° and 0.608° for retardations of 0 and λ, respectively.

  13. Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source

    NASA Technical Reports Server (NTRS)

    Jeong, Seong-Il; Didion, Jeffrey

    2004-01-01

    The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.

  14. Electron impact excitation of the merocyanine molecule in the gas phase

    NASA Astrophysics Data System (ADS)

    Kulinich, A. V.; Ishchenko, A. A.; Kukhta, I. N.; Mitryukhin, L. K.; Kazakov, S. M.; Kukhta, A. V.

    2018-03-01

    Electronic transitions in a merocyanine dye were studied in the gas phase using electron energy loss spectroscopy and compared with the optical absorption spectra. It was found that the most intense band of the S1 ← S0 polymethine transition lies at 2.8 eV in vapor and 2.4 eV in n-hexane. Higher electronic transitions in the range of 3.7-7 eV were also analyzed. Besides, the singlet-triplet transition was revealed near 1.8 eV. TDDFT simulation of singlet-singlet transitions in the studied molecule was performed using B97D3, B3LYP, B3PW91 and wB97xD functionals. The calculated energy of the long-wavelength transition is closest to the experimental value with the latter. Other functionals result in the energy 0.2-0.4 eV exceeding experimental. The interpretation of higher transitions/bands is complicated due to their superposition and difference between experimental and calculated data. The excitation anisotropy spectra were measured in glycerol for more reliable determination of higher transitions and comparison with the TDDFT/PCM simulation.

  15. Phase Transformations During Cooling of Automotive Steels

    NASA Astrophysics Data System (ADS)

    Padgett, Matthew C.

    This thesis explores the effect of cooling rate on the microstructure and phases in advanced high strength steels (AHSS). In the manufacturing of automobiles, the primary joining mechanism for steel is resistance spot welding (RSW), a process that produces a high heat input and rapid cooling in the welded metal. The effect of RSW on the microstructure of these material systems is critical to understanding their mechanical properties. A dual phase steel, DP-600, and a transformation induced plasticity bainitic-ferritic steel, TBF-1180, were studied to assess the changes to their microstructure that take place in controlled cooling environments and in uncontrolled cooling environments, i.e. resistance spot welding. Continuous cooling transformation (CCT) diagrams were developed using strip specimens of DP-600 and TBF-1180 to determine the phase transformations that occur as a function of cooling rate. The resulting phases were determined using a thermal-mechanical simulator and dilatometry, combined with light optical microscopy and hardness measurements. The resulting phases were compared with RSW specimens where cooling rate was controlled by varying the welding time for two-plate welds. Comparisons were drawn between experimental welds of DP-600 and simulations performed using a commercial welding software. The type and quantity of phases present after RSW were examined using a variety of techniques, including light optical microscopy using several etchants, hardness measurements, and x-ray diffraction (XRD).

  16. Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples.

    PubMed

    Mauri-Aucejo, Adela; Amorós, Pedro; Moragues, Alaina; Guillem, Carmen; Belenguer-Sapiña, Carolina

    2016-08-15

    Solid-phase extraction is one of the most important techniques for sample purification and concentration. A wide variety of solid phases have been used for sample preparation over time. In this work, the efficiency of a new kind of solid-phase extraction adsorbent, which is a microporous material made from modified cyclodextrin bounded to a silica network, is evaluated through an analytical method which combines solid-phase extraction with high-performance liquid chromatography to determine polycyclic aromatic hydrocarbons in water samples. Several parameters that affected the analytes recovery, such as the amount of solid phase, the nature and volume of the eluent or the sample volume and concentration influence have been evaluated. The experimental results indicate that the material possesses adsorption ability to the tested polycyclic aromatic hydrocarbons. Under the optimum conditions, the quantification limits of the method were in the range of 0.09-2.4μgL(-1) and fine linear correlations between peak height and concentration were found around 1.3-70μgL(-1). The method has good repeatability and reproducibility, with coefficients of variation under 8%. Due to the concentration results, this material may represent an alternative for trace analysis of polycyclic aromatic hydrocarbons in water trough solid-phase extraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Clusters and holes: Exchange networks in hematite-ilmenite solid solutions

    NASA Astrophysics Data System (ADS)

    Fabian, K.; McEnroe, S. A.; Robinson, P.

    2009-04-01

    Holes and clusters of exchange networks dominate the low-temperature, metastable phase diagram of the system (1 - x)Fe2O3 xF eTiO3 (Ilmx ). By our measurements we have probed and extended the phase diagram of Ishikawa et al. (1985) in the light of magnetic influences of the random exchange links, which originate either by replacing random pairs of Fe2+ and Ti4+ ions in the ordered ilmenite lattice by two Fe3+ions (ordered Ilmx phase), or by randomly replacing two Fe3+ ions in the hematite lattice by a pair of Fe2+ and Ti4+ ions (disordered Ilmx phase). Now a large dataset is available from these measurements, and we propose several new ideas to interpret the sometimes unexpected results. By refining a method of Ishikawa (1967), we analyze the PM' region of the phase diagram in terms of a mean field theory of interacting clusters. This allows to determine cluster sizes and interaction field distribution by inverting hysteresis measurements of Ilm92 and Ilm97. To understand the relation between ordered and disordered phases we design a mean field theory to determine Neel and Curie temperatures of both. An especially interesting finding is that the experimentally observed intersection of PM-PM' crossover with the AF phase boundary close to Ilm97 can be explained by analyzing average exchange interaction strengths.

  18. Determination of dryout localization using a five-equation model of annular flow for boiling in minichannels

    NASA Astrophysics Data System (ADS)

    Wajs, Jan; Mikielewicz, Dariusz

    2017-03-01

    Detailed studies have suggested that the critical heat flux in the form of dryout in minichannels occurs when the combined effects of entrainment, deposition, and evaporation of the film make the film flow rate go gradually and smoothly to zero. Most approaches so far used the mass balance equation for the liquid film with appropriate formulations for the rate of deposition and entrainment respectively. It must be acknowledged that any discrepancy in determination of deposition and entrainment rates, together with cross-correlations between them, leads to the loss of accuracy of model predictions. Conservation equations relating the primary parameters are established for the liquid film and vapor core. The model consists of three mass balance equations, for liquid in the film as well as two-phase core and the gas phase itself. These equations are supplemented by the corresponding momentum equations for liquid in the film and the two-phase core. Applicability of the model has been tested on some experimental data.

  19. Grassmann phase space theory and the Jaynes–Cummings model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, B.J., E-mail: bdalton@swin.edu.au; Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122; Garraway, B.M.

    2013-07-15

    The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherentmore » state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes–Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker–Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker–Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems.« less

  20. Experimental oxygen potentials of U 1-yPr yO 2± x and thermodynamic assessment of the U-Pr-O system

    DOE PAGES

    McMurray, Jake W.; Silva, Chinthaka M.

    2015-12-09

    Thermogravimetric analysis (TGA) was used to determine the oxygen potentials of fluorite urania-praseodymia (U 1-yPr yO 2± x) solid solutions for y = 0.10 and 0.20 between 1000 and 1500 °C. A thermodynamic assessment of U-Pr-O system was performed using the CALPHAD (CALculation of PHAse Diagrams) method. Furthermore, the models well reproduce the TGA measurements and the computed phase relations are in good agreement with those proposed from an X-ray diffraction investigation.

  1. The phase slip factor of the electrostatic cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  2. An exact solution of a simplified two-phase plume model. [for solid propellant rocket

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Roberts, B. B.

    1974-01-01

    An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.

  3. X-ray tomography using the full complex index of refraction.

    PubMed

    Nielsen, M S; Lauridsen, T; Thomsen, M; Jensen, T H; Bech, M; Christensen, L B; Olsen, E V; Hviid, M; Feidenhans'l, R; Pfeiffer, F

    2012-10-07

    We report on x-ray tomography using the full complex index of refraction recorded with a grating-based x-ray phase-contrast setup. Combining simultaneous absorption and phase-contrast information, the distribution of the full complex index of refraction is determined and depicted in a bivariate graph. A simple multivariable threshold segmentation can be applied offering higher accuracy than with a single-variable threshold segmentation as well as new possibilities for the partial volume analysis and edge detection. It is particularly beneficial for low-contrast systems. In this paper, this concept is demonstrated by experimental results.

  4. Experimental investigation of the phase equilibria in the carbon dioxide-propane-3 M MDEA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jou, F.Y.; Mather, A.E.; Otto, F.D.

    1995-07-01

    The treating of liquefied petroleum gas (LPG) to remove carbon dioxide and hydrogen sulfide using aqueous alkanolamine solutions is an important aspect of gas processing. One of the amines used in the natural gas industry is methyldiethanolamine (MDEA). Measurements of the phase equilibria in the carbon dioxide-propane-3 M MDEA system have been made at 25 and 40 C at pressures up to 15.5 MPa. Vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria were determined. The vapor-liquid equilibrium data were compared with the model of Deshmukh and Mather.

  5. Phase diagrams for the system water/butyric acid/propylene carbonate at T = 293.2-313.2 K and p = 101.3 kPa

    NASA Astrophysics Data System (ADS)

    Shekarsaraee, Sina; Nahzomi, Hossein Taherpour; Nasiri-Touli, Elham

    2017-11-01

    Phase diagrams for the system water/butyric acid/propylene carbonate were plotted at T = 293.2, 303.2, 313.2 K and p = 101.3 kPa. Acidimetric titration and refractive index methods were used to determine tie-line data. Solubility data revealed that the studied system exhibits type-1 behavior of liquid-liquid equilibrium. The experimental data were regressed and acceptably correlated using the UNIQUAC and NRTL models. As a result, propylene carbonate is a suitable separating agent for aqueous mixture of butyric acid.

  6. Highly Unsaturated Platinum and Palladium Carbenes PtC 3 and PdC 3 Isolated and Characterized in the Gas Phase

    DOE PAGES

    Bittner, Dror M.; Zaleski, Daniel P.; Tew, David P.; ...

    2016-02-16

    Carbenes of platinum and palladium, PtC 3 and PdC 3 , were generated in the gas phase through laser vaporization of a metal target in the presence of a low concentration of a hydrocarbon precursor undergoing supersonic expansion. Rotational spectroscopy and abinitio calculations confirm that both molecules are linear. The geometry of PtC 3 was accurately determined by fitting to the experimental moments of inertia of twenty-six isotopologues. In conclusion, the results are consistent with the proposal of an autogenic isolobal relationship between O, Au + , and Ptatoms.

  7. Desktop chaotic systems: Intuition and visualization

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.

    1993-01-01

    This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.

  8. Inflammatory response, growth, and thyroid hormone concentrations are affected by long-term boron supplementation in gilts.

    PubMed

    Armstrong, T A; Spears, J W; Lloyd, K E

    2001-06-01

    An experiment was conducted to determine the long-term effects of dietary boron (B) on growth performance, immune function, and plasma and serum characteristics in gilts. Fifty weanling gilts were allotted to 10 pens based on weaning weight and litter origin. Pens were randomly assigned to receive one of two dietary treatments. Treatments consisted of a basal diet low in B (control) and the basal diet supplemented with 5 mg B/kg diet as sodium borate. Gilts remained on their respective experimental diets and with their penmates throughout the nursery, growing, and finishing phases. The B concentration of the basal diet was 0.98, 2.1, and 2.2 mg/kg diet during the nursery, growing, and finishing phases, respectively. At the end of each production phase, animals were weighed and feed consumption was determined to assess growth performance variables. In addition, blood samples were obtained from three randomly selected gilts per pen at the completion of each phase. Boron had no affect (P > 0.58) on growth performance during the nursery phase, but gilts receiving supplemental B had increased (P < 0.05) ADG at the end of the finishing phase and over the entire growing-finishing period. Serum concentrations of triiodothyronine (T3) tended (P < 0.07) to be reduced by dietary B at the end of the nursery phase, but serum thyroxine (T4) was not affected (P = 0.46) by B. At the completion of the growing phase, supplemental B decreased (P < 0.05) the concentrations of T3 and T4 in the serum. In addition, serum concentrations of total cholesterol and the activity of alkaline phosphatase were increased (P < 0.05) by dietary B at the end of the growing phase. Serum concentrations of urea N tended (P < 0.09) to be increased by B at the end of the growing phase. Beginning at d 95 of the experimental period, measures of immune function were assessed in randomly selected gilts. Boron decreased (P < 0.05) the inflammatory response to an intradermal injection of phytohemagglutinin. Boron did not affect (P > 0.30) the blastogenic response of isolated lymphocytes to mitogen stimulation or the humoral immune response against a sheep red blood cell suspension. Results indicate that B may affect serum thyroid hormone concentrations, the inflammatory response, and growth in pigs.

  9. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  10. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface.

    PubMed

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-06

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface-controlled by a crossover in how methane is supplied from the gas and liquid phases-which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  11. Extreme wave formation in unidirectional sea due to stochastic wave phase dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Balachandran, Balakumar

    2018-07-01

    The authors consider a stochastic model based on the interaction and phase coupling amongst wave components that are modified envelope soliton solutions to the nonlinear Schrödinger equation. A probabilistic study is carried out and the resulting findings are compared with ocean wave field observations and laboratory experimental results. The wave height probability distribution obtained from the model is found to match well with prior data in the large wave height region. From the eigenvalue spectrum obtained through the Inverse Scattering Transform, it is revealed that the deep-water wave groups move at a speed different from the linear group speed, which justifies the inclusion of phase correction to the envelope solitary wave components. It is determined that phase synchronization amongst elementary solitary wave components can be critical for the formation of extreme waves in unidirectional sea states.

  12. Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun

    2011-03-01

    Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.

  13. Modelling of the combustion velocity in UIT-85 on sustainable alternative gas fuel

    NASA Astrophysics Data System (ADS)

    Smolenskaya, N. M.; Korneev, N. V.

    2017-05-01

    The flame propagation velocity is one of the determining parameters characterizing the intensity of combustion process in the cylinder of an engine with spark ignition. Strengthening of requirements for toxicity and efficiency of the ICE contributes to gradual transition to sustainable alternative fuels, which include the mixture of natural gas with hydrogen. Currently, studies of conditions and regularities of combustion of this fuel to improve efficiency of its application are carried out in many countries. Therefore, the work is devoted to modeling the average propagation velocities of natural gas flame front laced with hydrogen to 15% by weight of the fuel, and determining the possibility of assessing the heat release characteristics on the average velocities of the flame front propagation in the primary and secondary phases of combustion. Experimental studies, conducted the on single cylinder universal installation UIT-85, showed the presence of relationship of the heat release characteristics with the parameters of the flame front propagation. Based on the analysis of experimental data, the empirical dependences for determination of average velocities of flame front propagation in the first and main phases of combustion, taking into account the change in various parameters of engine operation with spark ignition, were obtained. The obtained results allow to determine the characteristics of heat dissipation and to assess the impact of addition of hydrogen to the natural gas combustion process, that is needed to identify ways of improvement of the combustion process efficiency, including when you change the throttling parameters.

  14. The Noble-Abel Stiffened-Gas equation of state

    NASA Astrophysics Data System (ADS)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  15. Simultaneous speciation and preconcentration of ultra traces of inorganic tellurium and selenium in environmental samples by hollow fiber liquid phase microextraction prior to electrothermal atomic absorption spectroscopy determination.

    PubMed

    Ghasemi, Ensieh; Najafi, Nahid Mashkouri; Raofie, Farhad; Ghassempour, Alireza

    2010-09-15

    A simple and effective speciation and preconcentration method based on hollow fiber liquid phase microextraction (HF-LPME) was developed for simultaneous separation of trace inorganic tellurium and selenium in environmental samples prior to electrothermal atomic absorption spectroscopy (ETAAS) determination. The method involves the selective extraction of the Te (IV) and Se (IV) species by HF-LPME with the use of ammonium pyrrolidinecarbodithioate (APDC) as the chelating agent. The complex compounds were extracted into 10 microL of toluene and the solutions were injected into a graphite furnace for the determination of Te (IV) and Se (IV). To determine the total tellurium and selenium in the samples, first Te (VI) and Se (VI) were reduced to Te (IV) and Se (IV), and then the microextraction method was performed. The experimental parameters of HF-LPME were optimized using a central composite design after a 2(n-1) fractional factorial experimental design. Under optimum conditions, enrichment factors of up to 520 and 480 were achieved for Te (IV) and Se (IV), respectively. The detection limits were 4 ng L(-1) with 3.5% RSD (n=5, c=2.0 microg L(-1)) for Te (IV) and 5 ng L(-1) with 3.1% RSD for Se (IV). The applicability of the developed technique was evaluated by application to spiked, environmental water and soil samples. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II)

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun

    2014-01-01

    A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g-1, respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L-1 EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results.

  17. Synthesis and application of surface-imprinted activated carbon sorbent for solid-phase extraction and determination of copper (II).

    PubMed

    Li, Zhenhua; Li, Jingwen; Wang, Yanbin; Wei, Yajun

    2014-01-03

    A new Cu(II)-imprinted amino-functionalized activated carbon sorbent was prepared by a surface imprinting technique for selective solid-phase extraction (SPE) of Cu(II) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of Cu(II) were optimized with respect to different experimental parameters using static and dynamic procedures in detail. Compared with non-imprinted sorbent, the ion-imprinted sorbent had higher selectivity and adsorption capacity for Cu(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cu(II) was 26.71 and 6.86 mg g(-1), respectively. The relatively selectivity factor values (αr) of Cu(II)/Zn(II), Cu(II)/Ni(II), Cu(II)/Co(II) and Cu(II)/Pb(II) were 166.16, 50.77, 72.26 and 175.77, respectively, which were greater than 1. Complete elution of the adsorbed Cu(II) from Cu(II)-imprinted sorbent was carried out using 2 mL of 0.1 mol L(-1) EDTA solution. The relative standard deviation of the method was 2.4% for eleven replicate determinations. The method was validated for the analysis by two certified reference materials (GBW 08301, GBW 08303), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace copper in natural water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Specific Features of the Response of Cerium to Pulsed Actions

    NASA Astrophysics Data System (ADS)

    Atroshenko, S. A.; Zubareva, A. N.; Morozov, V. A.; Savenkov, G. G.; Utkin, A. V.

    2018-02-01

    Experimental studies of cerium at high rates and nanosecond durations of action have been performed. The isomorphic phase transition was studied upon shock compression. The spall strength of cerium has been determined. Cerium demonstrates anomalous compressibility upon dynamic loading. Stress waves dampen under action of a high-current electron beam due to the energy dissipation during fragmentation and twinning.

  19. Chaotic neoclassical separatrix dissipation in parametric drift-wave decay.

    PubMed

    Kabantsev, A A; Tsidulko, Yu A; Driscoll, C F

    2014-02-07

    Experiments and theory characterize a parametric decay instability between plasma drift waves when the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic neoclassical transport analyses.

  20. Asymptotic behavior of modulated Taylor-Couette flows with a crystalline inner cylinder

    NASA Technical Reports Server (NTRS)

    Braun, R. J.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.; Glicksman, M. E.; Selleck, M. E.

    1993-01-01

    The linear stability of a modulated Taylor-Couette system when the inner cylindrical boundary consists of a crystalline solid-liquid interface is considered. Both experimentally and in numerical calculations it is found that the two-phase system is significantly less stable than the analogous rigid-walled system for materials with moderately large Prandtl numbers. A numerical treatment based on Floquet theory is described, which gives results that are in good agreement with preliminary experimental findings. In addition, this instability is further examined by carrying out a formal asymptotic expansion of the solution in the limit of large Prandtl number. In this limit the Floquet analysis is considerably simplified, and the linear stability of the modulated system can be determined to leading order through a conventional stability analysis, without recourse to Floquet theory. The resulting simplified problem is then studied for both the narrow gap geometry and for the case of a finite gap. It is surprising that the determination of the linear stability of the two-phase system is considerably simpler than that of the rigid-walled system, despite the complications introduced by the presence of the crystal-melt interface.

  1. Magnetic and Structural characterization of Co nanowires using advanced electron microscopy techniques

    NASA Astrophysics Data System (ADS)

    Cantu-Valle, Jesus; Ruiz-Zepeda, Francisco; Sanchez, John Eder; Mendoza-Santoyo, Fernando; Ponnce, Arturo; UTSA Team

    2015-03-01

    We report the magnetic imaging and crystalline structure of high aspect ratio cobalt nanowires. Experimental results of magnetization reversal in cobalt nanowires are presented to illustrate the functionality of the in situ magnetization process through the manipulation of the objective lens. By making use of this applicability, we measure the magnetization and show experimental evidence of the magnetic flux distribution in polycrystalline cobalt nanowires using off-axis electron holography. The retrieved phase map can distinguishes the magnetic contribution from the crystalline contribution with high accuracy. To determine the size and orientation of the grains within the Co nanowires, PED-assisted orientation mapping was performed. Finally, the magnetic analysis performed at individual nanowires was correlated with the crystalline orientation map, obtained by PED-assisted crystal phase orientation mapping. The large shape anisotropy determines the mayor magnetization direction rather than the magneto-crystalline anisotropy in the studied nanowires. The combination of the two techniques allowed us to directly visualize the effects of the crystallographic texture on the magnetization of the nanowire. The authors would like to acknowledge Dr. B.J.H. Stadler for providing the samples and financial support from NSF PREM #DMR 0934218, CONACYT, #215762 and Department of Defense #64756-RT-REP.

  2. Intermolecular shielding contributions studied by modeling the 13C chemical-shift tensors of organic single crystals with plane waves

    PubMed Central

    Johnston, Jessica C.; Iuliucci, Robbie J.; Facelli, Julio C.; Fitzgerald, George; Mueller, Karl T.

    2009-01-01

    In order to predict accurately the chemical shift of NMR-active nuclei in solid phase systems, magnetic shielding calculations must be capable of considering the complete lattice structure. Here we assess the accuracy of the density functional theory gauge-including projector augmented wave method, which uses pseudopotentials to approximate the nodal structure of the core electrons, to determine the magnetic properties of crystals by predicting the full chemical-shift tensors of all 13C nuclides in 14 organic single crystals from which experimental tensors have previously been reported. Plane-wave methods use periodic boundary conditions to incorporate the lattice structure, providing a substantial improvement for modeling the chemical shifts in hydrogen-bonded systems. Principal tensor components can now be predicted to an accuracy that approaches the typical experimental uncertainty. Moreover, methods that include the full solid-phase structure enable geometry optimizations to be performed on the input structures prior to calculation of the shielding. Improvement after optimization is noted here even when neutron diffraction data are used for determining the initial structures. After geometry optimization, the isotropic shift can be predicted to within 1 ppm. PMID:19831448

  3. Universal optical transmission features in periodic and quasiperiodic hole arrays.

    PubMed

    Pacifici, Domenico; Lezec, Henri J; Sweatlock, Luke A; Walters, Robert J; Atwater, Harry A

    2008-06-09

    We investigate the influence of array order in the optical transmission properties of subwavelength hole arrays, by comparing the experimental spectral transmittance of periodic and quasiperiodic hole arrays as a function of frequency. We find that periodicity and long-range order are not necessary requirements for obtaining enhanced and suppressed optical transmission, provided short-range order is maintained. Transmission maxima and minima are shown to result, respectively, from constructive and destructive interference at each hole, between the light incident upon and exiting from a given hole, and surface plasmon polaritons (SPPs) arriving from individual neighboring holes. These SPPs are launched along both illuminated and exit surfaces, by diffraction of the incident and emerging light at the neighboring individual subwavelength holes. By characterizing the optical transmission of a pair of subwavelength holes as a function of hole-hole distance, we demonstrate that a subwavelength hole can launch SPPs with an efficiency up to 35%, and with an experimentally determined launch phase phi = pi /2, for both input-side and exit-side SPPs. This characteristic phase has a crucial influence on the shape of the transmission spectra, determining transmission minima in periodic arrays at those frequencies where grating coupling arguments would instead predict maxima.

  4. In situ investigation of explosive crystallization in a-Ge: Experimental determination of the interface response function using dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Nikolova, Liliya; Stern, Mark J.; MacLeod, Jennifer M.; Reed, Bryan W.; Ibrahim, Heide; Campbell, Geoffrey H.; Rosei, Federico; LaGrange, Thomas; Siwick, Bradley J.

    2014-09-01

    The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

  5. Phase-conjugate holographic lithography based on micromirror array recording.

    PubMed

    Lim, Yongjun; Hahn, Joonku; Lee, Byoungho

    2011-12-01

    We present phase-conjugate holographic lithography with a hologram recorded by a digital micromirror device (DMD) and a telecentric lens. In our lithography system, a phase-conjugate hologram is applied instead of conventional masks or reticles to form patterns. This method has the advantage of increasing focus range, and it is applicable to the formation of patterns on fairly uneven surfaces. The hologram pattern is dynamically generated by the DMD, and its resolution is mainly determined by the demagnification of the telecentric lens. We experimentally demonstrate that our holographic lithographic system has a large focus range, and it is feasible to make a large-area hologram by stitching each pattern generated by the DMD without a falling off in resolution. © 2011 Optical Society of America

  6. Gas-phase infrared spectrum of phosphorus (III) oxycyanide, OPCN: experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Allaf, Abdul. W.; Kassem, M.; Alibrahim, M.; Boustani, Ihsan

    1999-03-01

    An attempt was made to observe the gas-phase infrared spectrum of Phosphorus (III) oxycyanide, OPCN for the first time. This molecule was produced by an on-line process using phosphorus (III) oxychloride, OPCl as precursor passed over heated AgCN. The products were characterised by the infrared spectra of their vapours. The low resolution gas-phase Fourier transform infrared spectrum shows two bands centered at 2165 and 1385 cm -1. These bands are assigned to, ν1 (CN stretch) and ν2 (OP stretch), respectively. Ab initio self-consistent-field (SCF) molecular orbital (MO) and Møller-Plesset second order perturbation theory (MP2) calculations were performed to determine the geometry, total energy and vibrational frequencies of OPCN.

  7. Investigation on the mode of AC discharge in H2O affected by temperature

    NASA Astrophysics Data System (ADS)

    Siyuan, DONG; Shaomeng, GUO; Dan, WEN; Xiaoliang, TANG; Gao, QIU

    2018-04-01

    In this paper, some experimental equipment has been set up for kHz frequency AC liquid phase discharge, and the temperature of the deionized water was regulated during discharge. The electrical characteristics and spectra of liquid phase H2O discharge have been investigated. Two discharge modes, high temperature and low temperature, were both found. The results show that there are two mechanisms in liquid phase discharge: the field ionization mechanism and the breakdown mechanism of bubbles, and these two mechanisms are always developed simultaneously; the temperature is the key factor determining the discharge type. At high temperature, the breakdown of bubbles is the main discharge mechanism, and the field ionization mechanism occurs mainly at low temperature.

  8. Toward a structure determination method for biomineral-associated protein using combined solid- state NMR and computational structure prediction.

    PubMed

    Masica, David L; Ash, Jason T; Ndao, Moise; Drobny, Gary P; Gray, Jeffrey J

    2010-12-08

    Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution nuclear magnetic resonance (NMR). Here we report a method for determining the structure of biomineral-associated proteins. The method combines solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. In addition, the algorithm is able to identify lattice geometries most compatible with ssNMR constraints, representing a quantitative, novel method for investigating crystal-face binding specificity. We use this method to determine most of the structure of human salivary statherin interacting with the mineral phase of tooth enamel. Computation and experiment converge on an ensemble of related structures and identify preferential binding at three crystal surfaces. The work represents a significant advance toward determining structure of biomineral-adsorbed protein using experimentally biased structure prediction. This method is generally applicable to proteins that can be chemically synthesized. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Experimental Demonstration of a Cheap and Accurate Phase Estimation

    DOE PAGES

    Rudinger, Kenneth; Kimmel, Shelby; Lobser, Daniel; ...

    2017-05-11

    We demonstrate an experimental implementation of robust phase estimation (RPE) to learn the phase of a single-qubit rotation on a trapped Yb + ion qubit. Here, we show this phase can be estimated with an uncertainty below 4 × 10 -4 rad using as few as 176 total experimental samples, and our estimates exhibit Heisenberg scaling. Unlike standard phase estimation protocols, RPE neither assumes perfect state preparation and measurement, nor requires access to ancillae. We crossvalidate the results of RPE with the more resource-intensive protocol of gate set tomography.

  10. Shock loading and release behavior of silicon nitride

    NASA Astrophysics Data System (ADS)

    Kawai, N.; Tsuru, T.; Hidaka, N.; Liu, X.; Mashimo, T.

    2017-01-01

    Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 and 34.5 GPa, respectively. Below the phase transition stress, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by rapid one. Above phase transition stress, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same shocked condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.

  11. Phase transition induced strain in ZnO under high pressure

    DOE PAGES

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...

    2016-05-13

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less

  12. Phase Diagram in a Random Mixture of Two Antiferromagnets with Competing Spin Anisotropies. I

    NASA Astrophysics Data System (ADS)

    Someya, Yoshiko

    1981-12-01

    The phase diagram of a random mixture of two antiferromagnets with competing spin anisotropies (A1-xBx) has been analyzed by extending the theory of Matsubara and Inawashiro, and Oguchi and Ishikawa. In the model assumed, the anisotropy energies are expressed by the anisotropic exchange interactions. According to this formulation, it has been shown that the concentration dependence of TN becomes a function of \\includegraphics{dummy.eps}, where P, Q=A, B; SP is a magnitude of P-spin, and JPQη is a η component of exchange integral between P- and Q-spin). Further, the phase boundary between an AF phase and an OAF (oblique antiferromagnetic) phase at T{=}0 K has been shown to be determined by α({\\equiv}SB/SA), if \\includegraphics{dummy.eps} are given. The obtained phase diagrams for Fe1-xCoxCl2, K2Mn1-xFexF4 and Fe1-xCoxCl2\\cdot2H2O are compared with the experimental ones.

  13. Modelling of Hydrophilic Interaction Liquid Chromatography Stationary Phases Using Chemometric Approaches

    PubMed Central

    Ortiz-Villanueva, Elena; Tauler, Romà

    2017-01-01

    Metabolomics is a powerful and widely used approach that aims to screen endogenous small molecules (metabolites) of different families present in biological samples. The large variety of compounds to be determined and their wide diversity of physical and chemical properties have promoted the development of different types of hydrophilic interaction liquid chromatography (HILIC) stationary phases. However, the selection of the most suitable HILIC stationary phase is not straightforward. In this work, four different HILIC stationary phases have been compared to evaluate their potential application for the analysis of a complex mixture of metabolites, a situation similar to that found in non-targeted metabolomics studies. The obtained chromatographic data were analyzed by different chemometric methods to explore the behavior of the considered stationary phases. ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA) and partial least squares regression (PLS) were used to explore the experimental factors affecting the stationary phase performance, the main similarities and differences among chromatographic conditions used (stationary phase and pH) and the molecular descriptors most useful to understand the behavior of each stationary phase. PMID:29064436

  14. The development of novel simulation methodologies and intermolecular potential models for real fluids

    NASA Astrophysics Data System (ADS)

    Errington, Jeffrey Richard

    This work focuses on the development of intermolecular potential models for real fluids. United-atom models have been developed for both non-polar and polar fluids. The models have been optimized to the vapor-liquid coexistence properties. Histogram reweighting techniques were used to calculate phase behavior. The Hamiltonian scaling grand canonical Monte Carlo method was developed to enable the determination of thermodynamic properties of several related Hamiltonians from a single simulation. With this method, the phase behavior of variations of the Buckingham exponential-6 potential was determined. Reservoir grand canonical Monte Carlo simulations were developed to simulate molecules with complex architectures and/or stiff intramolecular constraints. The scheme is based on the creation of a reservoir of ideal chains from which structures are selected for insertion during a simulation. New intermolecular potential models have been developed for water, the n-alkane homologous series, benzene, cyclohexane, carbon dioxide, ammonia and methanol. The models utilize the Buckingham exponential-6 potential to model non-polar interactions and point charges to describe polar interactions. With the exception of water, the new models reproduce experimental saturated densities, vapor pressures and critical parameters to within a few percent. In the case of water, we found a set of parameters that describes the phase behavior better than other available point charge models while giving a reasonable description of the liquid structure. The mixture behavior of water-hydrocarbon mixtures has also been examined. The Henry's law constants of methane, ethane, benzene and cyclohexane in water were determined using Widom insertion and expanded ensemble techniques. In addition the high-pressure phase behavior of water-methane and water-ethane systems was studied using the Gibbs ensemble method. The results from this study indicate that it is possible to obtain a good description of the phase behavior of pure components using united-atom models. The mixture behavior of non-polar systems, including highly asymmetric components, was in good agreement with experiment. The calculations for the highly non-ideal water-hydrocarbon mixtures reproduced experimental behavior with varying degrees of success. The results indicate that multibody effects, such as polarizability, must be taken into account when modeling mixtures of polar and non-polar components.

  15. Freeze-out conditions from net-proton and net-charge fluctuations at RHIC

    DOE PAGES

    Alba, Paolo; Alberico, Wanda; Bellwied, Rene; ...

    2014-09-26

    We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.

  16. Effects of menstrual cycle phase on cocaine self-administration in rhesus macaques.

    PubMed

    Cooper, Ziva D; Foltin, Richard W; Evans, Suzette M

    2013-01-01

    Epidemiological findings suggest that men and women vary in their pattern of cocaine use resulting in differences in cocaine dependence and relapse rates. Preclinical laboratory studies have demonstrated that female rodents are indeed more sensitive to cocaine's reinforcing effects than males, with estrous cycle stage as a key determinant of this effect. The current study sought to extend these findings to normally cycling female rhesus macaques, a species that shares a nearly identical menstrual cycle to humans. Dose-dependent intravenous cocaine self-administration (0.0125, 0.0250, and 0.0500 mg/kg/infusion) using a progressive-ratio schedule of reinforcement was determined across the menstrual cycle. The menstrual cycle was divided into 5 discrete phases - menses, follicular, periovulatory, luteal, and late luteal phases - verified by the onset of menses and plasma levels of estradiol and progesterone. Dependent variables including number of infusions self-administered per session, progressive ratio breakpoint, and cocaine intake were analyzed according to cocaine dose and menstrual cycle phase. Analysis of plasma hormone levels verified phase-dependent fluctuations of estradiol and progesterone, with estrogen levels peaking during the periovulatory phase, and progesterone peaking during the luteal phase. Progressive ratio breakpoint, infusions self-administered, and cocaine intake did not consistently vary based on menstrual cycle phase. These findings demonstrate that under the current experimental parameters, the reinforcing effects of cocaine did not vary across the menstrual cycle in a systematic fashion in normally cycling rhesus macaques. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. An experimental and theoretical evaluation of increased thermal diffusivity phase change devices

    NASA Technical Reports Server (NTRS)

    White, S. P.; Golden, J. O.; Stermole, F. J.

    1972-01-01

    This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.

  18. Development of a Long-Column Method to Test Constitutive Relations for LNAPL Movement in Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Zhong, L.; Wietsma, T.; Covert, M.

    2007-12-01

    Multifluid relative permeability - saturation - capillary pressure (k-S-P) empirical constitutive models are components of numerical simulators that are used to predict fluid distributions following a nonaqueous phase liquid (NAPL) contamination event or during remediation. The S-P parameter values for these empirical models are either obtained from the literature or determined experimentally by fitting the models to measured data. Most of the experimental emphasis so far has been on testing the S-P component of the k-S-P constitutive relations. Due to the difficulties in obtaining quality relative permeability laboratory data for multiphase systems, testing of the k-S models that are used in multifluid flow simulators has been virtually non-existent. A new tool, the Multiple Location Saturation Pressure Apparatus (MLSPA), located in PNNL's EMSL Subsurface Flow and Transport Laboratory, has been developed to obtain data sets that can be used to test both S-P and k-S relationships for two-phase NAPL-water systems. The MLSPA is a long column (~1 m) equipped with several hydrophilic and hydrophobic pressure transducers. Fluid saturations are determined along the length of a column using a dual-energy gamma radiation system. Although the MLSPA is limited to porous media with a relatively small entry pressure and fairly homogeneous pore-size distributions, it offers the distinct advantage of obtaining S-P data at multiple locations. Besides for static determinations of S-P relations, the MLSPA offers the benefit that it can be used for more dynamic experiments where fluid pressures are changed more rapidly. The data sets produced by the dynamic experiments can be used in relative permeability models. Results of several experiments with crude-oil brine systems will be presented.

  19. Determination of Five Major 8-Prenylflavones in Leaves of Epimedium by Solid-Phase Extraction Coupled with Capillary Electrophoresis

    PubMed Central

    Xie, Juan-ping; Xiang, Ji-ming; Zhu, Zhong-liang

    2016-01-01

    A simple, accurate and reproducible method which is based on the capillary electrophoresis, coupled with solid-phase extraction, has been developed for simultaneous determination of multiple 8-prenylflavones from Chinese Herba Epimedii. In this study, the author has mainly illustrated the experimental process and research results of five major components including epimedin C, icariin, diphylloside A, epimedoside A and icarisoside A that have been extracted and identified from Herba Epimedii for the first time. Experimental conditions have been optimized to achieve the best separation efficiency for the following factors: the buffer pH, buffer concentration and applied voltage. The experiment can be conducted through two separable stages: the first stage is to obtain the crude extracts through the solid-phase extraction; and the second stage is to further separate five major components by using the capillary electrophoresis. The separation of the five components and the analysis of the experiment are relatively fast and can be completed within 20 min. The concentration ranges of the construction of standard curves of five major 8-prenylflavones are 32.0–395.0, 23.4–292.0, 42.1–526.0, 18.8–233.5 and 29.7–371.0 µg mL−1 respectively, which have showed acceptable linearity with a correlation coefficient, r ≥ 0.999. The coefficient varies within 2.0% for both intra- and inter-days tests. The recoveries of five components range from 92.3 to 104.1%. The relative standard deviations of recoveries of five components range from 1.2 and 2.8%. This new method will facilitate the extraction and expedite the determination of medical components from Herba Epimedii. PMID:26865656

  20. The partitioning of copper among selected phases of geologic media of two porphyry copper districts, Puerto Rico

    USGS Publications Warehouse

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1981-01-01

    In experiments designed to determine the manner in which copper is partitioned among selected phases that constitute geologic media, we have applied the five-step sequential extraction procedure of Chao and Theobald to the analysis of drill core, soils, and stream sediments of the Rio Vivi and Rio Tanama porphyry copper districts of Puerto Rico. The extraction procedure affords a convenient means of determining the trace-metal content of the following fractions: (1) Mn oxides and "reactive" Fe oxides; (2) "amorphous" Fe oxides; (3) "crystalline" Fe oxides; (4) sulfides and magnetite; and (5) silicates. An additional extraction between steps (1) and (2) was performed to determine organic-related copper in stream sediments. The experimental results indicate that apportionment of copper among phases constituting geologic media is a function of geochemical environment. Distinctive partitioning patterns were derived from the analysis of drill core from each of three geochemical zones: (a) the supergene zone of oxidation; (b) the supergene zone of enrichment; and (c) the hypogene zone; and similarly, from the analysis of; (d) soils on a weakly leached capping; (e) soils on a strongly leached capping; and (f) active stream sediment. The experimental results also show that geochemical contrasts (anomaly-to-background ratios) vary widely among the five fractions of each sampling medium investigated, and that at least one fraction of each medium provides substantially stronger contrast than does the bulk medium. Fraction (1) provides optimal contrast for stream sediments of the district; fraction (2) provides optimal contrast for soils on a weakly leached capping; fraction (3) provides optimal contrast for soils on a strongly leached capping. Selective extraction procedures appear to have important applications to the orientation and interpretive stages of geochemical exploration. Further investigation and testing of a similar nature are recommended. ?? 1981.

Top