Sample records for phase function measurements

  1. Improving the phase measurement by the apodization filter in the digital holography

    NASA Astrophysics Data System (ADS)

    Chang, Shifeng; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu

    2012-11-01

    Due to the finite size of the hologram aperture in digital holography, high frequency intensity and phase fluctuations along the edges of the images, which reduce the precision of phase measurement. In this paper, the apodization filters are applied to improve the phase measurement in the digital holography. Firstly, the experimental setup of the lensless Fourier transform digital holography is built, where the sample is a standard phase grating with the grating constant of 300μm and the depth of 150nm. Then, apodization filters are applied to phase measurement of the sample with three kinds of the window functions: Tukey window, Hanning window and Blackman window, respectively. Finally, the results were compared to the detection data given by the commercial white-light interferometer. It is shown that aperture diffraction effects can be reduced by the digital apodization, and the phase measurement with the apodization is more accurate than in the unapodized case. Meanwhile, the Blackman window function produces better effect than the other two window functions in the measurement of the standard phase grating.

  2. Analytical approximations to seawater optical phase functions of scattering

    NASA Astrophysics Data System (ADS)

    Haltrin, Vladimir I.

    2004-11-01

    This paper proposes a number of analytical approximations to the classic and recently measured seawater light scattering phase functions. The three types of analytical phase functions are derived: individual representations for 15 Petzold, 41 Mankovsky, and 91 Gulf of Mexico phase functions; collective fits to Petzold phase functions; and analytical representations that take into account dependencies between inherent optical properties of seawater. The proposed phase functions may be used for problems of radiative transfer, remote sensing, visibility and image propagation in natural waters of various turbidity.

  3. Measurement of phase function of aerosol at different altitudes by CCD Lidar

    NASA Astrophysics Data System (ADS)

    Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing

    2018-02-01

    The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.

  4. Comparison of measured and computed Strehl ratios for light propagated through a channel flow of a He N 2 mixing layer at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.

    1997-04-01

    A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after they propagated through a He N 2 mixing layer in a rectangular channel. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Phase structure functions, computed from the reconstructed phase surfaces, were stationary in first increments. A five-thirds power law is shown to fit streamwise and cross-stream slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence, which describes the structure function with a single parameter. Strehl ratios were computed from the phase structure functions and compared with a measured experiment obtained from simultaneous point-spread function measurements. Two additional Strehl ratios were calculated by using classical estimates that assume statistical isotropy throughout the flow. The isotropic models are a reasonable estimate of the optical degradation only within a few centimeters of the initial mixing, where the Reynolds number is low. At higher Reynolds numbers, Strehl ratios calculated from the structure functions match the experiment much better than Strehl ratio calculations that assume isotropic flow.

  5. Longitudinal Social-Interpersonal Functioning among Higher-risk Responders to Acute-phase Cognitive Therapy for Recurrent Major Depressive Disorder

    PubMed Central

    Vittengl, Jeffrey R.; Clark, Lee Anna; Thase, Michael E.; Jarrett, Robin B.

    2016-01-01

    Background Social-interpersonal dysfunction increases disability in major depressive disorder (MDD). Here we clarified the durability of improvements in social-interpersonal functioning made during acute-phase cognitive therapy (CT), whether continuation CT (C-CT) or fluoxetine (FLX) further improved functioning, and relations of functioning with depressive symptoms and relapse/recurrence. Method Adult outpatients (N=241) with recurrent MDD who responded to acute-phase CT with higher risk of relapse (due to unstable or partial remission) were randomized to 8 months of C-CT, FLX, or pill placebo plus clinical management (PBO) and followed 24 additional months. We analyzed repeated measures of patients’ social adjustment, interpersonal problems, dyadic adjustment, depressive symptoms, and major depressive relapse/recurrence. Results Large improvements in social-interpersonal functioning occurring during acute-phase CT (median d=1.4) were maintained, with many patients (median=66%) scoring in normal ranges for 32 months. Social-interpersonal functioning did not differ significantly among C-CT, FLX, and PBO arms. Beyond concurrently measured residual symptoms, deterioration in social-interpersonal functioning preceded and predicted upticks in depressive symptoms and major depressive relapse/recurrence. Limitations Results may not generalize to other patient populations, treatment protocols, or measures of social-interpersonal functioning. Mechanisms of risk connecting poorer social-interpersonal functioning with depression were not studied. Conclusions Average improvements in social-interpersonal functioning among higher-risk responders to acute phase CT are durable for 32 months. After acute-phase CT, C-CT or FLX may not further improve social-interpersonal functioning. Among acute-phase CT responders, deteriorating social-interpersonal functioning provides a clear, measurable signal of risk for impending major depressive relapse/recurrence and opportunity for preemptive intervention. PMID:27104803

  6. Longitudinal social-interpersonal functioning among higher-risk responders to acute-phase cognitive therapy for recurrent major depressive disorder.

    PubMed

    Vittengl, Jeffrey R; Clark, Lee Anna; Thase, Michael E; Jarrett, Robin B

    2016-07-15

    Social-interpersonal dysfunction increases disability in major depressive disorder (MDD). Here we clarified the durability of improvements in social-interpersonal functioning made during acute-phase cognitive therapy (CT), whether continuation CT (C-CT) or fluoxetine (FLX) further improved functioning, and relations of functioning with depressive symptoms and relapse/recurrence. Adult outpatients (N=241) with recurrent MDD who responded to acute-phase CT with higher risk of relapse (due to unstable or partial remission) were randomized to 8 months of C-CT, FLX, or pill placebo plus clinical management (PBO) and followed 24 additional months. We analyzed repeated measures of patients' social adjustment, interpersonal problems, dyadic adjustment, depressive symptoms, and major depressive relapse/recurrence. Large improvements in social-interpersonal functioning occurring during acute-phase CT (median d=1.4) were maintained, with many patients (median=66%) scoring in normal ranges for 32 months. Social-interpersonal functioning did not differ significantly among C-CT, FLX, and PBO arms. Beyond concurrently measured residual symptoms, deterioration in social-interpersonal functioning preceded and predicted upticks in depressive symptoms and major depressive relapse/recurrence. Results may not generalize to other patient populations, treatment protocols, or measures of social-interpersonal functioning. Mechanisms of risk connecting poorer social-interpersonal functioning with depression were not studied. Average improvements in social-interpersonal functioning among higher-risk responders to acute phase CT are durable for 32 months. After acute-phase CT, C-CT or FLX may not further improve social-interpersonal functioning. Among acute-phase CT responders, deteriorating social-interpersonal functioning provides a clear, measurable signal of risk for impending major depressive relapse/recurrence and opportunity for preemptive intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr

    2012-12-15

    We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bellmore » function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.« less

  8. Statistical anisotropy in free turbulence for mixing layers at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.

    1996-08-01

    A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after propagating through free turbulent mixing layers. Shearing interferometers provide a two-dimensional flow visualization that is nonintrusive. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Experiments were performed on an unbounded, plane shear mixing layer of helium and nitrogen gas at fixed velocities and high Reynolds numbers for six locations in the flow development. Statistical autocorrelation functions and structure functions were computed on the reconstructed phase maps. The autocorrelation function results indicated that the turbulence-induced phase fluctuations were not wide-sense stationary. The structure functions exhibited statistical homogeneity, indicating that the phase fluctuations were stationary in first increments. However, the turbulence-corrupted phase was not isotropic. A five-thirds power law is shown to fit orthogonal slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence. Strehl ratios were computed from the phase structure functions and compared with classical estimates that assume isotropy. The isotropic models are shown to overestimate the optical degradation by nearly 3 orders of magnitude compared with the structure function calculations.

  9. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf

    1995-03-01

    The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).

  10. Crosstalk Cancellation for a Simultaneous Phase Shifting Interferometer

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    A method of minimizing fringe print-through in a phase-shifting interferometer, includes the steps of: (a) determining multiple transfer functions of pixels in the phase-shifting interferometer; (b) computing a crosstalk term for each transfer function; and (c) displaying, to a user, a phase-difference map using the crosstalk terms computed in step (b). Determining a transfer function in step (a) includes measuring intensities of a reference beam and a test beam at the pixels, and measuring an optical path difference between the reference beam and the test beam at the pixels. Computing crosstalk terms in step (b) includes computing an N-dimensional vector, where N corresponds to the number of transfer functions, and the N-dimensional vector is obtained by minimizing a variance of a modulation function in phase shifted images.

  11. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    NASA Astrophysics Data System (ADS)

    Muñoz, O.; Moreno, F.; Vargas-Martín, F.; Guirado, D.; Escobar-Cerezo, J.; Min, M.; Hovenier, J. W.

    2017-09-01

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (I) soft forward peaks and (II) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.

  12. Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory

    NASA Astrophysics Data System (ADS)

    Wittmann, René; Sitta, Christoph E.; Smallenburg, Frank; Löwen, Hartmut

    2017-10-01

    A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density functional is derived from fundamental mixed measure theory and freely minimized numerically for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and crystalline phases, is obtained and shows good agreement with the simulation data. Our functional is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and their Brownian dynamics.

  13. The Oxford space environment goniometer: A new experimental setup for making directional emissivity measurements under a simulated space environment

    NASA Astrophysics Data System (ADS)

    Warren, T. J.; Bowles, N. E.; Donaldson Hanna, K.; Thomas, I. R.

    2017-12-01

    Measurements of the light scattering behaviour of the regoliths of airless bodies via remote sensing techniques in the Solar System, across wavelengths from the visible to the far infrared, are essential in understanding their surface properties. A key parameter is knowledge of the angular behaviour of scattered light, usually represented mathematically by a phase function. The phase function is believed to be dependent on many factors including the following: surface composition, surface roughness across all length scales, and the wavelength of radiation. Although there have been many phase function measurements of regolith analog materials across visible wavelengths, there have been no equivalent measurements made in the thermal infrared (TIR). This may have been due to a lack of TIR instruments as part of planetary remote sensing payloads. However, since the launch of Diviner to the Moon in 2009, OSIRIS-Rex to the asteroid Bennu in 2016, and the planned launch of BepiColombo to Mercury in 2018, there is now a large quantity of TIR remote sensing data that need to be interpreted. It is therefore important to extend laboratory phase function measurements to the TIR. This paper describes the design, build, calibration, and initial measurements from a new laboratory instrument that is able to make phase function measurements of analog planetary regoliths across wavelengths from the visible to the TIR.

  14. Going through a quantum phase

    NASA Technical Reports Server (NTRS)

    Shapiro, Jeffrey H.

    1992-01-01

    Phase measurements on a single-mode radiation field are examined from a system-theoretic viewpoint. Quantum estimation theory is used to establish the primacy of the Susskind-Glogower (SG) phase operator; its phase eigenkets generate the probability operator measure (POM) for maximum likelihood phase estimation. A commuting observables description for the SG-POM on a signal x apparatus state space is derived. It is analogous to the signal-band x image-band formulation for optical heterodyne detection. Because heterodyning realizes the annihilation operator POM, this analogy may help realize the SG-POM. The wave function representation associated with the SG POM is then used to prove the duality between the phase measurement and the number operator measurement, from which a number-phase uncertainty principle is obtained, via Fourier theory, without recourse to linearization. Fourier theory is also employed to establish the principle of number-ket causality, leading to a Paley-Wiener condition that must be satisfied by the phase-measurement probability density function (PDF) for a single-mode field in an arbitrary quantum state. Finally, a two-mode phase measurement is shown to afford phase-conjugate quantum communication at zero error probability with finite average photon number. Application of this construct to interferometric precision measurements is briefly discussed.

  15. Measuring the reduced scattering coefficient and γ with SFR spectroscopy: studying the phase function dependence (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Post, Anouk L.; Zhang, Xu; Bosschaart, Nienke; Van Leeuwen, Ton G.; Sterenborg, Henricus J. C. M.; Faber, Dirk J.

    2016-03-01

    Both Optical Coherence Tomography (OCT) and Single Fiber Reflectance Spectroscopy (SFR) are used to determine various optical properties of tissue. We developed a method combining these two techniques to measure the scattering anisotropy (g1) and γ (=1-g2/1-g1), related to the 1st and 2nd order moments of the phase function. The phase function is intimately associated with the cellular organization and ultrastructure of tissue, physical parameters that may change during disease onset and progression. Quantification of these parameters may therefore allow for improved non-invasive, in vivo discrimination between healthy and diseased tissue. With SFR the reduced scattering coefficient and γ can be extracted from the reflectance spectrum (Kanick et al., Biomedical Optics Express 2(6), 2011). With OCT the scattering coefficient can be extracted from the signal as a function of depth (Faber et al., Optics Express 12(19), 2004). Consequently, by combining SFR and OCT measurements at the same wavelengths, the scattering anisotropy (g) can be resolved using µs'= µs*(1-g). We performed measurements on a suspension of silica spheres as a proof of principle. The SFR model for the reflectance as a function of the reduced scattering coefficient and γ is based on semi-empirical modelling. These models feature Monte-Carlo (MC) based model constants. The validity of these constants - and thus the accuracy of the estimated parameters - depends on the phase function employed in the MC simulations. Since the phase function is not known when measuring in tissue, we will investigate the influence of assuming an incorrect phase function on the accuracy of the derived parameters.

  16. Understanding the contribution of phytoplankton phase functions to uncertainties in the water colour signal.

    PubMed

    Lain, Lisl Robertson; Bernard, Stewart; Matthews, Mark W

    2017-02-20

    The accurate description of a water body's volume scattering function (VSF), and hence its phase functions, is critical to the determination of the constituent inherent optical properties (IOPs), the associated spectral water-leaving reflectance, and consequently the retrieval of phytoplankton functional type (PFT) information. The equivalent algal populations (EAP) model has previously been evaluated for phytoplankton-dominated waters, and offers the ability to provide phytoplankton population-specific phase functions, unveiling a new opportunity to further understanding of the causality of the PFT signal. This study presents and evaluates the wavelength dependent, spectrally variable EAP particle phase functions and the subsequent effects on water-leaving reflectance. Comparisons are made with frequently used phase function approximations e.g. the Fournier Forand formulation, as well as with phase functions inferred from measured VSFs in coastal waters. Relative differences in shape and magnitude are quantified. Reflectance modelled with the EAP phase functions is then compared against measured reflectance data from phytoplankton-dominated waters. Further examples of modelled phytoplankton-dominated waters are discussed with reference to choice of phase function for two PFTs (eukaryote and prokaryote) across a range of biomass. Finally a demonstration of the sensitivity of reflectance due to the choice of phase function is presented. The EAP model phase functions account for both spectral and angular variability in phytoplankton backscattering i.e. they display variability which is both spectral and shape-related. It is concluded that phase functions modelled in this way are necessary for investigating the effects of assemblage variability on the ocean colour signal, and should be considered for model closure even in relatively low scattering conditions where phytoplankton dominate the IOPs.

  17. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz, O.; Moreno, F.; Guirado, D.

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Furthermore » computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.« less

  18. Statistical assessment of optical phase fluctuations through turbulent mixing layers

    NASA Astrophysics Data System (ADS)

    Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.

    1995-09-01

    A lateral shearing interferometer is used to measure the slope of perturbed wavefronts after propagating through turbulent shear flows. This provides a two-dimensional flow visualization technique which is nonintrusive. The slope measurements are used to reconstruct the phase of the turbulence-corrupted wave front. Experiments were performed on a plane shear mixing layer of helium and nitrogen gas at fixed velocities, for five locations in the flow development. The two gases, having a density ratio of approximately seven, provide an effective means of simulating compressible shear layers. Statistical autocorrelation functions and structure functions are computed on the reconstructed phase maps. The autocorrelation function results indicate that the turbulence-induced phase fluctuations are not wide-sense stationary. The structure functions exhibit statistical homogeneity, indicating the phase fluctuation are stationary in first increments. However, the turbulence-corrupted phase is not isotropic. A five-thirds power law is shown to fit one-dimensional, orthogonal slices of the structure function, with scaling coefficients related to the location in the flow.

  19. The influence of underwater turbulence on optical phase measurements

    NASA Astrophysics Data System (ADS)

    Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony

    2016-05-01

    Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.

  20. Reliability of Eustachian tube function measurements in a hypobaric and hyperbaric pressure chamber.

    PubMed

    Meyer, M F; Jansen, S; Mordkovich, O; Hüttenbrink, K-B; Beutner, D

    2017-12-01

    Measurement of the Eustachian tube (ET) function is a challenge. The demand for a precise and meaningful diagnostic tool increases-especially because more and more operative therapies are being offered without objective evidence. The measurement of the ET function by continuous impedance recording in a pressure chamber is an established method, although the reliability of the measurements is still unclear. Twenty-five participants (50 ears) were exposed to phases of compression and decompression in a hypo- and hyperbaric pressure chamber. The ET function reflecting parameters-ET opening pressure (ETOP), ET opening duration (ETOD) and ET opening frequency (ETOF)-were determined under exactly the same preconditions three times in a row. The intraclass correlation coefficient (ICC) and Bland and Altman plot were used to assess test-retest reliability. ICCs revealed a high correlation for ETOP and ETOF in phases of decompression (passive equalisation) as well as ETOD and ETOP in phases of compression (active induced equalisation). Very high correlation could be shown for ETOD in decompression and ETOF in compression phases. The Bland and Altman graphs could show that measurements provide results within a 95 % confidence interval in compression and decompression phases. We conclude that measurements in a pressure chamber are a very valuable tool in terms of estimating the ET opening and closing function. Measurements show some variance comparing participants, but provide reliable results within a 95 % confidence interval in retest. This study is the basis for enabling efficacy measurements of ET treatment modalities. © 2017 John Wiley & Sons Ltd.

  1. Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies: Cross Sections and Analyzing Powers

    NASA Astrophysics Data System (ADS)

    Hinterberger, F.; Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Büßer, K.; Busch, M.; Colberg, T.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jonas, E.; Krause, H.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Meinerzhagen, A.; Nähle, O.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power AN and the polarization correlation parameters ANN, ASS and ASL are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent dσ/dΩ and AN data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  2. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  3. Recovering refractive index correlation function from measurement of tissue scattering phase function (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rogers, Jeremy D.

    2016-03-01

    Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.

  4. Bioelectrical impedance phase angle relates to function, disease severity and prognosis in stable chronic obstructive pulmonary disease.

    PubMed

    Maddocks, Matthew; Kon, Samantha S C; Jones, Sarah E; Canavan, Jane L; Nolan, Claire M; Higginson, Irene J; Gao, Wei; Polkey, Michael I; Man, William D-C

    2015-12-01

    Bioelectrical impedance analysis (BIA) provides a simple method to assess changes in body composition. Raw BIA variables such as phase angle provide direct information on cellular mass and integrity, without the assumptions inherent in estimating body compartments, e.g. fat-free mass (FFM). Phase angle is a strong functional and prognostic marker in many disease states, but data in COPD are lacking. Our aims were to describe the measurement of phase angle in patients with stable COPD and determine the construct and discriminate validity of phase angle by assessing its relationship with established markers of function, disease severity and prognosis. 502 outpatients with stable COPD were studied. Phase angle and FFM by BIA, quadriceps strength (QMVC), 4-m gait speed (4MGS), 5 sit-to-stand time (5STS), incremental shuttle walk (ISW), and composite prognostic indices (ADO, iBODE) were measured. Patients were stratified into normal and low phase angle and FFM index. Phase angle correlated positively with FFM and functional outcomes (r = 0.35-0.66, p < 0.001) and negatively with prognostic indices (r = -0.35 to -0.48, p < 0.001). In regression models, phase angle was independently associated with ISW, ADO and iBODE whereas FFM was removed. One hundred and seventy patients (33.9% [95% CI, 29.9-38.1]) had a low phase angle. Phenotypic characteristics included lower QMVC, ISW, and 4MGS, higher 5STS, ADO and iBODE scores, and more exacerbations and hospital days in past year. The proportion of patients to have died was significantly higher in patients with low phase angle compared to those with normal phase angle (8.2% versus 3.6%, p = 0.02). Phase angle relates to markers of function, disease severity and prognosis in patients with COPD. As a directly measured variable, phase angle offers more useful information than fat-free mass indices. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory

    DOE PAGES

    Gunawardana, K. G.S.H.; Song, Xueyu

    2014-12-22

    Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB 2 and AB 13 crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu 5Zr(C15 b), Cu 51Zr 14(β), Cu 10Zr 7(φ), CuZr(B2) and CuZr 2 (C11 b), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of themore » hard sphere crystal complexes in the two dimensional Gaussian space, namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu 10Zr 7(φ). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.« less

  6. The phase function and density of the dust observed at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Fulle, Marco; Bertini, I.; Della Corte, V.; Güttler, C.; Ivanovski, S.; La Forgia, F.; Lasue, J.; Levasseur-Regourd, A. C.; Marzari, F.; Moreno, F.; Mottola, S.; Naletto, G.; Palumbo, P.; Rinaldi, G.; Rotundi, A.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Barucci, M. A.; Bertaux, J.-L.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Fornasier, S.; Groussin, O.; Gutiérrez, P. J.; Hviid, H. S.; Ip, W. H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; Lara, M. L.; Lazzarin, M.; López-Moreno, J. J.; Shi, X.; Thomas, N.; Tubiana, C.

    2018-05-01

    The OSIRIS camera onboard Rosetta measured the phase function of both the coma dust and the nucleus. The two functions have a very different slope versus the phase angle. Here, we show that the nucleus phase function should be adopted to convert the brightness to the size of dust particles larger than 2.5 mm only. This makes the dust bursts observed close to Rosetta by OSIRIS, occurring about every hour, consistent with the fragmentation on impact with Rosetta of parent particles, whose flux agrees with the dust flux observed by GIADA. OSIRIS also measured the antisunward acceleration of the fragments, thus providing the first direct measurement of the solar radiation force acting on the dust fragments and thus of their bulk density, excluding any measurable rocket effect by the ice sublimation from the dust. The obtained particle density distribution has a peak matching the bulk density of most COSIMA particles, and represents a subset of the density distribution measured by GIADA. This implies a bias in the elemental abundances measured by COSIMA, which thus are consistent with the 67P dust mass fractions inferred by GIADA, i.e. (38 ± 8) {per cent} of hydrocarbons versus the (62 ± 8) {per cent} of sulphides and silicates.

  7. Fluctuating serotonergic function in premenstrual dysphoric disorder and premenstrual syndrome: findings from neuroendocrine challenge tests.

    PubMed

    Inoue, Y; Terao, T; Iwata, N; Okamoto, K; Kojima, H; Okamoto, T; Yoshimura, R; Nakamura, J

    2007-02-01

    Premenstrual dysphoric disorder (PMDD) has been assumed to be a subtype of premenstrual syndrome (PMS) with depressive symptoms, such as depressive mood, tension, anxiety, and mood liability during luteal phase. At present, no conclusion has been established about serotonergic function in PMDD. The purpose of this study was to investigate the serotonergic function of PMDD subjects in comparison to PMS without PMDD subjects and normal controls via neuroendocrine challenge tests. Twenty-four women (seven with PMDD, eight with PMS without PMDD, and nine normal controls) were tested on three occasions (follicular phase, early luteal phase, and late luteal phase) receiving paroxetine 20 mg orally as a serotonergic probe at 8:00 A: .M: . Plasma ACTH and cortisol were measured prior to the administration and every hour for 6 h thereafter. As a whole, there were significant differences in serotonergic function measured by ACTH and cortisol responses to paroxetine challenge across these three groups. PMDD subjects showed higher serotonergic function in follicular phase but lower serotonergic function in luteal phase, compared with women with PMS without PMDD and normal controls. The present findings suggest that PMDD women have fluctuating serotonergic function across their menstrual cycles and that the pattern may be different from PMS without PMDD.

  8. Phase of Illness in palliative care: Cross-sectional analysis of clinical data from community, hospital and hospice patients.

    PubMed

    Mather, Harriet; Guo, Ping; Firth, Alice; Davies, Joanna M; Sykes, Nigel; Landon, Alison; Murtagh, Fliss Em

    2018-02-01

    Phase of Illness describes stages of advanced illness according to care needs of the individual, family and suitability of care plan. There is limited evidence on its association with other measures of symptoms, and health-related needs, in palliative care. The aims of the study are as follows. (1) Describe function, pain, other physical problems, psycho-spiritual problems and family and carer support needs by Phase of Illness. (2) Consider strength of associations between these measures and Phase of Illness. Secondary analysis of patient-level data; a total of 1317 patients in three settings. Function measured using Australia-modified Karnofsky Performance Scale. Pain, other physical problems, psycho-spiritual problems and family and carer support needs measured using items on Palliative Care Problem Severity Scale. Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale items varied significantly by Phase of Illness. Mean function was highest in stable phase (65.9, 95% confidence interval = 63.4-68.3) and lowest in dying phase (16.6, 95% confidence interval = 15.3-17.8). Mean pain was highest in unstable phase (1.43, 95% confidence interval = 1.36-1.51). Multinomial regression: psycho-spiritual problems were not associated with Phase of Illness ( χ 2  = 2.940, df = 3, p = 0.401). Family and carer support needs were greater in deteriorating phase than unstable phase (odds ratio (deteriorating vs unstable) = 1.23, 95% confidence interval = 1.01-1.49). Forty-nine percent of the variance in Phase of Illness is explained by Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale. Phase of Illness has value as a clinical measure of overall palliative need, capturing additional information beyond Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale. Lack of significant association between psycho-spiritual problems and Phase of Illness warrants further investigation.

  9. The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.

    1989-01-01

    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.

  10. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  11. Branch point reconstructors for discontinuous light phase functions

    NASA Astrophysics Data System (ADS)

    Le Bigot, Eric O.; Wild, Walter J.; Kibblewhite, Edward J.

    1998-09-01

    The study of phase discontinuities caused by atmospheric turbulence is a recent research topic; their study might yield significant improvements in high-quality adaptive optics systems, laser weapons and laser communication. We present in this paper an introduction to discontinuities in the light phase. We also provide a geometrical description of phase discontinuities, a study of their effect on Hartmann-Shack sensor measurements, as well as algorithms for measuring discontinuous light phases and the position of phase discontinuities.

  12. High-pressure sapphire cell for phase equilibria measurements of CO2/organic/water systems.

    PubMed

    Pollet, Pamela; Ethier, Amy L; Senter, James C; Eckert, Charles A; Liotta, Charles L

    2014-01-24

    The high pressure sapphire cell apparatus was constructed to visually determine the composition of multiphase systems without physical sampling. Specifically, the sapphire cell enables visual data collection from multiple loadings to solve a set of material balances to precisely determine phase composition. Ternary phase diagrams can then be established to determine the proportion of each component in each phase at a given condition. In principle, any ternary system can be studied although ternary systems (gas-liquid-liquid) are the specific examples discussed herein. For instance, the ternary THF-Water-CO2 system was studied at 25 and 40 °C and is described herein. Of key importance, this technique does not require sampling. Circumventing the possible disturbance of the system equilibrium upon sampling, inherent measurement errors, and technical difficulties of physically sampling under pressure is a significant benefit of this technique. Perhaps as important, the sapphire cell also enables the direct visual observation of the phase behavior. In fact, as the CO2 pressure is increased, the homogeneous THF-Water solution phase splits at about 2 MPa. With this technique, it was possible to easily and clearly observe the cloud point and determine the composition of the newly formed phases as a function of pressure. The data acquired with the sapphire cell technique can be used for many applications. In our case, we measured swelling and composition for tunable solvents, like gas-expanded liquids, gas-expanded ionic liquids and Organic Aqueous Tunable Systems (OATS)(1-4). For the latest system, OATS, the high-pressure sapphire cell enabled the study of (1) phase behavior as a function of pressure and temperature, (2) composition of each phase (gas-liquid-liquid) as a function of pressure and temperature and (3) catalyst partitioning in the two liquid phases as a function of pressure and composition. Finally, the sapphire cell is an especially effective tool to gather accurate and reproducible measurements in a timely fashion.

  13. Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Gitelson, A.; Karnieli, A.; Ganor, E. (Editor); Fraser, R. S.; Nakajima, T.; Mattoo, S.; Holben, B. N.

    1994-01-01

    Ground-based measurements of the solar transmission and sky radiance in a horizontal plane through the Sun are taken in several geographical regions and aerosol types: dust in a desert transition zone in Israel, sulfate particles in Eastern and Western Europe, tropical aerosol in Brazil, and mixed continental/maritime aerosol in California. Stratospheric aerosol was introduced after the eruption of Mount Pinatubo in June 1991. Therefore measurements taken before the eruption are used to analyze the properties of tropospheric aerosol; measurements from 1992 are also used to detect the particle size and concentration of stratospheric aerosol. The measurements are used to retrieve the size distribution and the scattering phase function at large scattering angles of the undisturbed aerosol particles. The retrieved properties represent an average on the entire atmospheric column. A comparison between the retrieved phase function for a scattering angle of 120 deg, with phase function predicted from the retrieved size distribution, is used to test the assumption of particle homogeneity and sphericity in radiative transfer models (Mie theory). The effect was found to be small (20% +/- 15%). For the stratospheric aerosol (sulfates), as expected, the phase function was very well predicted using the Mie theory. A model with a power law distribution, based on the spectral dependence of the optical thickness, alpha, cannot estimate accurately the phase function (up to 50% error for lambda = 0.87 microns). Before the Pinatubo eruption the ratio between the volumes of sulfate and coarse particles was very well correlated with alpha. The Pinatubo stratospheric aerosol destroyed this correlation. The aerosol optical properties are compared with analysis of the size, shape, and composition of the individual particles by electron microscopy of in situ samples. The measured volume size distribution before the injection of stratospheric aerosol consistently show two modes, sulfate particles with r(sub m) less than 0.2 microns and coarse paritcles with r(sub m) greater than 0.7 microns. The 'window' in the tropospheric aerosol in this radius range was used to observe a stable stratospheric aerosol in 1992, with r(sub m) approximately 0.5 microns. A combination of such optical thickness and sky measurements can be used to assess the direct forcing and the climatic impact of aerosol. Systematic inversion for the key aerosol types (sulfates, smoke, dust, and maritime aerosol) of the size distribution and phase function can give the relationship between the aerosol physical and optical properties that can be used to compute the radiative forcing. This forcing can be validated in dedicated field experiments.

  14. [Study on phase correction method of spatial heterodyne spectrometer].

    PubMed

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  15. Quantitative phase retrieval with arbitrary pupil and illumination

    DOE PAGES

    Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; ...

    2015-10-02

    We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.

  16. Structure function monitor

    DOEpatents

    McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  17. In-situ measurements of scattering phase functions of stratospheric aerosol particles in Alaska during July 1979

    NASA Technical Reports Server (NTRS)

    Grams, G. W.

    1981-01-01

    A laser nephelometer developed for airborne measurements of polar scattering diagrams of atmospheric aerosols was flown on the NCAR Sabreliner aircraft to obtain data on light-scattering parameters for stratospheric aerosol particles over Alaska during July 1979. Observed values of the angular variation of scattered-light intensity were compared with those calculated for different values of the asymmetry parameter g in the Henyey-Greenstein phase function. The observations indicate that, for the time and location of the experiments, the Henyey-Greenstein phase function could be used to calculate polar scattering diagrams to within experimental errors for an asymmetry parameter value of 0.49 plus or minus 0.07.

  18. Detailed validation of the bidirectional effect in various Case I and Case II waters.

    PubMed

    Gleason, Arthur C R; Voss, Kenneth J; Gordon, Howard R; Twardowski, Michael; Sullivan, James; Trees, Charles; Weidemann, Alan; Berthon, Jean-François; Clark, Dennis; Lee, Zhong-Ping

    2012-03-26

    Simulated bidirectional reflectance distribution functions (BRDF) were compared with measurements made just beneath the water's surface. In Case I water, the set of simulations that varied the particle scattering phase function depending on chlorophyll concentration agreed more closely with the data than other models. In Case II water, however, the simulations using fixed phase functions agreed well with the data and were nearly indistinguishable from each other, on average. The results suggest that BRDF corrections in Case II water are feasible using single, average, particle scattering phase functions, but that the existing approach using variable particle scattering phase functions is still warranted in Case I water.

  19. Planar particle/droplet size measurement technique using digital particle image velocimetry image data

    NASA Technical Reports Server (NTRS)

    Kadambi, Jaikrishnan R. (Inventor); Wernet, Mark P. (Inventor); Mielke, Amy F. (Inventor)

    2005-01-01

    A method for determining a mass flux of an entrained phase in a planar two-phase flow records images of particles in the two-phase flow. Respective sizes of the particles (the entrained phase) are determined as a function of a separation between spots identified on the particle images. Respective velocities of the particles are determined. The mass flux of the entrained phase is determined as a function of the size and velocity of the particles.

  20. Sci-Fri AM: MRI and Diagnostic Imaging - 05: Comparison of Input Function Measurements from DCE and MOLLI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majtenyi, Nicholas; Juma, Hanif; Klein, Ran

    Dynamic contrast-enhanced (DCE)-MRI is a technique for obtaining tissue hemodynamic information (e.g. tumours). Despite widespread clinical application of DCE-MRI, the technique suffers from a lack of standardization and accuracy, especially with respect to the concentration-versus-time of gadolinium (Gd) in feeding arteries (the input function, IF). MR phase has a linear quantitative relationship with Gd concentration ([Gd]), making it ideal for measuring the first-pass of the IF, but is not considered accurate in the steady-state washout. Modified Look-Locker Inversion Recovery (MOLLI) is a fast and accurate method to measure T1 and has been validated to quantify typical [Gd] ranges experienced inmore » the washout of the IF. Two different methods to measure the IF for DCE-MRI were compared: 1) conventional phase-versus-time (“Phase-only”) and 2) phase-versus-time combined with pre- and post-DCE MOLLI T1 measurements (“Phase+MOLLI”). The IF obtained from Phase+MOLLI was calculated from MOLLI T1 values and known relaxivity, then added to the Phase-only acquisition with the washout IF subtracted. A significant difference was observed between IF values for [Gd] between the Phase-only and Phase+MOLLI acquisitions (P = 0.03). To ensure the IFs from MOLLI T1s were accurate, it was compared to [Gd] obtained from “gold-standard” inversion recovery (IR). MOLLI showed excellent agreement with IR when imaged in static phantoms (r{sup 2} = 0.997, P = 0.001). The Phase+MOLLI IF was more accurate than the Phase-only IF in measuring the washout. The Phase+MOLLI acquisition may therefore provide a DCE-MRI reference standard that could lead to better clinical diagnoses.« less

  1. Phase of Illness in palliative care: Cross-sectional analysis of clinical data from community, hospital and hospice patients

    PubMed Central

    Mather, Harriet; Guo, Ping; Firth, Alice; Davies, Joanna M; Sykes, Nigel; Landon, Alison; Murtagh, Fliss EM

    2017-01-01

    Background: Phase of Illness describes stages of advanced illness according to care needs of the individual, family and suitability of care plan. There is limited evidence on its association with other measures of symptoms, and health-related needs, in palliative care. Aims: The aims of the study are as follows. (1) Describe function, pain, other physical problems, psycho-spiritual problems and family and carer support needs by Phase of Illness. (2) Consider strength of associations between these measures and Phase of Illness. Design and setting: Secondary analysis of patient-level data; a total of 1317 patients in three settings. Function measured using Australia-modified Karnofsky Performance Scale. Pain, other physical problems, psycho-spiritual problems and family and carer support needs measured using items on Palliative Care Problem Severity Scale. Results: Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale items varied significantly by Phase of Illness. Mean function was highest in stable phase (65.9, 95% confidence interval = 63.4–68.3) and lowest in dying phase (16.6, 95% confidence interval = 15.3–17.8). Mean pain was highest in unstable phase (1.43, 95% confidence interval = 1.36–1.51). Multinomial regression: psycho-spiritual problems were not associated with Phase of Illness (χ2 = 2.940, df = 3, p = 0.401). Family and carer support needs were greater in deteriorating phase than unstable phase (odds ratio (deteriorating vs unstable) = 1.23, 95% confidence interval = 1.01–1.49). Forty-nine percent of the variance in Phase of Illness is explained by Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale. Conclusion: Phase of Illness has value as a clinical measure of overall palliative need, capturing additional information beyond Australia-modified Karnofsky Performance Scale and Palliative Care Problem Severity Scale. Lack of significant association between psycho-spiritual problems and Phase of Illness warrants further investigation. PMID:28812945

  2. Husimi function and phase-space analysis of bilayer quantum Hall systems at ν = 2/λ

    NASA Astrophysics Data System (ADS)

    Calixto, M.; Peón-Nieto, C.

    2018-05-01

    We propose localization measures in phase space of the ground state of bilayer quantum Hall systems at fractional filling factors , to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary -isospin λ. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space (a higher-dimensional generalization of the Haldane’s 2-dimensional sphere ). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e. as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrödinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.

  3. Visualizing monolayers with a water-soluble fluorophore to quantify adsorption, desorption, and the double layer.

    PubMed

    Shieh, Ian C; Zasadzinski, Joseph A

    2015-02-24

    Contrast in confocal microscopy of phase-separated monolayers at the air-water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid-liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy-Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.

  4. Relative velocity change measurement based on seismic noise analysis in exploration geophysics

    NASA Astrophysics Data System (ADS)

    Corciulo, M.; Roux, P.; Campillo, M.; Dubuq, D.

    2011-12-01

    Passive monitoring techniques based on noise cross-correlation analysis are still debated in exploration geophysics even if recent studies showed impressive performance in seismology at larger scale. Time evolution of complex geological structure using noise data includes localization of noise sources and measurement of relative velocity variations. Monitoring relative velocity variations only requires the measurement of phase shifts of seismic noise cross-correlation functions computed for successive time recordings. The existing algorithms, such as the Stretching and the Doublet, classically need great efforts in terms of computation time, making them not practical when continuous dataset on dense arrays are acquired. We present here an innovative technique for passive monitoring based on the measure of the instantaneous phase of noise-correlated signals. The Instantaneous Phase Variation (IPV) technique aims at cumulating the advantages of the Stretching and Doublet methods while proposing a faster measurement of the relative velocity change. The IPV takes advantage of the Hilbert transform to compute in the time domain the phase difference between two noise correlation functions. The relative velocity variation is measured through the slope of the linear regression of the phase difference curve as a function of correlation time. The large amount of noise correlation functions, classically available at exploration scale on dense arrays, allows for a statistical analysis that further improves the precision of the estimation of the velocity change. In this work, numerical tests first aim at comparing the IPV performance to the Stretching and Doublet techniques in terms of accuracy, robustness and computation time. Then experimental results are presented using a seismic noise dataset with five days of continuous recording on 397 geophones spread on a ~1 km-squared area.

  5. Radioisotope measurements of the liquid-gas flow in the horizontal pipeline using phase method

    NASA Astrophysics Data System (ADS)

    Hanus, Robert; Zych, Marcin; Jaszczur, Marek; Petryka, Leszek; Świsulski, Dariusz

    2018-06-01

    The paper presents application of the gamma-absorption method to a two-phase liquid-gas flow investigation in a horizontal pipeline. The water-air mixture was examined by a set of two Am-241 radioactive sources and two NaI(Tl) scintillation probes. For analysis of the electrical signals obtained from detectors the cross-spectral density function (CSDF) was applied. Results of the gas phase average velocity measurements for CSDF were compared with results obtained by application of the classical cross-correlation function (CCF). It was found that the combined uncertainties of the gas-phase velocity in the presented experiments did not exceed 1.6% for CSDF method and 5.5% for CCF.

  6. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity.

    PubMed

    Li, Jielin; Hassebrook, Laurence G; Guan, Chun

    2003-01-01

    Temporal frame-to-frame noise in multipattern structured light projection can significantly corrupt depth measurement repeatability. We present a rigorous stochastic analysis of phase-measuring-profilometry temporal noise as a function of the pattern parameters and the reconstruction coefficients. The analysis is used to optimize the two-frequency phase measurement technique. In phase-measuring profilometry, a sequence of phase-shifted sine-wave patterns is projected onto a surface. In two-frequency phase measurement, two sets of pattern sequences are used. The first, low-frequency set establishes a nonambiguous depth estimate, and the second, high-frequency set is unwrapped, based on the low-frequency estimate, to obtain an accurate depth estimate. If the second frequency is too low, then depth error is caused directly by temporal noise in the phase measurement. If the second frequency is too high, temporal noise triggers ambiguous unwrapping, resulting in depth measurement error. We present a solution for finding the second frequency, where intensity noise variance is at its minimum.

  7. Retrieval of Aerosol Phase Function and Polarized Phase Function from Polarization of Skylight for Different Observation Geometries

    NASA Astrophysics Data System (ADS)

    Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.

    2018-04-01

    The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).

  8. Functional Spectral Domain Optical Coherence Tomography imaging

    NASA Astrophysics Data System (ADS)

    Bower, Bradley A.

    Spectral Domain Optical Coherence Tomography (SDOCT) is a high-speed, high resolution imaging modality capable of structural and functional characterization of tissue microstructure. SDOCT fills a niche between histology and ultrasound imaging, providing non-contact, non-invasive backscattering amplitude and phase from a sample. Due to the translucent nature of the tissue, ophthalmic imaging is an ideal space for SDOCT imaging. Structural imaging of the retina has provided new insights into ophthalmic disease. The phase component of SDOCT images remains largely underexplored, though. While Doppler SDOCT has been explored in a research setting, it has yet to gain traction in the clinic. Other, functional exploitations of the phase are possible and necessary to expand the utility of SDOCT. Spectral Domain Phase Microscopy (SDPM) is an extension of SDOCT that is capable of resolving sub-wavelength displacements within a focal volume. Application of sub-wavelength displacement measurement imaging could provide a new method for non-invasive optophysiological measurement. This body of work encompasses both hardware and software design and development for implementation of SDOCT. Structural imaging was proven in both the lab and the clinic. Coarse phase changes associated with Doppler flow frequency shifts were recorded and a study was conducted to validate Doppler measurement. Fine phase changes were explored through SDPM applications. Preliminary optophysiology data was acquired to study the potential of sub-wavelength measurements in the retina. To remove the complexity associated with in-vivo human retinal imaging, a first principles approach using isolated nerve samples was applied using standard SDPM and a depthencoded technique for measuring conduction velocity. Results from amplitude as well as both coarse and fine phase processing are presented. In-vivo optophysiology using SDPM is a promising avenue for exploration, and projects furthering or extending this body of work are discussed.

  9. Preliminary results of spectral induced polarization measurements, Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Smith, Bruce D.; Tippens, C.L.; Flanigan, V.J.; Sadek, Hamdy

    1983-01-01

    Laboratory spectral induced polarization (SIP) measurements on 29 carbonaceous schist samples from the Wadi Bidah district show that most are associated with very long polarization decays or, equivalently, large time constants. In contrast, measurements on two massive sulfide samples indicate shorter polarization decays or smaller time constants. This difference in time constants for the polarization process results in two differences in the phase spectra in the frequency range of from 0.06 to 1Hz. First, phase values of carbonaceous rocks generally decrease as a function of increasing frequency. Second, phase values of massive sulfide-bearing rocks increase as a function of increasing frequency. These results from laboratory measurements agree well with those from other reported SIP measurements on graphites and massive sulfides from the Canadian Shield. Four SIP lines, measured by using a 50-m dipole-dipole array, were surveyed at the Rabathan 4 prospect to test how well the results of laboratory sample measurements can be applied to larger scale field measurements. Along one line, located entirely over carbonaceous schists, the phase values decreased as a function of increasing frequency. Along a second line, located over both massive sulfides and carbonaceous schists as defined by drilling, the phase values measured over carbonaceous schists decreased as a function of increasing frequency, whereas those measured over massive sulfides increased. In addition, parts of two lines were surveyed down the axes of the massive sulfide and carbonaceous units. The phase values along these lines showed similar differences between the carbonaceous schists and massive sulfides. To date, the SIP survey and the SIP laboratory measurements have produced the only geophysical data that indicate an electrical difference between the massive sulfide-bearing rocks and the surrounding carbonaceous rocks in the Wadi Bidah district. However, additional sample and field measurements in areas of known mineralization would fully evaluate the SIP method as applied to various geologic environments and styles of massive sulfide mineralization. Additionally, the efficiency of SIP surveys in delineating areas of sulfide mineralization might be improved by surveying lines down the axes of known electrical conductors. An evaluation of the applied research done on the SIP method to date suggests that this technique offers significant exploration applications to massive sulfide exploration in the Kingdom of Saudi Arabia.

  10. pp Elastic Scattering: New results from EDDA (COSY)

    NASA Astrophysics Data System (ADS)

    Scobel, W.

    2000-06-01

    In the EDDA experiment excitation functions of proton-proton elastic scattering are studied with narrow steps in the projectile momentum range from 0.8 to 3.4 GeV/c and the angular range 35°⩽Θcm⩽90° with a detector providing ΔΘcm≈1.4° resolution and 85% solid angle coverage. Measurements are performed continuously during projectile acceleration in the Cooler Synchrotron COSY. In phase 1 of the experiment spin-averaged differential cross sections dσ/dΩ have been measured with an internal CH2 fiber target; background corrections were derived from measurements with a carbon fiber target and from Monte Carlo simulations of inelastic pp contributions. The results provide excitation functions and angular distributions of high precision and internal consistency. In phase 2 of the experiment excitation functions of the analyzing power AN have been measured using a polarized (P⩾75%) atomic beam target, and those of the polarization correlation parameters ANN, ASS and ASL will be measured lateron with the polarized COSY beam. The measured excitation functions are compared to recent phase shift analyses, and their impact on them is discussed. So far evidence for narrow structures was neither found in the spin averaged cross sections nor in the analyzing powers.

  11. Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B

    2011-12-01

    Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Discrete-to-continuous transition in quantum phase estimation

    NASA Astrophysics Data System (ADS)

    Rządkowski, Wojciech; Demkowicz-Dobrzański, Rafał

    2017-09-01

    We analyze the problem of quantum phase estimation in which the set of allowed phases forms a discrete N -element subset of the whole [0 ,2 π ] interval, φn=2 π n /N , n =0 ,⋯,N -1 , and study the discrete-to-continuous transition N →∞ for various cost functions as well as the mutual information. We also analyze the relation between the problems of phase discrimination and estimation by considering a step cost function of a given width σ around the true estimated value. We show that in general a direct application of the theory of covariant measurements for a discrete subgroup of the U(1 ) group leads to suboptimal strategies due to an implicit requirement of estimating only the phases that appear in the prior distribution. We develop the theory of subcovariant measurements to remedy this situation and demonstrate truly optimal estimation strategies when performing a transition from discrete to continuous phase estimation.

  13. Objective-function hybridization in adjoint seismic tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Yanhua O.; Bozdaǧ, Ebru; Simons, Frederik J.; Gao, Fuchun

    2017-04-01

    Seismic tomography is at the threshold of a new era of massive data sets. Improving the resolution and accuracy of the estimated Earth structure by assimilating as much information as possible from every seismogram, remains a challenge. We propose the use of the "exponentiated phase'', a type of measurement that robustly captures the information contained in the variation of phase with time in the seismogram. We explore its performance in both conventional and double-difference (Yuan, Simons & Tromp, Geophys. J. Intern, 2016) adjoint seismic tomography. We introduce a hybrid approach to combine different objective functions, taking advantage of both conventional and our new measurements. We initially focus on phase measurements in global tomography. Cross-correlation measurements are generally tailored by window selection algorithms, such as FLEXWIN, to balance amplitude differences between seismic phases. However, within selection windows, such measurements still favor the larger-amplitude phases. It is also difficult to select all usable portions of the seismogram in an optimal way, such that much information may be lost, particularly the scattered waves. Time-continuous phase measurements, which associate a time shift with each point in time, have the potential to extract information from every wiggle in the seismogram without cutting it into small pieces. One such type of measurement is the instantaneous phase (Bozdaǧ, Trampert & Tromp, Geophys. J. Intern, 2011), which thus far has not been implemented in realistic seismic-tomography experiments, given how difficult the computation of phase can sometimes be. The exponentiated phase, on the other hand, is computed on the basis of the normalized analytic signal, does not need an explicit measure of phase, and is thus much easier to implement, and more practical for real-world applications. Both types of measurements carry comparable structural information when direct measurements of the phase are not wrapped. To deal with cycle skips, we use the exponentiated phase to take into account relatively small-magnitude scattered waves at long periods, while using cross-correlation measurements on windows determined by FLEXWIN to select distinct body-wave arrivals without complicating measurements due to non-linearities at short periods. We present synthetic experiments to show how exponentiated-phase, cross-correlation measurements, and their hybridization affect tomographic results. We demonstrate the use of hybrid measurements on teleseismic seismograms, in which surface waves are prominent, for continental and global seismic imaging. It is clear that the exponentiated-phase measurements behave well and provide a better representation of the smaller phases in the adjoint sources required for the computation of the misfit gradient. The combination of two different types of phase measurements in a hybrid approach moves us towards using all of the available information in a data set, addressing data quality and measurement challenges simultaneously, while negligibly affecting computation time.

  14. Basilar-membrane responses to broadband noise modeled using linear filters with rational transfer functions.

    PubMed

    Recio-Spinoso, Alberto; Fan, Yun-Hui; Ruggero, Mario A

    2011-05-01

    Basilar-membrane responses to white Gaussian noise were recorded using laser velocimetry at basal sites of the chinchilla cochlea with characteristic frequencies near 10 kHz and first-order Wiener kernels were computed by cross correlation of the stimuli and the responses. The presence or absence of minimum-phase behavior was explored by fitting the kernels with discrete linear filters with rational transfer functions. Excellent fits to the kernels were obtained with filters with transfer functions including zeroes located outside the unit circle, implying nonminimum-phase behavior. These filters accurately predicted basilar-membrane responses to other noise stimuli presented at the same level as the stimulus for the kernel computation. Fits with all-pole and other minimum-phase discrete filters were inferior to fits with nonminimum-phase filters. Minimum-phase functions predicted from the amplitude functions of the Wiener kernels by Hilbert transforms were different from the measured phase curves. These results, which suggest that basilar-membrane responses do not have the minimum-phase property, challenge the validity of models of cochlear processing, which incorporate minimum-phase behavior. © 2011 IEEE

  15. Lunar Phase Function at 1064 Nm from Lunar Orbiter Laser Altimeter Passive and Active Radiometry

    NASA Technical Reports Server (NTRS)

    Barker, M. K.; Sun, X.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2016-01-01

    We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be 5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2), surface roughness on decimeter to decameter scales, and soil thermo- physical properties have a smaller effect, but the latter two are correlated with OMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at approximately 300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (OE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and OMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition and OMAT, suggesting the visible-to-near-infrared spectrum and phase function respond differently to the unusual regolith evolution and properties at this location. The phase difference map revealed additional geologically-influenced variations in the phase function's shape. In particular, variations were observed associated with the dark halo around Jackson crater, the impact ejecta of Copernicus and Giordano Bruno, and the Reiner Gamma Formation. For the latter, we 915 found that the phase function behaves more optically immature than the global phase function for its composition and OMAT, suggesting a difference in how the visible-to-near-IR spectrum and phase function respond to the unusual regolith evolution and properties at this location.

  16. Observations of tropospheric phase scintillations at 5 GHz on vertical paths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Sramek, R. A.

    1982-01-01

    The article presents observations of turbulence-induced tropospheric phase fluctuations measured at 5 GHz on the near-vertical paths relevant to many astronomical and geophysical measurements. The data are summarized as phase power spectra, structure functions, and Allan variances. Comparisons to other microwave observations indicate relatively good agreement in both the level and shape of the power spectrum of these tropospheric phase fluctuations. Implications for precision Doppler tracking of spacecraft and geodesy/radio interferometry are discussed.

  17. Measures of upper limb function for people with neck pain: a systematic review of measurement and practical properties (protocol).

    PubMed

    Alreni, Ahmad Salah Eldin; Harrop, Deborah; Gumber, Anil; McLean, Sionnadh

    2015-04-07

    Upper limb disability is a common musculoskeletal condition frequently associated with neck pain. Recent literature has reported the need to utilise validated upper limb outcome measures in the assessment and management of patients with neck pain. However, there is a lack of clear guidance about the suitability of available measures, which may impede utilisation. This review will identify all available measures of upper limb function developed for use in neck pain patients and evaluate their measurement and practical properties in order to identify those measures that are most appropriate for use in clinical practice and research. This review will be performed in two phases. Phase one will identify all measures used to assess upper limb function for patients with neck pain. Phase two will identify all available studies of the measurement and practical properties of identified instrument. The COnsensus-based Standards for selection of health Measurement INstrument (COSMIN) will be used to evaluate the methodological quality of the included studies. To ensure methodological rigour, the findings of this review will be reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guideline. Optimal management of patients with neck pain should incorporate upper limb rehabilitation. The findings of this study will assist clinicians who seek to utilise suitable and accurate measures to assess upper limb function for a patient with neck pain. In addition, the findings of this study may suggest new research directions to support the development of upper limb outcome measures for patients with neck pain. PROSPERO CRD42015016624.

  18. Obesity, change of body mass index and subsequent physical and mental health functioning: a 12-year follow-up study among ageing employees.

    PubMed

    Svärd, Anna; Lahti, Jouni; Roos, Eira; Rahkonen, Ossi; Lahelma, Eero; Lallukka, Tea; Mänty, Minna

    2017-09-26

    Studies suggest an association between weight change and subsequent poor physical health functioning, whereas the association with mental health functioning is inconsistent. We aimed to examine whether obesity and change of body mass index among normal weight, overweight and obese women and men associate with changes in physical and mental health functioning. The Helsinki Health Study cohort includes Finnish municipal employees aged 40 to 60 in 2000-02 (phase 1, response rate 67%). Phase 2 mail survey (response rate 82%) took place in 2007 and phase 3 in 2012 (response rate 76%). This study included 5668 participants (82% women). Seven weight change categories were formed based on body mass index (BMI) (phase 1) and weight change (BMI change ≥5%) (phase 1-2). The Short Form 36 Health Survey (SF-36) measured physical and mental health functioning. The change in health functioning (phase 1-3) score was examined with repeated measures analyses. Covariates were age, sociodemographic factors, health behaviours, and somatic ill-health. Weight gain was common among women (34%) and men (25%). Weight-gaining normal weight (-1.3 points), overweight (-1.3 points) and obese (-3.6 points) women showed a greater decline in physical component summary scores than weight-maintaining normal weight women. Among weight-maintainers, only obese (-1.8 points) women showed a greater decline than weight-maintaining normal weight women. The associations were similar, but statistically non-significant for obese men. No statistically significant differences in the change in mental health functioning occurred. Preventing weight gain likely helps maintaining good physical health functioning and work ability.

  19. Regulation of the Adrenal Cortex Function During Stress

    NASA Technical Reports Server (NTRS)

    Soliman, K. F. A.

    1978-01-01

    A proposal to study the function of the adrenal gland in the rat during stress is presented. In the proposed project, three different phases of experimentation will be undertaken. The first phase includes establishment of the circadian rhythm of both brain amines and glucocoticoids, under normal conditions and under chronic and acute stressful conditions. The second phase includes the study of the pharmacokinetics of glucocorticoid binding under normal and stress conditions. The third phase includes brain uptake and binding under different experimental conditions. In the outlined experiments brain biogenic amines will be evaluated, adrenal functions will be measured and stress effect on those parameters will be studied. It is hoped that this investigation can explain some of the complex relationships between the brain neurotransmitter and adrenal function.

  20. Microphysical Properties of Alaskan Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Puthukkudy, A.; Espinosa, R.; Rocha Lima, A.; Remer, L.; Colarco, P. R.; Whelley, P.; Krotkov, N. A.; Young, K.; Dubovik, O.; Wallace, K.; Martins, J. V.

    2017-12-01

    Volcanic ash has the potential to cause a variety of severe problems for human health and the environment. Therefore, effective monitoring of the dispersion and fallout from volcanic ash clouds and characterization of the aerosol particle properties are essential. One way to acquire information from volcanic clouds is through satellite remote sensing: such images have greater coverage than ground-based observations and can present a "big picture" perspective. A challenge of remote sensing is that assumptions of certain properties of the target are often a pre-requisite for making accurate and quantitative retrievals. For example, detailed information about size distribution, sphericity, and optical properties of the constituent matter is needed or must be assumed. The same kind of information is also needed for atmospheric transport models to properly simulate the dispersion and fallout of volcanic ash. Presented here is a laboratory method to determine the microphysical and optical properties of volcanic ash samples collected from two Alaskan volcanoes with markedly different compositions. Our method uses a Polarized Imaging Nephelometer (PI-Neph) and a system that re-suspends the particles in an air flow. The PI-Neph measures angular light scattering and polarization of the re-suspended particles from 3o to 175o in scattering angle, with an angular resolution of 1o . Primary measurements include phase function and polarized phase function at three wavelengths (445nm, 532nm, and 661nm). Size distribution, sphericity, and complex refractive index are retrieved indirectly from the PI-Neph measurements using the GRASP (Generalized Retrieval of Aerosol and Surface Properties) inversion algorithm. We report the results of this method applied to samples from the Mt. Okmok (2008) and Mt. Katmai (1912) volcanic eruptions. To our knowledge, this is the first time direct measurements of phase matrix elements of ash from Mt. Okmok and Mt. Katmai have been reported. Retrieved microphysical properties show that Mt. Katmai ash is less absorbing than the Mt. Okmok ash in visible wavelengths. Phase function of these Alaskan volcanic ashes is smooth curve without any significant features. Phase function and polarized phase function measured do not exhibit strong spectral dependence in visible wavelengths.

  1. Optical weak measurements without removing the Goos-Hänchen phase

    NASA Astrophysics Data System (ADS)

    Araújo, Manoel P.; De Leo, Stefano; Maia, Gabriel G.

    2018-04-01

    Optical weak measurements are a powerful tool for measuring small shifts of optical paths. When applied to the measurement of the Goos-Hänchen shift, in particular, a special step must be added to its protocol: the removal of the relative Goos-Hänchen phase, since its presence generates a destructive influence on the measurement. There is, however, a lack of description in the literature of the precise effect of the Goos-Hänchen phase on weak measurements. In this paper we address this issue, developing an analytic study for a Gaussian beam transmitted through a dielectric structure. We obtain analytic expressions for weak measurements as a function of the relative Goos-Hänchen phase and show how to remove it without the aid of waveplates.

  2. Functional outcomes following the prosthetic training phase of rehabilitation after dysvascular lower extremity amputation

    PubMed Central

    Christiansen, Cory; Fields, Thomas; Lev, Guy; Stephenson, Ryan O.; Stevens-Lapsley, Jennifer E.

    2015-01-01

    Objective To describe physical function outcomes and modes of physical therapy intervention for a cohort of patients with dysvascular lower extremity amputation (LEA) during the prosthetic training phase of rehabilitation. Design A retrospective cohort study. Setting Physical rehabilitation clinics at a Veterans Affairs Medical Center and a University Hospital. Patients Forty-two patients (38 men, 4 women, age 60.2±8.4 years) who completed outpatient physical therapy rehabilitation with prosthetic training after dysvascular LEA. Methods All patients underwent a prosthetic training phase of rehabilitation, with standardized outcome measures performed at initiation and discharge. Main Outcome Measures Performance-based physical function measures included: Two-Minute Walk (2MW), Timed-Up and Go (TUG), and 5-meter gait speed. Self-report physical function measures included: the Prosthesis Evaluation Questionnaire – Mobility Section (PEQ-MS) and the Patient-Specific Functional Scale (PSFS). Rehabilitation dose was tracked as total number of clinic visits, rehabilitation duration, and specific intervention modes. Results There were significant improvements in 2MW (mean±SD) [67.5±29.9 m (initial) and 103.3±45.8 m (discharge) (p<0.001)], gait speed [0.58±0.27 m/s (initial) and 0.88±0.39 m/s (discharge) (p<0.001)], TUG [34.8±21.3 s (initial) and 18.6±13.9 s (discharge) (p<0.001)], PEQ-MS [2.2±0.9 (initial) and 2.8±0.8 (discharge) (p<0.001)], and PSFS [3.2±2.0 (initial) and 5.9±2.3 (discharge) (p<0.001)]. Performance-based (TUG) and self-report (PEQ-MS) changes in functional mobility from initial exam to discharge had low or no correlations with rehabilitation dose measures. Number of clinic visits was 12.7±13.1 and rehabilitation duration was 13.7±16.8 weeks. Conclusions Significant improvements in performance-based and self-report measures of physical function occurred during the prosthetic training phase of physical rehabilitation following dysvascular major LEA. Despite improvements in function, gait speed and TUG outcomes remained below clinically important thresholds, indicating patients were limited in community ambulation and at risk for falls. Lack of moderate or higher correlation between rehabilitation dose and outcome measures may indicate need for more specific rehabilitation dose measures. PMID:25978948

  3. Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation

    NASA Astrophysics Data System (ADS)

    Peter, Simon; Leine, Remco I.

    2017-11-01

    Phase resonance testing is one method for the experimental extraction of nonlinear normal modes. This paper proposes a novel method for nonlinear phase resonance testing. Firstly, the issue of appropriate excitation is approached on the basis of excitation power considerations. Therefore, power quantities known from nonlinear systems theory in electrical engineering are transferred to nonlinear structural dynamics applications. A new power-based nonlinear mode indicator function is derived, which is generally applicable, reliable and easy to implement in experiments. Secondly, the tuning of the excitation phase is automated by the use of a Phase-Locked-Loop controller. This method provides a very user-friendly and fast way for obtaining the backbone curve. Furthermore, the method allows to exploit specific advantages of phase control such as the robustness for lightly damped systems and the stabilization of unstable branches of the frequency response. The reduced tuning time for the excitation makes the commonly used free-decay measurements for the extraction of backbone curves unnecessary. Instead, steady-state measurements for every point of the curve are obtained. In conjunction with the new mode indicator function, the correlation of every measured point with the associated nonlinear normal mode of the underlying conservative system can be evaluated. Moreover, it is shown that the analysis of the excitation power helps to locate sources of inaccuracies in the force appropriation process. The method is illustrated by a numerical example and its functionality in experiments is demonstrated on a benchmark beam structure.

  4. Optical Implementation Of The Synthetic Discrimination Function

    NASA Astrophysics Data System (ADS)

    Butler, Steve; Riggins, James

    1985-01-01

    Computer-generated holograms of geometrical shape and synthetic discriminant function (SDF) matched filters are modeled and produced. The models include ideal correlations and Allebach-Keegan binary holograms. A distinction between Phase-Only-Information and Phase-Only-Material Filters is demonstrated. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.

  5. Photometric properties of Ceres from telescopic observations using Dawn Framing Camera color filters

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Li, Jian-Yang; Gary, Bruce L.; Sanchez, Juan A.; Stephens, Robert D.; Megna, Ralph; Coley, Daniel; Nathues, Andreas; Le Corre, Lucille; Hoffmann, Martin

    2015-11-01

    The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres' phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength. Our analysis shows that the modeled geometric albedos derived from both the IAU HG model and the Hapke model are consistent with a flat and featureless spectrum of Ceres, although the values are ∼10% higher than previous measurements. Our models also suggest a wavelength dependence of Ceres' phase function. The IAU G-parameter and the Hapke single-particle phase function parameter, g, are both consistent with decreasing (shallower) phase slope with increasing wavelength. Such a wavelength dependence of phase function is consistent with reddening of spectral slope with increasing phase angle, or phase-reddening. This phase reddening is consistent with previous spectra of Ceres obtained at various phase angles archived in the literature, and consistent with the fact that the modeled geometric albedo spectrum of Ceres is the bluest of all spectra because it represents the spectrum at 0° phase angle. Ground-based FC color filter lightcurve data are consistent with HST albedo maps confirming that Ceres' lightcurve is dominated by albedo and not shape. We detected a positive correlation between 1.1-μm absorption band depth and geometric albedo suggesting brighter areas on Ceres have absorption bands that are deeper. We did not see the "extreme" slope values measured by Perna et al. (Perna, D., et al. [2015]. Astron. Astrophys. 575 (L1-6)), which they have attributed to "resurfacing episodes" on Ceres.

  6. Phase unwrapping algorithm using polynomial phase approximation and linear Kalman filter.

    PubMed

    Kulkarni, Rishikesh; Rastogi, Pramod

    2018-02-01

    A noise-robust phase unwrapping algorithm is proposed based on state space analysis and polynomial phase approximation using wrapped phase measurement. The true phase is approximated as a two-dimensional first order polynomial function within a small sized window around each pixel. The estimates of polynomial coefficients provide the measurement of phase and local fringe frequencies. A state space representation of spatial phase evolution and the wrapped phase measurement is considered with the state vector consisting of polynomial coefficients as its elements. Instead of using the traditional nonlinear Kalman filter for the purpose of state estimation, we propose to use the linear Kalman filter operating directly with the wrapped phase measurement. The adaptive window width is selected at each pixel based on the local fringe density to strike a balance between the computation time and the noise robustness. In order to retrieve the unwrapped phase, either a line-scanning approach or a quality guided strategy of pixel selection is used depending on the underlying continuous or discontinuous phase distribution, respectively. Simulation and experimental results are provided to demonstrate the applicability of the proposed method.

  7. Measuring myokines with cardiovascular functions: pre-analytical variables affecting the analytical output.

    PubMed

    Lombardi, Giovanni; Sansoni, Veronica; Banfi, Giuseppe

    2017-08-01

    In the last few years, a growing number of molecules have been associated to an endocrine function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several pathophysiological conditions including the cardiovascular ones. However, data from different studies are often not completely comparable or even discordant. This would be due, at least in part, to the whole set of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects the final output. In research, for example, when samples are collected over a long time and by different laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of myokines with cardiovascular functions.

  8. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    PubMed

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  9. Optically phase-locked electronic speckle pattern interferometer system performance for vibration measurement in random displacement fields

    NASA Astrophysics Data System (ADS)

    Moran, Steve E.; Lugannani, Robert; Craig, Peter N.; Law, Robert L.

    1989-02-01

    An analysis is made of the performance of an optically phase-locked electronic speckle pattern interferometer in the presence of random noise displacements. Expressions for the phase-locked speckle contrast for single-frame imagery and the composite rms exposure for two sequentially subtracted frames are obtained in terms of the phase-locked composite and single-frame fringe functions. The noise fringe functions are evaluated for stationary, coherence-separable noise displacements obeying Gauss-Markov temporal statistics. The theoretical findings presented here are qualitatively supported by experimental results.

  10. Phase measurements of EUV mask defects

    DOE PAGES

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; ...

    2015-02-22

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less

  11. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.

    PubMed

    Bloomfield, Philip E; Gandhi, Gaurav; Lewin, Peter A

    2011-11-01

    This work considers the need for both the amplitude and phase to fully characterize polyvinylidene fluoride (PVDF) membrane hydrophones and presents a comprehensive discussion of the nonlinear acoustic measurements utilized to extract the phase information and the experimental results taken with two widely used PVDF membrane hydrophones up to 100 MHz. A semi-empirical computer model utilized the hyperbolic propagation operator to predict the nonlinear pressure field and provide the complex frequency response of the corresponding source transducer. The PVDF hydrophone phase characteristics, which were obtained directly from the difference between the computer-modeled nonlinear field simulation and the corresponding measured harmonic frequency phase values, agree to within 10% with the phase predictions obtained from receive-transfer-function simulations based on software modeling of the membrane's physical properties. Cable loading effects and membrane hydrophone resonances were distinguished and identified through a series of impedance measurements and receive transfer function simulations on the hydrophones including their hard-wired coaxial cables. The results obtained indicate that the PVDF membrane hydrophone's phase versus frequency plot exhibits oscillations about a monotonically decreasing line. The maxima and minima inflection point slopes occur at the membrane thickness resonances and antiresonances, respectively. A cable resonance was seen at 100 MHz for the hydrophone with a 1-m cable attached, but not seen for the hydrophone with a shorter 0.65-m cable.

  12. The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate

    PubMed Central

    Davison, Michael; Elliffe, Douglas; Marr, M. Jackson

    2010-01-01

    Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from .1 to .9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of reinforcers on the two keys ending the next interreinforcer interval. The feedback function was linear, and was negatively sloped so that more extreme choice in an interreinforcer interval made it more likely that a reinforcer would be available on the other key at the end of the next interval. The slope of the feedback function was −1 in Phase 2 and −3 in Phase 3. We varied relative reinforcers in each of these phases by changing the intercept of the feedback function. Little effect of the feedback functions was discernible at the local (interreinforcer interval) level, but choice measured at an extended level across sessions was strongly and significantly decreased by increasing the negative slope of the feedback function. PMID:21451748

  13. A self-reference PRF-shift MR thermometry method utilizing the phase gradient

    NASA Astrophysics Data System (ADS)

    Langley, Jason; Potter, William; Phipps, Corey; Huang, Feng; Zhao, Qun

    2011-12-01

    In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature.

  14. Proceedings of the Space Surveillance Workshop (11th) Held at Lexington, Massachusetts on 30 March-1 April 1993. Volume 2

    DTIC Science & Technology

    1993-04-01

    modulation mentioned above is hardly noticeable in the magnitude plots, suggesting it is much weaker than the typical phase function behavior for the...measurements with the overall behavior virtually the same for both. Thus a single representation is sought. Searches for the best analytical representation...nightly phase function behavior , the specular function is found by fitting only the nightly peak count in each case. The specular function is thus

  15. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery.

    PubMed

    Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu

    2013-04-01

    Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural activities in the penumbra. Longitudinal EEG monitoring at different phases after a stroke can provide information on the neural activities, which are well correlated with the motor function recovery.

  16. Electrical impedance myography for the assessment of children with muscular dystrophy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Rutkove, S. B.; Darras, B. T.

    2013-04-01

    Electrical impedance myography (EIM) provides a non-invasive approach for quantifying the severity of neuromuscular disease. Here we determine how well EIM data correlates to functional and ultrasound (US) measures of disease in children with Duchenne muscular dystrophy (DMD) and healthy subjects. Thirteen healthy boys, aged 2-12 years and 14 boys with DMD aged 4-12 years underwent both EIM and US measurements of deltoid, biceps, wrist flexors, quadriceps, tibialis anterior, and medial gastrocnemius. EIM measurements were performed with a custom-designed probe using a commercial multifrequency bioimpedance device. US luminosity data were quantified using a gray-scale analysis approach. Children also underwent the 6-minute walk test, timed tests and strength measurements. EIM and US data were combined across muscles. EIM 50 kHz phase was able to discriminate DMD children from healthy subjects with 98% accuracy. In the DMD patients, average EIM phase measurements also correlated well with standard functional measures. For example the 50 kHz phase correlated with the Northstar Ambulatory Assessment test (R = 0.83, p = 0.02). EIM 50 kHz phase and US correlated as well, with R = -0.79 (p < 0.001). These results show that EIM provides valuable objective measures Duchenne muscular dystrophy severity.

  17. Reconstruction method for inversion problems in an acoustic tomography based temperature distribution measurement

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Liu, Shi; Tong, Guowei

    2017-11-01

    In industrial areas, temperature distribution information provides a powerful data support for improving system efficiency, reducing pollutant emission, ensuring safety operation, etc. As a noninvasive measurement technology, acoustic tomography (AT) has been widely used to measure temperature distribution where the efficiency of the reconstruction algorithm is crucial for the reliability of the measurement results. Different from traditional reconstruction techniques, in this paper a two-phase reconstruction method is proposed to ameliorate the reconstruction accuracy (RA). In the first phase, the measurement domain is discretized by a coarse square grid to reduce the number of unknown variables to mitigate the ill-posed nature of the AT inverse problem. By taking into consideration the inaccuracy of the measured time-of-flight data, a new cost function is constructed to improve the robustness of the estimation, and a grey wolf optimizer is used to solve the proposed cost function to obtain the temperature distribution on the coarse grid. In the second phase, the Adaboost.RT based BP neural network algorithm is developed for predicting the temperature distribution on the refined grid in accordance with the temperature distribution data estimated in the first phase. Numerical simulations and experiment measurement results validate the superiority of the proposed reconstruction algorithm in improving the robustness and RA.

  18. Circadian Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo

    PubMed Central

    Fang, Bin; Everett, Logan J.; Jager, Jennifer; Briggs, Erika; Armour, Sean M.; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A.

    2014-01-01

    SUMMARY Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of eRNAs that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed novel mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed new light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ. PMID:25416951

  19. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo.

    PubMed

    Fang, Bin; Everett, Logan J; Jager, Jennifer; Briggs, Erika; Armour, Sean M; Feng, Dan; Roy, Ankur; Gerhart-Hines, Zachary; Sun, Zheng; Lazar, Mitchell A

    2014-11-20

    Mammalian transcriptomes display complex circadian rhythms with multiple phases of gene expression that cannot be accounted for by current models of the molecular clock. We have determined the underlying mechanisms by measuring nascent RNA transcription around the clock in mouse liver. Unbiased examination of enhancer RNAs (eRNAs) that cluster in specific circadian phases identified functional enhancers driven by distinct transcription factors (TFs). We further identify on a global scale the components of the TF cistromes that function to orchestrate circadian gene expression. Integrated genomic analyses also revealed mechanisms by which a single circadian factor controls opposing transcriptional phases. These findings shed light on the diversity and specificity of TF function in the generation of multiple phases of circadian gene transcription in a mammalian organ.

  20. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    NASA Astrophysics Data System (ADS)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can reduce an error contaminated through the calibration to less than 0.1 % of amplitude of input waves; (1) a Turkey-type window function with a flat top region of one-third of the window length and (2) modification of the window function for each frequency by referring the estimation of the phase shift due to the first order differential coefficient from the transfer functions.

  1. Urodynamic measurements reflect physiological bladder function in rats.

    PubMed

    Schneider, Marc P; Sartori, Andrea M; Tampé, Juliane; Moors, Selina; Engmann, Anne K; Ineichen, Benjamin V; Hofer, Anna-Sophie; Schwab, Martin E; Kessler, Thomas M

    2018-04-01

    Our objective was to investigate and compare bladder function in rats assessed by metabolic cage and by urodynamic measurements in fully awake animals. Bladder function of female Lewis rats was investigated in naïve animals by metabolic cage at baseline, 14-16 days after bladder catheter and external urethral sphincter electromyography electrode implantation in fully awake animals by urodynamics, and again by metabolic cage. Investigating the same animals (n = 8), voided volume, average flow, and duration of voiding were similar (P > 0.05) in naïve animals measured by metabolic cage and after catheter implantation by urodynamic measurements and by metabolic cage. In naïve animals measured by metabolic cage, voided volumes were significantly different in the light (resting phase) versus the dark (active phase) part of the 24 h cycle (mean difference 0.14 mL, 21%, P = 0.004, n = 27). Lower urinary tract function assessed by metabolic cage or by urodynamic meaurements in fully awake rats was indistinguishable. Thus, catheter implantation did not significantly change physiological bladder function. This shows that urodynamic measurements in awake animals are an appropriate approach to study lower urinary tract function in health and disease in animal models, directly paralleling the human diagnostic procedures. © 2017 Wiley Periodicals, Inc.

  2. Organisational justice and cognitive function in middle-aged employees: the Whitehall II study.

    PubMed

    Elovainio, Marko; Singh-Manoux, Archana; Ferrie, Jane E; Shipley, Martin; Gimeno, David; De Vogli, Roberto; Vahtera, Jussi; Virtanen, Marianna; Jokela, Markus; Marmot, Michael G; Kivimäki, Mika

    2012-06-01

    Little is known about the role that work-related factors play in the decline of cognitive function. This study examined the association between perceived organisational justice and cognitive function among middle-aged men and women. Perceived organisational justice was measured at phases 1 (1985-8) and 2 (1989-90) of the Whitehall II study when the participants were 35-55 years old. Assessment of cognitive function at the screening clinic at phases 5 (1997-9) and 7 (2003-4) included the following tests in the screening clinic: memory, inductive reasoning (Alice Heim 4), vocabulary (Mill Hill), and verbal fluency (phonemic and semantic). Mean exposure to lower organisational justice at phases 1 and 2 in relation to cognitive function at phases 5 and 7 were analysed using linear regression analyses. The final sample included 4531 men and women. Lower mean levels of justice at phases 1 and 2 were associated with worse cognitive function in terms of memory, inductive reasoning, vocabulary and verbal fluency at both phases 5 and 7. These associations were independent of covariates, such as age, occupational grade, behavioural risks, depression, hypertension and job strain. This study suggests an association between perceived organisational justice and cognitive function. Further studies are needed to examine whether interventions designed to improve organisational justice would affect employees' cognition function favourably.

  3. A software to measure phase-velocity dispersion from ambient-noise correlations and its application to the SNSN data

    NASA Astrophysics Data System (ADS)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur

    2017-04-01

    Graphical software for phase-velocity dispersion measurements of surface waves in noise-correlation traces, called GSpecDisp, is presented. It is an interactive environment for the measurements and presentation of the results. It measures phase-velocity dispersion curves in the frequency domain based on matching of the real part of the cross-correlation spectrum with the appropriate Bessel function. The inputs are time-domain cross-correlations in SAC format. It can measure two types of phase-velocity dispersion curves; 1- average phase-velocity of a region, and 2- single-pair phase velocity. The average phase-velocity dispersion curve of a region can be used as a reference curve to automatically select the dispersion curves from each single-pair cross-correlation in that region. It also allows the users to manually refine the selections. Therefore, no prior knowledge is needed for an unknown region. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor, including diagonal and off-diagonal components of the tensor. First, we explain how GSpecDisp is applied to measure phase-velocity dispersion curves. Then, we demonstrate measurement results on synthetic and real data from the Swedish National Seismic Network (SNSN). We compare the results with two other methods of phase-velocity dispersion measurements. Finally, we compare phase-velocity dispersion curves of Rayleigh waves obtained from different components of the correlation tensor.

  4. Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain.

    PubMed

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2013-07-01

    We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising model. At long times, the generating function takes on a large-deviation form and the associated cumulant generating function has singularities corresponding to continuous trajectory (or "space-time") phase transitions between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions from the finite-time behavior of measurable quantities.

  5. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    PubMed

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14  cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  6. ASSESSMENT OF ANALYTICAL METHODS USED TO MEASURE CHANGES IN BODY COMPOSITION IN THE ELDERLY AND RECOMMENDATIONS FOR THEIR USE IN PHASE II CLINICAL TRIALS

    PubMed Central

    Lustgarten, M.S.; Fielding, R.A.

    2012-01-01

    It is estimated that in the next 20 years, the amount of people greater than 65 years of age will rise from 40 to 70 million, and will account for 19% of the total population. Age-related decreases in muscle mass and function, known as sarcopenia, have been shown to be related to functional limitation, frailty and an increased risk of morbidity and mortality. Therefore, with an increasing elderly population, interventions that can improve muscle mass content and/or function are essential. However, analytical techniques used for measurement of muscle mass in young subjects may not be valid for use in the elderly. Therefore, the purpose of this review is to examine the applied specificity and accuracy of methods that are commonly used for measurement of muscle mass in aged subjects, and, to propose specific recommendations for the use of body composition measures in phase II clinical trials of function-promoting anabolic therapies. PMID:21528163

  7. Final Report, Fundamental Mechanisms of Transient States in Materials Quantified by DTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, G. H.; McKeown, J. T.

    At the project’s inception, there was growing evidence that the time domain for in situ observations of material evolution held great promise for allowing measurements to be made in never previously contemplated regimes. Also, central to the development of the project was the knowledge that phase transformations are of central importance to the development of materials microstructure and hence properties. We addressed this opportunity by developing a transmission electron microscope that could be operated in the pulsed mode (DTEM), with exposure times down to 20 ns and interframe times down to 20 ns in the nine-frame movie mode, designed withmore » the intent of performing in situ experiments. This unprecedented capability allowed us to investigate structural phase transformations, intermetallic formation reactions, crystallization from the amorphous phase, rapid solidification of liquid metals, transformations in phase change materials, and catalyst nanoparticles. The ability of the electron microscope to create images with high spatial resolution allows for the accurate measurement of position. Common to all of the transformations mentioned above is the presence of a distinct interface between the old phase and the growing new phase. Measuring the position of the interface as a function of time, combined with the ability to count nucleation sites as a function of time, allowed for the exceptionally accurate measure of transformation kinetics. These measurements were used to guide and constrain the development of models and simulation methods for the classes of transformations studied.« less

  8. Tongue Measures in Individuals with Normal and Impaired Swallowing

    ERIC Educational Resources Information Center

    Stierwalt, Julie A. G.; Youmans, Scott R.

    2007-01-01

    Purpose: This investigation sought to add to the extant literature on measures of normal tongue function, to provide information on measures of tongue function in a group of individuals with oral phase dysphagia, and to provide a comparison of these 2 groups matched for age and gender. Method: The Iowa Oral Performance Instrument was utilized to…

  9. Validation of MODIS Dust Aerosol Retrieval and Development Ambient Dust Phase Function using PRIDE Data

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Lau, William (Technical Monitor)

    2002-01-01

    The PRIDE data set of MODIS aerosol retrievals co-located with sunphotometer measurements provides the basis of MODIS validation in a dust environment. The sunphotometer measurements include AERONET automatic instruments, land-based Microtops instruments, ship-board Microtops instruments and the AATS-6 aboard the Navajo aircraft. Analysis of these data indicate that the MODIS retrieval is within pre-launch estimates of uncertainty within the spectral range of 600-900 nm. However, the MODIS algorithm consistently retrieves smaller particles than reality thus leading to incorrect spectral response outside of the 600-900 nm range and improper size information. Further analysis of MODIS retrievals in other dust environments shows the inconsistencies are due to nonspherical effects in the phase function. These data are used to develop an ambient phase function for dust aerosol to be used for remote sensing purposes.

  10. Comparison of measured and computed phase functions of individual tropospheric ice crystals

    NASA Astrophysics Data System (ADS)

    Stegmann, Patrick G.; Tropea, Cameron; Järvinen, Emma; Schnaiter, Martin

    2016-07-01

    Airplanes passing the incuda (lat. anvils) regions of tropical cumulonimbi-clouds are at risk of suffering an engine power-loss event and engine damage due to ice ingestion (Mason et al., 2006 [1]). Research in this field relies on optical measurement methods to characterize ice crystals; however the design and implementation of such methods presently suffer from the lack of reliable and efficient means of predicting the light scattering from ice crystals. The nascent discipline of direct measurement of phase functions of ice crystals in conjunction with particle imaging and forward modelling through geometrical optics derivative- and Transition matrix-codes for the first time allow us to obtain a deeper understanding of the optical properties of real tropospheric ice crystals. In this manuscript, a sample phase function obtained via the Particle Habit Imaging and Polar Scattering (PHIPS) probe during a measurement campaign in flight over Brazil will be compared to three different light scattering codes. This includes a newly developed first order geometrical optics code taking into account the influence of the Gaussian beam illumination used in the PHIPS device, as well as the reference ray tracing code of Macke and the T-matrix code of Kahnert.

  11. Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Deschamps, Pierre-Yves

    1997-01-01

    Firstly, we have analyzed atmospheric transmittance and sky radiance data connected at the Scripps Institution of Oceanography pier, La Jolla during the winters of 1993 and 1994. Aerosol optical thickness at 870 nm was generally low in La Jolla, with most values below 0.1 after correction for stratospheric aerosols. For such low optical thickness, variability in aerosol scattering properties cannot be determined, and a mean background model, specified regionally under stable stratospheric component, may be sufficient for ocean color remote sensing, from space. For optical thicknesses above 0. 1, two modes of variability characterized by Angstrom exponents of 1.2 and 0.5 and corresponding, to Tropospheric and Maritime models, respectively, were identified in the measurements. The aerosol models selected for ocean color remote sensing, allowed one to fit, within measurement inaccuracies, the derived values of Angstrom exponent and 'pseudo' phase function (the product of single scattering albedo and phase function), key atmospheric correction parameters. Importantly, the 'pseudo' phase function can be derived from measurements of the Angstrom exponent. Shipborne sun photometer measurements at the time of satellite overpass are usually sufficient to verify atmospheric correction for ocean color.

  12. Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction

    PubMed Central

    Trimble, Mark A.; Borges-Neto, Salvador; Honeycutt, Emily F.; Shaw, Linda K.; Pagnanelli, Robert; Chen, Ji; Iskandrian, Ami E.; Garcia, Ernest V.; Velazquez, Eric J.

    2010-01-01

    Background Using phase analysis of gated single photon emission computed tomography (SPECT) imaging, we examined the relation between myocardial perfusion, degree of electrical dyssynchrony, and degree of SPECT-derived mechanical dyssynchrony in patients with left ventricular (LV) dysfunction. Methods and Results We retrospectively examined 125 patients with LV dysfunction and ejection fraction of 35% or lower. Fourier analysis converts regional myocardial counts into a continuous thickening function, allowing resolution of phase of onset of myocardial thickening. The SD of LV phase distribution (phase SD) and histogram bandwidth describe LV phase dispersion as a measure of dyssynchrony. Heart failure (HF) patients with perfusion abnormalities ities have higher degrees of dyssynchrony measured by median phase SD (45.5° vs 27.7°, P < .0001) and bandwidth (117.0° vs 73.0°, P = .0006). HF patients with prolonged QRS durations have higher degrees of dyssynchrony measured by median phase SD (54.1° vs 34.7°, P < .0001) and bandwidth (136.5° vs 99.0°, P = .0005). Mild to moderate correlations exist between QRS duration and phase analysis indices of phase SD (r = 0.50) and bandwidth (r = 0.40). Mechanical dyssynchrony (phase SD >43°) was 43.2%. Conclusions HF patients with perfusion abnormalities or prolonged QRS durations QRS durations have higher degrees of mechanical dyssynchrony. Gated SPECT myocardial perfusion imaging can quantify myocardial function, perfusion, and dyssynchrony and may help in evaluating patients for cardiac resynchronization therapy. PMID:18761269

  13. A new method of time difference measurement: The time difference method by dual phase coincidence points detection

    NASA Technical Reports Server (NTRS)

    Zhou, Wei

    1993-01-01

    In the high accurate measurement of periodic signals, the greatest common factor frequency and its characteristics have special functions. A method of time difference measurement - the time difference method by dual 'phase coincidence points' detection is described. This method utilizes the characteristics of the greatest common factor frequency to measure time or phase difference between periodic signals. It can suit a very wide frequency range. Measurement precision and potential accuracy of several picoseconds were demonstrated with this new method. The instrument based on this method is very simple, and the demand for the common oscillator is low. This method and instrument can be used widely.

  14. Behaviour of phase functions of Olivine and Augite assemblages in the wavelength range 0.3-18 μm

    NASA Astrophysics Data System (ADS)

    Salgueiro da Silva, M. A.; Seixas, T. M.; Maturilli, A.; Helbert, J.

    2017-09-01

    We tested the validity of the wavelength-independent phase function assumption by measuring BDR of olivine and augite mineral assemblages in the extended spectral range 0.3-18 μm. Because quasi-isotropic scattering is present in both OL and AUG assemblages with grain-size dependent features, it is not clear that this is an intrinsic effect attributed to the wavelength dependence of the optical constants of olivine and augite minerals. Our results show that the application of Hapke model to olivine and augite BDR spectra in the MIR range requires a wavelength- and, possibly, grain size-dependent phase function.

  15. Ion Dynamics in a Single and Dual Radio Frequency Sheath Measured by Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel Breckenridge

    Ion dynamics are investigated in a single and dual radio frequency sheath as a function of radius above a 30 cm diameter biased silicon wafer for the first time in an industrial inductively coupled (440 kHz, 500 W) plasma etch tool. Ion velocity distribution (IVD) function measurements in the argon plasma are taken using laser induced fluorescence (LIF). Planar sheets of laser light enter the chamber both parallel and perpendicular to the surface of the wafer in order to measure both parallel and perpendicular IVDs at thousands of spatial positions. A fast (30 ns exposure) CCD camera measures the resulting fluorescence with a spatial resolution of 0.4 mm. The dual-frequency bias on the wafer is comprised of a 2 MHz low frequency (LF) bias and a 19 MHz high frequency (HF) bias. The laser is phase locked to the LF bias and IVD measurements are taken at several different LF phases. Ion energy distribution (IED) function measurements and calculated moments are compared for several cases. For the LF case (no HF), the IEDs were found to be highly phase dependent and were varied radially up to 10%. Calculated mean velocity vectors showed large impact angles near the surface of the wafer with the largest angles observed near the wafer edge. The LF experimental results are compared with simulations designed specifically for this particular plasma tool and showed good qualitative agreement. For the dual frequency case, IEDs were measured at two disparate phases of the phase-locked LF bias. IEDs were found to be multi-peaked and were well-approximated by a sum of Maxwellian distributions. The calculated fluxes in the dual frequency case were found to be substantially more radially uniform than the single frequency bias case. For industrial applications, this radially uniform ion flux is evidently a trade off with the undesirable multi-peaked structure in the IEDs.

  16. Biological Implications of Dynamical Phases in Non-equilibrium Networks

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2016-03-01

    Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

  17. Influence of charge and flexibility on smectic phase formation in filamentous virus suspensions

    NASA Astrophysics Data System (ADS)

    Purdy, Kirstin R.; Fraden, Seth

    2007-07-01

    We present experimental measurements of the cholesteric-smectic phase transition of suspensions of charged semiflexible rods as a function of rod flexibility and surface charge. The rod particles consist of the bacteriophage M13 and closely related mutants, which are structurally identical to M13, but vary either in contour length and therefore ratio of persistence length to contour length, or surface charge. Surface charge is altered in two ways; by changing solution pH and by comparing M13 with fd virus, a virus which differs from M13 only by the substitution of a single charged amino acid for a neutral one per viral coat protein. Phase diagrams are measured as a function of particle length, particle charge, and ionic strength. The experimental results are compared with existing theoretical predictions for the phase behavior of flexible rods and charged rods.

  18. Cumulants vs correlation functions and the QCD phase diagram at low energies

    DOE PAGES

    Bzdak, A.; Koch, V.; Skokov, V.; ...

    2017-09-25

    We discuss the relation between particle number cumulants and genuine correlation functions. Here, it is argued that measuring multi-particle correlation functions could provide cleaner information on possible non-trivial dynamics in heavy-ion collisions.

  19. Cumulants vs correlation functions and the QCD phase diagram at low energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, A.; Koch, V.; Skokov, V.

    We discuss the relation between particle number cumulants and genuine correlation functions. Here, it is argued that measuring multi-particle correlation functions could provide cleaner information on possible non-trivial dynamics in heavy-ion collisions.

  20. a Transplantable Compensation Scheme for the Effect of the Radiance from the Interior of a Camera on the Accuracy of Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Dong, Shidu; Yang, Xiaofan; He, Bo; Liu, Guojin

    2006-11-01

    Radiance coming from the interior of an uncooled infrared camera has a significant effect on the measured value of the temperature of the object. This paper presents a three-phase compensation scheme for coping with this effect. The first phase acquires the calibration data and forms the calibration function by least square fitting. Likewise, the second phase obtains the compensation data and builds the compensation function by fitting. With the aid of these functions, the third phase determines the temperature of the object in concern from any given ambient temperature. It is known that acquiring the compensation data of a camera is very time-consuming. For the purpose of getting the compensation data at a reasonable time cost, we propose a transplantable scheme. The idea of this scheme is to calculate the ratio between the central pixel’s responsivity of the child camera to the radiance from the interior and that of the mother camera, followed by determining the compensation data of the child camera using this ratio and the compensation data of the mother camera Experimental results show that either of the child camera and the mother camera can measure the temperature of the object with an error of no more than 2°C.

  1. Organisationalbis justice and cognitive function in middle-aged employees: the Whitehall II study

    PubMed Central

    Elovainio, Marko; Singh-Manoux, Archana; Ferrie, Jane E; Shipley, Martin; Gimeno, David; Vahtera, Jussi; Virtanen, Marianna; Jokela, Markus; Marmot, Michael G; Kivimäki, Mika; De Vogli, Roberto

    2012-01-01

    Background Little is known about the role work-related factors play in the decline cognitive function. We examined the association between perceived organizational justice and cognitive function among middle-aged men and women. Methods Perceived organizational justice was measured at Phases 1 (1985–1988) and 2 (1989–1990) of the Whitehall II study when the participants were 35–55 years old. Assessment of cognitive function at the screening clinic at Phases 5 (1997–1999) and 7 (2003–2004) included the following tests in screening clinic: memory, inductive reasoning (Alice Heim 4), vocabulary (Mill Hill), and verbal fluency (phonemic and semantic). Mean exposure to lower organizational justice at Phases 1 and 2 in relation to cognitive function at Phases 5 and 7 were analysed using linear regression analyses. The final sample included 4531 men and women. Results Lower mean levels of justice at Phases 1 and 2 were associated with worse cognitive function in terms of memory, inductive reasoning, vocabulary and verbal fluency at both Phases 5 and 7. These associations were independent of covariates, such as age, occupational grade, behavioural risks, depression, hypertension and job strain. Conclusions This study suggests an association between perceived organizational justice and cognitive function. Further studies are needed to examine whether interventions designed to improve organizational justice would affect employees’ cognition function favourably. PMID:21084589

  2. Low cost omega navigation receiver

    NASA Technical Reports Server (NTRS)

    Lilley, R. W.

    1974-01-01

    The development of a low cost Omega navigation receiver is discussed. Emphasis is placed on the completion and testing of a modular, multipurpose Omega receiver which utilizes a digital memory-aided, phase-locked loop to provide phase measurement data to a variety of applications interfaces. The functional units contained in the prototype device are described. The receiver is capable of receiving and storing phase measurements for up to eight Omega signals and computes two switch-selectable lines of position, displaying this navigation data in chart-recorded form.

  3. Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime

    NASA Astrophysics Data System (ADS)

    Naglič, Peter; Ivančič, Matic; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2018-02-01

    A measurement system was developed to acquire and analyze subdiffusive spatially resolved reflectance using an optical fiber probe with short source-detector separations. Since subdiffusive reflectance significantly depends on the scattering phase function, the analysis of the acquired reflectance is based on a novel inverse Monte Carlo model that allows estimation of phase function related parameters in addition to the absorption and reduced scattering coefficients. In conjunction with our measurement system, the model allowed real-time estimation of optical properties, which we demonstrate for a case of dynamically induced changes in human skin by applying pressure with an optical fiber probe.

  4. 3D geometric modeling and simulation of laser propagation through turbulence with plenoptic functions

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Nelson, William; Davis, Christopher C.

    2014-10-01

    Plenoptic functions are functions that preserve all the necessary light field information of optical events. Theoretical work has demonstrated that geometric based plenoptic functions can serve equally well in the traditional wave propagation equation known as the "scalar stochastic Helmholtz equation". However, in addressing problems of 3D turbulence simulation, the dominant methods using phase screen models have limitations both in explaining the choice of parameters (on the transverse plane) in real-world measurements, and finding proper correlations between neighboring phase screens (the Markov assumption breaks down). Though possible corrections to phase screen models are still promising, the equivalent geometric approach based on plenoptic functions begins to show some advantages. In fact, in these geometric approaches, a continuous wave problem is reduced to discrete trajectories of rays. This allows for convenience in parallel computing and guarantees conservation of energy. Besides the pairwise independence of simulated rays, the assigned refractive index grids can be directly tested by temperature measurements with tiny thermoprobes combined with other parameters such as humidity level and wind speed. Furthermore, without loss of generality one can break the causal chain in phase screen models by defining regional refractive centers to allow rays that are less affected to propagate through directly. As a result, our work shows that the 3D geometric approach serves as an efficient and accurate method in assessing relevant turbulence problems with inputs of several environmental measurements and reasonable guesses (such as Cn 2 levels). This approach will facilitate analysis and possible corrections in lateral wave propagation problems, such as image de-blurring, prediction of laser propagation over long ranges, and improvement of free space optic communication systems. In this paper, the plenoptic function model and relevant parallel algorithm computing will be presented, and its primary results and applications are demonstrated.

  5. Kinetics of diffusional droplet growth in a liquid/liquid two-phase system

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Cain, Judith B.

    1993-01-01

    This report contains experimental results for the interdiffusion coefficient of the system, succinonitrile plus water, at a number of compositions and temperatures in the single phase region of the phase diagram. The concentration and temperature dependence of the measured diffusion coefficient has been analyzed in terms of Landau - Ginzburg theory, which assumes that the Gibb free energy is an analytic function of its variables, and can be expanded in a Taylor series about any point in the phase diagram. At most points in the single phase region this is adequate. Near the consolute point (critical point of solution), however, the free energy is non-analytic, and the Landau - Ginzburg theory fails. The solution to this problem dictates that the Landau - Ginzburg form of the free energy be replaced by Widom scaling functions with irrational values for the scaling exponents. As our measurements of the diffusion coefficient near the critical point reflect this non-analytic character, we are preparing for publication in a refereed journal a separate analysis of some of the data contained herein as well as some additional measurements we have just completed. When published, reprints of this article will be furnished to NASA.

  6. A method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-06-01

    A phase fluctuation calibration method is presented for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method consists of the generation of a continuous triggered tone-burst waveform rather than an asynchronous waveform by use of a function generator and the removal of the global phases of the measured Jones matrices by use of matrix normalization. This could remove the use of auxiliary optical components for the phase fluctuation compensation in the system, which reduces the system complexity. Phase fluctuation calibration is necessary to obtain the reference Jones matrix by averaging the measured Jones matrices at sample surfaces. Measurements on an equine tendon sample were made by the PS-SS-OCT system to validate the proposed method.

  7. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS: PHASE II. PRETREATMENT SYSTEM PERFORMANCE MEASUREMENT

    EPA Science Inventory

    The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...

  8. The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.

    PubMed

    González, César A; Rubinsky, Boris

    2006-06-01

    The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.

  9. Computed Tomography Findings of Bronchiectasis in Different Respiratory Phases Correlate with Pulmonary Function Test Data in Adults.

    PubMed

    do Amaral, Ricardo Holderbaum; Nin, Carlos S; de Souza, Vinicius V S; Alves, Giordano R T; Marchiori, Edson; Irion, Klaus; Meirelles, Gustavo S P; Hochhegger, Bruno

    2017-06-01

    To investigate bronchiectasis variations in different computed tomography (CT) respiratory phases, and their correlation with pulmonary function test (PFT) data, in adults. Retrospective data analysis from 63 patients with bronchiectasis according to CT criteria selected from the institution database and for whom PFT data were also available. Bronchiectasis diameter was measured on inspiratory and expiratory phases. Its area and matched airway-vessel ratios in both phases were also calculated. Finally, PFT results were compared with radiological measurements. Bronchiectatic airways were larger on inspiration than on expiration (mean cross-sectional area, 69.44 vs. 40.84 mm 2 ; p < 0.05) as were airway-vessel ratios (2.1 vs. 1.4; p < 0.05). Cystic bronchiectasis cases showed the least variation in cross-sectional area (48%). Mean predicted values of forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were 81.5 and 77.2%, respectively, in the group in which bronchiectasis could not be identified on expiratory images, and 58.3 and 56.0%, respectively, in the other group (p < 0.05). Variation in bronchiectasis area was associated with poorer lung function (r = 0.32). Bronchiectasis detection, diameter, and area varied significantly according to CT respiratory phase, with non-reducible bronchiectasis showing greater lung function impairment.

  10. Hemoglobin phase of oxygenation and deoxygenation in early brain development measured using fNIRS

    PubMed Central

    Watanabe, Hama; Shitara, Yoshihiko; Aoki, Yoshinori; Inoue, Takanobu; Tsuchida, Shinya; Takahashi, Naoto; Taga, Gentaro

    2017-01-01

    A crucial issue in neonatal medicine is the impact of preterm birth on the developmental trajectory of the brain. Although a growing number of studies have shown alterations in the structure and function of the brain in preterm-born infants, we propose a method to detect subtle differences in neurovascular and metabolic functions in neonates and infants. Functional near-infrared spectroscopy (fNIRS) was used to obtain time-averaged phase differences between spontaneous low-frequency (less than 0.1 Hz) oscillatory changes in oxygenated hemoglobin (oxy-Hb) and those in deoxygenated hemoglobin (deoxy-Hb). This phase difference was referred to as hemoglobin phase of oxygenation and deoxygenation (hPod) in the cerebral tissue of sleeping neonates and infants. We examined hPod in term, late preterm, and early preterm infants with no evidence of clinical issues and found that all groups of infants showed developmental changes in the values of hPod from an in-phase to an antiphase pattern. Comparison of hPod among the groups revealed that developmental changes in hPod in early preterm infants precede those in late preterm and term infants at term equivalent age but then, progress at a slower pace. This study suggests that hPod measured using fNIRS is sensitive to the developmental stage of the integration of circular, neurovascular, and metabolic functions in the brains of neonates and infants. PMID:28196885

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less

  12. On representation of mechanical behavior and stereological measures of microstructure

    NASA Technical Reports Server (NTRS)

    Onat, E. T.; Wright, S. I.

    1991-01-01

    Macroscopic homogeneity of a heterogeneous body is defined from various points of view. The applicability of the principle of Delesse to a single macroscopically homogeneous body is discussed. It is then seen that a function derived from a consideration of the area fraction of a phase can serve as a measure of clustering of particles of that phase.

  13. The protocol and design of a randomised controlled study on training of attention within the first year after acquired brain injury.

    PubMed

    Bartfai, Aniko; Markovic, Gabriela; Sargenius Landahl, Kristina; Schult, Marie-Louise

    2014-05-08

    To describe the design of the study aiming to examine intensive targeted cognitive rehabilitation of attention in the acute (<4 months) and subacute rehabilitation phases (4-12 months) after acquired brain injury and to evaluate the effects on function, activity and participation (return to work). Within a prospective, randomised, controlled study 120 consecutive patients with stroke or traumatic brain injury were randomised to 20 hours of intensive attention training by Attention Process Training or by standard, activity based training. Progress was evaluated by Statistical Process Control and by pre and post measurement of functional and activity levels. Return to work was also evaluated in the post-acute phase. Primary endpoints were the changes in the attention measure, Paced Auditory Serial Addition Test and changes in work ability. Secondary endpoints included measurement of cognitive functions, activity and work return. There were 3, 6 and 12-month follow ups focussing on health economics. The study will provide information on rehabilitation of attention in the early phases after ABI; effects on function, activity and return to work. Further, the application of Statistical Process Control might enable closer investigation of the cognitive changes after acquired brain injury and demonstrate the usefulness of process measures in rehabilitation. The study was registered at ClinicalTrials.gov Protocol. NCT02091453, registered: 19 March 2014.

  14. Time, space and equilibrium means of continuous vector functions on the phase space of a dynamical system

    NASA Astrophysics Data System (ADS)

    Gurevich, Boris M.; Tempel'man, Arcady A.

    2010-05-01

    For a dynamical system \\tau with 'time' \\mathbb Z^d and compact phase space X, we introduce three subsets of the space \\mathbb R^m related to a continuous function f\\colon X\\to\\mathbb R^m: the set of time means of f and two sets of space means of f, namely those corresponding to all \\tau-invariant probability measures and those corresponding to some equilibrium measures on X. The main results concern topological properties of these sets of means and their mutual position. Bibliography: 18 titles.

  15. Density-functional theory for fluid-solid and solid-solid phase transitions.

    PubMed

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  16. Interactive Effects of Dopamine Baseline Levels and Cycle Phase on Executive Functions: The Role of Progesterone.

    PubMed

    Hidalgo-Lopez, Esmeralda; Pletzer, Belinda

    2017-01-01

    Estradiol and progesterone levels vary along the menstrual cycle and have multiple neuroactive effects, including on the dopaminergic system. Dopamine relates to executive functions in an "inverted U-shaped" manner and its levels are increased by estradiol. Accordingly, dopamine dependent changes in executive functions along the menstrual cycle have been previously studied in the pre-ovulatory phase, when estradiol levels peak. Specifically it has been demonstrated that working memory is enhanced during the pre-ovulatory phase in women with low dopamine baseline levels, but impaired in women with high dopamine baseline levels. However, the role of progesterone, which peaks in the luteal cycle phase, has not been taken into account previously. Therefore, the main goals of the present study were to extend these findings (i) to the luteal cycle phase and (ii) to other executive functions. Furthermore, the usefulness of the eye blink rate (EBR) as an indicator of dopamine baseline levels in menstrual cycle research was explored. 36 naturally cycling women were tested during three cycle phases (menses-low sex hormones; pre-ovulatory-high estradiol; luteal-high progesterone and estradiol). During each session, women performed a verbal N-back task, as measure of working memory, and a single trial version of the Stroop task, as measure of response inhibition and cognitive flexibility. Hormone levels were assessed from saliva samples and spontaneous eye blink rate was recorded during menses. In the N-back task, women were faster during the luteal phase the higher their progesterone levels, irrespective of their dopamine baseline levels. In the Stroop task, we found a dopamine-cycle interaction, which was also driven by the luteal phase and progesterone levels. For women with higher EBR performance decreased during the luteal phase, whereas for women with lower EBR performance improved during the luteal phase. These findings suggest an important role of progesterone in modulating dopamine-cycle interactions. Additionally, we identified the eye blink rate as a non-invasive indicator of baseline dopamine function in menstrual cycle research.

  17. Direct comparison of Viking 2.3-GHz signal phase fluctuation and columnar electron density between 2 and 160 solar radii

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Wackley, J. A.; Hietzke, W. H.

    1982-01-01

    The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.

  18. Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function.

    PubMed

    Bao, Yijun; Gaylord, Thomas K

    2016-11-01

    Multifilter phase imaging with partially coherent light (MFPI-PC) is a promising new quantitative phase imaging method. However, the existing MFPI-PC method is based on the paraxial approximation. In the present work, an analytical nonparaxial partially coherent phase optical transfer function is derived. This enables the MFPI-PC to be extended to the realistic nonparaxial case. Simulations over a wide range of test phase objects as well as experimental measurements on a microlens array verify higher levels of imaging accuracy compared to the paraxial method. Unlike the paraxial version, the nonparaxial MFPI-PC with obliquity factor correction exhibits no systematic error. In addition, due to its analytical expression, the increase in computation time compared to the paraxial version is negligible.

  19. Behavior Therapy for Tics in Children: Acute and Long-Term Effects on Psychiatric and Psychosocial Functioning

    PubMed Central

    Woods, Douglas W.; Piacentini, John C.; Scahill, Lawrence; Peterson, Alan L.; Wilhelm, Sabine; Chang, Susanna; Deckersbach, Thilo; McGuire, Joseph; Specht, Matt; Conelea, Christine A.; Rozenman, Michelle; Dzuria, James; Liu, Haibei; Levi-Pearl, Sue; Walkup, John T.

    2014-01-01

    Children (n = 126) ages 9 to 17 years with chronic tic or Tourette disorder were randomly assigned to receive either behavior therapy or a control treatment over 10 weeks. This study examined acute effects of behavior therapy on secondary psychiatric symptoms and psychosocial functioning and long-term effects on these measures for behavior therapy responders only. Baseline and end point assessments conducted by a masked independent evaluator assessed several secondary psychiatric symptoms and measures of psychosocial functioning. Responders to behavior therapy at the end of the acute phase were reassessed at 3-month and 6-month follow-up. Children in the behavior therapy and control conditions did not differentially improve on secondary psychiatric or psychosocial outcome measures at the end of the acute phase. At 6-month posttreatment, positive response to behavior therapy was associated with decreased anxiety, disruptive behavior, and family strain and improved social functioning. Behavior therapy is a tic-specific treatment for children with tic disorders. PMID:21555779

  20. Substituent effects on the electronic characteristics of pentacene derivatives for organic electronic devices: dioxolane-substituted pentacene derivatives with triisopropylsilylethynyl functional groups.

    PubMed

    Griffith, Olga Lobanova; Anthony, John E; Jones, Adolphus G; Shu, Ying; Lichtenberger, Dennis L

    2012-08-29

    The intramolecular electronic structures and intermolecular electronic interactions of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene), 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]-pentacene (TP-5 pentacene), and 2,2,10,10-tetraethyl-6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (EtTP-5 pentacene) have been investigated by the combination of gas-phase and solid-phase photoelectron spectroscopy measurements. Further insight has been provided by electrochemical measurements in solution, and the principles that emerge are supported by electronic structure calculations. The measurements show that the energies of electron transfer such as the reorganization energies, ionization energies, charge-injection barriers, polarization energies, and HOMO-LUMO energy gaps are strongly dependent on the particular functionalization of the pentacene core. The ionization energy trends as a function of the substitution observed for molecules in the gas phase are not reproduced in measurements of the molecules in the condensed phase due to polarization effects in the solid. The electronic behavior of these materials is impacted less by the direct substituent electronic effects on the individual molecules than by the indirect consequences of substituent effects on the intermolecular interactions. The ionization energies as a function of film thickness give information on the relative electrical conductivity of the films, and all three molecules show different material behavior. The stronger intermolecular interactions in TP-5 pentacene films lead to better charge transfer properties versus those in TIPS pentacene films, and EtTP-5 pentacene films have very weak intermolecular interactions and the poorest charge transfer properties of these molecules.

  1. Lunar phase function at 1064 nm from Lunar Orbiter Laser Altimeter passive and active radiometry

    NASA Astrophysics Data System (ADS)

    Barker, M. K.; Sun, X.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2016-07-01

    We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be ∼5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2), surface roughness on decimeter to decameter scales, and soil thermophysical properties have a smaller effect, but the latter two are correlated with OMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at ∼300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (OE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and OMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition and OMAT, suggesting the visible-to-near-infrared spectrum and phase function respond differently to the unusual regolith evolution and properties at this location.

  2. Lunar Phase Function at 1064 Nm from Lunar Orbiter Laser Altimeter Passive and Active Radiometry

    NASA Technical Reports Server (NTRS)

    Barker, M. K.; Sun, X.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2016-01-01

    We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Al- timeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be approximately 5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2 ), surface roughness on decimeter to decameter scales, and soil thermophysical properties have a smaller effect, but the latter two are correlated with OMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at approximately 300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (OE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and OMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition and OMAT, suggesting the visible-to-near-infrared spectrum and phase function respond differently to the unusual regolith evolution and properties at this location.

  3. James Webb Space Telescope segment phasing using differential optical transfer functions

    PubMed Central

    Codona, Johanan L.; Doble, Nathan

    2015-01-01

    Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms. PMID:27042684

  4. A quantitative study of factors influencing lamellar eutectic morphology during solidification

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F. S.

    1981-01-01

    The factors that influence the shape of the solid-liquid interface of a lamellar binary eutectic alloy are evaluated. Alloys of carbon tetrabromide and hexachloroethane which serve as a transparent analogue of lamellar metallic eutectics are used. The observed interface shapes are analyzed by computer-aided methods. The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system are measured as a function of composition using a 'grain boundary groove' technique. The solid-liquid interfacial free energy of the two phases are evaluated directly from the eutectic interface. The phase diagram for the system, the heat of fusion as a function of composition, and the density as a function of composition are measured. The shape of the eutectic interface is controlled mainly by the solid-liquid and solid-solid interfacial free energy relationships at the interface and by the temperature gradient present, rather than by interlamellar diffusion in the liquid at the interface, over the range of growth rates studied.

  5. Investigating Aerosol Morphology Using Scattering Phase Functions Measured with a Laser Imaging Nephelometer

    NASA Astrophysics Data System (ADS)

    Manfred, K.; Adler, G. A.; Erdesz, F.; Franchin, A.; Lamb, K. D.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.

    2017-12-01

    Particle morphology has important implications for light scattering and radiative transfer, but can be difficult to measure. Biomass burning and other important aerosol sources can generate a mixture of both spherical and non-spherical particle morphologies, and it is necessary to represent these populations correctly in models. We describe a laser imaging nephelometer that measures the unpolarized scattering phase function of bulk aerosol at 375 and 405 nm using a wide-angle lens and CCD. We deployed this instrument to the Missoula Fire Sciences Laboratory to measure biomass burning aerosol morphology from controlled fires during the recent FIREX intensive laboratory study. Total integrated scattering signal agreed with that determined by a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrument uncertainties. We compared measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. We show that particle morphology can vary dramatically for different fuel types, and present results for two representative fires (pine tree vs arid shrub). We find that Mie theory is inadequate to describe the actual behavior of realistic aerosols from biomass burning in some situations. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide real-time, in situ information about dominant particle morphology that is vital for accurate radiative transfer calculations.

  6. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.

    PubMed

    Pronin, A V; Goncharov, Yu G; Fischer, T; Wosnitza, J

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r = absolute value(r) x exp(i phi(R)) of a solid at frequencies of 1-50 cm(-1) (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  7. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode

    NASA Astrophysics Data System (ADS)

    Pronin, A. V.; Goncharov, Yu. G.; Fischer, T.; Wosnitza, J.

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r̂=|r̂|ṡexp(iφR) of a solid at frequencies of 1-50 cm-1 (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  8. Thermal stability of atomic layer deposited WCxNy electrodes for metal oxide semiconductor devices

    NASA Astrophysics Data System (ADS)

    Zonensain, Oren; Fadida, Sivan; Fisher, Ilanit; Gao, Juwen; Danek, Michal; Eizenberg, Moshe

    2018-01-01

    This study is a thorough investigation of the chemical, structural, and electrical stability of W based organo-metallic films, grown by atomic layer deposition, for future use as gate electrodes in advanced metal oxide semiconductor structures. In an earlier work, we have shown that high effective work-function (4.7 eV) was produced by nitrogen enriched films (WCxNy) dominated by W-N chemical bonding, and low effective work-function (4.2 eV) was produced by hydrogen plasma resulting in WCx films dominated by W-C chemical bonding. In the current work, we observe, using x-ray diffraction analysis, phase transformation of the tungsten carbide and tungsten nitride phases after 900 °C annealing to the cubic tungsten phase. Nitrogen diffusion is also observed and is analyzed with time-of-flight secondary ion mass spectroscopy. After this 900 °C anneal, WCxNy effective work function tunability is lost and effective work-function values of 4.7-4.8 eV are measured, similar to stable effective work function values measured for PVD TiN up to 900 °C anneal. All the observed changes after annealing are discussed and correlated to the observed change in the effective work function.

  9. VR-simulation cataract surgery in non-experienced trainees: evolution of surgical skill

    NASA Astrophysics Data System (ADS)

    Söderberg, Per; Erngrund, Markus; Skarman, Eva; Nordh, Leif; Laurell, Carl-Gustaf

    2011-03-01

    Conclusion: The current data imply that the performance index as defined herein is a valid measure of the performance of a trainee using the virtual reality phacoemulsification simulator. Further, the performance index increase linearly with measurement cycles for less than five measurement cycles. To fully use the learning potential of the simulator more than four measurement cycles are required. Materials and methods: Altogether, 10 trainees were introduced to the simulator by an instructor and then performed a training program including four measurement cycles with three iterated measurements of the simulation at the end of each cycle. The simulation characteristics was standardized and defined in 14 parameters. The simulation was measured separately for the sculpting phase in 21 variables, and for the evacuation phase in 22 variables. A performance index based on all measured variables was estimated for the sculpting phase and the evacuation phase, respectively, for each measurement and the three measurements for each cycle were averaged. Finally, the performance as a function of measurement cycle was estimated for each trainee with regression, assuming a straight line. The estimated intercept and inclination coefficients, respectively, were finally averaged for all trainees. Results: The performance increased linearly with the number of measurement cycles both for the sculpting and for the evacuation phase.

  10. Application of confocal surface wave microscope to self-calibrated attenuation coefficient measurement by Goos-Hänchen phase shift modulation.

    PubMed

    Pechprasarn, Suejit; Chow, Terry W K; Somekh, Michael G

    2018-06-04

    In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ Ω ) and coupling (reradiation) loss (k″ c ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.

  11. Wavelet-based group and phase velocity measurements: Method

    NASA Astrophysics Data System (ADS)

    Yang, H. Y.; Wang, W. W.; Hung, S. H.

    2016-12-01

    Measurements of group and phase velocities of surface waves are often carried out by applying a series of narrow bandpass or stationary Gaussian filters localized at specific frequencies to wave packets and estimating the corresponding arrival times at the peak envelopes and phases of the Fourier spectra. However, it's known that seismic waves are inherently nonstationary and not well represented by a sum of sinusoids. Alternatively, a continuous wavelet transform (CWT) which decomposes a time series into a family of wavelets, translated and scaled copies of a generally fast oscillating and decaying function known as the mother wavelet, is capable of retaining localization in both the time and frequency domain and well-suited for the time-frequency analysis of nonstationary signals. Here we develop a wavelet-based method to measure frequency-dependent group and phase velocities, an essential dataset used in crust and mantle tomography. For a given time series, we employ the complex morlet wavelet to obtain the scalogram of amplitude modulus |Wg| and phase φ on the time-frequency plane. The instantaneous frequency (IF) is then calculated by taking the derivative of phase with respect to time, i.e., (1/2π)dφ(f, t)/dt. Time windows comprising strong energy arrivals to be measured can be identified by those IFs close to the frequencies with the maximum modulus and varying smoothly and monotonically with time. The respective IFs in each selected time window are further interpolated to yield a smooth branch of ridge points or representative IFs at which the arrival time, tridge(f), and phase, φridge(f), after unwrapping and correcting cycle skipping based on a priori knowledge of the possible velocity range, are determined for group and phase velocity estimation. We will demonstrate our measurement method using both ambient noise cross correlation functions and multi-mode surface waves from earthquakes. The obtained dispersion curves will be compared with those by a conventional narrow bandpass method.

  12. Spatial-phase-modulation-based study of polyvinyl-alcohol/acrylamide photopolymers in the low spatial frequency range.

    PubMed

    Gallego, Sergi; Márquez, André; Méndez, David; Marini, Stephan; Beléndez, Augusto; Pascual, Inmaculada

    2009-08-01

    Photopolymers are appealing materials for the fabrication of diffractive optical elements (DOEs). We evaluate the possibilities of polyvinyl-alcohol/acrylamide-based photopolymers to store diffractive elements with low spatial frequencies. We record gratings with different spatial frequencies in the material and analyze the material behavior measuring the transmitted and the reflected orders as a function of exposition. We study two different compositions for the photopolymer, with and without a cross-linker. The values of diffraction efficiency achieved for both compositions make the material suitable to record DOEs with long spatial periods. Assuming a Fermi-Dirac-function-based profile, we fitted the diffracted intensities (up to the eighth order) to obtain the phase profile of the recorded gratings. This analysis shows that it is possible to achieve a phase shift larger than 2pi rad with steep edges in the periodic phase profile. In the case of the measurements in reflection, we have obtained information dealing with the surface profile, which show that it has a smooth shape with an extremely large phase-modulation depth.

  13. Phase equilibrium of methane and nitrogen at low temperatures - Application to Titan

    NASA Technical Reports Server (NTRS)

    Kouvaris, Louis C.; Flasar, F. M.

    1991-01-01

    Since the vapor phase composition of Titan's methane-nitrogen lower atmosphere is uniquely determined as a function of the Gibbs phase rule, these data are presently computed via integration of the Gibbs-Duhem equation. The thermodynamic consistency of published measurements and calculations of the vapor phase composition is then examined, and the saturated mole fraction of gaseous methane is computed as a function of altitude up to the 700-mbar level. The mole fraction is found to lie approximately halfway between that computed from Raoult's law, for a gas in equilibrium with an ideal solution of liquid nitrogen and methane, and that for a gas in equilibrium with pure liquid methane.

  14. Simple procedure for phase-space measurement and entanglement validation

    NASA Astrophysics Data System (ADS)

    Rundle, R. P.; Mills, P. W.; Tilma, Todd; Samson, J. H.; Everitt, M. J.

    2017-08-01

    It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasiprobability distribution (Wigner function) [Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBM's Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger state. Because Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how the use of these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrödinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterization methods.

  15. Ultrasonic characterization of the nonlinear elastic properties of unidirectional graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1987-01-01

    The theoretical treatment of linear and nonlinear elasticity in a unidirectionally fiber reinforced composite as well as measurements for a unidirectional graphite/epoxy composite (T300/5208) are presented. Linear elastic properties were measured by both ultrasonic and strain gage measurements. The nonlinear properties were determined by measuring changes in ultrasonic natural phase velocity with a pulsed phase locked loop interferometer as a function of stress and temperature. These measurements provide the basis for further investigations into the relationship between nonlinear elastic properties and other important properties such as strength and fiber-matrix interfacial stength in graphite/epoxy composites.

  16. Using Quality of Life Measures in a Phase I Clinical Trial of Noni in Patients with Advanced Cancer to Select a Phase II Dose

    PubMed Central

    Issell, Brian F.; Gotay, Carolyn C.; Pagano, Ian; Franke, A. Adrian

    2015-01-01

    Purpose We conducted a Phase I study of noni in patients with advanced cancer. Quality of life measures were examined as an alternate way to select a Phase II dose of this popular dietary supplement. Patients and Methods Starting at two capsules twice daily (2 grams), the dose suggested for marketed products, dose levels were escalated by 2 grams daily in cohorts of at least five patients until a maximum tolerated dose was found. Patients completed QLQ-C30 Quality of Life, and the Brief Fatigue Inventory (BFI), questionnaires at baseline and at four week intervals. Scopoletin was measured in blood and urine collected at baseline and at approximately four week intervals. Results Fifty-one patients were enrolled at seven dose levels. Seven capsules four times daily (14 grams) was the maximum tolerated dose. No dose limiting toxicity was found but four of eight patients at this level withdrew from the study due to the challenges of ingesting so many capsules. There was a dose response for self reported physical functioning and the control of pain and fatigue. Patients taking four capsules four times daily experienced less fatigue than patients taking lower or higher doses. A relationship between noni dose and blood and urinary scopoletin concentrations was found. Conclusion Measuring quality of life to determine a dose for subsequent Phase II testing is feasible. A noni dose of four capsules four times daily (8 grams) is recommended for Phase II testing where controlling fatigue and maintaining physical function is the efficacy of interest. Scopoletin is a measurable noni ingredient for pharmacokinetic studies in patients with cancer. PMID:22435516

  17. Optical and Transport Properties of Energetic Materials

    NASA Astrophysics Data System (ADS)

    Choi, Chang Sun

    1990-01-01

    The densities of Hydroxyl ammonium nitrate (HAN) based fast reacting liquids were measured as a function of pressure (up to 4.83 kbars) at several temperatures and the results of density measurements were fit to the Tait equation. Also the shear viscosities of this liquid were measured as a function of both pressure and temperature. The free volume model was applied to explain behavior of the shear viscosity with the assumption that only the reference temperature (T_0) in the Fulcher (1925), WLF (Williams, Landel, and Ferry) and Angell equations depends on pressure. The general relation to predict viscosity of this liquid at any temperature and pressure was derived and the difference between expected and measured values are about 5%. The phase diagrams of the HAN solution, Triethanol ammonium nitrate (TEAN) solution and LP-1845 were obtained through Differential Scanning Calorimetry (DSC) measurements. The TEAN solution has a eutectic temperature in the vicinity of 260^circK. The measured phase diagrams are in good agreement with the calculated phase diagrams. The TEAN solutions show a large supercooling effect. Some phase separation was observed in the TEAN solutions and this separation was believed to be due to eutectic composition of the TEAN solution. The expected freezing temperature of LP-1845 was almost the same with the calculated T_0 from the viscosity data. Raman spectra from the HAN solution, TEAN solution and LP-1845 were measured. Every peak in the spectra was assigned. These solutions show various interactions, such as ion-ion pairing and ion-water interaction. The strongest peak was a NO_3^- symmetric stretch mode at 1050 cm^{-1}. The time correlation functions were calculated from the Raman spectra of the 1050 cm^{-1} peak. The correlation time, which can be calculated from the linewidth, become shorter with decreasing temperatures and with increasing concentrations. The Kubo's stochastic theory explains the correlation functions very well if the solution is relatively dilute. The pressure dependence of the reaction rate was estimated by using the density data and Raman peak shift data.

  18. Open Imaging Nephelometer Scattering Measurements from the 2014 Discover-AQ Field Mission

    NASA Astrophysics Data System (ADS)

    Espinosa, R.; Orozco, D.; Dolgos, G.; Martins, J. V.

    2014-12-01

    After greenhouse gases, aerosols are thought to have the largest contribution to total atmospheric radiative forcing, but they are frequently cited as the single largest source of uncertainty among all anthropogenic radiative forcing components. Remote sensing allows for global measurements of aerosol properties, however validation of these measurements and the climatological assumptions used in their retrieval algorithms require high quality in situ sampling. The Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland Baltimore County (UMBC) has developed the Imaging Nephelometer, a novel and highly accurate instrument concept designed to significantly aid in situ optical scattering measurements. Imaging Nephelometers allow for measurements of scattering coefficient, phase function and polarized phase function over a wide angular range of 2 to 178 degrees with an angular resolution of less than half of a degree. The simple layout of these devices also permits the construction of an instrument that is compact enough to be deployed on a variety of airborne platforms. Additionally, a version of this instrument that is capable of in situ sampling in open-air, free from sample biases potentially introduced by an inlet or containment apparatus, has recently been constructed. This instrument, known as the Open Imaging NEPHelometer (OI-NEPH), was flown on the P3 aircraft in the summer of 2014 during the Colorado portion of the Discover-AQ field mission (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality). This presentation will focus on the results of the OI-NEPH's successful science flights during this field experiment. The P3's flights during this mission focused primarily on vehicle, agriculture, biomass burning and industrial processing emissions over the Colorado Front Range. Emphasis will be placed on any observed differences in scattering properties between the measurements made by the inlet-free OI-Neph and a second cabin based instrument, the Polarized Imaging Nephelometer (PI-Neph). Additionally, phase function measurements made during spirals over AERONET (AErosol RObotic NETwork) stations will be compared with AERONET retrieved phase functions in an effort to assess the quality of these inversions

  19. GSpecDisp: A matlab GUI package for phase-velocity dispersion measurements from ambient-noise correlations

    NASA Astrophysics Data System (ADS)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur; Tryggvason, Ari

    2018-01-01

    We present a graphical user interface (GUI) package to facilitate phase-velocity dispersion measurements of surface waves in noise-correlation traces. The package, called GSpecDisp, provides an interactive environment for the measurements and presentation of the results. The selection of a dispersion curve can be done automatically or manually within the package. The data are time-domain cross-correlations in SAC format, but GSpecDisp measures phase velocity in the spectral domain. Two types of phase-velocity dispersion measurements can be carried out with GSpecDisp; (1) average velocity of a region, and (2) single-pair phase velocity. Both measurements are done by matching the real part of the cross-correlation spectrum with the appropriate Bessel function. Advantages of these two types of measurements are that no prior knowledge about surface-wave dispersion in the region is needed, and that phase velocity can be measured up to that period for which the inter-station distance corresponds to one wavelength. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor. First, we briefly present the theory behind the methods that are used, and then describe different modules of the package. Finally, we validate the developed algorithms by applying them to synthetic and real data, and by comparison with other methods. The source code of GSpecDisp can be downloaded from: https://github.com/Hamzeh-Sadeghi/GSpecDisp

  20. The SNAPSHOT study protocol: SNAcking, Physical activity, Self-regulation, and Heart rate Over Time.

    PubMed

    McMinn, David; Allan, Julia L

    2014-09-26

    The cognitive processes responsible for effortful behavioural regulation are known as the executive functions, and are implicated in several factors associated with behaviour control, including focussing on tasks, resisting temptations, planning future actions, and inhibiting prepotent responses. Similar to muscles, the executive functions become fatigued following intensive use (e.g. stressful situations, when tired or busy, and when regulating behaviour such as quitting smoking). Therefore, an individual may be more susceptible to engaging in unhealthy behaviours when their executive functions are depleted. In the present study we investigate associations between the executive functions, snack food consumption, and sedentary behaviour in real time. We hypothesise that individuals may be more susceptible to unhealthy snacking and sedentary behaviours during periods when their executive functions are depleted. We test this hypothesis using real-time objective within-person measurements. A sample of approximately 50 Scottish adults from varied socio-economic, working, and cultural backgrounds will participate in the three phases of the SNAcking, Physical activity, Self-regulation, and Heart rate Over Time (SNAPSHOT) study. Phase one will require participants to complete home-based questionnaires concerned with diet, eating behaviour, and physical activity (≈1.5 hours to complete). Phase two will constitute a 2-3 hour psychological laboratory testing session during which trait-level executive function, general intelligence, and diet and physical activity intentions, past behaviour, and automaticity will be measured. The final phase will involve a 7-day ambulatory protocol during which objective repeated assessments of executive function, snacking behaviour, physical activity, mood, heart rate, perceived energy level, current context and location will be measured during participants' daily routines. Multi-level regression analysis, accounting for observations nested within participants, will be used to investigate associations between fluctuations in the executive functions and health behaviours. Data from the SNAPSHOT study will provide ecologically valid information to help better understand the temporal associations between self-regulatory resources (executive functions) and deleterious health behaviours such as snacking and sedentary behaviour. If we can identify particular periods of the day or locations where self-regulatory resources become depleted and produce suboptimal health behaviour, then interventions can be designed and targeted accordingly.

  1. Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong

    2013-06-01

    By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.

  2. Physiological responses and evaluation of effects of BMI, smoking and drinking in high altitude acclimatization: a cohort study in Chinese Han young males.

    PubMed

    Peng, Qian-Qian; Basang, Zhuoma; Cui, Chao-Ying; Li, Lei; Qian, Ji; Gesang, Quzhen; Yang, La; La, Zong; De, Yang; Dawa, Puchi; Qu, Ni; Suo, Qu; Dan, Zhen; Xiao, Duoji; Wang, Xiao-Feng; Jin, Li

    2013-01-01

    High altitude acclimatization is a series of physiological responses taking places when subjects go to altitude. Many factors could influence these processes, such as altitude, ascending speed and individual characteristics. In this study, based on a repeated measurement design of three sequential measurements at baseline, acute phase and chronic phase, we evaluated the effect of BMI, smoking and drinking on a number of physiological responses in high altitude acclimatization by using mixed model and partial least square path model on a sample of 755 Han Chinese young males. We found that subjects with higher BMI responses were reluctant to hypoxia. The effect of smoking was not significant at acute phase. But at chronic phase, red blood cell volume increased less while respiratory function increased more for smoking subjects compared with nonsmokers. For drinking subjects, red blood cell volume increased less than nondrinkers at both acute and chronic phases, while blood pressures increased more than nondrinkers at acute phase and respiratory function, red blood cell volume and oxygen saturation increased more than nondrinkers at chronic phase. The heavy and long-term effect of smoking, drinking and other factors in high altitude acclimatization needed to be further studied.

  3. Physiological Responses and Evaluation of Effects of BMI, Smoking and Drinking in High Altitude Acclimatization: A Cohort Study in Chinese Han Young Males

    PubMed Central

    Cui, Chao-ying; Li, Lei; Qian, Ji; Gesang, Quzhen; Yang, La; La, Zong; De, Yang; Dawa, Puchi; Qu, Ni; Suo, Qu; Dan, Zhen; Xiao, Duoji; Wang, Xiao-feng; Jin, Li

    2013-01-01

    High altitude acclimatization is a series of physiological responses taking places when subjects go to altitude. Many factors could influence these processes, such as altitude, ascending speed and individual characteristics. In this study, based on a repeated measurement design of three sequential measurements at baseline, acute phase and chronic phase, we evaluated the effect of BMI, smoking and drinking on a number of physiological responses in high altitude acclimatization by using mixed model and partial least square path model on a sample of 755 Han Chinese young males. We found that subjects with higher BMI responses were reluctant to hypoxia. The effect of smoking was not significant at acute phase. But at chronic phase, red blood cell volume increased less while respiratory function increased more for smoking subjects compared with nonsmokers. For drinking subjects, red blood cell volume increased less than nondrinkers at both acute and chronic phases, while blood pressures increased more than nondrinkers at acute phase and respiratory function, red blood cell volume and oxygen saturation increased more than nondrinkers at chronic phase. The heavy and long-term effect of smoking, drinking and other factors in high altitude acclimatization needed to be further studied. PMID:24260204

  4. Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yuma; Kusne, A. Gilad; Takeuchi, Ichiro

    2017-12-01

    Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition-phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure's performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe-Co-Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen-Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.

  5. Microstrip transmission line for soil moisture measurement

    NASA Astrophysics Data System (ADS)

    Chen, Xuemin; Li, Jing; Liang, Renyue; Sun, Yijie; Liu, C. Richard; Rogers, Richard; Claros, German

    2004-12-01

    Pavement life span is often affected by the amount of voids in the base and subgrade soils, especially moisture content in pavement. Most available moisture sensors are based on the capacitive sensing using planar blades. Since the planar sensor blades are fabricated on the same surface to reduce the overall size of the sensor, such structure cannot provide very high accuracy for moisture content measurement. As a consequence, a typical capacitive moisture sensor has an error in the range of 30%. A more accurate measurement is based on the time domain refelctometer (TDR) measurement. However, typical TDR system is fairly expensive equipment, very large in size, and difficult to operate, the moisture content measurement is limited. In this paper, a novel microstrip transmission line based moisture sensor is presented. This sensor uses the phase shift measurement of RF signal going through a transmission line buried in the soil to be measured. Since the amplitude of the transmission measurement is a strong function of the conductivity (loss of the media) and the imaginary part of dielectric constant, and the phase is mainly a strong function of the real part of the dielectric constant, measuring phase shift in transmission mode can directly obtain the soil moisture information. This sensor was designed and implemented. Sensor networking was devised. Both lab and field data show that this sensor is sensitive and accurate.

  6. Nomarski imaging interferometry to measure the displacement field of micro-electro-mechanical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amiot, Fabien; Roger, Jean Paul

    2006-10-20

    We propose to use a Nomarski imaging interferometer to measure the out-of-plane displacement field of micro-electro-mechanical systems. It is shown that the measured optical phase arises from both height and slope gradients. By using four integrating buckets, a more efficient approach to unwrap the measured phase is presented,thus making the method well suited for highly curved objects. Slope and height effects are then decoupled by expanding the displacement field on a functions basis, and the inverse transformation is applied to get a displacement field from a measured optical phase map change with a mechanical loading. A measurement reproducibility of approximatelymore » 10 pm is achieved, and typical results are shown on a microcantilever under thermal actuation, thereby proving the ability of such a setup to provide a reliable full-field kinematic measurement without surface modification.« less

  7. Fiber-Optical Sensors: Basics and Applications in Multiphase Reactors

    PubMed Central

    Li, Xiangyang; Yang, Chao; Yang, Shifang; Li, Guozheng

    2012-01-01

    This work presents a brief introduction on the basics of fiber-optical sensors and an overview focused on the applications to measurements in multiphase reactors. The most commonly principle utilized is laser back scattering, which is also the foundation for almost all current probes used in multiphase reactors. The fiber-optical probe techniques in two-phase reactors are more developed than those in three-phase reactors. There are many studies on the measurement of gas holdup using fiber-optical probes in three-phase fluidized beds, but negative interference of particles on probe function was less studied. The interactions between solids and probe tips were less studied because glass beads etc. were always used as the solid phase. The vision probes may be the most promising for simultaneous measurements of gas dispersion and solids suspension in three-phase reactors. Thus, the following techniques of the fiber-optical probes in multiphase reactors should be developed further: (1) online measuring techniques under nearly industrial operating conditions; (2) corresponding signal data processing techniques; (3) joint application with other measuring techniques.

  8. Lunar phase function effects on spectral ratios used for resource assessment

    NASA Technical Reports Server (NTRS)

    Larson, S. M.; Collins, J.; Singer, R. B.; Johnson, J. R.; Melendrez, D. E.

    1993-01-01

    Groundbased telescopic CCD images of 36 selected locations on the moon were obtained in five 'standard' bandpasses at 12 phase angles ranging from -78 deg to +75 deg to measure phase function effects on the ratio values used to quantify the abundance of TiO2 and qualitatively indicate soil maturity. Consistent with previous studies, we find that the moon is 'bluer' at small phase angles, but that the effect on the ratio values for TiO2 abundance for the phase angles of our data is on the order of the measurement uncertainties throughout the range of abundances found in the mare. The effect is more significant as seen from orbiting spacecraft over a range of selenographic latitude. Spectral ratio images (400/560 and 400/730 nm) were used to map the abundance of TiO2 using the empirical relation found by Charlette et al from analysis of returned lunar soils. Additionally, the 950/560 and 950/730 nm image ratios were used to define the regions of mature mare soil in which the relation is valid. Although the phase function dependence on wavelength was investigated and quantified for small areas and the integrated disc, the effect specifically on TiO2 mapping was not rigorously determined. For consistency and convenience in observing the whole lunar front side, our mapping utilized images taken -15 deg less than alpha less than 15 deg when the moon was fully illuminated from earth; however, this includes the strong opposition peak.

  9. [Physiotherapy for juvenile idiopathic arthritis].

    PubMed

    Spamer, M; Georgi, M; Häfner, R; Händel, H; König, M; Haas, J-P

    2012-07-01

    Control of disease activity and recovery of function are major issues in the treatment of children and adolescents suffering from juvenile idiopathic arthritis (JIA). Functional therapies including physiotherapy are important components in the multidisciplinary teamwork and each phase of the disease requires different strategies. While in the active phase of the disease pain alleviation is the main focus, the inactive phase requires strategies for improving motility and function. During remission the aim is to regain general fitness by sports activities. These phase adapted strategies must be individually designed and usually require a combination of different measures including physiotherapy, occupational therapy, massage as well as other physical procedures and sport therapy. There are only few controlled studies investigating the effectiveness of physical therapies in JIA and many strategies are derived from long-standing experience. New results from physiology and sport sciences have contributed to the development in recent years. This report summarizes the basics and main strategies of physical therapy in JIA.

  10. Clustering and pasta phases in nuclear density functional theory

    DOE PAGES

    Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold

    2017-05-23

    Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less

  11. Use of virtual reality in rehabilitation of movement in children with hemiplegia--a multiple case study evaluation.

    PubMed

    Green, Dido; Wilson, Peter H

    2012-01-01

    To evaluate the feasibility and therapeutic effect of engaging children of differing neuromotor and cognitive ability in a virtual reality (VR) tabletop workspace designed to improve upper-limb function. Single-subject experimental design with multiple baselines was employed. Four children with hemiplegia participated in VR-based training between nine and 19, 30-minute sessions, over three-four weeks. Outcomes were assessed from the perspective of the International Classification of Functioning, Disability and Health; considering body function, activity performance and participation. Upper-limb performance was assessed using system-measured variables (speed, trajectory and accuracy) and standardized tests. Trend analyses were employed to determine trends on system variables between baseline phase and treatment phases. Standardised measures were compared between pre- and post-training. Two children made progress across system variables with some translation to daily activities. Performance of the other two children was more variable, however, they engaged positively with the system by the end of the treatment phase. The VR (RE-ACTION) system shows promise as an engaging rehabilitation tool to improve upper-limb function of children with hemiplegia, across ability levels. Trade-offs between kinematic variables should be considered when measuring improvements in movement skill. Larger trials are warranted to evaluate effects of augmented feedback, intensity and duration of training, and interface type to optimise the system's effectiveness.

  12. Computer game-based upper extremity training in the home environment in stroke persons: a single subject design.

    PubMed

    Slijper, Angelique; Svensson, Karin E; Backlund, Per; Engström, Henrik; Sunnerhagen, Katharina Stibrant

    2014-03-13

    The objective of the present study was to assess whether computer game-based training in the home setting in the late phase after stroke could improve upper extremity motor function. Twelve subjects with prior stroke were recruited; 11 completed the study. The study had a single subject design; there was a baseline test (A1), a during intervention test (B) once a week, a post-test (A2) measured directly after the treatment phase, plus a follow-up (C) 16-18 weeks after the treatment phase. Information on motor function (Fugl-Meyer), grip force (GrippitR) and arm function in activity (ARAT, ABILHAND) was gathered at A1, A2 and C. During B, only Fugl-Meyer and ARAT were measured. The intervention comprised five weeks of game-based computer training in the home environment. All games were designed to be controlled by either the affected arm alone or by both arms. Conventional formulae were used to calculate the mean, median and standard deviations. Wilcoxon's signed rank test was used for tests of dependent samples. Continuous data were analyzed by methods for repeated measures and ordinal data were analyzed by methods for ordered multinomial data using cumulative logistic models. A p-value of < 0.05 was considered statistically significant. Six females and five males, participated in the study with an average age of 58 years (range 26-66). FMA-UE A-D (motor function), ARAT, the maximal grip force and the mean grip force on the affected side show significant improvements at post-test and follow-up compared to baseline. No significant correlation was found between the amount of game time and changes in the outcomes investigated in this study. The results indicate that computer game-based training could be a promising approach to improve upper extremity function in the late phase after stroke, since in this study, changes were achieved in motor function and activity capacity.

  13. From expert-derived user needs to user-perceived ease of use and usefulness: a two-phase mixed-methods evaluation framework.

    PubMed

    Boland, Mary Regina; Rusanov, Alexander; So, Yat; Lopez-Jimenez, Carlos; Busacca, Linda; Steinman, Richard C; Bakken, Suzanne; Bigger, J Thomas; Weng, Chunhua

    2014-12-01

    Underspecified user needs and frequent lack of a gold standard reference are typical barriers to technology evaluation. To address this problem, this paper presents a two-phase evaluation framework involving usability experts (phase 1) and end-users (phase 2). In phase 1, a cross-system functionality alignment between expert-derived user needs and system functions was performed to inform the choice of "the best available" comparison system to enable a cognitive walkthrough in phase 1 and a comparative effectiveness evaluation in phase 2. During phase 2, five quantitative and qualitative evaluation methods are mixed to assess usability: time-motion analysis, software log, questionnaires - System Usability Scale and the Unified Theory of Acceptance of Use of Technology, think-aloud protocols, and unstructured interviews. Each method contributes data for a unique measure (e.g., time motion analysis contributes task-completion-time; software log contributes action transition frequency). The measures are triangulated to yield complementary insights regarding user-perceived ease-of-use, functionality integration, anxiety during use, and workflow impact. To illustrate its use, we applied this framework in a formative evaluation of a software called Integrated Model for Patient Care and Clinical Trials (IMPACT). We conclude that this mixed-methods evaluation framework enables an integrated assessment of user needs satisfaction and user-perceived usefulness and usability of a novel design. This evaluation framework effectively bridges the gap between co-evolving user needs and technology designs during iterative prototyping and is particularly useful when it is difficult for users to articulate their needs for technology support due to the lack of a baseline. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Tapering off long-term opioid therapy in chronic non-cancer pain patients: a randomized clinical trial.

    PubMed

    Kurita, Geana Paula; Højsted, Jette; Sjøgren, Per

    2018-05-13

    The indications for initiating long-term opioid treatment (L-TOT) for chronic non-cancer pain (CNCP) are often unclear and associated with problematic use. This study aimed at evaluating the efficacy of stabilizing opioid therapy followed by a sequential opioid tapering off program in CNCP patients. A randomized clinical trial with a medications stabilization period (Phase 1) followed by a opioid tapering off program (Phase 2). In Phase 2, patients were randomized to Control Group (stable treatment) or Taper off Group (sequential opioid dose reduction) and assessed at baseline, after stabilization and up to six months. Primary outcomes: measures of cognitive function; secondary outcomes: pain, sleep, rest, quality of life, depression, anxiety, opioid misuse, and opioid withdrawal symptoms. Two hundred seventy-four patients were screened; 75 were included, out of which 40 dropped out before Phase 2. Those who succeeded Phase 1 (n=35) had weak/moderate improvements of psychomotor function (p=0.020), sleeping hours (p=0.031), opioid withdrawal symptoms (p=0.019), measures of quality of life (p≤0.043) and opioid misuse scores (p=0.003). In Phase 2, patients in Taper off Group (n=15) experienced stable pain intensity and felt significantly more rested at third assessment than the Control Group (n=20). The opioid tapering off program was not successful due to the vast number of dropouts. Phase 1 was associated with weak to moderate improvements on psychomotor function, sleeping, opioid withdrawal symptoms, quality of life, and reduced risk of opioid misuse. In the intervention group of Phase 2, pain intensity was stable and patients felt more rested. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating

    DTIC Science & Technology

    2004-01-01

    fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of

  16. In Vivo Determination of the Complex Elastic Moduli of Cetacean Head Tissue

    DTIC Science & Technology

    2013-09-30

    of an ultrasonic Doppler vibration measurement system called NVMS developed at Georgia Tech iii. Algorithms have been developed to enable the...magnitude and phase of vibration to be determined as a function of range (tissue depth) along the ultrasonic beam. By measuring the differential phase of...The frequency dependence of the propagation speed is then used to determine the shear loss factor. The elastic properties of tissue phantoms

  17. A connectivity-based modeling approach for representing hysteresis in macroscopic two-phase flow properties

    DOE PAGES

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...

    2014-12-31

    During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less

  18. Robotic Characterization of Ipsilesional Motor Function in Subacute Stroke.

    PubMed

    Semrau, Jennifer A; Herter, Troy M; Kenzie, Jeffrey M; Findlater, Sonja E; Scott, Stephen H; Dukelow, Sean P

    2017-06-01

    Poststroke impairments of the ipsilesional arm are often discussed, but rarely receive focused rehabilitation. Ipsilesional deficits may affect daily function and although many studies have investigated them in chronic stroke, few characterizations have been made in the subacute phase. Furthermore, most studies have quantified ipsilesional deficits using clinical measures that can fail to detect subtle, but important deficits in motor function. We aimed to quantify reaching deficits of the contra- and ipsilesional limbs in the subacute phase poststroke. A total of 227 subjects with first-time, unilateral stroke completed a unilateral assessment of motor function (visually guided reaching) using a KINARM robot. Subjects completed the task with both the ipsi- and contralesional arms. Subjects were assessed on a variety of traditional clinical measures (Functional Independence Measure, Chedoke-McMaster Stroke Assessment, Purdue Pegboard, Behavioral Inattention Test) to compare with robotic measures of motor function. Ipsilesional deficits were common and occurred in 37% (n = 84) of subjects. Impairments of the ipsilesional and contralesional arm were weakly to moderately correlated on robotic measures. Magnitude of impairment of the contralesional arm was similar for subjects with and without ipsilesional deficits. Furthermore, we found that a higher percentage of subjects with right-hemisphere stroke had ipsilesional deficits and more subjects with left-hemisphere subcortical strokes did not have ipsilesional deficits. Magnitude of contralesional impairment and lesion location may be poor predictors of individuals with ipsilesional impairments after stroke. Careful characterization of ipsilesional deficits could identify individuals who may benefit from rehabilitation of the less affected arm.

  19. Heat capacities and entropies of sillimanite, fibrolite, andalusite, kyanite, and quartz and the Al2SiO5 phase diagram

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.; Evans, H.T.; Kerrick, Derrill M.

    1991-01-01

    Low-temperature heat capacities for sillimanite, fibrolite, and both fine-grained and coarse-grained quartz have been measured. Superambient heat capacities have been measured for four sillimanite, two andalusite, one kyanite, and two fibrolite samples. Equations are recommended for the temperature dependence of the heat capacities of kyanite, andalusite, sillimanite, and fibrolite. The heat capacity functions have been combined with thermal expansion (fibrolite and sillimanite reported here), enthalpy of solution, and phase equilibrium data in order to construct a phase diagram for the Al2SiO5 polymorphs. -from Authors

  20. Immediate Effects of a Single Session of Motor Skill Training on the Lumbar Movement Pattern During a Functional Activity in People With Low Back Pain: A Repeated-Measures Study.

    PubMed

    Marich, Andrej V; Lanier, Vanessa M; Salsich, Gretchen B; Lang, Catherine E; Van Dillen, Linda R

    2018-04-06

    People with low back pain (LBP) may display an altered lumbar movement pattern of early lumbar motion compared to people with healthy backs. Modifying this movement pattern during a clinical test decreases pain. It is unknown whether similar effects would be seen during a functional activity. The objective of this study is was to examine the lumbar movement patterns before and after motor skill training, effects on pain, and characteristics that influenced the ability to modify movement patterns. The design consisted of a repeated-measures study examining early-phase lumbar excursion in people with LBP during a functional activity test. Twenty-six people with chronic LBP received motor skill training, and 16 people with healthy backs were recruited as a reference standard. Twenty minutes of motor skill training to decrease early-phase lumbar excursion during the performance of a functional activity were used as a treatment intervention. Early-phase lumbar excursion was measured before and after training. Participants verbally reported increased pain, decreased pain, or no change in pain during performance of the functional activity test movement in relation to their baseline pain. The characteristics of people with LBP that influenced the ability to decrease early-phase lumbar excursion were examined. People with LBP displayed greater early-phase lumbar excursion before training than people with healthy backs (LBP: mean = 11.2°, 95% CI = 9.3°-13.1°; healthy backs: mean = 7.1°, 95% CI = 5.8°-8.4°). Following training, the LBP group showed a decrease in the amount of early-phase lumbar excursion (mean change = 4.1°, 95% CI = 2.4°-5.8°); 91% of people with LBP reported that their pain decreased from baseline following training. The longer the duration of LBP (β = - 0.22) and the more early-phase lumbar excursion before training (β = - 0.82), the greater the change in early-phase lumbar excursion following training. The long-term implications of modifying the movement pattern and whether the decrease in pain attained was clinically significant are unknown. People with LBP were able to modify their lumbar movement pattern and decrease their pain with the movement pattern within a single session of motor skill training.

  1. The system of high accuracy UV spectral radiation system

    NASA Astrophysics Data System (ADS)

    Lin, Guan-yu; Yu, Lei; Xu, Dian; Cao, Dian-sheng; Yu, Yu-Xiang

    2016-10-01

    UV spectral radiation detecting and visible observation telescope is designed by the coaxial optical. In order to decrease due to the incident light polarization effect, and improve the detection precision, polarizer need to be used in the light path. Four pieces of quartz of high Precision UV radiation depolarizer retarder stack together is placed in front of Seya namioka dispersion unit. The coherent detection principle of modulation of light signal and the reference signal multiplied processing, increase the phase sensitive detector can be adjustment function, ensure the UV spectral radiation detection stability. A lock-in amplifier is used in the electrical system to advance the accuracy of measurement. To ensure the precision measurement detected, the phase-sensitive detector function can be adjustable. the output value is not more than 10mV before each measurement, so it can be ensured that the stability of the measured radiation spectrum is less than 1 percent.

  2. 2-dimensional ion velocity distributions measured by laser-induced fluorescence above a radio-frequency biased silicon wafer

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel B.; Gekelman, Walter; Pribyl, Patrick; Zhang, Yiting; Kushner, Mark J.

    2013-08-01

    The dynamics of ions traversing sheaths in low temperature plasmas are important to the formation of the ion energy distribution incident onto surfaces during microelectronics fabrication. Ion dynamics have been measured using laser-induced fluorescence (LIF) in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a commercial inductively coupled plasma processing reactor. The velocity distribution of argon ions was measured at thousands of positions above and radially along the surface of the wafer by utilizing a planar laser sheet from a pulsed, tunable dye laser. Velocities were measured both parallel and perpendicular to the wafer over an energy range of 0.4-600 eV. The resulting fluorescence was recorded using a fast CCD camera, which provided resolution of 0.4 mm in space and 30 ns in time. Data were taken at eight different phases during the 2.2 MHz cycle. The ion velocity distributions (IVDs) in the sheath were found to be spatially non-uniform near the edge of the wafer and phase-dependent as a function of height. Several cm above the wafer the IVD is Maxwellian and independent of phase. Experimental results were compared with simulations. The experimental time-averaged ion energy distribution function as a function of height compare favorably with results from the computer model.

  3. Kidney Function Can Improve in Patients with Hypertensive CKD

    PubMed Central

    Gadegbeku, Crystal; Lipkowitz, Michael S.; Rostand, Stephen; Lewis, Julia; Wright, Jackson T.; Appel, Lawrence J.; Greene, Tom; Gassman, Jennifer; Astor, Brad C.

    2012-01-01

    The typical assumption is that patients with CKD will have progressive nephropathy. Methodological issues, such as measurement error and regression to the mean, have made it difficult to document whether kidney function might improve in some patients. Here, we used data from 12 years of follow-up in the African American Study of Kidney Disease and Hypertension to determine whether some patients with CKD can experience a sustained improvement in GFR. We calculated estimated GFR (eGFR) based on serum creatinine measurements during both the trial and cohort phases. We defined clearly improved patients as those with positive eGFR slopes that we could not explain by random measurement variation under Bayesian mixed-effects models. Of 949 patients with at least three follow-up eGFR measurements, 31 (3.3%) demonstrated clearly positive eGFR slopes. The mean slope among these patients was +1.06 (0.12) ml/min per 1.73 m2 per yr, compared with −2.45 (0.07) ml/min per 1.73 m2 per yr among the remaining patients. During the trial phase, 24 (77%) of these 31 patients also had clearly positive slopes of 125I-iothalamate–measured GFR during the trial phase. Low levels of proteinuria at baseline and randomization to the lower BP goal (mean arterial pressure ≤92 mmHg) associated with improved eGFR. In conclusion, the extended follow-up from this study provides strong evidence that kidney function can improve in some patients with hypertensive CKD. PMID:22402803

  4. Automatic Cell Segmentation Using a Shape-Classification Model in Immunohistochemically Stained Cytological Images

    NASA Astrophysics Data System (ADS)

    Shah, Shishir

    This paper presents a segmentation method for detecting cells in immunohistochemically stained cytological images. A two-phase approach to segmentation is used where an unsupervised clustering approach coupled with cluster merging based on a fitness function is used as the first phase to obtain a first approximation of the cell locations. A joint segmentation-classification approach incorporating ellipse as a shape model is used as the second phase to detect the final cell contour. The segmentation model estimates a multivariate density function of low-level image features from training samples and uses it as a measure of how likely each image pixel is to be a cell. This estimate is constrained by the zero level set, which is obtained as a solution to an implicit representation of an ellipse. Results of segmentation are presented and compared to ground truth measurements.

  5. Irradiance attenuation coefficient in a stratified ocean - A local property of the medium

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1980-01-01

    The influence of optically important constituents of water on the absorption (a) and scattering (b) coefficients and the backscattering probability is considered, with emphasis placed on measuring the volume scattering function (B/theta/). Two stratification models are examined; one in which the phase function (B(theta)/b) is depth independent and only b/c is allowed to vary with optical depth, and the other in which both b/c and the phase function depend on depth. The results demonstrate that Gordon's (1977) technique of estimating a and b is applicable without change to a stratified ocean.

  6. Multi-range force sensors utilizing shape memory alloys

    DOEpatents

    Varma, Venugopal K.

    2003-04-15

    The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.

  7. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  8. Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings.

    PubMed

    Mehta, Daryush D; Deliyski, Dimitar D; Quatieri, Thomas F; Hillman, Robert E

    2011-02-01

    In prior work, a manually derived measure of vocal fold vibratory phase asymmetry correlated to varying degrees with visual judgments made from laryngeal high-speed videoendoscopy (HSV) recordings. This investigation extended this work by establishing an automated HSV-based framework to quantify 3 categories of vocal fold vibratory asymmetry. HSV-based analysis provided for cycle-to-cycle estimates of left-right phase asymmetry, left-right amplitude asymmetry, and axis shift during glottal closure for 52 speakers with no vocal pathology producing comfortable and pressed phonation. An initial cross-validation of the automated left-right phase asymmetry measure was performed by correlating the measure with other objective and subjective assessments of phase asymmetry. Vocal fold vibratory asymmetry was exhibited to a similar extent in both comfortable and pressed phonations. The automated measure of left-right phase asymmetry strongly correlated with manually derived measures and moderately correlated with visual-perceptual ratings. Correlations with the visual-perceptual ratings remained relatively consistent as the automated measure was derived from kymograms taken at different glottal locations. An automated HSV-based framework for the quantification of vocal fold vibratory asymmetry was developed and initially validated. This framework serves as a platform for investigating relationships between vocal fold tissue motion and acoustic measures of voice function.

  9. Effect of phase symmetry on the NMR spectrum of acetonitrile oriented in a uniaxial-biaxial-uniaxial phase

    NASA Astrophysics Data System (ADS)

    Deepak, H. S. Vinay; Yelamaggad, C. V.; Khetrapal, C. L.; Ramanathan, K. V.

    2016-09-01

    We report here the measurement of the Csbnd H and the Hsbnd H dipolar couplings of the methyl group of acetonitrile oriented in the biaxial liquid crystal potassium laurate/1-decanol/water system. These parameters show large variations when measured as a function of temperature. The variations follow the symmetry of the phase as the liquid crystal goes through the sequence of uniaxial - biaxial - uniaxial phases and show a close correspondence to the phase changes that occur in the liquid crystalline solvent coinciding with the onset of biaxiality. The Hsbnd Csbnd H bond angle calculated after incorporating vibrational corrections to the dipolar couplings is discussed in terms of contributions in the case of the biaxial liquid crystal arising from vibration-rotation interaction effects.

  10. Incomplete Detection of Nonclassical Phase-Space Distributions

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Tiedau, J.; Bartley, T.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2018-02-01

    We implement the direct sampling of negative phase-space functions via unbalanced homodyne measurement using click-counting detectors. The negativities significantly certify nonclassical light in the high-loss regime using a small number of detectors which cannot resolve individual photons. We apply our method to heralded single-photon states and experimentally demonstrate the most significant certification of nonclassicality for only two detection bins. By contrast, the frequently applied Wigner function fails to directly indicate such quantum characteristics for the quantum efficiencies present in our setup without applying additional reconstruction algorithms. Therefore, we realize a robust and reliable approach to characterize nonclassical light in phase space under realistic conditions.

  11. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system

    NASA Astrophysics Data System (ADS)

    Sahu, Sanjay Kumar; Shanmugam, Palanisamy

    2018-02-01

    Scattering by water molecules and particulate matters determines the path and distance of photon propagation in underwater medium. Consequently, photon angle of scattering (given by scattering phase function) requires to be considered in addition to the extinction coefficient of the aquatic medium governed by the absorption and scattering coefficients in channel characterization for an underwater wireless optical communication (UWOC) system. This study focuses on analyzing the received signal power and impulse response of UWOC channel based on Monte-Carlo simulations for different water types, link distances, link geometries and transceiver parameters. A newly developed scattering phase function (referred to as SS phase function), which represents the real water types more accurately like the Petzold phase function, is considered for quantification of the channel characteristics along with the effects of absorption and scattering coefficients. A comparison between the results simulated using various phase function models and the experimental measurements of Petzold revealed that the SS phase function model predicts values closely matching with the actual values of the Petzold's phase function, which further establishes the importance of using a correct scattering phase function model while estimating the channel capacity of UWOC system in terms of the received power and channel impulse response. Results further demonstrate a great advantage of considering the nonzero probability of receiving scattered photons in estimating channel capacity rather than considering the reception of only ballistic photons as in Beer's Law, which severely underestimates the received power and affects the range of communication especially in the scattering water column. The received power computed based on the Monte-Carlo method by considering the receiver aperture sizes and field of views in different water types are further analyzed and discussed. These results are essential for evaluating the underwater link budget and constructing different system and design parameters for an UWOC system.

  12. Advanced methods for preparation and characterization of infrared detector materials

    NASA Technical Reports Server (NTRS)

    Broerman, J. G.; Morris, B. J.; Meschter, P. J.

    1983-01-01

    Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  13. Effects of a new sensory re-education training tool on hand sensibility and manual dexterity in people with multiple sclerosis.

    PubMed

    Kalron, Alon; Greenberg-Abrahami, Michal; Gelav, Simona; Achiron, Anat

    2013-01-01

    To describe and evaluate the effects of a new home-based sensory re-education training tool on hand sensibility and manual dexterity in people with MS experiencing upper limb sensory deficits. Twenty-five people with relapsing-remitting MS (18 women), mean age 50.6 years (SD = 11.4), volunteered to participate. Participants were initially assigned to a 7-week control phase followed by a 3-week home-based sensory re-education phase. Measurements used were the nine-hole peg test, the two point discrimination test, the monofilaments test and the functional dexterity test. Measurements were collected at baseline, following the control phase and at the end of the trial. Participants demonstrated an improvement in the nine-hole peg (26.8 (SD = 3.5) vs. 22.6 (SD = 3.2); mean difference (95% CI) 4.9 (0.9, 7.1), P = 0.03) and functional dexterity tests (38.6 (SD = 4.4) vs. 33.8 (SD = 4.9); mean difference (95% CI) 4.8 (1.8, 7.0); P = 0.02) at the end of the sensory re-education phase compared to the end of the control phase. No differences were observed as to the monofilaments and two-point discrimination tests. Sensory re-education training does not affect the level of sensory impairment in the hand but may lead to improvement in select measures of manual dexterity.

  14. Clinical Symptom Responses to Atypical Antipsychotic Medications in Alzheimer’s Disease: Phase 1 Outcomes from the CATIE-AD Effectiveness Trial

    PubMed Central

    Sultzer, David L.; Davis, Sonia M.; Tariot, Pierre N.; Dagerman, Karen S.; Lebowitz, Barry D.; Lyketsos, Constantine G.; Rosenheck, Robert A.; Hsiao, John K.; Lieberman, Jeffrey A.; Schneider, Lon S.

    2009-01-01

    Objective To measure the effects of atypical antipsychotic medication on psychiatric and behavioral symptoms in patients with Alzheimer’s disease (AD) and psychosis or agitated behavior. Method The CATIE-AD effectiveness study included 421 outpatients with AD and psychosis or agitated/aggressive behavior. Patients were assigned randomly to masked flexible-dose treatment with olanzapine, quetiapine, risperidone, or placebo for up to 36 weeks. Patients could be re-randomized to a different medication treatment at the clinician’s discretion, which ended the Phase 1 period. Psychiatric and behavioral symptoms, functional abilities, cognition, care needs, and quality of life were measured at regular intervals. Results At the last observation in Phase 1 compared to placebo, there was greater improvement in patients treated with olanzapine or risperidone on the Neuropsychiatric Inventory total score, with risperidone on the Clinical Global Impression of Change, with olanzapine or risperidone on the Brief Psychiatric Rating Scale (BPRS) Hostile Suspiciousness factor, and with risperidone on the BPRS Psychosis factor. There was worsening with olanzapine on the BPRS Withdrawn Depression factor. Among patients continuing Phase 1 treatment at 12 weeks, there were no significant antipsychotic – placebo group differences on measures of cognition, functional skills, care needs, or quality of life, except for worsening of functional skills in the olanzapine treatment group compared to placebo. Conclusion In this descriptive analysis of clinical outcomes in AD outpatients in usual care settings, some clinical symptoms improved with atypical antipsychotic treatment. Antipsychotic medications may be more effective for particular symptoms, such as anger, aggression, and paranoid ideas. Functional abilities, care needs, or quality of life do not appear to improve with antipsychotic treatment. PMID:18519523

  15. Spectral and entropic characterizations of Wigner functions: applications to model vibrational systems.

    PubMed

    Luzanov, A V

    2008-09-07

    The Wigner function for the pure quantum states is used as an integral kernel of the non-Hermitian operator K, to which the standard singular value decomposition (SVD) is applied. It provides a set of the squared singular values treated as probabilities of the individual phase-space processes, the latter being described by eigenfunctions of KK(+) (for coordinate variables) and K(+)K (for momentum variables). Such a SVD representation is employed to obviate the well-known difficulties in the definition of the phase-space entropy measures in terms of the Wigner function that usually allows negative values. In particular, the new measures of nonclassicality are constructed in the form that automatically satisfies additivity for systems composed of noninteracting parts. Furthermore, the emphasis is given on the geometrical interpretation of the full entropy measure as the effective phase-space volume in the Wigner picture of quantum mechanics. The approach is exemplified by considering some generic vibrational systems. Specifically, for eigenstates of the harmonic oscillator and a superposition of coherent states, the singular value spectrum is evaluated analytically. Numerical computations are given for the nonlinear problems (the Morse and double well oscillators, and the Henon-Heiles system). We also discuss the difficulties in implementation of a similar technique for electronic problems.

  16. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    NASA Astrophysics Data System (ADS)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  17. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. Wemore » show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.« less

  18. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; hide

    1999-01-01

    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  19. Enhanced response to ozone exposure during the follicular phase of the menstrual cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, S.D.; Adams, W.C.; Brookes, K.A.

    Exposure to ozone (O[sub 3]), a toxic component of photochemical smog, results in significant airway inflammation, respiratory discomfort, and pulmonary function impairment. These effects can be reduced via pretreatment with anti-inflammatory agents. Progesterone, a gonadal steroid, is known to reduce general inflammation in the uterine endometrium. However, it is not known whether fluctuation in blood levels of progesterone, which are experienced during the normal female menstrual cycle, could alter O[sub 3] inflammatory-induced pulmonary responses. In this study, we tested the hypothesis that young, adult females are more responsive to O[sub 3] inhalation with respect to pulmonary function impairment during theirmore » follicular (F) menstrual phase when progesterone levels are lowest that during their mid-luteal (ML) phase when progesterone levels are highest. Nine subjects with normal ovarian function were exposed in random order for 1 hour each to filtered air and to 0.30 ppm O[sub 3] in their F and ML menstrual phases. Ozone responsiveness was measured by percent change in pulmonary function from pre- to postexposure. Significant gas concentration effects (filtered air versus O[sub 3]) were observed for forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV[sub 1]), and forced expiratory flow between 25 and 75% of FVC (FEF[sub 25-75]), showed a significant menstrual phase and gas concentration interaction effect, with larger decrements observed in the F menstrual phase when progesterone concentrations were significantly lower. We conclude that young, adult females appear to be more responsive to acute O[sub 3] exposure during the F phase than during the ML phase of their menstrual cycles. This difference in pulmonary function response could be related to the anti-inflammatory effects of increased progesterone concentrations during the luteal phase.« less

  20. Luteal function declines after laparoscopic sterilization by Hulka or Filshie clips.

    PubMed

    Sumiala, S; Tuominen, J; Irjala, K; Klemi, P; Mäenpää, J

    2000-10-01

    We evaluated the influence of laparoscopic sterilization by Hulka or Fishie clips on corpus luteum function. Changes in corpus luteum function were evaluated in 46 women, before and after sterilization by Hulka (n = 22) or Filshie clips (n = 24). The mean age of the participants was 37 years (range 31-43 years). All women were healthy with regular menstrual cycles. Serum progesterone (P) was measured in one cycle before, and 3 and 12 months after the sterilization on cycle day 20-24. Endometrial biopsies were performed in the luteal phase before and one year after the procedure. The women measured the basal body temperature daily and kept a menstrual diary. The luteal phase P concentrations declined after the sterilization and the values were at the lowest level 3 months after the procedure (27.9 +/- 14.3 nmol/L vs. 18.7 +/- 13.4 nmol/L, = 0.0016). The values seemed to have recovered by 12 months (23.0 +/- 14.0 nmol/L, = 0.114 vs. baseline). Endometrium tended to be out-of-phase more frequently 1 year after the sterilization than before the surgery (= 0.065). Laparoscopic tubal sterilization is associated with an increased risk of luteal phase deficiency. However, the change may be only temporary in nature.

  1. Multiplexed aberration measurement for deep tissue imaging in vivo

    PubMed Central

    Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976

  2. Imaging Organ of Corti Vibration Using Fourier-Domain OCT

    NASA Astrophysics Data System (ADS)

    Choudhury, Niloy; Chen, Fangyi; Fridberger, Anders; Zha, Dingjun; Jacques, Steven L.; Wang, Ruikang K.; Nuttall, Alfred L.

    2011-11-01

    Measuring the sound stimulated vibration from various structures in the organ of Corti is important in understanding how the small vibrations are amplified and detected. In this study we examine the feasibility of using phase-sensitive Fourier domain optical coherence tomography (PSFD-OCT) to measure vibration of the cellular structures of the organ of Corti. PSFD-OCT is a low coherence interferrometry system where the interferrogram is detected as a function of wavelength. The phase of the Fourier transformation of the detected spectra contains path deference (between the sample arm and the reference arm) information of the interferometer. In PSFD-OCT this phase is measured as a function of time and thus any time dependent change in the path difference between the sample arm and the reference arm can be detected. In the experiment, we used an in vitro preparation of the guinea pig cochlea and made a surgical opening at the apical end to access the organ of Corti. By applying tones with different frequencies via the intact middle ear, we recorded the structural vibration inside the organ of Corti. Vibration amplitude and phase of different substructures were mapped on a cross-section view of the organ of Corti. Although the measurements were made at the apical turn of the cochlea, it will be possible to make vibration measurement from various turns of the cochlea. The noise floor of the system was 0.3 nm, calibrated using a piezo stack as a calibrator.

  3. Measurement of elastic pp scattering at $$\\sqrt{\\hbox {s}} = \\hbox {8}$$ TeV in the Coulomb–nuclear interference region: Determination of the ρ-parameter and the total cross-section

    DOE PAGES

    Antchev, G.; Aspell, P.; Atanassov, I.; ...

    2016-11-30

    Here, the TOTEM experiment at the CERN LHC has measured elastic proton–proton scattering at the centre-of-mass energy s√=8TeV and four-momentum transfers squared, |t|, from 6 × 10 –4 to 0.2 GeV 2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purelymore » exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12±0.03. The results for the total hadronic cross-section are σ tot = (102.9±2.3) mb and (103.0±2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.« less

  4. Cumulants and correlation functions versus the QCD phase diagram

    DOE PAGES

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    2017-05-12

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  5. Cumulants and correlation functions versus the QCD phase diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  6. WE-FG-206-07: Assessing the Lung Function of Patients with Non-Small Cell Lung Cancer Using Hyperpolarized Xenon-129 Dissolved-Phase MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qing, K; Mugler, J; Chen, Q

    Purpose: Hyperpolarized xenon-129 dissolved-phase MRI is the first imaging technique that allows 3-dimensional regional mapping of ventilation and gas uptake by tissue and blood the in human lung. Multiple outcome measures can be produced from this method. Existing studies in subjects with major lung diseases compared to healthy controls demonstrated high sensitivities of this method to pulmonary physiological factors including ventilation, alveolar tissue density, surface-to-volume ratio, pulmonary perfusion and gas-blood barrier thickness. The purpose of this study is to evaluate the utility of this new imaging tool to assess the lung function in patients with non-small cell lung cancer (NSCLC).more » Methods: Ten healthy controls (age: 63±10) and five patients (age: 62±13) with NSCLC underwent the xenon-129 dissolved-phase MRI, pulmonary function test (PFT) and CT for clinical purpose. Three outcome measures were produced from xenon-129 dissolved-phase MRI, including ventilation defect fraction (Vdef%) reflecting the airflow obstruction, tissue-to-gas ratio reflecting lung tissue density, and RBC-to-tissue ratio reflecting pulmonary perfusion and gas exchange. Results: Compared to healthy controls, patients with NSCLC showed more ventilation defects (NSCLC: 22±6%; control: 40±18%; P=0.01), lower tissue-to-gas (NSCLC: 0.82±0.31%; control: 1.07±0.13%; P=0.05) and RBC-to-tissue ratios (NSCLC: 0.82±0.31%; control: 1.07±0.13%; P=0.01). Maps for ventilation and gas uptake by tissue and blood were highly heterogeneous in the lungs of patients. Vdef% and RBC-to-tissue ratios in all 15 subjects correlated with corresponding global lung functional measures from PFT: FEV1/FVC (R=−0.91, P<0.001) and DLCO % predicted (R=0.54, P=0.03), respectively. The tissue-to-gas ratios correlated with tissue density (HU) measured by CT (R=0.88, P<0.001). Conclusion: With the unique ability to provide detailed information about lung function including ventilation, tissue density, perfusion and gas exchange with 3D resolution, hyperpolarized xenon-129 dissolved-phase MRI has high potential to be used as an important reference for radiotherapy treatment planning and for evaluating the side effects of the treatment. Receive research support and funding from Siemens.« less

  7. Outcomes of total hip arthroplasty: a study of patients one year postsurgery.

    PubMed

    Trudelle-Jackson, Elaine; Emerson, Roger; Smith, Sue

    2002-06-01

    Ex post facto research using prospective analysis of differences between the involved hip and uninvolved hip. To assess outcomes of total hip arthroplasty (THA) by comparing range of motion (ROM), muscle strength, and postural stability in the surgical hip to those of the uninvolved hip 1 year postsurgery. An additional objective was to assess degree of relationship among ROM, strength, and postural stability impairments to a measure of self-assessed function. Most patients who have THA receive physical therapy that consists mainly of self-care instructions and an exercise protocol that emphasizes mobility during the acute phase of recovery. But, outcomes of THA 1 year postsurgery indicate that current physical therapy programs used during the acute phase of recovery do not effectively restore physical and functional performance. Subjects consisted of 11 women and 4 men (mean age +/- standard deviation = 62 +/- 8 years) with unilateral THA performed 1 year prior to data collection. Assessment variables consisted of self-assessment of function and measures of postural stability, muscle strength, and hip ROM. The 12-Item Hip Questionnaire was used for self-assessment of function. Three separate repeated measures MANOVA were used to compare the involved side to the uninvolved side in measures of postural stability, strength, and ROM. The Spearman's rho was used to assess degree of association between the subjects' score of self-assessed function and impairments in strength and postural stability. Measures of postural stability were significantly lower (P < or = 0.01) on the side of the replaced hip. Differences in strength values between the involved and uninvolved sides were not statistically significant. Correlations between scores of self-assessed function and hip abductor and knee extensor strength were statistically significant (r = 0.56, P < or = 0.03). Self-assessed function was not significantly correlated to postural stability impairments. The brief postsurgical rehabilitation program received by patients with THA may not be sufficient. A second phase of rehabilitation implemented 4 months or more after surgery that emphasizes weight bearing and postural stability may be advisable.

  8. Ethinyl estradiol-to-desogestrel ratio impacts endothelial function in young women✩

    PubMed Central

    Meendering, Jessica R.; Torgrimson, Britta N.; Miller, Nicole P.; Kaplan, Paul F.; Minson, Christopher T.

    2010-01-01

    Background Ethinyl estradiol (EE) and progestins have the ability to alter endothelial function. The type of progestin and the ratio of EE to progestin used in oral contraceptive pills (OCPs) may determine how they affect the arterial vasculature. Study Design In this study, we investigated endothelial function across a cycle in very low dose (VLD) and low dose (LD) combination EE and desogestrel (DSG) OCP users during two phases: active (VLD=20 mcg EE/150 mcg DSG; LD=30 mcg EE/150 mcg DSG) and pill-free. Endothelial function was also measured during an EE-only hormone phase (10 mcg EE) in group VLD. Results Endothelium-dependent vasodilation was greater during the active phase compared to the pill-free phase in group LD (9.02±0.72% vs. 7.33±0.84%; p=.029). This phase difference was not observed in group VLD (5.86±0.63% vs. 6.56±0.70%; p=.108). However, endothelium-dependent vasodilation was higher during the EE-only phase, compared to the active and pill-free phases (8.92±0.47% vs. 5.86±0.63%, and 6.56±0.70%; pb.001) in group VLD. Conclusions These data suggest DSG may antagonize the vasodilatory activity of EE and that this effect is further modulated by the EE-toDSG ratio. PMID:19041440

  9. How to Evaluate Phase Differences between Trial Groups in Ongoing Electrophysiological Signals

    PubMed Central

    VanRullen, Rufin

    2016-01-01

    A growing number of studies endeavor to reveal periodicities in sensory and cognitive functions, by comparing the distribution of ongoing (pre-stimulus) oscillatory phases between two (or more) trial groups reflecting distinct experimental outcomes. A systematic relation between the phase of spontaneous electrophysiological signals, before a stimulus is even presented, and the eventual result of sensory or cognitive processing for that stimulus, would be indicative of an intrinsic periodicity in the underlying neural process. Prior studies of phase-dependent perception have used a variety of analytical methods to measure and evaluate phase differences, and there is currently no established standard practice in this field. The present report intends to remediate this need, by systematically comparing the statistical power of various measures of “phase opposition” between two trial groups, in a number of real and simulated experimental situations. Seven measures were evaluated: one parametric test (circular Watson-Williams test), and three distinct measures of phase opposition (phase bifurcation index, phase opposition sum, and phase opposition product) combined with two procedures for non-parametric statistical testing (permutation, or a combination of z-score and permutation). While these are obviously not the only existing or conceivable measures, they have all been used in recent studies. All tested methods performed adequately on a previously published dataset (Busch et al., 2009). On a variety of artificially constructed datasets, no single measure was found to surpass all others, but instead the suitability of each measure was contingent on several experimental factors: the time, frequency, and depth of oscillatory phase modulation; the absolute and relative amplitudes of post-stimulus event-related potentials for the two trial groups; the absolute and relative trial numbers for the two groups; and the number of permutations used for non-parametric testing. The concurrent use of two phase opposition measures, the parametric Watson-Williams test and a non-parametric test based on summing inter-trial coherence values for the two trial groups, appears to provide the most satisfactory outcome in all situations tested. Matlab code is provided to automatically compute these phase opposition measures. PMID:27683543

  10. Phase dependencies of the human baroreceptor reflex

    NASA Technical Reports Server (NTRS)

    Seidel, H.; Herzel, H.; Eckberg, D. L.

    1997-01-01

    We studied the influence of respiratory and cardiac phase on responses of the cardiac pacemaker to brief (0.35-s) increases of carotid baroreceptor afferent traffic provoked by neck suction in seven healthy young adult subjects. Cardiac responses to neck suction were measured indirectly from electrocardiographic changes of heart period. Our results show that it is possible to separate the influences of respiratory and cardiac phases at the onset of a neck suction impulse by a product of two factors: one depending only on the respiratory phase and one depending only on the cardiac phase. This result is consistent with the hypothesis that efferent vagal activity is a function of afferent baroreceptor activity, whereas respiratory neurons modulate that medullary throughput independent of the cardiac phase. Furthermore, we have shown that stimulus broadening and stimulus cropping influence the outcome of neck suction experiments in a way that makes it virtually impossible to obtain information on the phase dependency of the cardiac pacemaker's sensitivity to vagal stimulation without accurate knowledge of the functional shape of stimulus broadening.

  11. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry

    PubMed Central

    Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian

    2017-01-01

    The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced. PMID:29215600

  12. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry.

    PubMed

    Zhang, Zonghua; Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian

    2017-12-07

    The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced.

  13. Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infarction.

    PubMed

    Hoyer, Dirk; Leder, Uwe; Hoyer, Heike; Pompe, Bernd; Sommer, Michael; Zwiener, Ulrich

    2002-01-01

    The heart rate variability (HRV) is related to several mechanisms of the complex autonomic functioning such as respiratory heart rate modulation and phase dependencies between heart beat cycles and breathing cycles. The underlying processes are basically nonlinear. In order to understand and quantitatively assess those physiological interactions an adequate coupling analysis is necessary. We hypothesized that nonlinear measures of HRV and cardiorespiratory interdependencies are superior to the standard HRV measures in classifying patients after acute myocardial infarction. We introduced mutual information measures which provide access to nonlinear interdependencies as counterpart to the classically linear correlation analysis. The nonlinear statistical autodependencies of HRV were quantified by auto mutual information, the respiratory heart rate modulation by cardiorespiratory cross mutual information, respectively. The phase interdependencies between heart beat cycles and breathing cycles were assessed basing on the histograms of the frequency ratios of the instantaneous heart beat and respiratory cycles. Furthermore, the relative duration of phase synchronized intervals was acquired. We investigated 39 patients after acute myocardial infarction versus 24 controls. The discrimination of these groups was improved by cardiorespiratory cross mutual information measures and phase interdependencies measures in comparison to the linear standard HRV measures. This result was statistically confirmed by means of logistic regression models of particular variable subsets and their receiver operating characteristics.

  14. Probing exoplanet clouds with optical phase curves.

    PubMed

    Muñoz, Antonio García; Isaak, Kate G

    2015-11-03

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.

  15. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cloud Optical Properties Determined by High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Grund, C. J.; Eloranta, E. W.

    1996-01-01

    During the First ISCCP Region Experiment (FIRE) cirrus intensive field observation (IFO) the High Spectral Resolution Lidar was operated from a roof top site on the University of Wisconsin-Madison campus. Because the HSRL technique separately measures the molecular and cloud particle backscatter components of the lidar return, the optical thickness is determined independent of particle backscatter. This is accomplished by comparing the known molecular density distribution to the observed decrease in molecular backscatter signal with altitude. The particle to molecular backscatter ratio yields calibrated measurements of backscatter cross sections that can be plotted ro reveal cloud morphology without distortion due to attenuation. Changes in cloud particle size, shape, and phase affect the backscatter to extinction ratio (backscatter-phase function). The HSRL independently measures cloud particle backscatter phase function. This paper presents a quantitative analysis of the HSRL cirrus cloud data acquired over an approximate 33 hour period of continuous near zenith observations. Correlations between small scale wind structure and cirrus cloud morphology have been observed. These correlations can bias the range averaging inherent in wind profiling lidars of modest vertical resolution, leading to increased measurement errors at cirrus altitudes. Extended periods of low intensity backscatter were noted between more strongly organized cirrus cloud activity. Optical thicknesses ranging from 0.01-1.4, backscatter phase functions between 0.02-0.065 sr (exp -1) and backscatter cross sections spanning 4 orders of magnitude were observed. the altitude relationship between cloud top and bottom boundaries and the cloud optical center altitude was dependent on the type of formation observed Cirrus features were observed with characteristic wind drift estimated horizontal sizes of 5-400 km. The clouds frequently exhibited cellular structure with vertical to horizontal dimension ratios of 1:5-1:1.

  16. The effects of a rhythm and music-based therapy program and therapeutic riding in late recovery phase following stroke: a study protocol for a three-armed randomized controlled trial

    PubMed Central

    2012-01-01

    Background Stroke represents one of the most costly and long-term disabling conditions in adulthood worldwide and there is a need to determine the effectiveness of rehabilitation programs in the late phase after stroke. Limited scientific support exists for training incorporating rhythm and music as well as therapeutic riding and well-designed trials to determine the effectiveness of these treatment modalities are warranted. Methods/Design A single blinded three-armed randomized controlled trial is described with the aim to evaluate whether it is possible to improve the overall health status and functioning of individuals in the late phase of stroke (1-5 years after stroke) through a rhythm and music-based therapy program or therapeutic riding. About 120 individuals will be consecutively and randomly allocated to one of three groups: (T1) rhythm and music-based therapy program; (T2) therapeutic riding; or (T3) control group receiving the T1 training program a year later. Evaluation is conducted prior to and after the 12-week long intervention as well as three and six months later. The evaluation comprises a comprehensive functional and cognitive assessment (both qualitative and quantitative), and questionnaires. Based on the International classification of functioning, disability, and health (ICF), the outcome measures are classified into six comprehensive domains, with participation as the primary outcome measure assessed by the Stroke Impact Scale (SIS, version 2.0.). The secondary outcome measures are grouped within the following domains: body function, activity, environmental factors and personal factors. Life satisfaction and health related quality of life constitute an additional domain. Current status A total of 84 participants were randomised and have completed the intervention. Recruitment proceeds and follow-up is on-going, trial results are expected in early 2014. Discussion This study will ascertain whether any of the two intervention programs can improve overall health status and functioning in the late phase of stroke. A positive outcome would increase the scientific basis for the use of such interventions in the late phase after stroke. Trial registration Clinical Trials.gov Identifier: NCT01372059 PMID:23171380

  17. The effects of a rhythm and music-based therapy program and therapeutic riding in late recovery phase following stroke: a study protocol for a three-armed randomized controlled trial.

    PubMed

    Bunketorp Käll, Lina; Lundgren-Nilsson, Åsa; Blomstrand, Christian; Pekna, Marcela; Pekny, Milos; Nilsson, Michael

    2012-11-21

    Stroke represents one of the most costly and long-term disabling conditions in adulthood worldwide and there is a need to determine the effectiveness of rehabilitation programs in the late phase after stroke. Limited scientific support exists for training incorporating rhythm and music as well as therapeutic riding and well-designed trials to determine the effectiveness of these treatment modalities are warranted. A single blinded three-armed randomized controlled trial is described with the aim to evaluate whether it is possible to improve the overall health status and functioning of individuals in the late phase of stroke (1-5 years after stroke) through a rhythm and music-based therapy program or therapeutic riding. About 120 individuals will be consecutively and randomly allocated to one of three groups: (T1) rhythm and music-based therapy program; (T2) therapeutic riding; or (T3) control group receiving the T1 training program a year later. Evaluation is conducted prior to and after the 12-week long intervention as well as three and six months later. The evaluation comprises a comprehensive functional and cognitive assessment (both qualitative and quantitative), and questionnaires. Based on the International classification of functioning, disability, and health (ICF), the outcome measures are classified into six comprehensive domains, with participation as the primary outcome measure assessed by the Stroke Impact Scale (SIS, version 2.0.). The secondary outcome measures are grouped within the following domains: body function, activity, environmental factors and personal factors. Life satisfaction and health related quality of life constitute an additional domain. A total of 84 participants were randomised and have completed the intervention. Recruitment proceeds and follow-up is on-going, trial results are expected in early 2014. This study will ascertain whether any of the two intervention programs can improve overall health status and functioning in the late phase of stroke. A positive outcome would increase the scientific basis for the use of such interventions in the late phase after stroke. Clinical Trials.gov Identifier: NCT01372059.

  18. Shape Measurement by Means of Phase Retrieval using a Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Agour, Mostafa; Huke, Philipp; Kopylow, Christoph V.; Falldorf, Claas

    2010-04-01

    We present a novel approach to investigate the shape of a diffusely reflecting technical object. It is based on a combination of a multiple-illumination contouring procedure and phase retrieval from a set of intensity measurements. Special consideration is given to the design of the experimental configuration for phase retrieval and the iterative algorithm to extract the 3D phase map. It is mainly based on a phase-only spatial light modulator (SLM) in the Fourier domain of a 4f-imaging system. The SLM is used to modulate the light incident in the Fourier plane with the transfer function of propagation. Thus, a set of consecutive intensity measurements of the wave field scattered by the investigated object in various propagation states can be realized in a common recording plane. In contrast to already existing methods, no mechanical adjustment is required during the recording process and thus the measuring time is considerably reduced. The method is applied to investigate the shape of micro-objects obtained from a metalforming process. Finally, the experimental results are compared to those provided by a standard interferometric contouring procedure.

  19. Phase holograms in PMMA with proximity effect correction

    NASA Technical Reports Server (NTRS)

    Maker, Paul D.; Muller, R. E.

    1993-01-01

    Complex computer generated phase holograms (CGPH's) have been fabricated in PMMA by partial e-beam exposure and subsequent partial development. The CGPH was encoded as a sequence of phase delay pixels and written by the JEOL JBX-5D2 E-beam lithography system, a different dose being assigned to each value of phase delay. Following carefully controlled partial development, the pattern appeared rendered in relief in the PMMA, which then acts as the phase-delay medium. The exposure dose was in the range 20-200 micro-C/sq cm, and very aggressive development in pure acetone led to low contrast. This enabled etch depth control to better than plus or minus lambda(sub vis)/60. That result was obtained by exposing isolated 50 micron square patches and measuring resist removal over the central area where the proximity effect dose was uniform and related only to the local exposure. For complex CGPH's with pixel size of the order of the e-beam proximity effect radius, the patterns must be corrected for the extra exposure caused by electrons scattered back up out of the substrate. This has been accomplished by deconvolving the two-dimensional dose deposition function with the desired dose pattern. The deposition function, which plays much the same role as an instrument response function, was carefully measured under the exact conditions used to expose the samples. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 1 cm square, and consisted of up to 100 million 0.3-2.0 micron square pixels. Data files were up to 500 MB long and exposure times ranged to tens of hours. A Fresnel phase lens was fabricated that had diffraction limited optical performance with better than 85 percent efficiency.

  20. Three-dimensional sensing methodology combining stereo vision and phase-measuring profilometry based on dynamic programming

    NASA Astrophysics Data System (ADS)

    Lee, Hyunki; Kim, Min Young; Moon, Jeon Il

    2017-12-01

    Phase measuring profilometry and moiré methodology have been widely applied to the three-dimensional shape measurement of target objects, because of their high measuring speed and accuracy. However, these methods suffer from inherent limitations called a correspondence problem, or 2π-ambiguity problem. Although a kind of sensing method to combine well-known stereo vision and phase measuring profilometry (PMP) technique simultaneously has been developed to overcome this problem, it still requires definite improvement for sensing speed and measurement accuracy. We propose a dynamic programming-based stereo PMP method to acquire more reliable depth information and in a relatively small time period. The proposed method efficiently fuses information from two stereo sensors in terms of phase and intensity simultaneously based on a newly defined cost function of dynamic programming. In addition, the important parameters are analyzed at the view point of the 2π-ambiguity problem and measurement accuracy. To analyze the influence of important hardware and software parameters related to the measurement performance and to verify its efficiency, accuracy, and sensing speed, a series of experimental tests were performed with various objects and sensor configurations.

  1. Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1

    NASA Technical Reports Server (NTRS)

    Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.

    1986-01-01

    The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.

  2. Phase-based Bragg intragrating distributed strain sensor

    NASA Astrophysics Data System (ADS)

    Huang, S.; Ohn, M. M.; Measures, R. M.

    1996-03-01

    A strain-distribution sensing technique based on the measurement of the phase spectrum of the reflected light from a fiber-optic Bragg grating is described. When a grating is subject to a strain gradient, the grating will experience a chirp and therefore the resonant wavelength will vary along the grating, causing wavelength-dependent penetration depth. Because the group delay for each wavelength component is related to its penetration depth and the resonant wavelength is determined by strain, a measured phase spectrum can then indicate the local strain as a function of location within the grating. This phase-based Bragg grating sensing technique offers a powerful new means for studying some important effects over a few millimeters or centimeters in smart structures.

  3. FPGA-based real-time phase measuring profilometry algorithm design and implementation

    NASA Astrophysics Data System (ADS)

    Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng

    2016-11-01

    Phase measuring profilometry (PMP) has been widely used in many fields, like Computer Aided Verification (CAV), Flexible Manufacturing System (FMS) et al. High frame-rate (HFR) real-time vision-based feedback control will be a common demands in near future. However, the instruction time delay in the computer caused by numerous repetitive operations greatly limit the efficiency of data processing. FPGA has the advantages of pipeline architecture and parallel execution, and it fit for handling PMP algorithm. In this paper, we design a fully pipelined hardware architecture for PMP. The functions of hardware architecture includes rectification, phase calculation, phase shifting, and stereo matching. The experiment verified the performance of this method, and the factors that may influence the computation accuracy was analyzed.

  4. Instantaneous phase estimation to measure weak velocity variations: application to noise correlation on seismic data at the exploration scale

    NASA Astrophysics Data System (ADS)

    Corciulo, M.; Roux, P.; Campillo, M.; Dubucq, D.

    2010-12-01

    Passive imaging from noise cross-correlation is a consolidated analysis applied at continental and regional scale whereas its use at local scale for seismic exploration purposes is still uncertain. The development of passive imaging by cross-correlation analysis is based on the extraction of the Green’s function from seismic noise data. In a completely random field in time and space, the cross-correlation permits to retrieve the complete Green’s function whatever the complexity of the medium. At the exploration scale and at frequency above 2 Hz, the noise sources are not ideally distributed around the stations which strongly affect the extraction of the direct arrivals from the noise cross-correlation process. In order to overcome this problem, the coda waves extracted from noise correlation could be useful. Coda waves describe long and scattered paths sampling the medium in different ways such that they become sensitive to weak velocity variations without being dependent on the noise source distribution. Indeed, scatters in the medium behave as a set of secondary noise sources which randomize the spatial distribution of noise sources contributing to the coda waves in the correlation process. We developed a new technique to measure weak velocity changes based on the computation of the local phase variations (instantaneous phase variation or IPV) of the cross-correlated signals. This newly-developed technique takes advantage from the doublet and stretching techniques classically used to monitor weak velocity variation from coda waves. We apply IPV to data acquired in Northern America (Canada) on a 1-km side square seismic network laid out by 397 stations. Data used to study temporal variations are cross-correlated signals computed on 10-minutes ambient noise in the frequency band 2-5 Hz. As the data set was acquired over five days, about 660 files are processed to perform a complete temporal analysis for each stations pair. The IPV permits to estimate the phase shift all over the signal length without any assumption on the medium velocity. The instantaneous phase is computed using the Hilbert transform of the signal. For each stations pair, we measure the phase difference between successive correlation functions calculated for 10 minutes of ambient noise. We then fit the instantaneous phase shift using a first-order polynomial function. The measure of the velocity variation corresponds to the slope of this fit. Compared to other techniques, the advantage of IPV is a very fast procedure which efficiently provides the measure of velocity variation on large data sets. Both experimental results and numerical tests on synthetic signals will be presented to assess the reliability of the IPV technique, with comparison to the doublet and stretching methods.

  5. Etch depth mapping of phase binary computer-generated holograms by means of specular spectroscopic scatterometry

    NASA Astrophysics Data System (ADS)

    Korolkov, Victor P.; Konchenko, Alexander S.; Cherkashin, Vadim V.; Mironnikov, Nikolay G.; Poleshchuk, Alexander G.

    2013-09-01

    Detailed analysis of etch depth map for phase binary computer-generated holograms intended for testing aspheric optics is a very important task. In particular, diffractive Fizeau null lenses need to be carefully tested for uniformity of etch depth. We offer a simplified version of the specular spectroscopic scatterometry method. It is based on the spectral properties of binary phase multi-order gratings. An intensity of zero order is a periodical function of illumination light wave number. The grating grooves depth can be calculated as it is inversely proportional to the period. Measurement in reflection allows one to increase the phase depth of the grooves by a factor of 2 and measure more precisely shallow phase gratings. Measurement uncertainty is mainly defined by the following parameters: shifts of the spectrum maximums that occur due to the tilted grooves sidewalls, uncertainty of light incidence angle measurement, and spectrophotometer wavelength error. It is theoretically and experimentally shown that the method we describe can ensure 1% error. However, fiber spectrometers are more convenient for scanning measurements of large area computer-generated holograms. Our experimental system for characterization of binary computer-generated holograms was developed using a fiber spectrometer.

  6. Signatures of a dissipative phase transition in photon correlation measurements

    NASA Astrophysics Data System (ADS)

    Fink, Thomas; Schade, Anne; Höfling, Sven; Schneider, Christian; Imamoglu, Ataç

    2018-04-01

    Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics1-8. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum9, which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons10,11, which can be described as a first-order dissipative phase transition12-14. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.

  7. A Fluorescence Recovery After Photobleaching (FRAP) Technique for the Measurement of Solute Transport Across Surfactant-Laden Interfaces

    NASA Technical Reports Server (NTRS)

    Browne, Edward P.; Hatton, T. Alan

    1996-01-01

    The technique of Fluorescence Recovery After Photobleaching (FRAP) has been applied to the measurement of interfacial transport in two-phase systems. FRAP exploits the loss of fluorescence exhibited by certain fluorophores when over-stimulated (photobleached), so that a two-phase system, originally at equilibrium, can be perturbed without disturbing the interface by strong light from an argon-ion laser and its recovery monitored by a microscope-mounted CCD camera as it relaxes to a new equilibrium. During this relaxation, the concentration profiles of the probe solute are measured on both sides of the interface as a function of time, yielding information about the transport characteristics of the system. To minimize the size of the meniscus between the two phases, a photolithography technique is used to selectively treat the glass walls of the cell in which the phases are contained. This allows concentration measurements to be made very close to the interface and increases the sensitivity of the FRAP technique.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, L. M. S., E-mail: leandro-fisico@hotmail.com; Lima, B. S. de; Santos, C. A. M. dos

    K{sub 0.05}MoO{sub 2} has been studied by x-ray and neutron diffractometry, electrical resistivity, magnetization, heat capacity, and thermal expansion measurements. The compound displays two phase transitions, a first-order phase transition near room temperature and a second-order transition near 54 K. Below the transition at 54 K, a weak magnetic anomaly is observed and the electrical resistivity is well described by a power-law temperature dependence with exponent near 0.5. The phase transitions in the K-doped MoO{sub 2} compound have been discussed for the first time using neutron diffraction, high resolution thermal expansion, and heat capacity measurements as a function of temperature.

  9. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    NASA Astrophysics Data System (ADS)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  10. FAST TRACK COMMUNICATION Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Heredia, A.; Bdikin, I.; Kopyl, S.; Mishina, E.; Semin, S.; Sigov, A.; German, K.; Bystrov, V.; Gracio, J.; Kholkin, A. L.

    2010-11-01

    Diphenylalanine (FF) peptide nanotubes (PNTs) represent a unique class of self-assembled functional biomaterials owing to a wide range of useful properties including nanostructural variability, mechanical rigidity and chemical stability. In addition, strong piezoelectric activity has recently been observed paving the way to their use as nanoscale sensors and actuators. In this work, we fabricated both horizontal and vertical FF PNTs and examined their optical second harmonic generation and local piezoresponse as a function of temperature. The measurements show a gradual decrease in polarization with increasing temperature accompanied by an irreversible phase transition into another crystalline phase at about 140-150 °C. The results are corroborated by the molecular dynamic simulations predicting an order-disorder phase transition into a centrosymmetric (possibly, orthorhombic) phase with antiparallel polarization orientation in neighbouring FF rings. Partial piezoresponse hysteresis indicates incomplete polarization switching due to the high coercive field in FF PNTs.

  11. Trapping volumetric measurement by multidetector CT in chronic obstructive pulmonary disease: Effect of CT threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaohua; Yuan, Huishu; Duan, Jianghui

    2013-08-15

    Purpose: The purpose of this study was to evaluate the effect of various computed tomography (CT) thresholds on trapping volumetric measurements by multidetector CT in chronic obstructive pulmonary disease (COPD).Methods: Twenty-three COPD patients were scanned with a 64-slice CT scanner in both the inspiratory and expiratory phase. CT thresholds of −950 Hu in inspiration and −950 to −890 Hu in expiration were used, after which trapping volumetric measurements were made using computer software. Trapping volume percentage (Vtrap%) under the different CT thresholds in the expiratory phase and below −950 Hu in the inspiratory phase was compared and correlated with lungmore » function.Results: Mean Vtrap% was similar under −930 Hu in the expiratory phase and below −950 Hu in the inspiratory phase, being 13.18 ± 9.66 and 13.95 ± 6.72 (both lungs), respectively; this difference was not significant (P= 0.240). Vtrap% under −950 Hu in the inspiratory phase and below the −950 to −890 Hu threshold in the expiratory phase was moderately negatively correlated with the ratio of forced expiratory volume in one second to forced vital capacity and the measured value of forced expiratory volume in one second as a percentage of the predicted value.Conclusions: Trapping volumetric measurement with multidetector CT is a promising method for the quantification of COPD. It is important to know the effect of various CT thresholds on trapping volumetric measurements.« less

  12. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    PubMed

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  13. Precision PEP-II optics measurement with an SVD-enhanced Least-Square fitting

    NASA Astrophysics Data System (ADS)

    Yan, Y. T.; Cai, Y.

    2006-03-01

    A singular value decomposition (SVD)-enhanced Least-Square fitting technique is discussed. By automatic identifying, ordering, and selecting dominant SVD modes of the derivative matrix that responds to the variations of the variables, the converging process of the Least-Square fitting is significantly enhanced. Thus the fitting speed can be fast enough for a fairly large system. This technique has been successfully applied to precision PEP-II optics measurement in which we determine all quadrupole strengths (both normal and skew components) and sextupole feed-downs as well as all BPM gains and BPM cross-plane couplings through Least-Square fitting of the phase advances and the Local Green's functions as well as the coupling ellipses among BPMs. The local Green's functions are specified by 4 local transfer matrix components R12, R34, R32, R14. These measurable quantities (the Green's functions, the phase advances and the coupling ellipse tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a high-resolution model-independent analysis (MIA). Once all of the quadrupoles and sextupole feed-downs are determined, we obtain a computer virtual accelerator which matches the real accelerator in linear optics. Thus, beta functions, linear coupling parameters, and interaction point (IP) optics characteristics can be measured and displayed.

  14. Linear optics measurements and corrections using an AC dipole in RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.; Bai, M.; Yang, L.

    2010-05-23

    We report recent experimental results on linear optics measurements and corrections using ac dipole. In RHIC 2009 run, the concept of the SVD correction algorithm is tested at injection energy for both identifying the artificial gradient errors and correcting it using the trim quadrupoles. The measured phase beatings were reduced by 30% and 40% respectively for two dedicated experiments. In RHIC 2010 run, ac dipole is used to measure {beta}* and chromatic {beta} function. For the 0.65m {beta}* lattice, we observed a factor of 3 discrepancy between model and measured chromatic {beta} function in the yellow ring.

  15. Spectral domain phase microscopy: a new tool for measuring cellular dynamics and cytoplasmic flow

    NASA Astrophysics Data System (ADS)

    McDowell, Emily J.; Choma, Michael A.; Ellerbee, Audrey K.; Izatt, Joseph A.

    2005-03-01

    Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved interferometric phase information via coherence gating. Here a phase sensitive technique called spectral domain phase microscopy (SDPM) is presented. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity. This sensitivity is made possible by the inherent phase stability of spectral domain OCT combined with common-path interferometry. The theory that underlies this technique is presented, the sensitivity of the technique is demonstrated by the measurement of the thermal expansion coefficient of borosilicate glass, and the response of an Amoeba proteus to puncture of its cell membrane is measured. We also exploit the phase stability of SDPM to perform Doppler flow imaging of cytoplasmic streaming in A. proteus. We show reversal of cytoplasmic flow in response to stimuli, and we show that the cytoplasmic flow is laminar (i.e. parabolic) in nature. We are currently investigating the use of SDPM in a variety of different cell types.

  16. Photonic measurement of microwave frequency based on phase modulation.

    PubMed

    Zhou, Junqiang; Fu, Songnian; Shum, Perry Ping; Aditya, Sheel; Xia, Li; Li, Jianqiang; Sun, Xiaoqiang; Xu, Kun

    2009-04-27

    A photonic approach for microwave frequency measurement is proposed. In this approach, an optical carrier is modulated by an unknown microwave signal through a phase modulator. The modulated optical signal is then split into two parts; one part passes through a spool of polarization maintaining fiber (PMF) and the other one, through a dispersion compensation fiber (DCF), to introduce different microwave power penalties. After the microwave powers of the two parts are measured by two photodetectors, a fixed frequency-to-power mapping is established by obtaining an amplitude comparison function (ACF). A proof-of-concept experiment demonstrates frequency measurement over a range of 10.5 GHz, with measurement error less than +/-0.07 GHz.

  17. Analyser-based phase contrast image reconstruction using geometrical optics.

    PubMed

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 microm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  18. Fluorescence probe of polypeptide conformational dynamics in gas phase and in solution

    NASA Astrophysics Data System (ADS)

    Iavarone, Anthony T.; Meinen, Jan; Schulze, Susanne; Parks, Joel H.

    2006-07-01

    Fluorescence measurements of polypeptides derivatized with the fluorescent dye BODIPY TMR have been used to probe the polypeptide conformational dynamics as a function of temperature and charge state. Measurements of (BODIPY TMR)-[Pro]n-Arg-Trp and (BODIPY TMR)-[Gly-Ser]m-Arg-Trp have been performed for charge states 1+ and 2+ of n = 4 and 10 and m = 2 and 5. The 2+ charge states of both of these polypeptides exhibit similar temperature dependences for equal chain lengths (n = 4, m = 2 and n = 10, m = 5) and suggest conformations dominated by Coulomb repulsion. In the absence of such Coulomb repulsion, the 1+ charge state conformations appear to be characterized by the flexibility of the polypeptide chain for which [Gly-Ser]m > [Pro]n. Comparisons of these gas phase polypeptide measurements with corresponding measurements in solution provide a direct measure of the effects of solvent on the conformational dynamics. The change in fluorescence as a function of temperature in the gas phase is two orders of magnitude greater than that in solution, a dramatic result we attribute to the restrictions on intramolecular dynamics imposed by diffusion-limited kinetics and the lack of shielding by solvent. Measurements were also made of unsolvated Pron peptides without the tryptophan (Trp) residue to isolate the interaction of the fluorescent dye with charges.

  19. A wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Yang, Yanxi

    2018-05-01

    We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.

  20. Optimal control problems with mixed control-phase variable equality and inequality constraints

    NASA Technical Reports Server (NTRS)

    Makowski, K.; Neustad, L. W.

    1974-01-01

    In this paper, necessary conditions are obtained for optimal control problems containing equality constraints defined in terms of functions of the control and phase variables. The control system is assumed to be characterized by an ordinary differential equation, and more conventional constraints, including phase inequality constraints, are also assumed to be present. Because the first-mentioned equality constraint must be satisfied for all t (the independent variable of the differential equation) belonging to an arbitrary (prescribed) measurable set, this problem gives rise to infinite-dimensional equality constraints. To obtain the necessary conditions, which are in the form of a maximum principle, an implicit-function-type theorem in Banach spaces is derived.

  1. Effects of mode profile on tunneling and traversal of ultracold atoms through vacuum-induced potentials

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid

    2016-04-01

    We consider the resonant interaction of an ultracold two-level atom with an electromagnetic field inside a high-Q micromaser cavity. In particular, we study the tunneling and traversal of ultracold atoms through vacuum-induced potentials for secant hyperbolic square and sinusoidal cavity mode functions. The phase time which may be considered as an appropriate measure of the time required for the atoms to cross the cavity, significantly modifies with the change of cavity mode profile. For example, switching between the sub and superclassical behaviors in phase time can occur due to the mode function. Similarly, negative phase time appears for the transmission of the two-level atoms in both excited and ground states for secant hyperbolic square mode function which is in contrast to the mesa mode case.

  2. Characterizing individual scattering events by measuring the amplitude and phase of the electric field diffusing through a random medium.

    PubMed

    Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M

    2003-07-18

    We describe observations of the amplitude and phase of an electric field diffusing through a three-dimensional random medium, using terahertz time-domain spectroscopy. These measurements are spatially resolved with a resolution smaller than the speckle spot size and temporally resolved with a resolution better than one optical cycle. By computing correlation functions between fields measured at different positions and with different temporal delays, it is possible to obtain information about individual scattering events experienced by the diffusing field. This represents a new method for characterizing a multiply scattered wave.

  3. Resting Heart Rate Predicts Depression and Cognition Early after Ischemic Stroke: A Pilot Study.

    PubMed

    Tessier, Arnaud; Sibon, Igor; Poli, Mathilde; Audiffren, Michel; Allard, Michèle; Pfeuty, Micha

    2017-10-01

    Early detection of poststroke depression (PSD) and cognitive impairment (PSCI) remains challenging. It is well documented that the function of autonomic nervous system is associated with depression and cognition. However, their relationship has never been investigated in the early poststroke phase. This pilot study aimed at determining whether resting heart rate (HR) parameters measured in early poststroke phase (1) are associated with early-phase measures of depression and cognition and (2) could be used as new tools for early objective prediction of PSD or PSCI, which could be applicable to patients unable to answer usual questionnaires. Fifty-four patients with first-ever ischemic stroke, without cardiac arrhythmia, were assessed for resting HR and heart rate variability (HRV) within the first week after stroke and for depression and cognition during the first week and at 3 months after stroke. Multiple regression analyses controlled for age, gender, and stroke severity revealed that higher HR, lower HRV, and higher sympathovagal balance (low-frequency/high-frequency ratio of HRV) were associated with higher severity of depressive symptoms within the first week after stroke. Furthermore, higher sympathovagal balance in early phase predicted higher severity of depressive symptoms at the 3-month follow-up, whereas higher HR and lower HRV in early phase predicted lower global cognitive functioning at the 3-month follow-up. Resting HR measurements obtained in early poststroke phase could serve as an objective tool, applicable to patients unable to complete questionnaires, to help in the early prediction of PSD and PSCI. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Solving the inverse scattering problem in reflection-mode dynamic speckle-field phase microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhou, Renjie; So, Peter T. C.; Yaqoob, Zahid; Jin, Di; Hosseini, Poorya; Kuang, Cuifang; Singh, Vijay Raj; Kim, Yang-Hyo; Dasari, Ramachandra R.

    2017-02-01

    Most of the quantitative phase microscopy systems are unable to provide depth-resolved information for measuring complex biological structures. Optical diffraction tomography provides a non-trivial solution to it by 3D reconstructing the object with multiple measurements through different ways of realization. Previously, our lab developed a reflection-mode dynamic speckle-field phase microscopy (DSPM) technique, which can be used to perform depth resolved measurements in a single shot. Thus, this system is suitable for measuring dynamics in a layer of interest in the sample. DSPM can be also used for tomographic imaging, which promises to solve the long-existing "missing cone" problem in 3D imaging. However, the 3D imaging theory for this type of system has not been developed in the literature. Recently, we have developed an inverse scattering model to rigorously describe the imaging physics in DSPM. Our model is based on the diffraction tomography theory and the speckle statistics. Using our model, we first precisely calculated the defocus response and the depth resolution in our system. Then, we further calculated the 3D coherence transfer function to link the 3D object structural information with the axially scanned imaging data. From this transfer function, we found that in the reflection mode excellent sectioning effect exists in the low lateral spatial frequency region, thus allowing us to solve the "missing cone" problem. Currently, we are working on using this coherence transfer function to reconstruct layered structures and complex cells.

  5. Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks

    PubMed Central

    Nummenmaa, Lauri; Saarimäki, Heini; Glerean, Enrico; Gotsopoulos, Athanasios; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko

    2014-01-01

    Speech provides a powerful means for sharing emotions. Here we implement novel intersubject phase synchronization and whole-brain dynamic connectivity measures to show that networks of brain areas become synchronized across participants who are listening to emotional episodes in spoken narratives. Twenty participants' hemodynamic brain activity was measured with functional magnetic resonance imaging (fMRI) while they listened to 45-s narratives describing unpleasant, neutral, and pleasant events spoken in neutral voice. After scanning, participants listened to the narratives again and rated continuously their feelings of pleasantness–unpleasantness (valence) and of arousal–calmness. Instantaneous intersubject phase synchronization (ISPS) measures were computed to derive both multi-subject voxel-wise similarity measures of hemodynamic activity and inter-area functional dynamic connectivity (seed-based phase synchronization, SBPS). Valence and arousal time series were subsequently used to predict the ISPS and SBPS time series. High arousal was associated with increased ISPS in the auditory cortices and in Broca's area, and negative valence was associated with enhanced ISPS in the thalamus, anterior cingulate, lateral prefrontal, and orbitofrontal cortices. Negative valence affected functional connectivity of fronto-parietal, limbic (insula, cingulum) and fronto-opercular circuitries, and positive arousal affected the connectivity of the striatum, amygdala, thalamus, cerebellum, and dorsal frontal cortex. Positive valence and negative arousal had markedly smaller effects. We propose that high arousal synchronizes the listeners' sound-processing and speech-comprehension networks, whereas negative valence synchronizes circuitries supporting emotional and self-referential processing. PMID:25128711

  6. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    PubMed Central

    Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon

    2016-01-01

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567

  7. Design of a Phase /Doppler Light-Scattering System for Measurement of Small-Diameter Glass Fibers During Fiberglass Manufacturing

    NASA Astrophysics Data System (ADS)

    Schaub, Scott A.; Naqwi, Amir A.; Harding, Foster L.

    1998-01-01

    We present fundamental studies examining the design of a phase /Doppler laser light-scattering system applicable to on-line measurements of small-diameter ( <15 m) fibers during fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase /Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase -diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase /Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.

  8. Design of a phase/doppler light-scattering system for measurement of small-diameter glass fibers during fiberglass manufacturing.

    PubMed

    Schaub, S A; Naqwi, A A; Harding, F L

    1998-01-20

    We present fundamental studies examining the design of a phase/Doppler laser light-scattering system applicable to on-line measurements of small-diameter (<15 mum) fibers during fiberglass manufacturing. We first discuss off-line diameter measurement techniques currently used in the fiberglass industry and outline the limitations and problems associated with these methods. For the phase/Doppler design study we have developed a theoretical computer model for the response of the measurement system to cylindrical fibers, which is based on electromagnetic scattering theory. The model, valid for arbitrary fiber diameters and hardware configurations, generates simulated detector output as a function of time for a finite absorbing, cylindrical fiber oriented perpendicular to the two incident laser beams. Results of experimental measurements are presented, confirming predictions of the theoretical model. Parametric studies have also been conducted using the computer model to identify experimental arrangements that provide linear phase-diameter relationships for small-diameter fibers, within the measurement constraints imposed by the fiberglass production environment. The effect of variations in optical properties of the glass as well as fiber orientation effects are discussed. Through this research we have identified phase/Doppler arrangements that we expect to have future applications in the fiberglass industry for on-line diameter monitoring and process control.

  9. Ultra-wideband microwave photonic phase shifter with configurable amplitude response.

    PubMed

    Pagani, M; Marpaung, D; Eggleton, B J

    2014-10-15

    We introduce a new principle that enables separate control of the amplitude and phase of an optical carrier, simply by controlling the power of two stimulated Brillouin scattering (SBS) pumps. This technique is used to implement a microwave photonic phase shifter with record performance, which solves the bandwidth limitation of previous gain-transparent SBS-based phase shifters, while achieving unprecedented minimum power fluctuations, as a function of phase shift. We demonstrate 360° continuously tunable phase shift, with less than 0.25 dB output power fluctuations, over a frequency band from 1.5 to 31 GHz, limited only by the measurement equipment.

  10. Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal.

    PubMed

    Lavrič, Marta; Cordoyiannis, George; Kralj, Samo; Tzitzios, Vassilios; Nounesis, George; Kutnjak, Zdravko

    2013-08-01

    Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.

  11. Aerosols, light, and water: Measurements of aerosol optical properties at different relative humidities

    NASA Astrophysics Data System (ADS)

    Orozco, Daniel

    The Earth's atmosphere is composed of a large number of different gases as well as tiny suspended particles, both in solid and liquid state. These tiny particles, called atmospheric aerosols, have an immense impact on our health and on our global climate. Atmospheric aerosols influence the Earth's radiation budget both directly and indirectly. In the direct effect, aerosols scatter and absorb sunlight changing the radiative balance of the Earth-atmosphere system. Aerosols indirectly influence the Earth's radiation budget by modifying the microphysical and radiative properties of clouds as well as their water content and lifetime. In ambient conditions, aerosol particles experience hygroscopic growth due to the influence of relative humidity (RH), scattering more light than when the particles are dry. The quantitative knowledge of the RH effect and its influence on the light scattering coefficient and, in particular, on the phase function and polarization of aerosol particles is of substantial importance when comparing ground based observations with other optical aerosol measurements techniques such satellite and sunphotometric retrievals of aerosol optical depth and their inversions. This dissertation presents the aerosol hygroscopicity experiment investigated using a novel dryer-humidifier system, coupled to a TSI-3563 nephelometer, to obtain the light scattering coefficient (sp) as a function of relative humidity (RH) in hydration and dehydration modes. The measurements were performed in Porterville, CA (Jan 10-Feb 6, 2013), Baltimore, MD (Jul 3-30, 2013), and Golden, CO (Jul 12-Aug 10, 2014). Observations in Porterville and Golden were part of the NASA-sponsored DISCOVER-AQ project. The measured sp under varying RH in the three sites was combined with ground aerosol extinction, PM2:5mass concentrations, particle composition measurements, and compared with airborne observations performed during campaigns. The enhancement factor, f(RH), defined as the ratio of sp(RH) at a certain RH divided by sp at a dry value, was used to evaluate the aerosol hygroscopicity. Different empirical fits were evaluated using the f(RH) data. The widely used gamma model was found inappropriate, as it overestimates f(RH) for RH<75%. Abetter empirical fit with two power-law curve-fitting parameters c and k was found to replicate f(RH) accurately from the three sites. The relationship between the organic carbon mass (OMC) and the species that are affected by RH and f(RH) was also studied and categorized between the sites. A second experiment is reported where the first two elements of the scattering matrix of laboratory generated particles were studied under different humidity conditions. The non-spherical particles generated were ammonium sulfate, sodium chloride, and ammonium nitrate. The optical measurements were performed with a polarized imaging nephelometer (PI-Neph) installed in series with the humidifier dryer apparatus. The inorganic salts experienced low (80%) RH levels so that the observations could contrast the differences when the salts were crystallized (low RH) and when the particles turned to aqueous solutions after deliquesence (high RH). The measurements with the PI-Neph produce the aerosol phase function and the polarized phase function in a range of angles that go from 3 to 177. The results showed significant changes in the phase function and polarized phase function due to the hygroscopic growth. Although the inorganic salts used inthe experiments were non-spherical, the dry measurements were successfully reproduced with the Mie theory using literature values for the dry index of refraction. Moreover, the changes in the particle size distribution and index of refraction were evaluated through classic thermodynamic equilibrium theory producing comparable results with the simulations performed with Mie formalism. The final experiment consisted in the measurements of phase function and degree of linear polarization of ambient aerosols sampled in Baltimore, MD with the PI-Neph. This study was centered on specific case studies where different aerosol conditions were experienced such as clean, haze episode, and transported smoke event. The approach employed consisted of dry and humid observations of ambient aerosols to compare them with total column products by AERONET. A relatively low difference between the phase function and the degree of linear polarization was measured at high and low RH. The small difference found in the scattering elements and their retrievals is attributed to the general aerosol composition in the region. It was observed that a RH increase causes the particles to scatter more light uniformly over all the scattering angles, and also, that the water uptake did not change markedly the particle's polarization properties. The comparison between in-situ and total column derived observations were highly correlated for most of the cases. The size distribution retrievals from the in-situ measurements were very comparable to the size distributions reported by AERONET, but only for the fine modes.

  12. Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Makita, Shuichi; Yamanari, Masahiro; Lim, Yiheng; Yasuno, Yoshiaki

    2011-08-01

    A Monte-Carlo-based phase retardation estimator is developed to correct the systematic error in phase retardation measurement by polarization sensitive optical coherence tomography (PS-OCT). Recent research has revealed that the phase retardation measured by PS-OCT has a distribution that is neither symmetric nor centered at the true value. Hence, a standard mean estimator gives us erroneous estimations of phase retardation, and it degrades the performance of PS-OCT for quantitative assessment. In this paper, the noise property in phase retardation is investigated in detail by Monte-Carlo simulation and experiments. A distribution transform function is designed to eliminate the systematic error by using the result of the Monte-Carlo simulation. This distribution transformation is followed by a mean estimator. This process provides a significantly better estimation of phase retardation than a standard mean estimator. This method is validated both by numerical simulations and experiments. The application of this method to in vitro and in vivo biological samples is also demonstrated.

  13. Elicited and Spontaneous Communicative Functions and Stability of Conversational Measures with Children Who Have Pragmatic Language Impairments

    ERIC Educational Resources Information Center

    Adams, Catherine; Lloyd, Julian

    2005-01-01

    Background: The preliminary phase of a project aimed at establishing appropriate outcome measures for intervention with children who have pragmatic language impairments (PLI) is reported. Assessment methods for children with PLI are considered in the context of developing outcome measures for intervention studies. Communicative function…

  14. Multispectral photoacoustic method for the early detection and diagnosis of osteoporosis

    NASA Astrophysics Data System (ADS)

    Steinberg, Idan; Eyal, Avishay; Gannot, Israel

    2013-03-01

    Osteoporosis is a major health problem worldwide, with healthcare costs of billions of dollars annually. The risk of fracture depends on the bone mineral density (measured in clinical practice) as well as on the bone microstructure and functional status. Since pure ultrasonic methods can measure bone strength and spectroscopic optical methods can provide valuable functional information, a hybrid multispectral photoacoustic technique can be of great value. We have developed such a system based on a tunable Ti:Sapph laser at 750 - 950 nm, followed by an acousto-optic modulator to generate photoacoustic signals with frequencies of 0.5 - 2.5 MHz. Another system was based on two directly modulated 830nm laser diodes. The systems were used to photoacoustically excite the proximal end of a rat tibia. Spectrum analyzer with tracking generator was used for measuring both the amplitude and the phase at the distal end. Scanning along both the optical wavelength as well as the acoustic frequency enables full mapping of the bone transfer function. Analyzing this function along the wavelength axis allows deducing the gross biochemical composition related to the bone functional and pathological state. Analyzing the amplitude and phase along the acoustic frequency axis yields the speed of sound dispersion and the broadband ultrasonic attenuation - both have shown clinical relevance.

  15. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    PubMed

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  16. Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agosta, Charles C.; Fortune, Nathanael A.; Hannahs, Scott T.

    We report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor. kappa-(BEDT-TTF)(2) Cu(NCS)(2) as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit Hp is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays themore » bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave ordering in the high-field superconducting phase. The phase diagram determined from our measurements-including the observation of a phase transition into the FFLO phase at Hp-is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments but is in disagreement with the only previous calorimetric report.« less

  17. SHARED, NOT UNIQUE, COMPONENTS OF PERSONALITY AND PSYCHOSOCIAL FUNCTIONING PREDICT DEPRESSION SEVERITY AFTER ACUTE-PHASE COGNITIVE THERAPY

    PubMed Central

    Clark, Lee Anna; Vittengl, Jeffrey R.; Kraft, Dolores; Jarrett, Robin B.

    2005-01-01

    In a sample of 100 patients with recurrent major depression, we collected depression severity data early and late in acute-phase cognitive therapy, plus a wide range of psychosocial variables that have been studied extensively in depression research, including measures of interpersonal, cognitive, and social functioning, and personality traits using an inventory that is linked with the Big-Three tradition in personality assessment theory. By assessing this broad range of variables in a single study, we could examine the extent to which relations of these variables with depression were due to (a) a common factor shared across this diverse set of constructs, (b) factors shared among each type of construct (personality vs. psychosocial measures), or (c) specific aspects of the individual measures. Only the most general factor shared across the personality and psychosocial variables predicted later depression. PMID:14632375

  18. Delta Ori Phase-Dependent Variability from Chandra and MOST Campaign

    NASA Astrophysics Data System (ADS)

    Nichols, Joy; Naze, Yael; Moffatt, Anthony F. J.; Corcoran, Michael; Richardson, Noel; Williams, S.; Pollock, A. M. T.; Ignace, Richard; Hole, T.; Waldron, W.; Evans, Nancy Remage; MOST Collaboration

    2013-06-01

    We report preliminary results from variability analysis of delta Ori in Chandra high-resolution X-ray spectroscopy and concurrent MOST high-precision optical photometry. With nearly complete phase coverage of the 5-day eclipsing binary orbit, it is possible to measure directly radial velocity and flux variations as a function of phase, leading to a mapping of the stellar wind distribution for the massive primary star. The phase dependence of the X-ray overall intensity and the comparative behavior of the emission lines are also presented.

  19. Effect of polydispersity, bimodality, and aspect ratio on the phase behavior of colloidal platelet suspensions

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Velasco, Enrique

    2012-10-01

    We use a fundamental-measure density functional for hard board-like polydisperse particles, in the restricted-orientation approximation, to explain the phase behaviour of platelet colloidal suspensions studied in recent experiments. In particular, we focus our attention on the behavior of the total packing fraction of the mixture, η, in the region of two-phase isotropic-nematic coexistence as a function of mean aspect ratio, polydispersity, and fraction of total volume γ occupied by the nematic phase. In our model, platelets are polydisperse in the square section, of side length σ, but have constant thickness L (and aspect ratio κ ≡ L/⟨σ⟩ < 1, with ⟨σ⟩ the mean side length). Good agreement between our theory and recent experiments is obtained by mapping the real system onto an effective one, with excluded volume interactions but with thicker particles (due to the presence of long-ranged repulsive interactions between platelets). The effect of polydispersity in both shape and particle size has been taken into account by using a size distribution function with an effective mean-square deviation that depends on both polydispersities. We also show that the bimodality of the size distribution function is required to correctly describe the huge two-phase coexistence gap and the nonlinearity of the function γ(η), two important features that these colloidal suspensions exhibit.

  20. Conductivity of an inverse lyotropic lamellar phase under shear flow

    NASA Astrophysics Data System (ADS)

    Panizza, P.; Soubiran, L.; Coulon, C.; Roux, D.

    2001-08-01

    We report conductivity measurements on solutions of closed compact monodisperse multilamellar vesicles (the so-called ``onion texture'') formed by shearing an inverse lyotropic lamellar Lα phase. The conductivity measured in different directions as a function of the applied shear rate reveals a small anisotropy of the onion structure due to the existence of free oriented membranes. The results are analyzed in terms of a simple model that allows one to deduce the conductivity tensor of the Lα phase itself and the proportion of free oriented membranes. The variation of these two parameters is measured along a dilution line and discussed. The high value of the conductivity perpendicular to the layers with respect to that of solvent suggests the existence of a mechanism of ionic transport through the insulating solvent.

  1. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Weber, T.; Bartl, P.; Durst, J.; Haas, W.; Michel, T.; Ritter, A.; Anton, G.

    2011-08-01

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary.With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases.These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool “SPHINX”, combining both wave and particle contributions of the simulated photons.The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant.Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements.This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  2. Influence of ignition process on mineral phase transformation in municipal solid waste incineration (MSWI) fly ash: Implications for estimating loss-on-ignition (LOI).

    PubMed

    Mu, Yue; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2017-01-01

    This research focused on the mineral phase transformation under varied ignition conditions with the objective of estimating loss-on-ignition (LOI) parameter in municipal solid waste incineration (MSWI) fly ash residues. LOI is commonly used to measure the volatile species, unburned carbon and moisture in the solid materials. There are criteria for LOI measurement in some research fields, while there is no standard protocol for LOI measurement in MSWI fly ash. Using thermogravimetry technique, the ignition condition candidates were proposed at 440/700/900°C for 1 and 2h. Based on X-ray diffractometry results, obvious mineral phase transformation occurred as a function of ignition temperature variation rather than ignition time. Until 440°C, only some minor phases disappeared comparing with the original state. Significant mineral phase transformations of major phases (Ca- and Cl-based minerals) occurred between 440 and 700°C. The mineral phase transformation and the occurrence of newly-formed phases were determined not only by the ignition condition but also by the content of the co-existing components. Mineral phase components rarely changed when ignition temperature rose from 700 to 900°C. Consequently, in order to prevent critical damages to the original mineralogical composition of fly ash, the lowest ignition temperature (440°C) for 2h was suggested as an ideal measurement condition of LOI in MSWI fly ash. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Investigating mechanically induced phase response of the tissue by using high-speed phase-resolved optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ling, Yuye; Hendon, Christine P.

    2017-02-01

    Phase-resolved optical coherence tomography (OCT), a functional extension of OCT, provides depth-resolved phase information with extra contrast. In cardiology, changes in the mechanical properties have been associated with tissue remodeling and disease progression. Here we present the capability of profiling structural deformation of the sample in vivo by using a highly stable swept source OCT system The system, operating at 1300 nm, has an A-line acquisition rate of 200 kHz. We measured the phase noise floor to be 6.5 pm±3.2 pm by placing a cover slip in the sample arm, while blocking the reference arm. We then conducted a vibrational frequency test by measuring the phase response from a polymer membrane stimulated by a pure tone acoustic wave from 10 kHz to 80 kHz. The measured frequency response agreed with the known stimulation frequency with an error < 0.005%. We further measured the phase response of 7 fresh swine hearts obtained from Green Village Packing Company through a mechanical stretching test, within 24 hours of sacrifice. The heart tissue was cut into a 1 mm slices and fixed on two motorized stages. We acquired 100,000 consecutive M-scans, while the sample is stretched at a constant velocity of 10 um/s. The depth-resolved phase image presents linear phase response over time at each depth, but the slope varies among tissue types. Our future work includes refining our experiment protocol to quantitatively measured the elastic modulus of the tissue in vivo and building a tissue classifier based on depth-resolved phase information.

  4. Phase diagram of Ba 2 NaOsO 6, a Mott insulator with strong spin orbit interactions

    NASA Astrophysics Data System (ADS)

    Liu, W.; Cong, R.; Garcia, E.; Reyes, A. P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2018-05-01

    We report 23Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba2NaOsO6 as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in Lu et al. (2017) [1]. We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.

  5. Anisotropic phase diagram and spin fluctuations of the hyperkagome magnet Gd3Ga5O12 as revealed by sound velocity measurements

    NASA Astrophysics Data System (ADS)

    Rousseau, Alexandre; Parent, Jean-Michel; Quilliam, Jeffrey A.

    2017-08-01

    Sound velocity and attenuation measurements on the frustrated garnet material Gd3Ga5O12 (GGG) are presented as a function of field and temperature, with two different magnetic field orientations: [100 ] and [110 ] . We demonstrate that the phase diagram is highly anisotropic, with two distinct field-induced ordered phases for H ||[110 ] and only one for H ||[100 ] . Extensive lattice softening is found to occur at low fields, which can be associated with spin fluctuations. However, deep within the spin liquid phase a low-temperature stiffening of the lattice and reduced attenuation provide evidence for a spin gap which may be related to short-range antiferromagnetic correlations over minimal ten-spin loops.

  6. Inferring phase equations from multivariate time series.

    PubMed

    Tokuda, Isao T; Jain, Swati; Kiss, István Z; Hudson, John L

    2007-08-10

    An approach is presented for extracting phase equations from multivariate time series data recorded from a network of weakly coupled limit cycle oscillators. Our aim is to estimate important properties of the phase equations including natural frequencies and interaction functions between the oscillators. Our approach requires the measurement of an experimental observable of the oscillators; in contrast with previous methods it does not require measurements in isolated single or two-oscillator setups. This noninvasive technique can be advantageous in biological systems, where extraction of few oscillators may be a difficult task. The method is most efficient when data are taken from the nonsynchronized regime. Applicability to experimental systems is demonstrated by using a network of electrochemical oscillators; the obtained phase model is utilized to predict the synchronization diagram of the system.

  7. Adaptive focusing of laser radiation onto a rough reflecting surface through the turbulent and nonlinear atmosphere

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy V.

    2004-12-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual coherence function (MCF) for the backscattered (returned) wave. The resulting evolution equation for the MCF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  8. Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeri V.

    2004-10-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.

  9. Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions.

    PubMed

    Reichardt, J; Hess, M; Macke, A

    2000-04-20

    Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.

  10. Mirror neuron function, psychosis, and empathy in schizophrenia

    PubMed Central

    McCormick, Laurie M.; Brumm, Michael C.; Beadle, Janelle N.; Paradiso, Sergio; Yamada, Thoru; Andreasen, Nancy

    2013-01-01

    Processing of social and emotional information has been shown to be disturbed in schizophrenia. The biological underpinnings of these abnormalities may be explained by an abnormally functioning mirror neuron system. Yet the relationship between mirror neuron system activity in schizophrenia, as measured using an electroencephalography (EEG) paradigm, and socio-emotional functioning has not been assessed. The present research measured empathy and mirror neuron activity using an established EEG paradigm assessing the integrity of the Mu rhythm (8–13 Hz) suppression over the sensorimotor cortex during observed and actual hand movement in 16 schizophrenia-spectrum disorder (SSD) participants (n=8 actively psychotic and n=8 in residual illness phase) and 16 age- and gender-matched healthy comparison participants. Actively psychotic SSD participants showed significantly greater mu suppression over the sensorimotor cortex of the left hemisphere than residual phase SSD and healthy comparison individuals. The latter two groups showed similar levels of mu suppression. Greater left-sided mu suppression was positively correlated with psychotic symptoms (i.e., greater mu suppression/mirror neuron activity was highest among subjects with the greater severity of psychotic symptoms). SSD subjects tended to have significantly higher levels of Personal Distress (as measured by the Interpersonal Reactivity Index) than healthy participants. The present study suggests that abnormal mirror neuron activity may exist among patients with schizophrenia during the active (psychotic) phase of the illness, and correlates with severity of psychosis. PMID:22510432

  11. NMR spin-rotation relaxation and diffusion of methane

    NASA Astrophysics Data System (ADS)

    Singer, P. M.; Asthagiri, D.; Chapman, W. G.; Hirasaki, G. J.

    2018-05-01

    The translational diffusion-coefficient and the spin-rotation contribution to the 1H NMR relaxation rate for methane (CH4) are investigated using MD (molecular dynamics) simulations, over a wide range of densities and temperatures, spanning the liquid, supercritical, and gas phases. The simulated diffusion-coefficients agree well with measurements, without any adjustable parameters in the interpretation of the simulations. A minimization technique is developed to compute the angular velocity for non-rigid spherical molecules, which is used to simulate the autocorrelation function for spin-rotation interactions. With increasing diffusivity, the autocorrelation function shows increasing deviations from the single-exponential decay predicted by the Langevin theory for rigid spheres, and the deviations are quantified using inverse Laplace transforms. The 1H spin-rotation relaxation rate derived from the autocorrelation function using the "kinetic model" agrees well with measurements in the supercritical/gas phase, while the relaxation rate derived using the "diffusion model" agrees well with measurements in the liquid phase. 1H spin-rotation relaxation is shown to dominate over the MD-simulated 1H-1H dipole-dipole relaxation at high diffusivity, while the opposite is found at low diffusivity. At high diffusivity, the simulated spin-rotation correlation time agrees with the kinetic collision time for gases, which is used to derive a new expression for 1H spin-rotation relaxation, without any adjustable parameters.

  12. Multi-functional surface acoustic wave sensor for monitoring enviromental and structural condition

    NASA Astrophysics Data System (ADS)

    Furuya, Y.; Kon, T.; Okazaki, T.; Saigusa, Y.; Nomura, T.

    2006-03-01

    As a first step to develop a health monitoring system with active and embedded nondestructive evaluation devices for the machineries and structures, multi-functional SAW (surface acoustic wave) device was developed. A piezoelectric LiNbO3(x-y cut) materials were used as a SAW substrate on which IDT(20μm pitch) was produced by lithography. On the surface of a path of SAW between IDTs, environmentally active material films of shape memory Ti50Ni41Cu(at%) with non-linear hysteresis and superelastic Ti48Ni43Cu(at%) with linear deformation behavior were formed by magnetron-sputtering technique. In this study, these two kinds of shape memory alloys SMA) system were used to measure 1) loading level, 2) phase transformation and 3)stress-strain hysteresis under cyclic loading by utilizing their linearity and non-linearity deformation behaviors. Temperature and stress dependencies of SAW signal were also investigated in the non-sputtered film state. Signal amplitude and phase change of SAW were chosen to measure as the sensing parameters. As a result, temperature, stress level, phase transformation in SMA depending on temperature and mechanical damage accumulation could be measured by the proposed multi-functional SAW sensor. Moreover, the wireless SAW sensing system which has a unique feature of no supplying electric battery was constructed, and the same characteristic evaluation is confirmed in comparison with wired case.

  13. Menstrual cycle-related changes in circulating androgens in healthy women with self-reported normal sexual function.

    PubMed

    Salonia, Andrea; Pontillo, Marina; Nappi, Rossella E; Zanni, Giuseppe; Fabbri, Fabio; Scavini, Marina; Daverio, Rita; Gallina, Andrea; Rigatti, Patrizio; Bosi, Emanuele; Bonini, Pier Angelo; Montorsi, Francesco

    2008-04-01

    There is currently neither a clinically useful, reliable and inexpensive assay to measure circulating levels of free testosterone (T) in the range observed in women, nor is there agreement on the serum free T threshold defining hypoandrogenism that is associated with female-impaired sexual function. Following the Clinical and Laboratory Standards Institute guidelines, we generated clinically applicable ranges for circulating androgens during specific phases of the menstrual cycle in a convenience sample of 120 reproductive-aged, regularly cycling healthy European Caucasian women with self-reported normal sexual function. All participants were asked to complete a semistructured interview and fill out a set of validated questionnaires, including the Female Sexual Function Index, the Female Sexual Distress Scale, and the 21-item Beck's Inventory for Depression. Between 8 am and 10 am, a venous blood sample was drawn from each participant during the midfollicular (day 5 to 8), the ovulatory (day 13 to 15), and the midluteal phase (day 19 to 22) of the same menstrual cycle. Serum levels of total and free testosterone, Delta(4)-androstenedione, dehydroepiandrosterone sulphate and sex hormone-binding globulin during the midfollicular, ovulatory and midluteal phase of the same menstrual cycle. Total and free T levels showed significant fluctuations, peaking during the ovulatory phase. No significant variation during the menstrual cycle were observed for Delta(4)-androstenedione and dehydroepiandrosterone sulphate. Despite the careful selection of participants that yielded an homogeneous group of women without sexual disorders, we observed a wide range of distribution for each of the circulating androgens measured in this study. This report provides clinically applicable ranges for androgens throughout the menstrual cycle in reproductive-aged, regularly cycling, young healthy Caucasian European women with self-reported normal sexual function.

  14. Some computational techniques for estimating human operator describing functions

    NASA Technical Reports Server (NTRS)

    Levison, W. H.

    1986-01-01

    Computational procedures for improving the reliability of human operator describing functions are described. Special attention is given to the estimation of standard errors associated with mean operator gain and phase shift as computed from an ensemble of experimental trials. This analysis pertains to experiments using sum-of-sines forcing functions. Both open-loop and closed-loop measurement environments are considered.

  15. Spectrum analysis of radar life signal in the three kinds of theoretical models

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Ma, J. F.; Wang, D.

    2017-02-01

    In the single frequency continuous wave radar life detection system, based on the Doppler effect, the theory model of radar life signal is expressed by the real function, and there is a phenomenon that can't be confirmed by the experiment. When the phase generated by the distance between the measured object and the radar measuring head is л of integer times, the main frequency spectrum of life signal (respiration and heartbeat) is not existed in radar life signal. If this phase is л/2 of odd times, the main frequency spectrum of breath and heartbeat frequency is the strongest. In this paper, we use the Doppler effect as the basic theory, using three different mathematical expressions——real function, complex exponential function and Bessel's function expansion form. They are used to establish the theoretical model of radar life signal. Simulation analysis revealed that the Bessel expansion form theoretical model solve the problem of real function form. Compared with the theoretical model of the complex exponential function, the derived spectral line is greatly reduced in the theoretical model of Bessel expansion form, which is more consistent with the actual situation.

  16. Novel bone metabolism-associated hormones: the importance of the pre-analytical phase for understanding their physiological roles.

    PubMed

    Lombardi, Giovanni; Barbaro, Mosè; Locatelli, Massimo; Banfi, Giuseppe

    2017-06-01

    The endocrine function of bone is now a recognized feature of this tissue. Bone-derived hormones that modulate whole-body homeostasis, are being discovered as for the effects on bone of novel and classic hormones produced by other tissues become known. Often, however, the data regarding these last generation bone-derived or bone-targeting hormones do not give about a clear picture of their physiological roles or concentration ranges. A certain degree of uncertainty could stem from differences in the pre-analytical management of biological samples. The pre-analytical phase comprises a series of decisions and actions (i.e., choice of sample matrix, methods of collection, transportation, treatment and storage) preceding analysis. Errors arising in this phase will inevitably be carried over to the analytical phase where they can reduce the measurement accuracy, ultimately, leading discrepant results. While the pre-analytical phase is all important, in routine laboratory medicine, it is often not given due consideration in research and clinical trials. This is particularly true for novel molecules, such as the hormones regulating the endocrine function of bone. In this review we discuss the importance of the pre-analytical variables affecting the measurement of last generation bone-associated hormones and describe their, often debated and rarely clear physiological roles.

  17. Observations of the Space-time Structure of Flow, Vorticity and Stress over Orbital-scale Ripples

    NASA Astrophysics Data System (ADS)

    Hare, J.; Hay, A. E.; Cheel, R. A.; Zedel, L. J.

    2012-12-01

    Results are presented from a laboratory investigation of the spatial and temporal structure at turbulence-resolving scales of the flow, vorticity and stress over equilibrium orbital-scale sand ripples. The ripples were created in 0.153 mm median diameter sand, at 10 s period and an excursion of 0.5 m, using the oscillating tray apparatus described in Hay et al. (JGR-Oceans, 2012). Vertical profiles of velocity above the bed were obtained at 40 Hz and 3 mm vertical resolution using a wide-band coherent Doppler profiler (MFDop). Through runs at different positions of the MFDop relative to a particular ripple crest, phase-averaged measures of the flow over a full ripple wavelength were obtained as a function of phase during the forcing cycle. These measurements are used to determine the formation of the lee vortex and the position of the point of reattachment. Estimates of the phase-averaged bottom stress (obtained using the vertical integral of the defect acceleration, the Reynolds stress and the law-of-the-wall) as a function of position along the ripple profile are inter-compared.Phase-averaged horizontal velocity over one ripple where the black line indicates the sediment-water interface. Phase-averaged vertical velocity over one ripple where the black line indicates the sediment-water interface.

  18. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Rodriguez, Sebastien; Sotin, Christophe; Rannou, Pascal; Bezard, Bruno; Cornet, Thomas

    2016-06-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008). Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 µm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°. We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different phase function with respect to what they propose must be employed, especially in the trend towards the backscattering peak. We also find that darker aerosols are needed in order to reproduce the value of the column opacity measured in-situ by Huygens.

  19. A new description of Titan's aerosol optical properties from the analysis of VIMS Emission Phase Function observations

    NASA Astrophysics Data System (ADS)

    Rodriguez, Sebastien; Maltagliati, Luca; Sotin, Christophe; Rannou, Pascal; Bézard, Bruno; Cornet, Thomas

    2016-10-01

    The Huygens probe gave unprecedented information on the properties of Titan's aerosols (vertical distribution, opacity as a function of wavelength, phase function, single scattering albedo) by in-situ measurements (Tomasko et al. 2008). Being the only existing in-situ atmospheric probing for Titan, this aerosol model currently is the reference for many Titan studies (e.g. by being applied as physical input in radiative transfer models of the atmosphere). Recently a reanalysis of the DISR dataset, corroborated by data from the Downward-Looking Visible Spectrometer (DLVS), was carried out by the same group (Doose et al. 2016), leading to significant changes to the indications given by Tomasko et al. (2008).Here we present the analysis of the Emission Phase Function observation (EPF) performed by VIMS during the Cassini flyby T88 (November 2012). An EPF observes the same spot on the surface (and thus the same atmosphere) with the same emergence angle but with different incidence angles. In this way, our EPF allows, for the first time, to have direct information on the phase function of Titan's aerosols, as well as on other important physical parameters of the aerosols as the behavior of their extinction as a function of wavelength and the single scattering albedo (also as a function of wavelength) for the whole VIMS range (0.8-5.2 μm). The T88 EPF is composed of 25 VIMS datacubes spanning a scattering angle range approximately from 0°to 70°.We used the radiative transfer model described in Hirtzig et al. (2013) as baseline, updated with improved methane (+ related isotopes) spectroscopy. By changing the aerosol description in the model, we found the combination of aerosol optical parameters that fits best a constant aerosol column density over the whole set of the VIMS datacubes. We confirmed that the new results from Doose et al. (2016) do improve the fit for what concerns the vertical profile and the extinction as a function of wavelength. However, a different phase function with respect to what they propose must be employed, especially in the trend towards the backscattering peak. We also find that darker aerosols are needed in order to reproduce the value of the column opacity measured in-situ by Huygens.

  20. Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.; Suttles, J. T.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.

  1. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium.

    PubMed

    Yura, H T; Thrane, L; Andersen, P E

    2000-12-01

    Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.

  2. Probing exoplanet clouds with optical phase curves

    PubMed Central

    Muñoz, Antonio García; Isaak, Kate G.

    2015-01-01

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve—from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4–0.5. PMID:26489652

  3. New concept of the contraction-extension property of the left ventricular myocardium.

    PubMed

    Tanaka, Motonao; Sakamoto, Tsuguya; Sugawara, Shigeo; Katahira, Yoshiaki; Tabuchi, Haruna; Nakajima, Hiroyuki; Kurokawa, Takafumi; Kanai, Hiroshi; Hasegawa, Hideyuki; Ohtsuki, Shigeo

    2014-04-01

    Using newly developed ultrasonic technology, we attempted to disclose the characteristics of the left ventricular (LV) contraction-extension (C-E) property, which has an important relationship to LV function. Strain rate (SR) distribution within the posterior wall and interventricular septum was microscopically measured with a high accuracy of 821μm in spatial resolution by using the phase difference tracking method. The subjects were 10 healthy men (aged 30-50 years). The time course of the SR distribution disclosed the characteristic C-E property, i.e. the contraction started from the apex and propagated toward the base on one hand, and from the epicardial side toward the endocardial side on the other hand. Therefore, the contraction of one area and the extension of another area simultaneously appeared through nearly the whole cardiac cycle, with the contracting part positively extending the latter part and vice versa. The time course of these propagations gave rise to the peristalsis and the bellows action of the LV wall, and both contributed to effective LV function. The LV contraction started coinciding in time with the P wave of the electrocardiogram, and the cardiac cycle was composed of 4 phases, including 2 types of transitional phase, as well as the ejection phase and slow filling phase. The sum of the measurement time duration of either the contraction or the extension process occupied nearly equal duration in normal conditions. The newly developed ultrasonic technology revealed that the SR distribution was important in evaluating the C-E property of the LV myocardium. The harmonious succession of the 4 cardiac phases newly identified seemed to be helpful in understanding the mechanism to keep long-lasting pump function of the LV. Copyright © 2013 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  4. Gas-Phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors.

    PubMed

    Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia

    2018-02-14

    The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.

  5. Acoustic and Perceptual Effects of Left–Right Laryngeal Asymmetries Based on Computational Modeling

    PubMed Central

    Samlan, Robin A.; Story, Brad H.; Lotto, Andrew J.; Bunton, Kate

    2015-01-01

    Purpose Computational modeling was used to examine the consequences of 5 different laryngeal asymmetries on acoustic and perceptual measures of vocal function. Method A kinematic vocal fold model was used to impose 5 laryngeal asymmetries: adduction, edge bulging, nodal point ratio, amplitude of vibration, and starting phase. Thirty /a/ and /I/ vowels were generated for each asymmetry and analyzed acoustically using cepstral peak prominence (CPP), harmonics-to-noise ratio (HNR), and 3 measures of spectral slope (H1*-H2*, B0-B1, and B0-B2). Twenty listeners rated voice quality for a subset of the productions. Results Increasingly asymmetric adduction, bulging, and nodal point ratio explained significant variance in perceptual rating (R2 = .05, p < .001). The same factors resulted in generally decreasing CPP, HNR, and B0-B2 and in increasing B0-B1. Of the acoustic measures, only CPP explained significant variance in perceived quality (R2 = .14, p < .001). Increasingly asymmetric amplitude of vibration or starting phase minimally altered vocal function or voice quality. Conclusion Asymmetries of adduction, bulging, and nodal point ratio drove acoustic measures and perception in the current study, whereas asymmetric amplitude of vibration and starting phase demonstrated minimal influence on the acoustic signal or voice quality. PMID:24845730

  6. Monitoring and analysis of thermal deformation waves with a high-speed phase measurement system.

    PubMed

    Taylor, Lucas; Talghader, Joseph

    2015-10-20

    Thermal effects in optical substrates are vitally important in determining laser damage resistance in long-pulse and continuous-wave laser systems. Thermal deformation waves in a soda-lime-silica glass substrate have been measured using high-speed interferometry during a series of laser pulses incident on the surface. Two-dimensional images of the thermal waves were captured at a rate of up to six frames per thermal event using a quantitative phase measurement method. The system comprised a Mach-Zehnder interferometer, along with a high-speed camera capable of up to 20,000 frames-per-second. The sample was placed in the interferometer and irradiated with 100 ns, 2 kHz Q-switched pulses from a high-power Nd:YAG laser operating at 1064 nm. Phase measurements were converted to temperature using known values of thermal expansion and temperature-dependent refractive index for glass. The thermal decay at the center of the thermal wave was fit to a function derived from first principles with excellent agreement. Additionally, the spread of the thermal distribution over time was fit to the same function. Both the temporal decay fit and the spatial fit produced a thermal diffusivity of 5×10-7  m2/s.

  7. Major Depressive Disorder in recovery and neuropsychological functioning: effects of selective serotonin reuptake inhibitor and dual inhibitor depression treatments on residual cognitive deficits in patients with Major Depressive Disorder in recovery.

    PubMed

    Herrera-Guzmán, Ixchel; Gudayol-Ferré, Esteve; Herrera-Abarca, Jorge E; Herrera-Guzmán, Daniel; Montelongo-Pedraza, Pedro; Padrós Blázquez, Ferran; Peró-Cebollero, Maribel; Guàrdia-Olmos, Joan

    2010-06-01

    Cognitive disturbances in Major Depressive Disorder (MDD) could persist beyond the symptomatic phase of the illness. However, the works addressing this topic did not usually account for the possible impact of medication on the cognitive functions of depressed patients. The present study aims to investigate whether MDD patients in remission treated with selective serotonin reuptake inhibitors (SSRI) or dual serotonergic-noradrenergic reuptake inhibitors (SNRI) show cognitive deficits, to study whether the same patients suffer neuropsychological disturbances when they are unmedicated and in recovery phase, and if the previous pharmacological treatment used to achieve the remission of MDD clinical symptoms had any effect in the profile of these patients' cognitive performance in the recovery phase. Thirty-six subjects with MDD treated with escitalopram and 37 depressed patients with duloxetine were compared both in remission phase and 24 weeks later, when they were unmedicated and in recovery phase. They were also compared, in both moments, to 37 healthy subjects. The control subjects showed a broader better cognitive performance than MDD patients in both measurement moments, but several cognitive functions improved over time. Also, the patients treated with SNRI performed better in memory tests than the SNRI-treated patients in remission phase, and in recovery phase. Our sample size is somewhat small, and we followed our patients only for 6months after treatment. Cognitive functions improve over time in patients with MDD beyond the remission phase, and the antidepressant treatment class used in acute depressive phase could influence his/her memory improvement. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOEpatents

    Beller, Laurence S.

    1993-01-01

    A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  9. Phase measurement error in summation of electron holography series.

    PubMed

    McLeod, Robert A; Bergen, Michael; Malac, Marek

    2014-06-01

    Off-axis electron holography is a method for the transmission electron microscope (TEM) that measures the electric and magnetic properties of a specimen. The electrostatic and magnetic potentials modulate the electron wavefront phase. The error in measurement of the phase therefore determines the smallest observable changes in electric and magnetic properties. Here we explore the summation of a hologram series to reduce the phase error and thereby improve the sensitivity of electron holography. Summation of hologram series requires independent registration and correction of image drift and phase wavefront drift, the consequences of which are discussed. Optimization of the electro-optical configuration of the TEM for the double biprism configuration is examined. An analytical model of image and phase drift, composed of a combination of linear drift and Brownian random-walk, is derived and experimentally verified. The accuracy of image registration via cross-correlation and phase registration is characterized by simulated hologram series. The model of series summation errors allows the optimization of phase error as a function of exposure time and fringe carrier frequency for a target spatial resolution. An experimental example of hologram series summation is provided on WS2 fullerenes. A metric is provided to measure the object phase error from experimental results and compared to analytical predictions. The ultimate experimental object root-mean-square phase error is 0.006 rad (2π/1050) at a spatial resolution less than 0.615 nm and a total exposure time of 900 s. The ultimate phase error in vacuum adjacent to the specimen is 0.0037 rad (2π/1700). The analytical prediction of phase error differs with the experimental metrics by +7% inside the object and -5% in the vacuum, indicating that the model can provide reliable quantitative predictions. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  10. Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces

    DOE PAGES

    Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish; ...

    2018-02-09

    Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less

  11. Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish

    Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less

  12. Schottky Noise and Beam Transfer Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaskiewicz, M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  13. Effects of a finite outer scale on the measurement of atmospheric-turbulence statistics with a Hartmann wave-front sensor.

    PubMed

    Feng, Shen; Wenhan, Jiang

    2002-06-10

    Phase-structure and aperture-averaged slope-correlated functions with a finite outer scale are derived based on the Taylor hypothesis and a generalized spectrum, such as the von Kármán modal. The effects of the finite outer scale on measuring and determining the character of atmospheric-turbulence statistics are shown especially for an approximately 4-m class telescope and subaperture. The phase structure function and atmospheric coherent length based on the Kolmogorov model are approximations of the formalism we have derived. The analysis shows that it cannot be determined whether the deviation from the power-law parameter of Kolmogorov turbulence is caused by real variations of the spectrum or by the effect of the finite outer scale.

  14. Apollo 11 and 16 Soil Bi-directional Solar Reflectance Measurements, Models and LRO Diviner Observations

    NASA Astrophysics Data System (ADS)

    Foote, E. J.; Paige, D. A.; Shepard, M. K.; Johnson, J. R.; Biggar, S. F.; Greenhagen, B. T.; Allen, C.

    2010-12-01

    We have compared laboratory solar reflectance measurements of Apollo 11 and 16 soil samples to Lunar Reconnaissance Orbiter (LRO) Diviner orbital albedo measurements at the Apollo landing sites. The soil samples are two representative end member samples from the moon, low albedo lunar maria (sample 10084) and high albedo lunar highlands (sample 68810). Bidirectional reflectance distribution function (BRDF) measurements of the soil samples were conducted at Bloomsburg University (BUG) and at the University of Arizona [1,2]. We collected two different types of BUG datasets: a standard set of BRDF measurements at incidence angles of 0-60°, emission angles of 0-80°, and phase angles of 3-140°, and a high-incidence angle set of measurements along and perpendicular to the principal plane at incidence angles of 0-75° and phase angles of 3-155°. The BUG measurements generated a total of 765 data points in four different filters 450, 550, 750 and 950 nm. The Blacklab measurements were acquired at incidence angles of 60-88°, emission angles 60-82°, and phase angles of 17-93° at wavelengths of 455, 554, 699, 949nm. The BUG data were fit to two BRDF models: Hapke’s model [3] as described by Johnson et al, 2010 [4], and a simplified empirical function. The fact that both approaches can satisfactorily fit the BUG data is not unexpected, given the similarities between the functions and their input parameters, and the fact that the BRDF for dark lunar soil is dominated by the single scattering phase functions of the individual soil particles. To compare our lunar sample measurements with LRO Diviner data [5], we selected all daytime observations acquired during the first year of operation within 3 km square boxes centered at the landing sites. We compared Diviner Channel 1 (0.3 - 3 µm) Lambert albedos with model calculated Lambert albedos of the lunar samples at the same photometric angles. In general, we found good agreement between the laboratory and Diviner measurements, particularly at intermediate incidence angles. We are currently reconciling any differences observed between our two datasets to provide mutual validation, and to better understand the Diviner solar reflectance measurements in terms of lunar regolith properties. [1] Shepard, M.K., Solar System Remote Sensing Symposium, #4004, LPI, 2002; [2] Biggar, S.F. et al, Proc. Soc. Photo-Opt. Instrum. Eng. 924:232-240, 1988; [3] Hapke, B. Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, 1993; [4] Johnson J.R. et al, Fall AGU 2010; [5] Paige, D.A. et al, Space Science Reviews, 150:125-160, 2010;

  15. Numerical investigation of influence on heat transfer characteristics to pneumatically conveyed dense phase flow by selecting models and boundary conditions

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Liu, Q.; Li, Y.

    2012-03-01

    Solids moving with a gas stream in a pipeline can be found in many industrial processes, such as power generation, chemical, pharmaceutical, food and commodity transfer processes. A mass flow rate of the solids is important characteristic that is often required to be measured (and controlled) to achieve efficient utilization of energy and raw materials in pneumatic conveying systems. The methods of measuring the mass flow rate of solids in a pneumatic pipeline can be divided into direct and indirect (inferential) measurements. A thermal solids' mass flow-meter, in principle, should ideally provide a direct measurement of solids flow rate, regardless of inhomogeneities in solids' distribution and environmental impacts. One key issue in developing a thermal solids' mass flow-meter is to characterize the heat transfer between the hot pipe wall and the gas-solids dense phase flow. The Eulerian continuum modeling with gas-solid two phases is the most common method for pneumatic transport. To model a gas-solid dense phase flow passing through a heated region, the gas phase is described as a continuous phase and the particles as the second phase. This study aims to describe the heat transfer characteristics between the hot wall and the gas-solids dense phase flow in pneumatic pipelines by modeling a turbulence gas-solid plug passing through the heated region which involves several actual and crucial issues: selections of interphase exchange coefficient, near-wall region functions and different wall surface temperatures. A sensitivity analysis was discussed to identify the influence on the heat transfer characteristics by selecting different interphase exchange coefficient models and different boundary conditions. Simulation results suggest that sensitivity analysis in the choice of models is very significant. The simulation results appear to show that a combination of choosing the Syamlal-O'Brien interphase exchange coefficient model and the standard k-ɛ model along with the standard wall function model might be the best approach, by which, the simulation data seems to be closest to the experimental results.

  16. Trajectories of parasympathetic nervous system function before, during, and after feeding in infants with transposition of the great arteries.

    PubMed

    Harrison, Tondi M

    2011-01-01

    Compromised parasympathetic response to stressors may underlie feeding difficulties in infants with complex congenital heart defects, but little is known about the temporal pattern of parasympathetic response across phases of feeding. The aim of this study was to describe initial data exploration of trajectories of parasympathetic response to feeding in 15 infants with surgically corrected transposition of the great arteries and to explore the effects of feeding method, feeding skill, and maternal sensitivity on trajectories. In this descriptive, exploratory study, parasympathetic function was measured using high-frequency heart rate variability (HF HRV), feeding skill was measured using the Early Feeding Skills assessment, and maternal sensitivity was measured using the Parent-Child Early Relational Assessment. Data were collected before, during, and after feeding at 2 weeks and 2 months of age. Trajectories of parasympathetic function and relationships with possible contributing factors were examined graphically. Marked between-infant variability in HF HRV across phases of feeding was apparent at both ages, although it was attenuated at 2 months. Four patterns of HF HRV trajectories across phases of feeding were identified and associated with feeding method, feeding skill, and maternal sensitivity. Developmental increases in HF HRV were apparent in most breast-fed, but not bottle-fed, infants. This exploratory data analysis provides critical information in preparation for a larger study in which varying trajectories and potential contributing factors can be modeled in relationship to infant outcomes. Findings support inclusion of feeding method, feeding skill, and maternal sensitivity in modeling parasympathetic function across feeding.

  17. Respiratory muscle function in infants with spinal muscular atrophy type I.

    PubMed

    Finkel, Richard S; Weiner, Daniel J; Mayer, Oscar H; McDonough, Joseph M; Panitch, Howard B

    2014-12-01

    To determine the feasibility and safety of respiratory muscle function testing in weak infants with a progressive neuromuscular disorder. Respiratory insufficiency is the major cause of morbidity and mortality in infants with spinal muscular atrophy type I (SMA-I). Tests of respiratory muscle strength, endurance, and breathing patterns can be performed safely in SMA-I infants. Useful data can be collected which parallels the clinical course of pulmonary function in SMA-I. An exploratory study of respiratory muscle function testing and breathing patterns in seven infants with SMA-I seen in our neuromuscular clinic. Measurements were made at initial study visit and, where possible, longitudinally over time. We measured maximal inspiratory (MIP) and transdiaphragmatic pressures, mean transdiaphragmatic pressure, airway occlusion pressure at 100 msec of inspiration, inspiratory and total respiratory cycle time, and aspects of relative thoracoabdominal motion using respiratory inductive plethysmography (RIP). The tension time index of the diaphragm and of the respiratory muscles, phase angle (Φ), phase relation during the total breath, and labored breathing index were calculated. Age at baseline study was 54-237 (median 131) days. Reliable data were obtained safely for MIP, phase angle, labored breathing index, and the invasive and non-invasive tension time indices, even in very weak infants. Data obtained corresponded to the clinical estimate of severity and predicted the need for respiratory support. The testing employed was both safe and feasible. Measurements of MIP and RIP are easily performed tests that are well tolerated and provide clinically useful information for infants with SMA-I. © 2014 Wiley Periodicals, Inc.

  18. Trajectories of Parasympathetic Nervous System Function before, during, and after Feeding in Infants with Transposition of the Great Arteries

    PubMed Central

    Harrison, Tondi M.

    2011-01-01

    Background Compromised parasympathetic response to stressors may underlie feeding difficulties in infants with complex congenital heart defects, but little is known about the temporal pattern of parasympathetic response across phases of feeding. Objectives To describe initial data exploration of trajectories of parasympathetic response to feeding in 15 infants with surgically corrected transposition of the great arteries and to explore effects of feeding method, feeding skill, and maternal sensitivity on trajectories. Method In this descriptive, exploratory study, parasympathetic function was measured using high frequency heart rate variability (HF HRV), feeding skill was measured using the Early Feeding Skills assessment, and maternal sensitivity was measured using the Parent-Child Early Relational Assessment. Data were collected before, during, and after feeding at 2 weeks and 2 months of age. Trajectories of parasympathetic function and relationships with possible contributing factors were examined graphically. Results Marked between-infant variability in HF HRV across phases of feeding was apparent at both ages, although attenuated at 2 months. Four patterns of HF HRV trajectories across phases of feeding were identified and associated with feeding method, feeding skill, and maternal sensitivity. Developmental increases in HF HRV were apparent in most breastfed, but not bottle-fed, infants. Discussion This exploratory data analysis provided critical information in preparation for a larger study in which varying trajectories and potential contributing factors can be modeled in relationship to infant outcomes. Findings support inclusion of feeding method, feeding skill, and maternal sensitivity in modeling parasympathetic function across feeding. PMID:21543958

  19. Effect of volume-scattering function on the errors induced when polarization is neglected in radiance calculations in an atmosphere-ocean system.

    PubMed

    Adams, C N; Kattawar, G W

    1993-08-20

    We have developed a Monte Carlo program that is capable of calculating both the scalar and the Stokes vector radiances in an atmosphere-ocean system in a single computer run. The correlated sampling technique is used to compute radiance distributions for both the scalar and the Stokes vector formulations simultaneously, thus permitting a direct comparison of the errors induced. We show the effect of the volume-scattering phase function on the errors in radiance calculations when one neglects polarization effects. The model used in this study assumes a conservative Rayleigh-scattering atmosphere above a flat ocean. Within the ocean, the volume-scattering function (the first element in the Mueller matrix) is varied according to both a Henyey-Greenstein phase function, with asymmetry factors G = 0.0, 0.5, and 0.9, and also to a Rayleigh-scattering phase function. The remainder of the reduced Mueller matrix for the ocean is taken to be that for Rayleigh scattering, which is consistent with ocean water measurement.

  20. Pulmonary function of children with acute leukemia in maintenance phase of chemotherapy☆

    PubMed Central

    de Macêdo, Thalita Medeiros Fernandes; Campos, Tania Fernandes; Mendes, Raquel Emanuele de França; França, Danielle Corrêa; Chaves, Gabriela Suéllen da Silva; de Mendonça, Karla Morganna Pereira Pinto

    2014-01-01

    OBJECTIVE: The aim of this study was to assess the pulmonary function of children with acute leukemia. METHODS: Cross-sectional observational analytical study that enrolled 34 children divided into groups A (17 with acute leukemia in the maintenance phase of chemotherapy) and B (17 healthy children). The groups were matched for sex, age and height. Spirometry was measured using a spirometer Microloop Viasys(r) in accordance with American Thoracic Society and European Respiratory Society guidelines. Maximal respiratory pressures were measured with an MVD300 digital manometer (Globalmed(r)). Maximal inspiratory pressures and maximal expiratory pressures were measured from residual volume and total lung capacity, respectively. RESULTS: Group A showed a significant decrease in maximal inspiratory pressures when compared to group B. No significant difference was found between the spirometric values of the two groups, nor was there any difference between maximal inspiratory pressure and maximal expiratory pressure values in group A compared to the lower limit values proposed as reference. CONCLUSION: Children with acute leukemia, myeloid or lymphoid, during the maintenance phase of chemotherapy exhibited unchanged spirometric variables and maximal expiratory pressure; However, there was a decrease in inspiratory muscle strength. PMID:25510995

  1. The early use of botulinum toxin in post-stroke spasticity: study protocol for a randomised controlled trial.

    PubMed

    Lindsay, Cameron; Simpson, Julie; Ispoglou, Sissi; Sturman, Steve G; Pandyan, Anand D

    2014-01-08

    Patients surviving stroke but who have significant impairment of function in the affected arm are at more risk of developing pain, stiffness and contractures. The abnormal muscle activity, associated with post-stroke spasticity, is thought to be causally associated with the development of these complications. Treatment of spasticity is currently delayed until a patient develops signs of these complications. This protocol is for a phase II study that aims to identify whether using OnabotulinumtoxinA (BoNT-A) in combination with physiotherapy early post stroke when initial abnormal muscle activity is neurophysiologically identified can prevent loss of range at joints and improve functional outcomes.The trial uses a screening phase to identify which people are appropriate to be included in a double blind randomised placebo-controlled trial. All patients admitted to Sandwell and West Birmingham NHS Trust Hospitals with a diagnosis of stroke will be screened to identify functional activity in the arm. Those who have no function will be appropriate for further screening. Patients who are screened and have abnormal muscle activity identified on EMG will be given electrical stimulation to forearm extensors for 3 months and randomised to have either injections of BoNT-A or normal saline. The primary outcome measure is the action research arm test - a measure of arm function. Further measures include spasticity, stiffness, muscle strength and fatigue as well as measures of quality of life, participation and caregiver strain. ISRCTN57435427, EudraCT2010-021257-39, NCT01882556.

  2. Engineering design of sub-micron topographies for simultaneously adherent and reflective metal-polymer interfaces

    NASA Technical Reports Server (NTRS)

    Brown, Christopher A.

    1993-01-01

    The approach of the project is to base the design of multi-function, reflective topographies on the theory that topographically dependent phenomena react with surfaces and interfaces at certain scales. The first phase of the project emphasizes the development of methods for understanding the sizes of topographic features which influence reflectivity. Subsequent phases, if necessary, will address the scales of interaction for adhesion and manufacturing processes. A simulation of the interaction of electromagnetic radiation, or light, with a reflective surface is performed using specialized software. Reflectivity of the surface as a function of scale is evaluated and the results from the simulation are compared with reflectivity measurements made on multi-function, reflective surfaces.

  3. Thermodynamic Activity Measurements with Knudsen Cell Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.

    2001-01-01

    Coupling the Knudsen effusion method with mass spectrometry has proven to be one of the most useful experimental techniques for studying the equilibrium between condensed phases and complex vapors. The Knudsen effusion method involves placing a condensed sample in a Knudsen cell, a small "enclosure", that is uniformly heated and held until equilibrium is attained between the condensed and vapor phases. The vapor is continuously sampled by effusion through a small orifice in the cell. A molecular beam is formed from the effusing vapor and directed into a mass spectrometer for identification and pressure measurement of the species in the vapor phase. Knudsen cell mass spectrometry (KCMS) has been used for nearly fifty years now and continues to be a leading technique for obtaining thermodynamic data. Indeed, much of the well-established vapor specie data in the JANAF tables has been obtained from this technique. This is due to the extreme versatility of the technique. All classes of materials can be studied and all constituents of the vapor phase can be measured over a wide range of pressures (approximately 10(exp -4) to 10(exp -11) bar) and temperatures (500-2800 K). The ability to selectively measure different vapor species makes KCMS a very powerful tool for the measurement of component activities in metallic and ceramic solutions. Today several groups are applying KCMS to measure thermodynamic functions in multicomponent metallic and ceramic systems. Thermodynamic functions, especially component activities, are extremely important in the development of CALPHAD (Calculation of Phase Diagrams) type thermodynamic descriptions. These descriptions, in turn, are useful for modeling materials processing and predicting reactions such as oxide formation and fiber/matrix interactions. The leading experimental methods for measuring activities are the Galvanic cell or electro-motive force (EMF) technique and the KCMS technique. Each has specific advantages, depending on material and conditions. The EMF technique is suitable for lower temperature measurements, provided a suitable cell can be constructed. KCMS is useful for higher temperature measurements in a system with volatile components. In this paper, we briefly review the KCMS technique and identify the major experimental issues that must be addressed for precise measurements. These issues include temperature measurements, cell material and cell design and absolute pressure calibration. The resolution of these issues are discussed together with some recent examples of measured thermodynamic data.

  4. Emergence of higher order rotational symmetry in the hidden order phase of URu 2Si 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanchanavatee, N.; Janoschek, M.; Huang, K.

    2016-09-30

    Electrical resistivity measurements were performed in this paper as functions of temperature, magnetic field, and angle θ between the magnetic field and the c-axis of a URu 2Si 2 single crystal. The resistivity exhibits a two-fold oscillation as a function of θ at high temperatures, which undergoes a 180°-phase shift (sign change) with decreasing temperature at around 35 K. The hidden order transition is manifested as a minimum in the magnetoresistance and amplitude of the two-fold oscillation. Interestingly, the resistivity also showed four-fold, six-fold, and eight-fold symmetries at the hidden order transition. These higher order symmetries were also detected atmore » low temperatures, which could be a sign of the formation of another pseudogap phase above the superconducting transition, consistent with recent evidence for a pseudogap from point-contact spectroscopy measurements and NMR. Measurements of the magnetisation of single crystalline URu 2Si 2 with the magnetic field applied parallel and perpendicular to the crystallographic c-axis revealed regions with linear temperature dependencies between the hidden order transition temperature and about 25 K. Finally, this T-linear behaviour of the magnetisation may be associated with the formation of a precursor phase or ‘pseudogap’ in the density of states in the vicinity of 30–35 K.« less

  5. Evidence of charged puddles and induced dephasing in topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sourabh; Gopal, R. K.; Sarkar, Jit; Roy, Subhadip; Mitra, Chiranjib

    2018-05-01

    We investigate the dephasing mechanism in bulk insulating topological insulator thin films. The phase coherence length is extracted from magnetoresistance measurements at different temperatures. There is a crossover of the phase coherence length as a function of temperature signifying the role of more than one dephasing mechanism in the system. The dephasing rates have been studied systematically and explained.

  6. Optical Correlation Techniques In Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Schatzel, K.; Schulz-DuBois, E. O.; Vehrenkamp, R.

    1981-05-01

    Three flow measurement techniques make use of fast digital correlators. (1) Most widely spread is photon correlation velocimetry using crossed laser beams and detecting Doppler shifted light scattered by small particles in the flow. Depending on the processing of the photon correlogram, this technique yields mean velocity, turbulence level, or even the detailed probability distribution of one velocity component. An improved data processing scheme is demonstrated on laminar vortex flow in a curved channel. (2) Rate correlation based upon threshold crossings of a high pass filtered laser Doppler signal can he used to obtain velocity correlation functions. The most powerful setup developed in our laboratory uses a phase locked loop type tracker and a multibit correlator to analyse time-dependent Taylor vortex flow. With two optical systems and trackers, crosscorrelation functions reveal phase relations between different vortices. (3) Making use of refractive index fluctuations (e. g. in two phase flows) instead of scattering particles, interferometry with bidirectional fringe counting and digital correlation and probability analysis constitute a new quantitative technique related to classical Schlieren methods. Measurements on a mixing flow of heated and cold air contribute new ideas to the theory of turbulent random phase screens.

  7. Optical correlation techniques in fluid dynamics

    NASA Astrophysics Data System (ADS)

    Schätzel, K.; Schulz-Dubois, E. O.; Vehrenkamp, R.

    1981-04-01

    Three flow measurement techniques make use of fast digital correlators. The most widely spread is photon correlation velocimetry using crossed laser beams, and detecting Doppler shifted light scattered by small particles in the flow. Depending on the processing of the photon correlation output, this technique yields mean velocity, turbulence level, and even the detailed probability distribution of one velocity component. An improved data processing scheme is demonstrated on laminar vortex flow in a curved channel. In the second method, rate correlation based upon threshold crossings of a high pass filtered laser Doppler signal can be used to obtain velocity correlation functions. The most powerful set-up developed in our laboratory uses a phase locked loop type tracker and a multibit correlator to analyze time-dependent Taylor vortex flow. With two optical systems and trackers, cross-correlation functions reveal phase relations between different vortices. The last method makes use of refractive index fluctuations (eg in two phase flows) instead of scattering particles. Interferometry with bidirectional counting, and digital correlation and probability analysis, constitutes a new quantitative technique related to classical Schlieren methods. Measurements on a mixing flow of heated and cold air contribute new ideas to the theory of turbulent random phase screens.

  8. A Novel Strategy for Continuation ECT in Geriatric Depression: Phase 2 of the PRIDE Study.

    PubMed

    Kellner, Charles H; Husain, Mustafa M; Knapp, Rebecca G; McCall, W Vaughn; Petrides, Georgios; Rudorfer, Matthew V; Young, Robert C; Sampson, Shirlene; McClintock, Shawn M; Mueller, Martina; Prudic, Joan; Greenberg, Robert M; Weiner, Richard D; Bailine, Samuel H; Rosenquist, Peter B; Raza, Ahmad; Kaliora, Styliani; Latoussakis, Vassilios; Tobias, Kristen G; Briggs, Mimi C; Liebman, Lauren S; Geduldig, Emma T; Teklehaimanot, Abeba A; Dooley, Mary; Lisanby, Sarah H

    2016-11-01

    The randomized phase (phase 2) of the Prolonging Remission in Depressed Elderly (PRIDE) study evaluated the efficacy and tolerability of continuation ECT plus medication compared with medication alone in depressed geriatric patients after a successful course of ECT (phase 1). PRIDE was a two-phase multisite study. Phase 1 was an acute course of right unilateral ultrabrief pulse ECT, augmented with venlafaxine. Phase 2 compared two randomized treatment arms: a medication only arm (venlafaxine plus lithium, over 24 weeks) and an ECT plus medication arm (four continuation ECT treatments over 1 month, plus additional ECT as needed, using the Symptom-Titrated, Algorithm-Based Longitudinal ECT [STABLE] algorithm, while continuing venlafaxine plus lithium). The intent-to-treat sample comprised 120 remitters from phase 1. The primary efficacy outcome measure was score on the 24-item Hamilton Depression Rating Scale (HAM-D), and the secondary efficacy outcome was score on the Clinical Global Impressions severity scale (CGI-S). Tolerability as measured by neurocognitive performance (reported elsewhere) was assessed using an extensive test battery; global cognitive functioning as assessed by the Mini-Mental State Examination (MMSE) is reported here. Longitudinal mixed-effects repeated-measures modeling was used to compare ECT plus medication and medication alone for efficacy and global cognitive function outcomes. At 24 weeks, the ECT plus medication group had statistically significantly lower HAM-D scores than the medication only group. The difference in adjusted mean HAM-D scores at study end was 4.2 (95% CI=1.6, 6.9). Significantly more patients in the ECT plus medication group were rated "not ill at all" on the CGI-S compared with the medication only group. There was no statistically significant difference between groups in MMSE score. Additional ECT after remission (here operationalized as four continuation ECT treatments followed by further ECT only as needed) was beneficial in sustaining mood improvement for most patients.

  9. Traveling Theta Waves in the Human Hippocampus

    PubMed Central

    Zhang, Honghui

    2015-01-01

    The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. SIGNIFICANCE STATEMENT We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior–anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915

  10. The effect of polyether functional polydimethylsiloxane on surface and thermal properties of waterborne polyurethane

    NASA Astrophysics Data System (ADS)

    Zheng, Guikai; Lu, Ming; Rui, Xiaoping

    2017-03-01

    Waterborne polyurethanes (WPU) modified with polyether functional polydimethylsiloxane (PDMS) were synthesized by pre-polymerization method using isophorone diisocyanate (IPDI) and 1,4-butanediol (BDO) as hard segments and polybutylene adipate glycol (PBA) and polyether functional PDMS as soft segments. The effect of polyether functional PDMS on phase separation, thermal properties, surface properties including surface composition, morphology and wettability were investigated by FTIR, contact angle measurements, ARXPS, SEM-EDS, AFM, TG and DSC. The results showed that the compatibility between urethane hard segment and PDMS modified with polyether was good, and there was no distinct phase separation in both bulk and surface of WPU films. The degradation temperature and low temperature flexibility increased with increasing amounts of polyether functional PDMS. The enrichment of polyether functional PDMS with low surface energy on the surface imparted excellent hydrophobicity to WPU films.

  11. The effects of iPod and text-messaging use on driver distraction: a bio-behavioral analysis.

    PubMed

    Mouloua, M; Ahern, A; Quevedo, A; Jaramillo, D; Rinalducci, E; Smither, J; Alberti, P; Brill, C

    2012-01-01

    This study was designed to empirically examine the effects of iPod device and text-messaging activities on driver distraction. Sixty participants were asked to perform a driving simulation task while searching for songs using an iPod device or text messaging. Driving errors as measured by lane deviations were recorded and analyzed as a function of the distracters. Physiological measures (EEG) were also recorded during the driving phases in order to measure participant levels of cortical arousal. It was hypothesized that iPod use and text messaging would result in a profound effect on driving ability. The results showed a significant effect of iPod use and text-messaging on driving performance. Increased numbers of driving errors were recorded during the iPod and text-messaging phases than the pre- and post-allocation phases. Higher levels of Theta activity were also observed during the iPod and Text-messaging phase than the pre- and post-allocation phases. Implications for in-vehicle systems design, training, and safety are also discussed.

  12. Experimental cancellation of aberrations in intensity correlation in classical optics

    NASA Astrophysics Data System (ADS)

    Jesus-Silva, A. J.; Silva, Juarez G.; Monken, C. H.; Fonseca, E. J. S.

    2018-01-01

    We study the classical correlation function of spatially incoherent beams with a phase aberration in the beam path. On the basis of our experimental measurements and in the optical coherence theory, we show that the effects of phase disturbances, independently of their kind and without need of coordinate inversion, can be canceled out if the same phase is aligned in the signal and reference beam path. These results can be useful for imaging and microscopy through random media.

  13. Measurement of Phased Array Point Spread Functions for Use with Beamforming

    NASA Technical Reports Server (NTRS)

    Bahr, Chris; Zawodny, Nikolas S.; Bertolucci, Brandon; Woolwine, Kyle; Liu, Fei; Li, Juan; Sheplak, Mark; Cattafesta, Louis

    2011-01-01

    Microphone arrays can be used to localize and estimate the strengths of acoustic sources present in a region of interest. However, the array measurement of a region, or beam map, is not an accurate representation of the acoustic field in that region. The true acoustic field is convolved with the array s sampling response, or point spread function (PSF). Many techniques exist to remove the PSF's effect on the beam map via deconvolution. Currently these methods use a theoretical estimate of the array point spread function and perhaps account for installation offsets via determination of the microphone locations. This methodology fails to account for any reflections or scattering in the measurement setup and still requires both microphone magnitude and phase calibration, as well as a separate shear layer correction in an open-jet facility. The research presented seeks to investigate direct measurement of the array's PSF using a non-intrusive acoustic point source generated by a pulsed laser system. Experimental PSFs of the array are computed for different conditions to evaluate features such as shift-invariance, shear layers and model presence. Results show that experimental measurements trend with theory with regard to source offset. The source shows expected behavior due to shear layer refraction when observed in a flow, and application of a measured PSF to NACA 0012 aeroacoustic trailing-edge noise data shows a promising alternative to a classic shear layer correction method.

  14. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.

    Organic nitrates (ON = RONO2 + RO2NO2) are an important reservoir, if not sink, of atmospheric nitrogen oxides (NOx=NO+NO2). ON formed from isoprene oxidation alone are responsible for the export of 8 to 30% of anthropogenic NOx out of the U.S. continental boundary layer [Horowitz et al., 1998; Liang et al., 1998]. Regional NOx budgets and tropospheric ozone (O3) production, are therefore particularly sensitive to uncertainties in the yields and fates of ON [Beaver et al., 2012; Browne et al., 2013]. The yields implemented in modeling studies are determined from laboratory experiments in which only a few of the firstmore » generation gaseous ON or the total gas and particle-phase ON have been quantified [Perring et al., 2013 and references therein], while production of highly functionalized ON capable of strongly partitioning to the particle-phase have been inferred [Farmer et al., 2010; Ng et al., 2007; Nguyen et al., 2011; Perraud et al., 2012; Rollins et al., 2012], or directly measured [Ehn et al., 2014]. Addition of a nitrate (–ONO2) functional group to a hydrocarbon is estimated to lower the equilibrium saturation vapor pressure by 2.5 to 3 orders of magnitude [e.g. Capouet and Muller, 2006]. Thus, organic nitrate formation can potentially enhance particle-phase partitioning of hydrocarbons in regions with elevated levels of nitrogen oxides, contributing to secondary organic aerosol (SOA) formation [Ng et al., 2007]. There has, however, been no high time-resolved measurements of speciated ON in the particle-phase. We utilize a newly developed high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adduct ionization [B H Lee et al., 2014a] with a filter inlet for gases and aerosols (FIGAERO) [Lopez-Hilfiker et al., 2014] that allows alternating in situ measurement of the molecular composition of gas and particle phases. We present observations of speciated ON in the particle-phase obtained during the 2013 Southern Oxidant and Aerosol Study (SOAS). We compare these speciated measurements to total unspeciated particulate organic nitrate measured by three independent methods, and analyze using a zero-dimensional box model the diel cycles of individual components to elucidate differential source and sink terms. Biogenic volatile organic compounds (VOCs), including isoprene, monoterpenes, and sesquiterpenes appear to dominate the ON sources during SOAS. We show that the molecular compositions that dominate the particle-phase are significantly more oxygenated than the most abundant gas-phase counterparts, consistent with volatility and solubility driven partitioning requirements. However, the detailed mechanisms by which most of these ON arise are not yet clear. These speciated measurements put a strong constraint on the extent to which ON directly contribute to SOA in regions with high biogenic hydrocarbon emissions, and illustrate that the fate of particulate ON can have significant implications for SOA and the reactive nitrogen budget.« less

  15. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

    DOE PAGES

    Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.; ...

    2016-01-25

    Organic nitrates (ON = RONO2 + RO2NO2) are an important reservoir, if not sink, of atmospheric nitrogen oxides (NOx=NO+NO2). ON formed from isoprene oxidation alone are responsible for the export of 8 to 30% of anthropogenic NOx out of the U.S. continental boundary layer [Horowitz et al., 1998; Liang et al., 1998]. Regional NOx budgets and tropospheric ozone (O3) production, are therefore particularly sensitive to uncertainties in the yields and fates of ON [Beaver et al., 2012; Browne et al., 2013]. The yields implemented in modeling studies are determined from laboratory experiments in which only a few of the firstmore » generation gaseous ON or the total gas and particle-phase ON have been quantified [Perring et al., 2013 and references therein], while production of highly functionalized ON capable of strongly partitioning to the particle-phase have been inferred [Farmer et al., 2010; Ng et al., 2007; Nguyen et al., 2011; Perraud et al., 2012; Rollins et al., 2012], or directly measured [Ehn et al., 2014]. Addition of a nitrate (–ONO2) functional group to a hydrocarbon is estimated to lower the equilibrium saturation vapor pressure by 2.5 to 3 orders of magnitude [e.g. Capouet and Muller, 2006]. Thus, organic nitrate formation can potentially enhance particle-phase partitioning of hydrocarbons in regions with elevated levels of nitrogen oxides, contributing to secondary organic aerosol (SOA) formation [Ng et al., 2007]. There has, however, been no high time-resolved measurements of speciated ON in the particle-phase. We utilize a newly developed high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adduct ionization [B H Lee et al., 2014a] with a filter inlet for gases and aerosols (FIGAERO) [Lopez-Hilfiker et al., 2014] that allows alternating in situ measurement of the molecular composition of gas and particle phases. We present observations of speciated ON in the particle-phase obtained during the 2013 Southern Oxidant and Aerosol Study (SOAS). We compare these speciated measurements to total unspeciated particulate organic nitrate measured by three independent methods, and analyze using a zero-dimensional box model the diel cycles of individual components to elucidate differential source and sink terms. Biogenic volatile organic compounds (VOCs), including isoprene, monoterpenes, and sesquiterpenes appear to dominate the ON sources during SOAS. We show that the molecular compositions that dominate the particle-phase are significantly more oxygenated than the most abundant gas-phase counterparts, consistent with volatility and solubility driven partitioning requirements. However, the detailed mechanisms by which most of these ON arise are not yet clear. These speciated measurements put a strong constraint on the extent to which ON directly contribute to SOA in regions with high biogenic hydrocarbon emissions, and illustrate that the fate of particulate ON can have significant implications for SOA and the reactive nitrogen budget.« less

  16. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.

    PubMed

    Lee, Po-Lei; Sie, Jyun-Jie; Liu, Yu-Ju; Wu, Chi-Hsun; Lee, Ming-Huan; Shu, Chih-Hung; Li, Po-Hung; Sun, Chia-Wei; Shyu, Kuo-Kai

    2010-07-01

    This study presents a new steady-state visual evoked potential (SSVEP)-based brain computer interface (BCI). SSVEPs, induced by phase-tagged flashes in eight light emitting diodes (LEDs), were used to control four cursor movements (up, right, down, and left) and four button functions (on, off, right-, and left-clicks) on a screen menu. EEG signals were measured by one EEG electrode placed at Oz position, referring to the international EEG 10-20 system. Since SSVEPs are time-locked and phase-locked to the onsets of SSVEP flashes, EEG signals were bandpass-filtered and segmented into epochs, and then averaged across a number of epochs to sharpen the recorded SSVEPs. Phase lags between the measured SSVEPs and a reference SSVEP were measured, and targets were recognized based on these phase lags. The current design used eight LEDs to flicker at 31.25 Hz with 45 degrees phase margin between any two adjacent SSVEP flickers. The SSVEP responses were filtered within 29.25-33.25 Hz and then averaged over 60 epochs. Owing to the utilization of high-frequency flickers, the induced SSVEPs were away from low-frequency noises, 60 Hz electricity noise, and eye movement artifacts. As a consequence, we achieved a simple architecture that did not require eye movement monitoring or other artifact detection and removal. The high-frequency design also achieved a flicker fusion effect for better visualization. Seven subjects were recruited in this study to sequentially input a command sequence, consisting of a sequence of eight cursor functions, repeated three times. The accuracy and information transfer rate (mean +/- SD) over the seven subjects were 93.14 +/- 5.73% and 28.29 +/- 12.19 bits/min, respectively. The proposed system can provide a reliable channel for severely disabled patients to communicate with external environments.

  17. Tai Chi for Posttraumatic Stress Disorder and Chronic Musculoskeletal Pain: A Pilot Study.

    PubMed

    Tsai, Pao-Feng; Kitch, Stephanie; Chang, Jason Y; James, G Andrew; Dubbert, Patricia; Roca, J Vincent; Powers, Cheralyn H

    2018-06-01

    Explore the feasibility of a Tai Chi intervention to improve musculoskeletal pain, emotion, cognition, and physical function in individuals with posttraumatic stress disorder. Two-phase, one-arm quasi-experimental design. Phase 1: 11 participants completed one Tai Chi session, feasibility questionnaire, and were offered participation in Phase 2, a 12-week Tai Chi intervention. Ten participants participated in Phase 2. Pain intensity, interference, physical function scales, an emotional battery, and cognition tests were used for pre- and postintervention outcome measures. Paired t tests and thematic analysis were used for analysis. In Phase 1, most felt Tai Chi would benefit health (90.9%) and expressed interest in continuing Tai Chi (6.73 out of 7). Phase 2 results showed improvement in fear-affect (raw t = -2.64, p = .03; age adjusted t = -2.90, p = .02), fear-somatic arousal (raw t = -2.53, p = .035), List Sorting Working Memory (raw t = 2.62, p = .031; age adjusted t = 2.96, p = .018), 6-Minute Walk Test ( t = 3.541, p = .008), and current level of Pain Intensity ( t = -4.00, p = .004). Tai Chi is an acceptable, holistic treatment to individuals with musculoskeletal pain and posttraumatic stress disorder. It may reduce pain, improve emotion, memory, and physical function.

  18. Effect of masking phase-only holograms on the quality of reconstructed images.

    PubMed

    Deng, Yuanbo; Chu, Daping

    2016-04-20

    A phase-only hologram modulates the phase of the incident light and diffracts it efficiently with low energy loss because of the minimum absorption. Much research attention has been focused on how to generate phase-only holograms, and little work has been done to understand the effect and limitation of their partial implementation, possibly due to physical defects and constraints, in particular as in the practical situations where a phase-only hologram is confined or needs to be sliced or tiled. The present study simulates the effect of masking phase-only holograms on the quality of reconstructed images in three different scenarios with different filling factors, filling positions, and illumination intensity profiles. Quantitative analysis confirms that the width of the image point spread function becomes wider and the image quality decreases, as expected, when the filling factor decreases, and the image quality remains the same for different filling positions as well. The width of the image point spread function as derived from different filling factors shows a consistent behavior to that as measured directly from the reconstructed image, especially as the filling factor becomes small. Finally, mask profiles of different shapes and intensity distributions are shown to have more complicated effects on the image point spread function, which in turn affects the quality and textures of the reconstructed image.

  19. Radioisotope measurement of selected parameters of liquid-gas flow using single detector system

    NASA Astrophysics Data System (ADS)

    Zych, Marcin; Hanus, Robert; Jaszczur, Marek; Mosorov, Volodymyr; Świsulski, Dariusz

    2018-06-01

    To determine the parameters of two-phase flows using radioisotopes, usually two detectors are used. Knowing the distance between them, the velocity of the dispersed phase is calculated based on time delay estimation. Such a measurement system requires the use of two gamma-ray sealed sources. But in some situations it is also possible to determine velocity of dispersed phase using only one scintillation probe and one gamma-ray source. However, this requires proper signal analysis and prior calibration. This may also cause larger measurement errors. On the other hand, it allows measurements in hard to reach areas where there is often no place for the second detector. Additionally, by performing a previous calibration, it is possible to determine the void fraction or concentration of the selected phase. In this work an autocorrelation function was used to analyze the signal from the scintillation detector, which allowed for the determination of air velocities in slug and plug flows with an accuracy of 8.5%. Based on the analysis of the same signal, a void fraction with error of 15% was determined.

  20. A Chemiluminescence Detector for Ozone Measurement.

    ERIC Educational Resources Information Center

    Carroll, H.; And Others

    An ozone detector was built and evaluated for its applicability in smog chamber studies. The detection method is based on reaction of ozone with ethylene and measurement of resultant chemiluminescence. In the first phase of evaluation, the detector's response to ozone was studied as a function of several instrument parameters, and optimum…

  1. Shadow mechanism and the opposition effect of brightness of atmosphereless celestial bodies

    NASA Astrophysics Data System (ADS)

    Morozhenko, A. V.; Vidmachenko, A. P.

    2013-09-01

    We consider the Irvine-Yanovistkii modification of the shadow model developed by Hapke for the opposition effect of brightness. The relation between the single scattering albedo ω and the transparency coefficient of particles κ is suggested to be used in the form κ = (1 - ω) n, which allows the number of unknowns in the model to be reduced to two parameters (the packing density of particles g and ω) and the single-scattering phase function Ξ(α). The analysis of spectrophotometric measurements of the moon and Mars showed that the data on the observed opposition effect and the changes in the color index with the phase angle α well agree if the values of n = 0.25 and g = 0.4 (the moon) and 0.6 (Mars) are assumed in calculations. When being applied to asteroids of several types, this method also yielded a satisfactory agreement. For the E-type asteroids, the sets of parameters are [g = 0.6, ω = 0.6, A g = 0.21, and q = 0.83] or [g = 0.3, ω = 0.4, A g = 0.15, and q = 0.71] under the Martian single-scattering phase function; for the M-type asteroids, it is [g = 0.4, ω ≤ 0.1, A g ≤ 0.075, and q ≤ 0.42] under the lunar single-scattering phase function; for the S-type asteroids, it is [g = 0.4, ω = 0.4, A g = 0.28, and q = 0.49] under the lunar single-scattering phase function; and for the C-type asteroids, it is [g = 0.6, ω ≤ 0.1, A g ≤ 0.075, and q = 0.43] under the modified lunar single-scattering phase function. The polarization measurements fulfilled by Gehrels et al. (1964) for the bright feature on the lunar surface, Copernicus (L = -20°08', φ = +10°11'), at a phase angle α = 1.6° revealed the deviations in the position of the polarization plane from that typical for the negative branch. They were 22° and 12° in the G and I filters, respectively. At the same time, the deviation was within the error (±3° in the U filter and for the dark feature Plato (L = -10°32', φ = +51°25'), which can be caused by the coherent mechanism of the formation of the polarization peak.

  2. What is the function of hippocampal theta rhythm?--Linking behavioral data to phasic properties of field potential and unit recording data.

    PubMed

    Hasselmo, Michael E

    2005-01-01

    The extensive physiological data on hippocampal theta rhythm provide an opportunity to evaluate hypotheses about the role of theta rhythm for hippocampal network function. Computational models based on these hypotheses help to link behavioral data with physiological measurements of different variables during theta rhythm. This paper reviews work on network models in which theta rhythm contributes to the following functions: (1) separating the dynamics of encoding and retrieval, (2) enhancing the context-dependent retrieval of sequences, (3) buffering of novel information in entorhinal cortex (EC) for episodic encoding, and (4) timing interactions between prefrontal cortex and hippocampus for memory-guided action selection. Modeling shows how these functional mechanisms are related to physiological data from the hippocampal formation, including (1) the phase relationships of synaptic currents during theta rhythm measured by current source density analysis of electroencephalographic data from region CA1 and dentate gyrus, (2) the timing of action potentials, including the theta phase precession of single place cells during running on a linear track, the context-dependent changes in theta phase precession across trials on each day, and the context-dependent firing properties of hippocampal neurons in spatial alternation (e.g., "splitter cells"), (3) the cholinergic regulation of sustained activity in entorhinal cortical neurons, and (4) the phasic timing of prefrontal cortical neurons relative to hippocampal theta rhythm. Copyright 2005 Wiley-Liss, Inc.

  3. Correlation between electron work functions of multiphase Cu-8Mn-8Al and de-alloying corrosion

    NASA Astrophysics Data System (ADS)

    Punburi, P.; Tareelap, N.; Srisukhumbowornchai, N.; Euaruksakul, C.; Yordsri, V.

    2018-05-01

    Low energy electron emission microscopy (LEEM) was used to measure local transition energy that was directly correlated to electron work function (EWF) of multiphase manganese-aluminum bronze alloys. We developed color mapping to distinguish the EWF of multiple phases and clarified that the EWF were in the following order: EWF of α > EWF of β > EWF of κ (EWFα > EWFβ > EWFκ). De-alloying corrosion took place due to the micro-galvanic cell at grain boundaries before it propagated into the β phase that had lower EWF than the α phase. The α phase was a stable phase because it contained high Cu while the β phase contained high Al and Mn. In addition, XRD analysis showed that the texture coefficient of the β phase revealed that almost all of the grains had (2 2 0) orientation, the lowest EWF compared to (1 1 1) and (2 0 0). Furthermore, transmission electron microscopy illustrated that there were fine Cu3Mn2Al precipitates in the Cu2MnAl matrix of the β phase. These precipitates formed micro-galvanic cells which played an important role in accelerating de-alloying corrosion.

  4. Evaluation of a locally homogeneous model of spray evaporation

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.; Tamura, H.

    1978-01-01

    Measurements were conducted on an evaporating spray in a stagnant environment. The spray was formed using an air-atomizing injector to yield a Sauter mean diameter of the order of 30 microns. The region where evaporation occurred extended approximately 1 m from the injector for the test conditions. Profiles of mean velocity, temperature, composition, and drop size distribution, as well as velocity fluctuations and Reynolds stress, were measured. The results are compared with a locally homogeneous two-phase flow model which implies no velocity difference and thermodynamic equilibrium between the phases. The flow was represented by a k-epsilon-g turbulence model employing a clipped Gaussian probability density function for mixture fraction fluctuations. The model provides a good representation of earlier single-phase jet measurements, but generally overestimates the rate of development of the spray. Using the model predictions to represent conditions along the centerline of the spray, drop life-history calculations were conducted which indicate that these discrepancies are due to slip and loss of thermodynamic equilibrium between the phases.

  5. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    USDA-ARS?s Scientific Manuscript database

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  6. Structures, phase stabilities, and electrical potentials of Li-Si battery anode materials

    NASA Astrophysics Data System (ADS)

    Tipton, William W.; Bealing, Clive R.; Mathew, Kiran; Hennig, Richard G.

    2013-05-01

    The Li-Si materials system holds promise for use as an anode in Li-ion battery applications. For this system, we determine the charge capacity, voltage profiles, and energy storage density solely by ab initio methods without any experimental input. We determine the energetics of the stable and metastable Li-Si phases likely to form during the charging and discharging of a battery. Ab initio molecular dynamics simulations are used to model the structure of amorphous Li-Si as a function of composition, and a genetic algorithm coupled to density-functional theory searches the Li-Si binary phase diagram for small-cell, metastable crystal structures. Calculations of the phonon densities of states using density-functional perturbation theory for selected structures determine the importance of vibrational, including zero-point, contributions to the free energies. The energetics and local structural motifs of these metastable Li-Si phases closely resemble those of the amorphous phases, making these small unit cell crystal phases good approximants of the amorphous phase for use in further studies. The charge capacity is estimated, and the electrical potential profiles and the energy density of Li-Si anodes are predicted. We find, in good agreement with experimental measurements, that the formation of amorphous Li-Si only slightly increases the anode potential. Additionally, the genetic algorithm identifies a previously unreported member of the Li-Si binary phase diagram with composition Li5Si2 which is stable at 0 K with respect to previously known phases. We discuss its relationship to the partially occupied Li7Si3 phase.

  7. Further Evidence in Support of the Universal Nilpotent Grammatical Computational Paradigm of Quantum Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcer, Peter J.; Rowlands, Peter

    2010-12-22

    Further evidence is presented in favour of the computational paradigm, conceived and constructed by Rowlands and Diaz, as detailed in Rowlands' book Zero to Infinity (2007), and in particular the authors' paper 'The Grammatical Universe: the Laws of Thermodynamics and Quantum Entanglement'. The paradigm, which has isomorphic group and algebraic quantum mechanical language interpretations, not only predicts the well-established facts of quantum physics, the periodic table, chemistry / valence and of molecular biology, whose understanding it extends; it also provides an elegant, simple solution to the unresolved quantum measurement problem. In this fundamental paradigm, all the computational constructs / predictionsmore » that emerge, follow from the simple fact, that, as in quantum mechanics, the wave function is defined only up to an arbitrary fixed phase. This fixed phase provides a simple physical understanding of the quantum vacuum in quantum field theory, where only relative phases, known to be able to encode 3+1 relativistic space-time geometries, can be measured. It is the arbitrary fixed measurement standard, against which everything that follows is to be measured, even though the standard itself cannot be, since nothing exists against which to measure it. The standard, as an arbitrary fixed reference phase, functions as the holographic basis for a self-organized universal quantum process of emergent novel fermion states of matter where, following each emergence, the arbitrary standard is re-fixed anew so as to provide a complete history / holographic record or hologram of the current fixed past, advancing an unending irreversible evolution, such as is the evidence of our senses. The fermion states, in accord with the Pauli exclusion principle, each correspond to a unique nilpotent symbol in the infinite alphabet (which specifies the grammar in this nilpotent universal computational rewrite system (NUCRS) paradigm); and the alphabet, as Hill and Rowlands hypothesize on substantial evidence [26], includes that of the RNA / DNA genetic code and, as holographic phase encodings / holograms, the 4D geometries of all living systems as self-organised grammatical computational rewrite machines / machinery. Human brains, natural grammatical (written symbol) languages, 4D geometric self-awareness and a totally new emergent property of matter, human consciousness, can thus with some measure of confidence be postulated as further genetic consequences which follow from this self-organizing fundamental rewrite NUCRS construction. For it, like natural language, possesses a semantics and not just a syntax, where the initial symbol, i.e. the arbitrary fixed phase measurement standard, is able to function as the template for the blueprints of the emergent 4D relativistic real and virtual geometries to come, in a 'from the Self Creation to the creation of the human self' computational rewrite process evolution.« less

  8. Further Evidence in Support of the Universal Nilpotent Grammatical Computational Paradigm of Quantum Physics

    NASA Astrophysics Data System (ADS)

    Marcer, Peter J.; Rowlands, Peter

    2010-12-01

    Further evidence is presented in favour of the computational paradigm, conceived and constructed by Rowlands and Diaz, as detailed in Rowlands' book Zero to Infinity (2007) [2], and in particular the authors' paper `The Grammatical Universe: the Laws of Thermodynamics and Quantum Entanglement' [1]. The paradigm, which has isomorphic group and algebraic quantum mechanical language interpretations, not only predicts the well-established facts of quantum physics, the periodic table, chemistry / valence and of molecular biology, whose understanding it extends; it also provides an elegant, simple solution to the unresolved quantum measurement problem. In this fundamental paradigm, all the computational constructs / predictions that emerge, follow from the simple fact, that, as in quantum mechanics, the wave function is defined only up to an arbitrary fixed phase. This fixed phase provides a simple physical understanding of the quantum vacuum in quantum field theory, where only relative phases, known to be able to encode 3+1 relativistic space-time geometries, can be measured. It is the arbitrary fixed measurement standard, against which everything that follows is to be measured, even though the standard itself cannot be, since nothing exists against which to measure it. The standard, as an arbitrary fixed reference phase, functions as the holographic basis for a self-organized universal quantum process of emergent novel fermion states of matter where, following each emergence, the arbitrary standard is re-fixed anew so as to provide a complete history / holographic record or hologram of the current fixed past, advancing an unending irreversible evolution, such as is the evidence of our senses. The fermion states, in accord with the Pauli exclusion principle, each correspond to a unique nilpotent symbol in the infinite alphabet (which specifies the grammar in this nilpotent universal computational rewrite system (NUCRS) paradigm); and the alphabet, as Hill and Rowlands hypothesize on substantial evidence [26], includes that of the RNA / DNA genetic code and, as holographic phase encodings / holograms, the 4D geometries of all living systems as self-organised grammatical computational rewrite machines / machinery. Human brains, natural grammatical (written symbol) languages, 4D geometric self-awareness and a totally new emergent property of matter, human consciousness, can thus with some measure of confidence be postulated as further genetic consequences which follow from this self-organizing fundamental rewrite NUCRS construction. For it, like natural language, possesses a semantics and not just a syntax, where the initial symbol, i.e. the arbitrary fixed phase measurement standard, is able to function as the template for the blueprints of the emergent 4D relativistic real and virtual geometries to come, in a `from the Self Creation to the creation of the human self' computational rewrite process evolution.

  9. Search for the First-Order Liquid-to-Liquid Phase Transition in Low-Temperature Confined Water by Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I

    2013-01-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaricmore » temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the alpha-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.« less

  10. Search for the first-order liquid-to-liquid phase transition in low-temperature confined water by neutron scattering

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I.; Zhang, Yang; Liu, Kao-Hsiang

    2013-02-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the α-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.

  11. An on/off Berry phase switch in circular graphene resonators

    NASA Astrophysics Data System (ADS)

    Ghahari, Fereshte; Walkup, Daniel; Gutiérrez, Christopher; Rodriguez-Nieva, Joaquin F.; Zhao, Yue; Wyrick, Jonathan; Natterer, Fabian D.; Cullen, William G.; Watanabe, Kenji; Taniguchi, Takashi; Levitov, Leonid S.; Zhitenev, Nikolai B.; Stroscio, Joseph A.

    2017-05-01

    The phase of a quantum state may not return to its original value after the system’s parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry phase-induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a relatively small critical magnetic field is reached. This behavior results from turning on a π Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 millitesla, potentially enabling a variety of optoelectronic graphene device applications.

  12. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wexler, D.B.; Moore-ede, M.C.

    1986-12-01

    Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophasemore » shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function. 13 references.« less

  13. Resynchronization of circadian sleep-wake and temperature cycles in the squirrel monkey following phase shifts of the environmental light-dark cycle

    NASA Technical Reports Server (NTRS)

    Wexler, D. B.; Moore-Ede, M. C.

    1986-01-01

    Circadian rhythms in physiological and behavioral functions gradually resynchronize after phase shifts in environmental time cues. In order to characterize the rate of circadian resynchronization in a diurnal primate model, the temperature, locomotor activity, and polygraphically determined sleep-wake states were monitored in squirrel monkeys before and after 8-h phase shifts of an environmental light-dark cycle of 12 h light and 12 h dark (LD 12:12). For the temperature rhythm, resynchronization took 4 d after phase delay shift and 5 d after phase advance shift; for the rest-activity cycle, resynchronization times were 3 d and 6 d, respectively. The activity acrophase shifted more rapidly than the temperature acrophase early in the post-delay shift interval, but this internal desynchronization between rhythms disappeared during the course of resynchronization. Further study of the early resynchronization process requires emphasis on identifying evoked effects and measuring circadian pacemaker function.

  14. Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers

    NASA Astrophysics Data System (ADS)

    Anderson, Brian; Flores, Angel; Holten, Roger; Ehrenreich, Thomas; Dajani, Iyad

    2015-03-01

    White noise phase modulation (WNS) and pseudo-random binary sequence phase modulation (PRBS) are effective techniques for mitigation of nonlinear effects such as stimulated Brillouin scattering (SBS); thereby paving the way for higher power narrow linewidth fiber amplifiers. However, detailed studies comparing both coherent beam combination and the SBS suppression of these phase modulation schemes have not been reported. In this study an active fiber cutback experiment is performed comparing the enhancement factor of a PRBS and WNS broadened seed as a function of linewidth and fiber length. Furthermore, two WNS and PRBS modulated fiber lasers are coherently combined to measure and compare the fringe visibility and coherence length as a function of optical path length difference. Notably, the discrete frequency comb of PRBS modulation provides a beam combining re-coherence effect where the lasers periodically come back into phase. Significantly, this may reduce path length matching complexity in coherently combined fiber laser systems.

  15. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    DOE PAGES

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen -Fei; ...

    2016-03-24

    Using density functional theory (DFT) with van der Waals functionals, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously-studied monomeric phases. Moreover, using a model based on many-body perturbation theory within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. As a result, we find that, independent of coverage, the HOMO energy of the linear chain phase ismore » lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.« less

  16. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    NASA Astrophysics Data System (ADS)

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen-Fei; Cooper, Valentino R.; Neaton, Jeffrey B.

    2016-03-01

    Using density functional theory (DFT) with a van der Waals density functional, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously studied monomeric phases. Moreover, using a model, which includes nonlocal polarization effects from the substrate and the neighboring molecules and incorporates many-body perturbation theory calculations within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. We find that, independent of coverage, the HOMO energy of the linear chain phase is lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy.

  17. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing

    NASA Astrophysics Data System (ADS)

    Vorontsov, Mikhail A.; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  18. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing.

    PubMed

    Vorontsov, Mikhail A; Kolosov, Valeriy

    2005-01-01

    Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related to maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive-index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing coherent outgoing-wave propagation, and the equation describing evolution of the mutual correlation function (MCF) for the backscattered wave (return wave). The resulting evolution equation for the MCF is further simplified by use of the smooth-refractive-index approximation. This approximation permits derivation of the transport equation for the return-wave brightness function, analyzed here by the method of characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wave-front sensors that perform sensing of speckle-averaged characteristics of the wave-front phase (TIL sensors). Analysis of the wave-front phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric-turbulence-related phase aberrations. We also show that wave-front sensing results depend on the extended target shape, surface roughness, and outgoing-beam intensity distribution on the target surface. For targets with smooth surfaces and nonflat shapes, the target-induced phase can contain aberrations. The presence of target-induced aberrations in the conjugated phase may result in a deterioration of adaptive system performance.

  19. Methodological and clinical implications of a three-in-one Russian doll design for tracking health trajectories and improving health and function through innovative exercise treatments in adults with disability.

    PubMed

    Rimmer, James H; Herman, Cassandra; Wingo, Brooks; Fontaine, Kevin; Mehta, Tapan

    2018-03-14

    Hybrid research designs targeting adults with neurologic disability are critical for improving the efficiency of models that can identify, track and intervene on identified health issues. Our Russian doll framework encompasses three study phases. Phase 1 involves prospectively following a cohort of participants with disability to examine the relationships between rates of health and functional deficits (e.g., pain, fatigue, deconditioning), functional measures (e.g., cardiorespiratory endurance, strength, balance), and environmental and sociocultural factors. In Phase 2, eligible participants with neurologic disability from Phase 1 (in our example, individuals with multiple sclerosis) are screened and randomized to a clinical exercise efficacy trial. In Phase 3, study participants are enrolled in a home-based teleexercise trial to test the feasibility and replicability of delivering the clinical exercise study in the home. This unique three-in-one Russian doll framework serves as a foundation for informing and guiding researchers and clinicians in treating certain health and functional deficits in people with neurologic disability using exercise as a primary treatment modality in both the clinical and home settings. It offers a unique perspective for understanding the critical issues of functioning, health maintenance and quality of life for people with neurologic disability across a longitudinal framework. Study 2 ClinicalTrials.gov identifier NCT02533882 (retroactively registered 03/06/2015). Study 3 ClinicalTrials.gov identifier NCT03108950 (retroactively registered 04/05/2017).

  20. Sleep inertia, sleep homeostatic, and circadian influences on higher-order cognitive functions

    PubMed Central

    Ronda, Joseph M.; Czeisler, Charles A.; Wright, Kenneth P.

    2016-01-01

    Summary Sleep inertia, sleep homeostatic, and circadian processes modulate cognition, including reaction time, memory, mood, and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-daylong study that included two 14-daylong 28h forced desynchrony protocols, to examine separate and interacting influences of sleep inertia, sleep homeostasis, and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved over the first ~2-4h of wakefulness (sleep inertia); worsened thereafter until scheduled bedtime (sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~9AM and ~9PM respectively, in individuals with a habitual waketime of 7AM). The relative influences of sleep inertia, sleep homeostasis, and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation, and/or upon awakening from sleep. PMID:25773686

  1. Jitter Correction

    NASA Technical Reports Server (NTRS)

    Waegell, Mordecai J.; Palacios, David M.

    2011-01-01

    Jitter_Correct.m is a MATLAB function that automatically measures and corrects inter-frame jitter in an image sequence to a user-specified precision. In addition, the algorithm dynamically adjusts the image sample size to increase the accuracy of the measurement. The Jitter_Correct.m function takes an image sequence with unknown frame-to-frame jitter and computes the translations of each frame (column and row, in pixels) relative to a chosen reference frame with sub-pixel accuracy. The translations are measured using a Cross Correlation Fourier transformation method in which the relative phase of the two transformed images is fit to a plane. The measured translations are then used to correct the inter-frame jitter of the image sequence. The function also dynamically expands the image sample size over which the cross-correlation is measured to increase the accuracy of the measurement. This increases the robustness of the measurement to variable magnitudes of inter-frame jitter

  2. Effects of modulation phase on profile analysis in normal-hearing and hearing-impaired listeners

    NASA Astrophysics Data System (ADS)

    Rogers, Deanna; Lentz, Jennifer

    2003-04-01

    The ability to discriminate between sounds with different spectral shapes in the presence of amplitude modulation was measured in normal-hearing and hearing-impaired listeners. The standard stimulus was the sum of equal-amplitude modulated tones, and the signal stimulus was generated by increasing the level of half the tones (up components) and decreasing the level of half the tones (down components). The down components had the same modulation phase, and a phase shift was applied to the up components to encourage segregation from the down tones. The same phase shift was used in both standard and signal stimuli. Profile-analysis thresholds were measured as a function of the phase shift between up and down components. The phase shifts were 0, 30, 45, 60, 90, and 180 deg. As expected, thresholds were lowest when all tones had the same modulation phase and increased somewhat with increasing phase disparity. This small increase in thresholds was similar for both groups. These results suggest that hearing-impaired listeners are able to use modulation phase to group sounds in a manner similar to that of normal listeners. [Work supported by NIH (DC 05835).

  3. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity

    PubMed Central

    Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix

    2016-01-01

    Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the neural populations at the seed-point, suggestive of greater directional coupling from the seed out to the site electrodes. PMID:26747745

  4. N-acetylcysteine fails to modulate the in vitro function of sarcoplasmic reticulum of diaphragm in the final phase of fatigue.

    PubMed

    Mishima, T; Yamada, T; Matsunaga, S; Wada, M

    2005-07-01

    In the present study, we tested the hypothesis whether N-acetylcysteine (NAC), a non-specific antioxidant, might influence fatigue by modulating Ca2+-handling capacity by the sarcoplasmic reticulum (SR). In the presence (10 mm) or absence of NAC, bundles of rat diaphragm were stimulated with tetanic trains (350 ms, 30-40 Hz) at 1 train every 2 s for 300 s. SR functions, as assessed by SR Ca2+-uptake and release rates and SR Ca2+-ATPase activity, were measured in vitro on muscle homogenates. Following the 300-s stimulation, the force developed by NAC-treated muscles is approximately 1.8-fold higher (P < 0.05) than that of muscles without NAC treatment. Stimulation elicited an 18-30% depression in SR function (P < 0.05). Despite the differing degrees of fatigue between NAC-treated and non-treated muscles, SR functions in these muscles were reduced to similar extents. These results suggest that modulation of SR function measured in vitro may not be a major contributor to inhibition of diaphragmic fatigue with antioxidant, at least, in the final phase of fatigue where force output is remarkably reduced.

  5. Personality and symptom change in treatment-refractory inpatients: evaluation of the phase model of change using Rorschach,TAT, and DSM-IV Axis V.

    PubMed

    Fowler, J Christopher; Ackerman, Steven J; Speanburg, Stefanie; Bailey, Adrian; Blagys, Matthew; Conklin, Adam C

    2004-12-01

    In this study, we examined global treatment outcomes during 16 months of intensive, psychodynamic treatment for 77 inpatients suffering from treatment-refractory disorders. Hypotheses based on the phase model of treatment change (Howard, Lueger, Maling, & Martinovich, 1993; Howard, Moras, Brill, Martinovich, & Lutz, 1996) were supported in the study results. Diagnostic and Statistical Manual of Mental Disorders (4th ed.; American Psychiatric Association, 1994) Axis V scales assessing behavioral functioning demonstrated large and medium effect size change, whereas stable, enduring personality functioning assessed by psychoanalytic Rorschach scales and the Social Cognition and Object Relations Scale (Westen, 1995) for the Thematic Apperception Test (Murray, 1943) demonstrated small and medium effect size change. We also report assessment of reliable change index and clinical significance. The ecological validity of Rorschach measures is supported by significant validity coefficients (in the hypothesized directions) between implicit measures of personality functioning and behavioral ratings.

  6. Differences in respirogram phase between taekwondo poomsae athletes and nonathletes.

    PubMed

    Shin, Yong-Sub; Yang, Seung-Min; Kim, Mee-Young; Lee, Lim-Kyu; Park, Byoung-Sun; Lee, Won-Deok; Noh, Ji-Woong; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Park, Jaehong; Kim, Junghwan

    2016-09-01

    [Purpose] Respiratory physiotherapy is an effective approach to improving lung function in patient, including athletes with respiratory dysfunction caused by sports injury. The purpose of this study was to analyze the differences in the respirograms between taekwondo poomsae athletes and nonathletes according to the respirogram phase. [Subjects and Methods] Respiratory measurements for 13 elite taekwondo poomsae athletes were obtained. Respiratory function was measured using spirometry while the participant was seated. [Results] In respirogram phasic analysis, the inspiratory area of forced vital capacity were significantly increased in the athletes than in the nonathletes. The slopes of the forced vital capacity for athletes at slopes 1, 2, and 3 of the A area were significantly higher than those for the nonathletes. In correlation analysis, chest circumference was significantly correlated with slope 1 of the A area of the forced vital capacity. [Conclusion] Results indicate that differences in respirogram phasic changes between athletes and nonathletes may contribute to better understanding of respiratory function, which is important to sports physiotherapy research.

  7. Acousto-optic Imaging System for In-situ Measurement of the High Temperature Distribution in Micron-size Specimens

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander S.; Zinin, Pavel V.; Shurygin, Alexander V.

    We developed a unique acousto-optic imaging system for in-situ measurement of high temperature distribution on micron-size specimens. The system was designed to measure temperature distribution inside minerals and functional material phases subjected to high pressure and high temperatures in a diamond anvil cell (DAC) heated by a high powered laser.

  8. Instantaneous phase mapping deflectometry for dynamic deformable mirror characterization

    NASA Astrophysics Data System (ADS)

    Trumper, Isaac; Choi, Heejoo

    2017-09-01

    We present an instantaneous phase mapping deflectometry (PMD) system in the context of measuring a continuous surface deformable mirror (DM). Deflectometry has a high dynamic range, enabling the full range of surfaces generated by the DM to be measured. The recent development of an instantaneous PMD system leverages the simple setup of the PMD system to measure dynamic objects with accuracy similar to an interferometer. To demonstrate the capabilities of this technology, we perform a linearity measurement of the actuator motion in a continuous surface DM, which is critical for closed loop control in adaptive optics applications. We measure the entire set of actuators across the DM as they traverse their full range of motion with a Shack-Hartman wavefront sensor, thereby obtaining the influence function. Given the influence function of each actuator, the DM can produce specific Zernike terms on its surface. We then measure the linearity of the Zernike modes available in the DM software using the instantaneous PMD system. By obtaining the relationship between modes, we can more accurately generate surface profiles composed of Zernike terms. This ability is useful for other dynamic freeform metrology applications that utilize the DM as a null component.

  9. Using quality of life measures in a Phase I clinical trial of noni in patients with advanced cancer to select a Phase II dose.

    PubMed

    Issell, Brian F; Gotay, Carolyn C; Pagano, Ian; Franke, Adrian A

    2009-01-01

    ABSTRACT. The purpose of this study was to determine a maximum tolerated dose of noni in cancer patients and whether an optimal quality of life-sustaining dose could be identified as an alternative way to select a dose for subsequent Phase II efficacy trials. Dose levels started at two capsules twice daily (2 g), the suggested dose for the marketed product, and were escalated by 2 g daily in cohorts of at least five patients until a maximum tolerated dose was found. Patients completed subscales of the European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30 quality of life (physical functioning, pain, and fatigue) the brief fatigue inventory (BFI), questionnaires at baseline and at approximately 4-week intervals. Blood and urine were collected at baseline and at approximately 4-week intervals for measurement of scopoletin. Fifty-one patients were enrolled at seven dose levels. The maximum tolerated dose was six capsules four times daily (12 g). Although no dose-limiting toxicity was found, seven of eight patients at the next level (14 g), withdrew due to the challenges of ingesting so many capsules. There were dose-related differences in self-reported physical functioning and pain and fatigue control. Overall, patients taking three or four capsules four times daily experienced better outcomes than patients taking lower or higher doses. Blood and urinary scopoletin concentrations related to noni dose. We concluded that it is feasible to use quality of life measures to select a Phase II dose. Three or four capsules four times daily (6-8 g) is recommended when controlling fatigue, pain, and maintaining physical function are the efficacies of interest. Scopoletin, a bioactive component of noni fruit extract, is measurable in blood and urine following noni ingestion and can be used to study the pharmacokinetics of noni in cancer patients.

  10. Parameterization of single-scattering properties of snow

    NASA Astrophysics Data System (ADS)

    Räisänen, P.; Kokhanovsky, A.; Guyot, G.; Jourdan, O.; Nousiainen, T.

    2015-02-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in many radiative transfer applications, single-scattering properties of snow have been based on the assumption of spherical grains. More recently, second-generation Koch fractals have been employed. While they produce a relatively flat phase function typical of deformed non-spherical particles, this is still a rather ad-hoc choice. Here, angular scattering measurements for blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference phase function for snow. Based on this phase function, an optimized habit combination (OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly distorted Koch fractals is selected. The single-scattering properties of snow are then computed for the OHC as a function of wavelength λ and snow grain volume-to-projected area equivalent radius rvp. Parameterization equations are developed for λ = 0.199-2.7 μm and rvp = 10-2000 μm, which express the single-scattering co-albedo β, the asymmetry parameter g and the phase function P11 as functions of the size parameter and the real and imaginary parts of the refractive index. The parameterizations are analytic and simple to use in radiative transfer models. Compared to the reference values computed for the OHC, the accuracy of the parameterization is very high for β and g. This is also true for the phase function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we consider snow albedo and reflected radiances for the suggested snow optics parameterization, making comparisons to spheres and distorted Koch fractals.

  11. Parameterization of single-scattering properties of snow

    NASA Astrophysics Data System (ADS)

    Räisänen, P.; Kokhanovsky, A.; Guyot, G.; Jourdan, O.; Nousiainen, T.

    2015-06-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in many radiative transfer applications, single-scattering properties of snow have been based on the assumption of spherical grains. More recently, second-generation Koch fractals have been employed. While they produce a relatively flat phase function typical of deformed non-spherical particles, this is still a rather ad hoc choice. Here, angular scattering measurements for blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference phase function for snow. Based on this phase function, an optimized habit combination (OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly distorted Koch fractals is selected. The single-scattering properties of snow are then computed for the OHC as a function of wavelength λ and snow grain volume-to-projected area equivalent radius rvp. Parameterization equations are developed for λ = 0.199-2.7 μm and rvp = 10-2000 μm, which express the single-scattering co-albedo β, the asymmetry parameter g and the phase function P11 as functions of the size parameter and the real and imaginary parts of the refractive index. The parameterizations are analytic and simple to use in radiative transfer models. Compared to the reference values computed for the OHC, the accuracy of the parameterization is very high for β and g. This is also true for the phase function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we consider snow albedo and reflected radiances for the suggested snow optics parameterization, making comparisons to spheres and distorted Koch fractals.

  12. The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke.

    PubMed

    Santos-Couto-Paz, Clarissa C; Teixeira-Salmela, Luci F; Tierra-Criollo, Carlos J

    2013-01-01

    Mental practice (MP) is a cognitive strategy which may improve the acquisition of motor skills and functional performance of athletes and individuals with neurological injuries. To determine whether an individualized, specific functional task-oriented MP, when added to conventional physical therapy (PT), promoted better learning of motor skills in daily functions in individuals with chronic stroke (13 ± 6.5 months post-stroke). Nine individuals with stable mild and moderate upper limb impairments participated, by employing an A1-B-A2 single-case design. Phases A1 and A2 included one month of conventional PT, and phase B the addition of MP training to PT. The motor activity log (MAL-Brazil) was used to assess the amount of use (AOU) and quality of movement (QOM) of the paretic upper limb; the revised motor imagery questionnaire (MIQ-RS) to assess the abilities in kinesthetic and visual motor imagery; the Minnesota manual dexterity test to assess manual dexterity; and gait speed to assess mobility. After phase A1, no significant changes were observed for any of the outcome measures. However, after phase B, significant improvements were observed for the MAL, AOU and QOM scores (p<0.0001), and MIQ-RS kinesthetic and visual scores (p=0.003; p=0.007, respectively). The significant gains in manual dexterity (p=0.002) and gait speed (p=0.019) were maintained after phase A2. Specific functional task-oriented MP, when added to conventional PT, led to improvements in motor imagery abilities combined with increases in the AOU and QOM in daily functions, manual dexterity, and gait speed.

  13. Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry.

    PubMed

    Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F

    2008-11-10

    Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization.

  14. Study of anyon condensation and topological phase transitions from a Z4 topological phase using the projected entangled pair states approach

    NASA Astrophysics Data System (ADS)

    Iqbal, Mohsin; Duivenvoorden, Kasper; Schuch, Norbert

    2018-05-01

    We use projected entangled pair states (PEPS) to study topological quantum phase transitions. The local description of topological order in the PEPS formalism allows us to set up order parameters which measure condensation and deconfinement of anyons and serve as substitutes for conventional order parameters. We apply these order parameters, together with anyon-anyon correlation functions and some further probes, to characterize topological phases and phase transitions within a family of models based on a Z4 symmetry, which contains Z4 quantum double, toric code, double semion, and trivial phases. We find a diverse phase diagram which exhibits a variety of different phase transitions of both first and second order which we comprehensively characterize, including direct transitions between the toric code and the double semion phase.

  15. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity.

    PubMed

    Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko

    2012-01-01

    Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.

  16. The Role of Negative Priming in Preschoolers' Flexible Rule Use on the Dimensional Change Card Sort Task

    ERIC Educational Resources Information Center

    Muller, Ulrich; Dick, Anthony Steven; Gela, Katherine; Overton, Willis F.; Zelazo, Philip David

    2006-01-01

    Four experiments examined the development of negative priming (NP) in 3-5-year-old children using as a measure of children's executive function (EF) the dimensional change card sort (DCCS) task. In the NP version of the DCCS, the values of the sorting dimension that is relevant during the preswitch phase are removed during the postswitch phase.…

  17. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOEpatents

    Beller, L.S.

    1993-01-26

    A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  18. Performance of different synchronization measures in real data: A case study on electroencephalographic signals

    NASA Astrophysics Data System (ADS)

    Quian Quiroga, R.; Kraskov, A.; Kreuz, T.; Grassberger, P.

    2002-04-01

    We study the synchronization between left and right hemisphere rat electroencephalographic (EEG) channels by using various synchronization measures, namely nonlinear interdependences, phase synchronizations, mutual information, cross correlation, and the coherence function. In passing we show a close relation between two recently proposed phase synchronization measures and we extend the definition of one of them. In three typical examples we observe that except mutual information, all these measures give a useful quantification that is hard to be guessed beforehand from the raw data. Despite their differences, results are qualitatively the same. Therefore, we claim that the applied measures are valuable for the study of synchronization in real data. Moreover, in the particular case of EEG signals their use as complementary variables could be of clinical relevance.

  19. Phase reversal of biomechanical functions and muscle activity in backward pedaling.

    PubMed

    Ting, L H; Kautz, S A; Brown, D A; Zajac, F E

    1999-02-01

    Computer simulations of pedaling have shown that a wide range of pedaling tasks can be performed if each limb has the capability of executing six biomechanical functions, which are arranged into three pairs of alternating antagonistic functions. An Ext/Flex pair accelerates the limb into extension or flexion, a Plant/Dorsi pair accelerates the foot into plantarflexion or dorsiflexion, and an Ant/Post pair accelerates the foot anteriorly or posteriorly relative to the pelvis. Because each biomechanical function (i.e., Ext, Flex, Plant, Dorsi, Ant, or Post) contributes to crank propulsion during a specific region in the cycle, phasing of a muscle is hypothesized to be a consequence of its ability to contribute to one or more of the biomechanical functions. Analysis of electromyogram (EMG) patterns has shown that this biomechanical framework assists in the interpretation of muscle activity in healthy and hemiparetic subjects during forward pedaling. Simulations show that backward pedaling can be produced with a phase shift of 180 degrees in the Ant/Post pair. No phase shifts in the Ext/Flex and Plant/Dorsi pairs are then necessary. To further test whether this simple yet biomechanically viable strategy may be used by the nervous system, EMGs from 7 muscles in 16 subjects were measured during backward as well as forward pedaling. As predicted, phasing in vastus medialis (VM), tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SL) were unaffected by pedaling direction, with VM and SL contributing to Ext, MG to Plant, and TA to Dorsi. In contrast, phasing in biceps femoris (BF) and semimembranosus (SM) were affected by pedaling direction, as predicted, compatible with their contribution to the directionally sensitive Post function. Phasing of rectus femoris (RF) was also affected by pedaling direction; however, its ability to contribute to the directionally sensitive Ant function may only be expressed in forward pedaling. RF also contributed significantly to the directionally insensitive Ext function in both forward and backward pedaling. Other muscles also appear to have contributed to more than one function, which was especially evident in backward pedaling (i.e. , BF, SM, MG, and TA to Flex). We conclude that the phasing of only the Ant and Post biomechanical functions are directionally sensitive. Further, we suggest that task-dependent modulation of the expression of the functions in the motor output provides this biomechanics-based neural control scheme with the capability to execute a variety of lower limb tasks, including walking.

  20. A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators.

    PubMed

    Teng, Long; Pivnenko, Mike; Robertson, Brian; Zhang, Rong; Chu, Daping

    2014-10-20

    A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer's thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.

  1. Structural and functional aspects of social support as predictors of mental and physical health trajectories: Whitehall II cohort study.

    PubMed

    Hakulinen, Christian; Pulkki-Råback, Laura; Jokela, Markus; E Ferrie, Jane; Aalto, Anna-Mari; Virtanen, Marianna; Kivimäki, Mika; Vahtera, Jussi; Elovainio, Marko

    2016-07-01

    Social support is associated with better health. However, only a limited number of studies have examined the association of social support with health from the adult life course perspective and whether this association is bidirectional. Participants (n=6797; 30% women; age range from 40 to 77 years) who were followed from 1989 (phase 2) to 2006 (phase 8) were selected from the ongoing Whitehall II Study. Structural and functional social support was measured at follow-up phases 2, 5 and 7. Mental and physical health was measured at five consecutive follow-up phases (3-8). Social support predicted better mental health, and certain functional aspects of social support, such as higher practical support and higher levels of negative aspects in social relationships, predicted poorer physical health. The association between negative aspects of close relationships and physical health was found to strengthen over the adult life course. In women, the association between marital status and mental health weakened until the age of approximately 60 years. Better mental and physical health was associated with higher future social support. The strength of the association between social support and health may vary over the adult life course. The association with health seems to be bidirectional. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Using ecological function to develop recovery criteria for depleted species: Sea otters and kelp forests in the Aleutian archipelago

    USGS Publications Warehouse

    Estes, James A.; Tinker, M. Tim; Bodkin, James L.

    2010-01-01

    Recovery criteria for depleted species or populations normally are based on demographic measures, the goal being to maintain enough individuals over a sufficiently large area to assure a socially tolerable risk of future extinction. Such demographically based recovery criteria may be insufficient to restore the functional roles of strongly interacting species. We explored the idea of developing a recovery criterion for sea otters (Enhydra lutris) in the Aleutian archipelago on the basis of their keystone role in kelp forest ecosystems. We surveyed sea otters and rocky reef habitats at 34 island-time combinations. The system nearly always existed in either a kelp-dominated or deforested phase state, which was predictable from sea otter density. We used a resampling analysis of these data to show that the phase state at any particular island can be determined at 95% probability of correct classification with information from as few as six sites. When sea otter population status (and thus the phase state of the kelp forest) was allowed to vary randomly among islands, just 15 islands had to be sampled to estimate the true proportion that were kelp dominated (within 10%) with 90% confidence. We conclude that kelp forest phase state is a more appropriate, sensitive, and cost-effective measure of sea otter recovery than the more traditional demographically based metrics, and we suggest that similar approaches have broad potential utility in establishing recovery criteria for depleted populations of other functionally important species.

  3. Seasonality and phenology alter functional leaf traits.

    PubMed

    McKown, Athena D; Guy, Robert D; Azam, M Shofiul; Drewes, Eric C; Quamme, Linda K

    2013-07-01

    In plant ecophysiology, functional leaf traits are generally not assessed in relation to phenological phase of the canopy. Leaf traits measured in deciduous perennial species are known to vary between spring and summer seasons, but there is a knowledge gap relating to the late-summer phase marked by growth cessation and bud set occurring well before fall leaf senescence. The effects of phenology on canopy physiology were tested using a common garden of over 2,000 black cottonwood (Populus trichocarpa) individuals originating from a wide geographical range (44-60ºN). Annual phenological events and 12 leaf-based functional trait measurements were collected spanning the entire summer season prior to, and following, bud set. Patterns of seasonal trait change emerged by synchronizing trees using their date of bud set. In particular, photosynthetic, mass, and N-based traits increased substantially following bud set. Most traits were significantly different between pre-bud set and post-bud set phase trees, with many traits showing at least 25% alteration in mean value. Post-bud set, both the significance and direction of trait-trait relationships could be modified, with many relating directly to changes in leaf mass. In Populus, these dynamics in leaf traits throughout the summer season reflected a shift in whole plant physiology, but occurred long before the onset of leaf senescence. The marked shifts in measured trait values following bud set underscores the necessity to include phenology in trait-based ecological studies or large-scale phenotyping efforts, both at the local level and larger geographical scale.

  4. New method for determining temperature and emission measure during solar flares from light curves of soft X-ray line fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornmann, P.L.

    I describe a new property of soft X-ray line fluxes observed during the decay phase of solar flares and a technique for using this property to determine the plasma temperature and emission measure as functions of time. The soft X-ray line fluxes analyzed in this paper were observed during the decay phase of the 1980 November 5 flare by the X-Ray Polychromator (XRP) instrument on board the Solar Maximum Mission (SMM). The resonance, intercombination, and forbidden lines of Ne IX, Mg XI, Si XIII, S XV, Ca XIX, and Fe XXV, as well as the Lyman-..cap alpha.. line of Omore » VIII and the resonance lines of Fe XIX, were observed. The rates at which the observed line fluxes decayed were not constant. For all but the highest temperature lines observed, the rate changed abruptly, causing the fluxes to fall at a more rapid rate later in the flare decay. These changes occurred at earlier times for lines formed at higher temperatures. This behavior is proposed to be due to the decreasing temperature of the flare plasma tracking the rise and subsequent fall of each line emissivity function. This explanation is used to empirically model the observed light curves and to estimate the temperature and the change in emission measure of the plasma as a function of time during the decay phase. Estimates are made of various plasma parameters based on the model results.« less

  5. Long-term clinical evaluation of the automatic stance-phase lock-controlled prosthetic knee joint in young adults with unilateral above-knee amputation.

    PubMed

    Andrysek, Jan; Wright, F Virginia; Rotter, Karin; Garcia, Daniela; Valdebenito, Rebeca; Mitchell, Carlos Alvarez; Rozbaczylo, Claudio; Cubillos, Rafael

    2017-05-01

    The purpose of this study was to clinically evaluate the automatic stance-phase lock (ASPL) knee mechanism against participants' existing weight-activated braking (WAB) prosthetic knee joint. This prospective crossover study involved 10 young adults with an above-knee amputation. Primary measurements consisted of tests of walking speeds and capacity. Heart rate was measured during the six-minute walk test and the Physiological Cost Index (PCI) which was calculated from heart rate estimated energy expenditure. Activity was measured with a pedometer. User function and quality of life were assessed using the Lower Limb Function Questionnaire (LLFQ) and Prosthetic Evaluation Questionnaire (PEQ). Long-term follow-up over 12 months were completed. Walking speeds were the same for WAB and APSL knees. Energy expenditure (PCI) was lower for the ASPL knees (p = 0.007). Step counts were the same for both knees, and questionnaires indicated ASPL knee preference attributed primarily to knee stability and improved walking, while limitations included terminal impact noise. Nine of 10 participants chose to keep using the ASPL knee as part of the long-term follow-up. Potential benefits of the ASPL knee were identified in this study by functional measures, questionnaires and user feedback, but not changes in activity or the PEQ.

  6. A 12-Week Physical and Cognitive Exercise Program Can Improve Cognitive Function and Neural Efficiency in Community-Dwelling Older Adults: A Randomized Controlled Trial.

    PubMed

    Nishiguchi, Shu; Yamada, Minoru; Tanigawa, Takanori; Sekiyama, Kaoru; Kawagoe, Toshikazu; Suzuki, Maki; Yoshikawa, Sakiko; Abe, Nobuhito; Otsuka, Yuki; Nakai, Ryusuke; Aoyama, Tomoki; Tsuboyama, Tadao

    2015-07-01

    To investigate whether a 12-week physical and cognitive exercise program can improve cognitive function and brain activation efficiency in community-dwelling older adults. Randomized controlled trial. Kyoto, Japan. Community-dwelling older adults (N = 48) were randomized into an exercise group (n = 24) and a control group (n = 24). Exercise group participants received a weekly dual task-based multimodal exercise class in combination with pedometer-based daily walking exercise during the 12-week intervention phase. Control group participants did not receive any intervention and were instructed to spend their time as usual during the intervention phase. The outcome measures were global cognitive function, memory function, executive function, and brain activation (measured using functional magnetic resonance imaging) associated with visual short-term memory. Exercise group participants had significantly greater postintervention improvement in memory and executive functions than the control group (P < .05). In addition, after the intervention, less activation was found in several brain regions associated with visual short-term memory, including the prefrontal cortex, in the exercise group (P < .001, uncorrected). A 12-week physical and cognitive exercise program can improve the efficiency of brain activation during cognitive tasks in older adults, which is associated with improvements in memory and executive function. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  7. Structures, phase transitions and microwave dielectric properties of the 6H perovskites Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba

    NASA Astrophysics Data System (ADS)

    Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert

    2009-03-01

    We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.

  8. Phase Behavior of an Intact Monoclonal Antibody

    PubMed Central

    Ahamed, Tangir; Esteban, Beatriz N. A.; Ottens, Marcel; van Dedem, Gijs W. K.; van der Wielen, Luuk A. M.; Bisschops, Marc A. T.; Lee, Albert; Pham, Christine; Thömmes, Jörg

    2007-01-01

    Understanding protein phase behavior is important for purification, storage, and stable formulation of protein drugs in the biopharmaceutical industry. Glycoproteins, such as monoclonal antibodies (MAbs) are the most abundant biopharmaceuticals and probably the most difficult to crystallize among water-soluble proteins. This study explores the possibility of correlating osmotic second virial coefficient (B22) with the phase behavior of an intact MAb, which has so far proved impossible to crystallize. The phase diagram of the MAb is presented as a function of the concentration of different classes of precipitants, i.e., NaCl, (NH4)2SO4, and polyethylene glycol. All these precipitants show a similar behavior of decreasing solubility with increasing precipitant concentration. B22 values were also measured as a function of the concentration of the different precipitants by self-interaction chromatography and correlated with the phase diagrams. Correlating phase diagrams with B22 data provides useful information not only for a fundamental understanding of the phase behavior of MAbs, but also for understanding the reason why certain proteins are extremely difficult to crystallize. The scaling of the phase diagram in B22 units also supports the existence of a universal phase diagram of a complex glycoprotein when it is recast in a protein interaction parameter. PMID:17449660

  9. Large-deviation properties of Brownian motion with dry friction.

    PubMed

    Chen, Yaming; Just, Wolfram

    2014-10-01

    We investigate piecewise-linear stochastic models with regard to the probability distribution of functionals of the stochastic processes, a question that occurs frequently in large deviation theory. The functionals that we are looking into in detail are related to the time a stochastic process spends at a phase space point or in a phase space region, as well as to the motion with inertia. For a Langevin equation with discontinuous drift, we extend the so-called backward Fokker-Planck technique for non-negative support functionals to arbitrary support functionals, to derive explicit expressions for the moments of the functional. Explicit solutions for the moments and for the distribution of the so-called local time, the occupation time, and the displacement are derived for the Brownian motion with dry friction, including quantitative measures to characterize deviation from Gaussian behavior in the asymptotic long time limit.

  10. Neutron Diffraction and Electrical Transport Studies on Magnetic Transition in Terbium at High Pressures and Low Temperatures

    NASA Astrophysics Data System (ADS)

    Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio

    2013-06-01

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.

  11. Assessment of grammar optimizes language tasks for the intracarotid amobarbital procedure.

    PubMed

    Połczyńska, Monika; Kuhn, Taylor; You, S Christine; Walshaw, Patricia; Curtiss, Susan; Bookheimer, Susan

    2017-11-01

    A previous study showed that assessment of language laterality could be improved by adding grammar tests to the recovery phase of the intracarotid amobarbital procedure (IAP) (Połczyńska et al. 2014). The aim of this study was to further investigate the extent to which grammar tests lateralize language function during the recovery phase of the IAP in a larger patient sample. Forty patients with drug-resistant epilepsy (14 females, thirty-two right-handed, mean age 38.5years, SD=10.6) participated in this study. On EEG, 24 patients had seizures originating in the left hemisphere (LH), 13 in the right hemisphere (RH), and 4 demonstrated mixed seizure origin. Thirty participants (75%) had bilateral injections, and ten (25%) had unilateral injections (five RH and five LH). Based on results from the encoding phase, we segregated our study participants to a LH language dominant and a mixed dominance group. In the recovery phase of the IAP, the participants were administered a new grammar test (the CYCLE-N) and a standard language test. We analyzed the laterality index measure and effect sizes in the two tests. In the LH-dominant group, the CYCLE-N generated more profound language deficits in the recovery phase than the standard after injection to either hemisphere (p<0.001). At the same time, the laterality index for the grammar tasks was still higher than for the standard tests. Critically, the CYCLE-N administered in the recovery phase was nearly as effective as the standard tests given during the encoding phase. The results may be significant for individuals with epilepsy undergoing IAP. The grammar tests may be a highly efficient measure for lateralizing language function in the recovery phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Reconstructed phase spaces of intrinsic mode functions. Application to postural stability analysis.

    PubMed

    Snoussi, Hichem; Amoud, Hassan; Doussot, Michel; Hewson, David; Duchêne, Jacques

    2006-01-01

    In this contribution, we propose an efficient nonlinear analysis method characterizing postural steadiness. The analyzed signal is the displacement of the centre of pressure (COP) collected from a force plate used for measuring postural sway. The proposed method consists of analyzing the nonlinear dynamics of the intrinsic mode functions (IMF) of the COP signal. The nonlinear properties are assessed through the reconstructed phase spaces of the different IMFs. This study shows some specific geometries of the attractors of some intrinsic modes. Moreover, the volume spanned by the geometric attractors in the reconstructed phase space represents an efficient indicator of the postural stability of the subject. Experiments results corroborate the effectiveness of the method to blindly discriminate young subjects, elderly subjects and subjects presenting a risk of falling.

  13. Liver Function Assessment by Magnetic Resonance Imaging.

    PubMed

    Ünal, Emre; Akata, Deniz; Karcaaltincaba, Musturay

    2016-12-01

    Liver function assessment by hepatocyte-specific contrast-enhanced magnetic resonance imaging is becoming a new biomarker. Liver function can be assessed by T1 mapping (reduction rate) and signal intensity measurement (relative enhancement ratio) before and after GD-EOB-DTPA (gadoxetic acid) administration, as alternative to Tc-99m galactosyl serum albumin scintigraphy, 99m Tc-labeled mebrofenin scintigraphy, and indocyanine green clearance test. Magnetic resonance imaging assessment of liver function can enable diagnosis of cirrhosis, nonalcoholic fatty liver disease associated fibrosis and steatohepatitis, primary sclerosing cholangitis, toxic hepatitis, and chemotherapy and radiotherapy-related changes, which may be only visible on hepatobiliary phase images. Simple visual assessment of signal intensity at hepatobiliary phase images is important for the diagnosis of different patterns of liver dysfunction including diffuse, lobar, segmental, and subsegmental forms. Furthermore, preoperative assessment of liver function is feasible before oncologic hepatic surgery, which may be important to prevent posthepatectomy liver failure and to estimate future remnant volume. Functional magnetic resonance cholangiography obtained by T1-weighted images at hepatobiliary phase can allow diagnosis of acalculous cholecystitis, biliary leakage, bile reflux to the stomach, sphincter of oddi dysfunction, and lesions with communication to biliary tree. Functional information can be easily obtained when Gd-EOB-DTPA is used for liver magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium

    DOE PAGES

    Davis, P.; Döppner, T.; Rygg, J. R.; ...

    2016-04-18

    Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us tomore » extract ionization state as a function of compression. Furthermore, the onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.« less

  15. Oxygen potentials and phase equilibria in the system Ca–Co–O and thermodynamic properties of Ca{sub 3}Co{sub 2}O{sub 6} and Ca{sub 3}Co{sub 4}O{sub 9.163}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, K.T., E-mail: katob@materials.iisc.ernet.in; Gupta, Preeti

    2015-01-15

    Oxygen potentials established by the equilibrium between three condensed phases, CaO{sub ss}+CoO{sub ss}+Ca{sub 3}Co{sub 2}O{sub 6} and CoO{sub ss}+Ca{sub 3}Co{sub 2}O{sub 6}+Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ}, are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ} are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca{sub 3}Co{sub 2}O{sub 6} and Ca{sub 3}Co{sub 4}O{sub 9.163} are calculated from the results. The standard entropy and enthalpy of formation of Ca{sub 3}Co{sub 2}O{sub 6} atmore » 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca–Co–O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. - Graphical abstract: Isothermal section of the phase diagram of the system Ca–Co–O at 1250 K. - Highlights: • Improved definition of cation and oxygen nonstoichiometry of Ca{sub 3}Co{sub 3.93+α}O{sub 9.36−δ}. • Measurement of Δμ{sub O{sub 2}} associated with two 3-phase fields as a function of temperature. • Use of solid-state electrochemical cells for accurate measurement of Δμ{sub O{sub 2}}. • Decomposition temperatures and thermodynamic properties for ternary oxides. • Characterization of ternary phase diagram of the system Ca–Co–O.« less

  16. Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Huang, Ching-Yu

    2017-09-01

    Recent progress in the characterization of gapped quantum phases has also triggered the search for a universal resource for quantum computation in symmetric gapped phases. Prior works in one dimension suggest that it is a feature more common than previously thought, in that nontrivial one-dimensional symmetry-protected topological (SPT) phases provide quantum computational power characterized by the algebraic structure defining these phases. Progress in two and higher dimensions so far has been limited to special fixed points. Here we provide two families of two-dimensional Z2 symmetric wave functions such that there exists a finite region of the parameter in the SPT phases that supports universal quantum computation. The quantum computational power appears to lose its universality at the boundary between the SPT and the symmetry-breaking phases.

  17. An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization

    NASA Astrophysics Data System (ADS)

    Chen, Li; Weng, Zhiqiang; Goh, LaiYoong; Garland, Marc

    2002-09-01

    A new algorithm for automatic phase correction of NMR spectra based on entropy minimization is proposed. The optimal zero-order and first-order phase corrections for a NMR spectrum are determined by minimizing entropy. The objective function is constructed using a Shannon-type information entropy measure. Entropy is defined as the normalized derivative of the NMR spectral data. The algorithm has been successfully applied to experimental 1H NMR spectra. The results of automatic phase correction are found to be comparable to, or perhaps better than, manual phase correction. The advantages of this automatic phase correction algorithm include its simple mathematical basis and the straightforward, reproducible, and efficient optimization procedure. The algorithm is implemented in the Matlab program ACME—Automated phase Correction based on Minimization of Entropy.

  18. Studies in nonlinear optics and functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Dai, Tehui

    There are two parts in this thesis. The first part will involve a study in the anomalous dispersion phase matched second-harmonic generation, and the second part will be a study in functional magnetic resonance imaging (fMRI) and a biophysical model of the human muscle. In part I, we report on a series of tricyanovinylaniline chromophores for use as dopants in poled poly(methyl methacrylate) waveguides for anomalous-dispersion phase- matched second-harmonic generation. Second-harmonic generation measurements as a function of mode index confirmed anomalous dispersion phase-matching efficiencies as large as 245%/Wcm2 over a propagation length of ~35 μm. The waveguide coupling technique limited the interaction length. The photostability of the chromophores was measured directly and found to agree qualitatively with second-harmonic measurements over time and was found to be improved over previously reported materials. In part II, we designed a system that could record joint force and surface electromyography (EMG) simultaneously with fMRI data. I-Egh quality force and EMG data were obtained at the same time that excellent fMRI brain images were achieved. Using this system we determined the relationship between the fMRI-measured brain activation and the handgrip force, and between the fMRI-measured brain activation and the EMG of finger flexor muscles. We found that in the whole brain and in the majority of motor function-related cortical fields, the degree of muscle activation is directly proportional to the amplitude of the brain signal determined by the fMRI measurement. The similarity in the relationship between muscle output and fMRI signal in a number of brain areas suggests that multiple cortical fields are involved in controlling muscle force. The factors that may contribute to the fMRI signals are discussed. A biophysical twitch force model was developed to predict force response under electrical stimulation. Comparison between experimental and modeled force profiles, peak forces, and force duration shows excellent agreement between the model and the experimental data. It is concluded that the present model allows us to reproduce the main features of muscle activation under stimulation.

  19. Full-Physics Inverse Learning Machine for Satellite Remote Sensing of Ozone Profile Shapes and Tropospheric Columns

    NASA Astrophysics Data System (ADS)

    Xu, J.; Heue, K.-P.; Coldewey-Egbers, M.; Romahn, F.; Doicu, A.; Loyola, D.

    2018-04-01

    Characterizing vertical distributions of ozone from nadir-viewing satellite measurements is known to be challenging, particularly the ozone information in the troposphere. A novel retrieval algorithm called Full-Physics Inverse Learning Machine (FP-ILM), has been developed at DLR in order to estimate ozone profile shapes based on machine learning techniques. In contrast to traditional inversion methods, the FP-ILM algorithm formulates the profile shape retrieval as a classification problem. Its implementation comprises a training phase to derive an inverse function from synthetic measurements, and an operational phase in which the inverse function is applied to real measurements. This paper extends the ability of the FP-ILM retrieval to derive tropospheric ozone columns from GOME- 2 measurements. Results of total and tropical tropospheric ozone columns are compared with the ones using the official GOME Data Processing (GDP) product and the convective-cloud-differential (CCD) method, respectively. Furthermore, the FP-ILM framework will be used for the near-real-time processing of the new European Sentinel sensors with their unprecedented spectral and spatial resolution and corresponding large increases in the amount of data.

  20. Parameterization of single-scattering properties of snow

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Kokhanovsky, Alexander; Guyot, Gwennole; Jourdan, Olivier; Nousiainen, Timo

    2015-04-01

    Snow consists of non-spherical ice grains of various shapes and sizes, which are surrounded by air and sometimes covered by films of liquid water. Still, in many studies, homogeneous spherical snow grains have been assumed in radiative transfer calculations, due to the convenience of using Mie theory. More recently, second-generation Koch fractals have been employed. While they produce a relatively flat scattering phase function typical of deformed non-spherical particles, this is still a rather ad-hoc choice. Here, angular scattering measurements for blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference phase function for snow. Based on this phase function, an optimized habit combination (OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly distorted Koch fractals is selected. The single-scattering properties of snow are then computed for the OHC as a function of wavelength λ and snow grain volume-to-projected area equivalent radius rvp. Parameterization equations are developed for λ=0.199-2.7 μm and rvp = 10-2000 μm, which express the single-scattering co-albedo β, the asymmetry parameter g and the phase function as functions of the size parameter and the real and imaginary parts of the refractive index. Compared to the reference values computed for the OHC, the accuracy of the parameterization is very high for β and g. This is also true for the phase function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we consider snow albedo and reflected radiances for the suggested snow optics parameterization, making comparisons with spheres and distorted Koch fractals. Further evaluation and validation of the proposed approach against (e.g.) bidirectional reflectance and polarization measurements for snow is planned. At any rate, it seems safe to assume that the OHC selected here provides a substantially better basis for representing the single-scattering properties of snow than spheres do. Moreover, the parameterizations developed here are analytic and simple to use, and they can also be applied to the treatment of dirty snow following (e.g.) the approach of Kokhanovsky (The Cryosphere, 7, 1325-1331, doi:10.5194/tc-7-1325-2013, 2013). This should make them an attractive option for use in radiative transfer applications involving snow.

  1. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves

    NASA Astrophysics Data System (ADS)

    Tape, Carl; Liu, Qinya; Tromp, Jeroen

    2007-03-01

    We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Fréchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectral-element method (SEM) and a phase-speed model for southern California. A `target' phase-speed model is used to generate the `data' at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana-doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Fréchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.

  2. Paliperidone palmitate once-monthly maintains improvement in functioning domains of the Personal and Social Performance scale compared with placebo in subjects with schizoaffective disorder.

    PubMed

    Fu, Dong-Jing; Turkoz, Ibrahim; Walling, David; Lindenmayer, Jean-Pierre; Schooler, Nina R; Alphs, Larry

    2018-02-01

    Evaluate the effect of paliperidone palmitate once-monthly (PP1M) injectable on the specific functioning domains of the Personal and Social Performance (PSP) scale in patients with schizoaffective disorder (SCA) participating in a long-term study. This study (NCT01193153) included both in- and outpatient subjects with SCA experiencing an acute exacerbation of psychotic and mood symptoms. Subjects were treated with PP1M either as monotherapy or in combination with antidepressants or mood stabilizers during a 25-week open-label (OL) phase. Stabilized subjects were randomly assigned 1:1 (PP1M or placebo) into a 15-month double-blind (DB) relapse-prevention period. Functioning of the randomized subjects during OL and DB phases was evaluated using the PSP scale (four domains: socially useful activities, personal/social relationships, self-care, and disturbing/aggressive behaviors). Three statistical approaches were utilized to analyze PSP scores to assess robustness and consistency of findings. No adjustments were made for multiplicity. 334 of 667 enrolled subjects were stabilized with PP1M, randomly assigned to PP1M (n=164) or placebo (n=170) in the DB phase, and included in this analysis. Improvements in all PSP domain scores were observed during the OL phase and were maintained during the DB phase with PP1M, but decreased with placebo. Differences compared to placebo were significant in all four PSP domains during the DB phase (P≤0.008). The analysis in this study showed that PP1M improves functioning, as measured by the four PSP domain scores, in symptomatic subjects with SCA. Functioning was maintained compared with placebo. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Experience measuring performance improvement in multiphase picture archiving and communications systems implementations.

    PubMed

    Reed, G; Reed, D H

    1999-05-01

    When planning a picture archiving and communications system (PACS) implementation and determining which equipment will be implemented in earlier and later phases, collection and analysis of selected data will aid in setting implementation priorities. If baseline data are acquired relative to performance objectives, the same information used for implementation planning can be used to measure performance improvement and outcomes. The main categories of data to choose from are: (1) financial data; (2) productivity data; (3) operational parameters; (4) clinical data; and (5) information about customer satisfaction. In the authors' experience, detailed workflow data have not proved valuable in measuring PACS performance and outcomes. Reviewing only one category of data in planning will not provide adequate basis for targeting operational improvements that will lead to the most significant gains. Quality improvement takes into account all factors in production: human capacity, materials, operating capital and assets. Once we have identified key areas of focus for quality improvement in each phase, we can translate objectives into implementation requirements and finally into detailed functional and performance requirements. Here, Integration Resources reports its experience measuring PACS performance relative to phased implementation strategies for three large medical centers. Each medical center had its own objectives for overcoming image management, physical/geographical, and functional/technical barriers. The report outlines (1) principal financial and nonfinancial measures used as performance indicators; (2) implementation strategies chosen by each of the three medical centers; and (3) the results of those strategies as compared with baseline data.

  4. Liquid-Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-09-08

    Dual variable domain immunoglobulin proteins (DVD-Ig proteins) are large molecules (MW ∼ 200 kDa) with increased asymmetry because of their extended Y-like shape, which results in increased formulation challenges. Liquid-liquid phase separation (LLPS) of protein solutions into protein-rich and protein-poor phases reduces solution stability at intermediate concentrations and lower temperatures, and is a serious concern in formulation development as therapeutic proteins are generally stored at refrigerated conditions. In the current work, LLPS was studied for a DVD-Ig protein molecule as a function of solution conditions by measuring solution opalescence. LLPS of the protein was confirmed by equilibrium studies and by visually observing under microscope. The protein does not undergo any structural change after phase separation. Protein-protein interactions were measured by light scattering (kD) and Tcloud (temperature that marks the onset of phase separation). There is a good agreement between kD measured in dilute solution with Tcloud measured in the critical concentration range. Results indicate that the increased complexity of the molecule (with respect to size, shape, and charge distribution on the molecule) increases contribution of specific and nonspecific interactions in solution, which are affected by formulation factors, resulting in LLPS for DVD-Ig protein.

  5. Measurement of acoustic properties of the composite materials constituting the main rotor hub of the Agusta-Westland helicopter EH-101 (civil version)

    NASA Astrophysics Data System (ADS)

    Tenti, L.; Denis, R.; Lakestani, F.

    1991-10-01

    The acoustic properties of the EH-101 helicopter rotor hub are tested by characterizing the ultrasonic propagation phenomena in the main directions of the composite materials. The carbon fiber and epoxy resin that make up the rotor hub are measured to determine the attenuation coefficient, phase propagation at normal incidence, and phase propagation as a function of angle of incidence. The speeds are measured for external box and filler samples, and strap samples are discussed separately because of their anisotropic nature and structural importance. Deviations angles of 5 deg cause refraction angles of 10 deg in the deviation of the phase propagation; therefore planar defects with an angle of 10 deg relative to the fiber direction can be easily detected. The method presented is useful in characterizing and locating defects in the composite materials that make up the main rotor hub of helicopters.

  6. Differences in grip force control between young and late middle-aged adults.

    PubMed

    Zheng, Lianrong; Li, Kunyang; Wang, Qian; Chen, Wenhui; Song, Rong; Liu, Guanzheng

    2017-09-01

    Grip force control is a crucial function for human to guarantee the quality of life. To examine the effects of age on grip force control, 10 young adults and 11 late middle-aged adults participated in visually guided tracking tasks using different target force levels (25, 50, and 75% of the subject's maximal grip force). Multiple measures were used to evaluate the tracking performance during force rising phase and force maintenance phase. The measurements include the rise time, fuzzy entropy, mean force percentage, coefficient of variation, and target deviation ratio. The results show that the maximal grip force was significantly lower in the late middle-aged adults than in the young adults. The time of rising phase was systematically longer among late middle-aged adults. The fuzzy entropy is a useful indicator for quantitating the force variability of the grip force signal at higher force levels. These results suggest that the late middle-aged adults applied a compensatory strategy that allow allows for sufficient time to reach the required grip force and reduce the impact of the early and subtle degenerative changes in hand motor function.

  7. Thermodynamic phase behavior of API/polymer solid dispersions.

    PubMed

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  8. Scientific basis for learning transfer from movements to urinary bladder functions for bladder repair in human patients with CNS injury.

    PubMed

    Schalow, G

    2010-01-01

    Coordination Dynamics Therapy (CDT) has been shown to be able to partly repair CNS injury. The repair is based on a movement-based re-learning theory which requires at least three levels of description: the movement or pattern (and anamnesis) level, the collective variable level, and the neuron level. Upon CDT not only the actually performed movement pattern itself is repaired, but the entire dynamics of CNS organization is improved, which is the theoretical basis for (re-) learning transfer. The transfer of learning for repair from jumping on springboard and exercising on a special CDT and recording device to urinary bladder functions is investigated at the neuron level. At the movement or pattern level, the improvement of central nervous system (CNS) functioning in human patients can be seen (or partly measured) by the improvement of the performance of the pattern. At the collective variable level, coordination tendencies can be measured by the so-called 'coordination dynamics' before, during and after treatment. At the neuron level, re-learning can additionally be assessed by surface electromyography (sEMG) as alterations of single motor unit firings and motor programs. But to express the ongoing interaction between the numerous neural, muscular, and metabolic elements involved in perception and action, it is relevant to inquire how the individual afferent and efferent neurons adjust their phase and frequency coordination to other neurons to satisfy learning task requirements. With the single-nerve fibre action potential recording method it was possible to measure that distributed single neurons communicate by phase and frequency coordination. It is shown that this timed firing of neurons is getting impaired upon injury and has to be improved by learning The stability of phase and frequency coordination among afferent and efferent neuron firings can be related to pattern stability. The stability of phase and frequency coordination at the neuron level can therefore be assessed integratively at the (non-invasive) collective variable level by the arrhythmicity of turning (coordination dynamics) when a patient is exercising on a special CDT device. Upon jumping on springboard and exercising on the special CDT device, the intertwined neuronal networks, subserving movements (somatic) and urinary bladder functions (autonomic and somatic) in the sacral spinal cord, are synchronously activated and entrained to give rise to learning transfer from movements to bladder functions. Jumping on springboard and other movements primarily repair the pattern dynamics, whereas the exactly coordinated performed movements, performed on the special CDT device for turning, primarily improve the preciseness of the timed firing of neurons. The synchronous learning of perceptuomotor and perceptuobladder functioning from a dynamical perspective (giving rise to learning transfer) can be understood at the neuron level. Especially the activated phase and frequency coordination upon natural stimulation under physiologic and pathophysiologic conditions among a and gamma-motoneurons, muscle spindle afferents, touch and pain afferents, and urinary bladder stretch and tension receptor afferents in the human sacral spinal cord make understandable that somatic and parasympathetic functions are integrated in their functioning and give rise to learning transfer from movements to bladder functions. The power of this human treatment research project lies in the unit of theory, diagnostic/measurement, and praxis, namely that CNS injury can partly be repaired, including urinary bladder functions, and the repair can partly be understood even at the neuron level of description in human.

  9. Evidence for existence of functional monoclinic phase in sodium niobate based solid solution by powder neutron diffraction

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.

    2018-04-01

    We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.

  10. Measuring hepatic functional reserve using low temporal resolution Gd-EOB-DTPA dynamic contrast-enhanced MRI: a preliminary study comparing galactosyl human serum albumin scintigraphy with indocyanine green retention.

    PubMed

    Saito, Kazuhiro; Ledsam, Joseph; Sourbron, Steven; Hashimoto, Tsuyoshi; Araki, Yoichi; Akata, Soichi; Tokuuye, Koichi

    2014-01-01

    To investigate if tracer kinetic modelling of low temporal resolution dynamic contrast-enhanced (DCE) MRI with Gd-EOB-DTPA could replace technetium-99 m galactosyl human serum albumin (GSA) single positron emission computed tomography (SPECT) and indocyanine green (ICG) retention for the measurement of liver functional reserve. Twenty eight patients awaiting liver resection for various cancers were included in this retrospective study that was approved by the institutional review board. The Gd-EOB-DTPA MRI sequence acquired five images: unenhanced, double arterial phase, portal phase, and 4 min after injection. Intracellular contrast uptake rate (UR) and extracellular volume (Ve) were calculated from DCE-MRI, along with the ratio of GSA radioactivity of liver to heart-plus-liver and per cent of cumulative uptake from 15-16 min (LHL15 and LU15, respectively) from GSA-scintigraphy. ICG retention at 15 min, Child-Pugh cirrhosis score (CPS) and postoperative Inuyama fibrosis criteria were also recorded. Statistical analysis was with Spearman rank correlation analysis. Comparing MRI parameters with the reference methods, significant correlations were obtained for UR and LHL15, LU15, ICG15 (all 0.4-0.6, P < 0.05); UR and CPS (-0.64, P < 0.001); Ve and Inuyama (0.44, P < 0.05). Measures of liver function obtained by routine Gd-EOB-DTPA DCE-MRI with tracer kinetic modelling may provide a suitable method for the evaluation of liver functional reserve. • Magnetic resonance imaging (MRI) provides new methods of measuring hepatic functional reserve. • DCE-MRI with Gd-EOB-DTPA offers the possibility of replacing scintigraphy. • The analysis method can be used for preoperative liver function evaluation.

  11. A novel technique for phase synchrony measurement from the complex motor imaginary potential of combined body and limb action

    NASA Astrophysics Data System (ADS)

    Zhou, Zhong-xing; Wan, Bai-kun; Ming, Dong; Qi, Hong-zhi

    2010-08-01

    In this study, we proposed and evaluated the use of the empirical mode decomposition (EMD) technique combined with phase synchronization analysis to investigate the human brain synchrony of the supplementary motor area (SMA) and primary motor area (M1) during complex motor imagination of combined body and limb action. We separated the EEG data of the SMA and M1 into intrinsic mode functions (IMFs) using the EMD method and determined the characteristic IMFs by power spectral density (PSD) analysis. Thereafter, the instantaneous phases of the characteristic IMFs were obtained by the Hilbert transformation, and the single-trial phase-locking value (PLV) features for brain synchrony measurement between the SMA and M1 were investigated separately. The classification performance suggests that the proposed approach is effective for phase synchronization analysis and is promising for the application of a brain-computer interface in motor nerve reconstruction of the lower limbs.

  12. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  13. Raman Scattering Study of the Soft Phonon Mode in the Hexagonal Ferroelectric Crystal KNiCl 3

    NASA Astrophysics Data System (ADS)

    Machida, Ken-ichi; Kato, Tetsuya; Chao, Peng; Iio, Katsunori

    1997-10-01

    Raman spectra of some phonon modes of the hexagonal ferroelectriccrystal KNiCl3are obtained in the temperature range between 290 K and 590 K, which includes the structural phase transition point T2(=561 K) at which previous measurements of dielectric constant and spontaneouspolarization as a function of temperature had shown that KNiCl3 undergoes a transition between polar phases II and III. An optical birefringence measurement carried outas a complement to the present Raman scattering revealed that this transition is of second order. Towards this transition point, the totally symmetric phonon mode with the lowest frequency observed in the room-temperature phasewas found to soften with increasing temperature.The present results provide new information on the phase-transitionmechanism and the space groups of thehigher (II)- and lower (III)-symmetric phases around T2.

  14. The phase slip factor of the electrostatic cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  15. 3D Crust and Uppermost Mantle Structure beneath Tian Shan Region from ambient noise and earthquake surface waves

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Wen, L.

    2017-12-01

    As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.

  16. Sky brightness and color measurements during the 21 August 2017 total solar eclipse.

    PubMed

    Bruns, Donald G; Bruns, Ronald D

    2018-06-01

    The sky brightness was measured during the partial phases and during totality of the 21 August 2017 total solar eclipse. A tracking CCD camera with color filters and a wide-angle lens allowed measurements across a wide field of view, recording images every 10 s. The partially and totally eclipsed Sun was kept behind an occulting disk attached to the camera, allowing direct brightness measurements from 1.5° to 38° from the Sun. During the partial phases, the sky brightness as a function of time closely followed the integrated intensity of the unobscured fraction of the solar disk. A redder sky was measured close to the Sun just before totality, caused by the redder color of the exposed solar limb. During totality, a bluer sky was measured, dimmer than the normal sky by a factor of 10,000. Suggestions for enhanced measurements at future eclipses are offered.

  17. Refining the Pediatric Evaluation of Disability Inventory-Patient-Reported Outcome (PEDI-PRO) item candidates: interpretation of a self-reported outcome measure of functional performance by young people with neurodevelopmental disabilities.

    PubMed

    Kramer, Jessica M; Schwartz, Ariel

    2017-10-01

    This study examined the item interpretability and rating scale use of the Pediatric Evaluation of Disability Inventory-Patient-Reported Outcome (PEDI-PRO) by young people with developmental disabilities. The PEDI-PRO assesses the functional performance of discrete functional tasks in the context of everyday life situations. A two-phase cognitive interview design was implemented with a convenience sample of 37 young people (mean age 19y, SD 2y 5mo; 13 males and 24 females; 68% with intellectual disability) with developmental disabilities. In phase I, 182 item candidates were each reviewed by an average of four young people. In phase II, 103 items were carried forward or revised and each reviewed by an average of seven additional young people. Two raters coded responses for intended item interpretation and performance quality; codes were analysed using descriptive statistics. Qualitative analysis explored young people's self-evaluation process. Items were interpreted as intended by most young people (mean 86%). Young people can use PEDI-PRO response categories appropriately to describe their performance: 94% of positive performance descriptions coincided with a positive response category choice; 73% of negative descriptions coincided with a negative response category choice. Young people interpreted items in a literal manner, and their self-evaluation incorporated the use of supports that facilitate functional performance. The PEDI-PRO's measurement framework appears to support the self-evaluation of functional performance of young people with developmental disabilities. © 2017 Mac Keith Press.

  18. Revealing Asymmetries in the HD181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-01-01

    New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  19. Revealing asymmetries in the HD 181327 debris disk: A recent massive collision or interstellar medium warping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for themore » disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.« less

  20. Revealing Asymmetries in the HD 181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  1. Task-oriented treadmill exercise training in chronic hemiparetic stroke

    PubMed Central

    Ivey, Frederick M.; Hafer-Macko, Charlene E.; Macko, Richard F.

    2010-01-01

    Patients with stroke have elevated hemiparetic gait costs secondary to low activity levels and are often severely deconditioned. Decrements in peak aerobic capacity affect functional ability and cardiovascular-metabolic health and may be partially mediated by molecular changes in hemiparetic skeletal muscle. Conventional rehabilitation is time delimited in the subacute stroke phase and does not provide adequate aerobic intensity to reverse the profound detriments to fitness and function that result from stroke. Hence, we have studied progressive full body weight-support treadmill (TM) training as an adjunct therapy in the chronic stroke phase. Task-oriented TM training has produced measurable changes in fitness, function, and indices of cardiovascular-metabolic health after stroke, but the precise mechanisms for these changes remain under investigation. Further, the optimal dose of this therapy has yet to be identified for individuals with stroke and may vary as a function of deficit severity and outcome goals. This article summarizes the functional and metabolic decline caused by inactivity after stroke and provides current evidence that supports the use of TM training during the chronic stroke phase, with protocols and inclusion/exclusion criteria described. Our research findings are discussed in relation to associated research. PMID:18566943

  2. Effects of interactive metronome training on postural stability and upper extremity function in Parkinson's disease: a case study.

    PubMed

    Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon

    2017-01-01

    [Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson's disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson's disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient's static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson's disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson's disease.

  3. Effects of interactive metronome training on postural stability and upper extremity function in Parkinson’s disease: a case study

    PubMed Central

    Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon

    2017-01-01

    [Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson’s disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson’s disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient’s static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson’s disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson’s disease. PMID:28210066

  4. Experimental Investigation of Hexagon Stability in Two Frequency Forced Faraday Waves

    NASA Astrophysics Data System (ADS)

    Ding, Yu; Umbanhowar, Paul

    2003-03-01

    We have conducted experiments on a deep layer of silicone oil vertically oscillated with an acceleration a(t) = Am sin(m ω t + φ_m) + An sin(n ω t + φ_n). The stability of hexagonal surface wave patterns is investigated as a function of the overall acceleration, the ratio m:n, and the phase of the two rationally related driving frequencies. When the ratio A_m/An is chosen so the system is near a co-dimension two point, the stability of hexagons above onset is determined by the acceleration amplitude and the relative phase. Recent results by Porter and Silver (J. Porter and M. Silber, Phys. Rev. Lett. 084501, 2002) predicts that the range of pattern stability above onset as a function of acceleration is determined by cos(Φ), where Φ = π/4 - m φn / 2- n φm /2. We have tested this prediction for a number of m:n ratios and for various values of the dimensionless damping coefficient γ. We find that the patterns exhibit the predicted functional dependence on s(Φ) but with an additional phase offset. We measure the phase offset as a function of m:n and γ for varying frequency ω and fluid viscosity 5 cS <= ν <= 30 cS.

  5. Frequency domain measurement systems

    NASA Technical Reports Server (NTRS)

    Eischer, M. C.

    1978-01-01

    Stable frequency sources and signal processing blocks were characterized by their noise spectra, both discrete and random, in the frequency domain. Conventional measures are outlined, and systems for performing the measurements are described. Broad coverage of system configurations which were found useful is given. Their functioning and areas of application are discussed briefly. Particular attention is given to some of the potential error sources in the measurement procedures, system configurations, double-balanced-mixer-phase-detectors, and application of measuring instruments.

  6. [Pulmonary function of children with acute leukemia in maintenance phase of chemotherapy].

    PubMed

    de Macêdo, Thalita Medeiros Fernandes; Campos, Tania Fernandes; Mendes, Raquel Emanuele de França; França, Danielle Corrêa; Chaves, Gabriela Suéllen da Silva; de Mendonça, Karla Morganna Pereira Pinto

    2014-12-01

    The aim of this study was to assess the pulmonary function of children with acute leukemia. Cross-sectional observational analytical study that enrolled 34 children divided into groups A (17 with acute leukemia in the maintenance phase of chemotherapy) and B (17 healthy children). The groups were matched for sex, age and height. Spirometry was measured using a spirometer Microloop Viasys(®) in accordance with American Thoracic Society and European Respiratory Society guidelines. Maximal respiratory pressures were measured with an MVD300 digital manometer (Globalmed(®)). Maximal inspiratory pressures and maximal expiratory pressures were measured from residual volume and total lung capacity, respectively. Group A showed a significant decrease in maximal inspiratory pressures when compared to group B. No significant difference was found between the spirometric values of the two groups, nor was there any difference between maximal inspiratory pressure and maximal expiratory pressure values in group A compared to the lower limit values proposed as reference. Children with acute leukemia, myeloid or lymphoid, during the maintenance phase of chemotherapy exhibited unchanged spirometric variables and maximal expiratory pressure; However, there was a decrease in inspiratory muscle strength. Copyright © 2014 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Combining censored and uncensored data in a U-statistic: design and sample size implications for cell therapy research.

    PubMed

    Moyé, Lemuel A; Lai, Dejian; Jing, Kaiyan; Baraniuk, Mary Sarah; Kwak, Minjung; Penn, Marc S; Wu, Colon O

    2011-01-01

    The assumptions that anchor large clinical trials are rooted in smaller, Phase II studies. In addition to specifying the target population, intervention delivery, and patient follow-up duration, physician-scientists who design these Phase II studies must select the appropriate response variables (endpoints). However, endpoint measures can be problematic. If the endpoint assesses the change in a continuous measure over time, then the occurrence of an intervening significant clinical event (SCE), such as death, can preclude the follow-up measurement. Finally, the ideal continuous endpoint measurement may be contraindicated in a fraction of the study patients, a change that requires a less precise substitution in this subset of participants.A score function that is based on the U-statistic can address these issues of 1) intercurrent SCE's and 2) response variable ascertainments that use different measurements of different precision. The scoring statistic is easy to apply, clinically relevant, and provides flexibility for the investigators' prospective design decisions. Sample size and power formulations for this statistic are provided as functions of clinical event rates and effect size estimates that are easy for investigators to identify and discuss. Examples are provided from current cardiovascular cell therapy research.

  8. First Measurements of Time-Dependent Nucleation as a Function of Composition in Na2O.2CaO.3SiO2 Glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Narayan, K. Lakshmi

    1996-01-01

    The first measurements in any system of the composition dependence of the time-dependent nucleation rate are presented Nucleation rates of the stoichiometric crystalline phase, Na2O.2CaO.3SiO2, from quenched glasses made with different SiO2 concentrations were determined as a function of temperature and glass composition. A strong compositional dependence of the nucleation rates and a weak dependence for the induction times are observed. Using measured values of the liquidus temperatures and growth velocities as a function of glass composition, these data are shown to be consistent with predictions from the classical theory of nucleation, assuming a composition-dependent interfacial energy.

  9. A novel phase retrieval method from three-wavelength in-line phase-shifting interferograms based on positive negative 2π phase shifts

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming

    2018-01-01

    A new method to extract quantitative phases for each wavelength from three-wavelength in-line phase-shifting interferograms is proposed. Firstly, seven interferograms with positive negative 2π phase shifts are sequentially captured by using the phase-shifting technique. Secondly, six dc-term suppressed intensities can be achieved by the use of the algebraic algorithm. Finally, the wrapped phases at the three wavelengths can be acquired simultaneously from these six interferograms add-subtracting by employing the trigonometric function method. The surface morphology with increased ambiguity-free range at synthetic beat wavelength can be obtained, while maintaining the low noise precision of the single wavelength measurement, by combining this method with three-wavelength phase unwrapping method. We illustrate the principle of this algorithm, and the simulated experiments of the spherical cap and the HeLa cell are conducted to prove our proposed method, respectively.

  10. Ripple formation in unilamellar-supported lipid bilayer revealed by FRAPP.

    PubMed

    Harb, Frédéric; Simon, Anne; Tinland, Bernard

    2013-12-01

    The mechanisms of formation and conditions of the existence of the ripple phase are fundamental thermodynamic questions with practical implications for medicine and pharmaceuticals. We reveal a new case of ripple formation occurring in unilamellar-supported bilayers in water, which results solely from the bilayer/support interaction, without using lipid mixtures or specific ions. This ripple phase is detected by FRAPP using diffusion coefficient measurements as a function of temperature: a diffusivity plateau is observed. It occurs in the same temperature range where ripple phase existence has been observed using other methods. When AFM experiments are performed in the appropriate temperature range the ripple phase is confirmed.

  11. Phase closure nulling: Theory and practice

    NASA Astrophysics Data System (ADS)

    Chelli, A.; Duvert, G.; Malbet, F.; Kern, P.

    2009-11-01

    We provide a complete theory of the phase closure of a binary system in which a small, feeble, and unresolved companion acts as a perturbing parameter on the spatial frequency spectrum of a dominant, bright, resolved source. We demonstrate that the influence of the companion can be measured with precision by measuring the phase closure of the system near the nulls of the primary visibility function. In these regions of phase closure nulling, frequency intervals always exist where the phase closure signature of the companion is larger than any systematic error and can thus be measured. We show that this technique allows retrieval of many astrophysically relevant properties of faint and close companions such as flux, position, and in favorable cases, spectrum. As a proof of concept, using the AMBER/VLTI instrument with 3 auxiliary telescopes of 1.8 m and only 15 minutes of on-sky integration, we detected the five magnitudes fainter companion of HD 59717 at only 3.5 stellar radii distance from the primary. This is one of the highest contrast detected by interferometry between a companion and its parent star. We conclude by a rapid study of the potentialities of phase closure nulling observations with current interferometers and explore the requirements for a new type of dedicated instrument.

  12. Fluid surface compensation in digital holographic microscopy for topography measurement

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern

    2012-06-01

    A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.

  13. Measuring local volume fraction, long-wavelength correlations, and fractionation in a phase-separating polydisperse fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J. J., E-mail: johnjosephwilliamson@gmail.com; Evans, R. M. L.

    We dynamically simulate fractionation (partitioning of particle species) during spinodal gas-liquid separation of a size-polydisperse colloid, using polydispersity up to ∼40% and a skewed parent size distribution. We introduce a novel coarse-grained Voronoi method to minimise size bias in measuring local volume fraction, along with a variety of spatial correlation functions which detect fractionation without requiring a clear distinction between the phases. These can be applied whether or not a system is phase separated, to determine structural correlations in particle size, and generalise easily to other kinds of polydispersity (charge, shape, etc.). We measure fractionation in both mean size andmore » polydispersity between the phases, its direction differing between model interaction potentials which are identical in the monodisperse case. These qualitative features are predicted by a perturbative theory requiring only a monodisperse reference as input. The results show that intricate fractionation takes place almost from the start of phase separation, so can play a role even in nonequilibrium arrested states. The methods for characterisation of inhomogeneous polydisperse systems could in principle be applied to experiment as well as modelling.« less

  14. High Resolution X-ray Scattering Studies of Structural Phase Transitions in BaFe2-x Cr x As 2

    NASA Astrophysics Data System (ADS)

    Gaulin, B. D.; Clancy, J. P.; Wagman, J. J.; Sefat, A. S.

    2011-03-01

    While the effects of electron-doping on the parent compounds of the 122 family of Fe-based superconductors have been extremely well-studied in recent years, far less is known about the influence of hole-doping in compounds such as BaFe 2-x Cr x As 2 . In contrast to the electron-doped 122 systems, the hole-doped compounds do not become superconducting. Furthermore, while the hole-doped compounds exhibit similar structural and magnetic phase transitions, they appear to be much less sensitive to dopant concentration. We have performed high resolution x-ray scattering and magnetic susceptibility measurements on single crystal samples of BaFe 2-x Cr x As 2 for Cr concentrations ranging from 0 <= x <= 0.67 . These measurements allow us to determine the magnetic and structural phase transitions for this series and map out the low temperature phase diagram as a function of doping. In particular, we have carried out detailed measurements of the tetragonal (I4/mmm) to orthorhombic (Fmmm) structural phase transition which reveal how the orthorhombicity of the system evolves with increasing Cr concentration and how this correlates with the values of Ts and Tm .

  15. On the magnetism of the C14 Nb0.975Fe2.025 Laves phase compound: Determination of the H-T phase diagram

    NASA Astrophysics Data System (ADS)

    Bałanda, Maria; Dubiel, Stanisław M.

    2018-05-01

    A C14 Nb0.975Fe2.025 Laves phase compound was investigated aimed at determining the H-T magnetic phase diagram. Magnetization, M, and AC magnetic susceptibility measurement were performed. Concerning the former field-cooled and zero-field-cooled M-curves were recorded in the temperature range of 2-200 K and in applied magnetic field, H, up to 1000 Oe, isothermal M(H) curves at 2 K, 5 K, 50 K, 80 K and 110 K as well as hysteresis loops at several temperatures over the field range of ±10 kOe were measured. Regarding the AC susceptibility, χ, both real and imaginary components were registered as a function of increasing temperature in the interval of 2 K-150 K at the frequencies of the oscillating field, f, from 3 Hz up to 999 Hz. An influence of the external DC magnetic field on the temperature dependence of χ was investigated, too. The measurements clearly demonstrated that the magnetism of the studied sample is weak, itinerant and has a reentrant character. Based on the obtained results a magnetic phase diagram has been constructed in the H-T coordinates.

  16. Effect of polyethylene glycol on the liquid–liquid phase transition in aqueous protein solutions

    PubMed Central

    Annunziata, Onofrio; Asherie, Neer; Lomakin, Aleksey; Pande, Jayanti; Ogun, Olutayo; Benedek, George B.

    2002-01-01

    We have studied the effect of polyethylene glycol (PEG) on the liquid–liquid phase separation (LLPS) of aqueous solutions of bovine γD-crystallin (γD), a protein in the eye lens. We observe that the phase separation temperature increases with both PEG concentration and PEG molecular weight. PEG partitioning, which is the difference between the PEG concentration in the two coexisting phases, has been measured experimentally and observed to increase with PEG molecular weight. The measurements of both LLPS temperature and PEG partitioning in the ternary γD-PEG-water systems are used to successfully predict the location of the liquid–liquid phase boundary of the binary γD-water system. We show that our LLPS measurements can be also used to estimate the protein solubility as a function of the concentration of crystallizing agents. Moreover, the slope of the tie-lines and the dependence of LLPS temperature on polymer concentration provide a powerful and sensitive check of the validity of excluded volume models. Finally, we show that the increase of the LLPS temperature with PEG concentration is due to attractive protein–protein interactions. PMID:12391331

  17. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.

    PubMed

    Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P

    2015-08-01

    Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. © 2015 European Sleep Research Society.

  18. Oropharyngeal dysphagia and gross motor skills in children with cerebral palsy.

    PubMed

    Benfer, Katherine A; Weir, Kelly A; Bell, Kristie L; Ware, Robert S; Davies, Peter S W; Boyd, Roslyn N

    2013-05-01

    To determine the prevalence of oropharyngeal dysphagia (OPD) and its subtypes (oral phase, pharyngeal phase, saliva control), and their relationship to gross motor functional skills in preschool children with cerebral palsy (CP). It was hypothesized that OPD would be present across all gross motor severity levels, and children with more severe gross motor function would have increased prevalence and severity of OPD. Children with a confirmed diagnosis of CP, 18 to 36 months corrected age, born in Queensland between 2006 and 2009, participated. Children with neurodegenerative conditions were excluded. This was a cross-sectional population-based study. Children were assessed by using 2 direct OPD measures (Schedule for Oral Motor Assessment; Dysphagia Disorders Survey), and observations of signs suggestive of pharyngeal phase impairment and impaired saliva control. Gross motor skills were described by using the Gross Motor Function Measure, Gross Motor Function Classification System (GMFCS), Manual Ability Classification System, and motor type/ distribution. OPD was prevalent in 85% of children with CP, and there was a stepwise relationship between OPD and GMFCS level. There was a significant increase in odds of having OPD, or a subtype, for children who were nonambulant (GMFCS V) compared with those who were ambulant (GMFCS I) (odds ratio = 17.9, P = .036). OPD was present across all levels of gross motor severity using direct assessments. This highlights the need for proactive screening of all young children with CP, even those with mild impairments, to improve growth and nutritional outcomes and respiratory health.

  19. Retrieving cirrus microphysical properties from stellar aureoles

    NASA Astrophysics Data System (ADS)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2013-06-01

    The aureoles around stars caused by thin cirrus limit nighttime measurement opportunities for ground-based astronomy, but can provide information on high-altitude ice crystals for climate research. In this paper we attempt to demonstrate quantitatively how this works. Aureole profiles can be followed out to ~0.2° from stars and ~0.5° from Jupiter. Interpretation of diffracted starlight is similar to that for sunlight, but emphasizes larger particles. Stellar diffraction profiles are very distinctive, typically being approximately flat out to a critical angle followed by gradually steepening power-law falloff with slope less steep than -3. Using the relationship between the phase function for diffraction and the average Fourier transform of the projected area of complex ice crystals, we show that defining particle size in terms of average projected area normal to the propagation direction of the starlight leads to a simple, analytic approximation representing large-particle diffraction that is nearly independent of crystal habit. A similar analytic approximation for the diffraction aureole allows it to be separated from the point spread function and the sky background. Multiple scattering is deconvolved using the Hankel transform leading to the diffraction phase function. Application of constrained numerical inversion to the phase function then yields a solution for the particle size distribution in the range between ~50 μm and ~400 μm. Stellar aureole measurements can provide one of the very few, as well as least expensive, methods for retrieving cirrus microphysical properties from ground-based observations.

  20. A new method for measuring the neutron lifetime using an in situ neutron detector

    DOE PAGES

    Morris, Christopher L.; Adamek, Evan Robert; Broussard, Leah Jacklyn; ...

    2017-05-30

    Here, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We also used an active detector that can be lowered into the trap to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. Additionally, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.

  1. A new method for measuring the neutron lifetime using an in situ neutron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Christopher L.; Adamek, Evan Robert; Broussard, Leah Jacklyn

    Here, we describe a new method for measuring surviving neutrons in neutron lifetime measurements using bottled ultracold neutrons (UCN), which provides better characterization of systematic uncertainties and enables higher precision than previous measurement techniques. We also used an active detector that can be lowered into the trap to measure the neutron distribution as a function of height and measure the influence of marginally trapped UCN on the neutron lifetime measurement. Additionally, measurements have demonstrated phase-space evolution and its effect on the lifetime measurement.

  2. Method and apparatus for measuring frequency and phase difference

    NASA Technical Reports Server (NTRS)

    Shores, Paul (Inventor); Lichtenberg, Christopher (Inventor); Kobayashi, Herbert S. (Inventor); Cunningham, Allen R. (Inventor)

    1986-01-01

    The present invention is a system for deriving direct digital indications of frequency and phase difference between two incoming pulse trains adaptable for collision avoidance systems or the like. A pair of radar beams are directed toward a target and corresponding beams returning therefrom are detected. A digital difference circuit forms a pulse train from the Doppler shift frequencies of each beam pair having a repetition rate functionally related to the difference in magnitude of the shift frequencies. Pulses from the pulse train are counted as a function of time. Visual indications thereof on display are correlative to target position relative to beams.

  3. Evaluation of Contact Heat Transfer Coefficient and Phase Transformation during Hot Stamping of a Hat-Type Part

    PubMed Central

    Kim, Heung-Kyu; Lee, Seong Hyeon; Choi, Hyunjoo

    2015-01-01

    Using an inverse analysis technique, the heat transfer coefficient on the die-workpiece contact surface of a hot stamping process was evaluated as a power law function of contact pressure. This evaluation was to determine whether the heat transfer coefficient on the contact surface could be used for finite element analysis of the entire hot stamping process. By comparing results of the finite element analysis and experimental measurements of the phase transformation, an evaluation was performed to determine whether the obtained heat transfer coefficient function could provide reasonable finite element prediction for workpiece properties affected by the hot stamping process. PMID:28788046

  4. Biphasic Effects of Alcohol as a Function of Circadian Phase

    PubMed Central

    Van Reen, Eliza; Rupp, Tracy L.; Acebo, Christine; Seifer, Ronald; Carskadon, Mary A.

    2013-01-01

    Study Objectives: To assess how alcohol affects multiple sleep latency tests (MSLT) and subjective measures of stimulation/sedation when alcohol is given at different circadian phases. Participants: Twenty-seven healthy young adults (age 21-26 yr) were studied. Design: Double-blind placebo and alcohol (vodka tonic targeting 0.05 g% concentration) beverages were each administered three times during the 20-h forced desynchrony protocol. Sleep latency tests and Biphasic Effects of Alcohol Scale (BAES) were administered on each forced desynchrony day. The outcome variables for this study include sleep onset latency (SOL) and stimulation and sedation value (from the BAES). Each outcome variable was associated with the ascending or descending limb of the breath alcohol concentration (BrAC) curve and assigned a circadian phase within a 90° bin. Measurements and Results: BrAC confirmed targeted maximal levels. Only outcome variables associated with the ascending and descending limb of the alcohol curve were analyzed for this article. Alcohol administered at a circadian time associated with greatest sleepiness showed longer SOL compared with placebo when measured on the ascending limb of the BrAC curve. We also found longer SOL with alcohol on the ascending limb of the BrAC curve in a circadian bin that favors greatest alertness. We observed shorter SOLs on the descending limb of the BrAC curve, but with no circadian phase interaction. The subjective data were partially consistent with the objective data. Conclusions: The physiologic findings in this study support the biphasic stimulating and sedating properties of alcohol, but limit the effect to specific circadian times. Citation: Van Reen E; Rupp TL; Acebo C; Seifer R; Carskadon MA. Biphasic effects of alcohol as a function of circadian phase. SLEEP 2013;36(1):137-145. PMID:23288980

  5. Measuring Uptake Coefficients and Henry's Law Constants of Gas-Phase Species with Models for Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.

  6. Review of methods for measuring β-cell function: Design considerations from the Restoring Insulin Secretion (RISE) Consortium.

    PubMed

    Hannon, Tamara S; Kahn, Steven E; Utzschneider, Kristina M; Buchanan, Thomas A; Nadeau, Kristen J; Zeitler, Philip S; Ehrmann, David A; Arslanian, Silva A; Caprio, Sonia; Edelstein, Sharon L; Savage, Peter J; Mather, Kieren J

    2018-01-01

    The Restoring Insulin Secretion (RISE) study was initiated to evaluate interventions to slow or reverse the progression of β-cell failure in type 2 diabetes (T2D). To design the RISE study, we undertook an evaluation of methods for measurement of β-cell function and changes in β-cell function in response to interventions. In the present paper, we review approaches for measurement of β-cell function, focusing on methodologic and feasibility considerations. Methodologic considerations included: (1) the utility of each technique for evaluating key aspects of β-cell function (first- and second-phase insulin secretion, maximum insulin secretion, glucose sensitivity, incretin effects) and (2) tactics for incorporating a measurement of insulin sensitivity in order to adjust insulin secretion measures for insulin sensitivity appropriately. Of particular concern were the capacity to measure β-cell function accurately in those with poor function, as is seen in established T2D, and the capacity of each method for demonstrating treatment-induced changes in β-cell function. Feasibility considerations included: staff burden, including time and required methodological expertise; participant burden, including time and number of study visits; and ease of standardizing methods across a multicentre consortium. After this evaluation, we selected a 2-day measurement procedure, combining a 3-hour 75-g oral glucose tolerance test and a 2-stage hyperglycaemic clamp procedure, augmented with arginine. © 2017 John Wiley & Sons Ltd.

  7. Cognitive Assessment Interview (CAI): Validity as a co-primary measure of cognition across phases of schizophrenia.

    PubMed

    Ventura, Joseph; Subotnik, Kenneth L; Ered, Arielle; Hellemann, Gerhard S; Nuechterlein, Keith H

    2016-04-01

    Progress has been made in developing interview-based measures for the assessment of cognitive functioning, such as the Cognitive Assessment Interview (CAI), as co-primary measures that compliment objective neurocognitive assessments and daily functioning. However, a few questions remain, including whether the relationships with objective cognitive measures and daily functioning are high enough to justify the CAI as an co-primary measure and whether patient-only assessments are valid. Participants were first-episode schizophrenia patients (n=60) and demographically-similar healthy controls (n=35), chronic schizophrenia patients (n=38) and demographically similar healthy controls (n=19). Participants were assessed at baseline with an interview-based measure of cognitive functioning (CAI), a test of objective cognitive functioning, functional capacity, and role functioning at baseline, and in the first episode patients again 6 months later (n=28). CAI ratings were correlated with objective cognitive functioning, functional capacity, and functional outcomes in first-episode schizophrenia patients at similar magnitudes as in chronic patients. Comparisons of first-episode and chronic patients with healthy controls indicated that the CAI sensitively detected deficits in schizophrenia. The relationship of CAI Patient-Only ratings with objective cognitive functioning, functional capacity, and daily functioning were comparable to CAI Rater scores that included informant information. These results confirm in an independent sample the relationship of the CAI ratings with objectively measured cognition, functional capacity, and role functioning. Comparison of schizophrenia patients with healthy controls further validates the CAI as an co-primary measure of cognitive deficits. Also, CAI change scores were strongly related to objective cognitive change indicating sensitivity to change. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  9. Magnetotransport properties of microstructured AlCu2Mn Heusler alloy thin films in the amorphous and crystalline phase

    NASA Astrophysics Data System (ADS)

    Barzola-Quiquia, José; Stiller, Markus; Esquinazi, Pablo D.; Quispe-Marcatoma, Justiniano; Häussler, Peter

    2018-06-01

    We have studied the resistance, magnetoresistance and Hall effect of AlCu2Mn Heusler alloy thin films prepared by flash evaporation on substrates cooled at 4He liquid temperature. The as-prepared samples were amorphous and were annealed stepwise to induce the transformation to the crystalline phase. The amorphous phase is metastable up to above room temperature and the transition to the crystalline phase was observed by means of resistance measurements. Using transmission electron microscopy, we have determined the structure factor S (K) and the pair correlation function g (r) , both results indicate that amorphous AlCu2Mn is an electronic stabilized phase. The X-ray diffraction of the crystallized film shows peaks corresponding to the well ordered L21 phase. The resistance shows a negative temperature coefficient in both phases. The magnetoresistance (MR) is negative in both phases, yet larger in the crystalline state compared to the amorphous one. The magnetic properties were studied further by anomalous Hall effect measurements, which were present in both phases. In the amorphous state, the anomalous Hall effect disappears at temperatures below 175 K and is present up to above room temperature in the case of crystalline AlCu2Mn.

  10. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  11. NASA's Preparations for ESA's L3 Gravitational Wave Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2016-01-01

    Telescope Subsystem - Jeff Livas (GSFC): Demonstrate pathlength stability, straylight and manufacturability. Phase Measurement System - Bill Klipstein (JPL): Key measurement functions demonstrated. Incorporate full flight functionality. Laser Subsystem - Jordan Camp (GSFC): ECL master oscillator, phase noise of fiber power amplifier, demonstrate end-to-end performance in integrated system, lifetime. Micronewton Thrusters - John Ziemer (JPL): Propellant storage and distribution, system robustness, manufacturing yield, lifetime. Arm-locking Demonstration - Kirk McKenzie (JPL): Studying a demonstration of laser frequency stabilization with GRACE Follow-On. Torsion Pendulum - John Conklin (UF): Develop U.S. capability with GRS and torsion pendulum test bed. Multi-Axis Heterodyne Interferometry - Ira Thorpe (GSFC): Investigate test mass/optical bench interface. UV LEDs - John Conklin+ (UF): Flight qualify UV LEDs to replace mercury lamps in discharging system. Optical Bench - Guido Mueller (UF): Investigate alternate designs and fabrication processes to ease manufacturability. LISA researchers at JPL are leading the Laser Ranging Interferometer instrument on the GRACE Follow-On mission.

  12. Columnar aerosol properties over oceans by combining surface and aircraft measurements: sensitivity analysis.

    PubMed

    Zhang, T; Gordon, H R

    1997-04-20

    We report a sensitivity analysis for the algorithm presented by Gordon and Zhang [Appl. Opt. 34, 5552 (1995)] for inverting the radiance exiting the top and bottom of the atmosphere to yield the aerosol-scattering phase function [P(?)] and single-scattering albedo (omega(0)). The study of the algorithm's sensitivity to radiometric calibration errors, mean-zero instrument noise, sea-surface roughness, the curvature of the Earth's atmosphere, the polarization of the light field, and incorrect assumptions regarding the vertical structure of the atmosphere, indicates that the retrieved omega(0) has excellent stability even for very large values (~2) of the aerosol optical thickness; however, the error in the retrieved P(?) strongly depends on the measurement error and on the assumptions made in the retrieval algorithm. The retrieved phase functions in the blue are usually poor compared with those in the near infrared.

  13. Electron binding energy of uranium-ligand and uranyl-ligand anions

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Horowitz, Steven; Marston, Brad

    2012-02-01

    Electron binding energies of the early actinide element uranium in gas-phase anion complexes are calculated by relativistic density functional theory (DFT) with two different exchange-correlation functions (RPBE and B3LYP) and also in the Hartree-Fock (HF) approximationootnotetextADF2010.02, SCM.com. Scalar and spin-orbit calculations are performed, and the calculated energies are compared to available experimental measurements and shown to disagree by energies of order 1 eV. Strong correlations that are poorly treated in DFT and HF can be included by a hybrid approach in which a generalized Anderson impurity model is numerically diagonalized. Reduction-oxidation (redox) potentials of aqueous actinide ions show improved agreement with measured values in the hybrid approachootnotetextS. E. Horowitz and J. B. Marston, J. Chem. Phys 134 064510 (2011).. We test whether or not similar improvements are found in the gas-phase.

  14. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    NASA Astrophysics Data System (ADS)

    Petrenko, A. V.; Valishev, A. A.; Lebedev, V. A.

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  15. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer.

    PubMed

    Arsac, L M; Belli, A; Lacour, J R

    1996-01-01

    A friction loaded cycle ergometer was instrumented with a strain gauge and an incremental encoder to obtain accurate measurement of human mechanical work output during the acceleration phase of a cycling sprint. This device was used to characterise muscle function in a group of 15 well-trained male subjects, asked to perform six short maximal sprints on the cycle against a constant friction load. Friction loads were successively set at 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75 N.kg-1 body mass. Since the sprints were performed from a standing start, and since the acceleration was not restricted, the greatest attention was paid to the measurement of the acceleration balancing load due to flywheel inertia. Instantaneous pedalling velocity (v) and power output (P) were calculated each 5 ms and then averaged over each downstroke period so that each pedal downstroke provided a combination of v, force and P. Since an 8-s acceleration phase was composed of about 21 to 34 pedal downstrokes, this many v-P combinations were obtained amounting to 137-180 v-P combinations for all six friction loads in one individual, over the widest functional range of pedalling velocities (17-214 rpm). Thus, the individual's muscle function was characterised by the v-P relationships obtained during the six acceleration phases of the six sprints. An important finding of the present study was a strong linear relationship between individual optimal velocity (vopt) and individual maximal power output (Pmax) (n = 15, r = 0.95, P < 0.001) which has never been observed before. Since vopt has been demonstrated to be related to human fibre type composition both vopt, Pmax and their inter-relationship could represent a major feature in characterising muscle function in maximal unrestricted exercise. It is suggested that the present method is well suited to such analyses.

  16. Stroke patients' functions in personal activities of daily living in relation to sleep and socio-demographic and clinical variables in the acute phase after first-time stroke and at six months of follow-up.

    PubMed

    Bakken, Linda N; Kim, Hesook S; Finset, Arnstein; Lerdal, Anners

    2012-07-01

    To explore first-time stroke patients' degree of independence in activities of daily life in relation to sleep and other essential variables that might influence activities of daily life. Sleep has received little attention in rehabilitation of activities of daily life in stroke patients. This is a longitudinal survey and observational study design from the acute phase to six months poststroke. First-time stroke patients (n = 90) were recruited from two hospitals in eastern Norway in 2007 and 2008. Data were collected by survey interview, medical records and wrist actigraphy in the first two weeks at the hospital and at six months of follow-up. Actigraph measures patient activity and estimates sleep during the day and night. Linear regression showed that high dependence in personal activities of daily living was directly related to low estimated sleep time at night and higher estimated sleep during the day in the acute phase, controlling for socio-demographic and clinical variables. Furthermore, high estimated numbers of awakenings in the acute phase were related to lower activities of daily life functioning at six months of follow-up after controlling for socio-demographic and clinical variables. Stronger pain and a lower physical functioning showed direct relationships with lower independency level of in activities of daily life both in the acute phase and after six months. Sleep patterns in the acute phase may influence the patients' activities of daily life functioning up to six months poststroke. Furthermore, pain in the acute phase may influence the level of activities of daily life functioning in stroke patients. Nurses should pay attention to stroke patients' sleep quality and pain in the rehabilitation period after a stroke. Facilitating good sleep conditions and screening for pain should be an integral part of the rehabilitation programme. © 2012 Blackwell Publishing Ltd.

  17. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-03-01

    Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.

  18. In-line digital holography with phase-shifting Greek-ladder sieves

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  19. Hybrid parallel computing architecture for multiview phase shifting

    NASA Astrophysics Data System (ADS)

    Zhong, Kai; Li, Zhongwei; Zhou, Xiaohui; Shi, Yusheng; Wang, Congjun

    2014-11-01

    The multiview phase-shifting method shows its powerful capability in achieving high resolution three-dimensional (3-D) shape measurement. Unfortunately, this ability results in very high computation costs and 3-D computations have to be processed offline. To realize real-time 3-D shape measurement, a hybrid parallel computing architecture is proposed for multiview phase shifting. In this architecture, the central processing unit can co-operate with the graphic processing unit (GPU) to achieve hybrid parallel computing. The high computation cost procedures, including lens distortion rectification, phase computation, correspondence, and 3-D reconstruction, are implemented in GPU, and a three-layer kernel function model is designed to simultaneously realize coarse-grained and fine-grained paralleling computing. Experimental results verify that the developed system can perform 50 fps (frame per second) real-time 3-D measurement with 260 K 3-D points per frame. A speedup of up to 180 times is obtained for the performance of the proposed technique using a NVIDIA GT560Ti graphics card rather than a sequential C in a 3.4 GHZ Inter Core i7 3770.

  20. Effects of Lactobacillus plantarum Strain OLL2712 Culture Conditions on the Anti-inflammatory Activities for Murine Immune Cells and Obese and Type 2 Diabetic Mice.

    PubMed

    Toshimitsu, T; Ozaki, S; Mochizuki, J; Furuichi, K; Asami, Y

    2017-04-01

    Studies on the health-promoting effects of lactic acid bacteria (LAB) are numerous, but few provide examples of the relationship between LAB function and culture conditions. We verified the effect of differences in culture conditions on Lactobacillus plantarum OLL2712 functionality; this strain exhibits anti-inflammatory activity and preventive effects against metabolic disorders. We measured interleukin-10 (IL-10) and IL-12 production in murine immune cells treated with OLL2712 cells prepared under various culture conditions. The results showed that the IL-10-inducing activities of OLL2712 cells on murine immune cells differed dramatically between OLL2712 groups at different culture phases and using different culture medium components, temperatures, and neutralizing pHs. In particular, exponential-phase cells had much more IL-10-inducing activity than stationary-phase cells. We confirmed that the Toll-like receptor 2 (TLR2) stimulation activity of OLL2712 cells depended on culture conditions in conjunction with IL-10-inducing activity. We also demonstrated functional differences by culture phases in vivo ; OLL2712 cells at exponential phase had more anti-inflammatory activity and anti-metabolic-disorder effects on obese and diabetic mice than those by their stationary-phase counterparts. These results suggest that culture conditions affect the functionality of anti-inflammatory LAB. IMPORTANCE While previous studies demonstrated that culture conditions affected the immunomodulatory properties of lactic acid bacteria (LAB), few have comprehensively investigated the relationship between culture conditions and LAB functionality. In this study, we demonstrated several culture conditions of Lactobacillus plantarum OLL2712 for higher anti-inflammatory activity. We also showed that culture conditions concretely influenced the health-promoting functions of OLL2712 in vivo , particularly against metabolic disorders. Further, we characterized a novel mechanism by which changing LAB culture conditions affected immunomodulatory properties. Our results suggest that culture condition optimization is important for the production of LAB with anti-inflammatory activity. Copyright © 2017 American Society for Microbiology.

  1. Components of the Motor Program: The Cerebellum as an Internal Clock. Cognitive Science Program, Technical Report No 86-7.

    ERIC Educational Resources Information Center

    Ivry, Richard B.; Keele, Steven W.

    This report summarizes the initial phase of research with neurological patients on timing functions. Parkinsonian, cerebellar, cortical and peripheral neuropathy patients as well as college aged and elderly control subjects were tested on two separate measures of timing functions. The first task involved the production of timed intervals and used…

  2. MRI-based noninvasive measurement of intracranial compliance derived from the relationship between transcranial blood and cerebrospinal fluid flows: modeling vs. direct approach

    NASA Astrophysics Data System (ADS)

    Tain, Rong-Wen; Alperin, Noam

    2008-03-01

    Intracranial compliance (ICC) determines the ability of the intracranial space to accommodate increase in volume (e.g., brain swelling) without a large increase in intracranial pressure (ICP). Therefore, measurement of ICC is potentially important for diagnosis and guiding treatment of related neurological problems. Modeling based approach uses an assumed lumped-parameter model of the craniospinal system (CSS) (e.g., RCL circuit), with either the arterial or the net transcranial blood flow (arterial inflow minus venous outflow) as input and the cranio-spinal cerebrospinal fluid (CSF) flow as output. The phase difference between the output and input is then often used as a measure of ICC However, it is not clear whether there is a predetermined relationship between ICC and the phase difference between these waveforms. A different approach for estimation of ICC has been recently proposed. This approach estimates ICC from the ratio of the intracranial volume and pressure changes that occur naturally with each heartbeat. The current study evaluates the sensitivity of the phase-based and the direct approach to changes in ICC. An RLC circuit model of the cranio-spinal system is used to simulate the cranio-spinal CSF flow for 3 different ICC states using the transcranial blood flows measured by MRI phase contrast from healthy human subjects. The effect of the increase in the ICC on the magnitude and phase response is calculated from the system's transfer function. We observed that within the heart rate frequency range, changes in ICC predominantly affected the amplitude of CSF pulsation and less so the phases. The compliance is then obtained for the different ICC states using the direct approach. The measures of compliance calculated using the direct approach demonstrated the highest sensitivity for changes in ICC. This work explains why phase shift based measure of ICC is less sensitive than amplitude based measures such as the direct approach method.

  3. Psychometric evaluation of an item bank for computerized adaptive testing of the EORTC QLQ-C30 cognitive functioning dimension in cancer patients.

    PubMed

    Dirven, Linda; Groenvold, Mogens; Taphoorn, Martin J B; Conroy, Thierry; Tomaszewski, Krzysztof A; Young, Teresa; Petersen, Morten Aa

    2017-11-01

    The European Organisation of Research and Treatment of Cancer (EORTC) Quality of Life Group is developing computerized adaptive testing (CAT) versions of all EORTC Quality of Life Questionnaire (QLQ-C30) scales with the aim to enhance measurement precision. Here we present the results on the field-testing and psychometric evaluation of the item bank for cognitive functioning (CF). In previous phases (I-III), 44 candidate items were developed measuring CF in cancer patients. In phase IV, these items were psychometrically evaluated in a large sample of international cancer patients. This evaluation included an assessment of dimensionality, fit to the item response theory (IRT) model, differential item functioning (DIF), and measurement properties. A total of 1030 cancer patients completed the 44 candidate items on CF. Of these, 34 items could be included in a unidimensional IRT model, showing an acceptable fit. Although several items showed DIF, these had a negligible impact on CF estimation. Measurement precision of the item bank was much higher than the two original QLQ-C30 CF items alone, across the whole continuum. Moreover, CAT measurement may on average reduce study sample sizes with about 35-40% compared to the original QLQ-C30 CF scale, without loss of power. A CF item bank for CAT measurement consisting of 34 items was established, applicable to various cancer patients across countries. This CAT measurement system will facilitate precise and efficient assessment of HRQOL of cancer patients, without loss of comparability of results.

  4. Comparison of gating methods for the real-time analysis of left ventricular function in nonimaging blood pool studies.

    PubMed

    Beard, B B; Stewart, J R; Shiavi, R G; Lorenz, C H

    1995-01-01

    Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating.

  5. Comparison of gating methods for the real-time analysis of left ventricular function in nonimaging blood pool studies

    PubMed Central

    Beard, Brian B.; Stewart, James R.; Shiavi, Richard G.; Lorenz, Christine H.

    2018-01-01

    Background Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. Methods and Results A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Conclusions Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating. PMID:9420820

  6. Quantitative analysis of the local phase transitions induced by the laser heating

    DOE PAGES

    Levlev, Anton V.; Susner, Michael A.; McGuire, Michael A.; ...

    2015-11-04

    Functional imaging enabled by scanning probe microscopy (SPM) allows investigations of nanoscale material properties under a wide range of external conditions, including temperature. However, a number of shortcomings preclude the use of the most common material heating techniques, thereby limiting precise temperature measurements. Here we discuss an approach to local laser heating on the micron scale and its applicability for SPM. We applied local heating coupled with piezoresponse force microscopy and confocal Raman spectroscopy for nanoscale investigations of a ferroelectric-paraelectric phase transition in the copper indium thiophosphate layered ferroelectric. Bayesian linear unmixing applied to experimental results allowed extraction of themore » Raman spectra of different material phases and enabled temperature calibration in the heated region. Lastly, the obtained results enable a systematic approach for studying temperature-dependent material functionalities in heretofore unavailable temperature regimes.« less

  7. Measurement of EUV lithography pupil amplitude and phase variation via image-based methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Zachary; Verduijn, Erik; Wood, Obert R.

    2016-04-01

    Here, an approach to image-based EUV aberration metrology using binary mask targets and iterative model-based solutions to extract both the amplitude and phase components of the aberrated pupil function is presented. The approach is enabled through previously developed modeling, fitting, and extraction algorithms. We seek to examine the behavior of pupil amplitude variation in real-optical systems. Optimized target images were captured under several conditions to fit the resulting pupil responses. Both the amplitude and phase components of the pupil function were extracted from a zone-plate-based EUV mask microscope. The pupil amplitude variation was expanded in three different bases: Zernike polynomials,more » Legendre polynomials, and Hermite polynomials. It was found that the Zernike polynomials describe pupil amplitude variation most effectively of the three.« less

  8. Rain rate instrument for deployment at sea, phase 2

    NASA Technical Reports Server (NTRS)

    Steele, Jimmy W.

    1992-01-01

    This report describes, in detail, the SBIR Phase 2 contracting effort provided for by NASA Contract Number NAS8-38481 in which a prototype Rain Rate Sensor was developed. FWG Model RP101A is a fully functional rain rate and droplet size analyzing instrument. The RP101A is a fully functional rain rate and droplet size analyzing instrument. The RP101A consists of a fiber optic probe containing a 32-fiber array connected to an electronic signal processor. When interfaced to an IBM compatible personal computer and configured with appropriate software, the RP101A is capable of measuring rain rates and particles ranging in size from around 300 microns up to 6 to 7 millimeters. FWG Associates, Inc. intends to develop a production model from the prototype and continue the effort under NASA's SBIR Phase 3 program.

  9. Fluoxetine improves functional work capacity in women with premenstrual dysphoric disorder.

    PubMed

    Steiner, M; Brown, E; Trzepacz, P; Dillon, J; Berger, C; Carter, D; Reid, R; Stewart, D

    2003-02-01

    Interference with social and occupational functioning is a key criterion for premenstrual dysphoric disorder (PMDD) and distinguishes it from the less severe premenstrual syndrome (PMS). We conducted a post hoc analysis of the results of a previously reported study evaluating the efficacy of fluoxetine in the management of PMDD, to determine the extent to which women with PMDD perceived impairment in their functional work capacity during the luteal phase of their menstrual cycle. The effects of two doses of fluoxetine vs placebo in alleviating PMDD symptoms and restoring normal work capacity during this period were assessed. We measured baseline follicular vs luteal phase presence of 8 patient-rated functional work capacity-related symptoms on the Premenstrual Tension Scale-Self Rated in 320 women who met diagnostic criteria for late luteal phase dysphoric disorder, now known as PMDD. Women were then randomized to double-blind treatment with either fluoxetine 20 mg/d, fluoxetine 60 mg/d, or placebo daily for 6 menstrual cycles. All 8 work capacity-related symptoms were more likely to be present in the baseline luteal phase than in the baseline follicular phase. A statistically significant improvement from baseline to the average treatment score for the work capacity subscale was detected for both fluoxetine groups compared to the placebo group. This beneficial response to fluoxetine was evident by the first cycle of treatment. Our results demonstrate that fluoxetine at a relatively low dose of 20 mg/d quickly reduced symptoms that negatively affect work capacity and was well tolerated.

  10. Phase angle, frailty and mortality in older adults.

    PubMed

    Wilhelm-Leen, Emilee R; Hall, Yoshio N; Horwitz, Ralph I; Chertow, Glenn M

    2014-01-01

    Frailty is a multidimensional phenotype that describes declining physical function and a vulnerability to adverse outcomes in the setting of physical stress such as illness or hospitalization. Phase angle is a composite measure of tissue resistance and reactance measured via bioelectrical impedance analysis (BIA). Whether phase angle is associated with frailty and mortality in the general population is unknown. To evaluate associations among phase angle, frailty and mortality. Population-based survey. Third National Health and Nutritional Examination Survey (1988-1994). In all, 4,667 persons aged 60 and older. Frailty was defined according to a set of criteria derived from a definition previously described and validated. Narrow phase angle (the lowest quintile) was associated with a four-fold higher odds of frailty among women and a three-fold higher odds of frailty among men, adjusted for age, sex, race-ethnicity and comorbidity. Over a 12-year follow-up period, the adjusted relative hazard for mortality associated with narrow phase angle was 2.4 (95 % confidence interval [95 % CI] 1.8 to 3.1) in women and 2.2 (95 % CI 1.7 to 2.9) in men. Narrow phase angle was significantly associated with mortality even among participants with little or no comorbidity. Analyses of BIA and frailty were cross-sectional; BIA was not measured serially and incident frailty during follow-up was not assessed. Participants examined at home were excluded from analysis because they did not undergo BIA. Narrow phase angle is associated with frailty and mortality independent of age and comorbidity.

  11. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less

  12. Capacitive Detection of Low-Enthalpy, Higher-Order Phase Transitions in Synthetic and Natural Composition Lipid Membranes

    DOE PAGES

    Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.; ...

    2017-08-15

    In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less

  13. Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.; Fortune, Nathanael A.; Hannahs, Scott T.; Gu, Shuyao; Liang, Lucy; Park, Ju-Hyun; Schleuter, John A.

    2017-06-01

    We report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor κ -(BEDT -TTF )2Cu (NCS )2 as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit Hp is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays the bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave ordering in the high-field superconducting phase. The phase diagram determined from our measurements—including the observation of a phase transition into the FFLO phase at Hp—is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments but is in disagreement with the only previous calorimetric report.

  14. Geodetic Measurements and Numerical Models of Rifting in Northern Iceland for 1993-1999

    NASA Astrophysics Data System (ADS)

    Ali, T.; Feigl, K.; Masterlark, T.; Carr, B. B.; Sigmundsson, F.; Thurber, C. H.

    2009-12-01

    Rifting occurs as episodes of active deformation in individual rift segments of the Northern Volcanic Zone (NVZ) of Iceland. To measure the deformation, we use interferometric analysis of synthetic aperture radar (InSAR) data acquired between 1993 and 1999. Preliminary results suggest that a complex interplay of multiple inflating and deflating sources at depth is required to account for the observed deformation. In an effort to integrate heterogeneous constraining information (kinematic plate spreading, seismic tomography and anisotropy, and thermal and rheologic structures), we develop finite element models that simulate the underlying sources and processes associated with rifting events to quantitatively understand the magmatic plumbing system beneath Krafla central volcano and rift segment, the site of the most recent rifting episode in the NVZ. Calibration parameters include the positions, geometries, and flux rates for elements of the plumbing system, as well as material properties. The General Inversion for Phase Technique (GIPhT) [Feigl and Thurber, Geophys. J. Int., 2009] is used to model the InSAR phase data directly, without unwrapping parameters. It operates on wrapped phase values ranging from -1/2 to +1/2 cycles. By defining a cost function that quantifies the misfit between observed and modeled values in terms of wrapped phase, GIPhT can estimate parameters in a geophysical model by minimizing the cost function. Since this approach can handle noisy, wrapped phase data, it avoids the pitfalls of phase-unwrapping approaches. Consequently, GIPhT allows the analysis, interpretation and modeling of more interferometric pairs than approaches that require unwrapping. GIPhT also allows statistical testing of hypotheses because the wrapped phase residuals follow a Von Mises distribution. As a result, the model parameters estimated by GIPhT include formal uncertainties. We test the hypothesis that deformation in the rift zone occurred at a constant (secular) rate of volume change over the observed time interval. We evaluate several functional forms for the temporal evolution of the sources. The best fitting model employs a linear time function, indicative of secular deformation in the rift zone. We conclude that post-rifting deformation following the 1975-1984 Krafla fires rifting episode has dissipated on a time scale on the order of a decade.

  15. Towards Seismic Tomography Based Upon Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Liu, Q.; Tape, C.; Maggi, A.

    2006-12-01

    We outline the theory behind tomographic inversions based on 3D reference models, fully numerical 3D wave propagation, and adjoint methods. Our approach involves computing the Fréchet derivatives for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a spectral-element method (SEM) and a heterogeneous wave-speed model, and stored as synthetic seismograms at particular receivers for which there is data. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the differences between the data and the synthetics are time reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernel. These kernels may be thought of as weighted sums of measurement-specific banana-donut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, i.e., the Fréchet derivatives. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, i.e., the Fréchet derivatives. A conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. Using 2D examples for Rayleigh wave phase-speed maps of southern California, we illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions, and joint source-structure inversions. We also illustrate the characteristics of these 3D finite-frequency kernels based upon adjoint simulations for a variety of global arrivals, e.g., Pdiff, P'P', and SKS, and we illustrate how the approach may be used to investigate body- and surface-wave anisotropy. In adjoint tomography any time segment in which the data and synthetics match reasonably well is suitable for measurement, and this implies a much greater number of phases per seismogram can be used compared to classical tomography in which the sensitivity of the measurements is determined analytically for specific arrivals, e.g., P. We use an automated picking algorithm based upon short-term/long-term averages and strict phase and amplitude anomaly criteria to determine arrivals and time windows suitable for measurement. For shallow global events the algorithm typically identifies of the order of 1000~windows suitable for measurement, whereas for a deep event the number can reach 4000. For southern California earthquakes the number of phases is of the order of 100 for a magnitude 4.0 event and up to 450 for a magnitude 5.0 event. We will show examples of event kernels for both global and regional earthquakes. These event kernels form the basis of adjoint tomography.

  16. Humidity-Induced Phase Transitions in Ion-Containing Block Copolymer Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Moon Jeong; Nedoma, Alisyn J.; Geissler, Phillip L.

    2008-08-21

    The phase behavior of ion-containing block copolymer membranes in equilibrium with humidified air is studied as a function of the relative humidity (RH) of the surrounding air, ion content of the copolymer, and temperature. Increasing RH at constant temperature results in both disorder-to-order and order-to-order transitions. In-situ small-angle neutron scattering experiments on the open block copolymer system, when combined with water uptake measurement, indicate that the disorder-to-order transition is driven by an increase in the partial molar entropy of the water molecules in the ordered phase relative to that in the disordered phase. This is in contrast to most systemsmore » wherein increasing entropy results in stabilization of the disordered phase.« less

  17. Phase-Based Adaptive Estimation of Magnitude-Squared Coherence Between Turbofan Internal Sensors and Far-Field Microphone Signals

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2015-01-01

    A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.

  18. A new look at photometry of the Moon

    USGS Publications Warehouse

    Goguen, J.D.; Stone, T.C.; Kieffer, H.H.; Buratti, B.J.

    2010-01-01

    We use ROLO photometry (Kieffer, H.H., Stone, T.C. [2005]. Astron. J. 129, 2887-2901) to characterize the before and after full Moon radiance variation for a typical highlands site and a typical mare site. Focusing on the phase angle range 45??. ) to calculate the scattering matrix and solve the radiative transfer equation for I/. F. The mean single scattering albedo is ??=0.808, the asymmetry parameter is ???cos. ?????=0.77 and the phase function is very strongly peaked in both the forward and backward scattering directions. The fit to the observations for the highland site is excellent and multiply scattered photons contribute 80% of I/. F. We conclude that either model, roughness or multiple scattering, can match the observations, but that the strongly anisotropic phase functions of realistic particles require rigorous calculation of many orders of scattering or spurious photometric roughness estimates are guaranteed. Our multiple scattering calculation is the first to combine: (1) a regolith model matched to the measured particle size distribution and index of refraction of the lunar soil, (2) a rigorous calculation of the particle phase function and solution of the radiative transfer equation, and (3) application to lunar photometry with absolute radiance calibration. ?? 2010 Elsevier Inc.

  19. Dynamical Systems in Circuit Designer's Eyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odyniec, M.

    Examples of nonlinear circuit design are given. Focus of the design process is on theory and engineering methods (as opposed to numerical analysis). Modeling is related to measurements It is seen that the phase plane is still very useful with proper models Harmonic balance/describing function offers powerful insight (via the combination of simulation with circuit and ODE theory). Measurement and simulation capabilities increased, especially harmonics measurements (since sinusoids are easy to generate)

  20. Combined Henyey-Greenstein and Rayleigh phase function.

    PubMed

    Liu, Quanhua; Weng, Fuzhong

    2006-10-01

    The phase function is an important parameter that affects the distribution of scattered radiation. In Rayleigh scattering, a scatterer is approximated by a dipole, and its phase function is analytically related to the scattering angle. For the Henyey-Greenstein (HG) approximation, the phase function preserves only the correct asymmetry factor (i.e., the first moment), which is essentially important for anisotropic scattering. When the HG function is applied to small particles, it produces a significant error in radiance. In addition, the HG function is applied only for an intensity radiative transfer. We develop a combined HG and Rayleigh (HG-Rayleigh) phase function. The HG phase function plays the role of modulator extending the application of the Rayleigh phase function for small asymmetry scattering. The HG-Rayleigh phase function guarantees the correct asymmetry factor and is valid for a polarization radiative transfer. It approaches the Rayleigh phase function for small particles. Thus the HG-Rayleigh phase function has wider applications for both intensity and polarimetric radiative transfers. For microwave radiative transfer modeling in this study, the largest errors in the brightness temperature calculations for weak asymmetry scattering are generally below 0.02 K by using the HG-Rayleigh phase function. The errors can be much larger, in the 1-3 K range, if the Rayleigh and HG functions are applied separately.

  1. Utilizing time-frequency amplitude and phase synchrony measure to assess feedback processing in a gambling task.

    PubMed

    Watts, Adreanna T M; Tootell, Anne V; Fix, Spencer T; Aviyente, Selin; Bernat, Edward M

    2018-04-29

    The neurophysiological mechanisms involved in the evaluation of performance feedback have been widely studied in the ERP literature over the past twenty years, but understanding has been limited by the use of traditional time-domain amplitude analytic approaches. Gambling outcome valence has been identified as an important factor modulating event-related potential (ERP) components, most notably the feedback negativity (FN). Recent work employing time-frequency analysis has shown that processes indexed by the FN are confounded in the time-domain and can be better represented as separable feedback-related processes in the theta (3-7 Hz) and delta (0-3 Hz) frequency bands. In addition to time-frequency amplitude analysis, phase synchrony measures have begun to further our understanding of performance evaluation by revealing how feedback information is processed within and between various brain regions. The current study aimed to provide an integrative assessment of time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony changes following monetary feedback in a gambling task. Results revealed that time-frequency amplitude activity explained separable loss and gain processes confounded in the time-domain. Furthermore, phase synchrony measures explained unique variance above and beyond amplitude measures and demonstrated enhanced functional integration between medial prefrontal and bilateral frontal, motor, and occipital regions for loss relative to gain feedback. These findings demonstrate the utility of assessing time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony together to better elucidate the neurophysiology of feedback processing. Copyright © 2017. Published by Elsevier B.V.

  2. Coarsening and pattern formation during true morphological phase separation in unstable thin films under gravity

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Narayanam, Chaitanya; Khanna, Rajesh; Puri, Sanjay

    2017-12-01

    We address in detail the problem of true morphological phase separation (MPS) in three-dimensional or (2 +1 )-dimensional unstable thin liquid films (>100 nm) under the influence of gravity. The free-energy functionals of these films are asymmetric and show two points of common tangency, which facilitates the formation of two equilibrium phases. Three distinct patterns formed by relative preponderance of these phases are clearly identified in "true MPS". Asymmetricity induces two different pathways of pattern formation, viz., defect and direct pathway for true MPS. The pattern formation and phase-ordering dynamics have been studied using statistical measures such as structure factor, correlation function, and growth laws. In the late stage of coarsening, the system reaches into a scaling regime for both pathways, and the characteristic domain size follows the Lifshitz-Slyozov growth law [L (t ) ˜t1 /3] . However, for the defect pathway, there is a crossover of domain growth behavior from L (t ) ˜t1 /4→t1 /3 in the dynamical scaling regime. We also underline the analogies and differences behind the mechanisms of MPS and true MPS in thin liquid films and generic spinodal phase separation in binary mixtures.

  3. Product study of oleic acid ozonolysis as function of humidity

    NASA Astrophysics Data System (ADS)

    Vesna, O.; Sax, M.; Kalberer, M.; Gaschen, A.; Ammann, M.

    The heterogeneous reaction of ozone with oleic acid (OA) aerosol particles was studied as function of humidity and reaction time in an aerosol flow reactor using an off-line gas chromatography mass spectrometry (GC-MS) technique. We report quantitative yields of the major C9 ozonolysis products in both gas and condensed phases and the effect of relative humidity on the product distribution. The measurements were carried out with OA aerosol particles at room temperature. The results indicate that the product yields are increasing with increasing relative humidity during the reaction. Nonanal (NN) was detected as the major gas-phase product (55.6 ± 2.3%), with 94.5 ± 2.4% of the NN yield in the gas, and 5.5 ± 2.7% in the particulate phase, whereas nonanoic, oxononanoic and azelaic acids were detected exclusively in the particulate phase. Using UV-spectrometry, we observed that peroxides make up the largest fraction of products, about half of the product aerosol mass, and their concentration decreased with increasing humidity.

  4. Investigation on phase transitions of 1-decylammonium hydrochloride as the potential thermal energy storage material

    NASA Astrophysics Data System (ADS)

    Dan, Wen-Yan; Di, You-Ying; He, Dong-Hua; Liu, Yu-Pu

    2011-02-01

    1-Decylammonium hydrochloride was synthesized by the method of liquid phase synthesis. Chemical analysis, elemental analysis, and X-ray single crystal diffraction techniques were applied to characterize its composition and structure. Low-temperature heat capacities of the compounds were measured with a precision automated adiabatic calorimeter over the temperature range from 78 to 380 K. Three solid-solid phase transitions have been observed at the peak temperatures of 307.52 ± 0.13, 325.02 ± 0.19, and 327.26 ± 0.07 K. The molar enthalpies and entropies of three phase transitions were determined based on the analysis of heat capacity curves. Experimental molar heat capacities were fitted to two polynomial equations of the heat capacities as a function of temperature by least square method. Smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K based on the fitted polynomials.

  5. Application of fiber spectrometers for etch depth measurement of binary computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Korolkov, V. P.; Konchenko, A. S.; Poleshchuk, A. G.

    2013-01-01

    Novel spectrophotometric method of computer-generated holograms depth measurement is presented. It is based on spectral properties of binary phase multi-order gratings. An intensity of zero order is a periodical function of illumination light wave number. The grating grooves depth can be calculated as it is inversely proportional to the period. Measurement in reflection allows one to increase a phase depth of the grooves by factor of 2 and measure more precisely shallow phase gratings. Diffraction binary structures with depth from several hundreds to thousands nanometers could be measured by the method. Measurement uncertainty is mainly defined by following parameters - shifts of the spectrum maximums that are occurred due to the tilted grooves sidewalls, uncertainty of light incidence angle measurement, and spectrophotometer wavelength error. It is theoretically and experimentally shown that the method can ensure 0.25-1% error for desktop spectrophotometers. However fiber spectrometers are more convenient for creation of real measurement system with scanning measurement of large area computer-generated holograms which are used for optical testing of aspheric optics. Especially diffractive Fizeau null lenses need to be carefully tested for uniformity of etch depth. Experimental system for characterization of binary computer-generated holograms was developed using spectrophotometric unit of confocal sensor CHR-150 (STIL SA).

  6. Functional description of signal processing in the Rogue GPS receiver

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1988-01-01

    Over the past year, two Rogue GPS prototype receivers have been assembled and successfully subjected to a variety of laboratory and field tests. A functional description is presented of signal processing in the Rogue receiver, tracing the signal from RF input to the output values of group delay, phase, and data bits. The receiver can track up to eight satellites, without time multiplexing among satellites or channels, simultaneously measuring both group delay and phase for each of three channels (L1-C/A, L1-P, L2-P). The Rogue signal processing described requires generation of the code for all three channels. Receiver functional design, which emphasized accuracy, reliability, flexibility, and dynamic capability, is summarized. A detailed functional description of signal processing is presented, including C/A-channel and P-channel processing, carrier-aided averaging of group delays, checks for cycle slips, acquistion, and distinctive features.

  7. Collection and processing of data from a phase-coherent meteor radar

    NASA Technical Reports Server (NTRS)

    Backof, C. A., Jr.; Bowhill, S. A.

    1974-01-01

    An analysis of the measurement accuracy requirement of a high resolution meteor radar for observing short period, atmospheric waves is presented, and a system which satisfies the requirements is described. A medium scale, real time computer is programmed to perform all echo recognition and coordinate measurement functions. The measurement algorithms are exercised on noisy data generated by a program which simulates the hardware system, in order to find the effects of noise on the measurement accuracies.

  8. Translational phases of evidence in a prognostic biomarker: a systematic review and meta-analysis of natriuretic peptides and the prognosis of stable coronary disease.

    PubMed

    Sutaria, Shailen; Philipson, Peter; Fitzpatrick, Natalie K; Abrams, Keith; Moreno, Santiago G; Timmis, Adam; Hingorani, Aroon D; Hemingway, Harry

    2012-04-01

    Translational phases of study are important in evaluating whether a prognostic biomarker is likely to have impact on clinical practice but systematic evaluations of such evidence are lacking. To systematically evaluate the clinical usefulness of the published literature on the association of natriuretic peptides (NP) and prognosis in stable coronary disease. MEDLINE and EMBASE until the end of July 2009, without restrictions. Prospective studies measuring NP in people with stable coronary disease who were followed-up for all cause mortality, coronary or cardiovascular events. Two independent reviewers categorised studies according to the American Heart Association phase of study, and extracted data according to the study reporting guidelines from the American Heart Association and REMARK. Systematic review of 19 studies found 17 which were phase 2, reporting an association between NP and events, two phase 3 studies, statistically examining the incremental prognostic value of NP, but no studies assessing whether NP predicted risk sufficiently to change management (phase 4), improve clinical outcomes (phase 5) or cost effectiveness (phase 6). No study referred to a statistical analytic protocol. Meta-analysis of 14 studies, reporting 18,841 patients and 1655 outcome events, found an RR for events of 3.28 (95% CI 2.45 to 4.38) comparing top versus bottom third of NP. This effect was 26% lower among the five studies which adjusted for a priori confounders (age, sex, renal function and left ventricular function) and 38% lower when adjusting for publication bias (Egger's p=0.001). The unbiased strength of association of NP with prognosis in stable coronary disease is unclear, and there is a lack of reports of clinically useful measures of prediction and discrimination or studies relating NP levels to clinical decision making. The available literature is confined to early phases and is of limited clinical usefulness.

  9. Unilateral spatial neglect in the acute phase of ischemic stroke can predict long-term disability and functional capacity.

    PubMed

    Luvizutto, Gustavo José; Moliga, Augusta Fabiana; Rizzatti, Gabriela Rizzo Soares; Fogaroli, Marcelo Ortolani; Moura Neto, Eduardo de; Nunes, Hélio Rubens de Carvalho; Resende, Luiz Antônio de Lima; Bazan, Rodrigo

    2018-05-21

    The aim of this study was to assess the relationship between the degree of unilateral spatial neglect during the acute phase of stroke and long-term functional independence. This was a prospective study of right ischemic stroke patients in which the independent variable was the degree of spatial neglect and the outcome that was measured was functional independence. The potential confounding factors included sex, age, stroke severity, topography of the lesion, risk factors, glycemia and the treatment received. Unilateral spatial neglect was measured using the line cancellation test, the star cancellation test and the line bisection test within 48 hours of the onset of symptoms. Functional independence was measured using the modified Rankin and Barthel scales at 90 days after discharge. The relationship between unilateral spatial neglect and functional independence was analyzed using multiple logistic regression that was corrected for confounding factors. We studied 60 patients with a median age of 68 (34-89) years, 52% of whom were male and 74% of whom were Caucasian. The risk for moderate to severe disability increased with increasing star cancellation test scores (OR=1.14 [1.03-1.26], p=0.01) corrected for the stroke severity, which was a confounding factor that had a statistically positive association with disability (OR=1.63 [1.13-2.65], p=0.01). The best chance of functional independence decreased with increasing star cancellation test scores (OR=0.86 [0.78-0.96], p=0.006) corrected for the stroke severity, which was a confounding factor that had a statistically negative association with independence (OR=0.66 [0.48-0.92], p=0.017). The severity of unilateral spatial neglect in acute stroke worsens the degree of long-term disability and functional independence.

  10. Transfer function analysis of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Zuckerman, J. H.; Giller, C. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (VMCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure and VMCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes in VMCA during acute hypotension, which was compared with the directly measured change in VMCA during thigh cuff deflation. Beat-to-beat changes in VMCA occurred simultaneously with changes in arterial pressure, and the autospectrum of VMCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was > 0.5 in the frequency range of 0.07-0.30 Hz and < 0.5 at < 0.07 Hz. Furthermore, the predicted change in VMCA was similar to the measured VMCA during thigh cuff deflation. These data suggest that spontaneous changes in VMCA that occur at the frequency range of 0.07-0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07-0.30 Hz.

  11. Characterization of Viscoelastic Materials Using Group Shear Wave Speeds.

    PubMed

    Rouze, Ned C; Deng, Yufeng; Trutna, Courtney A; Palmeri, Mark L; Nightingale, Kathryn R

    2018-05-01

    Recent investigations of viscoelastic properties of materials have been performed by observing shear wave propagation following localized, impulsive excitations, and Fourier decomposing the shear wave signal to parameterize the frequency-dependent phase velocity using a material model. This paper describes a new method to characterize viscoelastic materials using group shear wave speeds , , and determined from the shear wave displacement, velocity, and acceleration signals, respectively. Materials are modeled using a two-parameter linear attenuation model with phase velocity and dispersion slope at a reference frequency of 200 Hz. Analytically calculated lookup tables are used to determine the two material parameters from pairs of measured group shear wave speeds. Green's function calculations are used to validate the analytic model. Results are reported for measurements in viscoelastic and approximately elastic phantoms and demonstrate good agreement with phase velocities measured using Fourier analysis of the measured shear wave signals. The calculated lookup tables are relatively insensitive to the excitation configuration. While many commercial shear wave elasticity imaging systems report group shear wave speeds as the measures of material stiffness, this paper demonstrates that differences , , and of group speeds are first-order measures of the viscous properties of materials.

  12. Investigating biomass burning aerosol morphology using a laser imaging nephelometer

    NASA Astrophysics Data System (ADS)

    Manfred, Katherine M.; Washenfelder, Rebecca A.; Wagner, Nicholas L.; Adler, Gabriela; Erdesz, Frank; Womack, Caroline C.; Lamb, Kara D.; Schwarz, Joshua P.; Franchin, Alessandro; Selimovic, Vanessa; Yokelson, Robert J.; Murphy, Daniel M.

    2018-02-01

    Particle morphology is an important parameter affecting aerosol optical properties that are relevant to climate and air quality, yet it is poorly constrained due to sparse in situ measurements. Biomass burning is a large source of aerosol that generates particles with different morphologies. Quantifying the optical contributions of non-spherical aerosol populations is critical for accurate radiative transfer models, and for correctly interpreting remote sensing data. We deployed a laser imaging nephelometer at the Missoula Fire Sciences Laboratory to sample biomass burning aerosol from controlled fires during the FIREX intensive laboratory study. The laser imaging nephelometer measures the unpolarized scattering phase function of an aerosol ensemble using diode lasers at 375 and 405 nm. Scattered light from the bulk aerosol in the instrument is imaged onto a charge-coupled device (CCD) using a wide-angle field-of-view lens, which allows for measurements at 4-175° scattering angle with ˜ 0.5° angular resolution. Along with a suite of other instruments, the laser imaging nephelometer sampled fresh smoke emissions both directly and after removal of volatile components with a thermodenuder at 250 °C. The total integrated aerosol scattering signal agreed with both a cavity ring-down photoacoustic spectrometer system and a traditional integrating nephelometer within instrumental uncertainties. We compare the measured scattering phase functions at 405 nm to theoretical models for spherical (Mie) and fractal (Rayleigh-Debye-Gans) particle morphologies based on the size distribution reported by an optical particle counter. Results from representative fires demonstrate that particle morphology can vary dramatically for different fuel types. In some cases, the measured phase function cannot be described using Mie theory. This study demonstrates the capabilities of the laser imaging nephelometer instrument to provide realtime, in situ information about dominant particle morphology, which is vital for understanding remote sensing data and accurately describing the aerosol population in radiative transfer calculations.

  13. Measurement of health-related quality of life in the national emphysema treatment trial.

    PubMed

    Kaplan, Robert M; Ries, Andrew L; Reilly, John; Mohsenifar, Zab

    2004-09-01

    To evaluate two generic and two disease-specific measures of health-related quality of life (QOL) using prerandomization data from the National Emphysema Treatment Trial (NETT). The analyses used data collected from the 1,218 subjects who were randomized in the NETT. Patients completed evaluations before and after completion of the prerandomization phase of the NETT pulmonary rehabilitation program. Using data obtained prior to participation in the rehabilitation program, QOL measures were evaluated against physiologic and functional criteria using correlational analysis. The physiologic criteria included estimates of emphysema severity based on FEV(1) and measures of Pao(2) obtained with the subject at rest and breathing room air. Functional measures included the 6-min walk distance (6MWD), maximum work, and hospitalizations in the prior 3 months. Correlation coefficients between QOL measures ranged from -0.31 to 0.70. In comparison to normative samples, scores on general QOL measures were low, suggesting that the NETT participants were quite ill. All QOL measures were modestly but significantly correlated with FEV(1), maximum work, and 6MWD. Patients who had stayed overnight in a hospital in the prior 3 months reported lower QOL on average than those who had not been hospitalized. There were significant improvements for all QOL measures following the rehabilitation program, and improvements in QOL were correlated with improvements in 6MWD. The disease-specific and general QOL measures used in the NETT were correlated. Analyses suggested that these measures improved significantly following the rehabilitation phase of the NETT.

  14. Asymmetry after hamstring injury in English Premier League: issue resolved, or perhaps not?

    PubMed

    Barreira, P; Drust, B; Robinson, M A; Vanrenterghem, J

    2015-06-01

    Hamstring injuries constitute one of the most concerning injuries in English Premier League football, due to its high primary incidence but also its recurrence. Functional methods assessing hamstring function during high-risk performance tasks such as sprinting are vital to identify potential risk factors. The purpose of this study was to assess horizontal force deficits during maximum sprint running on a non-motorized treadmill in football players with previous history of hamstring strains as a pre-season risk-assessment in a club setting. 17 male football players from one Premier League Club were divided into 2 groups, experimental (n=6, age=24.5±2.3 years) and control (n=11, age=21.3±1.2 years), according to history of previous hamstring injury. Participants performed a protocol including a 10-s maximum sprint on a non-motorized treadmill. Force deficits during acceleration phase and steady state phases of the sprint were assessed between limbs and between groups. The main outcome measures were horizontal and vertical peak forces during the acceleration phase or steady state. There were no significant differences in peak forces between previously injured and non-injured limbs, or between groups, challenging the ideas around functional force deficits in sprint running as a diagnostic measure of hamstring re-injury risk. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Autonomic neural control of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, Rong; Zuckerman, Julie H.; Iwasaki, Kenichi; Wilson, Thad E.; Crandall, Craig G.; Levine, Benjamin D.

    2002-01-01

    BACKGROUND: The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. METHODS AND RESULTS: We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% (P<0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure. CONCLUSIONS: These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.

  16. Phase Separation Kinetics in Isopycnic Mixtures of H2O/CO2/Ethoxylated Alcohol Surfactants

    NASA Technical Reports Server (NTRS)

    Lesemann, Markus; Paulaitis, Michael E.; Kaler, Eric W.

    1999-01-01

    Ternary mixtures of H2O and CO2 with ethoxylated alcohol (C(sub i)E(sub j)) surfactants form three coexisting liquid phases at conditions where two of the phases have equal densities (isopycnic phases). Isopycnic phase behavior has been observed for mixtures containing C8E5, C10E6, and C12E6 surfactants, but not for those mixtures containing either C4E1 or C8E3 surfactants. Pressure-temperature (PT) projections for this three-phase equilibrium were determined for H2O/CO2/C8E5 and H2O/CO2/C10E6 mixtures at temperatures from approximately 25 to 33 C and pressures between 90 and 350 bar. Measurements of the microstructure in H2O/CO2/C12E6 mixtures as a function of temperature (25-31 C), pressure (63.1-90.7 bar), and CO2 composition (0-3.9 wt%) have also been carried out to show that while micellar structure remains essentially un-changed, critical concentration fluctuations increase as the phase boundary and plait point are approached. In this report, we present our first measurements of the kinetics of isopycnic phase separation for ternary mixtures of H2O/CO2/C8E5.

  17. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors

    PubMed Central

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418

  18. Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.

    PubMed

    Marko, Matthew David; Shevach, Glenn

    2017-01-01

    A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.

  19. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOEpatents

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  20. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    NASA Astrophysics Data System (ADS)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  1. Comparison of the Diagnostic Accuracy of DSC- and Dynamic Contrast-Enhanced MRI in the Preoperative Grading of Astrocytomas.

    PubMed

    Nguyen, T B; Cron, G O; Perdrizet, K; Bezzina, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Sinclair, J; Thornhill, R E; Foottit, C; Zanette, B; Cameron, I G

    2015-11-01

    Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV. © 2015 by American Journal of Neuroradiology.

  2. Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Ellerbee, Audrey K.; Yazdanfar, Siavash; Izatt, Joseph A.

    2006-03-01

    Spectral domain phase microscopy (SDPM) is a function extension of spectral domain optical coherence tomography. SDPM achieves exquisite levels of phase stability by employing common-path interferometry. We discuss the theory and limitations of Doppler flow imaging using SDPM, demonstrate monitoring the thermal contraction of a glass sample with nanometer per second velocity sensitivity, and apply this technique to measurement of cytoplasmic streaming in an Amoeba proteus pseudopod. We observe reversal of cytoplasmic flow induced by extracellular CaCl2, and report results that suggest parabolic flow of cytoplasm in the A. proteus pseudopod.

  3. Gender differences in quality of life and functional disability for depression outpatients with or without residual symptoms after acute phase treatment in China.

    PubMed

    Zhao, Na; Wang, Xiaohong; Wu, Wenyuan; Hu, Yongdong; Niu, Yajuan; Wang, Xueyi; Gao, Chengge; Zhang, Ning; Fang, Yiru; Huang, Jizhong; Liu, Tiebang; Jia, Fujun; Zhu, Xuequan; Hu, Jian; Wang, Gang

    2017-09-01

    Depression is associated with substantial personal suffering and reduced quality of life and functioning. The aim of this study was to investigate gender differences on quality of life and functional impairment of outpatients with depression after acute phase treatment. 1503 depression outpatients were recruited from eleven hospitals in China. Subjects were evaluated with sociodemographic characteristics, history and self-report instruments, related to severity of symptoms, function and quality of life. All data were analyzed to determine the gender differences. Men had a younger age at onset and the first onset age, higher education compared to women in total patients and with or without residual symptoms group. Using regression analysis, it was found that gender was significantly statistically related to severity scores of SDS and had no correlation with Q-LES-Q-SF total scores. In the residual symptoms group, greater functional impairment was noted by men in the area of work and social life. Significant gender differences of mood, work and sexual life in quality of life were observed. This is a cross-sectional study of depressed outpatients and duration of acute phase treatment may not an adequate time to measure changes. Depression appears to affect men more seriously than women after acute phase treatment. Men had a younger age at onset and the first onset age, higher education, more functional impairment and lower satisfaction of quality of life in mood, work and sexual life. Gender differences affect acute treatment, remission and recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Neutron Diffraction Study On Gamma To Alpha Phase Transition In Ce0.9th0.1 Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashley, Jason C1; Heffner, Robert H; Llobet, A

    2008-01-01

    Comprehensive neutron diffraction measurements were performed to study the isostructural {gamma} {leftrightarrow} {alpha} phase transition in Ce{sub 0.9}Th{sub 0.1} alloy. Using Rietveld refinements, we obtained lattice and thermal parameters as a function of temperature. From the temperature slope of the thermal parameters, we determined Debye temperatures {Theta}{sup {gamma}}{sub D} = 133(1) K and {Theta}{sup {alpha}}{sub D} = 140(1) K for the {gamma} phase and the {alpha} phase, respectively. This result implies that the vibrational entropy change is not significant at the {gamma} {leftrightarrow} {alpha} transition, contrary to that from elemental Cerium [Phys. Rev. Lett. 92, 105702, 2004].

  5. Developing and validating a scale to measure Food and Nutrition Literacy (FNLIT) in elementary school children in Iran.

    PubMed

    Doustmohammadian, Aazam; Omidvar, Nasrin; Keshavarz-Mohammadi, Nastaran; Abdollahi, Morteza; Amini, Maryam; Eini-Zinab, Hassan

    2017-01-01

    Food and nutrition literacy is an emerging term which is increasingly used in policy and research. Though research in this area is growing, progression is limited by the lack of an accepted method to measure food and nutrition literacy. The aim of this study is to develop a valid and reliable questionnaire to assess food and nutrition literacy in elementary school children in the city of Tehran. The study was conducted in three phases. To develop Food and Nutrition Literacy (FNLIT) questionnaire, a comprehensive literature review and a qualitative study were initially performed to identify food and nutrition literacy dimensions and its components. Content and face validity of the questionnaire were evaluated by an expert panel as well as students. In the second phase, construct validity of the scale was evaluated using Explanatory Factor Analyses (EFA) and Confirmatory Factor Analyses (CFA). In the last phase (confirmatory phase), the final version of the questionnaire was evaluated on 400 students. Findings show Content Validity Ratio (CVR) and Content Validity Index (CVI) of the 62-item questionnaire at acceptable levels of 0.87 and 0.92, respectively. EFA suggested a six-factor construct, namely, understanding food and nutrition information, knowledge, functional, interactive, food choice, and critical. The results of CFA indicated acceptable fit indices for the proposed models. All subscales demonstrated satisfactory internal consistency (Cronbach's alpha≥0.70), except for critical skill subscale (0.48). The intraclass correlation coefficient (ICC = 0.90, CI: 0.83-0.94) indicated that Food and Nutrition Literacy (FNLIT) scale had satisfactory stability. Each phase of development progressively improved the questionnaire, which resulted in a 46-item (42 likert-type items and 4 true-false items) Food and Nutrition Literacy (FNLIT) scale. The questionnaire measured two domains with 6 subscales, including: 1) cognitive domain: understanding and knowledge; 2) skill domain: functional, food choice, interactive, and critical skills. The developed food and nutrition literacy scale is a valid and reliable instrument to measure food and nutrition literacy in children. This measure lays a solid empirical and theoretical foundation for future research and tailored interventions to promote food and nutrition literacy in this age group.

  6. Integrated command, control communication and computation system study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The study was conducted in three phases: a functional requirements phase; a functional architecture phase; and a design plan phase. The major emphasis was on the functional architecture phase and the approaches used for its functional hierarchy, operations concept, and interfaces.

  7. Phase-shift parametrization and extraction of asymptotic normalization constants from elastic-scattering data

    NASA Astrophysics Data System (ADS)

    Ramírez Suárez, O. L.; Sparenberg, J.-M.

    2017-09-01

    We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.

  8. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    PubMed

    Apgaua, Deborah M G; Ishida, Françoise Y; Tng, David Y P; Laidlaw, Melinda J; Santos, Rubens M; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A M; Laurance, Susan G W

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.

  9. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees

    PubMed Central

    Apgaua, Deborah M. G.; Ishida, Françoise Y.; Tng, David Y. P.; Laidlaw, Melinda J.; Santos, Rubens M.; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A. M.; Laurance, Susan G. W.

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios. PMID:26087009

  10. Dependence of the compensation error on the error of a sensor and corrector in an adaptive optics phase-conjugating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyko, V V; Kislov, V I; Ofitserov, E N

    2015-08-31

    In the framework of a statistical model of an adaptive optics system (AOS) of phase conjugation, three algorithms based on an integrated mathematical approach are considered, each of them intended for minimisation of one of the following characteristics: the sensor error (in the case of an ideal corrector), the corrector error (in the case of ideal measurements) and the compensation error (with regard to discreteness and measurement noises and to incompleteness of a system of response functions of the corrector actuators). Functional and statistical relationships between the algorithms are studied and a relation is derived to ensure calculation of themore » mean-square compensation error as a function of the errors of the sensor and corrector with an accuracy better than 10%. Because in adjusting the AOS parameters, it is reasonable to proceed from the equality of the sensor and corrector errors, in the case the Hartmann sensor is used as a wavefront sensor, the required number of actuators in the absence of the noise component in the sensor error turns out 1.5 – 2.5 times less than the number of counts, and that difference grows with increasing measurement noise. (adaptive optics)« less

  11. Characterization of the Nonlinear Elastic Properties of Graphite/Epoxy Composites Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Green, Robert E., Jr.

    1990-01-01

    The normalized change in ultrasonic "natural" velocity as a function of stress and temperature was measured in a unidirectional laminate of T300/5208 graphite/epoxy composite using a pulsed phase locked loop ultrasonic interferometer. These measurements were used together with the linear (second order) elastic moduli to calculate some of the nonlinear (third order) moduli of this material.

  12. Radio-science performance analysis software

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Asmar, S. W.

    1995-02-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  13. Radio-Science Performance Analysis Software

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Asmar, S. W.

    1994-10-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussion on operating the program set on Galileo and Ulysses data will be presented.

  14. Radio-science performance analysis software

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Asmar, S. W.

    1995-01-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  15. Initial constructs for patient-centered outcome measures to evaluate brain-computer interfaces

    PubMed Central

    Andresen, Elena M.; Fried-Oken, Melanie; Peters, Betts; Patrick, Donald L.

    2016-01-01

    Purpose The authors describe preliminary work toward the creation of patient-centered outcome (PCO) measures to evaluate brain-computer interface (BCI) as an assistive technology for individuals with severe speech and physical impairments (SSPI). Method In Phase 1, 591 items from 15 existing measures were mapped to the International Classification of Functioning, Disability and Health (ICF). In Phase 2, qualitative interviews were conducted with eight people with SSPI and seven caregivers. Resulting text data were coded in an iterative analysis. Results Most items (79%) mapped to the ICF environmental domain; over half (53%) mapped to more than one domain. The ICF framework was well suited for mapping items related to body functions and structures, but less so for items in other areas, including personal factors. Two constructs emerged from qualitative data: Quality of Life (QOL) and Assistive Technology. Component domains and themes were identified for each. Conclusions Preliminary constructs, domains, and themes were generated for future PCO measures relevant to BCI. Existing instruments are sufficient for initial items but do not adequately match the values of people with SSPI and their caregivers. Field methods for interviewing people with SSPI were successful, and support the inclusion of these individuals in PCO research. PMID:25806719

  16. Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes.

    PubMed

    Benedetto, Alessandro; Lozano-Soldevilla, Diego; VanRullen, Rufin

    2017-12-04

    Alpha oscillations are particularly important in determining our percepts and have been implicated in fundamental brain functions. Oscillatory activity can be spontaneous or stimulus-related. Furthermore, stimulus-related responses can be phase- or non-phase-locked to the stimulus. Non-phase-locked (induced) activity can be identified as the average amplitude changes in response to a stimulation, while phase-locked activity can be measured via reverse-correlation techniques (echo function). However, the mechanisms and the functional roles of these oscillations are far from clear. Here, we investigated the effect of ambient luminance changes, known to dramatically modulate neural oscillations, on spontaneous and stimulus-related alpha. We investigated the effect of ambient luminance on EEG alpha during spontaneous human brain activity at rest (experiment 1) and during visual stimulation (experiment 2). Results show that spontaneous alpha amplitude increased by decreasing ambient luminance, while alpha frequency remained unaffected. In the second experiment, we found that under low-luminance viewing, the stimulus-related alpha amplitude was lower, and its frequency was slightly faster. These effects were evident in the phase-locked part of the alpha response (echo function), but weaker or absent in the induced (non-phase-locked) alpha responses. Finally, we explored the possible behavioural correlates of these modulations in a monocular critical flicker frequency task (experiment 3), finding that dark adaptation in the left eye decreased the temporal threshold of the right eye. Overall, we found that ambient luminance changes impact differently on spontaneous and stimulus-related alpha expression. We suggest that stimulus-related alpha activity is crucial in determining human temporal segmentation abilities. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Simultaneous ground-satellite observations of daytime traveling ionospheric disturbances over Japan using the GPS-TEC network and the CHAMP satellite

    NASA Astrophysics Data System (ADS)

    Moral, A. C.; Shiokawa, K.; Otsuka, Y.; Liu, H.; Nishioka, M.; Tsugawa, T.

    2017-12-01

    We report results of simultaneous ground-satellite measurements of daytime travelling ionospheric disturbances (TIDs) over Japan by using the GEONET GPS receiver network and the CHAMP satellite. For the two years of 2002 and 2008, we examined GPS measurements of TEC (Total Electron Content) and neutral and electron densities measured by CHAMP satellite. Total of fifteen TID events with clear southward moving structures in the GPS-TEC measurements are found by simultaneous ground-satellite measurements. On 2002, simultaneous events are only observed in January (1 event) and February (4 events). On 2008, ten events are observed around winter months (January (3 events), February (5), March (1), and October (1)). Neutral and electron densities measured by CHAMP show quasi-periodic fluctuations throughout the passages for all events. The CHAMP satellite crossed at least one clear TID phase front for all the events. We fitted a sinusoidal function to both ground and satellite data to obtain the frequencies and phase of the observed variations. We calculated the corresponding phase relationships between TEC variations and neutral and electron densities measured by CHAMP to categorize the events. In the presentations we report correspondence of these TID structures seen in the simultaneous ground-satellite observations by GPS-TEC and CHAMP, and discuss their phase relationship to identify the source of the daytime TIDs and specify how much of the observed variations are showing clear frequencies/or not in the nature at middle latitudes.

  18. Correlation between the dizziness handicap inventory and balance performance during the acute phase of unilateral vestibulopathy.

    PubMed

    Son, Eun Jin; Lee, Dong-Hee; Oh, Jeong-Hoon; Seo, Jae-Hyun; Jeon, Eun-Ju

    2015-01-01

    The dizziness handicap inventory (DHI) is widely used to evaluate self-perceived handicap due to dizziness, and is known to correlate with vestibular function tests in chronic dizziness. However, whether DHI reflects subjective symptoms during the acute phase has not been studied. This study aims to investigate the correlations of subjective and objective measurements to highlight parameters that reflect the severity of dizziness during the first week of acute unilateral vestibulopathy. Thirty-seven patients with acute unilateral vestibulopathy were examined. Patients' subjective perceptions of dizziness were measured using the DHI, Vertigo Visual Analog Scale (VVAS), Disability Scale (DS), and Activity-Specific Balance Scale (ABC). Additionally, the oculomotor tests, Romberg and sharpened Romberg tests, functional reach test, and dynamic visual acuity tests were performed. The correlation between the DHI and other tests was evaluated. DHI-total scores exhibited a moderately positive correlation with VVAS and DS, and a moderately negative correlation with ABC. However, DHI-total score did not correlate with results of the Romberg, sharpened Romberg, or functional reach tests. When compared among four groups divided according to DHI scores, VVAS and DS scores exhibited statistically significant differences, but no significant differences were detected for other test results. Our findings revealed that the DHI correlated significantly with self-perceived symptoms measured by VVAS and DS, but not ABC. There was no significant correlation with other balance function tests during the first week of acute vestibulopathy. The results suggest that DHI, VVAS and DS may be more useful to measure the severity of acute dizziness symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Local Orthorhombicity in the Magnetic C 4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr 1 - x Na x Fe 2 As 2

    DOE PAGES

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; ...

    2017-10-30

    We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less

  20. Local Orthorhombicity in the Magnetic C 4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr 1 - x Na x Fe 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming

    We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less

  1. OSD CALS Architecture Master Plan Study. Concept Paper. Security. Volume 38

    DOT National Transportation Integrated Search

    1989-07-01

    Developing and executing a well-thought-out security policy is critical to the success of CALS. Without appropriate security measures, the integration of technology, organizations, functions, and data envisioned as Phase II CALS can not occur. Theref...

  2. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Jingkun; Chen, Da-Ren; Biswas, Pratim

    2007-07-01

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO2 nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO2 nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  3. Two-Point Microrheology of Phase-Separated Domains in Lipid Bilayers

    PubMed Central

    Hormel, Tristan T.; Reyer, Matthew A.; Parthasarathy, Raghuveer

    2015-01-01

    Though the importance of membrane fluidity for cellular function has been well established for decades, methods for measuring lipid bilayer viscosity remain challenging to devise and implement. Recently, approaches based on characterizing the Brownian dynamics of individual tracers such as colloidal particles or lipid domains have provided insights into bilayer viscosity. For fluids in general, however, methods based on single-particle trajectories provide a limited view of hydrodynamic response. The technique of two-point microrheology, in which correlations between the Brownian dynamics of pairs of tracers report on the properties of the intervening medium, characterizes viscosity at length-scales that are larger than that of individual tracers and has less sensitivity to tracer-induced distortions, but has never been applied to lipid membranes. We present, to our knowledge, the first two-point microrheological study of lipid bilayers, examining the correlated motion of domains in phase-separated lipid vesicles and comparing one- and two-point results. We measure two-point correlation functions in excellent agreement with the forms predicted by two-dimensional hydrodynamic models, analysis of which reveals a viscosity intermediate between those of the two lipid phases, indicative of global fluid properties rather than the viscosity of the local neighborhood of the tracer. PMID:26287625

  4. Attentional validity effect across the human menstrual cycle varies with basal temperature changes.

    PubMed

    Beaudoin, Jessica; Marrocco, Richard

    2005-03-07

    This study examined the correlation between covert attention and basal temperature change during menstrual cycle phase in 22 adult females. Previous work showing beneficial effects of estrogen on working memory led us to hypothesize that attentional function would be facilitated at the apparent time of ovulation. Menstrual phase was determined through questionnaires and objective measurements of basal body temperature (BBT) spikes over a 1 month period. The cued target detection (CTD) task was used to assess visuospatial attentional performance at three times during the menstrual cycle. The mean reaction times (RTs) to visual targets were measured as a function of menstrual cycle phase, cue type and target location. As predicted, the onset of ovulation showed decreased reaction times and a significant increase in the cue validity effect on the days immediately preceding and following ovulation. The magnitude of the attention validity effect was negatively correlated with the basal temperature rise. Women lacking basal temperature shifts failed to show these changes. Results support the conclusion that the natural fluctuations of body temperature, and possibly reproductive hormones, during the menstrual cycle may enhance the attentional component of cognitive performance.

  5. Investigating Cardiac MRI Based Right Ventricular Contractility As A Novel Non-Invasive Metric of Pulmonary Arterial Pressure

    PubMed Central

    Menon, Prahlad G; Adhypak, Srilakshmi M; Williams, Ronald B; Doyle, Mark; Biederman, Robert WW

    2014-01-01

    BACKGROUND We test the hypothesis that cardiac magnetic resonance (CMR) imaging-based indices of four-dimensional (4D) (three dimensions (3D) + time) right ventricle (RV) function have predictive values in ascertaining invasive pulmonary arterial systolic pressure (PASP) measurements from right heart catheterization (RHC) in patients with pulmonary arterial hypertension (PAH). METHODS We studied five patients with idiopathic PAH and two age and sex-matched controls for RV function using a novel contractility index (CI) for amplitude and phase to peak contraction established from analysis of regional shape variation in the RV endocardium over 20 cardiac phases, segmented from CMR images in multiple orientations. RESULTS The amplitude of RV contractility correlated inversely with RV ejection fraction (RVEF; R2 = 0.64, P = 0.03) and PASP (R2 = 0.71, P = 0.02). Phase of peak RV contractility also correlated inversely to RVEF (R2 = 0.499, P = 0.12) and PASP (R2 = 0.66, P = 0.04). CONCLUSIONS RV contractility analyzed from CMR offers promising non-invasive metrics for classification of PAH, which are congruent with invasive pressure measurements. PMID:25624777

  6. Cooperative photoinduced metastable phase control in strained manganite films

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S. W.; Post, K. W.; Jin, Feng; Nelson, K. A.; Basov, D. N.; Wu, Wenbin; Averitt, R. D.

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

  7. High-pressure hydrogen sulfide by diffusion quantum Monte Carlo.

    PubMed

    Azadi, Sam; Kühne, Thomas D

    2017-02-28

    We revisit the enthalpy-pressure phase diagram of the various products from the different proposed decompositions of H 2 S at pressures above 150 GPa by means of accurate diffusion Monte Carlo simulations. Our results entail a revision of the ground-state enthalpy-pressure phase diagram. Specifically, we find that the C2/c HS 2 structure is persistent up to 440 GPa before undergoing a phase transition into the C2/m phase. Contrary to density functional theory, our calculations suggest that the C2/m phase of HS is more stable than the I4 1 /amd HS structure over the whole pressure range from 150 to 400 GPa. More importantly, we predict that the Im-3m phase is the most likely candidate for H 3 S, which is consistent with recent experimental x-ray diffraction measurements.

  8. Van der Waals model for phase transitions in thermoresponsive surface films.

    PubMed

    McCoy, John D; Curro, John G

    2009-05-21

    Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.

  9. Serum levels of inhibin A and inhibin B in women with normal and abnormal luteal function.

    PubMed

    Yamoto, M; Imai, M; Otani, H; Nakano, R

    1997-05-01

    To determine whether serum inhibin A and inhibin B concentrations are lower in patients with luteal dysfunction than in women with normal luteal function. Serum samples were collected from seven healthy women with regular menstrual cycles. Serum samples on days +5 to +9 after the LH surge were collected from patients with luteal dysfunction. The diagnosis of luteal dysfunction was based on a luteal phase duration less than 11 days and a single midluteal progesterone level below 10 ng/mL. Serum levels of inhibin A, inhibin B, progesterone, estradiol (E2), FSH, and LH were measured. The serum inhibin A levels were increased toward the late follicular phase. The levels reached a maximum during the midluteal phase, followed by a fall during the late luteal phase. The serum inhibin B levels were high during the follicular phases and the early luteal phase. The levels decreased during the midluteal and late luteal phases. Serum levels (mean +/- standard error of the mean) of inhibin A in patients with luteal dysfunction were significantly lower than those in women during the midluteal phase (26.2 +/- 2.9 compared to 41.9 +/- 2.8 pg/mL; P < .01) in addition to the expected decrease in serum progesterone levels (6.3 +/- 0.7 compared to 14.7 +/- 1.2 ng/mL; P < .01). Serum inhibin B levels did not differ significantly between normal women and those with luteal dysfunction. There also were no significant differences in the E2, FSH, and LH levels. Levels of inhibin A, but not of inhibin B, may reflect the human luteal function.

  10. Advances in Instrumental Techniques for Investigating Planetary Regolith Microstructure

    NASA Astrophysics Data System (ADS)

    Smythe, W. D.; Nelson, R. M.; Hapke, B. W.; Mannatt, K. S.; Eady, J.

    2005-05-01

    Introduction: The Opposition Effect (OE) is the non-linear increase in the intensity of light scattered from a surface as phase angle approaches 0o. It is seen in laboratory experiments and in remote sensing observations of planetary surfaces. Understanding the OE is a requirement to fitting photometric models which will produce meaningful results about regolith texture. Previously we have reported measurements from the JPL long arm goniometer and we have shown that this instrument enables us to distinguish between two distinct processes which create the opposition surges, Shadow Hiding (SHOE) and Coherent Backscattering (CBOE)(Hapke et al., 1993; Nelson, et al. 2000; 2002). SHOE arises because, as phase angle approaches zero, shadows cast by regolith grains on other grains become invisible to the observer. CBOE results from constructive interference between rays traveling the same path but in opposite directions. Our instrument was able to measure the phase curve using linearly and circularly polarized light which enabled us to distinguish between the singly and multiply scattered components in the reflected radiation. We were able to measure to angles as small at 0.05 degrees but our results were limited to maximum measurements of only 5 degrees. In the last year, we have extensively renovated the instrument so that measurements can be made from phase angles as small at 0.05 degrees to 20 degrees. This permits us to study the reflectance phase curve and the linear and circular polarization phase curves for phase angles at which important changes occur depending principally on the albedo, the particle size and the single scattering phase function of the material under investigation. We report the results from the first series of measurements of the refurbished instrument. The Experiment: We measured the angular scattering properties of 13 mixtures of Aluminum Oxide powders of the different particle size (0.1 to 30 microns). Along with the reflectance phase curve we measured the circular polarization ratio (CPR)-the ratio of the intensity of the light returned with the same helicity as the incident light to that with the opposite helicity. An increase in CPR with decreasing phase angle indicates increased multiple scattering and is consistent with CBOE (Hapke, 1993). Our results extended to a phase angle of 20 degrees are consistent with our earlier investigations which were limited to phase angles less than 5 degrees. We are also able to measure important parts of the linear and circular polarization phase curve which we had previously been unable to measure. Acknowledgement: This work was done at JPL and Pitt and was supported by NASA's PGG program. References: Hapke, 1993, Theory of Reflectance and Emittance Spectroscopy, Cambridge Hapke, B.W., R.M. Nelson, and W.D. Smythe, 1993, Science, 260, 509-511. Nelson, et al. 2000. Icarus, 147, 545-558. Nelson, et al., 2002, Planetary and Space Science, 50, 849-856.

  11. Bimodal behavior of post-measured entropy and one-way quantum deficit for two-qubit X states

    NASA Astrophysics Data System (ADS)

    Yurischev, Mikhail A.

    2018-01-01

    A method for calculating the one-way quantum deficit is developed. It involves a careful study of post-measured entropy shapes. We discovered that in some regions of X-state space the post-measured entropy \\tilde{S} as a function of measurement angle θ \\in [0,π /2] exhibits a bimodal behavior inside the open interval (0,π /2), i.e., it has two interior extrema: one minimum and one maximum. Furthermore, cases are found when the interior minimum of such a bimodal function \\tilde{S}(θ ) is less than that one at the endpoint θ =0 or π /2. This leads to the formation of a boundary between the phases of one-way quantum deficit via finite jumps of optimal measured angle from the endpoint to the interior minimum. Phase diagram is built up for a two-parameter family of X states. The subregions with variable optimal measured angle are around 1% of the total region, with their relative linear sizes achieving 17.5%, and the fidelity between the states of those subregions can be reduced to F=0.968. In addition, a correction to the one-way deficit due to the interior minimum can achieve 2.3%. Such conditions are favorable to detect the subregions with variable optimal measured angle of one-way quantum deficit in an experiment.

  12. Quantum and superconducting fluctuations effects in disordered Nb 1- xTa x thin films above Tc

    NASA Astrophysics Data System (ADS)

    Giannouri, M.; Papastaikoudis, C.

    1999-05-01

    Disordered Nb 1- xTa x thin films are prepared with e-gun coevaporation. The influence of the β-phase of tantalum in the critical temperature Tc is observed as a function of the substrate temperature. The measurements of transverse magnetoresistance at various isothermals are interpreted in terms of weak-localization and superconducting fluctuations. From the fitting procedure, the phase breaking rate τφ-1 and the Larkin parameter βL are estimated as a function of temperature. Conclusions about the dominant inelastic scattering mechanisms at various temperature regions as well as for the dominant mechanism of superconducting fluctuations near the transition temperature are extracted.

  13. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  14. The comparison of approaches to the solid-state NMR-based structural refinement of vitamin B1 hydrochloride and of its monohydrate

    NASA Astrophysics Data System (ADS)

    Czernek, Jiří; Pawlak, Tomasz; Potrzebowski, Marek J.; Brus, Jiří

    2013-01-01

    The 13C and 15N CPMAS SSNMR measurements were accompanied by the proper theoretical description of the solid-phase environment, as provided by the density functional theory in the pseudopotential plane-wave scheme, and employed in refining the atomic coordinates of the crystal structures of thiamine chloride hydrochloride and of its monohydrate. Thus, using the DFT functionals PBE, PW91 and RPBE, the SSNMR-consistent solid-phase structures of these compounds are derived from the geometrical optimization, which is followed by an assessment of the fits of the GIPAW-predicted values of the chemical shielding parameters to their experimental counterparts.

  15. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  16. Candidate Elastic Quantum Critical Point in LaCu 6 - x Au x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Lekh; May, Andrew F.; Koehler, Michael R.

    2016-11-30

    In this paper, the structural properties of LaCu 6-xAu x are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu 6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x c=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x c. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. Finally, the data and calculations presented here are consistent with the zero temperature terminationmore » of a continuous structural phase transition suggesting that the LaCu 6-xAu x series hosts an elastic quantum critical point.« less

  17. Science of Water Leaks: Validated Theory for Moisture Flow in Microchannels and Nanochannels.

    PubMed

    Lei, Wenwen; Fong, Nicole; Yin, Yongbai; Svehla, Martin; McKenzie, David R

    2015-10-27

    Water is ubiquitous; the science of its transport in micro- and nanochannels has applications in electronics, medicine, filtration, packaging, and earth and planetary science. Validated theory for water vapor and two-phase water flows is a "missing link"; completing it enables us to define and quantify flow in a set of four standard leak configurations with dimensions from the nanoscale to the microscale. Here we report the first measurements of water vapor flow rates through four silica microchannels as a function of humidity, including under conditions when air is present as a background gas. An important finding is that the tangential momentum accommodation coefficient (TMAC) is strongly modified by surface layers of adsorbed water molecules, in agreement with previous work on the TMAC for nitrogen molecules impacting a silica surface in the presence of moisture. We measure enhanced flow rates for two-phase flows in silica microchannels driven by capillary filling. For the measurement of flows in nanochannels we use heavy water mass spectrometry. We construct the theory for the flow rates of the dominant modes of water transport through each of the four standard configurations and benchmark it against our new measurements in silica and against previously reported measurements for nanochannels in carbon nanotubes, carbon nanopipes, and porous alumina. The findings show that all behavior can be described by the four standard leak configurations and that measurements of leak behavior made using other molecules, such as helium, are not reliable. Single-phase water vapor flow is overestimated by a helium measurement, while two-phase flows are greatly underestimated for channels larger than 100 nm or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid-phase flows.

  18. FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic aerosol from phenols

    NASA Astrophysics Data System (ADS)

    George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.

    2015-01-01

    Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.

  19. Effect of Phase Lag on Fluid Flow and Particle Dispersion in a Single Human Alveolus

    NASA Astrophysics Data System (ADS)

    Chhabra, Sudhaker; Prasad, Ajay

    2007-11-01

    The human lung can be divided into (1) the conducting airways, and (2) the acini. The acini are responsible for gas exchange and consist of alveoli and bronchioles. The acini are useful delivery sites for inhaled therapeutic aerosols. In normal lung function the alveolus expands and contracts in phase with the bronchiole airflow oscillation. Lung diseases such as emphysema compromise the elasticity of the lung. Consequently, the alveolus may not oscillate in-phase with the oscillating bronchiole airflow. We have previously studied flow and particle transport in an alveolus for in-phase flow. The current work focuses on measuring out-of-phase airflow patterns and particle transport in an in-vitro model of a single expanding/contracting human alveolus. The model consists of a transparent, elastic, oscillating alveolus (represented by a 5/6th hemisphere) attached to a rigid circular tube. Realistic tidal breathing conditions were achieved by matching Reynolds and Womersley numbers. Flow patterns were measured using PIV; these velocity maps were subsequently used to calculate particle transport and deposition on the alveolar wall.

  20. Robotic kidney transplantation with regional hypothermia: evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1).

    PubMed

    Menon, Mani; Abaza, Ronney; Sood, Akshay; Ahlawat, Rajesh; Ghani, Khurshid R; Jeong, Wooju; Kher, Vijay; Kumar, Ramesh K; Bhandari, Mahendra

    2014-05-01

    Surgical innovation is essential for progress of surgical science, but its implementation comes with potential harms during the learning phase. The Balliol Collaboration has recommended a set of guidelines (Innovation, Development, Exploration, Assessment, Long-term study [IDEAL]) that permit innovation while minimizing complications. To utilize the IDEAL model of surgical innovation in the development of a novel surgical technique, robotic kidney transplantation (RKT) with regional hypothermia, and describe the process of discovery and development. Phase 0 (simulation) studies included the establishment of techniques for pelvic cooling, graft placement in a robotic prostatectomy model, and simulation of the RKT procedure in a cadaveric model. Phase 1 (innovation) studies began in January 2013 and involved treatment of a highly selective small group of patients (n=7), using the principles utilized in the phase 0 studies, at a tertiary referral center. IDEAL model implementation in the development of RKT with regional hypothermia. For phase 0 studies, the outcomes evaluated included pelvic and body temperature measurements, and technical feasibility assessment. The primary outcome during phase 1 was post-transplant graft function. Other outcomes measured were operative and ischemic times, perioperative complications, and intracorporeal graft surface temperature. Phase 0 (simulation phase): Pelvic cooling to 15-20(o)C was achieved reproducibly. Using the surgical approach developed for robotic radical prostatectomy, vascular and ureterovesical anastomoses could be done without redocking the robot. Phase 1 (innovation phase): All patients underwent live-donor RKT in the lithotomy position. All grafts functioned immediately. Mean console, anastomotic, and warm ischemia times were 154 min, 29 min, and 2 min, respectively. One patient was re-explored on postoperative day 1. Adherence to the IDEAL guidelines put forth by the Balliol Collaboration provided a practical framework for the establishment of a novel surgical procedure, RKT with regional hypothermia, without exposing the initial patients to unacceptable risk. The IDEAL model allows safe introduction of new surgical techniques without compromising patient outcomes. Copyright © 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved.

Top