DOT National Transportation Integrated Search
2005-12-01
This volume provides an overview of the six studies that compose Phase II of the Enhanced Night Visibility project and the experimental plan for its third and final portion, Phase III. The Phase II studies evaluated up to 12 vision enhancement system...
ERIC Educational Resources Information Center
Buckingham, Jennifer; Beaman-Wheldall, Robyn; Wheldall, Kevin
2014-01-01
The study reported here examined the efficacy of a small group (Tier 2 in a three-tier Response to Intervention model) literacy intervention for older low-progress readers (in Years 3-6). This article focuses on the second phase of a two-phase, crossover randomized control trial involving 26 students. In Phase 1, the experimental group (E1)…
ERIC Educational Resources Information Center
Al-Shammari, Zaid; Mohammad, Anwar; Al-Shammari, Bandar
2010-01-01
The study investigated the effectiveness of increasing ALT for college students' achievement in Kuwait. In Phase 1, 37 students participated (22, experimental; 15, control); in Phase 2, 19 students participated (8, sub-experimental; 11, sub-control). Several experimental research methods used in conducting this study, including development of a…
Theoretical and Experimental Estimations of Volumetric Inductive Phase Shift in Breast Cancer Tissue
NASA Astrophysics Data System (ADS)
González, C. A.; Lozano, L. M.; Uscanga, M. C.; Silva, J. G.; Polo, S. M.
2013-04-01
Impedance measurements based on magnetic induction for breast cancer detection has been proposed in some studies. This study evaluates theoretical and experimentally the use of a non-invasive technique based on magnetic induction for detection of patho-physiological conditions in breast cancer tissue associated to its volumetric electrical conductivity changes through inductive phase shift measurements. An induction coils-breast 3D pixel model was designed and tested. The model involves two circular coils coaxially centered and a human breast volume centrally placed with respect to the coils. A time-harmonic numerical simulation study addressed the effects of frequency-dependent electrical properties of tumoral tissue on the volumetric inductive phase shift of the breast model measured with the circular coils as inductor and sensor elements. Experimentally; five female volunteer patients with infiltrating ductal carcinoma previously diagnosed by the radiology and oncology departments of the Specialty Clinic for Women of the Mexican Army were measured by an experimental inductive spectrometer and the use of an ergonomic inductor-sensor coil designed to estimate the volumetric inductive phase shift in human breast tissue. Theoretical and experimental inductive phase shift estimations were developed at four frequencies: 0.01, 0.1, 1 and 10 MHz. The theoretical estimations were qualitatively in agreement with the experimental findings. Important increments in volumetric inductive phase shift measurements were evident at 0.01MHz in theoretical and experimental observations. The results suggest that the tested technique has the potential to detect pathological conditions in breast tissue associated to cancer by non-invasive monitoring. Further complementary studies are warranted to confirm the observations.
Joint research effort on vibrations of twisted plates, phase 1: Final results
NASA Technical Reports Server (NTRS)
Kielb, R. E.; Leissa, A. W.; Macbain, J. C.; Carney, K. S.
1985-01-01
The complete theoretical and experimental results of the first phase of a joint government/industry/university research study on the vibration characteristics of twisted cantilever plates are given. The study is conducted to generate an experimental data base and to compare many different theoretical methods with each other and with the experimental results. Plates with aspect ratios, thickness ratios, and twist angles representative of current gas turbine engine blading are investigated. The theoretical results are generated by numerous finite element, shell, and beam analysis methods. The experimental results are obtained by precision matching a set of twisted plates and testing them at two laboratories. The second and final phase of the study will concern the effects of rotation.
An experimental and theoretical evaluation of increased thermal diffusivity phase change devices
NASA Technical Reports Server (NTRS)
White, S. P.; Golden, J. O.; Stermole, F. J.
1972-01-01
This study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal conductivity metal matrices. Three aluminum honeycomb filters were evaluated at five different heat flux levels using n-oct-adecane as the test material. The system was mathematically modeled by approximating the partial differential equations with a three-dimensional implicit alternating direction technique. The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.
Giner-Casares, J J; Camacho, L; Martín-Romero, M T; Cascales, J J López
2008-03-04
In this work, a DMPA Langmuir monolayer at the air/water interface was studied by molecular dynamics simulations. Thus, an atomistic picture of a Langmuir monolayer was drawn from its expanded gas phase to its final solid condensed one. In this sense, some properties of monolayers that were traditionally poorly or even not reproduced in computer simulations, such as lipid domain formation or pressure-area per lipid isotherm, were properly reproduced in this work. Thus, the physical laws that control the lipid domain formation in the gas phase and the structure of lipid monolayers from the gas to solid condensed phase were studied. Thanks to the atomistic information provided by the molecular dynamics simulations, we were able to add valuable information to the experimental description of these processes and to access experimental data related to the lipid monolayers in their expanded phase, which is difficult or inaccessible to study by experimental techniques. In this sense, properties such as lipids head hydration and lipid structure were studied.
NASA Astrophysics Data System (ADS)
Chen, G. B.; Zhong, Y. K.; Zheng, X. L.; Li, Q. F.; Xie, X. M.; Gan, Z. H.; Huang, Y. H.; Tang, K.; Kong, B.; Qiu, L. M.
2003-12-01
A novel gas-phase inlet configuration in the natural circulation system instead of the liquid-phase inlet is introduced to cool down a cryogenic pump system from room temperature to cryogenic temperatures, effectively. The experimental apparatus is illustrated and test process is described. Heat transfer and pressure drop data during the cool-down process are recorded and portrayed. By contrast with liquid-phase inlet configuration, experimental results demonstrate that the natural circulation with the gas-phase inlet configuration is an easier and more controllable way to cool down the pump system and maintain it at cryogenic temperatures.
The report gives Phase II results of a combined experimental/theoretical study to define the mechanisms and kinetics of the formation of NOx and other combustion pollutants. Two experimental devices were used in Phase II. A special flat-flame burner with a controlled-temperature ...
Desynchronization of stochastically synchronized chemical oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snari, Razan; Tinsley, Mark R., E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh
Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.
Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures
Drummond, N. D.; Monserrat, Bartomeu; Lloyd-Williams, Jonathan H.; Ríos, P. López; Pickard, Chris J.; Needs, R. J.
2015-01-01
Establishing the phase diagram of hydrogen is a major challenge for experimental and theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of the atomic structure is largely based on density functional theory (DFT). By comparing Raman spectra for low-energy structures found in DFT searches with experimental spectra, candidate atomic structures have been identified for each experimentally observed phase. Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic. Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in reasonable agreement with experiment. This greatly strengthens the claim that the candidate atomic structures accurately model the experimentally observed phases. PMID:26215251
NASA Astrophysics Data System (ADS)
Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man
2008-11-01
The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2018-05-01
Recent experimental studies in the ZnO-"FeO"-SiO2 system in reducing atmosphere demonstrated significant discrepancies with the current FactSage thermodynamic model developed using previous experimental data in this system in equilibrium with metallic iron and air. The present experimental study on phase equilibria in the ZnO-"FeO"-SiO2-"Cu2O" system in equilibrium with liquid copper at 1250 °C (1523 K) at low copper oxide concentrations in slag was initiated and undertaken to resolve these discrepancies. A high-temperature equilibration-rapid quenching-electron-probe X-ray microanalysis (EPMA) technique using a primary phase substrate support and closed system approach with Cu metal introduced to determine effective equilibrium oxygen partial pressure from the Cumetal/Cu2Oslag equilibria was applied to provide accurate information on the liquidus and corresponding solid compositions in the spinel, willemite, and tridymite primary phase fields. The present results confirmed the accuracy of the FactSage model, resolved discrepancies, and demonstrated significant uncertainties in the recent studies by other authors on the system in the open reducing atmosphere. The present study shows how this closed system approach can be used to obtain key thermodynamic data on phase equilibria in systems containing volatile metal species, overcoming the limitations and uncertainties encountered in conventional open gas/condensed phase equilibration with these systems. The study highlights the importance of the focus on obtaining accurate experimental data and the risks of misleading information from inadequate experimental control and analysis. The study also demonstrates that continuing in-depth critical review and analysis of the elemental reactions taking place in complex systems is an essential step in phase equilibrium research.
Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction
NASA Astrophysics Data System (ADS)
Pigneur, Marine; Berrada, Tarik; Bonneau, Marie; Schumm, Thorsten; Demler, Eugene; Schmiedmayer, Jörg
2018-04-01
We present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory compatible with our observations is still missing.
NASA Astrophysics Data System (ADS)
Ma, Haotong; Hu, Haojun; Xie, Wenke; Xu, Xiaojun
2013-09-01
The generation of vortex laser beam by using phase-only liquid crystal spatial light modulator (LC-SLM) combined with the spiral phase screen is experimentally and theoretically studied. Results show that Gaussian and dark hollow vortex laser beams can be generated by using this method successfully. Differing with the Gaussian and dark hollow beams, far field intensities of the generated vortex laser beams still exhibit dark hollow distributions. The comparisons between the ideal generation and experimental generation of vortex laser beams with different optical topological charges by using phase only LC-SLM is investigated in detail. Compared with the ideal generated vortex laser beam, phase distribution of the experimental generated vortex laser beam contains many phase singularities, the number of which is the same as that of the optical topological charges. The corresponding near field and far field dark hollow intensity distributions of the generated vortex laser beams exhibit discontinuous in rotational direction. Detailed theoretical analysis show that the main reason for the physical phenomenon mentioned above is the response error of phase only LC-SLM. These studies can provide effective guide for the generation of vortex laser beam by using phase only LC-SLM for optical tweezers and free space optical communication.
Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe3
NASA Astrophysics Data System (ADS)
Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.
2018-05-01
Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our recent studies on the compound LaCrGe3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change of order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.
Fluctuations and the QCD Phase Diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Volker; Bzdak, Adam
2016-07-01
Here, we will discuss how the study of various fluctuation observables may be used to explore the phase diagram of the strong interaction. Furthermore, we will briefly summarize the present study of experimental and theoretical research in this area. We will then discuss various corrections and issues which need to be understood and applied for a meaningful comparison of experimental measurements with theoretical predictions.
43 CFR 11.63 - Injury determination phase-pathway determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Injury determination phase-pathway... resource are similar to experimental conditions of the previous studies. In the absence of this information... discharged or released under experimental conditions similar to the hydraulic, chemical, and biological...
Yeddu, Hemantha Kumar; Zong, Hongxiang; Lookman, Turab
2015-09-28
Here, a three dimensional (3D) elastoplastic phase-field model is developed for modeling the hydrostatic pressure-induced alpha – omega phase transformation and the reverse phase transformation, i.e. omega – alpha, in zirconium (Zr). Plastic deformation and strain hardening of the material are also considered in the model. The microstructure evolution during both phase transformations is studied. The transformation start pressures at different temperatures are predicted and are plotted as a phase diagram. The effect of phase transformations on the mechanical properties of the material is also studied. The input data corresponding to pure Zr are acquired from experimental studies as wellmore » as by using the CALPHAD method. Our simulations show that three different omega variants form as laths. On release of pressure, reverse phase transformation initiates at lath boundaries. We observe that both phase transformations are martensitic in nature and also occur at the same pressure, i.e. little hysteresis. The transformation start pressures and the kinetics of the transformation predicted by our model are in good agreement with experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeddu, Hemantha Kumar; Zong, Hongxiang; Lookman, Turab
Here, a three dimensional (3D) elastoplastic phase-field model is developed for modeling the hydrostatic pressure-induced alpha – omega phase transformation and the reverse phase transformation, i.e. omega – alpha, in zirconium (Zr). Plastic deformation and strain hardening of the material are also considered in the model. The microstructure evolution during both phase transformations is studied. The transformation start pressures at different temperatures are predicted and are plotted as a phase diagram. The effect of phase transformations on the mechanical properties of the material is also studied. The input data corresponding to pure Zr are acquired from experimental studies as wellmore » as by using the CALPHAD method. Our simulations show that three different omega variants form as laths. On release of pressure, reverse phase transformation initiates at lath boundaries. We observe that both phase transformations are martensitic in nature and also occur at the same pressure, i.e. little hysteresis. The transformation start pressures and the kinetics of the transformation predicted by our model are in good agreement with experimental results.« less
T- P Phase Diagram of Nitrogen at High Pressures
NASA Astrophysics Data System (ADS)
Algul, G.; Enginer, Y.; Yurtseven, H.
2018-05-01
By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.
NASA Astrophysics Data System (ADS)
Li, WeiBin; Lan, Ding; Sun, ZhiBin; Geng, BaoMing; Wang, XiaoQing; Tian, WeiQian; Zhai, GuangJie; Wang, YuRen
2016-05-01
To study the self-assembly behavior of colloidal spheres in the solid/liquid interface and elucidate the mechanism of liquid crystal phase transition under microgravity, a Colloidal Material Box (CMB) was designed which consists of three modules: (i) colloidal evaporation experimental module, made up of a sample management unit, an injection management unit and an optical observation unit; (ii) liquid crystal phase transition experimental module, including a sample management unit and an optical observation unit; (iii) electronic control module. The following two experimental plans will be performed inside the CMB aboard the SJ-10 satellite in space. (i) Self-assembly of colloidal spheres (with and without Au shell) induced by droplet evaporation, allowing observation of the dynamic process of the colloidal spheres within the droplet and the change of the droplet outer profile during evaporation; (ii) Phase behavior of Mg2Al LDHs suspensions in microgravity. The experimental results will be the first experimental observations of depositing ordered colloidal crystals and their self-assembly behavior under microgravity, and will illustrate the influence of gravity on liquid crystal phase transition.
Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis
Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.
2013-01-01
Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500–2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β–t'–L at ~ 8.0 GPa and ~ 2490 K; and β–γ–t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element. PMID:23912523
Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.
Some Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our earlier studies on the compound LaCrGe 3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change ofmore » order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.« less
Ferromagnetic quantum criticality: New aspects from the phase diagram of LaCrGe 3
Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; ...
2017-08-25
Some Recent theoretical and experimental studies have shown that ferromagnetic quantum criticality is always avoided in clean systems. Two possibilities have been identified. In the first scenario, the ferromagnetic transition becomes of the first order at a tricritical point before being suppressed. A wing structure phase diagram is observed indicating the possibility of a new type of quantum critical point under magnetic field. In a second scenario, a transition to a modulated magnetic phase occurs. Our earlier studies on the compound LaCrGe 3 illustrate a third scenario where not only a new magnetic phase occurs, but also a change ofmore » order of the transition at a tricritical point leading to a wing-structure phase diagram. Careful experimental study of the phase diagram near the tricritical point also illustrates new rules near this type of point.« less
Tuncay, Semra; Kaplan, Sena; Moraloglu Tekin, Ozlem
2017-12-01
This study was conducted to assess the effect on labor process and parenting behavior of hydrotherapy applied during the active phase of labor. This quasi-experimental study was conducted by using an equivalent comparison group ( n = 40). The participants in the experimental group whose cervical dilation was 5 cm were taken to the hydrotherapy tub. This application continued until cervical dilation reached 10 cm. The Participants Questionnaire, The Birth Follow-up Questionnaire, The Postpartum ]collection tools. The duration of the active phase and second stage of labor was extremely short in the experimental group in comparison with the equivalent comparison group ( p = .001). The Visual Analogue Scale (VAS) scores of the experimental group were lower than those of the equivalent comparison group when cervical dilation was 6 cm and 10 cm ( p = .001). The experimental group also displayed more positive parenting behavior and positive labor feeling ( p = .001).
NASA Astrophysics Data System (ADS)
Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin
2018-04-01
This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.
Enhancing and sustaining empathy in medical students.
Hojat, Mohammadreza; Axelrod, David; Spandorfer, John; Mangione, Salvatore
2013-12-01
Empathy is an important component of physician competence that needs to be enhanced. To test the hypotheses that medical students' empathy can be enhanced and sustained by targeted activities. This was a two-phase study in which 248 medical students participated. In Phase 1, students in the experimental group watched and discussed video clips of patient encounters meant to enhance empathic understanding; those in the control group watched a documentary film. Ten weeks later in Phase 2 of the study, students who were in the experimental group were divided into two groups. One group attended a lecture on empathy in patient care, and the other plus the control group watched a movie about racism. The Jefferson Scale of Empathy (JSE) was administered pre-post in Phase 1 and posttest in Phase 2. In Phase 1, the JSE mean score for the experimental group improved significantly (p < 0.01); no change in the JSE scores was observed in the control group. In Phase 2, the JSE mean score improvement was sustained in the group that attended the lecture, but not in the other group. No change in empathy was noticed in the control group. Research hypotheses were confirmed.
Regulation of the Adrenal Cortex Function During Stress
NASA Technical Reports Server (NTRS)
Soliman, K. F. A.
1978-01-01
A proposal to study the function of the adrenal gland in the rat during stress is presented. In the proposed project, three different phases of experimentation will be undertaken. The first phase includes establishment of the circadian rhythm of both brain amines and glucocoticoids, under normal conditions and under chronic and acute stressful conditions. The second phase includes the study of the pharmacokinetics of glucocorticoid binding under normal and stress conditions. The third phase includes brain uptake and binding under different experimental conditions. In the outlined experiments brain biogenic amines will be evaluated, adrenal functions will be measured and stress effect on those parameters will be studied. It is hoped that this investigation can explain some of the complex relationships between the brain neurotransmitter and adrenal function.
Do dogs follow behavioral cues from an unreliable human?
Takaoka, Akiko; Maeda, Tomomi; Hori, Yusuke; Fujita, Kazuo
2015-03-01
Dogs are known to consistently follow human pointing gestures. In this study, we asked whether dogs "automatically" do this or whether they flexibly adjust their behavior depending upon the reliability of the pointer, demonstrated in an immediately preceding event. We tested pet dogs in a version of the object choice task in which a piece of food was hidden in one of the two containers. In Experiment 1, Phase 1, an experimenter pointed at the baited container; the second container was empty. In Phase 2, after showing the contents of both containers to the dogs, the experimenter pointed at the empty container. In Phase 3, the procedure was exactly as in Phase 1. We compared the dogs' responses to the experimenter's pointing gestures in Phases 1 and 3. Most dogs followed pointing in Phase 1, but many fewer did so in Phase 3. In Experiment 2, dogs followed a new experimenter's pointing in Phase 3 following replication of procedures of Phases 1 and 2 in Experiment 1. This ruled out the possibility that dogs simply lost motivation to participate in the task in later phases. These results suggest that not only dogs are highly skilled at understanding human pointing gestures, but also they make inferences about the reliability of a human who presents cues and consequently modify their behavior flexibly depending on the inference.
Pant, Apourv; Rai, J P N
2018-04-15
Two phase bioreactor was constructed, designed and developed to evaluate the chlorpyrifos remediation. Six biotic and abiotic factors (substrate-loading rate, slurry phase pH, slurry phase dissolved oxygen (DO), soil water ratio, temperature and soil micro flora load) were evaluated by design of experimental (DOE) methodology employing Taguchi's orthogonal array (OA). The selected six factors were considered at two levels L-8 array (2^7, 15 experiments) in the experimental design. The optimum operating conditions obtained from the methodology showed enhanced chlorpyrifos degradation from 283.86µg/g to 955.364µg/g by overall 70.34% of enhancement. In the present study, with the help of few well defined experimental parameters a mathematical model was constructed to understand the complex bioremediation process and optimize the approximate parameters upto great accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Cascaded Bragg scattering in fiber optics.
Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G
2013-01-15
We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.
NASA Astrophysics Data System (ADS)
Zhu, Jun
Ru and Pt are candidate additional component for improving the high temperature properties of Ni-base superalloys. A thermodynamic description of the Ni-Al-Cr-Ru-Pt system, serving as an essential knowledge base for better alloy design and processing control, was developed in the present study by means of thermodynamic modeling coupled with experimental investigations of phase equilibria. To deal with the order/disorder transition occurring in the Ni-base superalloys, a physical sound model, Cluster/Site Approximation (CSA) was used to describe the fcc phases. The CSA offers computational advantages, without loss of accuracy, over the Cluster Variation Method (CVM) in the calculation of multicomponent phase diagrams. It has been successfully applied to fcc phases in calculating technologically important Ni-Al-Cr phase diagrams. Our effort in this study focused on the two key ternary systems: Ni-Al-Ru and Ni-Al-Pt. The CSA calculated Ni-Al-Ru ternary phase diagrams are in good agreement with the experimental results in the literature and from the current study. A thermodynamic description of quaternary Ni-Al-Cr-Ru was obtained based on the descriptions of the lower order systems and the calculated results agree with experimental data available in literature and in the current study. The Ni-Al-Pt system was thermodynamically modeled based on the limited experimental data available in the literature and obtained from the current study. With the help of the preliminary description, a number of alloy compositions were selected for further investigation. The information obtained was used to improve the current modeling. A thermodynamic description of the Ni-Al-Cr-Pt quaternary was then obtained via extrapolation from its constituent lower order systems. The thermodynamic description for Ni-base superalloy containing Al, Cr, Ru and Pt was obtained via extrapolation. It is believed to be reliable and useful to guide the alloy design and further experimental investigation.
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
NASA Astrophysics Data System (ADS)
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
Frequency-locked chaotic opto-RF oscillator.
Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc
2016-06-15
A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime.
ERIC Educational Resources Information Center
Dynneson, Thomas L., Ed.; And Others
Social studies lessons developed by students in the elementary social studies education program at the University of Texas (Permian Basin) are provided. The lessons are presented according to the phase in which they were developed. Phase I consists of lessons created in the Fall, 1979; Phase II includes selected Phase I lessons which were revised,…
Manfredi, C.; Crittenden, K.; Cho, Y. I.; Engler, J.; Warnecke, R.
2001-01-01
OBJECTIVES: As phase 3 of a study to evaluate a smoking cessation program in public health practice, the authors assess the maintenance and impact of the It's Time smoking cessation program in seven public maternal and child health clinics in Chicago. METHODS: The authors interviewed 404 clinic patients in the study's baseline phase (prior to introduction of the It's Time intervention program), and 610 in the program maintenance phase (in the year after experimental evaluation had ended) to assess exposure to smoking cessation interventions offered at the clinic, and smoking cessation outcomes (quit, actions toward quitting, scores on action, motivation, readiness, and confidence scales). The authors controlled for clustering of smokers within clinics, smokers' characteristics prior to clinic visit, and type of clinic service. They compared outcomes by study group (control or intervention) to which each clinic had been assigned in the earlier experimental phase. RESULTS: Compared to baseline, smokers in the maintenance phase had greater exposure to posters, provider advice and booklet, and better outcomes on seven of eight smoking cessation measures, including quitting. These improvements were larger for clinics with prior experience implementing It's Time. CONCLUSION: Participation in the experimental evaluation of the It's Time program prepared and possibly motivated the clinics to continue the program. Continuing the program resulted in greater delivery of interventions and improved smoking cessation outcomes for smokers in the clinics. PMID:11889280
Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX.
Thorn, Andrea
2017-01-01
This chapter describes experimental phasing methods as implemented in SHELX. After introducing fundamental concepts underlying all experimental phasing approaches, the methods used by SHELXC/D/E are described in greater detail, such as dual-space direct methods, Patterson seeding and density modification with the sphere of influence algorithm. Intensity differences from data for experimental phasing can also be used for the generation and usage of difference maps with ANODE for validation and phasing purposes. A short section describes how molecular replacement can be combined with experimental phasing methods. The second half covers practical challenges, such as prerequisites for successful experimental phasing, evaluation of potential solutions, and what to do if substructure search or density modification fails. It is also shown how auto-tracing in SHELXE can improve automation and how it ties in with automatic model building after phasing.
NASA Astrophysics Data System (ADS)
Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.
2016-08-01
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2016-08-28
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Geometry-constraint-scan imaging for in-line phase contrast micro-CT.
Fu, Jian; Yu, Guangyuan; Fan, Dekai
2014-01-01
X-ray phase contrast computed tomography (CT) uses the phase shift that x-rays undergo when passing through matter, rather than their attenuation, as the imaging signal and may provide better image quality in soft-tissue and biomedical materials with low atomic number. Here a geometry-constraint-scan imaging technique for in-line phase contrast micro-CT is reported. It consists of two circular-trajectory scans with x-ray detector at different positions, the phase projection extraction method with the Fresnel free-propagation theory and the filter back-projection reconstruction algorithm. This method removes the contact-detector scan and the pure phase object assumption in classical in-line phase contrast Micro-CT. Consequently it relaxes the experimental conditions and improves the image contrast. This work comprises a numerical study of this technique and its experimental verification using a biomedical composite dataset measured at an x-ray tube source Micro-CT setup. The numerical and experimental results demonstrate the validity of the presented method. It will be of interest for a wide range of in-line phase contrast Micro-CT applications in biology and medicine.
Experimental study of phase separation in dividing two phase flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian Yong; Yang Zhilin; Xu Jijun
1996-12-31
Experimental study of phase separation of air-water two phase bubbly, slug flow in the horizontal T-junction is carried out. The influences of the inlet mass quality X1, mass extraction rate G3/G1, and fraction of extracted liquid QL3/QL1 on phase separation characteristics are analyzed. For the first time, the authors have found and defined pulsating run effect by the visual experiments, which show that under certain conditions, the down stream flow of the T-junction has strangely affected the phase redistribution of the junction, and firstly point out that the downstream geometric condition is very important to the study of phase separationmore » phenomenon of two-phase flow in a T-junction. This kind of phenomenon has many applications in the field of energy, power, petroleum and chemical industries, such as the loss of coolant accident (LOCA) caused by a small break in a horizontal coolant pipe in nuclear reactor, and the flip-flop effect in the natural gas transportation pipeline system, etc.« less
Milestone in the NTB phase investigation and beyond: direct insight into molecular self-assembly.
Ivšić, Trpimir; Vinković, Marijana; Baumeister, Ute; Mikleušević, Ana; Lesac, Andreja
2014-12-14
Although liquid-crystalline materials are most widely exploited for flat-panel displays, their ability to self-organize into periodically ordered nanostructures gives rise to a broad variety of additional applications. The recently discovered low-temperature nematic phase (N(TB)) with unusual characteristics generated considerable attention within the scientific community: despite the fact that the molecules from which the phase is composed are not chiral, the helicoidal structure of the phase is strongly implicated. Here we report on combined experimental, computational and spectroscopic studies of the structural aspects influencing formation of the N(TB) phase as well as on the molecular organization within the phase. In an extensive DFT study, the structure-property prerequisite was traced to a "bent-propeller" shape of the molecule. We also demonstrate the first utilization of liquid state NMR for direct analysis of intermolecular interactions within thermotropic liquid-crystalline phases, providing new insight into molecular packing that can lead towards design of novel chiral functional materials. The synergy of experimental, computational and NMR studies suggests a syn-parallel helical molecular organization within the N(TB) phase.
Measurement of phase function of aerosol at different altitudes by CCD Lidar
NASA Astrophysics Data System (ADS)
Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing
2018-02-01
The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni
2018-04-01
Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO2/SO2/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO2 ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system.
Adiabatic compressibility of an immiscible molten NaCl-AgI salt mixture
NASA Astrophysics Data System (ADS)
Stepanov, V. P.; Tkachev, N. K.; Kulik, N. P.; Peshkina, K. G.
2016-08-01
Adiabatic compressibility β of an immiscible 0.5NaCl + 0.5AgI liquid mixture in the immiscibility range is studied experimentally and theoretically using the model of charged hard spheres. The compressibility is calculated by the relationship β = 1/ u 2ρ studied using sound velocity u measured by a pulse method and density ρ determined by hydrostatic weighing. It is shown that the compressibility of the upper phase decreases and that of the lower phase increases when the temperature increases because of the superposition of the effects of the thermal motion of ions and the phase compositions. The temperature dependence of the difference between the compressibilities of the equilibrium phases is described using the empirical equation Δβ = ( T c- T)0.442, which is close to the mean-field theory description. The results of the model calculations adequately reproduce the experimentally observed temperature dependence of the compressibility of the coexisting phases. However, the theoretically predicted critical exponent (1/2) differs from the experimentally determined exponent by 13%. These results are discussed in terms of the nature of chemical bond in silver iodide.
A Study of Phase Composition and Structure of Alloys of the Al - Mg - Si - Fe System
NASA Astrophysics Data System (ADS)
Mailybaeva, A. D.; Zolotorevskii, V. S.; Smagulov, D. U.; Islamkulov, K. M.
2017-03-01
The Thermo-Calc software is used to compute the phase transformations occurring during cooling of alloys. Polythermal and isothermal sections of the phase diagram of the Al - Mg - Si - Fe system are plotted. The phase composition and the structure of aluminum alloys in cast condition and after a heat treatment are studied experimentally.
NASA Technical Reports Server (NTRS)
Righter, K.; Campbell, A. J.; Humayun, M.
2003-01-01
Experimental studies have identified spinels as important hosts phases for many of the highly siderophile elements (HSE). Yet experimental studies involving chromite or Cr-rich spinel have been lacking. Experimental studies of partitioning of HSEs between silicate, oxides and silicate melt are plagued by low solubilities and the presence of small metallic nuggets at oxygen fugacities relevant to magmas, which interfere with analysis of the phases of interest. We have circumvented these problems in two ways: 1) performing experiments at oxidized conditions, which are still relevant to natural systems but in which nuggets are not observed, and 2) analysis of run products with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), allowing a combination of high sensitivity and good spatial resolution.
Experimental cancellation of aberrations in intensity correlation in classical optics
NASA Astrophysics Data System (ADS)
Jesus-Silva, A. J.; Silva, Juarez G.; Monken, C. H.; Fonseca, E. J. S.
2018-01-01
We study the classical correlation function of spatially incoherent beams with a phase aberration in the beam path. On the basis of our experimental measurements and in the optical coherence theory, we show that the effects of phase disturbances, independently of their kind and without need of coordinate inversion, can be canceled out if the same phase is aligned in the signal and reference beam path. These results can be useful for imaging and microscopy through random media.
Experimental data for the slug two-phase flow characteristics in horizontal pipeline.
Mohmmed, Abdalellah O; Nasif, Mohammad S; Al-Kayiem, Hussain H
2018-02-01
The data presented in this article were the basis for the study reported in the research articles entitled "Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe" (Al-Kayiem et al., 2017) [1] which presents an experimental investigation of the slug velocity and slug body length for air-water tow phase flow in horizontal pipe. Here, in this article, the experimental set-up and the major instruments used for obtaining the computed data were explained in details. This data will be presented in the form of tables and videos.
NASA Technical Reports Server (NTRS)
Miller, James G.
1997-01-01
In this Progress Report, we describe our recent developments of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns for a thin woven composite in an immersion setup. In addition, we compare apparent signal loss measurements of the thin woven composite for phase-sensitive and phase-insensitive detection methods. All images of diffraction patterns have been included on the accompanying CD-ROM in the Adobe(Trademark) Portable Document Format (PDF). Due to the extensive amount of data, however, hardcopies of only a small representative selection of the images are included within the printed report. This Progress Report presents experimental results that support successful implementation of single element as well as one and two-dimensional ultrasonic array technologies for the inspection of textile composite structures. In our previous reports, we have addressed issues regarding beam profiles of ultrasonic pressure fields transmitted through a water reference path and transmitted through a thin woven composite sample path. Furthermore, we presented experimental results of the effect of a thin woven composite on the magnitude of an insonifying ultrasonic pressure field. In addition to the study of ultrasonic beam profiles, we consider issues relevant to the application of single-element, one-dimensional, and two-dimensional array technologies towards probing the mechanical properties of advanced engineering composites and structures. We provide comparisons between phase-sensitive and phase-insensitive detection methods for determination of textile composite structure parameters. We also compare phase-sensitive and phase-insensitive - - ---- ----- apparent signal loss measurements in an effort to study the phenomenon of phase cancellation at the face of a finite-aperture single-element receiver. Furthermore, in this Progress Report we extend our work on ultrasonic beam profile issues through investigation of the phase fronts of the pressure field. In Section H of this Progress Report we briefly describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. Section III details the analysis of the experimental data followed by the experimental results in Section IV. Finally, a discussion of the observations and conclusions is found in Section V.
Liquid crystalline phase behavior of protein fibers in water: experiments versus theory.
Jung, Jin-Mi; Mezzenga, Raffaele
2010-01-05
We have developed a new method allowing the study of the thermodynamic phase behavior of mesoscopic colloidal systems consisting of amyloid protein fibers in water, obtained by heat denaturation and aggregation of beta-lactoglobulin, a dairy protein. The fibers have a cross section of about 5.2 nm and two groups of polydisperse contour lengths: (i) long fibers of 1-20 microm, showing semiflexible behavior, and (ii) short rods of 100-200 nm long, obtained by cutting the long fibers via high-pressure homogenization. At pH 2 without salt, these fibers are highly charged and stable in water. We have studied the isotropic-nematic phase transition for both systems and compared our results with the theoretical values predicted by Onsager's theory. The experimentally measured isotropic-nematic phase transition was found to occur at 0.4% and at 3% for the long and short fibers, respectively. For both systems, this phase transition occurs at concentrations more than 1 order of magnitude lower than what is expected based on Onsager's theory. Moreover, at low enough pH, no intermediate biphasic region was observed between the isotropic phase and the nematic phase. The phase diagrams of both systems (pH vs concentration) showed similar, yet complex and rich, phase behavior. We discuss the possible physical fundamentals ruling the phase diagram as well as the discrepancy we observe for the isotropic-nematic phase transition between our experimental results and the predicted theoretical results. Our work highlights that systems formed by water-amyloid protein fibers are way too complex to be understood based solely on Onsager's theories. Experimental results are revisited in terms of the Flory's theory (1956) for suspensions of rods, which allows accounting for rod-solvent hydrophobic interactions. This theoretical approach allows explaining, on a semiquantitative basis, most of the discrepancies observed between the experimental results and Onsager's predictions. The sources of protein fibers complex colloidal behavior are analyzed and discussed at length.
Asghar, Muhammad; Westerdahl, Helena; Zehtindjiev, Pavel; Ilieva, Mihaela; Hasselquist, Dennis; Bensch, Staffan
2012-09-01
Malaria parasites often manage to maintain an infection for several months or years in their vertebrate hosts. In humans, rodents and birds, most of the fitness costs associated with malaria infections are in the short initial primary (high parasitaemia) phase of the infection, whereas the chronic phase (low parasitaemia) is more benign to the host. In wild birds, malaria parasites have mainly been studied during the chronic phase of the infection. This is because the initial primary phase of infection is short in duration and infected birds with severe disease symptoms tend to hide in sheltered places and are thus rarely caught and sampled. We therefore wanted to investigate the relationship between the parasitaemia during the primary and chronic phases of the infection using an experimental infection approach. We found a significant positive correlation between parasitaemia in the primary peak and the subsequent chronic phase of infection when we experimentally infected great reed warblers (Acrocephalus arundinaceus) with Plasmodium ashfordi. The reason for this association remains to be understood, but might arise from individual variation in exoerythrocytic parasite reservoirs in hosts, parasite antigenic diversity and/or host genetics. Our results suggest that the chronic phase parasitaemia can be used to qualitatively infer the parasitaemia of the preceding and more severe primary phase, which is a very important finding for studies of avian malaria in wild populations.
Liu, Xuan L; Gheno, Thomas; Lindahl, Bonnie B; Lindwall, Greta; Gleeson, Brian; Liu, Zi-Kui
2015-01-01
The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT) and phase-equilibria experiments that led to X-ray diffraction (XRD) and electron probe micro-analysis (EPMA) measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD) method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS) calculations predict a large bcc-A2 (disordered)/B2 (ordered) miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.
Evidence to Support Peer Tutoring Programs at the Undergraduate Level
ERIC Educational Resources Information Center
Colver, Mitchell; Fry, Trevor
2016-01-01
The present study examined undergraduate peer tutoring in three phases. Phase I qualitatively surveyed students' perceptions about the effectiveness of tutoring. Phase II examined the usefulness of promoting regular use of services through a tutoring contract. Phase III utilized an archival, quasi-experimental approach to estimate the effect of…
Phase Diagram of Quaternary System NaBr-KBr-CaBr2-H2O at 323 K
NASA Astrophysics Data System (ADS)
Cui, Rui-Zhi; Wang, Wei; Yang, Lei; Sang, Shi-Hua
2018-03-01
The phase equilibria in the system NaBr-KBr-CaBr2-H2O at 323 K were studied using the isothermal dissolution equilibrium method. Using the experimental solubilities of salts data, phase diagram was constructed. The phase diagram have two invariant points, five univariant curves, and four crystallization fields. The equilibrium solid phases in the system are NaBr, NaBr · 2H2O, KBr, and CaBr2 · 4H2O. The solubilities of salts in the system at 323 K were calculated by Pitzer's equation. There is shown that the calculated solubilities agree well with experimental data.
Neutral, ion gas-phase energetics and structural properties of hydroxybenzophenones.
Dávalos, Juan Z; Guerrero, Andrés; Herrero, Rebeca; Jimenez, Pilar; Chana, Antonio; Abboud, José Luis M; Lima, Carlos F R A C; Santos, Luís M N B F; Lago, Alexsandre F
2010-04-16
We have carried out a study of the energetics, structural, and physical properties of o-, m-, and p-hydroxybenzophenone neutral molecules, C(13)H(10)O(2), and their corresponding anions. In particular, the standard enthalpies of formation in the gas phase at 298.15 K for all of these species were determined. A reliable experimental estimation of the enthalpy associated with intramolecular hydrogen bonding in chelated species was experimentally obtained. The gas-phase acidities (GA) of benzophenones, substituted phenols, and several aliphatic alcohols are compared with the corresponding aqueous acidities (pK(a)), covering a range of 278 kJ.mol(-1) in GA and 11.4 in pK(a). A computational study of the various species shed light on structural effects and further confirmed the self-consistency of the experimental results.
Ab initio molecular dynamic study of solid-state transitions of ammonium nitrate
Yu, Hongyu; Duan, Defang; Liu, Hanyu; Yang, Ting; Tian, Fubo; Bao, Kuo; Li, Da; Zhao, Zhonglong; Liu, Bingbing; Cui, Tian
2016-01-01
High-pressure polymorphism and phase transitions have wide ranging consequences on the basic properties of ammonium nitrate. However, the phase diagram of ammonium nitrate at high pressure and high temperature is still under debate. This study systematically investigates the phase transitions and structural properties of ammonium nitrate at a pressure range of 5–60 GPa and temperature range of 250–400 K by ab initio molecular dynamics simulations. Two new phases are identified: one corresponds to the experimentally observed phase IV’ and the other is named AN-X. Simultaneously, the lattice strains play a significant role in the formation and stabilization of phase IV’, providing a reasonable explanation for experimental observation of phase IV-IV’ transition which only appears under nonhydrostatic pressure. In addition, 12 O atoms neighboring the NH (N atom in ammonium cation) atom are selected as reference system to clearly display the tanglesome rotation of ammonium cation. PMID:26754622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krylov, A.S., E-mail: shusy@iph.krasn.ru; Sofronova, S.N.; Kolesnikova, E.M.
2014-10-15
The results of structural phase transitions mechanisms study in K{sub 3}WO{sub 3}F{sub 3}oxyfluoride are represented by different experimental and theoretical methods. The structural phase transition anomalies at T{sub 1}=452 K and T{sub 2}=414 K of Raman and IR spectra have been analyzed. Using vibrational spectroscopy methods, the NMR-experiment has been done to clarify the nature of found phase transitions: displacive types or order-disorder types. The model of “disordered” crystal was proposed, and the results of lattice dynamics calculation in frameworks of the generalized Gordon–Kim method of ordered (R3) and “disordered” crystals were compared. The high pressure phases were studied bymore » the Raman technique too. - Graphical abstract: (1) Two possible configuration of octahedra. (2). All phases Raman lines of octahedra. (3) All phases IR lines of octahedra. (4) NMR spectra of all phases. - Highlights: • The results of study oxyfluoride K{sub 3}WO{sub 3}F{sub 3} are represented by Raman, IR, NMR technique. • The high pressure phases were studied by the Raman technique. • The anionic octahedra [WO{sub 3}F{sub 3}]{sup 3−} are not ordered below the both phase transitions. • The ferroelectric phase is realized due to the shift of atoms without F/O ordering. • Both of found phase transitions are close to the second order.« less
Kokornaczyk, Maria Olga; Scherr, Claudia; Bodrova, Natalia Borisovna; Baumgartner, Stephan
2018-05-16
Methods based on phase-transition-induced pattern formation (PTPF) are increasingly used in medical research. Frequent application fields are medical diagnosis and basic research in homeopathy. Here, we present a systematic review of experimental studies concerning PTPF-based methods applied to homeopathy research. We also aimed at categorizing the PTPF methods included in this review. Experimental studies were collected from scientific databases (PubMed, Web of Science, Russian eLibrary) and from experts in the research field in question, following the PRISMA guidelines. The studies were rated according to pre-defined scientific criteria. The review included 15 experimental studies. We identified seven different PTPF methods applied in 12 experimental models. Among these methods, phase-transition was triggered through evaporation, freezing, or solution, and in most cases led to the formation of crystals. First experimental studies concerning the application of PTPF methods in homeopathic research were performed in the first half of the 20th century; however, they were not continued in the following years. Only in the last decade, different research groups re-launched the idea, introducing new experimental approaches and computerized pattern evaluation techniques. The here-identified PTPF methods are for the first time proposed to be classified as one group of methods based on the same basic physical phenomenon. Although the number of experimental studies in the area is still rather limited, the long tradition in the application of PTPF methods and the dynamics of the present developments point out the high potential of these methods and indicate that they might meet the demand for scientific methods to study potentized preparations. The Faculty of Homeopathy.
NASA Astrophysics Data System (ADS)
Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua
2016-12-01
Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples.
A three-level advanced static VAr compensator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekanayake, J.B.; Jenkins, N.
1996-01-01
An Advanced Static VAr Compensator (ASVC) employing a three level inverter has been investigated for three phase applications. The paper describes the operating principles of the ASVC using an elementary single phase ASVC circuit. The construction of a hardware model of the three phase, three level ASVC is then presented. The performance of the ASVC is obtained from an experimental study carried out on this laboratory model. The use of the selective harmonic elimination modulation (SHEM) technique to minimize harmonics is explored. Experimental studies have been carried out to determine the speed of response of the scheme by controlling itmore » in a closed loop.« less
Microwave scanning beam approach and landing system phased array antenna volume I
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
Microwave scanning beam approach and landing system phased array antenna : volume II
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment.
Strelkov, V V; Ganeev, R A
2017-09-04
We theoretically analyze the phase-matching of high-order harmonic generation (HHG) in multi-jet plasmas and find the harmonic orders for which the quasi-phase-matching (QPM) is achieved depending on the parameters of the plasma and the generating beam. HHG by single- and two-color generating fields is analyzed. The QMP is studied experimentally for silver, indium and manganese plasmas using near IR and mid-IR laser fields. The theory is validated by comparison with our experimental observations, as well as published experimental data. In particular, the plasma densities and the harmonic phase coefficients reconstructed from the observed harmonic spectra using our theory agree with the corresponding parameters found using other methods. Our theory allows defining the plasma jet and the generating field properties, which can maximize the HHG efficiency due to QPM.
NASA Astrophysics Data System (ADS)
Liu, Ling
The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.
Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron
2015-04-01
We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.
Numerical modelling and experimental study of liquid evaporation during gel formation
NASA Astrophysics Data System (ADS)
Pokusaev, B. G.; Khramtsov, D. P.
2017-11-01
Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.
Li, Linglong; Yang, Yaodong; Zhang, Dawei; ...
2018-03-30
Exploration of phase transitions and construction of associated phase diagrams are of fundamental importance for condensed matter physics and materials science alike, and remain the focus of extensive research for both theoretical and experimental studies. For the latter, comprehensive studies involving scattering, thermodynamics, and modeling are typically required. We present a new approach to data mining multiple realizations of collective dynamics, measured through piezoelectric relaxation studies, to identify the onset of a structural phase transition in nanometer-scale volumes, that is, the probed volume of an atomic force microscope tip. Machine learning is used to analyze the multidimensional data sets describingmore » relaxation to voltage and thermal stimuli, producing the temperature-bias phase diagram for a relaxor crystal without the need to measure (or know) the order parameter. The suitability of the approach to determine the phase diagram is shown with simulations based on a two-dimensional Ising model. Finally, these results indicate that machine learning approaches can be used to determine phase transitions in ferroelectrics, providing a general, statistically significant, and robust approach toward determining the presence of critical regimes and phase boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Linglong; Yang, Yaodong; Zhang, Dawei
Exploration of phase transitions and construction of associated phase diagrams are of fundamental importance for condensed matter physics and materials science alike, and remain the focus of extensive research for both theoretical and experimental studies. For the latter, comprehensive studies involving scattering, thermodynamics, and modeling are typically required. We present a new approach to data mining multiple realizations of collective dynamics, measured through piezoelectric relaxation studies, to identify the onset of a structural phase transition in nanometer-scale volumes, that is, the probed volume of an atomic force microscope tip. Machine learning is used to analyze the multidimensional data sets describingmore » relaxation to voltage and thermal stimuli, producing the temperature-bias phase diagram for a relaxor crystal without the need to measure (or know) the order parameter. The suitability of the approach to determine the phase diagram is shown with simulations based on a two-dimensional Ising model. Finally, these results indicate that machine learning approaches can be used to determine phase transitions in ferroelectrics, providing a general, statistically significant, and robust approach toward determining the presence of critical regimes and phase boundaries.« less
Phase transitions in MgSiO3 at high pressures and temperatures
NASA Astrophysics Data System (ADS)
Ono, S.
2017-12-01
As olivine, pyroxene and garnet are major minerals in the upper mantle, understanding the dynamics and evolution of the mantle requires knowledge of MgSiO3, which is an end-member of pyroxene. Therefore, phase relations in MgSiO3 have been repeatedly investigated by a number of authors. However, the transition sequence of the MgSiO3 mineral remains as yet unconfirmed. The discrepancy among researchers is likely due to the accuracy of phase boundary determinations related with the stability field of two phases, wadsleyite + stishovite or ringwoodite + stishovite.High-pressure experiments were carried out using multi-anvil high-pressure apparatus installed at the synchrotron facilities of KEK and SPring-8 in Japan. Experimental details were described elsewhere [e.g., 1,2]. A mixture of the powdered MgSiO3 and gold was used. Experimental pressures were determined from the unit cell volumes of gold. All recovered samples were investigated by an electron microprobe analyzer to identify the stable phase in each experimental run.Experimental runs were performed at pressures between 15 and 21 GPa. Two types of recovered samples, single (MgSiO3) and two phases (Mg2SiO4 + SiO2), were confirmed. The single phase was high-pressure clinoenstatite or akimotoite, and two phases were wadsleyite + stishovite or ringwoodite + stishovite. According to experimental data, two reaction boundaries were determined. The reaction boundary between high-pressure clinoenstatite and wadsleyite + stishovite has a positive dP/dT gradient, 0.0064 GPa/K [3]. In contrast, the reaction boundary between ringwoodite + stishovite and akimotoite has a negative dP/dT gradient, -0.0012 GPa/K [4]. This study indicates that the stability field of wadsleyite + stishovite expands to a low temperature region corresponding to the P-T path in the subducted slab. Moreover, a triple point of wadsleyite + stishovite-ringwoodite + stishovite-akimotoite is located at a temperature slightly lower than the geotherm. These experimental results can reconcile the inconsistency recorded between previous studies regarding the phase relation in MgSiO3.[1] Ono et al., Phys. Chem. Minerals, 40, 811-816 (2013)[2] Ono et al., Phys. Earth Planet. Inter., 264, 1-6 (2017)[3] Ono et al., (under review)[4] Ono et al., Phys. Chem. Minerals, 44, 425-430 (2017)
NASA Technical Reports Server (NTRS)
Copland, Evan H.; Jacobson, Nathan S.; Ritzert, Frank J.
2001-01-01
A previous study by Ritzert et al. on the formation and prediction of topologically closed packed (TCP) phases in the nickel-base superalloy Rene' N6 is re-examined with computational thermodynamics. The experimental data on phase distribution in forty-four alloys with a composition within the patent limits of the nickel-base superalloy Rene' N6 provide a good basis for comparison to and validation of a commercial nickel superalloy database used with ThermoCalc. Volume fraction of the phases and partitioning of the elements are determined for the forty-four alloys in this dataset. The baseline heat treatment of 400 h at 1366 K was used. This composition set is particularly interesting since small composition differences lead to dramatic changes in phase composition. In general the calculated values follow the experimental trends. However, the calculations indicated no TCP phase formation when the experimental measurements gave a volume percent of TCP phase less than 2 percent. When TCP phases were predicted, the calculations under-predict the volume percent of TCP phases by a factor of 2 to 8. The calculated compositions of the gamma and gamma' phases show fair agreement with the measurements. However, the calculated compositions of the P Phase do not agree with those measured. This may be due to inaccuracies in the model parameters for P phase and/or issues with the microprobe analyses of these phases. In addition, phase fraction diagrams and sigma and P phase solvus temperatures are calculated for each of the alloys. These calculations indicate that P phase is the primary TCP phase formed for the alloys considered here at 1366 K. Finally, a series of isopleths are calculated for each of the seven alloying elements. These show the effect of each alloying element on creating TCP phases.
NASA Astrophysics Data System (ADS)
Smith, Holland M.; Zhou, Yuzhi; Ciampi, Guido; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.; Haller, E. E.; Chrzan, D. C.
2013-08-01
We apply state-of-art first principle calculations to study the polymorphism and electronic structure of three previously reported phases of TlBr. The calculated band structures of NaCl-structure phase and orthorhombic-structure phase have different features than that of commonly observed CsCl-structure phase. We further interpret photoluminescence spectra based on our calculations. Several peaks close to calculated band gap values of the NaCl-structure phase and the orthorhombic-structure phase are found in unpolished TlBr samples.
Ramos, Fernando; Flores, Henoc; Hernández-Pérez, Julio M; Sandoval-Lira, Jacinto; Camarillo, E Adriana
2018-01-11
The intramolecular hydrogen bond of the N-H···S type has been investigated sparingly by thermochemical and computational methods. In order to study this interaction, the standard molar enthalpies of formation in gaseous phase of diphenyl disulfide, 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide at T = 298.15 K were determined by experimental thermochemical methods and computational calculations. The experimental enthalpies of formation in gas-phase were obtained from enthalpies of formation in crystalline phase and enthalpies of sublimation. Enthalpies of formation in crystalline phase were obtained using rotatory bomb combustion calorimetry. By thermogravimetry, enthalpies of vaporization were obtained, and by combining them with enthalpies of fusion, the enthalpies of sublimation were calculated. The Gaussian-4 procedure and the atomization method were applied to obtain enthalpies of formation in gas-phase of the compounds under study. Theoretical and experimental values are in good agreement. Through natural bond orbital (NBO) analysis and a topological analysis of the electronic density, the intramolecular hydrogen bridge (N-H···S) in the 2,2'-diaminodiphenyl disulfide was confirmed. Finally, an enthalpic difference of 11.8 kJ·mol -1 between the 2,2'-diaminodiphenyl disulfide and 4,4'-diaminodiphenyl disulfide was found, which is attributed to the intramolecular N-H···S interaction.
DOT National Transportation Integrated Search
2015-02-01
This research builds on the related Phase 1 project. In this second phase, we continue to : study neighborhood and housing preferences that shape the residential location decision process. An : online experimental survey tool is developed to investig...
ERIC Educational Resources Information Center
Armah, Robert Benjamin; Cofie, Primrose Otokonor; Okpoti, Christopher Adjei
2018-01-01
This study investigated the effect of van Hiele Phase-based Instruction (VHPI) on Ghanaian Pre-service Teachers' (PTs') geometric thinking in terms of the van Hiele Levels. A pre-test post-test quasi-experimental design was employed. There were 75 PTs each in the experimental group and the control group. Van Hiele Geometry Test (VHGT) was…
ERIC Educational Resources Information Center
Saunders, William M.; Goldenberg, Claude N.; Gallimore, Ronald
2009-01-01
The authors conducted a quasi-experimental investigation of effects on achievement by grade-level teams focused on improving learning. For 2 years (Phase 1), principals-only training was provided. During the final 3 years (Phase 2), school-based training was provided for principals and teacher leaders on stabilizing team settings and using…
Coupled lasers: phase versus chaos synchronization.
Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I
2013-10-15
The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.
NASA Astrophysics Data System (ADS)
Gautham, S.; Sindu, B. S.; Sasmal, Saptarshi
2017-10-01
Properties and distribution of the products formed during the hydration of cementitious composite at the microlevel are investigated using a nanoindentation technique. First, numerical nanoindentation using nonlinear contact mechanics is carried out on three different phase compositions of cement paste, viz. mono-phase Tri-calcium Silicate (C3S), Di-calcium Silicate (C2S) and Calcium-Silicate-Hydrate (CSH) individually), bi-phase (C3S-CSH, C2S-CSH) and multi-phase (more than 10 individual phases including water pores). To reflect the multi-phase characteristics of hydrating cement composite, a discretized multi-phase microstructural model of cement composite during the progression of hydration is developed. Further, a grid indentation technique for simulated nanoindentation is established, and employed to evaluate the mechanical characteristics of the hydrated multi-phase cement paste. The properties obtained from the numerical studies are compared with those obtained from experimental grid nanoindentation. The influence of composition and distribution of individual phase properties on the properties obtained from indentation are closely investigated. The study paves the way to establishing the procedure for simulated grid nanoindentation to evaluate the mechanical properties of heterogeneous composites, and facilitates the design of experimental nanoindentation.
NASA Astrophysics Data System (ADS)
Kuo, Ching Yi; Pan, Chin
2010-09-01
This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.
Wang, Y; Harrison, M; Clark, B J
2006-02-10
An optimization strategy for the separation of an acidic mixture by employing a monolithic stationary phase is presented, with the aid of experimental design and response surface methodology (RSM). An orthogonal array design (OAD) OA(16) (2(15)) was used to choose the significant parameters for the optimization. The significant factors were optimized by using a central composite design (CCD) and the quadratic models between the dependent and the independent parameters were built. The mathematical models were tested on a number of simulated data set and had a coefficient of R(2) > 0.97 (n = 16). On applying the optimization strategy, the factor effects were visualized as three-dimensional (3D) response surfaces and contour plots. The optimal condition was achieved in less than 40 min by using the monolithic packing with the mobile phase of methanol/20 mM phosphate buffer pH 2.7 (25.5/74.5, v/v). The method showed good agreement between the experimental data and predictive value throughout the studied parameter space and were suitable for optimization studies on the monolithic stationary phase for acidic compounds.
Experimental study of an X-band phase-locked relativistic backward wave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.; Science and Technology on High Power Microwave Laboratory, Mianyang 621900; Li, Z. H.
2015-11-15
To achieve high power microwave combined with high frequency band, an X-band phase-locked relativistic backward wave oscillator (RBWO) is proposed and investigated theoretically and experimentally using a modulated electron beam. In the device, an overmoded input cavity and a buncher cavity are employed to premodulate the electron beam. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with the locking bandwidth of 60 MHz. Moreover, phase and frequency locking of an RBWO has been accomplished experimentally with an output power of 1.5 GW. The fluctuation of the relative phase differencemore » between output microwave and input RF signal is less than ±20° with the locking duration of about 50 ns. The input RF power required to lock the oscillator is only 90 kW.« less
Experimental evidence for stochastic switching of supercooled phases in NdNiO3 nanostructures
NASA Astrophysics Data System (ADS)
Kumar, Devendra; Rajeev, K. P.; Alonso, J. A.
2018-03-01
A first-order phase transition is a dynamic phenomenon. In a multi-domain system, the presence of multiple domains of coexisting phases averages out the dynamical effects, making it nearly impossible to predict the exact nature of phase transition dynamics. Here, we report the metal-insulator transition in samples of sub-micrometer size NdNiO3 where the effect of averaging is minimized by restricting the number of domains under study. We observe the presence of supercooled metallic phases with supercooling of 40 K or more. The transformation from the supercooled metallic to the insulating state is a stochastic process that happens at different temperatures and times in different experimental runs. The experimental results are understood without incorporating material specific properties, suggesting that the behavior is of universal nature. The size of the sample needed to observe individual switching of supercooled domains, the degree of supercooling, and the time-temperature window of switching are expected to depend on the parameters such as quenched disorder, strain, and magnetic field.
Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system
NASA Astrophysics Data System (ADS)
Degterov, Sergei A.; Pelton, Arthur D.; Jak, Evgueni; Hayes, Peter C.
2001-08-01
The Fe-Zn-O phase diagram in air was studied over the temperature range from 900 °C to 1500 °C. The compositions of the phases in quenched samples were obtained by electron probe X-ray microanalysis (EPMA). This experimental technique is not affected by zinc losses resulting from vaporization of zinc at high temperatures. The model for the spinel solid solution was developed within the framework of the compound-energy formalism (CEF). The choice of parameters of the CEF and the sequence of their optimization can have a major influence on the predictions in multicomponent phases. These choices can only be made rationally by reference to the specific model being represented in the CEF. This is discussed for the case of the two-sublattice spinel model. In the limiting case, the proposed model reduces to the model by O’Neill and Navrotsky for spinels. When the CEF is used in combination with the equation of Hillert and Jarl to describe the magnetic contribution to thermodynamic functions of a solution, it is necessary to assign certain values of magnetic properties to all pseudocomponents and to magnetic interaction parameters to obtain the most reasonable approximation of the magnetic properties of a solution. It was shown how this can be done based on very limited experimental data. The same equations can be used when the Murnaghan or the Birch-Murnaghan equation is combined with the CEF to describe the pressure dependence of thermodynamic functions. The polynomial model was used to describe the properties of wustite and zincite, and the modified quasichemical model was used for the liquid slag. All thermodynamic and phase-equilibria data on the Fe-O and Fe-Zn-O systems were critically evaluated, and parameters of the models were optimized to give a self-consistent set of thermodynamic functions of the phases in these systems. All experimental data are reproduced within experimental error limits. These include the thermodynamic properties of phases (such as specific heat, heat content, entropy, enthalpy, and Gibbs energy); the cation distribution between octahedral and tetrahedral sites in spinel; the oxygen partial pressure over single-phase, two-phase, and three-phase regions; the phase boundaries (liquidus, solidus, and subsolidus); and the tie-lines.
NASA Astrophysics Data System (ADS)
Gao, Michael C.; Ünlü, Necip; Mihalkovic, Marek; Widom, Michael; Shiflet, G. J.
2007-10-01
This study investigates glass formation, phase equilibria, and thermodynamic descriptions of the Al-rich Al-Ce-Co ternary system using a novel approach that combines critical experiments, CALPHAD modeling, and first-principles (FP) calculations. The glass formation range (GFR) and a partial 500 °C isotherm are determined using a range of experimental techniques including melt spinning, transmission electron microscopy (TEM), electron probe microanalysis (EPMA), X-ray diffraction, and differential thermal analysis (DTA). Three stable ternary phases are confirmed, namely, Al8CeCo2, Al4CeCo, and AlCeCo, while a metastable phase, Al5CeCo2, was discovered. The equilibrium and metastable phases identified by the present and earlier reported experiments, together with many hypothetical ternary compounds, are further studied by FP calculations. Based on new experimental data and FP calculations, the thermodynamics of the Al-rich Al-Co-Ce system is optimized using the CALPHAD method. Application to glass formation is discussed in light of present studies.
Experimental study of entanglement evolution in the presence of bit-flip and phase-shift noises
NASA Astrophysics Data System (ADS)
Liu, Xia; Cao, Lian-Zhen; Zhao, Jia-Qiang; Yang, Yang; Lu, Huai-Xin
2017-10-01
Because of its important role both in fundamental theory and applications in quantum information, evolution of entanglement in a quantum system under decoherence has attracted wide attention in recent years. In this paper, we experimentally generate a high-fidelity maximum entangled two-qubit state and present an experimental study of the decoherence properties of entangled pair of qubits at collective (non-collective) bit-flip and phase-shift noises. The results shown that entanglement decreasing depends on the type of the noises (collective or non-collective and bit-flip or phase-shift) and the number of qubits which are subject to the noise. When two qubits are depolarized passing through non-collective noisy channel, the decay rate is larger than that depicted for the collective noise. When two qubits passing through depolarized noisy channel, the decay rate is larger than that depicted for one qubit.
Venkata Mohan, S; Shailaja, S; Rama Krishna, M; Sarma, P N
2007-07-19
Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.
NASA Astrophysics Data System (ADS)
Fortuna, Damiano; Rossi, Giacomo; Paolini, Cesare; Magi, Alberto; Losani, Fabrizio; Fallaci, Simone; Pacini, Franco; Porciani, Chiara; Sandler, Anna; Dalla Torre, Riccarda; Pinna, Stefania; Venturini, Antonio
2002-10-01
The ultrasonic evolution of tendinous repair envisages the recovery of ecogenicity: "reparative phase", followed by the realignment of the collagen fibres: "rehabilitative phase". The primary objective was to verify the safety and efficacy of Nd:YAG pulsed wave on teno- desmopathies of horses. Secondary to shorten "reparative phase" for to provide more time for "rehabilitative phase". The study has been divided into two investigations: experimental and clinical. In the experimental investigation, on 3 meat horses, the safety and tolerance of a power laser (35 W/cm2, 25 J/cm2) was investigated. The clinical investigation was performed on 79 sport horses through randomized double-blind. All subjects (Controls and Treated) received, on the subskin above the tendon lesion, the same local infiltration of immunostimulant. The results indicates that the High Intensity Laser Therapy (HILT) is safe and tolerated. It is able of reducing, in significative way, the "reparative phase", with a lower percentage of relapse (20% Treated and 40% Controls), but it is not able to reduce the time of the "rehabilitative phase".
The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.
González, César A; Rubinsky, Boris
2006-06-01
The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.
NASA Astrophysics Data System (ADS)
Medved', Igor; Trník, Anton
2018-07-01
Phase-change materials (PCMs) can store/release thermal energy within a small temperature range. This is of interest in various industrial applications, for example, in civil engineering (heating/cooling of buildings) or cold storage applications. Another application may be the moderation of temperature increases in concrete encasements of radionuclides during their decay. The phase-change behavior of a material is determined by its heat capacity and the peak it exhibits near a phase change. We analyze the behavior of such peaks for a selected PCM at heating rates varying between 0.1°C\\cdot min^{-1} and 1°C\\cdot min^{-1}, corresponding in real situations to different decay rates of radionuclides. We show that experimentally measured peaks can be plausibly described by an equilibrium theory that enables us to calculate the latent heat and phase-change temperature from experimental data.
Interatomic potential to study plastic deformation in tungsten-rhenium alloys
NASA Astrophysics Data System (ADS)
Bonny, G.; Bakaev, A.; Terentyev, D.; Mastrikov, Yu. A.
2017-04-01
In this work, an interatomic potential for the W-Re system is fitted and benchmarked against experimental and density functional theory (DFT) data, of which part are generated in this work. Having in mind studies related to the plasticity of W-Re alloys under irradiation, emphasis is put on fitting point-defect properties, elastic constants, and dislocation properties. The developed potential can reproduce the mechanisms responsible for the experimentally observed softening, i.e., decreasing shear moduli, decreasing Peierls barrier, and asymmetric screw dislocation core structure with increasing Re content in W-Re solid solutions. In addition, the potential predicts elastic constants in reasonable agreement with DFT data for the phases forming non-coherent precipitates (σ- and χ-phases) in W-Re alloys. In addition, the mechanical stability of the different experimentally observed phases is verified in the temperature range of interest (700-1500 K). As a conclusion, the presented potential provides an excellent tool to study plasticity in W-Re alloys at the atomic level.
Phase Control in Nonlinear Systems
NASA Astrophysics Data System (ADS)
Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo
The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References
Experimental study and empirical prediction of fuel flow parameters under air evolution conditions
NASA Astrophysics Data System (ADS)
Kitanina, E. E.; Kitanin, E. L.; Bondarenko, D. A.; Kravtsov, P. A.; Peganova, M. M.; Stepanov, S. G.; Zherebzov, V. L.
2017-11-01
Air evolution in kerosene under the effect of gravity flow with various hydraulic resistances in the pipeline was studied experimentally. The study was conducted at pressure ranging from 0.2 to 1.0 bar and temperature varying between -20°C and +20°C. Through these experiments, the oversaturation limit beyond which dissolved air starts evolving intensively from the fuel was established and the correlations for the calculation of pressure losses and air evolution on local loss elements were obtained. A method of calculating two-phase flow behaviour in a titled pipeline segment with very low mass flow quality and fairly high volume flow quality was developed. The complete set of empirical correlations obtained by experimental analysis was implemented in the engineering code. The software simulation results were repeatedly verified against our experimental findings and Airbus test data to show that the two-phase flow simulation agrees quite well with the experimental results obtained in the complex branched pipelines.
Preliminary results of the large experimental wind turbine phase of the national wind energy program
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Sholes, J. E.
1975-01-01
A major phase of the wind energy program is the development of reliable wind turbines for supplying cost-competitive electrical energy. This paper discusses the preliminary results of two projects in this phase of the program. First an experimental 100 kW wind turbine design and its status are reviewed. Also discussed are the results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs. These studies show wind energy costs of 7 to 1.5 c/kWH for wind turbines produced in quantities of 100 to 1000 a year and located at sites having average winds of 12 to 18 mph.
ERIC Educational Resources Information Center
Ozmen, Haluk
2011-01-01
In this study, the effect of animation enhanced conceptual change texts (CCT-CA) on grade 6 students' understanding of the particulate nature of matter (PNM) and transformation during the phase changes was investigated. A quasi-experimental design and one control group (CG, N = 25) and one experimental group (EG, N = 26) were used. While the…
Boiling water jet outflow from a thin nozzle: spatial modeling
NASA Astrophysics Data System (ADS)
Bolotnova, R. Kh.; Korobchinskaya, V. A.
2017-09-01
This study presents dual-temperature two-phase model for liquid-vapor mixture with account for evaporation and inter-phase heat transfer (taken in single-velocity single-pressure approximation). Simulation was performed using the shock-capturing method and moving Lagrangian grids. Analysis was performed for simulated and experimental values of nucleation frequency (for refining the initial number and radius of microbubbles) which affect the evaporation rate. Validity of 2D and 1D simulation was examined through comparison with experimental data. The peculiarities of the water-steam formation at the initial stage of outflow through a thin nozzle were studied for different initial equilibrium states of water for the conditions close to chosen experimental conditions.
Andreani, Carla; Romanelli, Giovanni; Senesi, Roberto
2016-06-16
This study presents the first direct and quantitative measurement of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point, using deep inelastic neutron scattering (DINS). From the experimental spectra, accurate line shapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model-independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, that is, key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establish novel insight into further expand the capacity and accuracy of DINS investigations of the nuclear quantum effects in water and represent reference experimental values for theoretical investigations.
Structural phase transition of BeTe: an ab initio molecular dynamics study.
Alptekin, Sebahaddin
2017-08-11
Beryllium telluride (BeTe) with cubic zinc-blende (ZB) structure was studied using ab initio constant pressure method under high pressure. The ab initio molecular dynamics (MD) approach for constant pressure was studied and it was found that the first order phase transition occurs from the ZB structure to the nickel arsenide (NiAs) structure. It has been shown that the MD simulation predicts the transition pressure P T more than the value obtained by the static enthalpy and experimental data. The structural pathway reveals MD simulation such as cubic → tetragonal → orthorhombic → monoclinic → orthorhombic → hexagonal, leading the ZB to NiAs phase. The phase transformation is accompanied by a 10% volume drop and at 80 GPa is likely to be around 35 GPa in the experiment. In the present study, our obtained values can be compared with the experimental and theoretical results. Graphical abstract The energy-volume relation and ZB phase for the BeTe.
Analysis of a new phase and height algorithm in phase measurement profilometry
NASA Astrophysics Data System (ADS)
Bian, Xintian; Zuo, Fen; Cheng, Ju
2018-04-01
Traditional phase measurement profilometry adopts divergent illumination to obtain the height distribution of a measured object accurately. However, the mapping relation between reference plane coordinates and phase distribution must be calculated before measurement. Data are then stored in a computer in the form of a data sheet for standby applications. This study improved the distribution of projected fringes and deducted the phase-height mapping algorithm when the two pupils of the projection and imaging systems are of unequal heights and when the projection and imaging axes are on different planes. With the algorithm, calculating the mapping relation between reference plane coordinates and phase distribution prior to measurement is unnecessary. Thus, the measurement process is simplified, and the construction of an experimental system is made easy. Computer simulation and experimental results confirm the effectiveness of the method.
Häusler, Ines; Schwarze, Christian; Bilal, Muhammad Umer; Valencia Ramirez, Daniela; Hetaba, Walid; Darvishi Kamachali, Reza; Skrotzki, Birgit
2017-01-01
Experimental and phase field studies of age hardening response of a high purity Al-4Cu-1Li-0.25Mn-alloy (mass %) during isothermal aging are conducted. In the experiments, two hardening phases are identified: the tetragonal θ′ (Al2Cu) phase and the hexagonal T1 (Al2CuLi) phase. Both are plate shaped and of nm size. They are analyzed with respect to the development of their size, number density and volume fraction during aging by applying different analysis techniques in TEM in combination with quantitative microstructural analysis. 3D phase-field simulations of formation and growth of θ′ phase are performed in which the full interfacial, chemical and elastic energy contributions are taken into account. 2D simulations of T1 phase are also investigated using multi-component diffusion without elasticity. This is a first step toward a complex phase-field study of T1 phase in the ternary alloy. The comparison between experimental and simulated data shows similar trends. The still unsaturated volume fraction indicates that the precipitates are in the growth stage and that the coarsening/ripening stage has not yet been reached. PMID:28772481
Study of the high-pressure helium phase diagram using molecular dynamics
NASA Astrophysics Data System (ADS)
Koci, L.; Ahuja, R.; Belonoshko, A. B.; Johansson, B.
2007-01-01
The rich occurrence of helium and hydrogen in space makes their properties highly interesting. By means of molecular dynamics (MD), we have examined two interatomic potentials for 4He. Both potentials are demonstrated to reproduce high-pressure solid and liquid equation of state (EOS) data. The EOS, solid-solid transitions and melting at high pressures (P) were studied using a two-phase method. The Buckingham potential shows a good agreement with theoretical and experimental EOS, but does not reproduce experimental melting data. The Aziz potential shows a perfect match with theoretical melting data. We conclude that there is a stable body-centred-cubic (bcc) phase for 4He at temperatures (T) above 340 K and pressures above 22 GPa for the Buckingham potential, whereas no bcc phase is found for the Aziz potential in the applied PT range.
Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys
NASA Astrophysics Data System (ADS)
Gola, Adrien; Pastewka, Lars
2018-07-01
We present an embedded atom method (EAM) potential for the binary Cu–Au system. The unary phases are described by two well-tested unary EAM potentials for Cu and Au. We fitted the interaction between Cu and Au to experimental properties of the binary intermetallic phases Cu3Au, CuAu and CuAu3. Particular attention has been paid to reproducing stacking fault energies in order to obtain a potential suitable for studying deformation in this binary system. The resulting energies, lattice constant, elastic properties and melting points are in good agreement with available experimental data. We use nested sampling to show that our potential reproduces the phase boundaries between intermetallic phases and the disordered face-centered cubic solid solution. We benchmark our potential against four popular Cu–Au EAM parameterizations and density-functional theory calculations.
Effects of music therapy on labour pain and anxiety in Taiwanese first-time mothers.
Liu, Yu-Hsiang; Chang, Mei-Yueh; Chen, Chung-Hey
2010-04-01
The purpose of the study was to investigate the effects of music on pain reaction and anxiety during labour. Music therapy has been used on clinical medicine. Only few scientific studies validate the value on labour women. Randomised controlled trial. Sixty primiparas expected to have a normal spontaneous delivery were randomly assigned to either the experimental group (n = 30) or the control group (n = 30). The experimental group received routine care and music therapy, whereas the control group received routine care only. A self-report visual analogue scale for pain and a nurse-rated present behavioural intensity were used to measure labour pain. Anxiety was measured with a visual analogue scale for anxiety and finger temperature. Pain and anxiety between groups were compared during the latent phase (2-4 cm cervical dilation) and active phase (5-7 cm) separately. Our results revealed that compared with the control group, the experimental group had significantly lower pain, anxiety and a higher finger temperature during the latent phase of labour. However, no significant differences were found between the two groups on all outcome measures during the active phase. This study provides evidence for the use of music as an empirically based intervention of women for labour pain and anxiety during the latent phase of labour. The findings support that music listening is an acceptable and non-medical coping strategy for labouring women. Especially, apply in reducing the pain and anxiety for women who are at the early phase of labour.
Analytical and experimental study of high phase order induction motors
NASA Technical Reports Server (NTRS)
Klingshirn, Eugene A.
1989-01-01
Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.
Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mistry, D.; Cooper, P.; Biswas, C.
1983-01-01
This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to themore » selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.« less
Xiao, Deli; Zhang, Chan; He, Jia; Zeng, Rong; Chen, Rong; He, Hua
2016-01-01
Simple, accurate and high-throughput pretreatment method would facilitate large-scale studies of trace analysis in complex samples. Magnetic mixed hemimicelles solid-phase extraction has the power to become a key pretreatment method in biological, environmental and clinical research. However, lacking of experimental predictability and unsharpness of extraction mechanism limit the development of this promising method. Herein, this work tries to establish theoretical-based experimental designs for extraction of trace analytes from complex samples using magnetic mixed hemimicelles solid-phase extraction. We selected three categories and six sub-types of compounds for systematic comparative study of extraction mechanism, and comprehensively illustrated the roles of different force (hydrophobic interaction, π-π stacking interactions, hydrogen-bonding interaction, electrostatic interaction) for the first time. What’s more, the application guidelines for supporting materials, surfactants and sample matrix were also summarized. The extraction mechanism and platform established in the study render its future promising for foreseeable and efficient pretreatment under theoretical based experimental design for trace analytes from environmental, biological and clinical samples. PMID:27924944
Studying Three-Phase Supply in School
ERIC Educational Resources Information Center
Singhal, Amit Kumar; Arun, P.
2009-01-01
The power distributions of nearly all major countries have accepted three-phase distribution as a standard. With increasing power requirements of instrumentation today even a small physics laboratory requires a three-phase supply. While physics students are given an introduction to this in passing, no experimental work is done with three-phase…
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2018-04-01
To assist in the optimization of copper smelting and converting processes, accurate new measurements of the phase equilibria of the Cu-Fe-O-S-Si system have been undertaken. The experimental investigation was focused on the characterization of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1523 K (1250 °C), P(SO2) = 0.25 atm, and a range of P(O2)s. The experimental methodology, developed in PYROSEARCH, includes high-temperature equilibration of samples on substrate made from the silica primary phase in controlled gas atmospheres (CO/CO2/SO2/Ar) followed by rapid quenching of the equilibrium condensed phases and direct measurement of the phase compositions with electron-probe X-ray microanalysis (EPMA). The data provided in the present study at 1523 K (1250 °C) and the previous study by the authors at 1473 K (1200 °C) has enabled the determination of the effects of temperature on the phase equilibria of the multicomponent multiphase system, including such characteristics as the chemically dissolved copper in slag and Fe/SiO2 ratio at silica saturation as a function of copper concentration in matte. The new data will be used in the optimization of the thermodynamic database for the copper-containing systems.
Ngufor, Corine; N'Guessan, Raphael; Fagbohoun, Josias; Subramaniam, Krishanthi; Odjo, Abibatou; Fongnikin, Augustin; Akogbeto, Martin; Weetman, David; Rowland, Mark
2015-11-18
Novel indoor residual spraying (IRS) and long-lasting insecticidal net (LLIN) products aimed at improving the control of pyrethroid-resistant malaria vectors have to be evaluated in Phase II semi-field experimental studies against highly pyrethroid-resistant mosquitoes. To better understand their performance it is necessary to fully characterize the species composition, resistance status and resistance mechanisms of the vector populations in the experimental hut sites. Bioassays were performed to assess phenotypic insecticide resistance in the malaria vector population at a newly constructed experimental hut site in Cové, a rice growing area in southern Benin, being used for WHOPES Phase II evaluation of newly developed LLIN and IRS products. The efficacy of standard WHOPES-approved pyrethroid LLIN and IRS products was also assessed in the experimental huts. Diagnostic genotyping techniques and microarray studies were performed to investigate the genetic basis of pyrethroid resistance in the Cové Anopheles gambiae population. The vector population at the Cové experimental hut site consisted of a mixture of Anopheles coluzzii and An. gambiae s.s. with the latter occurring at lower frequencies (23 %) and only in samples collected in the dry season. There was a high prevalence of resistance to pyrethroids and DDT (>90 % bioassay survival) with pyrethroid resistance intensity reaching 200-fold compared to the laboratory susceptible An. gambiae Kisumu strain. Standard WHOPES-approved pyrethroid IRS and LLIN products were ineffective in the experimental huts against this vector population (8-29 % mortality). The L1014F allele frequency was 89 %. CYP6P3, a cytochrome P450 validated as an efficient metabolizer of pyrethroids, was over-expressed. Characterizing pyrethroid resistance at Phase II field sites is crucial to the accurate interpretation of the performance of novel vector control products. The strong levels of pyrethroid resistance at the Cové experimental hut station make it a suitable site for Phase II experimental hut evaluations of novel vector control products, which aim for improved efficacy against pyrethroid-resistant malaria vectors to WHOPES standards. The resistance genes identified can be used as markers for further studies investigating the resistance management potential of novel mixture LLIN and IRS products tested at the site.
NASA Astrophysics Data System (ADS)
Li, F.; Nie, Z.; Wu, Y. P.; Guo, B.; Zhang, X. H.; Huang, S.; Zhang, J.; Cheng, Z.; Ma, Y.; Fang, Y.; Zhang, C. J.; Wan, Y.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Mori, W. B.
2018-04-01
We report the transverse phase space diagnostics for electron beams generated through ionization injection in a laser-plasma accelerator. Single-shot measurements of both ultimate emittance and Twiss parameters are achieved by means of permanent magnetic quadrupole. Beams with emittance of μm rad level are obtained in a typical ionization injection scheme, and the dependence on nitrogen concentration and charge density is studied experimentally and confirmed by simulations. A key feature of the transverse phase space, matched beams with Twiss parameter α T ≃ 0, is identified according to the measurement. Numerical simulations that are in qualitative agreement with the experimental results reveal that a sufficient phase mixing induced by an overlong injection length leads to the matched phase space distribution.
NASA Astrophysics Data System (ADS)
Cano-Lara, Miroslava; Severiano-Carrillo, Israel; Trejo-Durán, Mónica; Alvarado-Méndez, Edgar
2017-09-01
In this work, we present a study of non-linear optical response in thin films elaborated with Gelite Bloom and extract of Hibiscus Sabdariffa. Non-linear refraction and absorption effects were studied experimentally (Z-scan technique) and numerically, by considering the transmittance as non-linear absorption and refraction contribution. We observe large phase shifts to far field, and diffraction due to self-phase modulation of the sample. Diffraction and self-diffraction effects were observed as time function. The aim of studying non-linear optical properties in thin films is to eliminate thermal vortex effects that occur in liquids. This is desirable in applications such as non-linear phase contrast, optical limiting, optics switches, etc. Finally, we find good agreement between experimental and theoretical results.
Three-dimensional skyrmions in spin-2 Bose–Einstein condensates
NASA Astrophysics Data System (ADS)
Tiurev, Konstantin; Ollikainen, Tuomas; Kuopanportti, Pekko; Nakahara, Mikio; Hall, David S.; Möttönen, Mikko
2018-05-01
We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose–Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross–Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted and detected experimentally.
Ultrasonic Phased Array Inspection for an Isogrid Structural Element with Cracks
NASA Technical Reports Server (NTRS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.
2010-01-01
In this investigation, a T-shaped aluminum alloy isogrid stiffener element used in aerospace applications was inspected with ultrasonic phased array methods. The isogrid stiffener element had various crack configurations emanating from bolt holes. Computational simulation methods were used to mimic the experiments in order to help understand experimental results. The results of this study indicate that it is at least partly feasible to interrogate this type of geometry with the given flaw configurations using phased array ultrasonics. The simulation methods were critical in helping explain the experimental results and, with some limitation, can be used to predict inspection results.
Experimental pretesting of public health campaigns: a case study.
Whittingham, Jill; Ruiter, Robert A C; Zimbile, Filippo; Kok, Gerjo
2008-01-01
The aim of the present study is to demonstrate the merits of evaluating new public health campaign materials in the developmental phase using an experimental design. This is referred to as experimental pretesting. In practice, most new materials are tested only after they have been distributed using nonexperimental or quasiexperimental designs. In cases where materials are pretested prior to distribution, pretesting is usually done using qualitative research methods such as focus groups. Although these methods are useful, they cannot reliably predict the effectiveness of new campaign materials in a developmental phase. Therefore, we suggest when pretesting new materials, not only qualitative research methods but also experimental research methods must be used. The present study discusses an experimental pretest study of new campaign materials intended for distribution in a national sexually transmitted infection (STI) AIDS prevention campaign in the Netherlands. The campaign material tested was the storyline of a planned television commercial on safe sex. A storyboard that consisted of drawings and text was presented to members of the target population, namely, students between the ages of 14 and 16 enrolled in vocational schools. Results showed positive effects on targeted determinants of safe sexual behavior. The advantages, practical implications, and limitations of experimental pretesting are discussed.
Valades, David; Palao, José M; Femia, Pedro; Ureña, Aurelio
2017-07-25
The purpose of this study was to assess the effect of incorporating specific upper-body plyometric training for the spike into the competitive season of a women's professional volleyball team. A professional team from the Spanish first division participated in the study. An A-B-A' quasi-experimental design with experimental and control groups was used. The independent variable was the upper-body plyometric training for eight weeks during the competitive season. The dependent variables were the spiked ball's speed (Km/h); the player's body weight (Kg), BMI (Kg/m2), and muscle percentage in arms (%); 1 repetition maximum (1RM) in the bench press (Kg); 1RM in the pullover (Kg); and overhead medicine ball throws of 1, 2, 3, 4, and 5 kg (m). Inter-player and inter-group statistical analyses of the results were carried out (Wilcoxon test and linear regression model). The experimental group significantly improved their spike speed 3.8% from phase A to phase B, and they maintained this improvement after the retention phase. No improvements were found in the control group. The experimental group presented a significant improvement from phase A to phase B in dominant arm muscle area (+10.8%), 1RM for the bench press (+8.41%), 1RM for the pullover (+14.75%), and overhead medicine ball throws with 1 kg (+7.19%), 2 kg (+7.69%), and 3 kg (+5.26%). The control group did not present differences in these variables. Data showed the plyometric exercises that were tested could be used by performance-level volleyball teams to improve spike speed. The experimental group increased their upper-body maximal strength, their power application, and spike speed.
Nonadiabatic fluctuation in the measured geometric phase
NASA Astrophysics Data System (ADS)
Ai, Qing; Huo, Wenyi; Long, Gui Lu; Sun, C. P.
2009-08-01
We study how the nonadiabatic effect causes the observable fluctuation in the “geometric phase” for a two-level system, which is defined as the experimentally measurable quantity in the adiabatic limit. From the Rabi exact solution to this model, we give a reasonable explanation to the experimental discovery of phase fluctuation in the superconducting circuit system [P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraf, Science 318, 1889 (2007)], which seemed to be regarded as the conventional experimental error.
FIBER OPTICS: Polarization phase nonreciprocity in all-fiber ring interferometers
NASA Astrophysics Data System (ADS)
Andreev, A. Ts; Vasilev, V. D.; Kozlov, V. A.; Kuznetsov, A. V.; Senatorov, A. A.; Shubochkin, R. L.
1993-08-01
The polarization phase nonreciprocity in all-fiber ring interferometers based on single-mode optical fibers was studied experimentally. The results confirm existing theoretical models. Experimentally, it was possible to use fiber ring interferometers to measure the extinction coefficients of optical fiber polarizers. The largest extinction coefficients found for optical-fiber polarizers were 84 dB (for the wavelength 0.82 μm) and 86 dB (1.3 μm).
NASA Astrophysics Data System (ADS)
Dugin, A. V.; Zel'dovich, Boris Ya; Il'inykh, P. N.; Liberman, V. S.; Nesterkin, O. P.
1992-11-01
The higher spatial harmonics of the photorefractive response have been studied theoretically and experimentally for gratings written by phase-locked detection in an alternating external field. The conditions for writing higher spatial harmonics are derived analytically. The amplitude of the second spatial harmonic has been found experimentally as a function of the spatial frequency in two Bi12TiO20 crystals.
NASA Astrophysics Data System (ADS)
Liu, H.; Liu, L. L.
2017-12-01
The phase transition sequence of SiO2 inducing by high pressure was theoretically predicted as coordination number (CN=6) structures (rutile, pyrite), CN=8 (Pnma) and CN=9 (P-62m) structures, but only the phases up to pyrite structure in SiO2 were observed experimentally up to now. The CN8 phase and CN9 phases of SiO2 were predicted to be stable at least 650 GPa, which is challenging to achieve in the static DAC experiment at present. In other metal dioxide systems, such as TiO2, the ambient rutile and anatase phases first transform to pyrite (CN6), then to the baddeleyite (CN7) phase, to a Pnma (CN8) phase and P-62m(CN9) phase. In this report, under strong compression at room temperature, several metal dioxides were studied experimentally and theoretically, to verify whether this theoretical predicted trend is common transition path under strong compression. This work was supported by Natural Science Foundation of China (11374075), Heilongjiang Province Science Fund for Distinguished Young Scholars (JC201005), Longjiang Scholar, the Fundamental Research Funds for the Central Universities (HIT. BRET1.2010002, HIT. IBRSEM.A.201403).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.
2015-12-11
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less
NASA Astrophysics Data System (ADS)
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.
2015-12-01
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.
Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.
2015-01-01
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments. PMID:26655832
Dąbrowska, Monika; Starek, Małgorzata; Komsta, Łukasz; Szafrański, Przemysław; Stasiewicz-Urban, Anna; Opoka, Włodzimierz
2017-04-01
The retention behaviors were investigated for a series of eight cephalosporins in thin-layer chromatography (TLC) using stationary phases of RP-2, RP-8, RP-18, NH 2 , DIOL, and CN chemically bonded silica gel. Additionally, various binary mobile phases (water/methanol and water/acetone) were used in different volume proportions. The retention behavior of the analyzed molecules was defined by R M0 constant. In addition, reversed phase high performance liquid chromatography (RP-HPLC) was performed in lipophilicity studies by using immobilized artificial membrane (IAM) stationary phase. Obtained chromatographic data (R M0 and logk' IAM ) were correlated with the lipophilicity, expressed as values of the log calculated (logP calc ) and experimental (logP exp(shake-flask) ) partition coefficient. Principal component analysis (PCA) was applied in order to obtain an overview of similarity or dissimilarity among the analyzed compounds. Hierarchical cluster analysis (HCA) was performed to compare the separation characteristics of the applied stationary phases. This study was undertaken to identify the best chromatographic system and chromatographic data processing method to enable the prediction of logP values. A comprehensive chromatographic investigation into the retention of the analyzed cephalosporins revealed a similar behavior on RP-18, RP-8 and CN stationary phases. The weak correlations obtained between experimental and certain computed lipophilicity indices revealed that R M0 and PC1/RM are relevant lipophilicity parameters and the RP-8, CN and RP-18 plates are appropriate stationary phases for lipophilicity investigation, whereas computational approaches still cannot fully replace experimentation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2017-12-01
The majority of primary pyrometallurgical copper making processes involve the formation of two immiscible liquid phases, i.e., matte product and the slag phase. There are significant gaps and discrepancies in the phase equilibria data of the slag and the matte systems due to issues and difficulties in performing the experiments and phase analysis. The present study aims to develop an improved experimental methodology for accurate characterisation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system under controlled atmospheres. The experiments involve high-temperature equilibration of synthetic mixtures on silica substrates in CO/CO2/SO2/Ar atmospheres, rapid quenching of samples into water, and direct composition measurement of the equilibrium phases using Electron Probe X-ray Microanalysis (EPMA). A four-point-test procedure was applied to ensure the achievement of equilibrium, which included the following: (i) investigation of equilibration as a function of time, (ii) assessment of phase homogeneity, (iii) confirmation of equilibrium by approaching from different starting conditions, and (iv) systematic analysis of the reactions specific to the system. An iterative improved experimental methodology was developed using this four-point-test approach to characterize the complex multi-component, multi-phase equilibria with high accuracy and precision. The present study is a part of a broader overall research program on the characterisation of the multi-component (Cu-Fe-O-S-Si-Al-Ca-Mg), multi-phase (gas/slag/matte/metal/solids) systems with minor elements (Pb, Zn, As, Bi, Sn, Sb, Ag, and Au).
NASA Astrophysics Data System (ADS)
Chouinard, Christopher D.; Cruzeiro, Vinícius Wilian D.; Roitberg, Adrian E.; Yost, Richard A.
2017-02-01
Ion mobility-mass spectrometry (IM-MS) has recently seen increased use in the analysis of small molecules, especially in the field of metabolomics, for increased breadth of information and improved separation of isomers. In this study, steroid epimers androsterone and trans-androsterone were analyzed with IM-MS to investigate differences in their relative mobilities. Although sodiated monomers exhibited very similar collision cross-sections (CCS), baseline separation was observed for the sodiated dimer species (RS = 1.81), with measured CCS of 242.6 and 256.3 Å2, respectively. Theoretical modeling was performed to determine the most energetically stable structures of solution-phase and gas-phase monomer and dimer structures. It was revealed that these epimers differ in their preferred dimer binding mode in solution phase: androsterone adopts a R=O - Na+ - OH—R' configuration, whereas trans-androsterone adopts a R=O - Na+ - O=R' configuration. This difference contributes to a significant structural variation, and subsequent CCS calculations based on these structures relaxed in the gas phase were in agreement with experimentally measured values (ΔCCS 5%). Additionally, these calculations accurately predicted the relative difference in mobility between the epimers. This study illustrates the power of combining experimental and theoretical results to better elucidate gas-phase structures.
How to Evaluate Phase Differences between Trial Groups in Ongoing Electrophysiological Signals
VanRullen, Rufin
2016-01-01
A growing number of studies endeavor to reveal periodicities in sensory and cognitive functions, by comparing the distribution of ongoing (pre-stimulus) oscillatory phases between two (or more) trial groups reflecting distinct experimental outcomes. A systematic relation between the phase of spontaneous electrophysiological signals, before a stimulus is even presented, and the eventual result of sensory or cognitive processing for that stimulus, would be indicative of an intrinsic periodicity in the underlying neural process. Prior studies of phase-dependent perception have used a variety of analytical methods to measure and evaluate phase differences, and there is currently no established standard practice in this field. The present report intends to remediate this need, by systematically comparing the statistical power of various measures of “phase opposition” between two trial groups, in a number of real and simulated experimental situations. Seven measures were evaluated: one parametric test (circular Watson-Williams test), and three distinct measures of phase opposition (phase bifurcation index, phase opposition sum, and phase opposition product) combined with two procedures for non-parametric statistical testing (permutation, or a combination of z-score and permutation). While these are obviously not the only existing or conceivable measures, they have all been used in recent studies. All tested methods performed adequately on a previously published dataset (Busch et al., 2009). On a variety of artificially constructed datasets, no single measure was found to surpass all others, but instead the suitability of each measure was contingent on several experimental factors: the time, frequency, and depth of oscillatory phase modulation; the absolute and relative amplitudes of post-stimulus event-related potentials for the two trial groups; the absolute and relative trial numbers for the two groups; and the number of permutations used for non-parametric testing. The concurrent use of two phase opposition measures, the parametric Watson-Williams test and a non-parametric test based on summing inter-trial coherence values for the two trial groups, appears to provide the most satisfactory outcome in all situations tested. Matlab code is provided to automatically compute these phase opposition measures. PMID:27683543
NASA Astrophysics Data System (ADS)
Smolenskaya, N. M.; Smolenskii, V. V.
2018-01-01
The paper presents models for calculating the average velocity of propagation of the flame front, obtained from the results of experimental studies. Experimental studies were carried out on a single-cylinder gasoline engine UIT-85 with hydrogen additives up to 6% of the mass of fuel. The article shows the influence of hydrogen addition on the average velocity propagation of the flame front in the main combustion phase. The dependences of the turbulent propagation velocity of the flame front in the second combustion phase on the composition of the mixture and operating modes. The article shows the influence of the normal combustion rate on the average flame propagation velocity in the third combustion phase.
Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy
NASA Astrophysics Data System (ADS)
Goodfellow, A. J.; Galindo-Nava, E. I.; Christofidou, K. A.; Jones, N. G.; Martin, T.; Bagot, P. A. J.; Boyer, C. D.; Hardy, M. C.; Stone, H. J.
2018-03-01
The microstructural stability of nickel-based superalloys is critical for maintaining alloy performance during service in gas turbine engines. In this study, the precipitate evolution in a model polycrystalline Ni-based superalloy during aging to 1000 hours has been studied via transmission electron microscopy, atom probe tomography, and neutron diffraction. Variations in phase composition and precipitate morphology, size, and volume fraction were observed during aging, while the constrained lattice misfit remained constant at approximately zero. The experimental composition of the γ matrix phase was consistent with thermodynamic equilibrium predictions, while significant differences were identified between the experimental and predicted results from the γ' phase. These results have implications for the evolution of mechanical properties in service and their prediction using modeling methods.
Self-addressed diffractive lens schemes for the characterization of LCoS displays
NASA Astrophysics Data System (ADS)
Zhang, Haolin; Lizana, Angel; Iemmi, Claudio; Monroy-Ramírez, Freddy A.; Marquez, Andrés.; Moreno, Ignacio; Campos, Juan
2018-02-01
We proposed a self-calibration method to calibrate both the phase-voltage look-up table and the screen phase distribution of Liquid Crystal on Silicon (LCoS) displays by implementing different lens configurations on the studied device within a same optical scheme. On the one hand, the phase-voltage relation is determined from interferometric measurements, which are obtained by addressing split-lens phase distributions on the LCoS display. On the other hand, the surface profile is retrieved by self-addressing a diffractive micro-lens array to the LCoS display, in a way that we configure a Shack-Hartmann wavefront sensor that self-determines the screen spatial variations. Moreover, both the phase-voltage response and the surface phase inhomogeneity of the LCoS are measured within the same experimental set-up, without the necessity of further adjustments. Experimental results prove the usefulness of the above-mentioned technique for LCoS displays characterization.
Heat storage in alloy transformations
NASA Technical Reports Server (NTRS)
Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.
1981-01-01
The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.
NASA Technical Reports Server (NTRS)
Fahr, A.; Braun, W.; Kurylo, M. J.
1993-01-01
Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.
NASA Astrophysics Data System (ADS)
Kim, Wuhyun; Gwak, Min-Cheol; Yoh, Jack; Seoul National University Team
2017-06-01
The performance characteristics of aluminized HMX are considered by varying the aluminum (Al) concentration in a hybrid non-ideal detonation model. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al concentration and a double front detonation (DFD) feature when aerobic Al reaction occurs behind the front. While experimental studies have been reported on the effect of Al concentration on both gas-phase and solid-phase detonations, the numerical investigations were limited to only gas-phase detonation for the varying Al concentration. In the current study, a two-phase model is utilized for understanding the volumetric effects of Al concentration in the condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterizing the performance of aluminized HMX with a maximum Al concentration of 50%. The simulated results are compared with the experimental data for 5%-25% concentrations, and the formation of DFD structure under varying Al concentration (0%-50%) in HMX is investigated.
THERMODYNAMICS OF FE-CU ALLOYS AS DESCRIBED BY A CLASSIC POTENTIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, A; Caro, M; Lopasso, E M
2005-04-14
The Fe-Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of this system, in particular that proposed by Ludwig et al. (Modelling Simul. Mater. Sci. Eng. 6, 19 (1998)). In this work we extract thermodynamic information from this interatomic potentials. We obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance to radiation damage studies. We compare the results with the predicted phase diagram based onmore » other potential, as calculated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental results, focusing on the pure components and discuss the applicability of these potentials; finally we suggest an approach to improve existing potentials for this system.« less
Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water
NASA Astrophysics Data System (ADS)
Limmer, David; Chandler, David
2011-03-01
To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.
Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique.
Yeo, Leslie Y; Matar, Omar K; Perez de Ortiz, E Susana; Hewitt, Geoffrey F
2002-04-15
A speculative study on the conditions under which phase inversion occurs in agitated liquid-liquid dispersions is conducted using a Monte Carlo technique. The simulation is based on a stochastic model, which accounts for fundamental physical processes such as drop deformation, breakup, and coalescence, and utilizes the minimization of interfacial energy as a criterion for phase inversion. Profiles of the interfacial energy indicate that a steady-state equilibrium is reached after a sufficiently large number of random moves and that predictions are insensitive to initial drop conditions. The calculated phase inversion holdup is observed to increase with increasing density and viscosity ratio, and to decrease with increasing agitation speed for a fixed viscosity ratio. It is also observed that, for a fixed viscosity ratio, the phase inversion holdup remains constant for large enough agitation speeds. The proposed model is therefore capable of achieving reasonable qualitative agreement with general experimental trends and of reproducing key features observed experimentally. The results of this investigation indicate that this simple stochastic method could be the basis upon which more advanced models for predicting phase inversion behavior can be developed.
ERIC Educational Resources Information Center
Roesch, Frank; Nerb, Josef; Riess, Werner
2015-01-01
Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of "experimental problem-solving ability" better than conventional lessons in science. We used a paper-and-pencil test to assess…
Research on the use of space resources
NASA Technical Reports Server (NTRS)
Carroll, W. F. (Editor)
1983-01-01
The second year of a multiyear research program on the processing and use of extraterrestrial resources is covered. The research tasks included: (1) silicate processing, (2) magma electrolysis, (3) vapor phase reduction, and (4) metals separation. Concomitant studies included: (1) energy systems, (2) transportation systems, (3) utilization analysis, and (4) resource exploration missions. Emphasis in fiscal year 1982 was placed on the magma electrolysis and vapor phase reduction processes (both analytical and experimental) for separation of oxygen and metals from lunar regolith. The early experimental work on magma electrolysis resulted in gram quantities of iron (mixed metals) and the identification of significant anode, cathode, and container problems. In the vapor phase reduction tasks a detailed analysis of various process concepts led to the selection of two specific processes designated as ""Vapor Separation'' and ""Selective Ionization.'' Experimental work was deferred to fiscal year 1983. In the Silicate Processing task a thermophysical model of the casting process was developed and used to study the effect of variations in material properties on the cooling behavior of lunar basalt.
Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter
2015-02-01
Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity.
Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter
2015-01-01
Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity. PMID:25679780
NASA Astrophysics Data System (ADS)
Sahlaoui, Habib; Sidhom, Habib
2013-07-01
The phase precipitation in industrial AISI 316L stainless steel during aging for up to 80,000 hours between 823 K and 1073 K (550 °C and 800 °C) has been studied using transmission electron microscopy, scanning transmission electron microscopy, and carbon replica energy-dispersive X-ray microanalysis. Three phases were identified: Chromium carbides (M23C6), Laves phase ( η), and σ-phase (Fe-Cr). M23C6 carbide precipitation occurred firstly and was followed by the η and σ-phases at grain boundaries when the aging temperature is higher than 873 K (600 °C). Precipitation and growth of M23C6 create chromium depletion zones at the grain boundaries and also retard the σ-phase formation. Thus, the σ-phase is controlled by the kinetic of chromium bulk diffusion and can appear only when the chromium reaches, at grain boundaries and at the M23C6/ γ and M23C6/ η/ γ interfaces, content higher than a critical value obtained by self-healing. An analytical model, based on equivalent chromium content, has been established in this study and successfully validated to predict the time-temperature-precipitation diagram of the σ-phase. The obtained diagram is in good agreement with the experimental results.
ERIC Educational Resources Information Center
Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.
2017-01-01
A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…
Advanced technology development multi-color holography
NASA Technical Reports Server (NTRS)
Vikram, Chandra S.
1993-01-01
This is the final report of the Multi-color Holography project. The comprehensive study considers some strategic aspects of multi-color holography. First, various methods of available techniques for accurate fringe counting are reviewed. These are heterodyne interferometry, quasi-heterodyne interferometry, and phase-shifting interferometry. Phase-shifting interferometry was found to be the most suitable for multi-color holography. Details of experimentation with a sugar solution are also reported where better than 1/200 of a fringe order measurement capability was established. Rotating plate glass phase shifter was used for the experimentation. The report then describes the possible role of using more than two wavelengths with special reference-to-object beam intensity ratio needs in multicolor holography. Some specific two- and three-color cases are also described in detail. Then some new analysis methods of the reconstructed wavefront are considered. These are deflectometry, speckle metrology, confocal optical signal processing, and phase shifting technique related applications. Finally, design aspects of an experimental breadboard are presented.
NASA Astrophysics Data System (ADS)
Nugroho, O. F.; Chandra, D. T.; Sanjaya, Y.; Pendidikan Indonesia, Universitas
2017-02-01
The purpose of this study was to improve students’ concept comprehension using concept map as a consolidation phase based STAD. This study was conducted by randomized control group pretest-posttest. Data was collected by using an instrument test to evaluate the effect of concept map as a consolidation phase based STAD on students’understanding about environmental pollution. Data was analyzed using normalized gain (n-gain) and independent t-test. The n-gain analysis shows the increased of students’s understanding about environmental pollution at experimental group arehigher than at the control group. The result of this study showed that students’ comprehension at the experimental class (0,53) higher compared to the control group (0,23). Whilst the t-test analysis shows that there is a significant effect of mapping concept as a consolidation phase based STAD towards students’ concept comprehension. It can be concluded that the implementation of mapping concept based STAD may improve the students’s understanding on science concept.
Experimental investigation of the combustion products in an aluminised solid propellant
NASA Astrophysics Data System (ADS)
Liu, Zhu; Li, Shipeng; Liu, Mengying; Guan, Dian; Sui, Xin; Wang, Ningfei
2017-04-01
Aluminium is widely used as an important additive to improve ballistic and energy performance in solid propellants, but the unburned aluminium does not contribute to the specific impulse and has both thermal and momentum two-phase flow losses. So understanding of aluminium combustion behaviour during solid propellant burning is significant when improving internal ballistic performance. Recent developments and experimental results reported on such combustion behaviour are presented in this paper. A variety of experimental techniques ranging from quenching and dynamic measurement, to high-speed CCD video recording, were used to study aluminium combustion behaviour and the size distribution of the initial agglomerates. This experimental investigation also provides the size distribution of the condensed phase products. Results suggest that the addition of an organic fluoride compound to solid propellant will generate smaller diameter condensed phase products due to sublimation of AlF3. Lastly, a physico-chemical picture of the agglomeration process was also developed based on the results of high-speed CCD video analysis.
Mousa-Pasandi, Mohammad E; Zhuge, Qunbi; Xu, Xian; Osman, Mohamed M; El-Sahn, Ziad A; Chagnon, Mathieu; Plant, David V
2012-07-02
We experimentally investigate the performance of a low-complexity non-iterative phase noise induced inter-carrier interference (ICI) compensation algorithm in reduced-guard-interval dual-polarization coherent-optical orthogonal-frequency-division-multiplexing (RGI-DP-CO-OFDM) transport systems. This interpolation-based ICI compensator estimates the time-domain phase noise samples by a linear interpolation between the CPE estimates of the consecutive OFDM symbols. We experimentally study the performance of this scheme for a 28 Gbaud QPSK RGI-DP-CO-OFDM employing a low cost distributed feedback (DFB) laser. Experimental results using a DFB laser with the linewidth of 2.6 MHz demonstrate 24% and 13% improvement in transmission reach with respect to the conventional equalizer (CE) in presence of weak and strong dispersion-enhanced-phase-noise (DEPN), respectively. A brief analysis of the computational complexity of this scheme in terms of the number of required complex multiplications is provided. This practical approach does not suffer from error propagation while enjoying low computational complexity.
Electric power generation using geothermal brine resources for a proof of concept facility
NASA Technical Reports Server (NTRS)
Hankin, J. W.
1974-01-01
An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.
NASA Astrophysics Data System (ADS)
Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.
2018-05-01
The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, X. G.; Kim, Y. S.; Choi, K. Y.
2012-07-01
A SBO (station blackout) experiment named SBO-01 was performed at full-pressure IET (Integral Effect Test) facility ATLAS (Advanced Test Loop for Accident Simulation) which is scaled down from the APR1400 (Advanced Power Reactor 1400 MWe). In this study, the transient of SBO-01 is discussed and is subdivided into three phases: the SG fluid loss phase, the RCS fluid loss phase, and the core coolant depletion and core heatup phase. In addition, the typical phenomena in SBO-01 test - SG dryout, natural circulation, core coolant boiling, the PRZ full, core heat-up - are identified. Furthermore, the SBO-01 test is reproduced bymore » the MARS code calculation with the ATLAS model which represents the ATLAS test facility. The experimental and calculated transients are then compared and discussed. The comparison reveals there was malfunction of equipments: the SG leakage through SG MSSV and the measurement error of loop flow meter. As the ATLAS model is validated against the experimental results, it can be further employed to investigate the other possible SBO scenarios and to study the scaling distortions in the ATLAS. (authors)« less
Experimental and computational study on the molecular energetics of indoline and indole.
da Silva, Manuel A V Ribeiro; Cabral, Joana I T A; Gomes, José R B
2008-11-27
Static bomb calorimetry, Calvet microcalorimetry and the Knudsen effusion technique were used to determine the standard molar enthalpy of formation in the gas phase, at T = 298.15 K, of the indole and indoline heterocyclic compounds. The values obtained were 164.3 +/- 1.3 kJ x mol(-1) and 120.0 +/- 2.9 kJ x mol(-1), respectively. Several different computational approaches and different working reactions were used to estimate the gas-phase enthalpies of formation for indole and indoline. The computational approaches support the experimental results reported. The calculations were further extended to the determination of other properties such as bond dissociation enthalpies, gas-phase acidities, proton and electron affinities and ionization energies. The agreement between theoretical and experimental data for indole is very good supporting the data calculated for indoline.
2014-01-01
considerably higher frictional losses than if the liquid and gas phases were simply injected at the inlet as in references [11,12]. Although the...individual channel face opposite directions to form a tor- tuous network of crisscrossing passageways. Fluid streams direc - ted along the upper and...gravity SP single-phase TP two-phase c corrugated section e equivalent g gas phase h hydraulic l liquid phase pp port-to-port N. Niedbalski et al
ERIC Educational Resources Information Center
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Onghena, Patrick; Heyvaert, Mieke; Beretvas, S. Natasha; Van den Noortgate, Wim
2015-01-01
The purpose of this study is to illustrate the multilevel meta-analysis of results from single-subject experimental designs of different types, including AB phase designs, multiple-baseline designs, ABAB reversal designs, and alternating treatment designs. Current methodological work on the meta-analysis of single-subject experimental designs…
NASA Astrophysics Data System (ADS)
Courbin, L.; Benayad, A.; Panizza, P.
2006-01-01
By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.
NASA Astrophysics Data System (ADS)
Premović, Milena; Tomović, Milica; Minić, Duško; Manasijević, Dragan; Živković, Dragana; Ćosović, Vladan; Grković, Vladan; Đorđević, Aleksandar
2017-04-01
Ternary Al-Ag-Ga system at 200 °C was experimentally and thermodynamically assessed. Isothermal section was extrapolated using optimized thermodynamic parameters for constitutive binary systems. Microstructure and phase composition of the selected alloy samples were analyzed using light microscopy, scanning electron microscopy combined with energy-dispersive spectrometry and x-ray powder diffraction technique. The obtained experimental results were found to be in a close agreement with the predicted phase equilibria. Hardness and electrical conductivity of the alloy samples from four vertical sections Al-Ag80Ga20, Al-Ag60Ga40, Ag-Al80Ga20 and Ag-Al60Ga40 of the ternary Al-Ag-Ga system at 200 °C were experimentally determined using Brinell method and eddy current measurements. Additionally, hardness of the individual phases present in the microstructure of the studied alloy samples was determined using Vickers microhardness test. Based on experimentally obtained results, isolines of Brinell hardness and electrical conductivity were calculated for the alloys from isothermal section of the ternary Al-Ag-Ga system at 200 °C.
NASA Astrophysics Data System (ADS)
Moore, David G.; Stair, Sarah L.; Jack, David A.
2018-04-01
Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors' previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile is presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. The trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, David G.; Stair, Sarah Louise; Jack, David A.
Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less
Moore, David G.; Stair, Sarah Louise; Jack, David A.
2018-04-01
Ultrasound techniques are capable of monitoring changes in the time-of-flight as a material is exposed to different thermal environments. The focus of the present study is to identify the phase of a material via ultrasound compression wave measurements in a through transmission experimental setup as the material is heated from a solid to a liquid and then allowed to re-solidify. The present work seeks to expand upon the authors’ previous research, which proved this through transmission phase monitoring technique was possible, by considering different experimental geometries. The relationship between geometry, the measured speed of sound, and the temperature profile ismore » presented. The use of different volumes helps in establishing a baseline understanding of which aspects of the experiment are geometry dependent and which are independent. The present study also investigates the relationship between the heating rate observed in the experiment and the measured speed of sound. Lastly, the trends identified between the experimental geometry, heat rate and ultrasound wave speed measurement assist in providing a baseline understanding of the applicability of this technique to various industries, including the polymer industry and the oil industry.« less
NASA Astrophysics Data System (ADS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.
2010-02-01
In this investigation, a T-shaped aluminum alloy isogrid stiffener element used in aerospace applications was inspected with ultrasonic phased array methods. The isogrid stiffener element had various crack configurations emanating from bolt holes. Computational simulation methods were used to mimic the experiments in order to help understand experimental results. The results of this study indicate that it is at least partly feasible to interrogate this type of geometry with the given flaw configurations using phased array ultrasonics. The simulation methods were critical in helping explain the experimental results and, with some limitation, can be used to predict inspection results.
Computational method for multi-modal microscopy based on transport of intensity equation
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao
2017-02-01
In this paper, we develop the requisite theory to describe a hybrid virtual-physical multi-modal imaging system which yields quantitative phase, Zernike phase contrast, differential interference contrast (DIC), and light field moment imaging simultaneously based on transport of intensity equation(TIE). We then give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens based TIE system, combined with the appropriate post-processing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.
Theory for Transitions Between Exponential and Stationary Phases: Universal Laws for Lag Time
NASA Astrophysics Data System (ADS)
Himeoka, Yusuke; Kaneko, Kunihiko
2017-04-01
The quantitative characterization of bacterial growth has attracted substantial attention since Monod's pioneering study. Theoretical and experimental works have uncovered several laws for describing the exponential growth phase, in which the number of cells grows exponentially. However, microorganism growth also exhibits lag, stationary, and death phases under starvation conditions, in which cell growth is highly suppressed, for which quantitative laws or theories are markedly underdeveloped. In fact, the models commonly adopted for the exponential phase that consist of autocatalytic chemical components, including ribosomes, can only show exponential growth or decay in a population; thus, phases that halt growth are not realized. Here, we propose a simple, coarse-grained cell model that includes an extra class of macromolecular components in addition to the autocatalytic active components that facilitate cellular growth. These extra components form a complex with the active components to inhibit the catalytic process. Depending on the nutrient condition, the model exhibits typical transitions among the lag, exponential, stationary, and death phases. Furthermore, the lag time needed for growth recovery after starvation follows the square root of the starvation time and is inversely related to the maximal growth rate. This is in agreement with experimental observations, in which the length of time of cell starvation is memorized in the slow accumulation of molecules. Moreover, the lag time distributed among cells is skewed with a long time tail. If the starvation time is longer, an exponential tail appears, which is also consistent with experimental data. Our theory further predicts a strong dependence of lag time on the speed of substrate depletion, which can be tested experimentally. The present model and theoretical analysis provide universal growth laws beyond the exponential phase, offering insight into how cells halt growth without entering the death phase.
Experimental Demonstration of a Cheap and Accurate Phase Estimation
Rudinger, Kenneth; Kimmel, Shelby; Lobser, Daniel; ...
2017-05-11
We demonstrate an experimental implementation of robust phase estimation (RPE) to learn the phase of a single-qubit rotation on a trapped Yb + ion qubit. Here, we show this phase can be estimated with an uncertainty below 4 × 10 -4 rad using as few as 176 total experimental samples, and our estimates exhibit Heisenberg scaling. Unlike standard phase estimation protocols, RPE neither assumes perfect state preparation and measurement, nor requires access to ancillae. We crossvalidate the results of RPE with the more resource-intensive protocol of gate set tomography.
B1-B2 phase transition mechanism and pathway of PbS under pressure
NASA Astrophysics Data System (ADS)
Adeleke, Adebayo A.; Yao, Yansun
2018-03-01
Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams—one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P21/c and I41/amd, respectively. We propose the P21/c and I41/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P21/c and I41/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P21/c and I41/amd phases were found to be energetically competitive with their respective orthorhombic successors.
Formation of double front detonations of a condensed-phase explosive with powdered aluminium
NASA Astrophysics Data System (ADS)
Kim, Wuhyun; Gwak, Min-cheol; Yoh, Jack J.
2018-03-01
The performance characteristics of aluminised high explosive are considered by varying the aluminium (Al) mass fraction in a hybrid non-ideal detonation model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al mass fraction and a double front detonation (DFD) feature when anaerobic Al reaction occurs behind the front. In order to simulate the performance characteristics due to the varying Al mass fraction, the tetrahexamine tetranitramine (HMX) is considered as a base high explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between particles and HMX product gases. While experimental studies have been reported on the effect of Al mass fraction on both gas-phase and solid-phase detonations, the numerical investigations have been limited to only gas-phase detonation for the varying Al particles in the mixture. In the current study, a two-phase model is utilised for understanding the volumetric effects of Al mass fraction in condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterising the performance of aluminised HMX with a maximum Al mass fraction of 50%. The simulated results are compared with the experimental data for 5-25% mass fractions, and the higher mass fraction behaviours are consistent with the experimental observations.
The Study of the Phase Characteristics of Bragg Cells for Acousto-Optic Signal Processing
1998-01-01
contractor will determine the relationship of phase characteristics between TeO2 and GaAs cells with their constructive and technical parameters. Design a...Braggcell TeO2 with minimal phase distortions operating near 100 MHz. Experimentally investigate the phase characteristics for a Bragg cell on TeO2 ...follows: The contractor will determine the relationship of phase characteristics between TeO2 and GaAs cells with their constructive and technical
An Experimental Evaluation of Hyperactivity and Food Additives. 1977-Phase II.
ERIC Educational Resources Information Center
Harley, J. Preston; And Others
Phase II of a study on the effectiveness of B. Feingold's recommended diet for hyperactive children involved the nine children (mean age 9 years) who had shown the "best" response to diet manipulation in Phase I. Each child served as his own control and was challenged with specified amounts of placebo and artificial color containing food…
Equation of state and electron localisation in fcc lithium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
Equation of state and electron localisation in fcc lithium
Frost, Mungo; Levitan, Abraham L.; Sun, Peihao; ...
2018-02-14
We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.
SELF-INSTRUCTIONAL SUPPLEMENTS FOR A TELEVISED PHYSICS COURSE, STUDY PLAN AND EXPERIMENTAL DESIGN.
ERIC Educational Resources Information Center
KLAUS, DAVID J.; LUMSDAINE, ARTHUR A.
THE INITIAL PHASES OF A STUDY OF SELF-INSTRUCTIONAL AIDS FOR A TELEVISED PHYSICS COURSE WERE DESCRIBED. THE APPROACH, EXPERIMENTAL DESIGN, PROCEDURE, AND TECHNICAL ASPECTS OF THE STUDY PLAN WERE INCLUDED. THE MATERIALS WERE PREPARED TO SUPPLEMENT THE SECOND SEMESTER OF HIGH SCHOOL PHYSICS. THE MATERIAL COVERED STATIC AND CURRENT ELECTRICITY,…
Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work
NASA Technical Reports Server (NTRS)
Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.
1996-01-01
This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under a variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.
Phase Distribution Phenomena for Simulated Microgravity Conditions: Experimental Work
NASA Technical Reports Server (NTRS)
Singhal, Maneesh; Bonetto, Fabian J.; Lahey, R. T., Jr.
1996-01-01
This report summarizes the work accomplished at Rensselaer to study phase distribution phenomenon under simulated microgravity conditions. Our group at Rensselaer has been able to develop sophisticated analytical models to predict phase distribution in two-phase flows under variety of conditions. These models are based on physics and data obtained from carefully controlled experiments that are being conducted here. These experiments also serve to verify the models developed.
NASA Astrophysics Data System (ADS)
Vanderbemden, P.; Rivas-Murias, B.; Lovchinov, V.; Vertruyen, B.
2010-11-01
In this paper, we report low temperature dielectric measurements of bulk composite electroceramic samples containing a colossal magnetoresistive (CMR) manganite phase (La0.7Ca0.3MnO3 [abbreviated LCMO]) and an insulating phase (Mn3O4). Details of the experimental system are given and possible experimental artefacts due to moisture are outlined. For a LCMO volume fraction of ~ 16%, the permittivity of the LCMO/ Mn3O4 composite at T = 50 K is found to be much higher than that of pure Mn3O4 and magnetic field dependent. This effect is related to an extrinsic space charge polarization mechanism between the insulating phase (Mn3O4) and the conducting magnetoresistive phase (LCMO).
NASA Astrophysics Data System (ADS)
Jonusas, Mindaugas; Krim, Lahouari
2016-06-01
The presence of NH2OH, one of the main precursors in the formation of amino-acids, on dust grain mantles, may be the most obvious elucidation for the creation of large pre-biotic molecules in the interstellar medium. However, while many laboratory experimental studies, to simulate the icy grain chemistry in space, found that NH2OH molecules may be easily formed in solid phase with high abundances and then they should desorb, through a temperature-induced desorption into the gas phase, with the same high abundances; all the spatial observations conclude that NH2OH is not detected in gas phase within any of the explored astronomical sources. Such inconsistencies between laboratory experiment simulations and spatial observations lead our investigations towards this experimental study to see if there is any chemical transformation of NH2OH, occurring in the solid phase before the desorption processes of NH2OH from the mantle of interstellar icy grains. Our experimental results show that the heating of NH2OH-H2O ices lead to a decomposition of NH2OH into HNO, NH3 and O2, even before reaching its desorption temperature. We show through this work that the NH2OH non-detection from previous examined astronomical sources could mainly due to its high reactivity in solid phase on the icy interstellar grains.
NASA Astrophysics Data System (ADS)
Ambrose, T. K.; Wallis, D.; Hansen, L. N.; Waters, D. J.; Searle, M. P.
2017-12-01
Studies of experimentally deformed rocks and small-scale natural shear zones have demonstrated that volumetrically minor phases can control strain localisation by limiting grain growth and promoting grain-size sensitive deformation mechanisms. Such studies are often used to infer a critical role for minor phases in the development of plate boundaries. However, the role of of minor phases in strain localisation at plate boundaries remains to be tested by direct observation. To test the hypothesis that minor phases control strain localisation at plate boundaries, we conducted microstructural analyses of peridotite samples collected across the base of the Oman-UAE ophiolite. The base of the ophiolite is marked by the Semail thrust, which represents the now exhumed contact between subducted oceanic crust and the overlying mantle wedge. As such, the base of the ophiolite provides the opportunity to directly examine a former plate boundary. Our results demonstrate that the mean olivine grain size is inversely proportional to the abundance of minor phases (primarily pyroxene), consistent with suppression of grain growth by grain-boundary pinning. Our results also reveal that mean olivine grain size is proportional to CPO strength, suggesting that the fraction of strain accommodated by different deformation mechanisms varied spatially. Experimentally-derived flow laws indicate that under the inferred deformation conditions the viscosity of olivine was grain-size sensitive. As such, grain size, and thereby the abundance of minor phases, influenced viscosity during subduction-related deformation along the base of the mantle wedge. We calculate that viscosity and strain rate respectively decrease and increase by approximately an order of magnitude towards the base of the ophiolite. Our data indicate that this rheological weakening was primarily the result of more abundant secondary phases near the base of the ophiolite. Our interpretations are consistent with those of previous studies on experimentally deformed rocks and smaller-scale natural shear zones that indicate minor phases can strongly influence strain localisation. However, our study demonstrates for the first time that minor phases can control strain localisation at the scale of a major plate boundary.
[Radiotherapy phase I trials' methodology: Features].
Rivoirard, R; Vallard, A; Langrand-Escure, J; Guy, J-B; Ben Mrad, M; Yaoxiong, X; Diao, P; Méry, B; Pigne, G; Rancoule, C; Magné, N
2016-12-01
In clinical research, biostatistical methods allow the rigorous analysis of data collection and should be defined from the trial design to obtain the appropriate experimental approach. Thus, if the main purpose of phase I is to determine the dose to use during phase II, methodology should be finely adjusted to experimental treatment(s). Today, the methodology for chemotherapy and targeted therapy is well known. For radiotherapy and chemoradiotherapy phase I trials, the primary endpoint must reflect both effectiveness and potential treatment toxicities. Methodology should probably be complex to limit failures in the following phases. However, there are very few data about methodology design in the literature. The present study focuses on these particular trials and their characteristics. It should help to raise existing methodological patterns shortcomings in order to propose new and better-suited designs. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Growth and Morphology of Phase Separating Supercritical Fluids
NASA Technical Reports Server (NTRS)
Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves
1996-01-01
The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.
NASA Astrophysics Data System (ADS)
Tao, R.; Ma, Y.; Si, L.; Dong, X.; Zhou, P.; Liu, Z.
2011-11-01
We present a theoretical and experimental study of a target-in-the-loop (TIL) high-power adaptive phase-locked fiber laser array. The system configuration of the TIL adaptive phase-locked fiber laser array is introduced, and the fundamental theory for TIL based on the single-dithering technique is deduced for the first time. Two 10-W-level high-power fiber amplifiers are set up and adaptive phase locking of the two fiber amplifiers is accomplished successfully by implementing a single-dithering algorithm on a signal processor. The experimental results demonstrate that the optical phase noise for each beam channel can be effectively compensated by the TIL adaptive optics system under high-power applications and the fringe contrast on a remotely located extended target is advanced from 12% to 74% for the two 10-W-level fiber amplifiers.
In-line phase contrast micro-CT reconstruction for biomedical specimens.
Fu, Jian; Tan, Renbo
2014-01-01
X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.
NASA Astrophysics Data System (ADS)
Besagni, G.; Inzoli, F.; De Guido, G.; Pellegrini, L. A.
2017-01-01
This paper discusses the effects of the liquid velocity and the liquid phase properties on the gas holdup and the flow regime transition in a large-diameter and large-scale counter-current two-phase bubble column. In particular, we compared and analysed the experimental data obtained in our previous experimental studies. The bubble column is 5.3 m in height, has an inner diameter of 0.24 m, it was operated with gas superficial velocities in the range of 0.004-0.20 m/s and, in the counter-current mode, the liquid was recirculated up to a superficial velocity of -0.09 m/s. Air was used as the dispersed phase and various fluids (tap water, aqueous solutions of sodium chloride, ethanol and monoethylene glycol) were employed as liquid phases. The experimental dataset consist in gas holdup measurements and was used to investigate the global fluid dynamics and the flow regime transition between the homogeneous flow regime and the transition flow regime. We found that the liquid velocity and the liquid phase properties significantly affect the gas holdup and the flow regime transition. In this respect, a possible relationship (based on the lift force) between the flow regime transition and the gas holdup was proposed.
Development and Evaluation of Pretraining as an Adjunct to a Pilot Training Study.
ERIC Educational Resources Information Center
McFadden, Robert W.; And Others
The utility of the pretraining of task-relevant cognitive skills within the context of experimental research methodology was investigated in this study. A criterion referenced pretraining multi-media product was developed and applied to support the initial phase of an experimental research effort in which several instructional methods for training…
The Compressed Baryonic Matter Experiment at FAIR
NASA Astrophysics Data System (ADS)
Senger, Peter
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility will be discussed.
Jakubikova, Elena; Bernstein, Elliot R
2007-12-27
Thermodynamics of reactions of vanadium oxide clusters with SO2 are studied at the BPW91/LANL2DZ level of theory. BPW91/LANL2DZ is insufficient to properly describe relative V-O and S-O bond strengths of vanadium and sulfur oxides. Calibration of theoretical results with experimental data is necessary to compute reliable enthalpy changes for reactions between VxOy and SO2. Theoretical results indicate SO2 to SO conversion occurs for oxygen-deficient clusters and SO2 to SO3 conversion occurs for oxygen-rich clusters. Stable intermediate structures of VOy (y = 1 - 4) clusters with SO2 are also obtained at the BPW91/TZVP level of theory. Some possible mechanisms for SO3 formation and catalyst regeneration for condensed-phase systems are suggested. These results are in agreement with, and complement, gas-phase experimental studies of neutral vanadium oxide clusters.
The Co-Sb-Ga System: Isoplethal Section and Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Gierlotka, Wojciech; Chen, Sinn-wen; Chen, Wei-an; Chang, Jui-shen; Snyder, G. Jeffrey; Tang, Yinglu
2015-04-01
The Co-Sb-Ga ternary system is an important thermoelectric material system, and its phase equilibria are in need of further understanding. The CoSb3-GaSb isoplethal section is experimentally determined in this study. Phase equilibria of the ternary Co-Sb-Ga system are assessed, and the system's thermodynamic models are developed. In addition to the terminal phases and liquid phase, there are six binary intermediate phases and a ternary Co3Sb2Ga4 phase. The Ga solution in the CoSb3 compound is described by a dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model. Phase diagrams are calculated using the developed thermodynamic models, and a reaction scheme is proposed based on the calculation results. The calculated results are in good agreement with the experimentally determined phase diagrams, including the CoSb3-GaSb isoplethal section, the liquidus projection, and an isothermal section at 923 K (650 °C). The dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model gives good descriptions of both phase equilibria and thermoelectric properties of the CoSb3 phase with Ga doping.
Čolović, Jelena; Rmandić, Milena; Malenović, Anđelija
2018-05-17
Numerous stationary phases have been developed with the aim to provide desired performances during chromatographic analysis of the basic solutes in their protonated form. In this work, the procedure for the characterization of bonded stationary phase performance, when both qualitative and quantitative chromatographic factors were varied in chaotropic chromatography, was proposed. Risperidone and its three impurities were selected as model substances, while acetonitrile content in the mobile phase (20-30%), the pH of the aqueous phase (3.00-5.00), the content of chaotropic agents in the aqueous phase (10-100 mM), type of chaotropic agent (NaClO 4 , CF 3 COONa), and stationary phase type (Zorbax Eclipse XDB, Zorbax Extend) were studied as chromatographic factors. The proposed procedure implies the combination of D-optimal experimental design, indirect modeling, and polynomial-modified Gaussian model, while grid point search method was selected for the final choice of the experimental conditions which lead to the best possible stationary phase performance for basic solutes. Good agreement between experimentally obtained chromatogram and simulated chromatogram for chosen experimental conditions (25% acetonitrile, 75 mM of NaClO 4 , pH 4.00 on Zorbax Eclipse XDB column) confirmed the applicability of the proposed procedure. The additional point was selected for the verification of proposed procedure ability to distinguish changes in solutes' elution order. Simulated chromatogram for 21.5% acetonitrile, 85 mM of NaClO 4 , pH 5.00 on Zorbax Eclipse XDB column was in line with experimental data. Furthermore, the values of left and right peak half-widths obtained from indirect modeling were used in order to evaluate performances of differently modified stationary phases applying a half-width plots approach. The results from half-width plot approach as well as from the proposed procedure indicate higher efficiency and better separation performance of the stationary phase extra densely bonded and double end-capped with trimethylsilyl group than the stationary phase with the combination of end-capping and bidentate silane bonding for chromatographic analysis of basic solutes in RP-HPLC systems with chaotropic agents. Graphical abstract ᅟ.
Comparison of the Intensity of Ventilation at Windows Exchange in the Room - Case Study
NASA Astrophysics Data System (ADS)
Kapalo, Peter; Voznyak, Orest
2017-06-01
Doing the replacement of old wooden windows in a new plastic windows, in the old buildings, we get the great reducing of the building heat loss. Simpler maintenance and attendance of window is the next advantage. New windows are characterized by better tightness. The aim of the article is determination due to the performed experimental measurements, how much more are reduce the uncontrolled ventilation that is caused of the infiltration windows. In the article there is presented the experimental measurement of indoor air quality in the room in two phases. In the first phase there is the room installed by 55 year old wood window. In the second phase there is the same room installed by new plastic window. Due to the experimental measurement of indoor air quality it is calculated intensity of ventilation - infiltration. These results of ventilation intensity are reciprocally compared.
Andrés, Axel; Rosés, Martí; Bosch, Elisabeth
2014-11-28
In previous work, a two-parameter model to predict chromatographic retention of ionizable analytes in gradient mode was proposed. However, the procedure required some previous experimental work to get a suitable description of the pKa change with the mobile phase composition. In the present study this previous experimental work has been simplified. The analyte pKa values have been calculated through equations whose coefficients vary depending on their functional group. Forced by this new approach, other simplifications regarding the retention of the totally neutral and totally ionized species also had to be performed. After the simplifications were applied, new prediction values were obtained and compared with the previously acquired experimental data. The simplified model gave pretty good predictions while saving a significant amount of time and resources. Copyright © 2014 Elsevier B.V. All rights reserved.
Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids
NASA Astrophysics Data System (ADS)
Ivanov, Aleksey S.
2018-05-01
Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.
Triadic Gaze Intervention for Young Children with Physical Disabilities
Olswang, Lesley B.; Dowden, Patricia; Feuerstein, Julie; Greenslade, Kathryn; Pinder, Gay Lloyd; Fleming, Kandace
2018-01-01
Purpose This randomized controlled study investigated whether a supplemental treatment designed to teach triadic gaze (TG) as a signal of coordinated joint attention (CJA) would yield a significantly greater increase in TG in the experimental versus control group. Method Eighteen 10- to 24-month-old children with severe motor impairments were randomly assigned to an experimental (n=9) or control group (n=9). For approximately 29 sessions over 17 weeks, experimental participants received TG treatment twice weekly with a speech-language pathologist (SLP) in addition to standard practice. Controls received only standard practice from birth-to-three therapists. Coders masked to group assignment coded TG productions with an unfamiliar SLP at baseline, every three weeks during the experimental phase, and at the final measurement session. Results TG increased across groups from baseline to final measurement, with the experimental group showing slightly greater change. Performance trends were examined using experimental phase moving averages. Comparisons revealed significant differences between groups at two time points (at 12 weeks, r= .30, a medium effect and at the end of the phase r=.50, large effect). Conclusion Results suggest the promise of a short-term, focused treatment to teach TG as a behavioral manifestation of CJA to children with severe physical disabilities. PMID:24686825
Electronic state and optical response in a hydrogen-bonded molecular conductor
NASA Astrophysics Data System (ADS)
Naka, Makoto; Ishihara, Sumio
2018-06-01
Motivated by recent experimental studies of hydrogen-bonded molecular conductors κ -X 3(Cat-EDT-TTF) 2[X =H , D], interplays of protons and correlated electrons, and their effects on magnetic, dielectric, and optical properties, are studied theoretically. We introduce a model Hamiltonian for κ -X 3(Cat-EDT-TTF) 2, in which molecular dimers are connected by hydrogen bonds. Ground-state phase diagram and optical conductivity spectra are examined by using the mean-field approximation and the exact diagonalization method in finite-size cluster. Three types of the competing electronic and protonic phases, charge density wave phase, polar charge-ordered phase, and antiferromagnetic dimer-Mott insulating phase are found. Observed softening of the interdimer excitation due to the electron-proton coupling implies reduction of the effective electron-electron repulsion, i.e., "Hubbard U ," due to the quantum proton motion. Contrastingly, the intradimer charge excitation is hardened due to the proton-electron coupling. Implications of the theoretical calculations to the recent experimental results in κ -X 3(Cat-EDT-TTF) 2 are discussed.
Ionizing laser propagation and spectral phase determination
NASA Astrophysics Data System (ADS)
Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H.-S.; Daniels, J.; Dale, N.; Swanson, K. K.; Esarey, E.; Leemans, W. P.
2017-03-01
Ionization-induced blueshifting is investigated through INF&RNO simulations and experimental studies at the Berkeley Laboratory Laser Accelerator (BELLA) Center. The effects of spectral phase and optical compression are explored. An in-situ method for verifying the spectral phase of an intense laser pulse at focus is presented, based on the effects of optical compression on the morphology of the blueshifted laser spectra.
NASA Astrophysics Data System (ADS)
Afrizal, Irfan Mufti; Dachlan, Jarnawi Afghani
2017-05-01
The aim of this study was to determine design of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition in middle school through experimental studies. The design in this study was quasi-experimental with non-equivalent control group type. This study consisted of two phases, the first phase was identify students' learning obstacle on square and rectangle concepts to obtain the appropriate design of teaching materials, beside that there were internalization of the values or characters expected to appear on students through the teaching materials. Second phase was experiments on the effectiveness and efficiency of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition. The result of this study are 1) Students' learning obstacle that have identified was categorized as an epistemological obstacle. 2) The improvement of students' mathematical connection ability and mathematical disposition who used mathematical teaching materials is better than the students who used conventional learning.
Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen
2015-09-01
The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. Copyright © 2015 Elsevier Inc. All rights reserved.
Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, V A; Volkov, M V; Garanin, S G
2013-09-30
The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth ofmore » 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)« less
Vapor Phase Catalytic Ammonia Reduction
NASA Technical Reports Server (NTRS)
Flynn, Michael T.; Harper, Lynn D. (Technical Monitor)
1994-01-01
This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon(TM) soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor. In phase III a urine analog was used to evaluate the performance of the combined distillation/oxidation functions of the processor.
Physical principles of intracellular organization via active and passive phase transitions
NASA Astrophysics Data System (ADS)
Berry, Joel; Brangwynne, Clifford P.; Haataja, Mikko
2018-04-01
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Unexpectedly high pressure for molecular dissociation in liquid hydrogen by electronic simulation.
Mazzola, Guglielmo; Yunoki, Seiji; Sorella, Sandro
2014-03-19
The study of the high pressure phase diagram of hydrogen has continued with renewed effort for about one century as it remains a fundamental challenge for experimental and theoretical techniques. Here we employ an efficient molecular dynamics based on the quantum Monte Carlo method, which can describe accurately the electronic correlation and treat a large number of hydrogen atoms, allowing a realistic and reliable prediction of thermodynamic properties. We find that the molecular liquid phase is unexpectedly stable, and the transition towards a fully atomic liquid phase occurs at much higher pressure than previously believed. The old standing problem of low-temperature atomization is, therefore, still far from experimental reach.
Ultrasonic Phased Array Simulations of Welded Components at NASA
NASA Technical Reports Server (NTRS)
Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.
2009-01-01
Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increasing role in the future for nondestructive evaluation in order to better understand the physics of the inspection process, to prove or disprove the feasibility for an inspection method or inspection scenario, for inspection optimization, for better understanding of experimental results, and for assessment of probability of detection. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles. Keywords: nondestructive evaluation, computational simulation, ultrasonics, weld, modeling, phased array
Experimental study of displacement of one liquid by another in a cylindrical capillary
NASA Astrophysics Data System (ADS)
Velizhanin, A. A.; Simonov, O. A.
2017-10-01
The single-phase flow of liquids (water and oil) in microchannels is experimentally researched, as well as the process of displacement of one liquid by another. Automatic measurements of a pressure drop, and mass of liquid which passed through a microchannel were made. Photo and video recording of the movement of the fronts of displacement was carried out. Qualitative and numerical data allowing to describe character of single-phase and two-phase flow are obtained. Comparison with the theoretical description of correspondence flows was carried out. It is established that the main characteristics of a flow through a capillary constantly change in the course of the experiment that testifies to his non-stationary character.
Experimental observation of carrier-envelope-phase effects by multicycle pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Pankaj K.; Scully, Marlan O.; Mechanical and Aerospace Engineering and the Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544
2011-03-15
We present an experimental and theoretical study of carrier-envelope-phase (CEP) effects on the population transfer between two bound atomic states interacting with pulses consisting of many cycles. Using intense radio-frequency pulse with Rabi frequency of the order of the atomic transition frequency, we investigate the influence of the CEP on the control of phase-dependent multiphoton transitions between the Zeeman sublevels of the ground state of {sup 87}Rb. Our scheme has no limitation on the duration of the pulses. Extending the CEP control to longer pulses creates interesting possibilities to generate pulses with accuracy that is better than the period ofmore » optical oscillations.« less
Physical principles of intracellular organization via active and passive phase transitions.
Berry, Joel; Brangwynne, Clifford P; Haataja, Mikko
2018-04-01
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Thermochemical Studies of Epoxides and Related Compounds
Morgan, Kathleen M.; Ellis, Jamie A.; Lee, Joseph; Fulton, Ashley; Wilson, Shavonda L.; Dupart, Patrick S.; Dastoori, Rosanna
2013-01-01
Gas phase heats of formation for the our butene oxide isomers are reported. They were obtained by measuring the condensed-phase heat of reduction to the corresponding alcohol using reaction calorimetry. Heats of vaporization were determined, and allow gas-phase heats of formation to be obtained. The experimental measurements are compared to calculations obtained using a variety of computational methods. Overall, the G3 and CBS-APNO methods agree quite well with the experimental data. The influence of alkyl substituents on epoxide stability is discussed. Comparisons to alkenes, cyclopropanes, aziridines, thiiranes and phosphiranes are also made. Isodesmic-type reactions were used to determine strain energies of the epoxides and related compounds with various substituents. PMID:23551240
NASA Astrophysics Data System (ADS)
Nigodjuk, V. E.; Sulinov, A. V.
2018-01-01
The article presents the results of experimental studies of hydrodynamics and those of loobman single-phase and two-phase flows in capillary nozzle elements propellant thrusters and the proposed method of their calculation. An experimental study was performed in capillaries with a sharp entrance edge of the internal diameter of 0.16 and 0.33 mm and a relative length 188 and 161, respectively, in pouring distilled water and acetone in the following range of parameters Reynolds number Re = (0,3 ... 10) · 103, Prandtl number Pr = (2 ... 10), pressure p = (0,1 ... 0,3) MPa, the heat flux q = (0...2)×106 W/m2, the difference of temperature under-heating of liquid Δtn = (5 ... 80)K. The dependences for calculation of single phase boundaries, the undeveloped and the developed surface of the bubble and film key singing of subcooled liquid. It is shown theoretically and experimentally confirmed the virtual absence of areas of undeveloped nucleate boiling in laminar flow. The dependence for calculation of hydraulic resistance and heat transfer in the investigated areas of current. It is shown that in the region of nucleate boiling surface in the flow in capillary tubes, influence of the formed vapor phase on the hydrodynamics and heat transfer substantially higher than in larger diameter pipes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Liu, Xiang-Yang
In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less
Li, Nan; Liu, Xiang-Yang
2017-11-03
In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less
A combined experimental and computational thermodynamic study of difluoronitrobenzene isomers.
Ribeiro da Silva, Manuel A V; Monte, Manuel J S; Lobo Ferreira, Ana I M C; Oliveira, Juliana A S A; Cimas, Álvaro
2010-10-14
This work reports the experimental and computational thermochemical study performed on three difluorinated nitrobenzene isomers: 2,4-difluoronitrobenzene (2,4-DFNB), 2,5-difluoronitrobenzene (2,5-DFNB), and 3,4-difluoronitrobenzene (3,4-DFNB). The standard (p° = 0.1 MPa) molar enthalpies of formation in the liquid phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. A static method was used to perform the vapor pressure study of the referred compounds allowing the construction of the phase diagrams and determination of the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation, and fusion for two of the isomers (2,4-DFNB and 3,4-DFNB). For 2,5-difluoronitrobenzene, only liquid vapor pressures were measured enabling the determination of the standard molar enthalpies of vaporization. Combining the thermodynamic parameters of the compounds studied, the following standard (p° = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived: Δ(f)H(m)° (2,4-DFNB, g) = -(296.3 ± 1.8) kJ · mol⁻¹, Δ(f)H(m)° (2,5-DFNB, g) = -(288.2 ± 2.1) kJ · mol⁻¹, and Δ(f)H(m)° (3,4-DFNB, g) = -(302.4 ± 2.1) kJ · mol⁻¹. Using the empirical scheme developed by Cox, several approaches were evaluated in order to identify the best method for estimating the standard molar gas phase enthalpies of formation of these compounds. The estimated values were compared to the ones obtained experimentally, and the approach providing the best comparison with experiment was used to estimate the thermodynamic behavior of the other difluorinated nitrobenzene isomers not included in this study. Additionally, the enthalpies of formation of these compounds along with the enthalpies of formation of the other isomers not studied experimentally, i.e., 2,3-DFNB, 2,6-DFNB, and 3,5-DFNB, were estimated using the composite G3MP2B3 approach together with adequate gas-phase working reactions. Furthermore, we also used this computational approach to calculate the gas-phase basicities, proton and electron affinities, and, finally, adiabatic ionization enthalpies.
Experimental Study of the Triplet Synchronization of Coupled Nonidentical Mechanical Metronomes
Jia, Ji; Song, Zhiwen; Liu, Weiqing; Kurths, Jürgen; Xiao, Jinghua
2015-01-01
Triplet synchrony is an interesting state when the phases and the frequencies of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains asynchronous. Experimental observation of triplet synchrony is firstly realized in three coupled nonidentical mechanical metronomes. A more direct method based on the phase diagram is proposed to observe and determine triplet synchronization. Our results show that the stable triplet synchrony is observed in several intervals of the parameter space. Moreover, the experimental results are verified according to the theoretical model of the coupled metronomes. The outcomes are useful to understand the inner regimes of collective dynamics in coupled oscillators. PMID:26598175
NASA Technical Reports Server (NTRS)
Mchale, R. M.
1974-01-01
Results are presented of a cold-flow and hot-fire experimental study of the mixing and atomization characteristics of injector elements incorporating noncircular orifices. Both liquid/liquid and gas/liquid element types are discussed. Unlike doublet and triplet elements (circular orifices only) were investigated for the liquid/liquid case while concentric tube elements were investigated for the gas/liquid case. It is concluded that noncircular shape can be employed to significant advantage in injector design for liquid rocket engines.
Liening, Andreas; Strunk, Guido; Mittelstadt, Ewald
2013-10-01
Much has been written about the differences between single- and double-loop learning, or more general between lower level and higher level learning. Especially in times of a fundamental crisis, a transition between lower and higher level learning would be an appropriate reaction to a challenge coming entirely out of the dark. However, so far there is no quantitative method to monitor such a transition. Therefore we introduce theory and methods of synergetics and present results from an experimental study based on the simulation of a crisis within a business simulation game. Hypothesized critical fluctuations - as a marker for so-called phase transitions - have been assessed with permutation entropy. Results show evidence for a phase transition during the crisis, which can be interpreted as a transition between lower and higher level learning.
NASA Astrophysics Data System (ADS)
Stratakis, D.; Kishek, R. A.; Li, H.; Bernal, S.; Walter, M.; Tobin, J.; Quinn, B.; Reiser, M.; O'Shea, P. G.
2006-11-01
Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on the University of Maryland Electron Ring (UMER).
Numerical formulation for the prediction of solid/liquid change of a binary alloy
NASA Technical Reports Server (NTRS)
Schneider, G. E.; Tiwari, S. N.
1990-01-01
A computational model is presented for the prediction of solid/liquid phase change energy transport including the influence of free convection fluid flow in the liquid phase region. The computational model considers the velocity components of all non-liquid phase change material control volumes to be zero but fully solves the coupled mass-momentum problem within the liquid region. The thermal energy model includes the entire domain and uses an enthalpy like model and a recently developed method for handling the phase change interface nonlinearity. Convergence studies are performed and comparisons made with experimental data for two different problem specifications. The convergence studies indicate that grid independence was achieved and the comparison with experimental data indicates excellent quantitative prediction of the melt fraction evolution. Qualitative data is also provided in the form of velocity vector diagrams and isotherm plots for selected times in the evolution of both problems. The computational costs incurred are quite low by comparison with previous efforts on solving these problems.
Experimental study and thermodynamic modeling of the Al–Co–Cr–Ni system
Gheno, Thomas; Liu, Xuan L.; Lindwall, Greta; ...
2015-09-21
In this study, a thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for themore » β–γ equilibrium, and good agreement for three-phase β–γ–σ and β–γ–α equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.« less
Droplet formation at the non-equilibrium water/water (w/w) interface
NASA Astrophysics Data System (ADS)
Chao, Youchuang; Mak, Sze Yi; Kong, Tiantian; Ding, Zijing; Shum, Ho Cheung
2017-11-01
The interfacial instability at liquid-liquid interfaces has been intensively studied in recent years due to their important role in nature and technology. Among them, two classic instabilities are Rayleigh-Taylor (RT) and double diffusive (DD) instabilities, which are practically relevant to many industrial processes, such as geologic CO2 sequestration. Most experimental and theoretical works have focused on RT or DD instability in binary systems. However, the study of such instability in complex systems, such as non-equilibrium ternary systems that involves mass-transfer-induced phase separation, has received less attention. Here, by using a ternary system known as the aqueous two-phase system (ATPS), we investigate experimentally the behavior of non-equilibrium water/water (w/w) interfaces in a vertically orientated Hele-Shaw cell. We observe that an array of fingers emerge at the w/w interface, and then break into droplets. We explore the instability using different concentrations of two aqueous phases. Our experimental findings are expected to inspire the mass production of all-aqueous emulsions in a simple setup.
NASA Astrophysics Data System (ADS)
Shin, Soon-Gi
2000-06-01
The grain growth behaviors of TiC and WC particles in TiC-Ni, TiC-Mo2C-Ni, WC-Co and WC-VC-Co alloys during liquid phase sintering were investigated for different Ni or Co contents and compared with the results of Monte Carlo simulations. In the experimental study, TiC-Ni and WC-Co alloys had a maximum grain size at a certain liquid volume fraction, while the grain size in TiC-Mo2C-Ni and WC-VC-Co alloys increased monotonically with an increasing liquid volume fraction. These results mean that the grain growth of these alloys cannot be explained by the conventional mechanisms for Ostwald ripening, namely diffusion or reaction controlled processes. Monte Carlo simulations with different energy relationships between solidliquid interfaces predicted the effect of the liquid volume fraction on grain size similar to the experimental results. The contiguous boundaries between solid (carbide) particles appear to influence the grain growth behavior in TiC- and WC-based alloys during liquid phase sintering.
Study of polarization properties of fiber-optics probes with use of a binary phase plate.
Alferov, S V; Khonina, S N; Karpeev, S V
2014-04-01
We conduct a theoretical and experimental study of the distribution of the electric field components in the sharp focal domain when rotating a zone plate with a π-phase jump placed in the focused beam. Comparing the theoretical and experimental results for several kinds of near-field probes, an analysis of the polarization sensitivity of different types of metal-coated aperture probes is conducted. It is demonstrated that with increasing diameter of the non-metal-coated tip part there occurs an essential redistribution of sensitivity in favor of the transverse electric field components and an increase of the probe's energy throughput.
Preliminary results of the large experimental wind turbine phase of the national wind energy program
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Sholes, T.; Sholes, J. E.
1975-01-01
The preliminary results of two projects in the development phase of reliable wind turbines designed to supply cost-competitive electrical energy were discussed. An experimental 100 kW wind turbine design and its status are first reviewed. The results of two parallel design studies for determining the configurations and power levels for wind turbines with minimum energy costs are also discussed. These studies predict wind energy costs of 1.5 to 7 cents per kW-h for wind turbines produced in quantities of 100 to 1000 per year and located at sites having average winds of 12 to 18 mph.
Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food
NASA Astrophysics Data System (ADS)
Leung, M.; Ching, W. H.; Leung, D. Y. C.; Lam, G. C. K.
2005-02-01
A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others.
Paraelectric-antiferroelectric phase transition in achiral liquid crystals
NASA Astrophysics Data System (ADS)
Pociecha, Damian; Gorecka, Ewa; Čepič, Mojca; Vaupotič, Nataša; Gomola, Kinga; Mieczkowski, Jozef
2005-12-01
Critical freezing of molecular rotation in an achiral smectic phase, which leads to polar ordering through the second order paraelectric-antiferroelectric (Sm-A→Sm-APA) phase transition is studied theoretically and experimentally. Strong softening of the polar mode in the Sm-A phase and highly intensive dielectric mode in the Sm-APA phase are observed due to weak antiferroelectric interactions in the system. In the Sm-APA phase the dielectric response behaves critically upon biasing by a dc electric field. Such a behavior is found general for the antiferroelectric smectic phase with significant quadrupolar interlayer coupling.
Clinical evaluation of seven anticalculus dentifrice formulations.
Scruggs, R R; Stewart, P W; Samuels, M S; Stamm, J W
1991-01-01
One hundred ninety-two subjects completed a clinical trial to determine the effects of seven dentifrice formulations on calculus inhibition. The double-blind study involved a ten-day control phase and a ten-day experimental phase. For the control phase, subjects were evaluated for calculus present, received a prophylaxis and had pre-weighed mylar strips attached to the lingual surfaces of the mandibular incisors to harvest mineral deposits. Subjects were then assigned the placebo dentifrice for unsupervised twice-daily use and were required to report once a day for a supervised mouthrinse using a 1:3 dilution of the dentrifice. The experimental phase was identical except that subjects were allocated the experimental dentifices using a stratified random assignment based on age, gender and the initial presence of calculus. Simple linear regression analyses of the dry and ash log weights obtained from the strips were performed. The results showed no statistically significant differences among the test products; however, two formulations containing zinc citrate showed some calculus inhibition-potential suggesting that further research and development of such products may be warranted.
Characteristics of phase-change materials containing oxide nano-additives for thermal storage.
Teng, Tun-Ping; Yu, Chao-Chieh
2012-11-06
In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.
LEPER: Library of Experimental PhasE Relations
NASA Astrophysics Data System (ADS)
Davis, F.; Gordon, S.; Mukherjee, S.; Hirschmann, M.; Ghiorso, M.
2006-12-01
The Library of Experimental PhasE Relations (LEPER) seeks to compile published experimental determinations of magmatic phase equilibria and provide those data on the web with a searchable and downloadable interface. Compiled experimental data include the conditions and durations of experiments, the bulk compositions of experimental charges, and the identity, compositions and proportions of phases observed, and, where available, estimates of experimental and analytical uncertainties. Also included are metadata such as the type of experimental device, capsule material, and method(s) of quantitative analysis. The database may be of use to practicing experimentalists as well as the wider Earth science community. Experimentalists may find the data useful for planning new experiments and will easily be able to compare their results to the full body of previous experimentnal data. Geologists may use LEPER to compare rocks sampled in the field with experiments performed on similar bulk composition or with experiments that produced similar-composition product phases. Modelers may use LEPER to parameterize partial melting of various lithologies. One motivation for compiling LEPER is for calibration of updated and revised versions of MELTS, however, it is hoped that the availability of LEPER will facilitate formulation and calibration of additional thermodynamic or empirical models of magmatic phase relations and phase equilibria, geothermometers and more. Data entry for LEPER is occuring presently: As of August, 2006, >6200 experiments have been entered, chiefly from work published between 1997 and 2005. A prototype web interface has been written and beta release on the web is anticipated in Fall, 2006. Eventually, experimentalists will be able to submit their new experimental data to the database via the web. At present, the database contains only data pertaining to the phase equilibria of silicate melts, but extension to other experimental data involving other fluids or sub-solidus phase equilibria may be contemplated. Also, the data are at present limited to natural or near-natural systems, but in the future, extension to synthetic (i.e., CMAS, etc.) systems is also possible. Each would depend in part on whether there is community demand for such databases. A trace element adjunct to LEPER is presently in planning stages.
Topological phases reviewed: The Aharonov Bohm, Aharonov Casher, and He McKellar Wilkens phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKellar, B. H. J.; He, X-G.; Klein, A. G.
2014-03-05
There are three topological phases related to electromagnetic interactions in quantum mechanics: 1. The Aharonov Bohm phase acquired when a charged particle encircles a magnetic field but travels through a field free region. 2. The Aharonov Casher phase acquired when a magnetic dipole encircles electric charges but travels through a charge free region. 3. The He McKellar Wilkens phase acquired when an electric dipole encircles magnetic charges but travels through a charge free region. We review the conditions under which these phases are indeed topological and their experimental realisation. Because the He McKellar Wilkens phase has been recently observed wemore » pay particular attention to how the basic concept of 'an electric dipole encircles magnetic charges' was realised experimentally, and discuss possible future experimental realisations.« less
Roux, María Victoria; Notario, Rafael; Foces-Foces, Concepción; Temprado, Manuel; Ros, Francisco; Emel'yanenko, Vladimir N; Verevkin, Sergey P
2010-03-18
This paper reports an experimental and computational thermochemical study on 5,5-dimethylbarbituric acid and the solid-phase structure of the compound. The value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by static bomb combustion calorimetry, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(706.4 +/- 2.2) kJ x mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated NB(2) stream, and a value of the enthalpy of sublimation at T = 298.15 K was derived as (115.8 +/- 0.5) kJ x mol(-1). From these results a value of -(590.6 +/- 2.3) kJ x mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 level were performed, and a study on molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in reasonable agreement with the experimental value. 5,5-Dimethylbarbituric acid was characterized by single crystal X-ray diffraction analysis. In the crystal structure, N-H...O=C hydrogen bonds lead to the formation of ribbons connected further by weak C-H...O=C hydrogen bonds into a three-dimensional network. The molecular and supramolecular structures observed in the solid state were also investigated in the gas phase by DFT calculations.
A small clinical study overseen by the National Institute of Allergy and Infectious Diseases (NIAID) with support from the Frederick National Laboratory for Cancer Research has found that an experimental treatment for Middle East Respiratory Syndrome
Induced sadness increases persistence in a simulated slot machine task among recreational gamblers.
Devos, Gaëtan; Clark, Luke; Maurage, Pierre; Billieux, Joël
2018-05-01
Gambling may constitute a strategy for coping with depressive mood, but a direct influence of depressive mood on gambling behaviors has never been tested via realistic experimental designs in gamblers. The current study tested whether experimentally induced sadness increases persistence on a simulated slot machine task using real monetary reinforcement in recreational gamblers. Sixty participants were randomly assigned to an experimental (sadness induction) or control (no emotional induction) condition, and then performed a slot machine task consisting of a mandatory phase followed by a persistence phase. Potential confounding variables (problem gambling symptoms, impulsivity traits, gambling cognitions) were measured to ensure that the experimental and control groups were comparable. The study showed that participants in the sadness condition displayed greater gambling persistence than control participants (p = .011). These data support the causal role of negative affect in decisions to gamble and persistence, which bears important theoretical and clinical implications. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Sirotkin, N. A.; Titov, V. A.
2018-04-01
An atmospheric-pressure dc discharge in air ( i = 10-50 mA) with metal and liquid electrolyte electrodes was studied experimentally. An aqueous solution of sodium chloride (0.5 mol/L) was used as the cathode or anode. The electric field strength in the plasma and the cathode (anode) voltage drops were obtained from the measured dependences of the discharge voltage on the electrode gap length. The gas temperature was deduced from the spectral distribution of nitrogen emission in the band N2( C 3Π u → B 3Π g , 0-2). The time dependences of the temperatures of the liquid electrolyte electrodes during the discharge and in its afterglow, as well as the evaporation rate of the solution, were determined experimentally. The contributions of ion bombardment and heat flux from the plasma to the heating of the liquid electrode and transfer of solvent (water) into the gas phase are discussed using the experimental data obtained.
Experimental research of phase transitions in a melt of high-purity aluminum
NASA Astrophysics Data System (ADS)
Vorontsov, V. B.; Pershin, V. K.
2017-12-01
This scientific work is devoted to the studying of the genetic connection structures of solid and liquid phases. In this paper Fourier analysis of acoustic emission (AE) signals accompanying heating of high purity aluminum from the melting point up to 860 °C was performed. The experimental data allowed to follow the dynamics of disorder zones in the melt with increasing melt temperature up to their complete destruction. The presented results of spectral analysis of the signals were analyzed from the standpoint of the theory of cluster melting metals.
On the investigation of cascade and turbomachinery rotor wake characteristics
NASA Technical Reports Server (NTRS)
Raj, R.; Lakshminarayana, B.
1975-01-01
The objective of the investigation reported in this thesis is to study the characteristics of a turbomachinery rotor wake, both analytically and experimentally. The constitutive equations for the rotor wake are developed using generalized tensors and a non-inertial frame of reference. Analytical and experimental investigation is carried out in two phases; the first phase involved the study of a cascade wake in the absence of rotation and three dimensionality. In the second phase the wake of a rotor is studied. Simplified two- and three-dimensional models are developed for the prediction of the mean velocity profile of the cascade and the rotor wake, respectively, using the principle of self-similarity. The effect of various major parameters of the rotor and the flow geometry is studied on the development of a rotor wake. Laws governing the decay of the wake velocity defect in a cascade and rotor wake as a function of downstream distance from the trailing edge, pressure gradient and other parameters are derived.
Kangas, M; Vikman, I; Nyberg, L; Korpelainen, R; Lindblom, J; Jämsä, T
2012-03-01
Falling is a common accident among older people. Automatic fall detectors are one method of improving security. However, in most cases, fall detectors are designed and tested with data from experimental falls in younger people. This study is one of the first to provide fall-related acceleration data obtained from real-life falls. Wireless sensors were used to collect acceleration data during a six-month test period in older people. Data from five events representing forward falls, a sideways fall, a backwards fall, and a fall out of bed were collected and compared with experimental falls performed by middle-aged test subjects. The signals from real-life falls had similar features to those from intentional falls. Real-life forward, sideways and backward falls all showed a pre impact phase and an impact phase that were in keeping with the model that was based on experimental falls. In addition, the fall out of bed had a similar acceleration profile as the experimental falls of the same type. However, there were differences in the parameters that were used for the detection of the fall phases. The beginning of the fall was detected in all of the real-life falls starting from a standing posture, whereas the high pre impact velocity was not. In some real-life falls, multiple impacts suggested protective actions. In conclusion, this study demonstrated similarities between real-life falls of older people and experimental falls of middle-aged subjects. However, some fall characteristics detected from experimental falls were not detectable in acceleration signals from corresponding heterogeneous real-life falls. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tao, R.; Fei, Y.
2017-12-01
Planetary cooling leads to solidification of any initially molten metallic core. Some terrestrial cores (e.g. Mercury) are formed and differentiated under relatively reduced conditions, and they are thought to be composed of Fe-S-Si. However, there are limited understanding of the phase relations in the Fe-S-Si system at high pressure and temperature. In this study, we conducted high-pressure experiments to investigate the phase relations in the Fe-S-Si system up to 25 GPa. Experimental results show that the liquidus and solidus in this study are slightly lower than those in the Fe-S binary system for the same S concentration in liquid at same pressure. The Fe3S, which is supposed to be the stable sub-solidus S-bearing phase in the Fe-S binary system above 17 GPa, is not observed in the Fe-S-Si system at 21 GPa. Almost all S prefers to partition into liquid, while the distribution of Si between solid and liquid depends on experimental P and T conditions. We obtained the partition coefficient log(KDSi) by fitting the experimental data as a function of P, T and S concentration in liquid. At a constant pressure, the log(KDSi) linearly decreases with 1/T(K). With increase of pressure, the slopes of linear correlation between log(KDSi) and 1/T(K) decreases, indicating that more Si partitions into solid at higher pressure. In order to interpolate and extrapolate the phase relations over a wide pressure and temperature range, we established a comprehensive thermodynamic model in the Fe-S-Si system. The results will be used to constrain the distribution of S and Si between solid inner core and liquid outer core for a range of planet sizes. A Si-rich solid inner core and a S-rich liquid outer core are suggested for an iron-rich core.
Analysis of the Applicability of an Ankle-Foot Orthosis during Gait in Poststroke Patients
Costa, Rafael Vital; Grecco, Luanda André Collange; Neto, Hugo Pasini; Franco de Moura, Renata Calhes; Correa, João Carlos Ferrari; Corrêa, Fernanda Ishida; Oliveira, Claudia Santos
2013-01-01
[Purpose] The aim of this study was to develop and assess the applicability of an experimental ankle-foot orthosis during gait in patients with hemiparesis. [Subjects and Methods] This was a noncontrolled cross-sectional study. Ten adult patients with hemiparesis but who were capable of independent gait were included in the study. Gait assessment was performed using two platforms (EMG System do Brasil), an electromyograph (EMG System do Brasil), and a video camera. The experimental orthosis consisted of a single piece that fit over the foot and 1/3 of the distal tibia and had a steel spring. [Results] There was greater activation of the rectus femoris and vastus lateralis muscles in the stance and mid-stance phases with the use of the experimental ankle-foot orthosis in comparison with the use of a polypropylene ankle-foot orthosis and no orthosis. Regarding spatial and temporal gait parameters, the individuals achieved an increase in stride length with the use of the experimental ankle-foot orthosis in comparison with the use of a polypropylene ankle-foot orthosis. [Conclusion] The results of the present study demonstrate that individuals with hemiparesis achieved an improvement in the stance and mid-stance phases of gait with the use of the experimental ankle-foot orthosis. PMID:24259903
Experimental and theoretical study on Raman spectra of magnesium fluoride clusters and solids.
Neelamraju, S; Bach, A; Schön, J C; Fischer, D; Jansen, M
2012-11-21
In this study, the Raman and IR spectra of a large number of isomers of MgF(2) clusters and of possible bulk polymorphs of MgF(2) are calculated and compared with experimental data observed using a low-temperature atom beam deposition. The bulk polymorphs were taken from earlier work, while the cluster modifications for the neutral (MgF(2))(n) (n = 1-10) clusters and charged clusters (up to the trimer anion and cation, (Mg(3)F(7))(-) and (Mg(3)F(5))(+), respectively) are determined in the present work by global energy landscape explorations using simulated annealing. These theoretical calculations are complemented by an experimental study on both the vapor phase and the deposited films of MgF(2), which are generated in a low-temperature atom beam deposition setup for the synthesis of MgF(2) bulk phases. The MgF(2) vapor and film are characterized via Raman spectroscopy of the MgF(2) gas phase species embedded in an Ar-matrix and of the MgF(2)-films deposited onto a cooled substrate, respectively. We find that, in the vapor phase, there are monomers and dimers and charged species to be present in our experimental setup. Furthermore, the results suggest that in the amorphous bulk MgF(2), rutile-like domains are present and MgF(2) clusters similar to those in the matrix. Finally, peaks at about 800 cm(-1), which are in the same range as the A(g) modes of clusters with dangling fluorine atoms connected to three-coordinated Mg atoms, indicate that such dangling bonds are also present in amorphous MgF(2).
NASA Astrophysics Data System (ADS)
Chakrabarty, Ayan; Wang, Feng; Joshi, Bhuwan; Wei, Qi-Huo
2011-03-01
Recent studies shows that the boomerang shaped molecules can form various kinds of liquid crystalline phases. One debated topic related to boomerang molecules is the existence of biaxial nematic liquid crystalline phase. Developing and optical microscopic studies of colloidal systems of boomerang particles would allow us to gain better understanding of orientation ordering and dynamics at ``single molecule'' level. Here we report the fabrication and experimental studies of the Brownian motion of individual boomerang colloidal particles confined between two glass plates. We used dark-field optical microscopy to directly visualize the Brownian motion of the single colloidal particles in a quasi two dimensional geometry. An EMCCD was used to capture the motion in real time. An indigenously developed imaging processing algorithm based on MatLab program was used to precisely track the position and orientation of the particles with sub-pixel accuracy. The experimental finding of the Brownian diffusion of a single boomerang colloidal particle will be discussed.
An all-digital phase-locked loop demodulator based on FPGA
NASA Astrophysics Data System (ADS)
Gong, X. F.; Cui, Z. D.
2017-09-01
This paper studied the principle of analogue phase-locked loop demodulation and work process of digital phase-locked loop. It is found that the higher the reference signal frequency is, the smaller the duty ratio of the discriminator output signal is. Carrier detection is achieved by using this relationship. The experimental results indicate that the demodulator based on the principle could realize high-quality transmission of digital signals and could be an effective FM communication mode for studying wireless transmission of digital signals.
Phase measurement error in summation of electron holography series.
McLeod, Robert A; Bergen, Michael; Malac, Marek
2014-06-01
Off-axis electron holography is a method for the transmission electron microscope (TEM) that measures the electric and magnetic properties of a specimen. The electrostatic and magnetic potentials modulate the electron wavefront phase. The error in measurement of the phase therefore determines the smallest observable changes in electric and magnetic properties. Here we explore the summation of a hologram series to reduce the phase error and thereby improve the sensitivity of electron holography. Summation of hologram series requires independent registration and correction of image drift and phase wavefront drift, the consequences of which are discussed. Optimization of the electro-optical configuration of the TEM for the double biprism configuration is examined. An analytical model of image and phase drift, composed of a combination of linear drift and Brownian random-walk, is derived and experimentally verified. The accuracy of image registration via cross-correlation and phase registration is characterized by simulated hologram series. The model of series summation errors allows the optimization of phase error as a function of exposure time and fringe carrier frequency for a target spatial resolution. An experimental example of hologram series summation is provided on WS2 fullerenes. A metric is provided to measure the object phase error from experimental results and compared to analytical predictions. The ultimate experimental object root-mean-square phase error is 0.006 rad (2π/1050) at a spatial resolution less than 0.615 nm and a total exposure time of 900 s. The ultimate phase error in vacuum adjacent to the specimen is 0.0037 rad (2π/1700). The analytical prediction of phase error differs with the experimental metrics by +7% inside the object and -5% in the vacuum, indicating that the model can provide reliable quantitative predictions. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Computational And Experimental Studies Of Three-Dimensional Flame Spread Over Liquid Fuel Pools
NASA Technical Reports Server (NTRS)
Ross, Howard D. (Technical Monitor); Cai, Jinsheng; Liu, Feng; Sirignano, William A.; Miller, Fletcher J.
2003-01-01
Schiller, Ross, and Sirignano (1996) studied ignition and flame spread above liquid fuels initially below the flashpoint temperature by using a two-dimensional computational fluid dynamics code that solves the coupled equations of both the gas and the liquid phases. Pulsating flame spread was attributed to the establishment of a gas-phase recirculation cell that forms just ahead of the flame leading edge because of the opposing effect of buoyancy-driven flow in the gas phase and the thermocapillary-driven flow in the liquid phase. Schiller and Sirignano (1996) extended the same study to include flame spread with forced opposed flow in the gas phase. A transitional flow velocity was found above which an originally uniform spreading flame pulsates. The same type of gas-phase recirculation cell caused by the combination of forced opposed flow, buoyancy-driven flow, and thermocapillary-driven concurrent flow was responsible for the pulsating flame spread. Ross and Miller (1998) and Miller and Ross (1998) performed experimental work that corroborates the computational findings of Schiller, Ross, and Sirignano (1996) and Schiller and Sirignano (1996). Cai, Liu, and Sirignano (2002) developed a more comprehensive three-dimensional model and computer code for the flame spread problem. Many improvements in modeling and numerical algorithms were incorporated in the three-dimensional model. Pools of finite width and length were studied in air channels of prescribed height and width. Significant three-dimensional effects around and along the pool edge were observed. The same three-dimensional code is used to study the detailed effects of pool depth, pool width, opposed air flow velocity, and different levels of air oxygen concentration (Cai, Liu, and Sirignano, 2003). Significant three-dimensional effects showing an unsteady wavy flame front for cases of wide pool width are found for the first time in computation, after being noted previously by experimental observers (Ross and Miller, 1999). Regions of uniform and pulsating flame spread are mapped for the flow conditions of pool depth, opposed flow velocity, initial pool temperature, and air oxygen concentration under both normal and microgravity conditions. Details can be found in Cai et al. (2002, 2003). Experimental results recently performed at NASA Glenn of flame spread across a wide, shallow pool as a function of liquid temperature are also presented here.
Phase 0 study for a geothermal superheated water proof of concept facility
NASA Technical Reports Server (NTRS)
Douglass, R. H.; Pearson, R. O.
1974-01-01
A Phase 0 study for the selection of a representative liquid-dominated geothermal resource of moderate salinity and temperature is discussed. Selection and conceptual design of a nominal 10-MWe energy conversion system, and implementation planning for Phase 1: subsystem (component, experiments) and Phase 2: final design, construction, and operation of experimental research facilities are reported. The objective of the overall program is to demonstrate the technical and economic viability of utilizing moderate temperature and salinity liquid-dominated resources with acceptable environmental impact, and thus encourage commercial scale development of geothermal electrical power generation.
Study Of Phase Separation In Glass
NASA Technical Reports Server (NTRS)
Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.
1989-01-01
Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.
NASA Astrophysics Data System (ADS)
Zinchik, Alexander A.; Muzychenko, Yana B.
2015-06-01
This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.
Jonker, Michiel T O
2016-06-01
Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.
Conforti, Anita; Bellavite, Paolo; Bertani, Simone; Chiarotti, Flavia; Menniti-Ippolito, Francesca; Raschetti, Roberto
2007-01-01
Background One of the cardinal principles of homeopathy is the "law of similarities", according to which patients can be treated by administering substances which, when tested in healthy subjects, cause symptoms that are similar to those presented by the patients themselves. Over the last few years, there has been an increase in the number of pre-clinical (in vitro and animal) studies aimed at evaluating the pharmacological activity or efficacy of some homeopathic remedies under potentially reproducible conditions. However, in addition to some contradictory results, these studies have also highlighted a series of methodological difficulties. The present study was designed to explore the possibility to test in a controlled way the effects of homeopathic remedies on two known experimental models of acute inflammation in the rat. To this aim, the study considered six different remedies indicated by homeopathic practice for this type of symptom in two experimental edema models (carrageenan- and autologous blood-induced edema), using two treatment administration routes (sub-plantar injection and oral administration). Methods In a first phase, the different remedies were tested in the four experimental conditions, following a single-blind (measurement) procedure. In a second phase, some of the remedies (in the same and in different dilutions) were tested by oral administration in the carrageenan-induced edema, under double-blind (treatment administration and measurement) and fully randomized conditions. Seven-hundred-twenty male Sprague Dawley rats weighing 170–180 g were used. Six homeopathic remedies (Arnica montana D4, Apis mellifica D4, D30, Atropa belladonna D4, Hamamelis virginiana D4, Lachesis D6, D30, Phosphorus D6, D30), saline and indomethacin were tested. Edema was measured using a water-based plethysmometer, before and at different times after edema induction. Data were analyzed by ANOVA and Student t test. Results In the first phase of experiments, some statistically significant effects of homeopathic remedies (Apis, Lachesis and Phosporus) were observed (the reduction in paw volume increase ranging from 10% to 28% at different times since edema induction). In the second phase of experiments, the effects of homeopathic remedies were not confirmed. On the contrary, the unblinded standard allopathic drug indomethacin exhibited its anti-inflammatory effect in both experimental phases (the reduction in paw volume increase ranging from 14% to 40% in the first phase, and from 18% to 38% in the second phase of experiments). Conclusion The discrepancies between single-blind and double-blind methods in animal pharmacological research are noteworthy and should be better investigated, also in non-homeopathic research. PMID:17233886
Conforti, Anita; Bellavite, Paolo; Bertani, Simone; Chiarotti, Flavia; Menniti-Ippolito, Francesca; Raschetti, Roberto
2007-01-17
One of the cardinal principles of homeopathy is the "law of similarities", according to which patients can be treated by administering substances which, when tested in healthy subjects, cause symptoms that are similar to those presented by the patients themselves. Over the last few years, there has been an increase in the number of pre-clinical (in vitro and animal) studies aimed at evaluating the pharmacological activity or efficacy of some homeopathic remedies under potentially reproducible conditions. However, in addition to some contradictory results, these studies have also highlighted a series of methodological difficulties.The present study was designed to explore the possibility to test in a controlled way the effects of homeopathic remedies on two known experimental models of acute inflammation in the rat. To this aim, the study considered six different remedies indicated by homeopathic practice for this type of symptom in two experimental edema models (carrageenan- and autologous blood-induced edema), using two treatment administration routes (sub-plantar injection and oral administration). In a first phase, the different remedies were tested in the four experimental conditions, following a single-blind (measurement) procedure. In a second phase, some of the remedies (in the same and in different dilutions) were tested by oral administration in the carrageenan-induced edema, under double-blind (treatment administration and measurement) and fully randomized conditions. Seven-hundred-twenty male Sprague Dawley rats weighing 170-180 g were used. Six homeopathic remedies (Arnica montana D4, Apis mellifica D4, D30, Atropa belladonna D4, Hamamelis virginiana D4, Lachesis D6, D30, Phosphorus D6, D30), saline and indomethacin were tested. Edema was measured using a water-based plethysmometer, before and at different times after edema induction. Data were analyzed by ANOVA and Student t test. In the first phase of experiments, some statistically significant effects of homeopathic remedies (Apis, Lachesis and Phosporus) were observed (the reduction in paw volume increase ranging from 10% to 28% at different times since edema induction). In the second phase of experiments, the effects of homeopathic remedies were not confirmed. On the contrary, the unblinded standard allopathic drug indomethacin exhibited its anti-inflammatory effect in both experimental phases (the reduction in paw volume increase ranging from 14% to 40% in the first phase, and from 18% to 38% in the second phase of experiments). The discrepancies between single-blind and double-blind methods in animal pharmacological research are noteworthy and should be better investigated, also in non-homeopathic research.
NASA Astrophysics Data System (ADS)
Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.
2005-03-01
Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.
Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides
NASA Technical Reports Server (NTRS)
Collins, J.; Rosner, D. E.; Castillo, J.
1992-01-01
A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.
Domenici, Valentina; Marini, Alberto; Veracini, Carlo Alberto; Zhang, Jing; Dong, Ronald Y
2007-12-21
We present a theoretical and experimental (2)H NMR study of the effect of external magnetic fields on the supramolecular organization of chiral smectic liquid-crystalline mesophases, such as SmC* and re-entrant SmC*. Three experimental cases in which the supramolecular helical structure of the smectic C* phase is unwound by a magnetic field (H), parallel to the helical axes of this phase, are discussed in detail. Unwinding of the helical structure is described by using a theoretical model based on the Landau-de Gennes theory, which allows us to explain the transition temperatures among the SmA, SmC*, and uSmC* phases. The energy-density behavior in the vicinity of the transitions and the value of the critical magnetic field H(C) for unwinding the helical structure are discussed by applying this model to three ferroelectric smectogens (MBHB, 11EB1M7, ZLL7/*), which are studied by (2)H NMR spectroscopy at different magnetic fields (from 2.4 to 9.4 Tesla). Furthermore, the tilt angle of the three smectogens in the SmC* phase has been directly evaluated, for the first time, by comparing the quadrupolar splittings at different magnetic fields. In one case, (2)H NMR angular measurements are used to obtain the tilt angle in the re-entrant smectic C phase.
NASA Astrophysics Data System (ADS)
Bava, Yanina B.; Tamone, Luciana M.; Juncal, Luciana C.; Seng, Samantha; Tobón, Yeny A.; Sobanska, Sophie; Picone, A. Lorena; Romano, Rosana M.
2017-07-01
The IR spectrum of methyl thioglycolate (MTG) was studied in three different phases, and interpreted with the aid of DFT calculations. The gas phase IR spectrum was explainable by the presence of the most stable conformer (syn-gauche-(-)gauche) only, while the IR spectrum of the liquid reveals strong intermolecular interactions, coincident with the formation of a dimeric form. The matrix-isolated spectra allow the identification of the second conformer (syn-gauche-gauche), in addition to the most stable form. The MTG dimer was also isolated by increasing the proportion of MTG in the matrix. The theoretical most stable structure of the dimer, which calculated IR spectrum agrees very well with the experimental one, is stabilized by a double interaction of the lone pair of the O atom of each of the Cdbnd O groups with the antibonding orbitals σ* (Ssbnd H).
High pressure structural behavior of YGa2: A combined experimental and theoretical study
NASA Astrophysics Data System (ADS)
Sekar, M.; Shekar, N. V. Chandra; Babu, R.; Sahu, P. Ch.; Sinha, A. K.; Upadhyay, Anuj; Singh, M. N.; Babu, K. Ramesh; Appalakondaiah, S.; Vaitheeswaran, G.; Kanchana, V.
2015-03-01
High pressure structural stability studies were carried out on YGa2 (AlB2 type structure at NTP, space group P6/mmm) up to a pressure of 35 GPa using both laboratory based rotating anode and synchrotron X-ray sources. An isostructural transition with reduced c/a ratio, was observed at 6 GPa and above 17.5 GPa, the compound transformed to orthorhombic structure. Bulk modulus B0 for the parent and high pressure phases were estimated using Birch-Murnaghan and modified Birch-Murnaghan equation of state. Electronic structure calculations based on projector augmented wave method confirms the experimentally observed two high pressure structural transitions. The calculations also reveal that the 'Ga' networks remains as two dimensional in the high pressure isostructural phase, whereas the orthorhombic phase involves three dimensional networks of 'Ga' atoms interconnected by strong covalent bonds.
NASA Astrophysics Data System (ADS)
Che, JunWei; Liu, XiangYang; Wang, XueZhi; Liang, GongYing
2018-04-01
This paper presents structure, thermal expansion coefficient and phase stability of La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic by both theoretical and experimental results. It was found out that LZ7C3 powders had a pyrochlore structure after being heat-treated at temperatures higher than 1473 K or higher according to XRD and TEM results. The calculated average thermal expansion coefficient (TEC) was 7.12 × 10-6 K-1, which is a little smaller than experiment result, but changes of calculated average TECs of LZ, YSZ and LZ7C3 had the same trend with experimental results. Finally, the radial distribution function (RDF) was calculated to study the phase stability of LZ7C3.
Coherent and incoherent phase stabilities of thermoelectric rocksalt IV-VI semiconductor alloys
NASA Astrophysics Data System (ADS)
Doak, Jeff W.; Wolverton, C.
2012-10-01
Nanostructures formed by phase separation improve the thermoelectric figure of merit in lead chalcogenide semiconductor alloys, with coherent nanostructures giving larger improvements than incoherent nanostructures. However, large coherency strains in these alloys drastically alter the thermodynamics of phase stability. Incoherent phase stability can be easily inferred from an equilibrium phase diagram, but coherent phase stability is more difficult to assess experimentally. Therefore, we use density functional theory calculations to investigate the coherent and incoherent phase stability of the IV-VI rocksalt semiconductor alloy systems Pb(S,Te), Pb(Te,Se), Pb(Se,S), (Pb,Sn)Te, (Sn,Ge)Te, and (Ge,Pb)Te. Here we use the term coherent to indicate that there is a common and unbroken lattice between the phases under consideration, and we use the term incoherent to indicate that the lattices of coexisting phases are unconstrained and allowed to take on equilibrium volumes. We find that the thermodynamic ground state of all of the IV-VI pseudobinary systems studied is incoherent phase separation. We also find that the coherency strain energy, previously neglected in studies of these IV-VI alloys, is lowest along [111] (in contrast to most fcc metals) and is a large fraction of the thermodynamic driving force for incoherent phase separation in all systems. The driving force for coherent phase separation is significantly reduced, and we find that coherent nanostructures can only form at low temperatures where kinetics may prohibit their precipitation. Furthermore, by calculating the energies of ordered structures for these systems we find that the coherent phase stability of most IV-VI systems favors ordering over spinodal decomposition. Our results suggest that experimental reports of spinodal decomposition in the IV-VI rocksalt alloys should be re-examined.
First-principles Raman Spectra of Lead Titanate with Pressure
NASA Astrophysics Data System (ADS)
Schad, A.; Ganesh, P.; Cohen, R. E.; Ahart, M.
2010-03-01
PbTiO3 displays[1,2] a morphotropic phase boundary (MPB) under pressure at which electromechanical properties are maximal. Previously only complex solid-solutions were thought to exhibit such a boundary. To aid in the experimental study of the MPB region, we compute Raman scattering spectra of different phases of PbTiO3 with pressure using a DFT based first-principles approach and Density Functional Perturbation Theory (DFPT) [3]. The computed intensities and shifts with pressure agree very well with the experimental data measured on powder samples. Computations further allow comparison of Raman spectra and shifts in energetically competing phases raising the possibility of using calculations for experimental calibration of Raman spectra at any pressure. The results substantiate previous claims of a low-temperature monoclinic phase at the MPB at approximately 10 GPa in PbTiO3 as well as refute the possibility of an I4cm phase at higher pressures as suggested by other groups [4]. [1] Z. Wu and R. E. Cohen, Phys. Rev. Lett. 95, 037601 (2005), [2] M. Ahart et.al., Nature 451, 545 (2008), [3] P. Hermet et.al., J. Phys.:Condens. Matter 21, 215901 (2009) [4] P.E. Janolin et.al., Phys. Rev. Lett. 101, 237601 (2008).
The Impact of Probe Variability on Brief Experimental Analysis of Reading Skills
ERIC Educational Resources Information Center
Mercer, Sterett H.; Harpole, Lauren Lestremau; Mitchell, Rachel R.; McLemore, Chandler; Hardy, Christina
2012-01-01
The purpose of this study was to examine the impact of probe variability on the ability to replicate results in brief experimental analysis (BEA) of reading. In the first phase of the study, 41 first- and second- grade students completed 16 oral reading fluency probes. Calculations of probe difficulty were used to identify Low and High Variability…
Modeling Two-Oscillator Circadian Systems Entrained by Two Environmental Cycles
Oda, Gisele A.; Friesen, W. Otto
2011-01-01
Several experimental studies have altered the phase relationship between photic and non-photic environmental, 24 h cycles (zeitgebers) in order to assess their role in the synchronization of circadian rhythms. To assist in the interpretation of the complex activity patterns that emerge from these “conflicting zeitgeber” protocols, we present computer simulations of coupled circadian oscillators forced by two independent zeitgebers. This circadian system configuration was first employed by Pittendrigh and Bruce (1959), to model their studies of the light and temperature entrainment of the eclosion oscillator in Drosophila. Whereas most of the recent experiments have restricted conflicting zeitgeber experiments to two experimental conditions, by comparing circadian oscillator phases under two distinct phase relationships between zeitgebers (usually 0 and 12 h), Pittendrigh and Bruce compared eclosion phase under 12 distinct phase relationships, spanning the 24 h interval. Our simulations using non-linear differential equations replicated complex non-linear phenomena, such as “phase jumps” and sudden switches in zeitgeber preferences, which had previously been difficult to interpret. Our simulations reveal that these phenomena generally arise when inter-oscillator coupling is high in relation to the zeitgeber strength. Manipulations in the structural symmetry of the model indicated that these results can be expected to apply to a wide range of system configurations. Finally, our studies recommend the use of the complete protocol employed by Pittendrigh and Bruce, because different system configurations can generate similar results when a “conflicting zeitgeber experiment” incorporates only two phase relationships between zeitgebers. PMID:21886835
Optimization of formulation variables of benzocaine liposomes using experimental design.
Mura, Paola; Capasso, Gaetano; Maestrelli, Francesca; Furlanetto, Sandra
2008-01-01
This study aimed to optimize, by means of an experimental design multivariate strategy, a liposomal formulation for topical delivery of the local anaesthetic agent benzocaine. The formulation variables for the vesicle lipid phase uses potassium glycyrrhizinate (KG) as an alternative to cholesterol and the addition of a cationic (stearylamine) or anionic (dicethylphosphate) surfactant (qualitative factors); the percents of ethanol and the total volume of the hydration phase (quantitative factors) were the variables for the hydrophilic phase. The combined influence of these factors on the considered responses (encapsulation efficiency (EE%) and percent drug permeated at 180 min (P%)) was evaluated by means of a D-optimal design strategy. Graphic analysis of the effects indicated that maximization of the selected responses requested opposite levels of the considered factors: For example, KG and stearylamine were better for increasing EE%, and cholesterol and dicethylphosphate for increasing P%. In the second step, the Doehlert design, applied for the response-surface study of the quantitative factors, pointed out a negative interaction between percent ethanol and volume of the hydration phase and allowed prediction of the best formulation for maximizing drug permeation rate. Experimental P% data of the optimized formulation were inside the confidence interval (P < 0.05) calculated around the predicted value of the response. This proved the suitability of the proposed approach for optimizing the composition of liposomal formulations and predicting the effects of formulation variables on the considered experimental response. Moreover, the optimized formulation enabled a significant improvement (P < 0.05) of the drug anaesthetic effect with respect to the starting reference liposomal formulation, thus demonstrating its actually better therapeutic effectiveness.
Experimental study on synchronization of three coupled mechanical metronomes
NASA Astrophysics Data System (ADS)
Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan
2013-03-01
In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.
Pliocene Model Intercomparison (PlioMIP) Phase 2: Scientific Objectives and Experimental Design
NASA Technical Reports Server (NTRS)
Haywood, A. M.; Dowsett, H. J.; Dolan, A. M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M. A.; Hunter, S. J.; Lunt, D. J.; Pound, M.;
2015-01-01
The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. This paper provides a thorough model intercomparison project description, and documents the experimental design in a detailed way. Specifically, this paper describes the experimental design and boundary conditions that will be utilized for the experiments in Phase 2 of PlioMIP.
Experimental investigation of two-phase heat transfer in a porous matrix.
NASA Technical Reports Server (NTRS)
Von Reth, R.; Frost, W.
1972-01-01
One-dimensional two-phase flow transpiration cooling through porous metal is studied experimentally. The experimental data is compared with a previous one-dimensional analysis. Good agreement with calculated temperature distribution is obtained as long as the basic assumptions of the analytical model are satisfied. Deviations from the basic assumptions are caused by nonhomogeneous and oscillating flow conditions. Preliminary derivation of nondimensional parameters which characterize the stable and unstable flow conditions is given. Superheated liquid droplets observed sputtering from the heated surface indicated incomplete evaporation at heat fluxes well in access of the latent energy transport. A parameter is developed to account for the nonequilibrium thermodynamic effects. Measured and calculated pressure drops show contradicting trends which are attributed to capillary forces.
Study of gas-water flow in horizontal rectangular channels
NASA Astrophysics Data System (ADS)
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.
2016-05-23
Invited Article Helicity-selective phase-matching and quasi -phase matching of circularly polarized high-order harmonics: towards chiral attosecond...chromatic lasers was recently predicted theoretically and demonstrated experimentally . In that work, phase matching was analyzed by assuming that the...Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization
NASA Astrophysics Data System (ADS)
Toda, Sogo; Kato, Yuji; Kudo, Nobuki; Shimizu, Koichi
2017-04-01
For transillumination imaging of an animal body, we have attempted to suppress the scattering effect in a turbid medium. It is possible to restore the optical image before scattering using phase-conjugate light. We examined the effect of intensity information as well as the phase information for the restoration of the original light distribution. In an experimental analysis using animal tissue, the contributions of the phase- and the intensity-information to the image restoration through turbid medium were demonstrated.
Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.
Zhou, Tao; Gao, Yi; Wang, Z D
2014-06-11
We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.
de Beer, Alex G F; Samson, Jean-Sebastièn; Hua, Wei; Huang, Zishuai; Chen, Xiangke; Allen, Heather C; Roke, Sylvie
2011-12-14
We present a direct comparison of phase sensitive sum-frequency generation experiments with phase reconstruction obtained by the maximum entropy method. We show that both methods lead to the same complex spectrum. Furthermore, we discuss the strengths and weaknesses of each of these methods, analyzing possible sources of experimental and analytical errors. A simulation program for maximum entropy phase reconstruction is available at: http://lbp.epfl.ch/. © 2011 American Institute of Physics
Phase-sensitive fiber-based parametric all-optical switch.
Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A
2015-12-28
We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.
Narrowband supercontinuum control using phase shaping
NASA Astrophysics Data System (ADS)
Austin, Dane R.; Bolger, Jeremy A.; de Sterke, C. Martijn; Eggleton, Benjamin J.; Brown, Thomas G.
2006-12-01
We study theoretically, numerically and experimentally the effect of self-phase modulation of ultrashort pulses with spectrally narrow phase features. We show that spectral enhancement and depletion is caused by changing the relative phase between the initial field and the nonlinearly generated components. Our theoretical results explain observations of supercontinuum enhancement by fiber Bragg gratings, and predict similar enhancements for spectrally shaped pulses in uniform fiber. As proof of principle, we demonstrate this effect in the laboratory using a femtosecond pulse shaper.
Discrimination of radiation quality through second harmonic out-of-phase cw-ESR detection.
Marrale, Maurizio; Longo, Anna; Brai, Maria; Barbon, Antonio; Brustolon, Marina
2014-02-01
The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g., 19.3 MeV protons, (60)Co photons and thermal neutrons). The measurement of the intensities of the continuous wave spectrometer signal channel first harmonic in-phase and the second harmonic out-of-phase components are used to distinguish the radiation quality. A computational analysis, was carried out to evaluate the dependence of the first harmonic in-phase and second harmonic out-of-phase components on microwave power, modulation amplitude and relaxation times, and highlights that these components could be used to point out differences in the relaxation times. On the basis of this numerical analysis the experimental results are discussed. The methodology described in this study has the potential to provide information on radiation quality.
Observation of the Chiral and Achiral Hexatic Phases of Self-assembled Micellar polymers
Pal, Antara; Kamal, Md. Arif; Raghunathan, V. A.
2016-01-01
We report the discovery of a thermodynamically stable line hexatic (N + 6) phase in a three-dimensional (3D) system made up of self-assembled polymer-like micelles of amphiphilic molecules. The experimentally observed phase transition sequence nematic (N) N + 6 two-dimensional hexagonal (2D-H) is in good agreement with the theoretical predictions. Further, the present study also brings to light the effect of chirality on the N + 6 phase. In the chiral N + 6 phase the bond-orientational order within each “polymer” bundle is found to be twisted about an axis parallel to the average polymer direction. This structure is consistent with the theoretically envisaged Moiré state, thereby providing the first experimental demonstration of the Moiré structure. In addition to confirming the predictions of fundamental theories of two-dimensional melting, these results are relevant in a variety of situations in chemistry, physics and biology, where parallel packing of polymer-like objects are encountered. PMID:27577927
The geometric phase controls ultracold chemistry
Kendrick, B. K.; Hazra, Jisha; Balakrishnan, N.
2015-07-30
In this study, the geometric phase is shown to control the outcome of an ultracold chemical reaction. The control is a direct consequence of the sign change on the interference term between two scattering pathways (direct and looping), which contribute to the reactive collision process in the presence of a conical intersection (point of degeneracy between two Born–Oppenheimer electronic potential energy surfaces). The unique properties of the ultracold energy regime lead to an effective quantization of the scattering phase shift enabling maximum constructive or destructive interference between the two pathways. By taking the O + OH → H + Omore » 2 reaction as an illustrative example, it is shown that inclusion of the geometric phase modifies ultracold reaction rates by nearly two orders of magnitude. Interesting experimental control possibilities include the application of external electric and magnetic fields that might be used to exploit the geometric phase effect reported here and experimentally switch on or off the reactivity.« less
Two-Phase flow instrumentation for nuclear accidents simulation
NASA Astrophysics Data System (ADS)
Monni, G.; De Salve, M.; Panella, B.
2014-11-01
The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.
Interferometric space-mode multiplexing based on binary phase plates and refractive phase shifters.
Liñares, Jesús; Prieto-Blanco, Xesús; Moreno, Vicente; Montero-Orille, Carlos; Mouriz, Dolores; Nistal, María C; Barral, David
2017-05-15
A Mach-Zehnder interferometer (MZI) that includes in an arm either a reflective image inverter or a Gouy phase shifter (RGPS) can (de)multiplex many types of modes of a few mode fiber without fundamental loss. The use of RGPSs in combination with binary phase plates for multiplexing purposes is studied for the first time, showing that the particular RGPS that shifts π the odd modes only multiplexes accurately low order modes. To overcome such a restriction, we present a new exact refractive image inverter, more compact and flexible than its reflective counterpart. Moreover, we show that these interferometers remove or reduce the crosstalk that the binary phase plates could introduce between the multiplexed modes. Finally, an experimental analysis of a MZI with both an approximated and an exact refractive image inverter is presented for the case of a bimodal multiplexing. Likewise, it is proven experimentally that a RGPS that shifts π/2 demultiplexes two odd modes which can not be achieved by any image inverter.
DOT National Transportation Integrated Search
2009-10-01
This report documents the results of a study that was conducted to characterize the behavior of geogrid reinforced base : course materials. The research was conducted through an experimental testing and numerical modeling programs. The : experimental...
Computer modelling of solid alkali metal carboxylates
NASA Astrophysics Data System (ADS)
Barreto, L. S.; Mort, K. A.; Jackson, R. A.; Alves, O. L.
2000-11-01
A computational study of solid lithium acetate dihydrate and anhydrous sodium acetate is presented. Interatomic potentials are obtained by empirical fitting to experimental structural data for both materials and the resulting potentials were found to be transferable to different phases of the same materials, giving good agreement with the experimental structure.
A Lab Experiment to Introduce Gas/Liquid Solubility
ERIC Educational Resources Information Center
Fonsecaa, I. M. A.; Almeida, J. P. B.; Fachada, H. C.
2008-01-01
A simplified version of a volumetric apparatus for gas/liquid solubility measurements is proposed. The procedure familiarizes undergraduate students with the experimental study of the solubility of a gas in a liquid and contributes to the understanding of this important phase equilibrium concept. The experimental results report the determination…
Cooling molten salt reactors using "gas-lift"
NASA Astrophysics Data System (ADS)
Zitek, Pavel; Valenta, Vaclav; Klimko, Marek
2014-08-01
This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a "Two-phase flow demonstrator" (TFD) used for experimental study of the "gas-lift" system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for "gas-lift" (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.
Multi-criteria decision making approaches for quality control of genome-wide association studies.
Malovini, Alberto; Rognoni, Carla; Puca, Annibale; Bellazzi, Riccardo
2009-03-01
Experimental errors in the genotyping phases of a Genome-Wide Association Study (GWAS) can lead to false positive findings and to spurious associations. An appropriate quality control phase could minimize the effects of this kind of errors. Several filtering criteria can be used to perform quality control. Currently, no formal methods have been proposed for taking into account at the same time these criteria and the experimenter's preferences. In this paper we propose two strategies for setting appropriate genotyping rate thresholds for GWAS quality control. These two approaches are based on the Multi-Criteria Decision Making theory. We have applied our method on a real dataset composed by 734 individuals affected by Arterial Hypertension (AH) and 486 nonagenarians without history of AH. The proposed strategies appear to deal with GWAS quality control in a sound way, as they lead to rationalize and make explicit the experimenter's choices thus providing more reproducible results.
NASA Astrophysics Data System (ADS)
Teodorani, M.; Strand, E.
Unexplained plasma-like atmospheric `light balls' are observed at very low altitudes during alternate phases of maximum and minimum in the Hessdalen area, located in central Norway. Several theories are presented in order to explain the observed phenomenon; among these: piezo-electricity from rocks, atmospheric ionization triggered by solar activity and cosmic rays. The presented study is aimed at proposing the use of a dedicated instrumental set-up, research experimental procedures and methods in order to prove or disprove every single theory: in this context several kinds of observational techniques, measurement strategies and physical tests of tactical relevance are discussed in detail. An introduction on any considered theory is presented together with a detailed discussion regarding the subsequent experimental phase. For each specific theory brief descriptions of the observable parameters and of the essential instrumental choices and a detailed discussion of measurement procedures coupled with suitable flow-charts, are presented.
NASA Astrophysics Data System (ADS)
Schaub, Scott A.; Naqwi, Amir A.; Harding, Foster L.
1998-01-01
We present fundamental studies examining the design of a phase /Doppler laser light-scattering system applicable to on-line measurements of small-diameter ( <15 m) fibers during fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase /Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase -diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase /Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.
Schaub, S A; Naqwi, A A; Harding, F L
1998-01-20
We present fundamental studies examining the design of a phase/Doppler laser light-scattering system applicable to on-line measurements of small-diameter (<15 mum) fibers during fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase/Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase-diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase/Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.
Local and Systemic Inflammatory Responses to Experimentally Induced Gingivitis
Leishman, Shaneen J.; Seymour, Gregory J.; Ford, Pauline J.
2013-01-01
This study profiled the local and systemic inflammatory responses to experimentally induced gingivitis. Eight females participated in a 21-day experimental gingivitis model followed by a 14-day resolution phase. Bleeding on probing and plaque index scores were assessed before, during, and after resolution of gingival inflammation, and samples of saliva, GCF, and plasma were collected. Samples were assessed for biomarkers of inflammation using the BioPlex platform and ELISA. There were no significant changes in GCF levels of cytokines during the experimental phase; however, individual variability in cytokine profiles was noted. During resolution, mean GCF levels of IL-2, IL-6, and TNF-α decreased and were significantly lower than baseline levels (P = 0.003, P = 0.025, and P = 0.007, resp.). Furthermore, changes in GCF levels of IL-2, IL-6, and TNF-α during resolution correlated with changes in plaque index scores (r = 0.88, P = 0.004; r = 0.72, P = 0.042; r = 0.79, P = 0.019, resp.). Plasma levels of sICAM-1 increased significantly during the experimental phase (P = 0.002) and remained elevated and significantly higher than baseline levels during resolution (P < 0.001). These results support the concept that gingivitis adds to the systemic inflammatory burden of an individual. PMID:24227893
Local and systemic inflammatory responses to experimentally induced gingivitis.
Leishman, Shaneen J; Seymour, Gregory J; Ford, Pauline J
2013-01-01
This study profiled the local and systemic inflammatory responses to experimentally induced gingivitis. Eight females participated in a 21-day experimental gingivitis model followed by a 14-day resolution phase. Bleeding on probing and plaque index scores were assessed before, during, and after resolution of gingival inflammation, and samples of saliva, GCF, and plasma were collected. Samples were assessed for biomarkers of inflammation using the BioPlex platform and ELISA. There were no significant changes in GCF levels of cytokines during the experimental phase; however, individual variability in cytokine profiles was noted. During resolution, mean GCF levels of IL-2, IL-6, and TNF-α decreased and were significantly lower than baseline levels (P = 0.003, P = 0.025, and P = 0.007, resp.). Furthermore, changes in GCF levels of IL-2, IL-6, and TNF-α during resolution correlated with changes in plaque index scores (r = 0.88, P = 0.004; r = 0.72, P = 0.042; r = 0.79, P = 0.019, resp.). Plasma levels of sICAM-1 increased significantly during the experimental phase (P = 0.002) and remained elevated and significantly higher than baseline levels during resolution (P < 0.001). These results support the concept that gingivitis adds to the systemic inflammatory burden of an individual.
NASA Astrophysics Data System (ADS)
Ferreira, Maria Teodora; Follmann, Rosangela; Domingues, Margarete O.; Macau, Elbert E. N.; Kiss, István Z.
2017-08-01
Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data.
NASA Astrophysics Data System (ADS)
Feldmann, P.; Gessner, M.; Gabbrielli, M.; Klempt, C.; Santos, L.; Pezzè, L.; Smerzi, A.
2018-03-01
Recent experiments demonstrated the generation of entanglement by quasiadiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, in terms of the Fisher information, the interferometric value of the entanglement accessible by this approach. In addition to the Twin-Fock phase studied experimentally, we unveil a second regime, in the broken axisymmetry phase, which provides Heisenberg scaling of the quantum Fisher information and can be reached on shorter time scales. We identify optimal unitary transformations and an experimentally feasible optimal measurement prescription that maximize the interferometric sensitivity. We further ascertain that the Fisher information is robust with respect to nonadiabaticity and measurement noise. Finally, we show that the quasiadiabatic entanglement preparation schemes admit higher sensitivities than dynamical methods based on fast quenches.
Prediction of new ground-state crystal structure of T a2O5
NASA Astrophysics Data System (ADS)
Yang, Yong; Kawazoe, Yoshiyuki
2018-03-01
Tantalum pentoxide (T a2O5 ) is a wide-gap semiconductor which has important technological applications. Despite the enormous efforts from both experimental and theoretical studies, the ground-state crystal structure of T a2O5 is not yet uniquely determined. Based on first-principles calculations in combination with evolutionary algorithm, we identify a triclinic phase of T a2O5 , which is energetically much more stable than any phases or structural models reported previously. Characterization of the static and dynamical properties of the phase reveals the common features shared with previous metastable phases of T a2O5 . In particular, we show that the d spacing of ˜3.8 Å found in the x-ray diffraction patterns of many previous experimental works is actually the radius of the second Ta-Ta coordination shell as defined by radial distribution functions.
Kinetics of a gas adsorption compressor
NASA Technical Reports Server (NTRS)
Chan, C. K.; Tward, E.; Elleman, D. D.
1984-01-01
Chan (1981) has suggested that a process based on gas adsorption could be used as a means to drive a Joule-Thomson (J-T) device. The resulting system has several advantages. It is heat powered, it has no sealing, there are no mechanical moving parts, and no active control is required. In the present investigation, a two-phase model is used to analyze the transients of a gas adsorption compressor. The modeling of the adsorption process is based on a consideration of complete thermal and mechanical equilibrium between the gaseous phase and the adsorbed gas phase. The experimental arrangement for two sets of kinetic tests is discussed, and data regarding the experimental results are presented in graphs. For a theoretical study, a two-phase model was developed to predict the transient behavior of the compressor. A computer code was written to solve the governing equations with the aid of a standard forward marching predictor-corrector method.
Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Wang, Xuyang; Liu, Wenyuan; Wang, Pu; Li, Yongmin
2017-06-01
We experimentally demonstrated an all-fiber-based unidimensional continuous-variable quantum key distribution (CV QKD) protocol and analyzed its security under collective attack in realistic conditions. A pulsed balanced homodyne detector, which could not be accessed by eavesdroppers, with phase-insensitive efficiency and electronic noise, was considered. Furthermore, a modulation method and an improved relative phase-locking technique with one amplitude modulator and one phase modulator were designed. The relative phase could be locked precisely with a standard deviation of 0.5° and a mean of almost zero. Secret key bit rates of 5.4 kbps and 700 bps were achieved for transmission fiber lengths of 30 and 50 km, respectively. The protocol, which simplified the CV QKD system and reduced the cost, displayed a performance comparable to that of a symmetrical counterpart under realistic conditions. It is expected that the developed protocol can facilitate the practical application of the CV QKD.
Experimental study of a quantum random-number generator based on two independent lasers
NASA Astrophysics Data System (ADS)
Sun, Shi-Hai; Xu, Feihu
2017-12-01
A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.
Non-Ballistic Vapor-Driven Ejecta
NASA Technical Reports Server (NTRS)
Wrobel, K. E.; Schultz, P. H.; Heineck, J. T.
2004-01-01
Impact-induced vaporization is a key component of early-time cratering mechanics. Previous experimental [1,2] and computational [e.g., 3] studies focused on the generation and expansion of vapor clouds in an attempt to better understand vaporization in hypervelocity impacts. Presented here is a new experimental approach to the study of impact-induced vaporization. The three-dimensional particle image velocimetry (3D PIV) system captures interactions between expanding vapor phases and fine particulates. Particles ejected early in the cratering process may be entrained in expanding gas phases generated at impact, altering their otherwise ballistic path of flight. 3D PIV allows identifying the presence of such non-ballistic ejecta from very early times in the cratering process.
Experimental demonstration of cheap and accurate phase estimation
NASA Astrophysics Data System (ADS)
Rudinger, Kenneth; Kimmel, Shelby; Lobser, Daniel; Maunz, Peter
We demonstrate experimental implementation of robust phase estimation (RPE) to learn the phases of X and Y rotations on a trapped Yb+ ion qubit.. Unlike many other phase estimation protocols, RPE does not require ancillae nor near-perfect state preparation and measurement operations. Additionally, its computational requirements are minimal. Via RPE, using only 352 experimental samples per phase, we estimate phases of implemented gates with errors as small as 10-4 radians, as validated using gate set tomography. We also demonstrate that these estimates exhibit Heisenberg scaling in accuracy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Different structures of monoclinic martensitic phases in titanium nickelide
NASA Astrophysics Data System (ADS)
Voronin, V. I.; Naish, V. E.; Novoselova, T. V.; Pushin, V. G.; Sagaradze, I. V.
2000-03-01
The detailed theoretical and experimental analysis has been undertaken to bring to light the true structure of the monoclinic phase in titanium nickelide (NiTi). Theoretical models for such a phase have been proposed to describe the experimental data. In addition to the well-known B19‧ phase two more structures - new monoclinic M phase with Cm space group and triclinic phase with P1 space group - have been produced and analyzed in detail. Diffraction patterns have been obtained from different NiTi samples by using the neutron diffractometer IVV2 at different temperatures. From the refinement by DBWS-9411 program all these neutron patterns have been decoded successfully. The proposed new structures and stereotype B19‧ one agree with correspondent experimental data and the agreement is quite good.
NASA Astrophysics Data System (ADS)
Ambrose, Tyler K.; Wallis, David; Hansen, Lars N.; Waters, Dave J.; Searle, Michael P.
2018-06-01
Studies of experimentally deformed rocks and small-scale natural shear zones have demonstrated that volumetrically minor phases can control strain localisation by limiting grain growth and promoting grain-size sensitive deformation mechanisms. These small-scale studies are often used to infer a critical role for minor phases in the development of plate boundaries. However, the role of minor phases in strain localisation at an actual plate boundary remains to be tested by direct observation. In order to test the hypothesis that minor phases control strain localisation at plate boundaries, we conducted microstructural analyses of peridotite samples collected along a ∼1 km transect across the base of the Oman-United Arab Emirates (UAE) ophiolite. The base of the ophiolite is marked by the Semail thrust, which represents the now exhumed contact between subducted oceanic crust and the overlying mantle wedge. As such, the base of the ophiolite provides the opportunity to directly examine a former plate boundary. Our results demonstrate that the mean olivine grain size is inversely proportional to the abundance of minor phases (primarily orthopyroxene, as well as clinopyroxene, hornblende, and spinel), consistent with suppression of grain growth by grain-boundary pinning. Our results also reveal that mean olivine grain size is proportional to CPO strength (both of which generally decrease towards the metamorphic sole), suggesting that the fraction of strain produced by different deformation mechanisms varied spatially. Experimentally-derived flow laws indicate that under the inferred deformation conditions, the viscosity of olivine was grain-size sensitive. As such, grain size, and thereby the abundance of minor phases, influenced viscosity during subduction-related deformation along the base of the mantle wedge. We calculate an order of magnitude decrease in the viscosity of olivine towards the base of the ophiolite, which suggests strain was localised near the subduction interface. Our data indicate that this rheological weakening was primarily the result of more abundant minor phases near the base of the ophiolite. Our interpretations are consistent with those of previous studies on experimentally deformed rocks and smaller-scale natural shear zones that indicate minor phases can exert the primary control on strain localisation. However, our study demonstrates for the first time that minor phases can control strain localisation at the scales relevant to a major plate boundary.
Influence of cross-phase modulation in SPM-based nonlinear optical loop mirror
NASA Astrophysics Data System (ADS)
Pitois, Stéphane
2005-09-01
We study the role of cross-phase modulation (CPM) occurring between the two counter-propagating parts of a signal wave in a standard SPM-based nonlinear optical fiber loop mirror (NOLM). For pulse train with high duty-cycle, we experimentally observe the influence of cross-phase modulation on NOLM transmittivity. Finally, we propose a solution based on properly designed dispersion imbalanced NOLM to overcome undesirable CPM effects.
Majorana-Hubbard model on the square lattice
NASA Astrophysics Data System (ADS)
Affleck, Ian; Rahmani, Armin; Pikulin, Dmitry
2017-09-01
We study a tight-binding model of interacting Majorana (Hermitian) modes on a square lattice. The model may have an experimental realization in a superconducting-film-topological-insulator heterostructure in a magnetic field. We find a rich phase diagram, as a function of interaction strength, including an emergent superfluid phase with spontaneous breaking of an emergent U (1 ) symmetry, separated by a supersymmetric transition from a gapless normal phase.
Chen, Feng; Zhang, Jinwen
2010-11-01
In this study, soy protein concentrate (SPC) was used as a plastic component to blend with poly(butylene adipate-co-terephthalate) (PBAT). Effects of SPC plasticization and blend composition on its deformation during mixing were studied in detail. Influence of using water as the major plasticizer and glycerol as the co-plasticizer on the deformation of the SPC phase during mixing was explored. The effect of shear stress, as affected by SPC loading level, on the phase structure of SPC in the blends was also investigated. Quantitative analysis of the aspect ratio of SPC particles was conducted by using ImageJ software, and an empirical model predicting the formation of percolated structure was applied. The experimental results and the model prediction showed a fairly good agreement. The experimental results and statistic analysis suggest that both SPC loading level and its water content prior to compounding had significant influences on development of the SPC phase structure and were correlated in determining the morphological structures of the resulting blends. Consequently, physical and mechanical properties of the blends greatly depended on the phase morphology and PBAT/SPC ratio of the blends.
NASA Astrophysics Data System (ADS)
Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.
2012-04-01
Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.
Cour, M; Hernu, R; Bénet, T; Robert, J M; Regad, D; Chabert, B; Malatray, A; Conrozier, S; Serra, P; Lassaigne, M; Vanhems, P; Argaud, L
2013-11-01
Manual changeover of vasoactive drug infusion pumps (CVIP) frequently lead to haemodynamic instability. Some of the newest smart pumps allow automated CVIP. The aim of this study was to compare automated CVIP with manual 'Quick Change' relays. We performed a prospective, quasi-experimental study, in a university-affiliated intensive care unit (ICU). All adult patients receiving continuous i.v. infusion of vasoactive drugs were included. CVIP were successively performed manually (Phase 1) and automatically (Phase 2) during two 6-month periods. The primary endpoint was the frequency of haemodynamic incidents related to the relays, which were defined as variations of mean arterial pressure >15 mm Hg or heart rate >15 bpm. The secondary endpoints were the nursing time dedicated to relays and the number of interruptions in care because of CVIP. A multivariate mixed effects logistic regression was fitted for analytic analysis. We studied 1329 relays (Phase 1: 681, Phase 2: 648) from 133 patients (Phase 1: 63, Phase 2: 70). Incidents related to CVIP decreased from 137 (20%) in Phase 1 to 73 (11%) in Phase 2 (P<0.001). Automated relays were independently associated with a 49% risk reduction of CVIP-induced incidents (adjusted OR=0.51, 95% confidence interval 0.34-0.77, P=0.001). Time dedicated to the relays and the number of interruptions in care to manage CVIP were also significantly reduced with automated relays vs manual relays (P=0.001). These results demonstrate the benefits of automated CVIP using smart pumps in limiting the frequency of haemodynamic incidents related to relays and in reducing the nursing workload.
Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Hume, Alan; Simpson, André J
2012-04-01
Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate (1)H and (13)C spectra for the different phases. In addition, (19)F performance is also addressed. To illustrate the capability of (19)F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state. Copyright © 2012 Elsevier Inc. All rights reserved.
Multimodal computational microscopy based on transport of intensity equation
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao
2016-12-01
Transport of intensity equation (TIE) is a powerful tool for phase retrieval and quantitative phase imaging, which requires intensity measurements only at axially closely spaced planes without a separate reference beam. It does not require coherent illumination and works well on conventional bright-field microscopes. The quantitative phase reconstructed by TIE gives valuable information that has been encoded in the complex wave field by passage through a sample of interest. Such information may provide tremendous flexibility to emulate various microscopy modalities computationally without requiring specialized hardware components. We develop a requisite theory to describe such a hybrid computational multimodal imaging system, which yields quantitative phase, Zernike phase contrast, differential interference contrast, and light field moment imaging, simultaneously. It makes the various observations for biomedical samples easy. Then we give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens-based TIE system, combined with the appropriate postprocessing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.
Hydrogen uptake causes molecular "avalanches" in palladium | Argonne
experimental and calculated strain distributions in the hydrogen-poor phase. The strains are consistent with a trapped hydrogen-rich surface layer. Middle: Comparison between experimental and calculated strain transformation. Comparison between experimental and calculated strain distributions in the hydrogen-poor phase
Modelling the structure of Zr-rich Pb(Zr1-xTix)O3, x = 0.4 by a multiphase approach.
Bogdanov, Alexander; Mysovsky, Andrey; Pickard, Chris J; Kimmel, Anna V
2016-10-12
Solid solution perovskite Pb(Zr 1-x Ti x )O 3 (PZT) is an industrially important material. Despite the long history of experimental and theoretical studies, the structure of this material is still under intensive discussion. In this work, we have applied structure searching coupled with density functional theory methods to provide a multiphase description of this material at x = 0.4. We demonstrate that the permutational freedom of B-site cations leads to the stabilisation of a variety of local phases reflecting a relatively flat energy landscape of PZT. Using a set of predicted local phases we reproduce the experimental pair distribution function (PDF) profile with high accuracy. We introduce a complex multiphase picture of the structure of PZT and show that additional monoclinic and rhombohedral phases account for a better description of the experimental PDF profile. We propose that such a multiphase picture reflects the entropy reached in the sample during the preparation process.
NASA Astrophysics Data System (ADS)
Agishev, B. Y.; Boltenko, E. A.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Komov, A. T.; Smorchova, Y. V.
2018-03-01
The effectiveness of the heat exchange intensifier “rib-twisted wire” is considered in this paper. The main goal is to study the influence of the wire coiling step t on heat transfer and hydraulic resistance for different values Ḣ of the dimensionless height of the edge Ḣ, as well as some results on heat exchange during bubbly boiling in an annular channel. Show: • a brief description and an image of the heat exchange intensifier “rib-twisted wire” • generalized results of studies of heat exchange and hydraulic resistance in the annular channel in the single-phase convection with different geometric characteristics of the intensifier; • empirical correlations of the generalized experimental results that allow to calculating the coefficient of hydraulic resistance and heat transfer in the range of regime parameters in the single-phase convection that is being studied. • some results of experiments in bubbly boiling regimes and near-critical thermal loads.
Thermal conductivity of hybrid short fiber composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, M.L.; Taya, M.; Hatta, H.
1993-01-01
A combined analytical/experimental study has been undertaken to investigate the effective thermal conductivity of hybrid composite materials. The analysis utilizes the equivalent inclusion approach for steady state heat conduction (Hatta and Taya, 1986) through which the interaction between the various reinforcing phases at finite concentrations is approximated by the Mori-Tanaka (1973) mean field approach. The multiple reinforcing phases of the composite are modeled as ellipsoidal in shape and thus can simulate a wide range of microstructural geometries ranging from thin platelet to continuous fiber reinforcement. The case when one phase of the composite is penny-shaped microcracks is studied in detail.more » Multiphase composites consisting of a Kerimid matrix and Al2O3 short fibers and Si3N4 whiskers were fabricated and, after a careful study of their microstructure, their thermal conductivities were measured. Analytical predictions are shown to be in good agreement with experimental results obtained for the Al2O3/Si3N4/Kerimid short fiber composites. 26 refs.« less
Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2-D pore network
NASA Astrophysics Data System (ADS)
Rodríguez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos; Oostrom, Mart; Joekar-Niasar, Vahid
2015-10-01
Immiscible displacement in porous media is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oil saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigated the CDC as influenced by the viscosity ratio. To do so, we have conducted a comprehensive series of experiments using a high-resolution microscope and state-of-art micromodels to investigate the dynamics and patterns of phase entrapment at different Ca and M. By postprocessing of the experimental high-resolution images, we calculated the CDC and quantified the effects of the Ca and M on the phase entrapment and number of blobs trapped in the micromodel and their size distributions during immiscible two-phase flow. Our results show that CDCs are not necessarily monotonic for all M, and the physical mechanisms causing this nonmonotonic behavior are discussed.
Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results
NASA Astrophysics Data System (ADS)
Franco, Alessandro; Filippeschi, Sauro
2012-06-01
A bibliographical review on the heat and mass transfer in gravity assisted Closed Loop Two Phase Thermosyphons (CLTPT) with channels having a hydraulic diameter of the order of some millimetres and input power below 1 kW is proposed. The available experimental works in the literature are critically analysed in order to highlight the main results and the correlation between mass flow rate and heat input in natural circulation loops. A comparison of different experimental apparatuses and results is made. It is observed that the results are very different among them and in many cases the experimental data disagree with the conventional theory developed for an imposed flow rate. The paper analyses the main differences among the experimental devices and try to understand these disagreements. From the present analysis it is evident that further systematic studies are required to generate a meaningful body of knowledge of the heat and mass transport mechanism in these devices for practical applications in cooling devices or energy systems.
Boudreaux, Edwin D; Miller, Ivan; Goldstein, Amy B; Sullivan, Ashley F; Allen, Michael H; Manton, Anne P; Arias, Sarah A; Camargo, Carlos A
2013-09-01
Due to the concentration of individuals at-risk for suicide, an emergency department visit represents an opportune time for suicide risk screening and intervention. The Emergency Department Safety Assessment and Follow-up Evaluation (ED-SAFE) uses a quasi-experimental, interrupted time series design to evaluate whether (1) a practical approach to universally screening ED patients for suicide risk leads to improved detection of suicide risk and (2) a multi-component intervention delivered during and after the ED visit improves suicide-related outcomes. This paper summarizes the ED-SAFE's study design and methods within the context of considerations relevant to effectiveness research in suicide prevention and pertinent human participants concerns. 1440 suicidal individuals, from 8 general ED's nationally will be enrolled during three sequential phases of data collection (480 individuals/phase): (1) Treatment as Usual; (2) Universal Screening; and (3) Intervention. Data from the three phases will inform two separate evaluations: Screening Outcome (Phases 1 and 2) and Intervention (Phases 2 and 3). Individuals will be followed for 12 months. The primary study outcome is a composite reflecting completed suicide, attempted suicide, aborted or interrupted attempts, and implementation of rescue procedures during an outcome assessment. While 'classic' randomized control trials (RCT) are typically selected over quasi-experimental designs, ethical and methodological issues may make an RCT a poor fit for complex interventions in an applied setting, such as the ED. ED-SAFE represents an innovative approach to examining the complex public health issue of suicide prevention through a multi-phase, quasi-experimental design embedded in 'real world' clinical settings. Copyright © 2013 Elsevier Inc. All rights reserved.
Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys
NASA Technical Reports Server (NTRS)
Fecht, H. J.
1991-01-01
During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.
Ji, Sang Gu; Kim, Myoung Kwon
2015-04-01
To investigate the effect of mirror therapy on the gait of patients with subacute stroke. Randomized controlled experimental study. Outpatient rehabilitation hospital. Thirty-four patients with stroke were randomly assigned to two groups: a mirror therapy group (experimental) and a control group. The stroke patients in the experimental group underwent comprehensive rehabilitation therapy and mirror therapy for the lower limbs. The stroke patients in the control group underwent sham therapy and comprehensive rehabilitation therapy. Participants in both groups received therapy five days per week for four weeks. Temporospatial gait characteristics, such as single stance, stance phase, step length, stride, swing phase, velocity, and cadence, were assessed before and after the four weeks therapy period. A significant difference was observed in post-training gains for the single stance (10.32 SD 4.14 vs. 6.54 SD 3.23), step length (8.47 SD 4.12 vs. 4.83 SD 2.14), and stride length (17.03 SD 6.57 vs 10.54 SD 4.34) between the experimental group and the control group (p < 0.05). However, there were no significant differences between two groups on stance phase, swing phase, velocity, cadence, and step width (P > 0.05). We conclude that mirror therapy may be beneficial in improving the effects of stroke on gait ability. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Indartono, Y. S.; Prakoso, S. D.; Suwono, A.; Zaini, I. N.; Fernaldi, B.
2015-09-01
Solar energy is promising renewable energy which can be applied in Indonesia. Average solar radiation in the country is 4.8 kWh/day/m2. Weakness of silicon-based photovoltaic (PV) is efficiency reduction caused by temperature increase. Many attempts have been done to reduce PV temperature. In previous study, palm oil, which is widely available in Indonesia, is suitable to be used as phase change material (PCM) to reduce PV temperature. In this study, thickness of aluminium rectangular-tube containing phase change material oil is varied. The tube is placed at back part of PV. Numerical and experimental study was done to evaluate the effect of tube thickness to the temperature reduction of the PV. Variation of tube thickness used in the experiment is 50.8mm, 76.2 mm, 101.6 mm. Both studies show that increase of PCM thickness reduces PV temperature. Higher PCM thickness cause large reduction on PV temperature. Simulation result shows there is an optimum thickness of the PCM which is applied to the PV.
NASA Astrophysics Data System (ADS)
Soto-Ángeles, Alan Gustavo; Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis
2018-02-01
The thermoresponsive micellar phase behaviour that exhibits the Triton-X-100 micelles by temperature effect and addition of salt in the extraction process of metallic ions was explored from mesoscopic and experimental points. In the theoretical study, we analyse the formation of Triton-X-100 micelles, load and stabilization of dithizone molecules and metallic ions extraction inside the micellar core at room temperature; finally, a thermal analysis is presented. In the experimental study, the spectrophotometric outcomes confirm the solubility of the copper-dithizone complex in the micellar core, as well as the extraction of metallic ions of aqueous environment via a cloud-point at 332.2 K. The micellar solutions with salt present a low absorbance value compared with the micellar solutions without salt. The decrease in the absorbance value is attributed to a change in the size of hydrophobic region of colloidal micelles. All transitory stages of extraction process are discussed and analysed in this document.
NASA Technical Reports Server (NTRS)
Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Hsu, Eddie; Bergman, Larry; Bhasin, Kul; Gary, Pat
1998-01-01
The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. Following the first phase, the second phase experiment is currently prepared. This paper describes the experimental network configuration, application demonstration, and performance evaluation plan of the second phase experiment.
Phase transition kinetics in DIET of vanadium pentoxide. I. Experimental results
NASA Astrophysics Data System (ADS)
Ai, R.; Fan, H.-J.; Marks, L. D.
1993-01-01
Experimental results of the kinetics of phase transformation in vanadium pentoxide during surface loss of oxygen from electron irradiation are described. Phase transformations under three different regimes were examined: (a) low flux; (b) intermediate flux and (c) high flux. Different phase transformation routes were observed under different fluxes. In a companion paper, numerical calculations are presented demonstrating that these results are due to a mixed interface/diffusion controlled phase transition pumped by surface oxygen loss.
Co-firing coal in municipal solid waste incinerators (MSWIs) has previously been reported to reduce PCDD/F emissions due to increasing the flue gas SO2 concentration due to the fossil fuel addition. The present study was focused on understanding the mechanism predomina...
Navas, Javier; Sánchez-Coronilla, Antonio; Aguilar, Teresa; De los Santos, Desireé M; Hernández, Norge C; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín
2014-11-07
This is an experimental and theoretical study of thulium doped TiO2 nanoparticles. From an experimental perspective, a method was used to synthesize thulium-doped TiO2 nanoparticles in which Tm(3+) replaces Ti(4+) in the lattice, which to our knowledge has neither been reported nor studied theoretically so far. Different proportions of anatase and rutile phases were obtained at different annealing temperatures, and XRD and Raman spectroscopy also revealed the presence of a pyrochlore phase (Tm2Ti2O7) at 1173 K. Thus, the structure of the Tm-doped nanoparticles was thermally-controlled. Furthermore, XPS showed the presence of Tm(3+) in the samples synthesized, which produces oxygen vacancies to maintain the local neutrality in the lattice. The presence of Tm(3+) in the samples led to changes in the UV-Vis absorption spectra, so they showed photoluminescence properties and new states in the band gap, which produce a new lower energy electronic transition than the main TiO2 one. Periodic DFT calculations were performed to understand the experimentally produced structures. The production of oxygen vacancies was analysed and the changes generated in the structure were fully detailed. The DOS and PDOS analyses confirmed the experimental results obtained using UV-Vis spectroscopy, and showed that the new electronic states in the band gap are due to interactions of the f state of Tm and the p state of O. Likewise, the charge study and the ELF analysis indicate that when Tm is introduced into the TiO2 structure, the Ti-O bond around the oxygen vacancy is strengthened. Finally, an example of a photocatalytic application was developed to show the high efficiency of the samples due to the heterojunction in the interfaces of the phases in the samples, which improved the charge separation and the good charge carrier mobility due to the presence of the pyrochlore phase, as was also shown theoretically.
Silva, Ana L R; Freitas, Vera L S; Ribeiro da Silva, Maria D M C
2014-07-01
A combined experimental and computational study was developed to evaluate and understand the energetics and reactivity of formyl and methoxy α-naphthalene derivatives. Static bomb combustion calorimetry and the Calvet microcalorimetry were the experimental techniques used to determine the standard (p(o)=0.1 MPa) molar enthalpies of formation, in the liquid phase, ΔfHm(o)(l), and of vaporization, Δl(g)Hm(o), at T=298.15K, respectively, of the two liquid naphthalene derivatives. Those experimental values were used to derive the values of the experimental standard molar enthalpies of formation, in the gaseous phase, ΔfHm(o)(g), of 1-methoxynaphthalene, (-3.0 ± 3.1)kJmol(-1), and of 1-formylnaphthalene, (36.3 ± 4.1)kJ mol(-1). High-level quantum chemical calculations at the composite G3(MP2)//B3LYP level were performed to estimate the values of the ΔfHm(o)(g) of the two compounds studied resulting in values in very good agreement with experimental ones. Natural bond orbital (NBO) calculations were also performed to determine more about the structure and reactivity of this class of compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stavrou, Elissaios; Yao, Yansun; Zaug, Joseph M; Bastea, Sorin; Kalkan, Bora; Konôpková, Zuzana; Kunz, Martin
2016-08-12
Magnesium chloride (MgCl2) with the rhombohedral layered CdCl2-type structure (α-MgCl2) has been studied experimentally using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. The results reveal a pressure-induced second-order structural phase transition to a hexagonal layered CdI2-type structure (β-MgCl2) at 0.7 GPa: the stacking sequence of the Cl anions are altered resulting in a reduction of the c-axis length. Theoretical calculations confirm this phase transition sequence and the calculated transition pressure is in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phase. According to our experimental results MgCl2 remains in a 2D layered phase up to 100 GPa and further, the 6-fold coordination of Mg cations is retained. Theoretical calculations of relative enthalpy suggest that this extensive pressure stability is due to a low enthalpy of the layered structure ruling out kinetic barrier effects. This observation is unusual, as it contradicts with the general structural behavior of highly compressed AB2 compounds.
Stavrou, Elissaios; Yao, Yansun; Zaug, Joseph M.; ...
2016-08-12
We studied magnesium chloride (MgCl 2) with the rhombohedral layered CdCl 2-type structure (α-MgCl 2), experimentally, using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. Our results reveal a pressure-induced second-order structural phase transition to a hexagonal layered CdI 2-type structure (β-MgCl 2) at 0.7 GPa: the stacking sequence of the Cl anions are altered resulting in a reduction of the c-axis length. Theoretical calculations confirm this phase transition sequence and the calculated transition pressure is in excellent agreement with the experiment.more » Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phase. According to our experimental results MgCl 2 remains in a 2D layered phase up to 100 GPa and further, the 6-fold coordination of Mg cations is retained. Theoretical calculations of relative enthalpy suggest that this extensive pressure stability is due to a low enthalpy of the layered structure ruling out kinetic barrier effects. Our observation is unusual, as it contradicts with the general structural behavior of highly compressed AB 2 compounds.« less
Characteristics of phase-change materials containing oxide nano-additives for thermal storage
2012-01-01
In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin. PMID:23127224
NASA Astrophysics Data System (ADS)
Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.
2015-04-01
In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.
NASA Technical Reports Server (NTRS)
Sawdy, D. T.; Beckemeyer, R. J.; Patterson, J. D.
1976-01-01
Results are presented from detailed analytical studies made to define methods for obtaining improved multisegment lining performance by taking advantage of relative placement of each lining segment. Properly phased liner segments reflect and spatially redistribute the incident acoustic energy and thus provide additional attenuation. A mathematical model was developed for rectangular ducts with uniform mean flow. Segmented acoustic fields were represented by duct eigenfunction expansions, and mode-matching was used to ensure continuity of the total field. Parametric studies were performed to identify attenuation mechanisms and define preliminary liner configurations. An optimization procedure was used to determine optimum liner impedance values for a given total lining length, Mach number, and incident modal distribution. Optimal segmented liners are presented and it is shown that, provided the sound source is well-defined and flow environment is known, conventional infinite duct optimum attenuation rates can be improved. To confirm these results, an experimental program was conducted in a laboratory test facility. The measured data are presented in the form of analytical-experimental correlations. Excellent agreement between theory and experiment verifies and substantiates the analytical prediction techniques. The results indicate that phased liners may be of immediate benefit in the development of improved aircraft exhaust duct noise suppressors.
Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank
2016-06-20
Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.
Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.; ...
2015-07-29
Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical identification of hydrocarbons and in vibrational sum-frequency generation (SFG) spectroscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a challenge from a theoretical viewpoint. Here in this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effectsmore » in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes challenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show significant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.« less
Experiments in ultrasonic flaw detection using a MEMS transducer
NASA Astrophysics Data System (ADS)
Jain, Akash; Greve, David W.; Oppenheim, Irving J.
2003-08-01
In earlier work we developed a MEMS phased array transducer, fabricated in the MUMPs process, and we reported on initial experimental studies in which the device was affixed into contact with solids. We demonstrated the successful detection of signals from a conventional ultrasonic source, and the successful localization of the source in an off-axis geometry using phased array signal processing. We now describe the predicted transmission and coupling characteristics for such devices in contact with solids, demonstrating reasonable agreement with experimental behavior. We then describe the results of flaw detection experiments, as well as results for fluid-coupled detectors.
Investigation on Nonlinear-Optical Properties of Palm Oil/Silver Nanoparticles
NASA Astrophysics Data System (ADS)
Zamiri, R.; Parvizi, R.; Zakaria, A.; Sadrolhosseini, A. R.; Zamiri, G.; Darroudi, M.; Husin, M. S.
2012-06-01
We have investigated the spatial self phase modulation of palm oil containing silver nanoparticles (palm oil/Ag-NPs). The study carried out using continuous wave diode pumped solid state laser with wavelength of 405 nm and power of 50 mW. The strong spatial self phase modulation patterns were observed that suggest the palm oil/Ag-NPs have a relatively large nonlinear refractive index. The obtained values of nonlinear refractive index were increased with the increment in the volume fractions. The observed experimental patterns were also theoretically modeled which are in good agreement with experimental results.
Phase diagrams for understanding gold-seeded growth of GaAs and InAs nanowires
NASA Astrophysics Data System (ADS)
Ghasemi, Masoomeh; Johansson, Jonas
2017-04-01
Phase diagrams are useful tools to study the phase equilibria of nanowire materials systems because the growth of nanowires is accompanied by phase formation and phase transition. We have modeled the phase equilibria of the As-Au-Ga ternary system by means of the CALPHAD method. This method is a well-established semi-empirical technique for thermodynamic modeling in which Gibbs energy functions with free parameters are defined for all phases in a system followed by adjusting these parameters to the experimental data. Using the resulting As-Au-Ga thermodynamic database, four vertical cuts of this ternary system are calculated and all show good agreement with experiments. This ternary system is particularly useful for predicting the state of the Au seed alloys when growing GaAs nanowires and we discuss such predictions. Similar calculations are performed for Au-seeded InAs nanowires. We show that the vapor-liquid-solid (VLS) growth fails for InAs nanowires, while GaAs nanowires can grow from a liquid particle. Our calculations are in agreement with experimental data on the growth of Au-seeded GaAs and InAs nanowires.
Instructional Film Research and the Learner.
ERIC Educational Resources Information Center
Bowie, Melvin McKinney
A brief discussion of three phases in research on instructional films--whether films can teach (approximately 1910-1950), how films teach (1940 through the late 1950s), and who learns from films (1960-1985)--introduces a review of the research literature on the third phase. The experimental studies reviewed focus on three concerns: (1) use of…
Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina
NASA Astrophysics Data System (ADS)
Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya
Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.
Phononic band gaps and phase singularities in the ultrasonic response from toughened composites
NASA Astrophysics Data System (ADS)
Smith, Robert A.; Nelson, Luke J.; Mienczakowski, Martin J.
2018-04-01
Ultrasonic 3D characterization of ply-level features in layered composites, such as out-of-plane wrinkles and ply drops, is now possible with carefully applied analytic-signal analysis. Study of instantaneous amplitude, phase and frequency in the ultrasonic response has revealed some interesting effects, which become more problematic for 3D characterization as the inter-ply resin-layer thicknesses increase. In modern particle-toughened laminates, the thicker resin layers cause phase singularities to be observed; these are locations where the instantaneous amplitude is zero, so the instantaneous phase is undefined. The depth at which these occur has been observed experimentally to vary with resin- layer thickness, such that a phase-singularity surface is formed; beyond this surface, the ultrasonic response is reduced and significantly more difficult to interpret, so a method for removing the effect would be advantageous. The underlying physics has been studied using an analytical one-dimensional multi-layer model. This has been sufficient to determine that the cause is linked to a phononic band gap in the ultrasound transmitted through multiple equally-spaced partial reflectors. As a result, the phase singularity also depends on input-pulse center frequency and bandwidth. Various methods for overcoming the confusing effects in the data have been proposed and subsequently investigated using the analytical model. This paper will show experimental and modelled evidence of phase-singularities and phase-singularity surfaces, as well as the success of methods for reducing their effects.
Phase behaviour, interactions, and structural studies of (amines+ionic liquids) binary mixtures.
Jacquemin, Johan; Bendová, Magdalena; Sedláková, Zuzana; Blesic, Marijana; Holbrey, John D; Mullan, Claire L; Youngs, Tristan G A; Pison, Laure; Wagner, Zdeněk; Aim, Karel; Costa Gomes, Margarida F; Hardacre, Christopher
2012-05-14
We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [C(n)mim] [NTf(2)] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory-Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C(2)mim] [NTf(2)]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C(2)mim][NTf(2)]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo
2014-01-01
Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360
Interstitial-phase precipitation in iron-base alloys: a comparative study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelton, A.R.
1982-06-01
Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy.
Equation of state and phase diagram of carbon
NASA Astrophysics Data System (ADS)
Averin, A. B.; Dremov, V. V.; Samarin, S. I.; Sapozhnikov, A. T.
1996-05-01
Thermodynamically consistent equation of state (EOS) for graphite and diamond is proposed. The EOS satisfactorily describes experimental data on shock compression, heat capacity, thermal expansion and phase equilibrium and can be used in mathematical models and computer codes for calculation of graphite-diamond phase transition under dynamic loading. Monte-Carlo calculations of diamond thermodynamic properties have been carried out to check correctness of the EOS in the regions of phase diagram where experimental data are absent. On the basis of the EOS and Grover's model of liquid state the EOS of liquid carbon have been constructed and carbon phase diagram (graphite and diamond melting curves and triple point) have been calculated. Comparison of calculated and experimental Hugoniots has stated a question about diamond melting curve.
Phase II Clinical Trial of Intraoral Grafting of Human Tissue Engineered Oral Mucosa
2017-10-01
experimental arm subject in the small defect study. A protocol amendment in early 2017revised the study inclusionary criteria to include all non ...construed as an official Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE...group phase II study to assess the safety and efficacy for use of human EVPOME for soft tissue intraoral grafting procedures compared to the “gold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, B.D.
The objective of this project is to advance lower cost solar cooling technology with the feasibility analysis, design and evaluation of proof-of-concept open cycle solar cooling concepts. The work is divided into three phases, with planned completion of each phase before proceeding with the following phase: Phase I - performance/economic/environmental related analysis and exploratory studies; Phase II - design and construction of an experimental system, including evaluative testing; Phase III - extended system testing during operation and engineering modifications as required. For Phase I, analysis and resolution of critical issues were completed with the objective of developing design specifications formore » an improved prototype OCA system.« less
Engineering topological defect patterns of Bose condensates in shaken optical lattices
NASA Astrophysics Data System (ADS)
Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng
2017-04-01
Topological defects emerge and play an essential role in the dynamics of systems undergoing continuous, symmetry-breaking phase transitions. Here, we study the topological defects (domain walls) which form when a Bose condensate in a shaken optical lattice undergoes a quantum phase transition and separates into domains of superfluid with finite momentum. Here, we experimentally demonstrate the ability to control the pattern of domain walls using a digital micromirror device. We further explore implementations of this technique to study dynamics near the phase transition and the evolution of topological defects.
Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Marker, Cassie
An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database ensuring that the sublattice models are compatible with each other. For subsystems, such as the Sn-Ta system, where no thermodynamic description had been evaluated and minimal experimental data was available, first-principles calculations based on DFT were used. The Sn-Ta system has two intermetallic phases, TaSn2 and Ta3Sn, with three solution phases: bcc, body centered tetragonal (bct) and diamond. First-principles calculations were completed on the intermetallic and solution phases. Special quasirandom structures (SQS) were used to obtain information about the solution phases across the entire composition range. The Debye-Gruneisen approach, as well as the quasiharmonic phonon method, were used to obtain the finite-temperature data. Results from the first-principles calculations and experiments were used to complete the thermodynamic description. The resulting phase diagram reproduced the first-principles calculations and experimental data accurately. In order to determine the effect of alloying on the elastic properties, first-principles calculations based on DFT were systematically done on the pure elements, five Ti-X binary systems and Ti-X-Y ternary systems (X ≠ Y = Mo, Nb, Sn, Ta Zr) in the bcc phase. The first-principles calculations predicted the single crystal elastic stiffness constants cij 's. Correspondingly, the polycrystalline aggregate properties were also estimated from the cij's, including bulk modulus B, shear modulus G and Young's modulus E. The calculated results showed good agreement with experimental results. The CALPHAD method was then adapted to assist in the database development of the elastic properties as a function of composition. On average, the database predicted the elastic properties of higher order Ti-alloys within 5 GPa of the experimental results. Finally, the formation of the metastable phases, o and alpha" was studied in the Ti-Ta and Ti-Nb systems. The formation energy of these phases, calculated from first-principles at 0 K, showed that the phases have similar formation energies to the bcc and hcp phases. Inelastic neutron scattering was completed on four different Ti-Nb compositions to study the entropy of the phases as well as the transformations occurring when the phases form and the phase fractions. Ongoing work is being done to use the experimental information to introduce thermodynamic descriptions for these two phases in the Ti-Nb system in order to be able to predict the formation and phase fractions. DFT based first-principles were used to predict the effect these phases have on the elastic properties and a rule of mixtures was used to determine the elastic properties of multi-phase alloys. The results were compared with experiments and showed that if the ongoing modeling can predict the phase fraction, the elastic database can accurately predict the elastic properties of the o and alpha" phases. This thesis provides a knowledge base of the thermodynamic and elastic properties of Ti-alloys from computational thermodynamics. The databases created will impact research activities on Ti-alloys and specifically efforts focused on Ti-alloys for biomedical applications.
NASA Technical Reports Server (NTRS)
Nicol, M. F.; Johnson, M.; Schwake, A.
1983-01-01
Progress is reported in the development of the P-T-X diagram for 0 less than or = X less than or = 0.50 and in the development of techniques for measuring adiabats of phases of NH3-H2O. The partial phase diagram is presented, investigations of the compositions of ammonia ices are described, and methods for obtaining the infrared spectra of ices are discussed.
RFI in hybrid loops - Simulation and experimental results.
NASA Technical Reports Server (NTRS)
Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.
1972-01-01
A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.
Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves.
Tsitoura, F; Gietz, U; Chabchoub, A; Hoffmann, N
2018-06-01
We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.
Onset of Curved Dendrite Growth in an Al-Cu Welding Pool: A Phase Field Study
NASA Astrophysics Data System (ADS)
Wang, Lei; Wei, Yanhong
2018-02-01
A phase field model is developed to predict curved dendrite growth in the gas tungsten arc (GTA) welding pool of an Al-Cu alloy. The equations of temperature gradient, pulling velocity and dendrite growth orientation are proposed to consider the transient solidification process during welding. Solidification microstructures and solute diffusion along the fusion boundary in the welding pool are predicted by using the phase field model coupled with transient solidification conditions. Predicted primary dendrites are curved and point toward the welding direction. Welding experiments are carried out to observe solidification microstructures of the weld. Comparisons of simulation results with experimental measurements are conducted. Predicted dendritic morphology, dendrite growth orientation, primary dendrite arm spacing and initial cell spacing give a good agreement with experimental measurements.
Experimental Study of a Nitrogen Natural Circulation Loop at Low Heat Flux
NASA Astrophysics Data System (ADS)
Baudouy, B.
2010-04-01
A natural convection circulation loop in liquid nitrogen, i.e. an open thermosiphon flow configuration, has been investigated experimentally near atmospheric pressure. The experiments were conducted on a 2 m high loop with a copper tube of 10 mm inner diameter uniformly heated over a length of 0.95 m. Evolution of the total mass flow rate of the loop and the pressure difference along the tube are described. We also report the boiling curves where single phase and two-phase flows are identified with increasing heat flux. We focus our heat transfer analysis on the single phase regime where mixed convection is encountered. A heat transfer coefficient correlation is proposed. We also examine the boiling incipience as a function of the tube height.
Phase Domain Walls in Weakly Nonlinear Deep Water Surface Gravity Waves
NASA Astrophysics Data System (ADS)
Tsitoura, F.; Gietz, U.; Chabchoub, A.; Hoffmann, N.
2018-06-01
We report a theoretical derivation, an experimental observation and a numerical validation of nonlinear phase domain walls in weakly nonlinear deep water surface gravity waves. The domain walls presented are connecting homogeneous zones of weakly nonlinear plane Stokes waves of identical amplitude and wave vector but differences in phase. By exploiting symmetry transformations within the framework of the nonlinear Schrödinger equation we demonstrate the existence of exact analytical solutions representing such domain walls in the weakly nonlinear limit. The walls are in general oblique to the direction of the wave vector and stationary in moving reference frames. Experimental and numerical studies confirm and visualize the findings. Our present results demonstrate that nonlinear domain walls do exist in the weakly nonlinear regime of general systems exhibiting dispersive waves.
Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME
NASA Technical Reports Server (NTRS)
Shirley, John A.; Boedeker, Laurence R.
1993-01-01
Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman scattering excited by a KrF excimer laser pulse was investigated for SSME exit plane temperature and major species concentration measurements. The relative concentrations of molecular hydrogen and water vapor would be determined by measuring the integrated Q-branch scattering signals through narrow bandpass filters in front of photomultipliers. The temperature would be determined by comparing the signal from a single hydrogen rotational Raman line to the total hydrogen Q-branch signal. The rotational Raman line would be isolated by a monochromator and detected with a PMT.
Virtual pyramid wavefront sensor for phase unwrapping.
Akondi, Vyas; Vohnsen, Brian; Marcos, Susana
2016-10-10
Noise affects wavefront reconstruction from wrapped phase data. A novel method of phase unwrapping is proposed with the help of a virtual pyramid wavefront sensor. The method was tested on noisy wrapped phase images obtained experimentally with a digital phase-shifting point diffraction interferometer. The virtuality of the pyramid wavefront sensor allows easy tuning of the pyramid apex angle and modulation amplitude. It is shown that an optimal modulation amplitude obtained by monitoring the Strehl ratio helps in achieving better accuracy. Through simulation studies and iterative estimation, it is shown that the virtual pyramid wavefront sensor is robust to random noise.
Velocity-dependent quantum phase slips in 1D atomic superfluids.
Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara
2016-05-18
Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.
Studying three-phase supply in school
NASA Astrophysics Data System (ADS)
Singhal, Amit Kumar; Arun, P.
2009-07-01
The power distributions of nearly all major countries have accepted three-phase distribution as a standard. With increasing power requirements of instrumentation today even a small physics laboratory requires a three-phase supply. While physics students are given an introduction to this in passing, no experimental work is done with three-phase supply due to the possibility of accidents while working with such large power. We believe a conceptual understanding of three-phase supply would be useful for physics students, with hands-on experience using a simple circuit that can be assembled even in a high school laboratory.
Senary refractory high-entropy alloy HfNbTaTiVZr
Gao, Michael C.; Zhang, B.; Yang, S.; ...
2015-09-03
Discovery of new single-phase high-entropy alloys (HEAs) is important to understand HEA formation mechanisms. The present study reports computational design and experimental validation of a senary HEA, HfNbTaTiVZr, in a body-centered cubic structure. The phase diagrams and thermodynamic properties of this senary system were modeled using the CALPHAD method. Its atomic structure and diffusion constants were studied using ab initio molecular dynamics simulations. Here, the microstructure of the as-cast HfNbTaTiVZr alloy was studied using X-ray diffraction and scanning electron microscopy, and the microsegregation in the as-cast state was found to qualitatively agree with the solidification predictions from CALPHAD. Supported bymore » both simulation and experimental results, the HEA formation rules are discussed.« less
NASA Astrophysics Data System (ADS)
Zhou, Ding-Wei
The emulsion liquid membrane (ELM) technique has been successfully applied on the removal of arsenic (As) from metallurgical wastewater and the removal of strontium (Sr) from radioactive wastewater. This study consisted of experimental work and mathematical modeling. Extraction of arsenic by an emulsion liquid membrane was firstly investigated. The liquid membrane used was composed of 2-ethylhexyl alcohol (2EHA) as the extractant, ECA4360J as the surfactant, and Exxsol D-80 solvent (or heptane) as the diluent. The sulfuric acid and sodium hydroxide solutions were used as the external and internal phases, respectively. The arsenic removal efficiency reached 92% within 15 minutes in one stage. Extraction and stripping chemistries were postulated and investigated. It was observed that extraction efficiency and rate increase with the increase of acidic strength and alkali strength in the external and internal phases, respectively. It was also observed that the removal selectivity of arsenic over copper is extremely high. Strontium-90 is one of the major radioactive metals appearing in nuclear wastewater. The emulsion liquid membrane process was investigated as a separation method by using the non-radioactive ^{87}Sr as its substitute. In our study, the membrane phase was composed of di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant, ECA4360J as the surfactant and Exxsol D-80 as the diluent. A sulfuric acid solution was used in the internal phase as the stripping agent. The pH range in the external phase was determined by the extraction isotherm. Under the most favorable operating condition, the strontium removal efficiency can reach 98% in two minutes. Mass transfer of the emulsion liquid membrane (ELM) system was modeled mathematically. Our model took into account the following: mass transfer of solute across the film between the external phase and the membrane phase, chemical equilibrium of the extraction reaction at the external phase-membrane interface, simultaneous diffusion of the solute-carrier complex inside the globule membrane phase and stripping of the complex at the membrane-internal phase interface, chemical equilibrium of the stripping reaction at the membrane-internal phase interface and leakage of the solute from the internal phase to the external phase. Resulting simultaneous partial differential equations were solved analytically by the Laplace transform method. Four dimensionless groups were found with special physical meanings to characterize the emulsion liquid membrane systems. It not only predicted the concentration of solute in the external phase versus time, but also gave the concentration profile inside the membrane globule and the interfacial concentration at the external-membrane phase interface at different time. The model predicted very well the experimental data obtained from the removal of arsenic and strontium by the emulsion liquid membranes.
ERIC Educational Resources Information Center
Avargil, Shirly; Bruce, Mitchell R. M.; Amar, Franc¸ois G.; Bruce, Alice E.
2015-01-01
Students' understanding about analogy was investigated after a CORE learning cycle general chemistry experiment. CORE (Chemical Observations, Representations, Experimentation) is a new three-phase learning cycle that involves (phase 1) guiding students through chemical observations while they consider a series of open-ended questions, (phase 2)…
The Feasibility of Radio Direction Finding for Swarm Localization
2017-09-01
First, basic RDF theory is presented. Next, a laboratory experiment to evaluate RDF using a SDR is developed. Finally, experimental data are presented...angle vs. the true angle (top) and the recovered angle error (bottom) for noisy phase measurements ............................................... 8...difference (middle), and corrected phase difference (bottom) ................................................... 19 Fig. 22 Experimental phase
Study on stress-strain response of multi-phase TRIP steel under cyclic loading
NASA Astrophysics Data System (ADS)
Dan, W. J.; Hu, Z. G.; Zhang, W. G.; Li, S. H.; Lin, Z. Q.
2013-12-01
The stress-strain response of multi-phase TRIP590 sheet steel is studied in cyclic loading condition at room temperature based on a cyclic phase transformation model and a multi-phase mixed kinematic hardening model. The cyclic martensite transformation model is proposed based on the shear-band intersection, where the repeat number, strain amplitude and cyclic frequency are used to control the phase transformation process. The multi-phase mixed kinematic hardening model is developed based on the non-linear kinematic hardening rule of per-phase. The parameters of transformation model are identified with the relationship between the austenite volume fraction and the repeat number. The parameters in Kinematic hardening model are confirmed by the experimental hysteresis loops in different strain amplitude conditions. The responses of hysteresis loop and stress amplitude are evaluated by tension-compression data.
Zhang, Kai; Nusran, N. M.; Slezak, B. R.; ...
2016-05-17
While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Nusran, N. M.; Slezak, B. R.
While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less
Phase transition kinetics for a Bose Einstein condensate in a periodically driven band system
NASA Astrophysics Data System (ADS)
Michon, E.; Cabrera-Gutiérrez, C.; Fortun, A.; Berger, M.; Arnal, M.; Brunaud, V.; Billy, J.; Petitjean, C.; Schlagheck, P.; Guéry-Odelin, D.
2018-05-01
The dynamical transition of an atomic Bose–Einstein condensate from a spatially periodic state to a staggered state with alternating sign in its wavefunction is experimentally studied using a one-dimensional phase modulated optical lattice. We observe the crossover from quantum to thermal fluctuations as the triggering mechanism for the nucleation of staggered states. In good quantitative agreement with numerical simulations based on the truncated Wigner method, we experimentally investigate how the nucleation time varies with the renormalized tunneling rate, the atomic density, and the driving frequency. The effective inverted energy band in the driven lattice is identified as the key ingredient which explains the emergence of gap solitons as observed in numerics and the possibility to nucleate staggered states from interband excitations as reported experimentally.
NASA Astrophysics Data System (ADS)
Waters, L. E.; Cottrell, E.; Kelley, K. A.; Coombs, M. L.
2017-12-01
Buldir, a volcano in the western Aleutian Arc, features eruptive products that form one of the most strongly calc-alkaline compositional trends observed in modern island arcs. Previous studies of Buldir and nearby submarine dredge samples suggest that Buldir's mineral phases and isotopic signatures may be introduced through mixing of two distinct magmas and/or melts, as no experimental study has been able to create a liquid line of descent (LLD) as calc-alkaline as Buldir's whole rock trend. To further test this hypothesis, we present new experimental results and petrographic analysis of tephras from the 2015 field season of the GeoPRISMS shared platform. Tephras (51.4-54.8 wt% SiO2) have a phenocryst assemblage of olivine + plagioclase + cpx + spinel ± hornblende (hbl). In natural samples, plagioclase comprises most of the crystal volume, followed by either olivine or hornblende. In samples that contain abundant hbl (Hbl Mg#=65-80), olivine and plagioclase span a range of compositions from Fo72-86 and An60-93, respectively. In samples without hbl, olivines are more forsteritic (Fo79-90), and plagioclase is less calcic (An65-83). Spinel is ubiquitous; with Cr- rich spinel inclusions in olivine and hbl, and magnetite in the groundmass. Our petrologic observations do not require magma mixing. To determine whether these observations could be consistent with the LLD of a single parental liquid, we conducted a series of phase equilibrium experiments at 100 MPa in a rapid-quench cold-seal (MHC) apparatus on the most primitive natural lava from Buldir (9.34 wt% MgO). Experiments were equilibrated in noble metal capsules pre-saturated with Fe, and buffered at Re-ReO2 under water-saturated conditions. Spinel [(Mg80, Fe2+20)(Fe3+52, Cr83, Al66)O4] is the liquidus phase, followed by olivine, then plagioclase, then cpx, and lastly, hbl. Once cpx and hbl saturate, spinel composition shifts to magnetite. Experimental run products demonstrate that all mineral phases observed in the tephras are plausible phenocrysts. Experimental glass compositions demonstrate that the strongly calc-alkaline trend observed at Buldir can be produced through crystallization of a parental liquid under water-saturated conditions at relatively high oxygen fugacity, where the effect of high fO2 is to stabilize spinel as a liquidus phase.
Madankumar, Arumugam; Jayakumar, Subramaniyan; Gokuladhas, Krishnan; Rajan, Balan; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam
2013-04-05
Xenobiotic metabolizing enzymes are chief determinants in both the susceptibility to mutagenic effect of chemical carcinogens and in the response of tumors to chemotherapy. The present study was aimed to analyze the effect of geraniol administration on the activity of phase I and phase II carcinogen metabolizing enzymes through the nuclear factor erythroid 2-related factor-2 (Nrf2) activation against 4-niroquinoline-1-oxide (4NQO) induced oral carcinogenesis. The well-known chemical carcinogen 4NQO (50 ppm) was used to induce oral carcinogenesis through drinking water for 4, 12, and 20 weeks. The degree of cancer progression at each stage was confirmed by histological examination. At the end of the experimental period, 100% tumor formation was observed in the oral cavity of 4NQO induced animals with significant (P<0.05) alteration in the status of tumor markers, tongue and liver phase I and phase II drug metabolizing enzymes indicating progression of disease. Oral administration of geraniol at the dose of 200 mg/kg b.wt., thrice a week to 4NQO induced animals was able to inhibit tumor formation and thereby delayed the progression of oral carcinogenesis by modulating tongue and liver phase I and phase II drug metabolizing enzymes, as substantiated further by the histological and transmission electron microscopic studies. Our results demonstrate that geraniol exerts its chemopreventive potential by altering activities of phases I and II drug metabolizing enzymes to achieve minimum bioactivation of carcinogen and maximum detoxification. Copyright © 2013 Elsevier B.V. All rights reserved.
Quantum phases of dipolar soft-core bosons
NASA Astrophysics Data System (ADS)
Grimmer, D.; Safavi-Naini, A.; Capogrosso-Sansone, B.; Söyler, Ş. G.
2014-10-01
We study the phase diagram of a system of soft-core dipolar bosons confined to a two-dimensional optical lattice layer. We assume that dipoles are aligned perpendicular to the layer such that the dipolar interactions are purely repulsive and isotropic. We consider the full dipolar interaction and perform path-integral quantum Monte Carlo simulations using the worm algorithm. Besides a superfluid phase, we find various solid and supersolid phases. We show that, unlike what was found previously for the case of nearest-neighbor interaction, supersolid phases are stabilized by doping the solids not only with particles but with holes as well. We further study the stability of these quantum phases against thermal fluctuations. Finally, we discuss pair formation and the stability of the pair checkerboard phase formed in a bilayer geometry, and we suggest experimental conditions under which the pair checkerboard phase can be observed.
NASA Astrophysics Data System (ADS)
Vlahos, E.; Kumar, A.; Denev, S.; Melville, A.; Adamo, C.; Ihlefeld, J. F.; Sheng, G.; Zeches, R. J.; Zhang, J. X.; He, Q.; Yang, C. H.; Erni, R.; Rossell, M. D.; J, A.; Hatt; Chu, Y.-H.; Wang, C. H.; Ederer, C.; Gopalan, V.; Chen, L. Q.; Schlom, D. G.; Spaldin, N. A.; Martin, L. W.; Ramesh, R.; Tenne, Dmitri
2010-03-01
We have shown that biaxially strained BiFeO3 thin films can undergo an isosymmetric phase transition from a rhombohedral-like to a tetragonal-like phase. This talk discusses the evolution of the tetragonal and the mixed phases in BiFeO3/YAlO3 thin films with varying film thickness using optical second harmonic generation (SHG) and Raman spectroscopy. 25nm, 75nm, and 225 nm thick films were studied; thinner films are dominated by the tetragonal phase, whereas thicker films exhibit both tetragonal and rhombohedral phases. The evolution of these phases as function of film thickness and temperature was experimentally determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants
X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less
NASA Astrophysics Data System (ADS)
Servin, Manuel; Padilla, Moises; Garnica, Guillermo
2018-07-01
Since the early 1970s, optical two-wavelength phase-metrology (TWPM) has been used in a wide variety of experimental set ups. In TWPM one may compute the phase-sum and the phase-difference of two close phase measurements. Early TWPM optically computed the phase difference and phase sum by double exposure holography. However soon after, TWPM became almost synonymous to calculating the phase-difference only. The more sensitive phase-sum was largely forgotten. The standard application for phase-difference TWPM is to extend the phase measurement depth without phase-unwrapping for discontinuous phase-objects. This phase-difference, while non-wrapped, decreases however the signal-to-noise ratio (SNR) of the estimated phase. On the other hand, the phase-sum increases the phase sensitivity, and the SNR of the estimated phase. In spite of these two great advantages, the use of the phase-sum in TWPM has been almost ignored. In this paper we review and set the stage for digital TWPM for super-sensitive phase-sum estimation. This is coupled with two-sensitivity phase-unwrapping to obtain extended-range super-sensitive fringe-projection profilometry estimations. Here we mathematically prove, and experimentally show that using the phase-sum one obtains a huge increase in SNR with respect to using the phase-difference alone. The pioneer works on double exposure TWPM holography that uses the phase-difference and phase-sum are also properly acknowledged. Finally, two experimental results from fringe-projection profilometry that clearly show the huge SNR gain of the phase-sum, with respect to the phase-difference is now mathematically well established.
Liu, Weilin; Yao, Jianping
2014-02-15
A simple photonic approach to implementing an ultra-wideband microwave phase shifter based on an erbium-ytterbium (Er/Yb) co-doped linearly chirped fiber Bragg grating (LCFBG) is proposed and experimentally demonstrated. The LCFBG is designed to have a constant magnitude response over a reflection band, and a phase response that is linear and nonlinear in two sections in the reflection band. When an optical single-sideband with carrier (OSSB+C) signal is sent to the LCFBG, by locating the optical carrier at the section corresponding to the nonlinear phase response and the sideband at the section corresponding to the linear phase response, a phase shift is introduced to the optical carrier, which is then translated to the microwave signal by beating the optical carrier and the sideband at a photodetector. The tuning of the phase shift is realized by optically pumping the Er/Yb co-doped LCFBG by a 980-nm laser diode. The proposed ultra-wideband microwave photonic phase shifter is experimentally demonstrated. A phase shifter with a full 360° phase shift with a bandwidth from 10 to 40 GHz is experimentally demonstrated.
Measuring and modeling the salting-out effect in ammonium sulfate solutions.
Wang, Chen; Lei, Ying Duan; Endo, Satoshi; Wania, Frank
2014-11-18
The presence of inorganic salts significantly influences the partitioning behavior of organic compounds between environmentally relevant aqueous phases, such as seawater or aqueous aerosol, and other, nonaqueous phases (gas phase, organic phase, etc.). In this study, salting-out coefficients (or Setschenow constants) (KS [M(-1)]) for 38 diverse neutral compounds in ammonium sulfate ((NH4)2SO4) solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The measured KS were all positive, varied from 0.216 to 0.729, and had standard errors in the range of 0.006-0.060. Compared to KS for sodium chloride (NaCl) in the literature, KS values for (NH4)2SO4 are always higher for the same compound, suggesting a higher salting-out effect of (NH4)2SO4. A polyparameter linear free energy relationship (pp-LFER) for predicting KS in (NH4)2SO4 solutions was generated using the experimental data for calibration. pp-LFER predicted KS agreed well with measured KS reported in the literature. KS for (NH4)2SO4 was also predicted using the quantum-chemical COSMOtherm software and the thermodynamic model AIOMFAC. While COSMOtherm generally overpredicted the experimental KS, predicted and experimental values were correlated. Therefore, a fitting factor needs to be applied when using the current version of COSMOtherm to predict KS. AIOMFAC tends to underpredict the measured KS((NH4)2SO4) but always overpredicts KS(NaCl). The prediction error is generally larger for KS(NaCl) than for KS((NH4)2SO4). AIOMFAC also predicted a dependence of KS on the salt concentrations, which is not observed in the experimental data. In order to demonstrate that the models developed and calibrated in this study can be applied to estimate Setschenow coefficients for atmospherically relevant compounds involved in secondary organic aerosol formation based on chemical structure alone, we predicted and compared KS for selected α-pinene oxidation products.
CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Hu
A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less
Experimental implementation of phase locking in a nonlinear interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Marino, A. M.
2015-09-21
Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in suchmore » a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.« less
ERIC Educational Resources Information Center
Cunningham, Jay L.; And Others
This report presents the results of the initial phase of the File Organization Project, a study which focuses upon the on-line maintenance and search of the library's catalog holdings record. The focus of the project is to develop a facility for research and experimentation with the many issues of on-line file organizations and search. The first…
Experimental Program to Stimulate Competitive Research (EPSCoR)
NASA Technical Reports Server (NTRS)
Dingerson, Michael R.
1997-01-01
Report includes: (1) CLUSTER: "Studies in Macromolecular Behavior in Microgravity Environment": The Role of Protein Oligomers in Protein Crystallization; Phase Separation Phenomena in Microgravity; Traveling Front Polymerizations; Investigating Mechanisms Affecting Phase Transition Response and Changes in Thermal Transport Properties in ER-Fluids under Normal and Microgravity Conditions. (2) CLUSTER: "Computational/Parallel Processing Studies": Flows in Local Chemical Equilibrium; A Computational Method for Solving Very Large Problems; Modeling of Cavitating Flows.
Moreira, M C S; da Silva, E F; Silveira, L L; de Paiva, Y B; de Castro, C H; Freiria-Oliveira, A H; Rosa, D A; Ferreira, P M; Xavier, C H; Colombari, E; Pedrino, Gustavo R
2014-12-28
Epigenetic studies suggest that diseases that develop in adulthood are related to certain conditions to which the individual is exposed during the initial stages of life. Experimental evidence has demonstrated that offspring born to mothers maintained on high-Na diets during pregnancy have higher mean arterial pressure (MAP) in adulthood. Although these studies have demonstrated the importance of prenatal phases to hypertension development, no evidence regarding the role of high Na intake during postnatal phases in the development of this pathology has been reported. Therefore, in the present study, the effects of Na overload during childhood on induced water and Na intakes and on cardiovascular parameters in adulthood were evaluated. Experiments were carried out in two groups of 21-d-old rats: experimental group, maintained on hypertonic saline (0.3 m-NaCl) solution and food for 60 d, and control group, maintained on tap water and food. Later, both groups were given water and food for 15 d (recovery period). After the recovery period, chronic cannulation of the right femoral artery was performed in unanaesthetised rats to record baseline MAP and heart rate (HR). The experimental group was found to have increased basal MAP (98.6 (sem 2.6) v. 118.3 (sem 2.7) mmHg, P< 0.05) and HR (365.4 (sem 12.2) v. 398.2 (sem 7.5) beats per min, P< 0.05). There was a decrease in the baroreflex index in the experimental group when compared with that in the control group. A water and Na intake test was performed using furosemide. Na depletion was found to induce an increase in Na intake in both the control and experimental groups (12.1 (sem 0.6) ml and 7.8 (sem 1.1), respectively, P< 0.05); however, this increase was of lower magnitude in the experimental group. These results demonstrate that postnatal Na overload alters behavioural and cardiovascular regulation in adulthood.
Palma, Beatriz Duarte; Tufik, Sergio
2010-01-01
Study Objectives: The aim of this study was to evaluate sleep patterns during the course of the disease in (NZB/NZW)F1 mice, an experimental model of systemic lupus erythematosus (SLE). Design: Female mice were implanted with electrodes for chronic recording of sleep-wake cycles during the entire experimental phase (9, 19, and 29 weeks of age). The disease course was also assessed. At each time-point, blood samples were collected from the orbital plexus to evaluate serum antinuclear antibodies (ANA), which are important serologic parameters of disease evolution. Pain perception was also evaluated. Measurements and Results: During the dark phase, (NZB/NZW)F1 mice aged 19 weeks spent more time in sleep, and, as a consequence, the total waking time was lower when compared with earlier periods. An augmented number of sleep-stage transitions and microarousals were observed at the 29th week of life in both light and dark phases. At this same time-point, the mice showed lower pain thresholds than they had at 9 weeks of life. The disease status was confirmed; the entire group of mice at 29 weeks of life showed positive ANA with high titer levels. Conclusions: The sleep-recording data showed that, during the progress and severe phases of the disease (19 and 29 wks of age, respectively), sleep architecture is altered. According to these results, increased sleep fragmentation, disease activity, and pain sensitivity are features observed in these mice, similar to symptoms of SLE. Citation: Palma BD; Tufik S. Increased disease activity is associated with altered sleep architecture in an experimental model of systemic lupus erythematosus. SLEEP 2010;33(9):1244-1248. PMID:20857872
Moisan, Gabriel; Cantin, Vincent
2016-05-01
The purpose of this study was to quantify the effects of two types of foot orthoses (FOs) on muscle activity during walking. Twenty-one healthy participants were recruited to walk on a five-meter walkway with a control condition (no FOs) and two experimental conditions (FOs and FOs with lateral bar). The experimental protocol was performed before and after a one-month period of wear for each experimental condition. Electromyographic signals were recorded for six muscles (gluteus medius, vastus lateralis, medial gastrocnemius, lateral gastrocnemius, peroneus longus and tibialis anterior). Mean muscle activity was analyzed during the contact, the combined midstance/terminal stance and the pre-swing phases of gait. Peak amplitude and time to peak amplitude were quantified during the stance phase. Unacceptable level of variability was observed between the testing sessions. Therefore, no comparisons were performed to compare the effects of the experimental conditions between testing sessions. After a one-month period of wear, FOs with lateral bar decreased peak amplitude and mean activity of the peroneus longus muscle during the combined midstance/terminal stance phase and FOs decreased peak amplitude and mean activity of the tibialis anterior muscle during the contact phase compared to a control condition. In conclusion, repeated-test design should be used with caution when assessing the muscular adaptation to the wear of FOs for a certain period of time. More studies are needed to determine if the decreased activity of the peroneus longus muscle could be of benefit to treat pathologies such as peroneal tendinopathy or lateral ankle instability. Copyright © 2016 Elsevier B.V. All rights reserved.
Spontaneous Symmetry Breaking of Domain Walls in Phase-Competing Regions
NASA Astrophysics Data System (ADS)
Ishizuka, Hiroaki; Yamada, Yasusada; Nagaosa, Naoto
2018-05-01
In this study, we investigate the nature of domain walls in an ordered phase in the phase-competing region of two Ising-type order parameters. We consider a two-component ϕ4 theory and show that the domain wall of the ground-state (primary) order parameter shows a second-order phase transition associated with the secondary order parameter of the competing phase; the effective theory of the phase transition is given by the Landau theory of an Ising-type phase transition. We find that the phase boundary of this phase transition is different from the spinodal line of the competing order. The phase transition is detected experimentally by the divergence of the susceptibility corresponding to the secondary order when the temperature is quenched to introduce the domain walls.
Experimental study of the Ca-Mg-Zn system using diffusion couples and key alloys
NASA Astrophysics Data System (ADS)
Zhang, Yi-Nan; Kevorkov, Dmytro; Bridier, Florent; Medraj, Mamoun
2011-03-01
Nine diffusion couples and 32 key samples were prepared to map the phase diagram of the Ca-Mg-Zn system. Phase relations and solubility limits were determined for binary and ternary compounds using scanning electron microscopy, electron probe microanalysis and x-ray diffraction (XRD). The crystal structure of the ternary compounds was studied by XRD and electron backscatter diffraction. Four ternary intermetallic (IM) compounds were identified in this system: Ca3MgxZn15-x (4.6<=x<=12 at 335 °C, IM1), Ca14.5Mg15.8Zn69.7 (IM2), Ca2Mg5Zn13 (IM3) and Ca1.5Mg55.3Zn43.2 (IM4). Three binary compounds were found to have extended solid solubility into ternary systems: CaZn11, CaZn13 and Mg2Ca form substitutional solid solutions where Mg substitutes for Zn atoms in the first two compounds, and Zn substitutes for both Ca and Mg atoms in Mg2Ca. The isothermal section of the Ca-Mg-Zn phase diagram at 335 °C was constructed on the basis of the obtained experimental results. The morphologies of the diffusion couples in the Ca-Mg-Zn phase diagram at 335 °C were studied. Depending on the terminal compositions of the diffusion couples, the two-phase regions in the diffusion zone have either a tooth-like morphology or contain a matrix phase with isolated and/or dendritic precipitates.
Experimental analysis of computer system dependability
NASA Technical Reports Server (NTRS)
Iyer, Ravishankar, K.; Tang, Dong
1993-01-01
This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.
Contreras-Torres, Flavio F; Basiuk, Elena V; Basiuk, Vladimir A; Meza-Laguna, Víctor; Gromovoy, Taras Yu
2012-02-16
Nanostructure derivatives of fullerene C(60) are used in emerging applications of composite matrices, including protective and decorative coating, superadsorbent material, thin films, and lightweight high-strength fiber-reinforced materials, etc. In this study, quantum chemical calculations and experimental studies were performed to analyze the derivatives of diamine-fullerene prepared by the gas-phase solvent-free functionalization technique. In particular, the aliphatic 1,8-diamino-octane and the aromatic 1,5-diaminonaphthalene, which are diamines volatile in vacuum, were studied. We addressed two alternative mechanisms of the amination reaction via polyaddition and cross-linking of C(60) with diamines, using the pure GGA BLYP, PW91, and PBE functionals; further validation calculations were performed using the semiempirical dispersion GGA B97-D functional which contains parameters that have been specially adjusted by a more realistic view on dispersion contributions. In addition, we looked for experimental evidence for the covalent functionalization by using laser desorption/ionization time-of-flight mass spectrometry, thermogravimetric analysis, and atomic force microscopy.
A model for phase noise generation in amplifiers.
Tomlin, T D; Fynn, K; Cantoni, A
2001-11-01
In this paper, a model is presented for predicting the phase modulation (PM) and amplitude modulation (AM) noise in bipolar junction transistor (BJT) amplifiers. The model correctly predicts the dependence of phase noise on the signal frequency (at a particular carrier offset frequency), explains the noise shaping of the phase noise about the signal frequency, and shows the functional dependence on the transistor parameters and the circuit parameters. Experimental studies on common emitter (CE) amplifiers have been used to validate the PM noise model at carrier frequencies between 10 and 100 MHz.
Regimes of Two-Phase Flow in Short Rectangular Channel
NASA Astrophysics Data System (ADS)
Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.
2009-08-01
Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.
Zhao, Yuling; Wang, Huiyong; Pei, Yuanchao; Liu, Zhiping; Wang, Jianji
2016-08-17
Recently, it has been found experimentally that two different amino acid ionic liquids (ILs) can be mixed to show unique lowest critical solution temperature (LCST) phase separation in water. However, little is known about the mechanism of phase separation in these IL/water mixtures at the molecular level. In this work, five kinds of amino acid ILs were chosen to study the mechanism of LCST-type phase separation by molecular dynamics (MD) simulations. Toward this end, a series of all-atom MD simulations were carried out on the ternary mixtures consisting of two different ILs and water at different temperatures. The various interaction energies and radial distribution functions (RDFs) were calculated and analyzed for these mixed systems. It was found that for amino acid ILs, the -NH2 or -COOH group of one anion could have a hydrogen bonding interaction with the -COO(-) group of another anion. With the increase of temperature, this kind of hydrogen bonding interaction between anions was strengthened and then the anion-H2O electrostatic interaction was weakened, which led to the LCST-type phase separation of the mixed ILs in water. In addition, a series of MD simulations for [P6668]1[Lys]n[Asp]1-n/H2O systems were also performed to study the effect of the mixing ratio of ILs on phase separation. It was also noted that the experimental critical composition corresponding to the lowest critical solution temperature was well predicted from the total electrostatic interaction energies as a function of mole fraction of [P6668][Lys] in these systems. The conclusions drawn from this study may provide new insight into the LCST-type phase behavior of ILs in water, and motivate further studies on practical applications.
Lo Presti, M Silvina; Bazán, P Carolina; Strauss, Mariana; Báez, Alejandra L; Rivarola, H Walter; Paglini-Oliva, Patricia A
2015-05-01
Thioridazine (TDZ) is a phenothiazine that has been shown to be one of the most potent phenothiazines to inhibit trypanothione reductase irreversibly. Trypanothione reductase is an essential enzyme for the survival of Trypanosoma cruzi in the host. Here, we reviewed the use of this drug for the treatment of T. cruzi experimental infection. In our laboratory, we have studied the effect of TDZ for the treatment of mice infected with different strains of T. cruzi and treated in the acute or in the chronic phases of the experimental infection, using two different schedules: TDZ at a dose of 80 mg/kg/day, for 3 days starting 1h after infection (acute phase), or TDZ 80 mg/kg/day for 12 days starting 180 days post infection (d.p.i.) (chronic phase). In our experience, the treatment of infected mice, in the acute or in the chronic phases of the infection, with TDZ led to a large reduction in the mortality rates and in the cardiac histological and electrocardiographical abnormalities, and modified the natural evolution of the experimental infection. These analyses reinforce the importance of treatment in the chronic phase to decrease, retard or stop the evolution to chagasic myocardiopathy. Other evidence leading to the use of this drug as a potential chemotherapeutic agent for Chagas disease treatment is also revised. Copyright © 2015 Elsevier B.V. All rights reserved.
Electronic holography using binary phase modulation
NASA Astrophysics Data System (ADS)
Matoba, Osamu
2014-06-01
A 3D display system by using a phase-only distribution is presented. Especially, binary phase distribution is used to reconstruct a 3D object for wide viewing zone angle. To obtain the phase distribution to be displayed on a phase-mode spatial light modulator, both of experimental and numerical processes are available. In this paper, we present a numerical process by using a computer graphics data. A random phase distribution is attached to all polygons of an input 3D object to reconstruct a 3D object well from the binary phase distribution. Numerical and experimental results are presented to show the effectiveness of the proposed system.
Discovery of a metastable Al20Sm4 phase
NASA Astrophysics Data System (ADS)
Ye, Z.; Zhang, F.; Sun, Y.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z.; Wang, C.-Z.; Ho, K.-M.
2015-03-01
We present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.
ERIC Educational Resources Information Center
Goebel, Ronald A.; And Others
Under a background condition of either recorded radio chatter or no radio chatter, the individual performances of two flights of mid-phase instrument student pilots were measured during a simulated instrument cross-country mission in the T-38 ground trainer. Operational constraints prevented the exercise of optimal experimental controls, thereby…
Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Mohamadirizi, Soheila; Fahami, Fariba; Bahadoran, Parvin; Ehsanpour, Soheila
2015-01-01
Background: An active teaching method has been used widely in medical education. The aim of this study was to determine the effectiveness of the four-phase teaching method on midwifery students’ emotional intelligence (EQ) in managing the childbirth. Materials and Methods: This was an experimental study that performed in 2013 in Isfahan University of Medical Sciences. Thirty midwifery students were involved in this study and selected through a random sampling method. The EQ questionnaire (43Q) was completed by both the groups, before and after the education. The collected data were analyzed using SPSS 14, the independent t-test, and the paired t-test. The statistically significant level was considered to be <0.05. Results: The findings of the independent t-test did not show any significant difference between EQ scores of the experimental and the control group before the intervention, whereas a statistically significant difference was observed after the intervention between the scores of two groups (P = 0.009). The paired t-test showed a statistically significant difference in EQ scores in the two groups after the intervention in the four-phase and the control group, respectively, as P = 0.005 and P = 0.018. Furthermore, the rate of self-efficiency has increased in the experimental group and control group as 66% and 13% (P = 0.024), respectively. Conclusion: The four-phase teaching method can increase the EQ levels of midwifery students. Therefore, the conduction of this educational model is recommended as an effective learning method. PMID:26097861
Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory
NASA Astrophysics Data System (ADS)
Tuinier, R.; de Kruif, C. G.
1999-05-01
Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.
Kheirkhah, Massomeh; Vali Pour, Nassimeh Setayesh; Nisani, Leila; Haghani, Hamid
2014-01-01
Background: Anxiety is the most common emotional response in women during delivery, which can be accompanied with adverse effects on fetus and mother. Objectives: This study was conducted to compare the effects of aromatherapy with rose oil and warm foot bath on anxiety in the active phase of labor in nulliparous women in Tehran, Iran. Patients and Methods: This clinical trial study was performed after obtaining informed written consent on 120 primigravida women randomly assigned into three groups. The experimental group 1 received a 10-minute inhalation and footbath with oil rose. The experimental group 2 received a 10-minute warm water footbath. Both interventions were applied at the onset of active and transitional phases. Control group, received routine care in labor. Anxiety was assessed using visual analogous scale (VASA) at onset of active and transitional phases before and after the intervention. Statistical comparison was performed using SPSS software version 16 and P < 0.05 was considered significant. Results: Anxiety scores in the intervention groups in active phase after intervention were significantly lower than the control group (P < 0.001). Anxiety scores before and after intervention in intervention groups in transitional phase was significantly lower than the control group (P < 0.001). Conclusions: Using aromatherapy and footbath reduces anxiety in active phase in nulliparous women. PMID:25593713
fcc-bcc phase transition in plasma crystals using time-resolved measurements
NASA Astrophysics Data System (ADS)
Dietz, C.; Bergert, R.; Steinmüller, B.; Kretschmer, M.; Mitic, S.; Thoma, M. H.
2018-04-01
Three-dimensional plasma crystals are often described as Yukawa systems for which a phase transition between the crystal structures fcc and bcc has been predicted. However, experimental investigations of this transition are missing. We use a fast scanning video camera to record the crystallization process of 70 000 microparticles and investigate the existence of the fcc-bcc phase transition at neutral gas pressures of 30, 40, and 50 Pa. To analyze the crystal, robust phase diagrams with the help of a machine learning algorithm are calculated. This work shows that the phase transition can be investigated experimentally and makes a comparison with numerical results of Yukawa systems. The phase transition is analyzed in dependence on the screening parameter and structural order. We suggest that the transition is an effect of gravitational compression of the plasma crystal. Experimental investigations of the fcc-bcc phase transition will provide an opportunity to estimate the coupling strength Γ by comparison with numerical results of Yukawa systems.
Luis Martínez Fuentes, Jose; Moreno, Ignacio
2018-03-05
A new technique for encoding the amplitude and phase of diffracted fields in digital holography is proposed. It is based on a random spatial multiplexing of two phase-only diffractive patterns. The first one is the phase information of the intended pattern, while the second one is a diverging optical element whose purpose is the control of the amplitude. A random number determines the choice between these two diffractive patterns at each pixel, and the amplitude information of the desired field governs its discrimination threshold. This proposed technique is computationally fast and does not require iterative methods, and the complex field reconstruction appears on axis. We experimentally demonstrate this new encoding technique with holograms implemented onto a flicker-free phase-only spatial light modulator (SLM), which allows the axial generation of such holograms. The experimental verification includes the phase measurement of generated patterns with a phase-shifting polarization interferometer implemented in the same experimental setup.
NASA Astrophysics Data System (ADS)
Huang, Houxue; Wu, Huiying; Zhang, Chi
2018-05-01
Sinusoidal wavy microchannels have been known as a more heat transfer efficient heat sink for the cooling of electronics than normal straight microchannels. However, the existing experimental study on wavy silicon microchannels with different phase differences are few. As a result of this, in this paper an experimental study has been conducted to investigate the single phase flow friction and heat transfer of de-ionized water in eight different sinusoidal wavy silicon microchannels (SWSMCs) and one straight silicon microchannel (SMC). The SWSMCs feature different phase differences (α = 0 to π) and different relative wavy amplitudes (β = A/l = 0.05 to 0.4), but the same average hydraulic diameters (D h = 160 µm). It is found that both flow friction constant fRe and the Nusselt number depend on the phase difference and relative wavy amplitude. For sinusoidal wavy microchannels with a relative wavy amplitude (β = 0.05), the Nusselt number increased noticeably with the phase difference for Re > 250, but the effect was insignificant for Re < 250 however, both pressure drop and apparent flow friction constant fRe increased with the increase in phase difference. For sinusoidal wavy microchannels with 0 phase difference, the increase in relative wavy amplitude obtained by reducing the wavy wave length induced higher pressure drop and apparent friction constant fRe, while the Nusselt number increased with relative wavy amplitude for Re > 300. The results indicate that the thermal resistances of sinusoidal wavy silicon microchannels were generally lower than that of straight silicon microchannels, and the thermal resistance decreased with the increase in relative wavy amplitude. The enhancement of thermal performance is attributed to the flow re-circulation occurring in the corrugation troughs and the secondary flows or Dean vortices introduced by curved channels. It is concluded that silicon sinusoidal wavy microchannels provide higher heat transfer rate albeit with a higher flow friction, making it a better choice for the cooling of high heat flux electronics.
Bowles, Kathryn H; Hanlon, Alexandra; Holland, Diane; Potashnik, Sheryl L; Topaz, Maxim
2014-01-01
Hospital clinicians are overwhelmed with the volume of patients churning through the health care systems. The study purpose was to determine whether alerting case managers about high-risk patients by supplying decision support results in better discharge plans as evidenced by time to first hospital readmission. Four medical units at one urban, university medical center. A quasi-experimental study including a usual care and experimental phase with hospitalized English-speaking patients aged 55 years and older. The intervention included using an evidence-based screening tool, the Discharge Decision Support System (D2S2), that supports clinicians' discharge referral decision making by identifying high-risk patients upon admission who need a referral for post-acute care. The usual care phase included collection of the D2S2 information, but not sharing the information with case managers. The experimental phase included data collection and then sharing the results with the case managers. The study compared time to readmission between index discharge date and 30 and 60 days in patients in both groups (usual care vs. experimental). After sharing the D2S2 results, the percentage of referral or high-risk patients readmitted by 30 and 60 days decreased by 6% and 9%, respectively, representing a 26% relative reduction in readmissions for both periods. Supplying decision support to identify high-risk patients recommended for postacute referral is associated with better discharge plans as evidenced by an increase in time to first hospital readmission. The tool supplies standardized information upon admission allowing more time to work with high-risk admissions.
Impact of the volume of gaseous phase in closed reactors on ANC results and modelling
NASA Astrophysics Data System (ADS)
Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise
2016-04-01
The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system) and real reactors conditions (semi-closed systems). The solid phases tested are pure phases (calcite, sulfides, etc.) and synthetic assemblages mimicking complex polluted matrices. The modeling clearly shows that the systems are sensitive to the opening to the atmosphere. If the open system and the system with no gas are entirely different, "real" reactors also differ significantly from the other systems. Apparently, the presence of the gaseous phase in reactors greatly impacts pH and element release. This parameter should be accounted for in ANC experimental procedures and modeling. In addition to this numerical study, experimental results, previously obtained for urban polluted sediments, are analyzed in lights of the findings of the numerical study. This step allows us to strengthen conclusions and to pinpoint at the necessity to account for the gaseous phase when performing and modeling ANC experiments.
Molenaar, Heike; Boehm, Robert; Piepho, Hans-Peter
2017-01-01
Robust phenotypic data allow adequate statistical analysis and are crucial for any breeding purpose. Such data is obtained from experiments laid out to best control local variation. Additionally, experiments frequently involve two phases, each contributing environmental sources of variation. For example, in a former experiment we conducted to evaluate production related traits in Pelargonium zonale , there were two consecutive phases, each performed in a different greenhouse. Phase one involved the propagation of the breeding strains to obtain the stem cutting count, and phase two involved the assessment of root formation. The evaluation of the former study raised questions regarding options for improving the experimental layout: (i) Is there a disadvantage to using exactly the same design in both phases? (ii) Instead of generating a separate layout for each phase, can the design be optimized across both phases, such that the mean variance of a pair-wise treatment difference (MVD) can be decreased? To answer these questions, alternative approaches were explored to generate two-phase designs either in phase-wise order (Option 1) or across phases (Option 2). In Option 1 we considered the scenarios (i) using in both phases the same experimental design and (ii) randomizing each phase separately. In Option 2, we considered the scenarios (iii) generating a single design with eight replicates and splitting these among the two phases, (iv) separating the block structure across phases by dummy coding, and (v) design generation with optimal alignment of block units in the two phases. In both options, we considered the same or different block structures in each phase. The designs were evaluated by the MVD obtained by the intra-block analysis and the joint inter-block-intra-block analysis. The smallest MVD was most frequently obtained for designs generated across phases rather than for each phase separately, in particular when both phases of the design were separated with a single pseudo-level. The joint optimization ensured that treatment concurrences were equally balanced across pairs, one of the prerequisites for an efficient design. The proposed alternative approaches can be implemented with any model-based design packages with facilities to formulate linear models for treatment and block structures.
I Know My Neighbour: Individual Recognition in Octopus vulgaris
Tricarico, Elena; Borrelli, Luciana; Gherardi, Francesca; Fiorito, Graziano
2011-01-01
Background Little is known about individual recognition (IR) in octopuses, although they have been abundantly studied for their sophisticated behaviour and learning capacities. Indeed, the ability of octopuses to recognise conspecifics is suggested by a number of clues emerging from both laboratory studies (where they appear to form and maintain dominance hierarchies) and field observations (octopuses of neighbouring dens display little agonism between each other). To fill this gap in knowledge, we investigated the behaviour of 24 size-matched pairs of Octopus vulgaris in laboratory conditions. Methodology/Principal Findings The experimental design was composed of 3 phases: Phase 1 (acclimatization): 12 “sight-allowed” (and 12 “isolated”) pairs were maintained for 3 days in contiguous tanks separated by a transparent (and opaque) partition to allow (and block) the vision of the conspecific; Phase 2 (cohabitation): members of each pair (both sight-allowed and isolated) were transferred into an experimental tank and were allowed to interact for 15 min every day for 3 consecutive days; Phase 3 (test): each pair (both sight-allowed and isolated) was subject to a switch of an octopus to form pairs composed of either familiar (“sham switches”) or unfamiliar conspecifics (“real switches”). Longer latencies (i.e. the time elapsed from the first interaction) and fewer physical contacts in the familiar pairs as opposed to the unfamiliar pairs were used as proxies for recognition. Conclusions Octopuses appear able to recognise conspecifics and to remember the individual previously met for at least one day. To the best of our knowledge, this is the first experimental study showing the occurrence of a form of IR in cephalopods. Future studies should clarify whether this is a “true” IR. PMID:21533257
Buchholz, Hannes; Emel'yanenko, Vladimir N; Lorenz, Heike; Verevkin, Sergey P
2016-05-01
A detailed experimental analysis of the phase transition thermodynamics of (S)-naproxen and (RS)-naproxen is reported. Vapor pressures were determined experimentally via the transpiration method. Sublimation enthalpies were obtained from the vapor pressures and from independent TGA measurements. Thermodynamics of fusion which have been well-studied in the literature were systematically remeasured by DSC. Both sublimation and fusion enthalpies were adjusted to one reference temperature, T = 298 K, using measured heat capacities of the solid and the melt phase by DSC. Average values from the measurements and from literature data were suggested for the sublimation and fusion enthalpies. In order to prove consistency of the proposed values the vaporization enthalpies obtained by combination of both were compared to vaporization enthalpies obtained by the group-additivity method and the correlation-gas chromatography method. The importance of reliable and precise phase transition data for thermochemical calculations such as the prediction of solid/liquid phase behaviour of chiral compounds is highlighted. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ai, Cheng; Zhou, Jian; Zhang, Heng; Zhao, Xinbao; Pei, Yanling; Li, Shusuo; Gong, Shengkai
2016-01-01
The non-equilibrium solidification behaviors of five Ni-Al-Ta ternary model single crystal alloys with different Al contents were investigated by experimental analysis and theoretical calculation (by JMatPro) in this study. These model alloys respectively represented the γ' phase with various volume fractions (100%, 75%, 50%, 25% and 0%) at 900 °C. It was found that with decreasing Al content, liquidus temperature of experimental alloys first decreased and then increased. Meanwhile, the solidification range showed a continued downward trend. In addition, with decreasing Al content, the primary phases of non-equilibrium solidified model alloys gradually transformed from γ' phase to γ phase, and the area fraction of which first decreased and then increased. Moreover, the interdendritic/intercellular precipitation of model alloys changed from β phase (for 100% γ') to (γ+γ')Eutectic (for 75% γ'), (γ+γ')Eutectic+γ' (for 50% γ' and 25% γ') and none interdendritic precipitation (for 0% γ'), and the last stage non-equilibrium solidification sequence of model alloys was determined by the nominal Al content and different microsegregation behaviors of Al element.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.
Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
Experimental studies on twin PTCs driven by dual piston head linear compressor
NASA Astrophysics Data System (ADS)
Gour, Abhay S.; Joy, Joewin; Sagar, Pankaj; Sudharshan, H.; Mallappa, A.; Karunanithi, R.; Jacob, S.
2017-02-01
An experimental study on pulse tube cryocooler is presented with a twin pulse tube configuration. The study is conducted with a dual piston head linear compressor design which is developed indigenously. The two identical pulse tube cryocoolers are operated by a single linear motor which generates 1800 out of phase dual pressure waves. The advantages of the configuration being the reduction in fabrication cost and the increased cooling power. The compressor is driven at a frequency of 48 Hz using indigenously developed PWM based power supply. The CFD study of pulse tube cryocooler is discussed along with the experimental cool down results. A detailed experimental and FEM based studies on the fabrication procedure of heat exchangers is conducted to ensure better heat transfer in the same.
Quasi-experimental study designs series-paper 9: collecting data from quasi-experimental studies.
Aloe, Ariel M; Becker, Betsy Jane; Duvendack, Maren; Valentine, Jeffrey C; Shemilt, Ian; Waddington, Hugh
2017-09-01
To identify variables that must be coded when synthesizing primary studies that use quasi-experimental designs. All quasi-experimental (QE) designs. When designing a systematic review of QE studies, potential sources of heterogeneity-both theory-based and methodological-must be identified. We outline key components of inclusion criteria for syntheses of quasi-experimental studies. We provide recommendations for coding content-relevant and methodological variables and outlined the distinction between bivariate effect sizes and partial (i.e., adjusted) effect sizes. Designs used and controls used are viewed as of greatest importance. Potential sources of bias and confounding are also addressed. Careful consideration must be given to inclusion criteria and the coding of theoretical and methodological variables during the design phase of a synthesis of quasi-experimental studies. The success of the meta-regression analysis relies on the data available to the meta-analyst. Omission of critical moderator variables (i.e., effect modifiers) will undermine the conclusions of a meta-analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Probing the growth and melting pathways of a decagonal quasicrystal in real-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Insung; Xiao, Xianghui; Shahani, Ashwin J.
How does a quasicrystal grow? Despite the decades of research that have been dedicated to this area of study, it remains one of the fundamental puzzles in the field of crystal growth. Although there has been no lack of theoretical studies on quasicrystal growth, there have been very few experimental investigations with which to test their various hypotheses. In particular, evidence of the in situ and three-dimensional (3D) growth of a quasicrystal from a parent liquid phase is lacking. To fill-in-the-gaps in our understanding of the solidification and melting pathways of quasicrystals, we performed synchrotron-based X-ray imaging experiments on amore » decagonal phase with composition of Al-15at%Ni-15at%Co. High-flux X-ray tomography enabled us to observe both growth and melting morphologies of the 3D quasicrystal at temperature. We determined that there is no time-reversal symmetry upon growth and melting of the decagonal quasicrystal. While quasicrystal growth is predominantly dominated by the attachment kinetics of atomic clusters in the liquid phase, melting is instead barrier-less and limited by buoyancy-driven convection. These experimental results provide the much-needed benchmark data that can be used to validate simulations of phase transformations involving this unique phase of matter.« less
Probing the growth and melting pathways of a decagonal quasicrystal in real-time
Han, Insung; Xiao, Xianghui; Shahani, Ashwin J.
2017-12-12
How does a quasicrystal grow? Despite the decades of research that have been dedicated to this area of study, it remains one of the fundamental puzzles in the field of crystal growth. Although there has been no lack of theoretical studies on quasicrystal growth, there have been very few experimental investigations with which to test their various hypotheses. In particular, evidence of the in situ and three-dimensional (3D) growth of a quasicrystal from a parent liquid phase is lacking. To fill-in-the-gaps in our understanding of the solidification and melting pathways of quasicrystals, we performed synchrotron-based X-ray imaging experiments on amore » decagonal phase with composition of Al-15at%Ni-15at%Co. High-flux X-ray tomography enabled us to observe both growth and melting morphologies of the 3D quasicrystal at temperature. We determined that there is no time-reversal symmetry upon growth and melting of the decagonal quasicrystal. While quasicrystal growth is predominantly dominated by the attachment kinetics of atomic clusters in the liquid phase, melting is instead barrier-less and limited by buoyancy-driven convection. These experimental results provide the much-needed benchmark data that can be used to validate simulations of phase transformations involving this unique phase of matter.« less
Linear optical pulse compression based on temporal zone plates.
Li, Bo; Li, Ming; Lou, Shuqin; Azaña, José
2013-07-15
We propose and demonstrate time-domain equivalents of spatial zone plates, namely temporal zone plates, as alternatives to conventional time lenses. Both temporal intensity zone plates, based on intensity-only temporal modulation, and temporal phase zone plates, based on phase-only temporal modulation, are introduced and studied. Temporal zone plates do not exhibit the limiting tradeoff between temporal aperture and frequency bandwidth (temporal resolution) of conventional linear time lenses. As a result, these zone plates can be ideally designed to offer a time-bandwidth product (TBP) as large as desired, practically limited by the achievable temporal modulation bandwidth (limiting the temporal resolution) and the amount of dispersion needed in the target processing systems (limiting the temporal aperture). We numerically and experimentally demonstrate linear optical pulse compression by using temporal zone plates based on linear electro-optic temporal modulation followed by fiber-optics dispersion. In the pulse-compression experiment based on temporal phase zone plates, we achieve a resolution of ~25.5 ps over a temporal aperture of ~5.77 ns, representing an experimental TBP larger than 226 using a phase-modulation amplitude of only ~0.8π rad. We also numerically study the potential of these devices to achieve temporal imaging of optical waveforms and present a comparative analysis on the performance of different temporal intensity and phase zone plates.
USDA-ARS?s Scientific Manuscript database
Potential impacts of climate change on hydrologic components of Goodwater Creek Experimental Watershed were assessed using climate datasets from the Coupled Model Intercomparison Project Phase 5 and Soil and Water Assessment Tool (SWAT). Historical and future ensembles of downscaled precipitation an...
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
Optical vortex beams: Generation, propagation and applications
NASA Astrophysics Data System (ADS)
Cheng, Wen
An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.
Non-linear second harmonic generation (SHG) studies of BaTiO3/SrTiO3 superlattices
NASA Astrophysics Data System (ADS)
Vlahos, Eftihia; Lee, Che-Hui; Wu, Pingping; Wung Bark, Chung; Jang, Ho Won; Folkman, Chad; Hyub Baek, Seung; Park, J. W.; Biegalski, Mike; Tenne, Dmitri; Schlom, Darrell; Chen, Long-Qing; Eom, Chang-Beom; Gopalan, Venkatraman
2010-03-01
Theoretical phase-field simulations predict that certain types of superlattices consisting of alternating (BaTiO3)n/(SrTiO3)n layers have novel vortex domain wall configurations which give rise to exceptionally high polarization tunability combined with negligible polarization hysteresis. Optical second harmonic generation (SHG) was used to probe the phase and transition temperatures of multilayer (BaTiO3)m/(SrTiO3)n superlattices, as a function of epitaxial strain. In addition, in-plane electro-optic measurements were carried out. The experimental results are in excellent agreement both with theoretical predictions, as well as the temperature-strain phase diagram obtained experimentally from UV Raman studies. The ferroelectric, in-plane SHG signal, from the tensile strained SrTiO3 layers reveals an mm2 point group symmetry, whereas the point group symmetry of the compressively strained BaTiO3 layers, was determined to be 4mm.
NASA Astrophysics Data System (ADS)
Seydou, M.; Gillet, J. C.; Li, X.; Wang, H.; Posner, G. H.; Grégoire, G.; Schermann, J. P.; Bowen, K. H.; Desfrançois, C.
2007-12-01
Protonated and anionic artemisinin in the gas phase have respectively been studied by infrared multi-photon dissociation (IRMPD) spectroscopy and by anion photoelectron spectroscopy. Comparison of the measured IRMPD spectrum with calculated spectra of various conformations showed that the two lowest-energy protonated structures, both corresponding to protonation at the C dbnd O 14 carbonyl site, were observed experimentally. The calculations also indicated that the peroxide bridge in artemisinin is only slightly modified by protonation. Additionally, stable, intact (parent) artemisinin radical anions have been obtained for the first time in the gas phase and the photoelectron spectrum supports the computational finding that the excess electron is mainly localized on the σ ∗ orbital of the peroxide bond. The vertical detachment energy and adiabatic electron affinity, calculated at the MP2/6-31+G ∗ level, are in good agreement with the experimental data and the O-O distance is calculated to be stretched by more than 50% in the anion.
Failure of tetracycline as a biomarker in batch-marking juvenile frogs
Hatfield, Jeffrey S.; Henry, Paula F.P.; Olsen, Glenn H.; Paul, M.M.; Hammerschlag, Richard S.
2001-01-01
Recent widespread amphibian declines call for better techniques to assess population dynamics. Tetracycline as a biomarker in capture-recapture studies is one technique used successfully in fish, reptiles, and mammals. A two-phase experimental study was conducted to evaluate tetracycline as a biomarker in green frogs (Rana clamitans) and pickerel frogs (Rana palustris). In the first experimental phase tadpoles were exposed to water containing either 250 mg/l or 500 mg/l tetracycline for a period of 24 hr. During the second phase, juvenile frogs were exposed to tetracycline in water at 500 mg/l or given injections of tetracycline at the dose rate of 100 mg/kg body weight. At selected times several weeks later, under tricaine methanesulfonate anesthesia, a toe was surgically excised from each animal, sectioned and viewed under an ultraviolet microscope. No significant differences were found between the various treatments and control animals (untreated). Therefore, the use of tetracycline as a biomarker in anurans using these techniques is not recommended.
An assessment of the accuracy of orthotropic photoelasticity
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Liu, D. H.
1984-01-01
The accuracy of orthotropic photoelasticity was studied. The study consisted of both theoretical and experimental phases. In the theoretical phase a stress-optic law was developed. The stress-optic law included the effects of residual birefringence in the relation between applied stress and the material's optical response. The experimental phase had several portions. First, it was shown that four-point bending tests and the concept of an optical neutral axis could be conveniently used to calibrate the stress-optic behavior of the material. Second, the actual optical response of an orthotropic disk in diametral compression was compared with theoretical predictions. Third, the stresses in the disk were determined from the observed optical response, the stress-optic law, and a finite-difference form of the plane stress equilibrium equations. It was concluded that orthotropic photoelasticity is not as accurate as isotropic photoelasticity. This is believed to be due to the lack of good fringe resolution and the low sensitivity of most orthotropic photoelastic materials.
NASA Astrophysics Data System (ADS)
Gómez Álvarez-Arenas, T. E.; de la Fuente, S.; González Gómez, I.
2006-05-01
A novel experimental technique based on phase spectroscopy and through transmission of high-frequency airborne ultrasonic pulses is used to study rigid open cell foams. Phase velocity shows an anomalous relaxation like behavior which is attributed to a frequency variation of the apparent tortuosity. An explanation is proposed in terms of the relationship between the different length scales involved: microstructure and macroscopic behavior. The experimental technique together with the proposed apparent tortuosity scheme provides a novel and unique procedure to determine simultaneously tortuosity and characteristic length dimension and shape of the solid constituent of foams and porous materials in general.
TiO2 synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation
NASA Astrophysics Data System (ADS)
Moura, K. F.; Maul, J.; Albuquerque, A. R.; Casali, G. P.; Longo, E.; Keyson, D.; Souza, A. G.; Sambrano, J. R.; Santos, I. M. G.
2014-02-01
In this study, a microwave assisted solvothermal method was used to synthesize TiO2 with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed after 60 min.
Chao, S-Y; Chang, Y-C; Yang, S C; Clark, M J
2017-08-01
Ethical competence, which is reflected in the ability to detect ethical challenges in clinical situations and engage in deliberate thinking on ethical actions, is one of the core competencies of nursing practice. The purpose of this study was to develop and implement an interactive situational e-learning system, integrating nursing ethical decisions into a nursing ethics course, and to evaluate the effects of this course on student nurses' ethical decision-making competence. The project was designed to be carried out in two phases. In the first phase, an interactive situated e-learning system was developed and integrated into the nursing ethics course. The second phase involved implementing the course and evaluating its effects in a quasi-experimental study. The course intervention was designed for 2h per week over one semester (18weeks). A total of 100 two-year technical college nursing students in their second year of the program participated in the study, with 51 in the experimental group and 49 in the control group. After completing the course, the students in the experimental group showed significant improvement in nursing ethical decision-making competence, including skills in "raising questions," "recognizing differences," "comparing differences," "self-dialogue," "taking action," and "identifying the implications of decisions made," compared to their performance prior to the class. After controlling for factors influencing learning effects, students in the experimental group showed superiority to those in the control group in the competency of "recognizing differences." The students in the experimental group reported that the course pushed them to search for and collect information needed to resolve the ethical dilemma. The interactive situational e-learning system developed by our project was helpful in developing the students' competence in ethical reasoning. The e-learning system and the situational teaching materials used in this study may be applicable in nursing and related professional ethics courses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grijó, Nathália Nahas; Borra, Ricardo Carneiro; Sdepanian, Vera Lucia
2010-09-01
To study the proinflammatory and anti-inflammatory cytokines present in the acute phase of trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis treated with Saccharomyces boulardii. Thirty male Wistar rats were divided into three groups: (1) treated group--received Saccharomyces boulardii for 14 days; (2) non-treated group--received sodium chloride solution for 14 days; (3) control group. Colitis was induced on the seventh day of the study in the treated and the non-treated groups using TNBS (10 mg) dissolved in 50% ethanol. Quantification of cytokines, including interleukin (IL)-1beta (IL-1beta), IL-6, transforming growth factor-beta (TGF-beta), IL-10 and tumor necrosis factor-alpha (TNF-alpha), in the serum and colonic tissue collected on day 14 were carried out using an enzyme-linked immunosorbent assay (ELISA). The mean concentrations of TGF-beta in both the serum and the colonic tissue of the treated group were statistically higher than that of the control group. The mean concentration of TGF-beta in the colonic tissue of the non-treated group was also statistically higher than the control group. The group treated with Saccharomyces boulardii showed increased amounts of TGF-beta, an anti-inflammatory cytokine, during the acute phase of colitis. There were no differences in the amount of TNF-alpha, IL-1beta, IL-6, and IL-10 between the treated and the non-treated or the control groups during the acute phase of experimental colitis induced by TNBS.
Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach
NASA Astrophysics Data System (ADS)
Vu, Nam H.; Le, Hieu V.; Cao, Thi M.; Pham, Viet V.; Le, Hung M.; Nguyen-Manh, Duc
2012-10-01
The anatase-rutile phase transformation of TiO2 bulk material is investigated using a density functional theory (DFT) approach in this study. According to the calculations employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with the Vanderbilt ultrasoft pseudopotential, it is suggested that the anatase phase is more energetically stable than rutile, which is in variance with the experimental observations. Consequently, the DFT + U method is employed in order to predict the correct structural stability in titania from electronic-structure-based total energy calculations. The Hubbard U term is determined by examining the band structure of rutile with various values of U from 3 to 10 eV. At U = 5 eV, a theoretical bandgap for rutile is obtained as 3.12 eV, which is in very good agreement with the reported experimental bandgap. Hence, we choose the DFT + U method (with U = 5 eV) to investigate the transformation pathway using the newly-developed solid-state nudged elastic band (ss-NEB) method, and consequently obtain an intermediate transition structure that is 9.794 eV per four-TiO2 above the anatase phase. When the Ti-O bonds in the transition state are examined using charge density analysis, seven Ti-O bonds (out of 24 bonds in the anatase unit cell) are broken, and this result is in excellent agreement with a previous experimental study (Penn and Banfield 1999 Am. Miner. 84 871-6).
NASA Astrophysics Data System (ADS)
Chen, H.
2018-06-01
This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/ β interface, and the Al concentration at γ/ γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.
NASA Astrophysics Data System (ADS)
Chen, H.
2018-03-01
This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/β interface, and the Al concentration at γ/γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.
NASA Astrophysics Data System (ADS)
Le Du, Mathieu
The use of phase change materials (PCMs) allows to store and release large amounts of energy in reduced volumes by using latent heat storage through melting and solidifying at specific temperatures. Phase change materials received a great interest for reducing energy consumption by easing the implementation of passive solar heating and cooling. They can be integrated to buildings as wallboards to improve the heat storage capacity. In this study, an original experimental device has allowed to characterize the thermophysical proprieties of a composite wallboard constituted of PCMs. Generally, PCMs are characterized by calorimetric methods which use very small quantities of material. The device used can characterize large sample's dimensions, as they could be used in real condition. Apparent thermal conductivity and specific heat have been measured for various temperatures. During phase change process, total and latent heat storage capacities have been evaluated with the peak melting and freezing temperatures. Results are compared to the manufacturer's data and data from literature. Incoherencies have been found between sources. Despite several differences with published data, overall results are similar to the latest information, which allow validate the original experimental device. Thermal disturbances due to hysteresis have been noticed and discussed. Results allow suggesting recommendations on thermal procedure and experimental device to characterize efficiently this kind of materials. Temperature's ranges and heating and freezing rates affect results and it must be considered in the characterization. Moreover, experimental devices have to be designed to allow similar heating and freezing rates in order to compare results during melting and freezing.
Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L
2011-09-01
This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRgHIFU treatment.
Measurement Techniques and Instruments Suitable for Life-prediction Testing of Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
Noel, G. T.; Wood, V. E.; Mcginniss, V. D.; Hassell, J. A.; Richard, N. A.; Gaines, G. B.; Carmichael, D. C.
1979-01-01
The validation of a 20-year service life for low-cost photovoltaic arrays is a critical requirement in the Low-Cost Solar Array (LSA) Project. The validation is accomplished through accelerated life-prediction tests. A two-phase study was conducted to address the needs before such tests are carried out. The results and recommended techniques from the Phase 1 investigation are summarized in the appendix. Phase 2 of the study is covered in this report and consisted of experimental evaluations of three techniques selected from these recommended as a results of the Phase 1 findings. The three techniques evaluated were specular and nonspecular optical reflectometry, chemiluminescence measurements, and electric current noise measurements.
Thermophotovoltaic space power system, phase 3
NASA Technical Reports Server (NTRS)
Horne, W. E.; Lancaster, C.
1987-01-01
Work performed on a research and development program to establish the feasibility of a solar thermophotovoltaic space power generation concept was summarized. The program was multiphased. The earlier work is summarized and the work on the current phase is detailed as it pertains to and extends the earlier work. Much of the experimental hardware and materials development was performed on the internal program. Experimental measurements and data evaluation were performed on the contracted effort. The objectives of the most recent phase were: to examine the thermal control design in order to optimize it for lightweight and low cost; to examine the concentrator optics in an attempt to relieve pointing accuracy requirements to + or - 2 degrees about the optical axis; and to use the results of the thermal and optical studies to synthesize a solar thermophotovoltaic (STPV) module design that is optimized for space application.
Physics, mathematics and numerics of particle adsorption on fluid interfaces
NASA Astrophysics Data System (ADS)
Schmuck, Markus; Pavliotis, Grigorios A.; Kalliadasis, Serafim
2012-11-01
We study two arbitrary immiscible fuids where one phase contains small particles of the size of the interface and smaller. We primarily focus on charge-free particles with wetting characteristics described by the contact angle formed at the interface between the two phases and the particles. Based on the experimental observation that particles are adsorbed on the interface to reduce the interfacial energy and hence the surface tension as well, we formulate a free-energy functional that accounts for these physical effects. Using elements from calculus of variations and formal gradient flow theory, we derive partial differential equations describing the location of the interface and the density of the particles in the fluid phases. Via numerical experiments we analyse the time evolution of the surface tension, the particle concentration, and the free energy over time and reflect basic experimentally observed phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Errandonea, D., E-mail: daniel.errandonea@uv.es; García-Domene, B.; Gomis, O.
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2–0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous applicationmore » of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO{sub 4}. Room-temperature pressure-volume equations of state are reported. BiPO{sub 4} was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO{sub 4}. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO{sub 4}. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study.« less
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
Bendersky, L. A.; Boettinger, W. J.
1993-01-01
Possible transformation paths that involve no long range diffusion and their corresponding microstructural details were predicted by Bendersky, Roytburd, and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 561 (1993)] for Ti-Al-Nb alloys cooled from the high temperature BCC/B2 phase field into close-packed orthorhombic or hexagonal phase fields. These predictions were based on structural and symmetry relations between the known phases. In the present paper experimental TEM results show that two of the predicted transformation paths are indeed followed for different alloy compositions. For Ti-25Al-12.5Nb (at%), the path includes the formation of intermediate hexagonal phases, A3 and DO19, and subsequent formation of a metastable domain structure of the low-temperature O phase. For alloys close to Ti-25Al-25Nb (at%), the path involves an intermediate B19 structure and subsequent formation of a translational domain structure of the O phase. The path selection depends on whether B2 order forms in the high temperature cubic phase prior to transformation to the close-packed structure. The paper also analyzes the formation of a two-phase modulated microstructure during long term annealing at 700 °C. The structure forms by congruent ordering of the DO19 phase to the O phase, and then reprecipitation of the DO19 phase, possibly by a spinodal mechanism. The thermodynamics underlying the path selection and the two-phase formation are also discussed. PMID:28053488
Phase sensitive optical coherence microscopy for photothermal imaging of gold nanorods
NASA Astrophysics Data System (ADS)
Hu, Yong; Podoleanu, Adrian G.; Dobre, George
2018-03-01
We describe a swept source based phase sensitive optical coherence microscopy (OCM) system for photothermal imaging of gold nanorods (GNR). The phase sensitive OCM system employed in the study has a displacement sensitivity of 0.17 nm to vibrations at single frequencies below 250 Hz. We demonstrate the generation of phase maps and confocal phase images. By displaying the difference between successive confocal phase images, we perform the confocal photothermal imaging of accumulated GNRs behind a glass coverslip and behind the scattering media separately. Compared with two-photon luminescence (TPL) detection techniques reported in literature, the technique in this study has the advantage of a simplified experimental setup and provides a more efficient method for imaging the aggregation of GNR. However, the repeatability performance of this technique suffers due to jitter noise from the swept laser source.
Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa
NASA Astrophysics Data System (ADS)
Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.
2014-05-01
In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.
Single-photon test of hyper-complex quantum theories using a metamaterial.
Procopio, Lorenzo M; Rozema, Lee A; Wong, Zi Jing; Hamel, Deny R; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip
2017-04-21
In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.
Griffiths phase and long-range correlations in a biologically motivated visual cortex model
NASA Astrophysics Data System (ADS)
Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.
2016-07-01
Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.
Integrated Experimental and Modelling Research for Non-Ferrous Smelting and Recycling Systems
NASA Astrophysics Data System (ADS)
Jak, Evgueni; Hidayat, Taufiq; Shishin, Denis; Mehrjardi, Ata Fallah; Chen, Jiang; Decterov, Sergei; Hayes, Peter
The chemistries of industrial pyrometallurgical non-ferrous smelting and recycling processes are becoming increasingly complex. Optimisation of process conditions, charge composition, temperature, oxygen partial pressure, and partitioning of minor elements between phases and different process streams require accurate description of phase equilibria and thermodynamics which are the focus of the present research. The experiments involve high temperature equilibration in controlled gas atmospheres, rapid quenching and direct measurement of equilibrium phase compositions with quantitative microanalytical techniques including electron probe X-ray microanalysis and Laser Ablation ICP-MS. The thermodynamic modelling is undertaken using computer package FactSage with the quasi-chemical model for the liquid slag phase and other advanced models. Experimental and modelling studies are combined into an integrated research program focused on the major elements Cu-Pb-Fe-O-Si-S system, slagging Al, Ca, Mg and other minor elements. The ongoing development of the research methodologies has resulted in significant advances in research capabilities. Examples of applications are given.
Single-photon test of hyper-complex quantum theories using a metamaterial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing
In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less
Single-photon test of hyper-complex quantum theories using a metamaterial
Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; ...
2017-04-21
In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less
Single-photon test of hyper-complex quantum theories using a metamaterial
Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; Hamel, Deny R.; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip
2017-01-01
In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories. PMID:28429711
NASA Astrophysics Data System (ADS)
Ong, Quy; Nianias, Nikolaos; Stellacci, Francesco
2017-09-01
Binary self-assembled monolayers (SAMs) on gold surfaces have been known to undergo molecular phase separation to various degrees and have been subject to both experimental and theoretical studies. On gold nanoparticles in particular, binary SAMs ligand shells display intriguing morphologies. Consequently, unexpected behaviors of the nanoparticles with respect to their biological, chemical, and interfacial properties have been observed. It is critical that the phase separation of binary SAMs be understood at both molecular and macroscopic level to create, and then manipulate, the useful properties of the functionalized surfaces. We look into the current understanding of molecular phase separation of binary SAMs on gold surfaces, represented by Au(111) flat surfaces and Au nanoparticles, from both theoretical and experimental aspects. We point out shortcomings and describe several research strategies that will address them in the future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Pule Pileni.
Observation of topological nodal fermion semimetal phase in ZrSiS
Neupane, Madhab; Belopolski, Ilya; Hosen, M. Mofazzel; ...
2016-05-11
We present that unveiling new topological phases of matter is one of the current objectives in condensed matter physics. Recent experimental discoveries of Dirac and Weyl semimetals prompt the search for other exotic phases of matter. Here we present a systematic angle-resolved photoemission spectroscopy study of ZrSiS, a prime topological nodal semimetal candidate. Our wider Brillouin zone (BZ) mapping shows multiple Fermi surface pockets such as the diamond-shaped Fermi surface, elliptical-shaped Fermi surface, and a small electron pocket encircling at the zone center (Γ) point, the M point, and the X point of the BZ, respectively. We experimentally establish themore » spinless nodal fermion semimetal phase in ZrSiS, which is supported by our first-principles calculations. Our findings evidence that the ZrSiS-type of material family is a new platform on which to explore exotic states of quantum matter; these materials are expected to provide an avenue for engineering two-dimensional topological insulator systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen Pham, Hai Huy, E-mail: haihuynguyenpham135@s.ee.es.osaka-u.ac.jp; Hisatake, Shintaro, E-mail: hisatake@ee.es.osaka-u.ac.jp; Nagatsuma, Tadao, E-mail: nagatuma@ee.es.osaka-u.ac.jp
2016-05-09
The generation of the terajet at the terahertz (THz) frequency with the capability of subwavelength beam-compression has been attracting increasing research interest, as did the generation of the nanojet at the optical frequency. In particular, a terajet generated from a dielectric cuboid was not previously studied experimentally in the THz region. We here experimentally demonstrate three-dimensional visualizations and characterization of a terajet generated from a dielectric cuboid with a refractive index of n = 1.46 at 125 GHz. The subwavelength compressed beam and the Gouy phase shift phenomena of the terajet are directly observed. It is also found out that a calculation modelmore » of Gouy phase shift based on focused Gaussian beam by a lens cannot explain the Gouy phase shift of compressed beam by the terajet. The intensity enhancement of about 7.4 dB and full width at half maximum of 0.6λ are obtained at the distance 0.5λ from the cuboid.« less
NASA Astrophysics Data System (ADS)
Aurelius, O.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.
2017-11-01
Phasing of novel macromolecular crystal structures has been challenging since the start of structural biology. Making use of anomalous diffraction of natively present elements, such as sulfur and phosphorus, for phasing has been possible for some systems, but hindered by the necessity to access longer X-ray wavelengths in order to make most use of the anomalous scattering contributions of these elements. Presented here are the results from a first successful experimental phasing study of a macromolecular crystal structure at a wavelength close to the sulfur K edge. This has been made possible by the in-vacuum setup and the long-wavelength optimised experimental setup at the I23 beamline at Diamond Light Source. In these early commissioning experiments only standard data collection and processing procedures have been applied, in particular no dedicated absorption correction has been used. Nevertheless the success of the experiment demonstrates that the capability to extract phase information can be even further improved once data collection protocols and data processing have been optimised.
Experimental study on the role of a resistor in the filter of Hall thrusters
NASA Astrophysics Data System (ADS)
Liqiu, Wei; Chunsheng, Wang; Zhongxi, Ning; Weiwei, Liu; ChaoHai, Zhang; Daren, Yu
2011-06-01
A filter is a mainly component applied to reduce the discharge current low frequency oscillation in the range of 10-100 kHz. The only form of the filter in actual use involves RLC networks, whose design originates from the 1970s, but even now, researchers are unaware of the actual primary motivations for the resistor's presence [S. Barral et al., AIAA Paper 2008-4632, 2008]. Therefore, the role of the resistor in the filter is experimentally studied and discussed through the analysis of control system and electric circuit theory. Experimental results and analysis indicate that the presence of a resistor makes the filter having the phase compensation function. The proper phase-angle and amplitude provided by the filter would increase or decrease the ion mobility and be helpful to balance the ion production in the discharge channel and then to decrease the fluctuation of the plasma density and lower the low frequency oscillation.
Simulation studies of nucleation of ferroelectric polarization reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecka, Geoffrey L.; Winchester, Benjamin Michael
2014-08-01
Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO 3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but alsomore » ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.« less
pH-Responsive Hydrogel With an Anti-Glycation Agent for Modulating Experimental Periodontitis.
Yu, Min-Chen; Chang, Chih-Yeun; Chao, Yi-Chi; Jheng, Yi-Han; Yang, Connie; Lee, Ning; Yu, Shan-Huey; Yu, Xin-Hong; Liu, Dean-Mo; Chang, Po-Chun
2016-06-01
Stimulus-responsive devices have emerged as a novel approach for local drug delivery. This study investigates the feasibility of a novel chitosan-based, pH-responsive hydrogel loaded with N-phenacylthiazolium bromide (PTB), which cleaves the crosslinks of advanced glycation end products on the extracellular matrix. A chitosan-based hydrogel loaded with PTB was fabricated, and the in vitro release profile was evaluated within pH 5.5 to 7.4. BALB/cJ mice and Sprague-Dawley rats were used to evaluate the effects during the induction and recovery phases of periodontitis, respectively, and animals in each phase were divided into four groups: 1) no periodontitis induction; 2) ligature-induced experimental periodontitis (group PR); 3) experimental periodontitis plus hydrogel without PTB (group PH); and 4) experimental periodontitis plus hydrogel with PTB (group PP). The therapeutic effects were evaluated by microcomputed tomographic imaging of periodontal bone level (PBL) loss and histomorphometry for inflammatory cell infiltration and collagen density. PTB was released faster at pH 5.5 to 6.5 and consistently slower at pH 7.4. In the induction phase, PBL and inflammatory cell infiltration were significantly reduced in group PP relative to group PR, and the loss of collagen matrix was significantly reduced relative to that observed in group PH. In the recovery phase, PBL and inflammatory cell infiltration were significantly reduced, and significantly greater collagen deposition was noted in group PP relative to groups PR and PH at 4 and 14 days after silk removal. Chitosan-based, pH-responsive hydrogels loaded with PTB can retard the initiation of and facilitate the recovery from experimental periodontitis.
Martìnez Cordero, E; Gonzàlez, M M; Aguilar, L D; Orozco, E H; Hernàndez Pando, R
2008-05-01
Alpha-1-acid glycoprotein (AGP) is one of the major acute-phase proteins (APPs). Hepatic production and serum concentrations increase in response to systemic injury, inflammation, or infection. We reported previously that expression of the AGP gene is induced in the liver during experimental pulmonary tuberculosis. Since AGP may also be produced at the infection site and has some immunomodulatory properties, we used a model of progressive pulmonary tuberculosis in Balb/c mice to study the kinetics of AGP production in the lung and its influence on immunopathology. We found that AGP was produced in the lung during experimental tuberculosis. Alveolar macrophages and type II pneumocytes were the most important cellular sources during early infection (days 1-14). From day 21 postinfection, during the progressive phase of the infection, foamy macrophages located in pneumonic areas were the most important source of AGP and 10-fold higher concentrations were found on day 60. In a second part of the study, AGP was inactivated during the progressive phase by the administration of specific blocking antibodies. In comparison with control infected animals, tuberculous mice treated with blocking AGP antibodies showed higher expression of interferon gamma (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) in association with significantly reduced bacillary loads and tissue damage. Thus, AGP is produced in the lung during experimental pulmonary tuberculosis and it has immunomodulatory activities, suppressing cell-mediated immunity and facilitating growth of bacilli and disease progression.
Study of Lamb Waves for Non-Destructive Testing Behind Screens
NASA Astrophysics Data System (ADS)
Kauffmann, P.; Ploix, M.-A.; Chaix, J.-F.; Gueudré, C.; Corneloup, G.; Baqué, F. AF(; )
2018-01-01
The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.
NASA Astrophysics Data System (ADS)
Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara
2015-02-01
The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and 250 MPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.
Carbon-hydrogen (C-H) vibration modes serve as key probes in the chemical identification of hydrocarbons and in vibrational sum-frequency generation (SFG) spectroscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a challenge from a theoretical viewpoint. Here in this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide (DMSO) using a new Gaussian basis set- based ab initio molecular dynamics (AIMD) module that we have implemented in the NWChem computational chemistry program. By combining AIMD simulations and static normal mode analysis, we interpret experimental infrared and Raman spectra and explore the role of anharmonic effectsmore » in this system. Our anharmonic normal mode analysis of the in-phase and out-of-phase symmetric C-H stretching modes challenges the previous experimental assignment of the shoulder in the symmetric C-H stretching peak as an overtone or Fermi resonance. In addition, our AIMD simulations also show significant broadening of the in-phase symmetric C-H stretching resonance, which suggests that the experimentally observed shoulder is due to thermal broadening of the symmetric stretching resonance.« less
Ternary alloy material prediction using genetic algorithm and cluster expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chong
2015-12-01
This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we didmore » our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe 3VSi 2 is a new stable phase and it can be very inspiring to the future experiments.« less
Simultaneous concentration and purification through gradient deformation chromatography
NASA Technical Reports Server (NTRS)
Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1995-01-01
Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.
Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction
NASA Astrophysics Data System (ADS)
Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.
2014-12-01
This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.
The behavior of a macroscopic granular material in vortex flow
NASA Astrophysics Data System (ADS)
Nishikawa, Asami
A granular material is defined as a collection of discrete particles such as powder and grain. Granular materials display a large number of complex behaviors. In this project, the behavior of macroscopic granular materials under tornado-like vortex airflow, with varying airflow velocity, was observed and studied. The experimental system was composed of a 9.20-cm inner diameter acrylic pipe with a metal mesh bottom holding the particles, a PVC duct, and an airflow source controlled by a variable auto-transformer, and a power-meter. A fixed fan blade was attached to the duct's inner wall to create a tornado-like vortex airflow from straight flow. As the airflow velocity was increased gradually, the behavior of a set of same-diameter granular materials was observed. The observed behaviors were classified into six phases based on the macroscopic mechanical dynamics. Through this project, we gained insights on the significant parameters for a computer simulation of a similar system by Heath Rice [5]. Comparing computationally and experimentally observed phase diagrams, we can see similar structure. The experimental observations showed the effect of initial arrangement of particles on the phase transitions.
2016-06-02
Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...theoretical and experimental studies of mul- tiple scattering and multiple-field-of-view (MFOV) li- dar detection have made possible the retrieval of cloud...droplet cloud are typical of Rayleigh scattering, with a signature close to a dipole (phase function quasi -flat and a zero-depolarization ratio
2006-04-17
of the droplet phase are then used for validation of theoretical models of the gas-droplet plume flow. Based on experimental and numerical results...with the continuous model adequately reproduces the Arrhenius rate at high temperatures but significantly underpredicts the theoretical rate at low...continuous model and discrete model of real gas effects, and the results on the shock -wave stand-off distance were compared with the experimental data of
1993-10-26
of American Societies for Experimental Biology , April 9, 1992, Anaheim, CA. Temperature perception, motor skills, and voluntary suppression of...Annual Meeting of the Federation of American Societies for Experimental Biology , April 4, 1990, Washington, D.C. The role of light exercise on the onset...Wittmers, Jr. Paper presented at the 74th Annual Meeting of the Federation of American Societies for Experimental Biology , April 4, 1990, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, R.L.; Begovich, J.M.; Brashear, H.R.
1983-12-01
Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be /sup 133/Xe, and /sup 198/Au (on carbonized resin or as an aqueous colloidal suspension) will be used as themore » slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing.« less
NASA Astrophysics Data System (ADS)
Fallah-Mehrjardi, Ata; Hidayat, Taufiq; Hayes, Peter C.; Jak, Evgueni
2017-12-01
Experimental studies were undertaken to determine the gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system at 1473 K (1200 °C), P(SO2) = 0.25 atm, and a range of P(O2)'s. The experimental methodology involved high-temperature equilibration using a substrate support technique in controlled gas atmospheres (CO/CO2/SO2/Ar), rapid quenching of equilibrium phases, followed by direct measurement of the chemical compositions of the phases with Electron Probe X-ray Microanalysis (EPMA). The experimental data for slag and matte were presented as a function of copper concentration in matte (matte grade). The data provided are essential for the evaluation of the effect of oxygen potential under controlled atmosphere on the matte grade, liquidus composition of slag and chemically dissolved copper in slag. The new data provide important accurate and reliable quantitative foundation for improvement of the thermodynamic databases for copper-containing systems.
Order and disorder in coupled metronome systems
NASA Astrophysics Data System (ADS)
Boda, Sz.; Davidova, L.; Néda, Z.
2014-04-01
Metronomes placed on a smoothly rotating disk are used for exemplifying order-disorder type phase-transitions. The ordered phase corresponds to spontaneously synchronized beats, while the disordered state is when the metronomes swing in unsynchronized manner. Using a given metronome ensemble, we propose several methods for switching between ordered and disordered states. The system is studied by controlled experiments and a realistic model. The model reproduces the experimental results, and allows to study large ensembles with good statistics. Finite-size effects and the increased fluctuation in the vicinity of the phase-transition point are also successfully reproduced.
High-pressure structural study of MnF 2
Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...
2015-02-01
In this study, manganese fluoride (MnF 2) with the tetragonal rutile-type structure has been studied using a synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell up to 60 GPa at room temperature combined with first-principles density functional calculations. The experimental data reveal two pressure-induced structural phase transitions with the following sequence: rutile → SrI 2 type (3 GPa)→ α–PbCl 2 type (13 GPa). Complete structural information, including interatomic distances, has been determined in the case of MnF 2 including the exact structure of the debated first high-pressure phase. First-principles density functional calculations confirm this phasemore » transition sequence, and the two calculated transition pressures are in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phases. The results are discussed in line with the possible practical use of rutile-type fluorides in general and specifically MnF 2 as a model compound to reveal the HP structural behavior of rutile-type SiO 2 (Stishovite).« less
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesian derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C-H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, Cameron J., E-mail: mackie@strw.leidenuniv.nl; Candian, Alessandra; Tielens, Alexander G. G. M.
2015-12-14
Current efforts to characterize and study interstellar polycyclic aromatic hydrocarbons (PAHs) rely heavily on theoretically predicted infrared (IR) spectra. Generally, such studies use the scaled harmonic frequencies for band positions and double harmonic approximation for intensities of species, and then compare these calculated spectra with experimental spectra obtained under matrix isolation conditions. High-resolution gas-phase experimental spectroscopic studies have recently revealed that the double harmonic approximation is not sufficient for reliable spectra prediction. In this paper, we present the anharmonic theoretical spectra of three PAHs: naphthalene, anthracene, and tetracene, computed with a locally modified version of the SPECTRO program using Cartesianmore » derivatives transformed from Gaussian 09 normal coordinate force constants. Proper treatments of Fermi resonances lead to an impressive improvement on the agreement between the observed and theoretical spectra, especially in the C–H stretching region. All major IR absorption features in the full-scale matrix-isolated spectra, the high-temperature gas-phase spectra, and the most recent high-resolution gas-phase spectra obtained under supersonically cooled molecular beam conditions in the CH-stretching region are assigned.« less
NASA Technical Reports Server (NTRS)
Schmidt, W. G.
1974-01-01
The thermal stability of perchlorate composite propellants was studied at 135 and 170 C. The experimental efforts were concentrated on determining the importance of heterogeneous oxidizer-fuel reactions in the thermal degradation process. The experimental approach used to elucidate the mechanisms by which the oxidizer fuel composites thermally degrade was divided into two parts: (1) keeping the fuel constant and varying the nature of the oxidizers, and (2) holding the oxidizer constant and varying the fuel components. The fuel component primarily utilized in the first phase was polyethylene. Oxidizers included KClO4, KClO3, NH4ClO4 and NH4ClO4 doped with materials such as chlorate, phosphate and arsenate. In the second phase the oxidizer used was primarily NH4ClO4 while the fuels included saturated and unsaturated polybutadiene prepolymers and a series of bonding agents. Techniques employed in the current study include thermogravimetric measurements, differential thermal analysis, infrared, mass spectrometry, electron microscopy, and appropriate wet chemical analysis.
Liquidus Projections of Bi-Se-Ga and Bi-Se-Te Ternary Systems
NASA Astrophysics Data System (ADS)
Lin, Po-han; Chen, Sinn-wen; Hwang, Jenn-dong; Chu, Hsu-shen
2016-12-01
This study determines the liquidus projections of both Bi-Se-Ga and Bi-Se-Te ternary systems which are constituent ternary systems of promising Bi-Se-Te-Ga thermoelectric materials. Ternary Bi-Se-Ga and Bi-Se-Te alloys are prepared. Their primary solidification phases are experimentally determined, and thermal analysis experiments are carried out. The liquidus projections are determined based on the ternary experimental results and phase diagrams of constituent binary systems. The Bi-Se-Ga system includes seven primary solidification phases, Bi, Ga, GaSe, Ga2Se3, Se, Bi2Se3, and (Bi2)n(Bi2Se3)m. In the Bi-Se-Te system, there are five primary solidification phases, Bi, (Bi2)n(Bi2Te3)m, Bi2(Se,Te)3, (Se,Te), and (Bi2)n(Bi2Se3)m. Both the (Bi2)n(Bi2Te3)m and (Bi2)n(Bi2Se3)m phases are not a single phase, but a collection of series undetermined phases. Large miscibility gaps are observed in the Bi-Se-Ga system. The temperatures of the invariant reactions, Liquid + Bi + GaSe = Ga and Liquid + Ga2Se3 = Bi + GaSe, are at 495 K (222 °C) and 533 K (260 °C), respectively.
Phase transitions in colloidal fluids: Kinetically or thermodynamically controlled?
NASA Astrophysics Data System (ADS)
Duran-Olivencia, Miguel A.; Yatsyshin, Peter; Lutsko, James F.; Kalliadasis, Serafim
2017-11-01
In recent years, a flurry of experimental observations suggests that most phase transitions occur in a multistage manner and via intermediate phases. These precursors to the final phase are commonly understood as the local minima of the free energy of the system. Inherently, the classical paradigm of nucleation has no capacity to describe neither the origin nor the role played by these precursors in the nucleation pathway. Here we present a systematic theoretical framework capable of describing the precursor phases in a self-consistent way. We demonstrate that nucleation precursors can appear even in situations involving a single free-energy barrier. This contradicts previous phenomenological approaches, which always characterise intermediate phases as the minima of a complex free-energy landscape. We show that a kinetically-induced mechanism temporarily stabilises an intermediate phase, which thus is not the result of a local minimum of the free energy but a consequence of the entropic cost of cluster formation. Moreover, the appearance of precursors does not seem to influence the overall nucleation time, which is governed by the free-energy barrier. The mechanism uncovered in this study can be used to explain recently reported experimental findings in crystallisation. European Research Council - Advanced Grant No. 247031; Engineering and Physical Sciences Research Council - Grant Nos. EP/L020564 and EP/L025159.
Crystal growth within a phase change memory cell.
Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel
2014-07-07
In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.
Kong, W.G.; Wang, A.; Chou, I.-Ming
2011-01-01
Recent findings of various ferric sulfates on Mars emphasize the importance of understanding the fundamental properties of ferric sulfates at temperatures relevant to that of Martian surface. In this study, the phase boundary between kornelite (Fe2(SO4)3.7H2O) and pentahydrated ferric sulfate (Fe2(SO4)3.5H2O) was experimentally determined using the humidity-buffer technique together with gravimetric measurements and Raman spectroscopy at 0.1MPa in the 36-56??C temperature range. Through the thermodynamic analysis of our experimental data, the enthalpy change (-290.8??0.3kJ/mol) and the Gibbs free energy change (-238.82??0.02kJ/mol) for each water molecule of crystallization in the rehydration of pentahydrated ferric sulfate to kornelite were obtained. ?? 2011 Elsevier B.V.
Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes.
Salameh, Samir; van der Veen, Monique A; Kappl, Michael; van Ommen, J Ruud
2017-03-14
In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles.
Protein Denaturation on p-T Axes--Thermodynamics and Analysis.
Smeller, László
2015-01-01
Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.
A Liquid-Liquid Transition in an Undercooled Ti-Zr-Ni Liquid
NASA Technical Reports Server (NTRS)
Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.
2003-01-01
If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, TI, finally freezing into a glass below a characteristic temperature called the glass transition temperature, T,. In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of HzO and Si4. Such phase transitions have been predicted in some stable liquids, i.e. above TI at atmospheric pressure, for Si02 and BeF;, but these have not been verified experimentally. They have been observed in liquids of P7, Sis and C9, but only under high pressure. All of these transitions are driven by an anomalous density change, i.e. change in local structure, with temperature or pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity liquid that is not driven by an anomalous density change, but by an approach to a constant configuration state. A maximum in the specific heat at constant pressure, similar to what is normally observed near T,, is reported here for undercooled low viscosity liquids of quasicrystal- forming Ti-Zr-Ni alloys. that includes cooperativity, by incorporating a temperature dependent excitation energy fits the data well, signaling a phase transition.
Reasoning and Action: Implementation of a Decision-Making Program in Sport.
Gil-Arias, Alexander; Moreno, M Perla; García-Mas, Alex; Moreno, Alberto; García-González, Luíz; Del Villar, Fernando
2016-09-20
The objective of this study was to apply a decision training programme, based on the use of video-feedback and questioning, in real game time, in order to improve decision-making in volleyball attack actions. A three-phase quasi-experimental design was implemented: Phase A (pre-test), Phase B (Intervention) and Phase C (Retention). The sample was made up of 8 female Under-16 volleyball players, who were divided into two groups: experimental group (n = 4) and control group (n = 4). The independent variable was the decision training program, which was applied for 11 weeks in a training context, more specifically in a 6x6 game situation. The player had to analyze the reasons and causes of the decision taken. The dependent variable was decision-making, which was assessed based on systematic observation, using the "Game Performance Assessment Instrument" (GPAI) (Oslin, Mitchell, & Griffin, 1998). Results showed that, after applying the decision training program, the experimental group showed a significantly higher average percentage of successful decisions than the control group F(1, 6) = 11.26; p = .015; η2 p = .652; 95% CI [056, 360]. These results highlight the need to complement the training process with cognitive tools such as video-feedback and questioning in order to improve athletes' decision-making.
Low Stretch Solid-Fuel Flame Transient Response to a Step Change in Gravity
NASA Technical Reports Server (NTRS)
Armstrong, J. B.; Olson, S. L.; T'ien, J. S.
2003-01-01
The effect of a step change in gravity level on the stability of low stretch diffusion flames over a solid fuel is studied both numerically and experimentally. Drop tower experiments have been conducted in NASA Glenn Research Center's 5.2 Zero Gravity Facility. In the experiments burning PMMA cylinders, a dynamic transition is observed when the steadily burning 1g flame is dropped and becomes a 0g flame. To understand the physics behind this dynamic transition, a transient stagnation point model has been developed which includes gas-phase radiation and solid phase coupling to describe this dynamic process. In this paper, the experimental results are compared with the model predictions. Both model and experiment show that the interior of the solid phase does not have time to change significantly in the few seconds of drop time, so the experimental results are pseudo-steady in the gas-phase, but the solid is inherently unsteady over long time scales. The model is also used to examine the importance of fractional heat losses on extinction, which clearly demonstrates that as the feedback from the flame decreases, the importance of the ongoing heat losses becomes greater, and extinction is observed when these losses represent 80% or more of the flame feedback.
NASA Astrophysics Data System (ADS)
Bartkus, German V.; Kuznetsov, Vladimir V.
2018-03-01
The local characteristics of the gas-liquid two-phase flow in rectangular microchannels 420 × 280 μm and 395 × 205 μm with T-shaped mixer inlet were experimentally investigated in this work. Visualization of flow regimes and measurement of local characteristics were carried out using a high-speed video camera Optronis CX600x2 and laser-induced fluorescence (LIF) method. Deionized water and ethanol were used as the liquid phase, and nitrogen - as the gas phase. The Rhodamine 6G dye was added to the liquid. The location of the microchannel in space (horizontal, vertical) was changed. The profiles of the liquid film along the long side of the microchannel were obtained, the local film thickness was measured in the channel`s central section for the elongated bubble flow and the transition flow of the deionized water-nitrogen mixture. The unevenness of liquid film thickness at the channel cross-section and along the bubble was experimentally shown. The temporal dynamics of two-phase flow for the ethanol-nitrogen mixture was shown. It was found that most of the liquid flows in the meniscus on the short side of the microchannel for the present gas and liquid flow rates.
NASA Astrophysics Data System (ADS)
Mourid, Amina; El Alami, Mustapha
2018-05-01
In this paper, we present a comparative thermal study of the usual insulation materials used in the building as well as the innovate one like phase change materials (PCMs). Both experimental study and numerical approach were applied in this work for summer season. In the experimental study the PCM was installed on the outer surface on the ceiling of one of two full-scale rooms located at FSAC, Casablanca. A simulation model was performed with TRNSYS’17 software. We have established as a criterion of comparison the internal temperatures. An economic study also has been carried out. Based on this latter, that the PCM is most efficient.
NASA Astrophysics Data System (ADS)
Runnova, Anastasiya; Zhuravlev, Maxim; Kulanin, Roman; Protasov, Pavel; Hramov, Alexander; Koronovskii, Alexey
2018-02-01
In this paper we study the correlation between the neurophysiological processes and personal characteristics arising in the processes of human higher mental functions. We find that the activity of the brain correlates with the results of psychological tests (according to the Cattell test). Experimental studies and math processing are described for operation design with the registration of human multi-channel EEG data in two phases (the processes of passive wakefulness (background) and special psychological testing (active phase)).
NASA Astrophysics Data System (ADS)
Khosravi Parsa, Mohsen; Hormozi, Faramarz
2014-06-01
In the present work, a passive model of a micromixer with sinusoidal side walls, a convergent-divergent cross section and a T-shape entrance was experimentally fabricated and modeled. The main aim of this modeling was to conduct a study on the Dean and separation vortices created inside the sinusoidal microchannels with a convergent-divergent cross section. To fabricate the microchannels, CO2 laser micromachining was utilized and the fluid mixing pattern is observed using a digital microscope imaging system. Also, computational fluid dynamics was applied with the finite element method to solve Navier-Stokes equations and the diffusion-convection mode in inlet Reynolds numbers of 0.2-75. Numerically obtained results were in reasonable agreement with experimental data. According to the previous studies, phase shift and wavelength of side walls are important parameters in designing sinusoidal microchannels. An increase of phase shift between side walls of microchannels leads the cross section being convergent-divergent. Results also show that at an inlet Reynolds number of <20 the molecular diffusion is the dominant mixing factor and the mixing index extent is nearly identical in all designs. For higher inlet Reynolds numbers (>20), secondary flow is the main factor of mixing. Noticeably, mixing index drastically depends on phase shift (ϕ) and wavelength of side walls (λ) such that the best mixing can be observed in ϕ = 3π/4 and at a wavelength to amplitude ratio of 3.3. Likewise, the maximum pressure drop is reported at ϕ = π. Therefore, the sinusoidal microchannel with phase shifts between π/2 and 3π/4 is the best microchannel for biological and chemical analysis, for which a mixing index value higher than 90% and a pressure drop less than 12 kPa is reported.
Overview: Experimental studies of crystal nucleation: Metals and colloids.
Herlach, Dieter M; Palberg, Thomas; Klassen, Ina; Klein, Stefan; Kobold, Raphael
2016-12-07
Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal nucleation.
Improving experimental phases for strong reflections prior to density modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less
Improving experimental phases for strong reflections prior to density modification
Uervirojnangkoorn, Monarin; Hilgenfeld, Rolf; Terwilliger, Thomas C.; ...
2013-09-20
Experimental phasing of diffraction data from macromolecular crystals involves deriving phase probability distributions. These distributions are often bimodal, making their weighted average, the centroid phase, improbable, so that electron-density maps computed using centroid phases are often non-interpretable. Density modification brings in information about the characteristics of electron density in protein crystals. In successful cases, this allows a choice between the modes in the phase probability distributions, and the maps can cross the borderline between non-interpretable and interpretable. Based on the suggestions by Vekhter [Vekhter (2005), Acta Cryst. D 61, 899–902], the impact of identifying optimized phases for a small numbermore » of strong reflections prior to the density-modification process was investigated while using the centroid phase as a starting point for the remaining reflections. A genetic algorithm was developed that optimizes the quality of such phases using the skewness of the density map as a target function. Phases optimized in this way are then used in density modification. In most of the tests, the resulting maps were of higher quality than maps generated from the original centroid phases. In one of the test cases, the new method sufficiently improved a marginal set of experimental SAD phases to enable successful map interpretation. Lastly, a computer program, SISA, has been developed to apply this method for phase improvement in macromolecular crystallography.« less
Vollhardt, D
2015-08-01
For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.
2016-12-01
We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.
Gao, Chan; Zhang, Xueyong; Zhang, Chuanchao; Sui, Zhilei; Hou, Meng; Dai, Rucheng; Wang, Zhongping; Zheng, Xianxu; Zhang, Zengming
2018-05-17
Herein, pressure-induced phase transitions of RDX up to 50 GPa were systematically studied under different compression conditions. Precise phase transition points were obtained based on high-quality Raman spectra with small pressure intervals. This favors the correctness of the theoretical formula for detonation and the design of a precision weapon. The experimental results indicated that α-RDX immediately transformed to γ-RDX at 3.5 GPa due to hydrostatic conditions and possible interaction between the penetrating helium and RDX, with helium gas as the pressure-transmitting medium (PTM). Mapping of pressure distribution in samples demonstrates that the pressure gradient is generated in the chamber and independent of other PTMs. The gradient induced the first phase transition starts at 2.3 GPa and completed at 4.1 GPa. The larger pressure gradient promoted phase transition in advance under higher pressures. Experimental results supported that there existed two conformers of AAI and AAE for γ-RDX, as proposed by another group. δ-RDX was considered to only occur in a hydrostatic environment around 18 GPa using helium as the PTM. This study confirms that δ-RDX is independent of PTM and exists under non-hydrostatic conditions. Evidence for a new phase (ζ) was found at about 28 GPa. These 4 phases have also been verified via XRD under high pressures. In addition to this, another new phase (η) may exist above 38 GPa, and it needs to be further confirmed in the future. Moreover, all the phase transitions were reversible after the pressure was released, and original α-RDX was always obtained at ambient pressure.
Experimental demonstration of an optical phased array antenna for laser space communications.
Neubert, W M; Kudielka, K H; Leeb, W R; Scholtz, A L
1994-06-20
The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.
The ETHANOL-CO_2 Dimer is AN Electron Donor-Acceptor Complex
NASA Astrophysics Data System (ADS)
McGuire, Brett A.; Martin-Drumel, Marie-Aline; McCarthy, Michael C.
2017-06-01
Supercritical (sc) CO_2 is a common industrial solvent for the extraction of caffeine, nicotine, petrochemicals, and natural products. The ability of apolar scCO_2 to dissolve polar solutes is greatly enhanced by the addition of a polar co-solvent, often methanol or ethanol. Experimental and theoretical work show that methanol interactions in scCO_2 are predominantly hydrogen bonding, while the gas-phase complex is an electron donor-acceptor (EDA) configuration. Ethanol, meanwhile, is predicted to form EDA complexes both in scCO_2 and in the gas phase, but there have been no experimental measurements to support this conclusion. Here, we report a combined chirped-pulse and cavity FTMW study of the ethanol-CO_2 complex. Comparison with theory indicates the EDA complex is dominant under our experimental conditions. We confirm the structure with isotopic substitution, and derive a semi-experimental equilibrium structure. Our results are consistent with theoretical predictions that the linearity of the CO_2 subgroup is broken by the complexation interaction.
Shortcuts to Adiabaticity in Transport of a Single Trapped Ion
NASA Astrophysics Data System (ADS)
An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan
2015-05-01
We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).
The Effect of Molecular Orientation to Solid-Solid and Melting Transitions
NASA Astrophysics Data System (ADS)
Yazici, Mustafa; Özgan, Şükrü
The thermodynamics of solid-solid and solid-liquid transitions are investigated with an account of the number of molecular orientation. The variations of the positional and orientational orders with the reduced temperature are studied. It is found out that orientational order parameter is very sensitive to the number of allowed orientation. The reduced transition temperatures, volume changes and entropy changes of the phase transitions and theoretical phase diagrams are obtained. The entropy changes of melting transitions for different numbers of allowed orientation of the present model are compared with the theoretical results and some experimental data. The quantitative predictions of the model are compared with experimental results for plastic crystals and agreement between predictions of the model and the experimental results are approximately good. Also, different numbers of allowed orientation D correspond to different experimental results HI, HBr, H2S for D = 2; HBr, CCl4, HI for D = 4; C2H12 for D = 6; CH4, PH3 for D = 20.
Vertical Phase Segregation Induced by Dipolar Interactions in Planar Polymer Brushes
Mahalik, Jyoti P.; Sumpter, Bobby G.; Kumar, Rajeev
2016-09-13
In this paper, we present a generalized theory for studying structural properties of a planar dipolar polymer brush immersed in a polar solvent. We show that an explicit treatment of the dipolar interactions yields a macroscopic concentration dependent effective “chi” (the Flory–Huggins-like interaction) parameter. Furthermore, it is shown that the concentration dependent chi parameter promotes phase segregation in polymer solutions and brushes so that the polymer-poor phase consists of a finite/nonzero polymer concentration. Such a destabilization of the homogeneous phase by the dipolar interactions appears as vertical phase segregation in a planar polymer brush. In a vertically phase segregated polymermore » brush, the polymer-rich phase near the grafting surface coexists with the polymer-poor phase at the other end. Predictions of the theory are directly compared with prior reported experimental results for dipolar polymers in polar solvents. Excellent agreements with the experimental results are found, hinting that the dipolar interactions play a significant role in vertical phase segregation of planar polymer brushes. We also compare our field theoretical approach with the two-state and other models invoking ad hoc concentration dependence of the chi parameter. Interplay between the short-ranged excluded volume interactions and long-ranged dipolar interactions is shown to play an important role in affecting the vertical phase separation. Finally, effects of mismatch between the dipole moments of the polymer segments and the solvent molecules are investigated in detail.« less
Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K W; Zhang, Yong-Wei
2016-09-01
We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures.
Study of the Relationship between Boundary Slip and Nanobubbles on a Smooth Hydrophobic Surface.
Li, Dayong; Jing, Dalei; Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng
2016-11-01
Surface nanobubbles, which are nanoscopic or microscopic gaseous domains forming at the solid/liquid interface, have a strong impact on the interface by changing the two-phase contact to a three-phase contact. Therefore, they are believed to affect the boundary condition and liquid flow. However, there are still disputes in the theoretical studies as to whether the nanobubbles can increase the slip length effectively. Furthermore, there are still no direct experimental studies to support either side. Therefore, an intensive study on the effective slip length for flows over bare surfaces with nanobubbles is essential for establishing the relation between nanobubbles and slip length. Here, we study the effect of nanobubbles on the slippage experimentally and theoretically. Our experimental results reveal an increase from 8 to 512 nm in slip length by increasing the surface coverage of nanobubbles from 1.7 to 50.8% and by decreasing the contact angle of nanobubbles from 42.8 to 16.6°. This is in good agreement with theoretical results. Our results indicate that nanobubbles could always act as a lubricant and significantly increase the slip length. The surface coverage, height, and contact angle are key factors for nanobubbles to reduce wall friction.
Aerothermal modeling program, phase 2
NASA Technical Reports Server (NTRS)
Mongia, H. C.; Patankar, S. V.; Murthy, S. N. B.; Sullivan, J. P.; Samuelsen, G. S.
1985-01-01
The main objectives of the Aerothermal Modeling Program, Phase 2 are: to develop an improved numerical scheme for incorporation in a 3-D combustor flow model; to conduct a benchmark quality experiment to study the interaction of a primary jet with a confined swirling crossflow and to assess current and advanced turbulence and scalar transport models; and to conduct experimental evaluation of the air swirler interaction with fuel injectors, assessments of current two-phase models, and verification the improved spray evaporation/dispersion models.
NASA Astrophysics Data System (ADS)
Chen, G. Y.; Lan, C. W.
2017-09-01
Adaptive phase field modeling is used in order to model the formation mechanism of a silicon faceted interface in three dimensions. We investigate the faceting condition for equilibrium shapes and dynamic situations. In this study, we propose a new anisotropic function of surface energy for the phase-field simulations in three-dimension, and negative stiffness is further considered. The morphological evolutions are presented and compare well with experimental findings. The growth mechanism is further discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soria, Federico; Sanchez, Francisco M.; Sun, Fei
2005-12-15
The aim of the study was to determine the optimal stent size and stenting duration following retrograde endoureterotomy of experimental ureteral strictures. Twenty healthy Large White female pigs were randomly divided into four groups, depending on stent size (7F vs 14F) and stenting duration (3 weeks vs 6 weeks). Three additional pigs were used as the control group. The internal ureteral diameter was measured 2 cm below the lower pole of the right kidney. Histopathological changes of the urinary tract, ultrasonographic and fluoroscopic studies, urine culture, and serum urea and creatine levels were analyzed during the different phases of themore » study. The study was divided into three phases. Phase I included premodel documentation of the normal urinary tract and laparoscopic ureteral stricture creation. During the second phase 1 month later, the diagnosis and endourologic treatment of strictures were performed. Phase III began 4 weeks after stent removal; follow-up imaging studies and postmortem evaluation of all animals were performed. Ureteral strictures developed in all animals 4 weeks after model creation. Results from ureteral diameter measurements and pathological studies revealed no statistically significant intergroup differences. However, prevalence of urinary infection proved to be directly related to stent size (14F) and permanence (6 weeks). The chi square results suggest a statistically significant relationship between the urinary tract infection and recurrent strictures ({alpha} = 0.046). We recommend the use of 7F stents for a period of 3 weeks or less, as these are more easily positioned and result in the reduction of secondary side effects (lower infection rate, less intramural ureteral lesions). A significant relationship between urinary tract infection and stricture recurrence was found in this experimental study.« less
Ultrasonic fingerprinting by phased array transducer
NASA Astrophysics Data System (ADS)
Sednev, D.; Kataeva, O.; Abramets, V.; Pushenko, P.; Tverdokhlebova, T.
2016-06-01
Increasing quantity of spent nuclear fuel that must be under national and international control requires a novel approach to safeguard techniques and equipment. One of the proposed approaches is utilize intrinsic features of casks with spent fuel. In this article an application of a phased array ultrasonic method is considered. This study describes an experimental results on ultrasonic fingerprinting of austenitic steel seam weld.
ERIC Educational Resources Information Center
Van Puyenbroeck, Joris; Maes, Bea
2009-01-01
Background: This study evaluates the effects of reminiscence group work on the subjective well-being of ageing people with intellectual disabilities. Methods: The content of the successive group work sessions was manipulated as follows: a control-phase with three "current topics" sessions, an experimental phase with six "reminiscence" sessions and…
Origin of in-plane anisotropic resistivity in the antiferromagnetic phase of Fe1 +xTe
NASA Astrophysics Data System (ADS)
Kaneshita, Eiji; Tohyama, Takami
2016-07-01
Motivated by a recent experimental report on in-plane anisotropic resistivity in the double-striped antiferromagnetic phase of FeTe, we theoretically calculate in-plane resistivity by applying a memory function approach to the ordered phase. We find that the resistivity is larger along an antiferromagnetically ordered direction than along a ferromagnetically ordered one, consistent with experimental observation. The anisotropic results are mainly contributed from Drude weight, whose behavior is attributed to Fermi surface topology of the ordered phase.
Experimental generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase holograms
NASA Astrophysics Data System (ADS)
Mellado-Villaseñor, Gabriel; Aguirre-Olivas, Dilia; Sánchez-de-la-Llave, David; Arrizón, Victor
2015-08-01
We generate Hermite-Gauss and Ince-Gauss beams by using kinoform phase holograms encoded onto a liquid crystal display. The phase transmittance of this holograms coincide with the phases of such beams. Scale versions of the desired beams appear at the Fourier domain of the KPHs. When an appropriated pupil size is employed, the method synthesizes HG and IG beams with relatively high accuracy and high efficiency. It is noted that experimental and numerical results are agreement with the theory.
Modelling of phase transformations occurring in low activation martensitic steels
NASA Astrophysics Data System (ADS)
Brachet, J.-C.; Gavard, L.; Boussidan, C.; Lepoittevin, C.; Denis, S.; Servant, C.
1998-10-01
The main objective of this paper is to summarize modelling of on-heating and on-cooling phase transformations occurring in Low Activation Martensitic (LAM) steels. Calculations of thermodynamic equilibrium phase fractions and kinetic aspects of phase transformations have been performed by using different approaches from experimental data (CCT and TTT diagrams obtained by dilatometry). All the calculated data have been compared to an important and systematic set of experimental data obtained on different LAM steels of the 7.5-11% CrWVT a type.
NASA Astrophysics Data System (ADS)
Bertani, C.; Falcone, N.; Bersano, A.; Caramello, M.; Matsushita, T.; De Salve, M.; Panella, B.
2017-11-01
High safety and reliability of advanced nuclear reactors, Generation IV and Small Modular Reactors (SMR), have a crucial role in the acceptance of these new plants design. Among all the possible safety systems, particular efforts are dedicated to the study of passive systems because they rely on simple physical principles like natural circulation, without the need of external energy source to operate. Taking inspiration from the second Decay Heat Removal system (DHR2) of ALFRED, the European Generation IV demonstrator of the fast lead cooled reactor, an experimental facility has been built at the Energy Department of Politecnico di Torino (PROPHET facility) to study single and two-phase flow natural circulation. The facility behavior is simulated using the thermal-hydraulic system code RELAP5-3D, which is widely used in nuclear applications. In this paper, the effect of the initial water inventory on natural circulation is analyzed. The experimental time behaviors of temperatures and pressures are analyzed. The experimental matrix ranges between 69 % and 93%; the influence of the opposite effects related to the increase of the volume available for the expansion and the pressure raise due to phase change is discussed. Simulations of the experimental tests are carried out by using a 1D model at constant heat power and fixed liquid and air mass; the code predictions are compared with experimental results. Two typical responses are observed: subcooled or two phase saturated circulation. The steady state pressure is a strong function of liquid and air mass inventory. The numerical results show that, at low initial liquid mass inventory, the natural circulation is not stable but pulsated.
NASA Technical Reports Server (NTRS)
Schiller, David N.
1989-01-01
Science requirements are specified to guide experimental studies of transient heat transfer and fluid flow in an enclosure containing a two-layer gas-and-liquid system heated unevenly from above. Specifications are provided for experiments in three separate settings: (1) a normal gravity laboratory, (2) the NASA-LeRC Drop towers, and (3) a space-based laboratory (e.g., Shuttle, Space Station). A rationale is developed for both minimum and desired requirement levels. The principal objective of the experimental effort is to validate a computational model of the enclosed liquid fuel pool during the preignition phase and to determine via measurement the role of gravity on the behavior of the system. Preliminary results of single-phase normal gravity experiments and simulations are also presented.
Prediction of Thermodynamic Equilibrium Temperature of Cu-Based Shape-Memory Smart Materials
NASA Astrophysics Data System (ADS)
Eskİl, Murat; Aldaş, Kemal; Özkul, İskender
2015-01-01
The thermodynamic equilibrium temperature ( T 0) is an important factor in the austenite and martensitic phases. In this study, the effects of alloying elements and heat treatments on T 0 temperature were investigated using Genetic Programming (GP) which has become one of the tools used in the study of condensed matter. Due to the changes in T 0, it is possible to analyze the changes in the entropy of the phase transitions. The data patterns of the GP formulation are based on well-established experimental results from the literature. The results of the GP-based formulation were compared with experimental results and found to be reliable with a very high correlation ( R 2 = 0.965 for training and R 2 = 0.952 for testing).
Preface: Special Topic on Nucleation: New Concepts and Discoveries.
Kelton, K F; Frenkel, Daan
2016-12-07
Many phenomena in the world around us depend on infrequent, yet short-lived, events that completely alter how a system subsequently develops in time. In the physical sciences, there are many examples of such crucial "rare events." Among the most important of these are nucleation processes, in which, due to a rare fluctuation, a new phase forms spontaneously within a meta-stable parent phase. Because nucleation processes are both rare and rapid and happen on a microscopic spatial scale, their experimental study is challenging. In recent years, there have been major developments both in the experimental study of nucleation phenomena and in the numerical simulation of such processes. As the articles in this special issue demonstrate, these recent advances in the ability to probe nucleation phenomena have transformed our understanding of the field.
The rheology of three-phase suspensions at low bubble capillary number
Truby, J. M.; Mueller, S. P.; Llewellin, E. W.; Mader, H. M.
2015-01-01
We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an ‘effective-medium’ approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction (0≤ϕp≲0.5) and bubble volume fraction (0≤ϕb≲0.3). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases. PMID:25568617
NASA Astrophysics Data System (ADS)
Kozlovcev, Petr; Přikryl, Richard; Přikrylová, Jiřina
2015-04-01
In contrast to modern ordinary Portland cement production from finely ground raw material blends, ancient burning of hydraulic lime was conducted by burning larger pieces of natural raw material. Due to natural variability of raw material composition, exploitation of different beds from even one formation can result the product with significantly different composition and/or properties. Prague basin (Neoproterozoic to pre-Variscan Palaeozoic of the central part of the Bohemian Massif - the so-called Barrandian area, Czech Republic) represents a classical example of the limestone-rich region with long-term history of limestone burning for quick lime and/or various types of hydraulic binders. Due to the fact that burning of natural hydraulic lime has been abandoned in this region at the turn of 19th/20th c., significant gap in knowledge on the behavior of various limestone types and on the influence of minor variance in composition on the quality of burned product is encountered. Moreover, the importance of employment of larger pieces of raw material for burning for the development of proper phase-to-phase relationships (i.e. development of hydraulic phases below sintering temperature at mutual contacts of minerals) has not been examined before. To fill this gap, a representative specimens of major limestone types from the Prague basin have been selected for experimental study: Upper Silurian limestone types (Přídolí and Kopanina Lms.), and Lower Devonian limestones (Radotín, Kotýs, Řeporyje, Dvorce-Prokop, and Zlíchov Lms.). Petrographic character of the experimental material was examined by polarizing microscopy, cathodoluminescence, scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS), and X-ray diffraction (XRD) of insoluble residue. Based on the data from wet silicate analyses, modal composition of studied impure limestones was computed. Experimental raw material was burned in laboratory electric furnace at 1000 and 1200°C for 3 and/or 6 hours. Burned samples were examined by XRD for phase composition and by SEM-EDS for phase-to-phase relationships due to the burning. Based on our data it is evident that larnite-belite (dicalcium-silicate) is dominant phase in burned silica-rich limestones (represented by e.g. Dvorce-Prokop, Přídolí and/or Kopanina Lms.). In clay-rich limestones containing kaolinite and illite, gehlenite and other calcium aluminates and aluminosilicates were detected (represented by Kosoř, Řeporyje, and/or a portion of Dvorce-Prokop Lms.). Due to higher proportion of Fe-oxihydroxides in the Řeporyje Lms., brownmillerite (calcium aluminoferrite) forms as a typical minor phases during burning. Free-lime (plus its hydrated form - portlandite) makes dominant phase in limestones exhibiting low non-carbonate admixture (Kotýs and/or a portion of Kopanina Lms.). These results clearly demonstrate that presence of certain non-carbonate minerals governs formation of certain hydraulic phases in burned product, whilst mutual proportions of individual minerals in raw materials influence amount of newly formed phases.
Phase conjugation of Nd:YAG laser radiation
NASA Astrophysics Data System (ADS)
Chen, Jun
1988-06-01
The phase conjugation of Nd:YAG laser radiation by four-wave mixing in silicon and by stimulated Brillouin scattering in acetone and other organic liquids was experimentally and theoretically investigated. Due to nonlinear absorption in Si a saturation of the reflection of the phase conjugator was theoretically predicted, and experimentally observed. It is theoretically and experimentally shown that the radiation profile behind the Si-sample is annular due to defocusing. The experiments show that CS2 and acetone have the lowest thresholds for stimulated Brillouin scattering. A laser resonator was built using a Brillouin cell and two normal mirrors; the emitted laser beam is insensitive to phase perturbations in the resonator, and has a pulse duration of 5 ns and a pulse energy of 220 m.
Experimental design methodologies in the optimization of chiral CE or CEC separations: an overview.
Dejaegher, Bieke; Mangelings, Debby; Vander Heyden, Yvan
2013-01-01
In this chapter, an overview of experimental designs to develop chiral capillary electrophoresis (CE) and capillary electrochromatographic (CEC) methods is presented. Method development is generally divided into technique selection, method optimization, and method validation. In the method optimization part, often two phases can be distinguished, i.e., a screening and an optimization phase. In method validation, the method is evaluated on its fit for purpose. A validation item, also applying experimental designs, is robustness testing. In the screening phase and in robustness testing, screening designs are applied. During the optimization phase, response surface designs are used. The different design types and their application steps are discussed in this chapter and illustrated by examples of chiral CE and CEC methods.
Chemistry of vaporization of refractory materials
NASA Technical Reports Server (NTRS)
Gilles, P. W.
1975-01-01
A discussion is given of the principles of physical chemistry important in vaporization studies, notably the concepts of equilibrium, phase behavior, thermodynamics, solid solution, and kinetics. The important factors influencing equilibrium vaporization phenomena are discussed and illustrated. A proper course of a vaporization study consisting of 9 stages is proposed. The important experimental techniques of Knudsen effusion, Langmuir vaporization and mass spectrometry are discussed. The principles, the factors, the course of a study and the experimental techniques and procedures are illustrated by recent work on the Ti-O system.
Complex Fluids at Interfaces and Interfaces of Complex Fluids
NASA Astrophysics Data System (ADS)
Nouri, Mariam
The present thesis deals with two independent projects and is consequently divided into two parts. The first part details a computational study of the fluid structure of ring-shaped molecules and their positional and orientational molecular organizations in different degrees of confinement, while the second part concerns an experimental study of phase behavior and interfacial phenomena in confined colloid-polymer systems. In the first part, ring-shaped molecules are studied using Monte Carlo simulation techniques in one, two and three dimensions. The model used to describe ring-shaped molecules is composed of hard-spheres linked together to form planar rigid rings. For rings of various sizes and for a wide range of densities, positional and orientational orderings are reported in forms of pair distribution functions of the ring centers and correlation functions of the ring normal orientations. Special emphasis is given to understand structural formation at interfaces, i.e., the structure and orderings of these molecules when they are confined to two dimensions. In a plane but the rings themselves are free to rotate around all axes, nematic ordering is observed at sufficiently high densities. In the second part, phase equilibria of confined aqueous colloid-polymer systems are studied experimentally using fluorescence microscopy. Aqueous mixtures of fluorescent polystyrene spheres and polyacrylamide are confined between a glass slide and a coverslip. The phase diagram is determined as a function of the colloidal and polymer concentrations. Liquid-liquid phase coexistence between a colloid-rich phase and a polymer-rich phase occurs at intermediate polymer concentrations, while liquid-solid phase coexistence between a polymer-rich liquid and a colloid-rich solid is observed at high polymer concentrations. Interfacial thickness and tension of the interface between these coexisting phases are measured using image analysis techniques. It is also observed that the colloid-rich solid and liquid domains coarsen mainly by Ostwald ripening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golosio, Bruno; Carpinelli, Massimo; Masala, Giovanni Luca
Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devotedmore » to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements.« less
Sensing sociality in dogs: what may make an interactive robot social?
Lakatos, Gabriella; Janiak, Mariusz; Malek, Lukasz; Muszynski, Robert; Konok, Veronika; Tchon, Krzysztof; Miklósi, A
2014-03-01
This study investigated whether dogs would engage in social interactions with an unfamiliar robot, utilize the communicative signals it provides and to examine whether the level of sociality shown by the robot affects the dogs' performance. We hypothesized that dogs would react to the communicative signals of a robot more successfully if the robot showed interactive social behaviour in general (towards both humans and dogs) than if it behaved in a machinelike, asocial way. The experiment consisted of an interactive phase followed by a pointing session, both with a human and a robotic experimenter. In the interaction phase, dogs witnessed a 6-min interaction episode between the owner and a human experimenter and another 6-min interaction episode between the owner and the robot. Each interaction episode was followed by the pointing phase in which the human/robot experimenter indicated the location of hidden food by using pointing gestures (two-way choice test). The results showed that in the interaction phase, the dogs' behaviour towards the robot was affected by the differential exposure. Dogs spent more time staying near the robot experimenter as compared to the human experimenter, with this difference being even more pronounced when the robot behaved socially. Similarly, dogs spent more time gazing at the head of the robot experimenter when the situation was social. Dogs achieved a significantly lower level of performance (finding the hidden food) with the pointing robot than with the pointing human; however, separate analysis of the robot sessions suggested that gestures of the socially behaving robot were easier for the dogs to comprehend than gestures of the asocially behaving robot. Thus, the level of sociality shown by the robot was not enough to elicit the same set of social behaviours from the dogs as was possible with humans, although sociality had a positive effect on dog-robot interactions.
NASA Astrophysics Data System (ADS)
Ünal, A.; Okur, M.
2017-02-01
The possible four stable rotational isomers of 4-phenylbutylamine (4PBA) molecule were experimentally and theoretically studied by vibrational spectroscopy. The FT-IR (4000-400 cm-1) and Raman (3700-60 cm-1) spectra of 4PBA were recorded at room temperature in liquid phase. The complete vibrational wavenumbers and corresponding vibrational assignments of 4PBA molecule were discussed assisted with B3LYP/6-311++G(d,p) level of theory along with scaled quantum mechanics force field (SQM-FF) method. Results from experimental and theoretical data the most stable form of 4PBA molecule was obtained.
Lashanizadegan, A; Ayatollahi, Sh; Kazemi, H
2007-07-01
The saturation distribution and clean up efficiency of light non-aqueous phase liquid (LNAPL) in the strata beneath the earth has been the subject of many studies. Better understanding of LNAPL infiltration into layered soil is important for the effective design of remediation strategies. The objective of this study was to simulate LNAPL movement in homogenous and stratified porous media using gravity assisted inert gas injection (GAIGI) process as a cleaning technique. We used homogeneous and layered sandpacked transparent models that allows for visual observation of LNAPL movement in order to study LNAPL redistribution in a layered porous medium. Pore volume, porosity, absolute permeability, connate water saturation, and oil saturation of the models were determined experimentally. Seasonal water table movement and contaminated zone were established and then, under GAIGI process, clean up efficiency was determined. The downward displacement of LNAPL by gas drive resulted in very high LNAPL clean up efficiency. Using the contaminant production history in the homogeneous model, the LNAPL relative permeability was calculated and the results were extended to layered media. The numerical multi-phase flow model in porous media was validated with regard to the experimental results. This model is able to adequately reproduce the experimental LNAPL saturation profile and clean up efficiency.
Trans-Pacific HDR Satellite Communications Experiment Phase-2 Project Plan and Experimental Network
NASA Technical Reports Server (NTRS)
Hsu, Eddie; Kadowaki, Naoto; Yoshimura, Naoko; Takahashi, Takashi; Yoshikawa, Makoto; Bergman, Larry; Bhasin, Kul
2000-01-01
The trans-Pacific high data rate (TP-HDR) satellite communications experiment was proposed at the Japan-U.S. Cooperation in Space (JUCS) Program Workshop held in Hawaii in 1993 and remote high definition video post-production was demonstrated as the first phase trial. ATM-based 45 Mbps trans-Pacific link was established in the first phase, and the following experiments with 155 Mbps was planned as the phase 2. This paper describes the experimental network configuration and project plan of TP-HDR experiment phase 2. Additional information is provided in the original.
Microgravity Fluid Separation Physics: Experimental and Analytical Results
NASA Technical Reports Server (NTRS)
Shoemaker, J. Michael; Schrage, Dean S.
1997-01-01
Effective, low power, two-phase separation systems are vital for the cost-effective study and utilization of two-phase flow systems and flow physics of two-phase flows. The study of microgravity flows have the potential to reveal significant insight into the controlling mechanisms for the behavior of flows in both normal and reduced gravity environments. The microgravity environment results in a reduction in gravity induced buoyancy forces acting on the discrete phases. Thus, surface tension, viscous, and inertial forces exert an increased influence on the behavior of the flow as demonstrated by the axisymmetric flow patterns. Several space technology and operations groups have studied the flow behavior in reduced gravity since gas-liquid flows are encountered in several systems such as cabin humidity control, wastewater treatment, thermal management, and Rankine power systems.
A Preliminary Study on the Vapor/Mist Phase Lubrication of a Spur Gearbox
NASA Technical Reports Server (NTRS)
Morales, Wilfredo; Handschuh, Robert F.
1999-01-01
Organophosphates have been the primary compounds used in vapor/mist phase lubrication studies involving ferrous bearing material. Experimental results have indicated that the initial formation of an iron phosphate film on a rubbing ferrous surface, followed by the growth (by cationic diffusion) of a lubricious pyrophosphate-type coating over the iron phosphate, is the reason organophosphates work well as vapor/mist phase lubricants. Recent work, however, has shown that this mechanism leads to the depletion of surface iron atoms and to eventual lubrication failure. A new organophosphate formulation was developed which circumvents surface iron depletion. This formulation was tested by generating an iron phosphate coating on an aluminum surface. The new formulation was then used to vapor/mist phase lubricate a spur gearbox in a preliminary study.